Elastocapillary Instability in Mitochondrial Fission
NASA Astrophysics Data System (ADS)
Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien
2015-08-01
Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.
Modeling the effect of pathogenic mutations on the conformational landscape of protein kinases.
Saladino, Giorgio; Gervasio, Francesco Luigi
2016-04-01
Most proteins assume different conformations to perform their cellular functions. This conformational dynamics is physiologically regulated by binding events and post-translational modifications, but can also be affected by pathogenic mutations. Atomistic molecular dynamics simulations complemented by enhanced sampling approaches are increasingly used to probe the effect of mutations on the conformational dynamics and on the underlying conformational free energy landscape of proteins. In this short review we discuss recent successful examples of simulations used to understand the molecular mechanism underlying the deregulation of physiological conformational dynamics due to non-synonymous single point mutations. Our examples are mostly drawn from the protein kinase family. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cheng, C Yan; Mruk, Dolores D
2002-10-01
Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.
Mitochondrial dynamics in mammalian health and disease.
Liesa, Marc; Palacín, Manuel; Zorzano, Antonio
2009-07-01
The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.
Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features
Fink, Elian; Heathers, James A. J.; de Rosnay, Marc
2015-01-01
Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (N study1 = 75; N study2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952
Oral dosing of chemical indicators for in vivo monitoring of Ca2+ dynamics in insect muscle.
Ferdinandus; Arai, Satoshi; Ishiwata, Shin'ichi; Suzuki, Madoka; Sato, Hirotaka
2015-01-01
This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action) and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing). A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects.
Oral Dosing of Chemical Indicators for In Vivo Monitoring of Ca2+ Dynamics in Insect Muscle
Ferdinandus; Arai, Satoshi; Ishiwata, Shin’ichi; Suzuki, Madoka; Sato, Hirotaka
2015-01-01
This paper proposes a remarkably facile staining protocol to visually investigate dynamic physiological events in insect tissues. We attempted to monitor Ca2+ dynamics during contraction of electrically stimulated living muscle. Advances in circuit miniaturization and insect neuromuscular physiology have enabled the hybridization of living insects and man-made electronic components, such as microcomputers, the result of which has been often referred as a Living Machine, Biohybrid, or Cyborg Insect. In order for Cyborg Insects to be of practical use, electrical stimulation parameters need to be optimized to induce desired muscle response (motor action) and minimize the damage in the muscle due to the electrical stimuli. Staining tissues and organs as well as measuring the dynamics of chemicals of interest in muscle should be conducted to quantitatively and systematically evaluate the effect of various stimulation parameters on the muscle response. However, existing staining processes require invasive surgery and/or arduous procedures using genetically encoded sensors. In this study, we developed a non-invasive and remarkably facile method for staining, in which chemical indicators can be orally administered (oral dosing). A chemical Ca2+ indicator was orally introduced into an insect of interest via food containing the chemical indicator and the indicator diffused from the insect digestion system to the target muscle tissue. We found that there was a positive relationship between the fluorescence intensity of the indicator and the frequency of electrical stimulation which indicates the orally dosed indicator successfully monitored Ca2+ dynamics in the muscle tissue. This oral dosing method has a potential to globally stain tissues including neurons, and investigating various physiological events in insects. PMID:25590329
Valenza, Gaetano; Faes, Luca; Citi, Luca; Orini, Michele; Barbieri, Riccardo
2018-05-01
Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characterized through discrete time series, and modeled with probability density functions predicting the time of the next physiological event as a function of the past history. Likewise, nonstationary interactions between heartbeat and blood pressure dynamics are characterized as well. Furthermore, we propose a new measure of information transfer, the instantaneous point-process information transfer (ipInfTr), which is directly derived from point-process-based definitions of the Kolmogorov-Smirnov distance. Analysis on synthetic data, as well as on experimental data gathered from healthy subjects undergoing postural changes confirms that ipTE, as well as ipInfTr measures are able to dynamically track changes in physiological systems coupling. This novel approach opens new avenues in the study of hidden, transient, nonstationary physiological states involving multivariate autonomic dynamics in cardiovascular health and disease. The proposed method can also be tailored for the study of complex multisystem physiology (e.g., brain-heart or, more in general, brain-body interactions).
Quantifying memory in complex physiological time-series.
Shirazi, Amir H; Raoufy, Mohammad R; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R; Amodio, Piero; Jafari, G Reza; Montagnese, Sara; Mani, Ali R
2013-01-01
In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of "memory length" was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are 'forgotten' quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations.
Quantifying Memory in Complex Physiological Time-Series
Shirazi, Amir H.; Raoufy, Mohammad R.; Ebadi, Haleh; De Rui, Michele; Schiff, Sami; Mazloom, Roham; Hajizadeh, Sohrab; Gharibzadeh, Shahriar; Dehpour, Ahmad R.; Amodio, Piero; Jafari, G. Reza; Montagnese, Sara; Mani, Ali R.
2013-01-01
In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a random, or memory-less, process. In the present study, the concept of “memory length” was used to define the time period, or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are ‘forgotten’ quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics around rare fluctuations. PMID:24039811
Collaborative research in cardiovascular dynamics and bone elasticity
NASA Technical Reports Server (NTRS)
1974-01-01
A collaborative research program covering a variety of topics of biomechanics and biomedical engineering within the fields of cardiovascular dynamics, respiration, bone elasticity and vestibular physiology is described. The goals of the research were to promote: (1) a better understanding of the mechanical behavior of the circulatory system and its control mechanisms; (2) development of noninvasive methods of measuring the changes in the mechanical properties of blood vessels and other cardiovascular parameters in man; (3) application of these noninvasive methods to examine in man the physiological effects of environmental changes, including earth-simulated gravitational changes; and (4) development of in-flight methods for studying the events which lead to post-flight postural hypotension.
Spatial and temporal dynamics of the cardiac mitochondrial proteome.
Lau, Edward; Huang, Derrick; Cao, Quan; Dincer, T Umut; Black, Caitie M; Lin, Amanda J; Lee, Jessica M; Wang, Ding; Liem, David A; Lam, Maggie P Y; Ping, Peipei
2015-04-01
Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers into the clinic.
Reproductive endocrinology of llamas and alpacas.
Bravo, P W
1994-07-01
The physiology of reproduction with emphasis in endocrinology of llamas and alpacas is addressed. Basic concepts of ovarian follicular dynamics, endocrine events associated with induction of ovulation, corpus luteum formation, pregnancy, parturition, postpartum interval, puberty, and sexual behavior on the female are reviewed. Pathologic conditions of the reproductive process are also reviewed.
High-speed atomic force microscopy coming of age
NASA Astrophysics Data System (ADS)
Ando, Toshio
2012-02-01
High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.
Global, quantitative and dynamic mapping of protein subcellular localization.
Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh
2016-06-09
Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.
Turing-like structures in a functional model of cortical spreading depression
NASA Astrophysics Data System (ADS)
Verisokin, A. Yu.; Verveyko, D. V.; Postnov, D. E.
2017-12-01
Cortical spreading depression (CSD) along with migraine waves and spreading depolarization events with stroke or injures are the front-line examples of extreme physiological behaviors of the brain cortex which manifest themselves via the onset and spreading of localized areas of neuronal hyperactivity followed by their depression. While much is known about the physiological pathways involved, the dynamical mechanisms of the formation and evolution of complex spatiotemporal patterns during CSD are still poorly understood, in spite of the number of modeling studies that have been already performed. Recently we have proposed a relatively simple mathematical model of cortical spreading depression which counts the effects of neurovascular coupling and cerebral blood flow redistribution during CSD. In the present study, we address the main dynamical consequences of newly included pathways, namely, the changes in the formation and propagation speed of the CSD front and the pattern formation features in two dimensions. Our most notable finding is that the combination of vascular-mediated spatial coupling with local regulatory mechanisms results in the formation of stationary Turing-like patterns during a CSD event.
Global, quantitative and dynamic mapping of protein subcellular localization
Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH
2016-01-01
Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775
Airway mechanics and methods used to visualize smooth muscle dynamics in vitro.
Cooper, P R; McParland, B E; Mitchell, H W; Noble, P B; Politi, A Z; Ressmeyer, A R; West, A R
2009-10-01
Contraction of airway smooth muscle (ASM) is regulated by the physiological, structural and mechanical environment in the lung. We review two in vitro techniques, lung slices and airway segment preparations, that enable in situ ASM contraction and airway narrowing to be visualized. Lung slices and airway segment approaches bridge a gap between cell culture and isolated ASM, and whole animal studies. Imaging techniques enable key upstream events involved in airway narrowing, such as ASM cell signalling and structural and mechanical events impinging on ASM, to be investigated.
NASA Astrophysics Data System (ADS)
Toda, M.; Knohl, A.; Herbst, M.; Keenan, T. F.; Yokozawa, M.
2016-12-01
The increase in extreme climate events associated with ongoing global warming may create severe damage to terrestrial ecosystems, changing plant structure and the eco-physiological functions that regulate ecosystem carbon exchange. However, most damage is usually due to moderate, rather than catastrophic, disturbances. The nature of plant functional responses to such disturbances, and the resulting effects on the terrestrial carbon cycle, remain poorly understood. To unravel the scientific question, tower-based eddy covariance data in the cool-temperate forests were used to constrain plant eco-physiological parameters in a persimoneous ecosystem model that may have affected carbon dynamics following extreme climate events using the statistic Bayesian inversion approach. In the present study, we raised two types of extreme events relevant for cool-temperate regions, i.e. a typhoon with mechanistic foliage destraction and a heat wave with severe drought. With appropriate evaluation of parameter and predictive uncertainties, the inversion analysis shows annual trajectory of activated photosynthetic responses following climate extremes compared the pre-disturbance state in each forest. We address that forests with moderate disturbance show substantial and rapid photosynthetic recovery, enhanced productivity, and, thus, ecosystem carbon exchange, although the effect of extreme climatic events varies depending on the stand successional phase and the type, intensity, timing and legacy of the disturbance.
Thompson, John W; Sorum, Alexander W; Hsieh-Wilson, Linda C
2018-06-23
The dynamic posttranslational modification O-linked β-N-acetylglucosamine glycosylation (O-GlcNAcylation) is present on thousands of intracellular proteins in the brain. Like phosphorylation, O-GlcNAcylation is inducible and plays important functional roles in both physiology and disease. Recent advances in mass spectrometry (MS) and bioconjugation methods are now enabling the mapping of O-GlcNAcylation events to individual sites in proteins. However, our understanding of which glycosylation events are necessary for regulating protein function and controlling specific processes, phenotypes, or diseases remains in its infancy. Given the sheer number of O-GlcNAc sites, methods are greatly needed to identify promising sites and prioritize them for time- and resource-intensive functional studies. Revealing sites that are dynamically altered by different stimuli or disease states will likely to go a long way in this regard. Here, we describe advanced methods for identifying O-GlcNAc sites on individual proteins and across the proteome, and for determining their stoichiometry in vivo. We also highlight emerging technologies for quantitative, site-specific MS-based O-GlcNAc proteomics (O-GlcNAcomics), which allow proteome-wide tracking of O-GlcNAcylation dynamics at individual sites. These cutting-edge technologies are beginning to bridge the gap between the high-throughput cataloging of O-GlcNAcylated proteins and the relatively low-throughput study of individual proteins. By uncovering the O-GlcNAcylation events that change in specific physiological and disease contexts, these new approaches are providing key insights into the regulatory functions of O-GlcNAc in the brain, including their roles in neuroprotection, neuronal signaling, learning and memory, and neurodegenerative diseases.
Formal analysis of temporal dynamics in anxiety states and traits for virtual patients
NASA Astrophysics Data System (ADS)
Aziz, Azizi Ab; Ahmad, Faudziah; Yusof, Nooraini; Ahmad, Farzana Kabir; Yusof, Shahrul Azmi Mohd
2016-08-01
This paper presents a temporal dynamic model of anxiety states and traits for an individual. Anxiety is a natural part of life, and most of us experience it from time to time. But for some people, anxiety can be extreme. Based on several personal characteristics, traits, and a representation of events (i.e. psychological and physiological stressors), the formal model can represent whether a human that experience certain scenarios will fall into an anxiety states condition. A number of well-known relations between events and the course of anxiety are summarized from the literature and it is shown that the model exhibits those patterns. In addition, the formal model has been mathematically analyzed to find out which stable situations exist. Finally, it is pointed out how this model can be used in therapy, supported by a software agent.
Event-Related Oscillations in Alcoholism Research: A Review
Pandey, Ashwini K; Kamarajan, Chella; Rangaswamy, Madhavi; Porjesz, Bernice
2013-01-01
Alcohol dependence is characterized as a multi-factorial disorder caused by a complex interaction between genetic and environmental liabilities across development. A variety of neurocognitive deficits/dysfunctions involving impairments in different brain regions and/or neural circuitries have been associated with chronic alcoholism, as well as with a predisposition to develop alcoholism. Several neurobiological and neurobehavioral approaches and methods of analyses have been used to understand the nature of these neurocognitive impairments/deficits in alcoholism. In the present review, we have examined relatively novel methods of analyses of the brain signals that are collectively referred to as event-related oscillations (EROs) and show promise to further our understanding of human brain dynamics while performing various tasks. These new measures of dynamic brain processes have exquisite temporal resolution and allow the study of neural networks underlying responses to sensory and cognitive events, thus providing a closer link to the physiology underlying them. Here, we have reviewed EROs in the study of alcoholism, their usefulness in understanding dynamical brain functions/dysfunctions associated with alcoholism as well as their utility as effective endophenotypes to identify and understand genes associated with both brain oscillations and alcoholism. PMID:24273686
Neural pathways in processing of sexual arousal: a dynamic causal modeling study.
Seok, J-W; Park, M-S; Sohn, J-H
2016-09-01
Three decades of research have investigated brain processing of visual sexual stimuli with neuroimaging methods. These researchers have found that sexual arousal stimuli elicit activity in a broad neural network of cortical and subcortical brain areas that are known to be associated with cognitive, emotional, motivational and physiological components. However, it is not completely understood how these neural systems integrate and modulated incoming information. Therefore, we identify cerebral areas whose activations were correlated with sexual arousal using event-related functional magnetic resonance imaging and used the dynamic causal modeling method for searching the effective connectivity about the sexual arousal processing network. Thirteen heterosexual males were scanned while they passively viewed alternating short trials of erotic and neutral pictures on a monitor. We created a subset of seven models based on our results and previous studies and selected a dominant connectivity model. Consequently, we suggest a dynamic causal model of the brain processes mediating the cognitive, emotional, motivational and physiological factors of human male sexual arousal. These findings are significant implications for the neuropsychology of male sexuality.
NASA Astrophysics Data System (ADS)
Guo, C.; Yu, J.; Ho, T.-Y.; Wang, L.; Song, S.; Kong, L.; Liu, H.
2012-04-01
Recent studies have demonstrated atmospheric deposition as an important source of bioreactive compounds to the ocean. The South China Sea (SCS), where aerosol loading is among the highest in the world, however, is poorly studied, particularly on the in situ response of phytoplankton community structures to atmospheric deposition. By conducting a series of microcosm bioassays at different hydrographical locations and simulating different aerosol event scales, we observed both positive and negative responses to the input of East Asian (EA) aerosol with high nitrogen (N) and trace metal contents, in terms of biomass, composition and physiological characteristics of phytoplankton communities. High levels of aerosol loading relieved phytoplankton nitrogen and trace metal limitations in SCS, and thus increased total phytoplankton biomass, enhanced their physiological indicators (e.g. photosynthetic efficiency) and shifted phytoplankton assemblages from being dominated by picoplankton to microphytoplanton, especially diatoms. However, under low levels of aerosol loading, the composition shift and biomass accumulation were not apparent, suggesting that the stimulation effects might be counterbalanced by enhanced grazing mortality indicated by increased abundance of protist grazers. Trace metal toxicity of the aerosols might also be the reason for the reduction of picocyanobacteria when amended with high EA aerosols. The magnitude and duration of the deposition event, as well as the hydrographical and trophic conditions of receiving waters are also important factors when predicting the influence of an aerosol deposition event. Our results demonstrated different responses of phytoplankton and microbial food web dynamics to different scales of atmospheric input events in SCS and highlighted the need for achieving an accurate comprehension of atmospheric nutrient on the biogeochemical cycles of the oceans.
Miller, Jonas G.; Nuselovici, Jacob N.; Hastings, Paul D.
2016-01-01
How does empathic physiology unfold as a dynamic process, and which aspect of empathy predicts children’s kindness? In response to empathy induction videos, 4–6 year-old children (N = 180) showed an average pattern of dynamic respiratory sinus arrhythmia (RSA) change characterized by early RSA suppression followed by RSA recovery, and modest subsequent suppression during positive resolution of the empathic event. Children’s capacity for this pattern of flexible RSA change was associated with their subjective empathic feelings, which were concurrently associated with more sympathetic and prosocial responses to others. Conversely, only children’s dynamic RSA change longitudinally predicted prosocial behavior two years later. These findings have implications for understanding the dynamic and multifaceted nature of empathy, and its relation with prosocial development. PMID:28262932
Translational physiology: from molecules to public health.
Seals, Douglas R
2013-07-15
The term 'translational research' was coined 20 years ago and has become a guiding influence in biomedical research. It refers to a process by which the findings of basic research are extended to the clinical research setting (bench to bedside) and then to clinical practice and eventually health policy (bedside to community). It is a dynamic, multidisciplinary research approach. The concept of translational physiology applies the translational research model to the physiological sciences. It differs from the traditional areas of integrative and clinical physiology by its broad investigative scope of basic research to community health. Translational physiology offers exciting opportunities, but presently is under-developed and -utilized. A key challenge will be to expand physiological research by extending investigations to communities of patients and healthy (or at risk) individuals. This will allow bidirectional physiological investigation throughout the translational continuum: basic research observations can be studied up to the population level, and mechanisms can be assessed by 'reverse translation' in clinical research settings and preclinical models based on initial observations made in populations. Examples of translational physiology questions, experimental approaches, roadblocks and strategies for promotion are discussed. Translational physiology provides a novel framework for physiology programs and an investigational platform for physiologists to study function from molecular events to public health. It holds promise for enhancing the completeness and societal impact of our work, while further solidifying the critical role of physiology in the biomedical research enterprise.
Translational physiology: from molecules to public health
Seals, Douglas R
2013-01-01
The term ‘translational research’ was coined 20 years ago and has become a guiding influence in biomedical research. It refers to a process by which the findings of basic research are extended to the clinical research setting (bench to bedside) and then to clinical practice and eventually health policy (bedside to community). It is a dynamic, multidisciplinary research approach. The concept of translational physiology applies the translational research model to the physiological sciences. It differs from the traditional areas of integrative and clinical physiology by its broad investigative scope of basic research to community health. Translational physiology offers exciting opportunities, but presently is under-developed and -utilized. A key challenge will be to expand physiological research by extending investigations to communities of patients and healthy (or at risk) individuals. This will allow bidirectional physiological investigation throughout the translational continuum: basic research observations can be studied up to the population level, and mechanisms can be assessed by ‘reverse translation’ in clinical research settings and preclinical models based on initial observations made in populations. Examples of translational physiology questions, experimental approaches, roadblocks and strategies for promotion are discussed. Translational physiology provides a novel framework for physiology programs and an investigational platform for physiologists to study function from molecular events to public health. It holds promise for enhancing the completeness and societal impact of our work, while further solidifying the critical role of physiology in the biomedical research enterprise. PMID:23732641
Aeromedical decision making--it may be time for a paradigm change.
Steinkraus, Lawrence W; Rayman, Russell B; Butler, William P; Marsh, Royden W; Ercoline, William; Cowl, Clayton T
2012-10-01
Recent events in the U-2 and F-22 fleets have challenged aeromedical experts, highlighting the need for better in-flight aircrew physiologic and cognitive monitoring capability. Existing aerospace medicine risk assessment tools, while necessary, are no longer sufficient to affect positive safety changes given the evolving nature of the aerospace environment. Cognition and its sub-elements are now primary measures for the "Fit to Fly" decision. We must investigate practical methodologies for determining dynamic aircrew physiologic and cognitive function preflight (selection, retention) and in-flight (selection, retention, performance enhancement). In 2010, a panel of aeromedical experts met to address current paradigms and suggest possible solutions. This commentary briefly summarizes panel findings and recommendations.
Bursts of seizures in long-term recordings of human focal epilepsy
Karoly, Philippa J.; Nurse, Ewan S.; Freestone, Dean R.; Ung, Hoameng; Cook, Mark J.; Boston, Ray
2017-01-01
Summary Objective We report on temporally clustered seizures detected from continuous long-term ambulatory human electroencephalographic data. The objective was to investigate short-term seizure clustering, which we have termed bursting, and consider implications for patient care, seizure prediction, and evaluating therapies. Methods Chronic ambulatory intracranial EEG data collected for the purpose of seizure prediction were annotated to identify seizure events. A detection algorithm was used to identify bursts of events. Burst events were compared to non-burst events to evaluate event dispersion, duration and dynamics. Results Bursts of seizures were present in six of fifteen patients, and detections were consistent over long term monitoring (> 2 years). Seizures within bursts are highly overdispersed compared to non-burst seizures. There was a complicated relationship between bursts and clinical seizures, although bursts were associated with multi-modal distributions of seizure duration, and poorer predictive outcomes. For three subjects, bursts demonstrated distinctive pre-ictal dynamics compared to clinical seizures. Significance We have previously hypothesized that there are distinct physiological pathways underlying short and long duration seizures. Here we show that burst seizures fall almost exclusively within the short population of seizure durations; however, a short duration was not sufficient to induce or imply bursting. We can therefore conclude that in addition to distinct mechanisms underlying seizure duration, there are separate factors regulating bursts of seizures. We show that bursts were a robust phenomenon in our patient cohort, which were consistent with overdispersed seizure rates, suggesting long-memory dynamics. PMID:28084639
Infrasonic cardiac signals: complementary windows to cardiovascular dynamics.
Tavakolian, Kouhyar; Ngai, Brandon; Blaber, Andrew P; Kaminska, Bozena
2011-01-01
New approaches to fairly old noninvasive cardiology tools, based on studying low frequency vibrations created by the heart on the body, were reviewed. These signals were divided and studied in two categories and compared in their capability for estimation of hemodynamic parameters. In particular one representative signal of each category, seismocardiogram and ultra-low frequency ballistocardiogram, were selected and compared to each other in their correspondence to physiological events behind their waves.
Impact of Serine/Threonine Protein Kinases on the Regulation of Sporulation in Bacillus subtilis.
Pompeo, Frédérique; Foulquier, Elodie; Galinier, Anne
2016-01-01
Bacteria possess many kinases that catalyze phosphorylation of proteins on diverse amino acids including arginine, cysteine, histidine, aspartate, serine, threonine, and tyrosine. These protein kinases regulate different physiological processes in response to environmental modifications. For example, in response to nutritional stresses, the Gram-positive bacterium Bacillus subtilis can differentiate into an endospore; the initiation of sporulation is controlled by the master regulator Spo0A, which is activated by phosphorylation. Spo0A phosphorylation is carried out by a multi-component phosphorelay system. These phosphorylation events on histidine and aspartate residues are labile, highly dynamic and permit a temporal control of the sporulation initiation decision. More recently, another kind of phosphorylation, more stable yet still dynamic, on serine or threonine residues, was proposed to play a role in spore maintenance and spore revival. Kinases that perform these phosphorylation events mainly belong to the Hanks family and could regulate spore dormancy and spore germination. The aim of this mini review is to focus on the regulation of sporulation in B. subtilis by these serine and threonine phosphorylation events and the kinases catalyzing them.
Beauty and the brain: culture, history and individual differences in aesthetic appreciation.
Jacobsen, Thomas
2010-02-01
Human aesthetic processing entails the sensation-based evaluation of an entity with respect to concepts like beauty, harmony or well-formedness. Aesthetic appreciation has many determinants ranging from evolutionary, anatomical or physiological constraints to influences of culture, history and individual differences. There are a vast number of dynamically configured neural networks underlying these multifaceted processes of aesthetic appreciation. In the current challenge of successfully bridging art and science, aesthetics and neuroanatomy, the neuro-cognitive psychology of aesthetics can approach this complex topic using a framework that postulates several perspectives, which are not mutually exclusive. In this empirical approach, objective physiological data from event-related brain potentials and functional magnetic resonance imaging are combined with subjective, individual self-reports.
Beauty and the brain: culture, history and individual differences in aesthetic appreciation
Jacobsen, Thomas
2010-01-01
Human aesthetic processing entails the sensation-based evaluation of an entity with respect to concepts like beauty, harmony or well-formedness. Aesthetic appreciation has many determinants ranging from evolutionary, anatomical or physiological constraints to influences of culture, history and individual differences. There are a vast number of dynamically configured neural networks underlying these multifaceted processes of aesthetic appreciation. In the current challenge of successfully bridging art and science, aesthetics and neuroanatomy, the neuro-cognitive psychology of aesthetics can approach this complex topic using a framework that postulates several perspectives, which are not mutually exclusive. In this empirical approach, objective physiological data from event-related brain potentials and functional magnetic resonance imaging are combined with subjective, individual self-reports. PMID:19929909
Dynamics of biological systems: role of systems biology in medical research.
Assmus, Heike E; Herwig, Ralf; Cho, Kwang-Hyun; Wolkenhauer, Olaf
2006-11-01
Cellular systems are networks of interacting components that change with time in response to external and internal events. Studying the dynamic behavior of these networks is the basis for an understanding of cellular functions and disease mechanisms. Quantitative time-series data leading to meaningful models can improve our knowledge of human physiology in health and disease, and aid the search for earlier diagnoses, better therapies and a healthier life. The advent of systems biology is about to take the leap into clinical research and medical applications. This review emphasizes the importance of a dynamic view and understanding of cell function. We discuss the potential for computer-aided mathematical modeling of biological systems in medical research with examples from some of the major therapeutic areas: cancer, cardiovascular, diabetic and neurodegenerative medicine.
The Impact of Protein Phosphorylation on Chlamydial Physiology
Claywell, Ja E.; Matschke, Lea M.; Fisher, Derek J.
2016-01-01
Chlamydia are Gram negative bacterial pathogens responsible for disease in humans and economically important domesticated animals. As obligate intracellular bacteria, they must gain entry into a host cell where they propagate within a parasitophorous organelle that serves as an interactive interface between the bacterium and the host. Nutrient acquisition, growth, and evasion of host defense mechanisms occur from this location. In addition to these cellular and bacterial dynamics, Chlamydia differentiate between two morphologically distinct forms, the elementary body and reticulate body, that are optimized for either extracellular or intracellular survival, respectively. The mechanisms regulating and mediating these diverse physiological events remain largely unknown. Reversible phosphorylation, including classical two-component signaling systems, partner switching mechanisms, and the more recently appreciated bacterial Ser/Thr/Tyr kinases and phosphatases, has gained increasing attention for its role in regulating important physiological processes in bacteria including metabolism, development, and virulence. Phosphorylation modulates these events via rapid and reversible modification of protein substrates leading to changes in enzyme activity, protein oligomerization, cell signaling, and protein localization. The characterization of several conserved chlamydial protein kinases and phosphatases along with phosphoproteome analysis suggest that Chlamydia are capable of global and growth stage-specific protein phosphorylation. This mini review will highlight the current knowledge of protein phosphorylation in Chlamydia and its potential role in chlamydial physiology and, consequently, virulence. Comparisons with other minimal genome intracellular bacterial pathogens also will be addressed with the aim of illustrating the importance of this understudied regulatory mechanism on pathogenesis and the principle questions that remain unanswered. PMID:28066729
Leone, María J; Petroni, Agustín; Fernandez Slezak, Diego; Sigman, Mariano
2012-01-01
During a decision-making process, the body changes. These somatic changes have been related to specific cognitive events and also have been postulated to assist decision-making indexing possible outcomes of different options. We used chess to analyze heart rate (HR) modulations on specific cognitive events. In a chess game, players have a limited time-budget to make about 40 moves (decisions) that can be objectively evaluated and retrospectively assigned to specific subjectively perceived events, such as setting a goal and the process to reach a known goal. We show that HR signals events: it predicts the conception of a plan, the concrete analysis of variations or the likelihood to blunder by fluctuations before to the move, and it reflects reactions, such as a blunder made by the opponent, by fluctuations subsequent to the move. Our data demonstrate that even if HR constitutes a relatively broad marker integrating a myriad of physiological variables, its dynamic is rich enough to reveal relevant episodes of inner thought.
Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis
Song, Juan; Olsen, Reid H.J.; Sun, Jiaqi; Ming, Guo-li; Song, Hongjun
2017-01-01
The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb. PMID:27143698
Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T
2015-01-01
Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.
Rault, Aline; Bouix, Marielle; Béal, Catherine
2009-07-01
This study aims at better understanding the effects of fermentation pH and harvesting time on Lactobacillus bulgaricus CFL1 cellular state in order to improve knowledge of the dynamics of the physiological state and to better manage starter production. The Cinac system and multiparametric flow cytometry were used to characterize and compare the progress of the physiological events that occurred during pH 6 and pH 5 controlled cultures. Acidification activity, membrane damage, enzymatic activity, cellular depolarization, intracellular pH, and pH gradient were determined and compared during growing conditions. Strong differences in the time course of viability, membrane integrity, and acidification activity were displayed between pH 6 and pH 5 cultures. As a main result, the pH 5 control during fermentation allowed the cells to maintain a more robust physiological state, with high viability and stable acidification activity throughout growth, in opposition to a viability decrease and fluctuation of activity at pH 6. This result was mainly explained by differences in lactate concentration in the culture medium and in pH gradient value. The elevated content of the ionic lactate form at high pH values damaged membrane integrity that led to a viability decrease. In contrast, the high pH gradient observed throughout pH 5 cultures was associated with an increased energetic level that helped the cells maintain their physiological state. Such results may benefit industrial starter producers and fermented-product manufacturers by allowing them to better control the quality of their starters, before freezing or before using them for food fermentation.
Physiological importance of RNA and protein mobility in the cell nucleus
2007-01-01
Trafficking of proteins and RNAs is essential for cellular function and homeostasis. While it has long been appreciated that proteins and RNAs move within cells, only recently has it become possible to visualize trafficking events in vivo. Analysis of protein and RNA motion within the cell nucleus have been particularly intriguing as they have revealed an unanticipated degree of dynamics within the organelle. These methods have revealed that the intranuclear trafficking occurs largely by energy-independent mechanisms and is driven by diffusion. RNA molecules and non-DNA binding proteins undergo constrained diffusion, largely limited by the spatial constraint imposed by chromatin, and chromatin binding proteins move by a stop-and-go mechanism where their free diffusion is interrupted by random association with the chromatin fiber. The ability and mode of motion of proteins and RNAs has implications for how they find nuclear targets on chromatin and in nuclear subcompartments and how macromolecular complexes are assembled in vivo. Most importantly, the dynamic nature of proteins and RNAs is emerging as a means to control physiological cellular responses and pathways. PMID:17994245
Understanding variation in ecosystem pulse responses to wetting: Benefits of data-model coupling
NASA Astrophysics Data System (ADS)
Jenerette, D.
2011-12-01
Metabolic pulses of activity are a common ecological response to intermittently available resources and in water-limited ecosystems these pulses often occur in response to wetting. Net ecosystem CO2 exchange (NEE) in response to episodic wetting events is hypothesized to have a complex trajectory reflecting the distinct responses, or "pulses", of respiration and photosynthesis. To help direct research activities a physiological-based model of whole ecosystem metabolic activity up- and down-regulation was developed to investigate ecosystem energy balance and gas exchange pulse responses following precipitation events. This model was to investigate pulse dynamics from a local network of sites in southern Arizona, a global network of eddy-covariance ecosystem monitoring sites, laboratory incubation studies, and field manipulations. Pulse responses were found to be ubiquitous across ecosystem types. These pulses had a highly variable influence on NEE following wetting, ranging from large net sinks to sources of CO2 to the atmosphere. Much of the variability in pulse responses of NEE could be described through a coupled up- and down-regulation pulse response model. Respiration pulses were hypothesized to occur through a reduction in whole ecosystem activation energy; this model was both useful and corroborated through laboratory incubation studies of soil respiration. Using the Fluxnet eddy-covariance measurement database event specific responses were combined with the pulse model into an event specific twenty-five day net flux calculation. Across all events observed a general net accumulation of CO2 following a precipitation event, with the largest net uptake within deciduous broadleaf forests and smallest within grasslands. NEE pulses favored greater uptake when pre-event ecosystem respiration rates and total precipitation were higher. While the latter was expected, the former adds to previous theory by suggesting a larger net uptake of CO2 when pre-event metabolic activity is higher. Scenario analyses of precipitation regimes suggested increased uptake with increasing total precipitation while more complex NEE responses to increasing number of events and interval between events. Pulse dynamics provides a general framework for understanding ecosystem responses to intermittent wetting projected to occur more frequently in future climates. Pulse dynamics also provides an opportunity to evaluate processes spanning cellular upregulation to global change.
NASA Astrophysics Data System (ADS)
Su, Zhi-Yuan; Wu, Tzuyin; Yang, Po-Hua; Wang, Yeng-Tseng
2008-04-01
The heartbeat rate signal provides an invaluable means of assessing the sympathetic-parasympathetic balance of the human autonomic nervous system and thus represents an ideal diagnostic mechanism for detecting a variety of disorders such as epilepsy, cardiac disease and so forth. The current study analyses the dynamics of the heartbeat rate signal of known epilepsy sufferers in order to obtain a detailed understanding of the heart rate pattern during a seizure event. In the proposed approach, the ECG signals are converted into heartbeat rate signals and the embedology theorem is then used to construct the corresponding multidimensional phase space. The dynamics of the heartbeat rate signal are then analyzed before, during and after an epileptic seizure by examining the maximum Lyapunov exponent and the correlation dimension of the attractors in the reconstructed phase space. In general, the results reveal that the heartbeat rate signal transits from an aperiodic, highly-complex behaviour before an epileptic seizure to a low dimensional chaotic motion during the seizure event. Following the seizure, the signal trajectories return to a highly-complex state, and the complex signal patterns associated with normal physiological conditions reappear.
CAP, epilepsy and motor events during sleep: the unifying role of arousal.
Parrino, Liborio; Halasz, Peter; Tassinari, Carlo Alberto; Terzano, Mario Giovanni
2006-08-01
Arousal systems play a topical neurophysiologic role in protecting and tailoring sleep duration and depth. When they appear in NREM sleep, arousal responses are not limited to a single EEG pattern but are part of a continuous spectrum of EEG modifications ranging from high-voltage slow rhythms to low amplitude fast activities. The hierarchic features of arousal responses are reflected in the phase A subtypes of CAP (cyclic alternating pattern) including both slow arousals (dominated by the <1Hz oscillation) and fast arousals (ASDA arousals). CAP is an infraslow oscillation with a periodicity of 20-40s that participates in the dynamic organization of sleep and in the activation of motor events. Physiologic, paraphysiologic and pathologic motor activities during NREM sleep are always associated with a stereotyped arousal pattern characterized by an initial increase in EEG delta power and heart rate, followed by a progressive activation of faster EEG frequencies. These findings suggest that motor patterns are already written in the brain codes (central pattern generators) embraced with an automatic sequence of EEG-vegetative events, but require a certain degree of activation (arousal) to become visibly apparent. Arousal can appear either spontaneously or be elicited by internal (epileptic burst) or external (noise, respiratory disturbance) stimuli. Whether the outcome is a physiologic movement, a muscle jerk or a major epileptic attack will depend on a number of ongoing factors (sleep stage, delta power, neuro-motor network) but all events share the common trait of arousal-activated phenomena.
O'Kearney, Richard; Parry, Lian
2014-08-01
Increased physiological responsiveness to trauma memories is common in posttraumatic stress disorder (PTSD) and is related to higher felt memory intrusiveness. Physiological reactivity to remembering of distressing personal events in depression and its association with memory quality have not been examined. Heart rate (HR) and skin conductance (SC) reactivity during script-driven recall were assessed in participants with a depressive episode without PTSD (n = 24), participants with PTSD (n = 24), and nondisordered controls (n = 24). Participants reported on event impact and memory quality. PTSD participants showed higher HR and SC reactivity during trauma recall compared with recall of other events and compared with depressed participants for HR and SC reactivity and compared with nondisordered participants for HR reactivity. Although reactivity between depressed and nondisordered participants was not significantly different, the findings indicated a consistent trend toward an attenuation of reactivity to memories of events subjectively associated with symptom onset for those with depression. There was no evidence that the presence of depression impacted the increased physiological responsiveness observed in PTSD. Higher avoidance was associated with lower HR reactivity to the event memory for depressed participants, whereas higher avoidance was associated with higher HR reactivity to the trauma memory for PTSD participants. Trauma remembering in PTSD is distinctive from comparable remembering in depression in triggering high physiological reactivity. Avoidance of remembering the event predicts attenuated physiological reactivity to critical event recall in depression. (c) 2014 APA, all rights reserved.
Musicant, Oren; Botzer, Assaf; Laufer, Ilan; Collet, Christian
2018-05-01
Objective To study the relationship between physiological indices and kinematic indices during braking events of different intensities. Background Based on mental workload theory, driving and other task demands may generate changes in physiological indices, such as the driver's heart rate and skin conductance. However, no attempts were made to associate changes in physiological indices with changes in vehicle kinematics that result from the driver attempts to meet task demands. Method Twenty-five drivers participated in a field experiment. We manipulated braking demands using roadside signs to communicate the speed (km/h) before braking (50 or 60) and the target speed for braking (30 or to a complete stop). In an additional session, we asked drivers to brake as if they were responding to an impending collision. We analyzed the relationship between the intensities of braking events as measured by deceleration values (g) and changes in heart rate, heart rate variability, and skin conductance. Results All physiological indices were associated with deceleration intensity. Especially salient were the differences in physiological indices between the intensive (|g| > 0.5) and nonintensive braking events. The strongest relationship was between braking intensity and skin conductance. Conclusions Skin conductance, heart rate, and heart rate variability can mirror the mental workload elicited by varying braking intensities. Application Associating vehicle kinematics with physiological indices related to short-term driving events may help improve the performance of driver assistance systems.
Developing a nationwide K-12 outreach model: Physiology Understanding (PhUn) Week 10 years later.
Stieben, Margaret; Halpin, Patricia A; Matyas, Marsha Lakes
2017-09-01
Since 2005, nearly 600 Physiology Understanding Week (PhUn Week) events have taken place across the U.S., involving American Physiological Society (APS) members in K-12 outreach. The program seeks to build student understanding of physiology and physiology careers, assist teachers in recognizing physiology in their standards-based curriculum, and involve more physiologists in K-12 outreach. Formative goals included program growth (sites, participants, and leaders), diversification of program models, and development of a community of practice of physiologists and trainees involved in outreach. Eleven years of member-provided data indicate that the formative goals are being met. Nearly 100,000 K-12 students have been reached during the last decade as an increasing pool of physiologists took part in a growing number of events, including a number of international events. The number and types of PhUn Week events have steadily increased as a community of practice has formed to support the program. Future program goals include targeting regional areas for PhUn Week participation, establishing research collaboratives to further explore program impacts, and providing on-demand training for physiologists. Copyright © 2017 the American Physiological Society.
Network Physiology: How Organ Systems Dynamically Interact
Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.
2015-01-01
We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073
Dynamic physiological modeling for functional diffuse optical tomography
Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.
2009-01-01
Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967
Physiological Motion Axis for the Seat of a Dynamic Office Chair.
Kuster, Roman Peter; Bauer, Christoph Markus; Oetiker, Sarah; Kool, Jan
2016-09-01
The aim of this study was to determine and verify the optimal location of the motion axis (MA) for the seat of a dynamic office chair. A dynamic seat that supports pelvic motion may improve physical well-being and decrease the risk of sitting-associated disorders. However, office work requires an undisturbed view on the work task, which means a stable position of the upper trunk and head. Current dynamic office chairs do not fulfill this need. Consequently, a dynamic seat was adapted to the physiological kinematics of the human spine. Three-dimensional motion tracking in free sitting helped determine the physiological MA of the spine in the frontal plane. Three dynamic seats with physiological, lower, and higher MA were compared in stable upper body posture (thorax inclination) and seat support of pelvic motion (dynamic fitting accuracy). Spinal kinematics during sitting and walking were compared. The physiological MA was at the level of the 11th thoracic vertebra, causing minimal thorax inclination and high dynamic fitting accuracy. Spinal motion in active sitting and walking was similar. The physiological MA of the seat allows considerable lateral flexion of the spine similar to walking with a stable upper body posture and a high seat support of pelvic motion. The physiological MA enables lateral flexion of the spine, similar to walking, without affecting stable upper body posture, thus allowing active sitting while focusing on work. © 2016, Human Factors and Ergonomics Society.
Stress-oriented driver assistance system for electric vehicles.
Athanasiou, Georgia; Tsotoulidis, Savvas; Mitronikas, Epaminondas; Lymberopoulos, Dimitrios
2014-01-01
Stress is physiological and physical reaction that appears in highly demanding situations and affects human's perception and reaction capability. Occurrence of stress events within highly dynamic road environment could lead to life-threatening situation. With the perspective of safety and comfort driving provision to anxious drivers, in this paper a stress-oriented Driver Assistance System (DAS) is proposed. The DAS deployed on Electric Vehicle. This novel DAS customizes driving command signal in respect to road context, when stress is detected. The effectiveness of this novel DAS is verified by simulation in MATLAB/SIMULINK environment.
In vivo optical imaging and dynamic contrast methods for biomedical research
Hillman, Elizabeth M. C.; Amoozegar, Cyrus B.; Wang, Tracy; McCaslin, Addason F. H.; Bouchard, Matthew B.; Mansfield, James; Levenson, Richard M.
2011-01-01
This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910
Zhong, Sheng; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph
2014-01-01
Background Chloride is the major anion in cells, with many diseases arising from disordered Cl− regulation. For the non-invasive investigation of Cl− flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl− sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl− under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl− measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events. Methodology/Principal Findings In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP), has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5), and shown for the first time physiological (mM) chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function. Conclusions Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP) results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH. PMID:24901231
Zhong, Sheng; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph
2014-01-01
Chloride is the major anion in cells, with many diseases arising from disordered Cl- regulation. For the non-invasive investigation of Cl- flux, YFP-H148Q and its derivatives chameleon and Cl-Sensor previously were introduced as genetically encoded chloride indicators. Neither the Cl- sensitivity nor the pH-susceptibility of these modifications to YFP is optimal for precise measurements of Cl- under physiological conditions. Furthermore, the relatively poor photostability of YFP derivatives hinders their application for dynamic and quantitative Cl- measurements. Dynamic and accurate measurement of physiological concentrations of chloride would significantly affect our ability to study effects of chloride on cellular events. In this study, we developed a series of YFP derivatives to remove pH interference, increase photostability and enhance chloride sensitivity. The final product, EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP), has a chloride Kd of 14 mM and pKa of 5.9. The bleach time constant of 175 seconds is over 15-fold greater than wild-type EYFP. We have used the sensor fused to the transmembrane protein prestin (gerbil prestin, SLC26a5), and shown for the first time physiological (mM) chloride flux in HEK cells expressing this protein. This modified fluorescent protein will facilitate investigations of dynamics of chloride ions and their mediation of cell function. Modifications to YFP (EYFP-F46L/Q69K/H148Q/I152L/V163S/S175G/S205V/A206K (monomeric Cl-YFP) results in a photostable fluorescent protein that allows measurement of physiological changes in chloride concentration while remaining minimally affected by changes in pH.
Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain.
Tauste Campo, Adrià; Principe, Alessandro; Ley, Miguel; Rocamora, Rodrigo; Deco, Gustavo
2018-04-01
Epileptic seizures are known to follow specific changes in brain dynamics. While some algorithms can nowadays robustly detect these changes, a clear understanding of the mechanism by which these alterations occur and generate seizures is still lacking. Here, we provide crossvalidated evidence that such changes are initiated by an alteration of physiological network state dynamics. Specifically, our analysis of long intracranial electroencephalography (iEEG) recordings from a group of 10 patients identifies a critical phase of a few hours in which time-dependent network states become less variable ("degenerate"), and this phase is followed by a global functional connectivity reduction before seizure onset. This critical phase is characterized by an abnormal occurrence of highly correlated network instances and is shown to be particularly associated with the activity of the resected regions in patients with validated postsurgical outcome. Our approach characterizes preseizure network dynamics as a cascade of 2 sequential events providing new insights into seizure prediction and control.
Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation.
Moosmann, Matthias; Eichele, Tom; Nordby, Helge; Hugdahl, Kenneth; Calhoun, Vince D
2008-03-01
An optimized scheme for the fusion of electroencephalography and event related potentials with functional magnetic resonance imaging (BOLD-fMRI) data should simultaneously assess all available electrophysiologic and hemodynamic information in a common data space. In doing so, it should be possible to identify features of latent neural sources whose trial-to-trial dynamics are jointly reflected in both modalities. We present a joint independent component analysis (jICA) model for analysis of simultaneous single trial EEG-fMRI measurements from multiple subjects. We outline the general idea underlying the jICA approach and present results from simulated data under realistic noise conditions. Our results indicate that this approach is a feasible and physiologically plausible data-driven way to achieve spatiotemporal mapping of event related responses in the human brain.
Major component analysis of dynamic networks of physiologic organ interactions
NASA Astrophysics Data System (ADS)
Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch
2015-09-01
The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.
Beyond histones - the expanding roles of protein lysine methylation.
Wu, Zhouran; Connolly, Justin; Biggar, Kyle K
2017-09-01
A robust signaling network is essential for cell survival. At the molecular level, this is often mediated by as many as 200 different types of post-translational modifications (PTMs) that are made to proteins. These include well-documented examples such as phosphorylation, ubiquitination, acetylation and methylation. Of these modifications, non-histone protein lysine methylation has only recently emerged as a prevalent modification occurring on numerous proteins, thus extending its role well beyond the histone code. To date, this modification has been found to regulate protein activity, protein-protein interactions and interplay with other PTMs. As a result, lysine methylation is now known to be a coordinator of protein function and is a key driver in several cellular signaling events. Recent advances in mass spectrometry have also allowed the characterization of a growing number of lysine methylation events on an increasing number of proteins. As a result, we are now beginning to recognize lysine methylation as a dynamic event that is involved in a number of biological processes, including DNA damage repair, cell growth, metabolism and signal transduction among others. In light of current research advances, the stage is now set to study the extent of lysine methylation that exists within the entire proteome, its dynamics, and its association with physiological and pathological processes. © 2017 Federation of European Biochemical Societies.
Beyond the extreme: Recovery dynamics following heat and drought stress in trees
NASA Astrophysics Data System (ADS)
Ruehr, N.; Duarte, A. G.; Arneth, A.
2016-12-01
Plant recovery processes following extreme events can have profound impacts on forest carbon and water cycling. However, large knowledge gaps persist on recovery dynamics of tree physiological processes following heat and drought stress. To date, few experimental studies exist that include recovery responses in stress research. We synthesized recent research on tree recovery processes related to carbon and water exchange following heat and drought stress, and show that the intensity of stress can affect the pace of recovery with large variations among tree species and processes. Following stress release, leaf water potential recovers instantaneously upon rewatering as found in most studies. Transpiration (T), stomatal conductance (gs) and photosynthesis (A) often lag behind, with lowest recovery following severe stress. Interestingly, the patterns in heat and drought stress recovery apparently differ. While A recovers generally more quickly than gs following drought, which increases water-use-efficiency, both gs and A tend to remain reduced following heat events. The pace of recovery following heat events likely depends on water availability during stress and temperature maxima reached (photosynthetic impairment at temperatures > 40°C). Slow recovery during the initial post-stress days might result from hydraulic limitation and elevated levels of abscisic acid. The mechanisms resulting in a continued impairment of T and gs during a later stage of the recovery period (from weeks up to months) are still elusive. Feedback loops from the photosynthetic machinery, reduced mesophyll conductance or leaf morphological changes may play an important role. In summary, post-stress recovery can substantially affect tree carbon and water cycling. Thus, in order to estimate the impacts of extreme climate events on forest ecosystems in the long-term, we need a better understanding of recovery dynamics and their limitations in terms of stress timing, intensity and duration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ying; Fu, Rong; Dickinson, Robert
This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. Inmore » contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. Here, we conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.« less
Sun, Ying; Fu, Rong; Dickinson, Robert; ...
2015-11-02
This study uses the droughts of 2011 in Texas and 2012 over the central Great Plains as case studies to explore the potential of satellite-observed solar-induced chlorophyll fluorescence (SIF) for monitoring drought dynamics. We find that the spatial patterns of negative SIF anomalies from the Global Ozone Monitoring Experiment 2 (GOME-2) closely resembled drought intensity maps from the U.S. Drought Monitor for both events. The drought-induced suppression of SIF occurred throughout 2011 but was exacerbated in summer in the Texas drought. This event was characterized by a persistent depletion of root zone soil moisture caused by yearlong below-normal precipitation. Inmore » contrast, for the central Great Plains drought, warmer temperatures and relatively normal precipitation boosted SIF in the spring of 2012; however, a sudden drop in precipitation coupled with unusually high temperatures rapidly depleted soil moisture through evapotranspiration, leading to a rapid onset of drought in early summer. Accordingly, SIF reversed from above to below normal. For both regions, the GOME-2 SIF anomalies were significantly correlated with those of root zone soil moisture, indicating that the former can potentially be used as proxy of the latter for monitoring agricultural droughts with different onset mechanisms. Further analyses indicate that the contrasting dynamics of SIF during these two extreme events were caused by changes in both fraction of absorbed photosynthetically active radiation fPAR and fluorescence yield, suggesting that satellite SIF is sensitive to both structural and physiological/biochemical variations of vegetation. Here, we conclude that the emerging satellite SIF has excellent potential for dynamic drought monitoring.« less
Live interaction distinctively shapes social gaze dynamics in rhesus macaques.
Dal Monte, Olga; Piva, Matthew; Morris, Jason A; Chang, Steve W C
2016-10-01
The dynamic interaction of gaze between individuals is a hallmark of social cognition. However, very few studies have examined social gaze dynamics after mutual eye contact during real-time interactions. We used a highly quantifiable paradigm to assess social gaze dynamics between pairs of monkeys and modeled these dynamics using an exponential decay function to investigate sustained attention after mutual eye contact. When monkeys were interacting with real partners compared with static images and movies of the same monkeys, we found a significant increase in the proportion of fixations to the eyes and a smaller dispersion of fixations around the eyes, indicating enhanced focal attention to the eye region. Notably, dominance and familiarity between the interacting pairs induced separable components of gaze dynamics that were unique to live interactions. Gaze dynamics of dominant monkeys after mutual eye contact were associated with a greater number of fixations to the eyes, whereas those of familiar pairs were associated with a faster rate of decrease in this eye-directed attention. Our findings endorse the notion that certain key aspects of social cognition are only captured during interactive social contexts and dependent on the elapsed time relative to socially meaningful events. Copyright © 2016 the American Physiological Society.
EEG Dynamics of a Go/Nogo Task in Children with ADHD
Baijot, Simon; Zarka, David; Leroy, Axelle; Slama, Hichem; Colin, Cecile; Deconinck, Nicolas; Dan, Bernard; Cheron, Guy
2017-01-01
Background: Studies investigating event-related potential (ERP) evoked in a Cue-Go/NoGo paradigm have shown lower frontal N1, N2 and central P3 in children with attention-deficit/hyperactivity disorder (ADHD) compared to typically developing children (TDC). However, the electroencephalographic (EEG) dynamics underlying these ERPs remain largely unexplored in ADHD. Methods: We investigate the event-related spectral perturbation and inter-trial coherence linked to the ERP triggered by visual Cue-Go/NoGo stimuli, in 14 children (7 ADHD and 7 TDC) aged 8 to 12 years. Results: Compared to TDC, the EEG dynamics of children with ADHD showed a lower theta-alpha ITC concomitant to lower occipito-parietal P1-N2 and frontal N1-P2 potentials in response to Cue, Go and Nogo stimuli; an upper alpha power preceding lower central Go-P3; a lower theta-alpha power and ITC were coupled to a lower frontal Nogo-N3; a lower low-gamma power overall scalp at 300 ms after Go and Nogo stimuli. Conclusion: These findings suggest impaired ability in children with ADHD to conserve the brain oscillations phase associated with stimulus processing. This physiological trait might serve as a target for therapeutic intervention or be used as monitoring of their effects. PMID:29261133
Organizing a large-scale Physiology Understanding (PhUn) Week event at a science center.
VanRyn, Valerie S; Poteracki, James M; Balzer, Micaela; Wehrwein, Erica A
2018-06-01
For the past 6 yr, the Department of Physiology at Michigan State University (MSU) has partnered with Impression 5 Science Center in Lansing, MI. Together, we host a day-long community engagement event on a Saturday each year in early November coinciding with the American Physiological Society's Physiology Understanding Week. The purpose was to provide a fun and memorable hands-on experience for children and families. This paper describes the detailed planning and logistics. The event takes place in the main exhibit space at the science center, generally has 15-17 physiology activities stations set up as booths run by volunteers, and the event runs as an open-house format. Three to five trained volunteers were needed per station for the full day. Since this was primarily based on undergraduate student volunteer involvement (a population already limited for time), morning, afternoon, and/or full-day shifts were offered to accommodate a variety of schedules. Additional set-up, clean-up, and general help was also recruited. Overall, ~100-150 MSU students, faculty, and staff members served as volunteers, alongside Impression 5 staff. Hosting the event at the science center generated a larger audience, aided in advertisement, and allowed for access to a large facility capable of handling the 600-1,000 attendees. The partnership facilitated the sharing of equipment and supplies for physiology demonstrations, allowed for activities on site in the chemistry laboratory space, and facilitated the growth of new community partnerships with local schools and groups who attended the event.
Subsampling effects in neuronal avalanche distributions recorded in vivo
Priesemann, Viola; Munk, Matthias HJ; Wibral, Michael
2009-01-01
Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s), and sigma = 1, are hallmark features of self-organized critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma of the subsampled models with those of multielectrode local field potential (LFP) activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s). Both, f(s) and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s) and sigma similar to those calculated from LFP activity. Conclusion Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s) and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s) and sigma calculated from the physiological recordings may be selected over alternatives. PMID:19400967
Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.
Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K
2010-10-01
Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more frequent in some regions of the Arctic and that may ultimately drive plant community shifts. Copyright © Physiologia Plantarum 2010.
A minimal rupture cascade model for living cell plasticity
NASA Astrophysics Data System (ADS)
Polizzi, Stefano; Laperrousaz, Bastien; Perez-Reche, Francisco J.; Nicolini, Franck E.; Maguer Satta, Véronique; Arneodo, Alain; Argoul, Françoise
2018-05-01
Under physiological and pathological conditions, cells experience large forces and deformations that often exceed the linear viscoelastic regime. Here we drive CD34+ cells isolated from healthy and leukemic bone marrows in the highly nonlinear elasto-plastic regime, by poking their perinuclear region with a sharp AFM cantilever tip. We use the wavelet transform mathematical microscope to identify singular events in the force-indentation curves induced by local rupture events in the cytoskeleton (CSK). We distinguish two types of rupture events, brittle failures likely corresponding to irreversible ruptures in a stiff and highly cross-linked CSK and ductile failures resulting from dynamic cross-linker unbindings during plastic deformation without loss of CSK integrity. We propose a stochastic multiplicative cascade model of mechanical ruptures that reproduces quantitatively the experimental distributions of the energy released during these events, and provides some mathematical and mechanistic understanding of the robustness of the log-normal statistics observed in both brittle and ductile situations. We also show that brittle failures are relatively more prominent in leukemia than in healthy cells suggesting their greater fragility.
2010-01-01
Background The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the “in silico” stochastic event based modeling approach to find the molecular dynamics of the system. Results In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Conclusions Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics. PMID:21143785
Ghosh, Preetam; Ghosh, Samik; Basu, Kalyan; Das, Sajal K; Zhang, Chaoyang
2010-12-01
The challenge today is to develop a modeling and simulation paradigm that integrates structural, molecular and genetic data for a quantitative understanding of physiology and behavior of biological processes at multiple scales. This modeling method requires techniques that maintain a reasonable accuracy of the biological process and also reduces the computational overhead. This objective motivates the use of new methods that can transform the problem from energy and affinity based modeling to information theory based modeling. To achieve this, we transform all dynamics within the cell into a random event time, which is specified through an information domain measure like probability distribution. This allows us to use the "in silico" stochastic event based modeling approach to find the molecular dynamics of the system. In this paper, we present the discrete event simulation concept using the example of the signal transduction cascade triggered by extra-cellular Mg2+ concentration in the two component PhoPQ regulatory system of Salmonella Typhimurium. We also present a model to compute the information domain measure of the molecular transport process by estimating the statistical parameters of inter-arrival time between molecules/ions coming to a cell receptor as external signal. This model transforms the diffusion process into the information theory measure of stochastic event completion time to get the distribution of the Mg2+ departure events. Using these molecular transport models, we next study the in-silico effects of this external trigger on the PhoPQ system. Our results illustrate the accuracy of the proposed diffusion models in explaining the molecular/ionic transport processes inside the cell. Also, the proposed simulation framework can incorporate the stochasticity in cellular environments to a certain degree of accuracy. We expect that this scalable simulation platform will be able to model more complex biological systems with reasonable accuracy to understand their temporal dynamics.
Gentsch, Kornelia; Grandjean, Didier; Scherer, Klaus R
2014-04-01
Componential theories assume that emotion episodes consist of emergent and dynamic response changes to relevant events in different components, such as appraisal, physiology, motivation, expression, and subjective feeling. In particular, Scherer's Component Process Model hypothesizes that subjective feeling emerges when the synchronization (or coherence) of appraisal-driven changes between emotion components has reached a critical threshold. We examined the prerequisite of this synchronization hypothesis for appraisal-driven response changes in facial expression. The appraisal process was manipulated by using feedback stimuli, presented in a gambling task. Participants' responses to the feedback were investigated in concurrently recorded brain activity related to appraisal (event-related potentials, ERP) and facial muscle activity (electromyography, EMG). Using principal component analysis, the prediction of appraisal-driven response changes in facial EMG was examined. Results support this prediction: early cognitive processes (related to the feedback-related negativity) seem to primarily affect the upper face, whereas processes that modulate P300 amplitudes tend to predominantly drive cheek region responses. Copyright © 2013 Elsevier B.V. All rights reserved.
Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data.
Calhoun, V D; Adali, T; Pearlson, G D; Kiehl, K A
2006-04-01
Event-related potential (ERP) studies of the brain's response to infrequent, target (oddball) stimuli elicit a sequence of physiological events, the most prominent and well studied being a complex, the P300 (or P3) peaking approximately 300 ms post-stimulus for simple stimuli and slightly later for more complex stimuli. Localization of the neural generators of the human oddball response remains challenging due to the lack of a single imaging technique with good spatial and temporal resolution. Here, we use independent component analyses to fuse ERP and fMRI modalities in order to examine the dynamics of the auditory oddball response with high spatiotemporal resolution across the entire brain. Initial activations in auditory and motor planning regions are followed by auditory association cortex and motor execution regions. The P3 response is associated with brainstem, temporal lobe, and medial frontal activity and finally a late temporal lobe "evaluative" response. We show that fusing imaging modalities with different advantages can provide new information about the brain.
Procession to pediatric bacteremia and sepsis: covert operations and failures in diplomacy.
Bateman, Stacey L; Seed, Patrick C
2010-07-01
Despite advances in diagnosis and treatment, bacterial sepsis remains a major cause of pediatric morbidity and mortality, particularly among neonates, the critically ill, and the growing immunocompromised patient population. Sepsis is the end point of a complex and dynamic series of events in which both host and microbial factors drive high morbidity and potentially lethal physiologic alterations. In this article we provide a succinct overview of the events that lead to pediatric bloodstream infections (BSIs) and sepsis, with a focus on the molecular mechanisms used by bacteria to subvert host barriers and local immunity to gain access to and persist within the systemic circulation. In the events preceding and during BSI and sepsis, Gram-positive and Gram-negative pathogens use a battery of factors for translocation, inhibition of immunity, molecular mimicry, intracellular survival, and nutrient scavenging. Gaps in understanding the molecular pathogenesis of bacterial BSIs and sepsis are highlighted as opportunities to identify and develop new therapeutics.
Dynamic Compression of Chondrocyte-Agarose Constructs Reveals New Candidate Mechanosensitive Genes
Bougault, Carole; Aubert-Foucher, Elisabeth; Paumier, Anne; Perrier-Groult, Emeline; Huot, Ludovic; Hot, David; Duterque-Coquillaud, Martine; Mallein-Gerin, Frédéric
2012-01-01
Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces. PMID:22615857
Neural Darwinism and consciousness.
Seth, Anil K; Baars, Bernard J
2005-03-01
Neural Darwinism (ND) is a large scale selectionist theory of brain development and function that has been hypothesized to relate to consciousness. According to ND, consciousness is entailed by reentrant interactions among neuronal populations in the thalamocortical system (the 'dynamic core'). These interactions, which permit high-order discriminations among possible core states, confer selective advantages on organisms possessing them by linking current perceptual events to a past history of value-dependent learning. Here, we assess the consistency of ND with 16 widely recognized properties of consciousness, both physiological (for example, consciousness is associated with widespread, relatively fast, low amplitude interactions in the thalamocortical system), and phenomenal (for example, consciousness involves the existence of a private flow of events available only to the experiencing subject). While no theory accounts fully for all of these properties at present, we find that ND and its recent extensions fare well.
NASA Astrophysics Data System (ADS)
de León-Lomelí, R.; Murguía, J. S.; Chouvarda, I.; Méndez, M. O.; González-Galván, E.; Alba, A.
2016-01-01
During sleep there exists a nonlinear dynamic phenomenon, which is called cyclic alternating pattern. This phenomenon is generated in the brain and is composed of a series of events of short duration known as A-phases. It has been shown that A-phases can be found in other physiological systems such as the cardiovascular. However, there is no evidence that shows the temporal influence of the A-phases with the cardiovascular system. For this purpose, we consider the scaling method known as detrended fluctuation analysis (DFA). The analysis was carried out in well sleepers and insomnia people, and the numerical results show an increment in the scaling parameter for the insomnia subjects compared with the normal ones. In addition, the results of the heart dynamics suggests a persistent behavior toward the 1/f-noise.
Higaki, Takumi; Kadota, Yasuhiro; Goh, Tatsuaki; Hayashi, Teruyuki; Kutsuna, Natsumaro; Sano, Toshio; Hasezawa, Seiichiro; Kuchitsu, Kazuyuki
2008-09-01
Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.
Heterogeneous Structure of Stem Cells Dynamics: Statistical Models and Quantitative Predictions
Bogdan, Paul; Deasy, Bridget M.; Gharaibeh, Burhan; Roehrs, Timo; Marculescu, Radu
2014-01-01
Understanding stem cell (SC) population dynamics is essential for developing models that can be used in basic science and medicine, to aid in predicting cells fate. These models can be used as tools e.g. in studying patho-physiological events at the cellular and tissue level, predicting (mal)functions along the developmental course, and personalized regenerative medicine. Using time-lapsed imaging and statistical tools, we show that the dynamics of SC populations involve a heterogeneous structure consisting of multiple sub-population behaviors. Using non-Gaussian statistical approaches, we identify the co-existence of fast and slow dividing subpopulations, and quiescent cells, in stem cells from three species. The mathematical analysis also shows that, instead of developing independently, SCs exhibit a time-dependent fractal behavior as they interact with each other through molecular and tactile signals. These findings suggest that more sophisticated models of SC dynamics should view SC populations as a collective and avoid the simplifying homogeneity assumption by accounting for the presence of more than one dividing sub-population, and their multi-fractal characteristics. PMID:24769917
Investigating Bacterial-Animal Symbioses with Light Sheet Microscopy
Taormina, Michael J.; Jemielita, Matthew; Stephens, W. Zac; Burns, Adam R.; Troll, Joshua V.; Parthasarathy, Raghuveer; Guillemin, Karen
2014-01-01
SUMMARY Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high resolution imaging of bacterial colonization of the zebrafish intestine. The methodology allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional datasets generated by these imaging approaches require new strategies for image analysis. When integrated with other “omics” datasets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts. PMID:22983029
Naranjo, Teresa; Cerrón, Fernando; Nieto-Ortega, Belén; Latorre, Alfonso; Somoza, Álvaro; Ibarra, Borja; Pérez, Emilio M
2017-09-01
Decades after the birth of supramolecular chemistry, there are many techniques to measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-molecule events under non-equilibrium conditions, more relevant to the dynamics of biological systems. We present a new method that exploits the high force resolution of optical tweezers to measure at the single molecule level the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under near-physiological conditions. We utilize a DNA reporter to unambiguously isolate single binding events. The Hamilton receptor-cyanuric acid host-guest system is used as a test bed. The force required to dissociate the host-guest system is ∼17 pN and increases with the pulling rate as expected for a system under non-equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant decrease of the force-to-break by 1-2 pN, pointing out the ability of the method to resolve subtle changes in the mechanical strength of the binding due to the individual H-bonding components. We believe the method will prove to be a versatile tool to address important questions in supramolecular chemistry.
Developing a Nationwide K-12 Outreach Model: Physiology Understanding (PhUn) Week 10 Years Later
ERIC Educational Resources Information Center
Stieben, Margaret; Halpin, Patricia A.; Matyas, Marsha Lakes
2017-01-01
Since 2005, nearly 600 Physiology Understanding Week (PhUn Week) events have taken place across the U.S., involving American Physiological Society (APS) members in K-12 outreach. The program seeks to build student understanding of physiology and physiology careers, assist teachers in recognizing physiology in their standards-based curriculum, and…
Dynamical analysis of uterine cell electrical activity model.
Rihana, S; Santos, J; Mondie, S; Marque, C
2006-01-01
The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.
Searching target sites on DNA by proteins: Role of DNA dynamics under confinement
Mondal, Anupam; Bhattacherjee, Arnab
2015-01-01
DNA-binding proteins (DBPs) rapidly search and specifically bind to their target sites on genomic DNA in order to trigger many cellular regulatory processes. It has been suggested that the facilitation of search dynamics is achieved by combining 3D diffusion with one-dimensional sliding and hopping dynamics of interacting proteins. Although, recent studies have advanced the knowledge of molecular determinants that affect one-dimensional search efficiency, the role of DNA molecule is poorly understood. In this study, by using coarse-grained simulations, we propose that dynamics of DNA molecule and its degree of confinement due to cellular crowding concertedly regulate its groove geometry and modulate the inter-communication with DBPs. Under weak confinement, DNA dynamics promotes many short, rotation-decoupled sliding events interspersed by hopping dynamics. While this results in faster 1D diffusion, associated probability of missing targets by jumping over them increases. In contrast, strong confinement favours rotation-coupled sliding to locate targets but lacks structural flexibility to achieve desired specificity. By testing under physiological crowding, our study provides a plausible mechanism on how DNA molecule may help in maintaining an optimal balance between fast hopping and rotation-coupled sliding dynamics, to locate target sites rapidly and form specific complexes precisely. PMID:26400158
Lab on chip microdevices for cellular mechanotransduction in urothelial cells
NASA Astrophysics Data System (ADS)
Maziz, A.; Guan, N.; Svennersten, K.; Hallén-Grufman, K.; Jager, Edwin W. H.
2016-04-01
Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.
Relationship of Physiological Parameters and Achievement in Wheelchair Athletics.
ERIC Educational Resources Information Center
Hurst, Judith A.
The relationship between achievement in track and field events (60, 100, 200, 400 meter runs and shotput, discus, and javelin throws) and selected physiological parameters (grip strength, body fat, vital lung capacity, and cardiovascular efficiency) of 20 wheelchair athletes was investigated. Results of track and field events were obtained from…
Critical care nursing: Embedded complex systems.
Trinier, Ruth; Liske, Lori; Nenadovic, Vera
2016-01-01
Variability in parameters such as heart rate, respiratory rate and blood pressure defines healthy physiology and the ability of the person to adequately respond to stressors. Critically ill patients have lost this variability and require highly specialized nursing care to support life and monitor changes in condition. The critical care environment is a dynamic system through which information flows. The critical care unit is typically designed as a tree structure with generally one attending physician and multiple nurses and allied health care professionals. Information flow through the system allows for identification of deteriorating patient status and timely interventionfor rescue from further deleterious effects. Nurses provide the majority of direct patient care in the critical care setting in 2:1, 1:1 or 1:2 nurse-to-patient ratios. The bedside nurse-critically ill patient relationship represents the primary, real-time feedback loop of information exchange, monitoring and treatment. Variables that enhance information flow through this loop and support timely nursing intervention can improve patient outcomes, while barriers can lead to errors and adverse events. Examining patient information flow in the critical care environment from a dynamic systems perspective provides insights into how nurses deliver effective patient care and prevent adverse events.
Mitochondrial flashes: From indicator characterization to in vivo imaging.
Wang, Wang; Zhang, Huiliang; Cheng, Heping
2016-10-15
Mitochondrion is an organelle critically responsible for energy production and intracellular signaling in eukaryotic cells and its dysfunction often accompanies and contributes to human disease. Superoxide is the primary reactive oxygen species (ROS) produced in mitochondria. In vivo detection of superoxide has been a challenge in biomedical research. Here we describe the methods used to characterize a circularly permuted yellow fluorescent protein (cpYFP) as a biosensor for mitochondrial superoxide and pH dynamics. In vitro characterization reveals the high selectivity of cpYFP to superoxide over other ROS species and its dual sensitivity to pH. Confocal and two-photon imaging in conjunction with transgenic expression of the biosensor cpYFP targeted to the mitochondrial matrix detects mitochondrial flash events in living cells, perfused intact hearts, and live animals. The mitochondrial flashes are discrete and stochastic single mitochondrial events triggered by transient mitochondrial permeability transition (tMPT) and composed of a bursting superoxide signal and a transient alkalization signal. The real-time monitoring of single mitochondrial flashes provides a unique tool to study the integrated dynamism of mitochondrial respiration, ROS production, pH regulation and tMPT kinetics under diverse physiological and pathophysiological conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Christensen-Dalsgaard, Karen K; Tyree, Melvin T
2013-11-01
Frost damage to the xylem conduits of trees is a phenomenon of eco-physiological importance. It is often documented in terms of the percentage loss of conductivity (PLC), an indicator of air filling of the conduits. However, trees that refill their conduits in spring could be impacted more by damage to the conduits that reduce cavitation resistance, making them more susceptible to future drought events. We investigated whether ice formation, dynamic flexing of frozen branches or freeze-thaw events could reduce the cavitation resistance (cause "frost fatigue") in first-year shoots of apple (Malus domestica) and clonal hybrid cottonwood (Walker). Frost fatigue was measured in terms of P50 (the negative xylem pressure required to cause a 50 % loss of conductivity). All treatment groups showed significant frost fatigue, with the exception of the pre-flushed, constantly frozen poplar branches. The P50 following freeze treatments was approximately 50 % of the pre-freeze values. The effect tended to be greater in freeze-thawed branches. Dynamic bending of the branches had no effect on either PLC or P50. In three out of four cases, there was a significant correlation between P50 and PLC. Frost fatigue occurred in both apple and poplar, two unrelated species with different drought and frost tolerances, suggesting that it may be a widespread phenomenon that could impact the ecophysiology of temperate forests.
Wavelet entropy: a new tool for analysis of short duration brain electrical signals.
Rosso, O A; Blanco, S; Yordanova, J; Kolev, V; Figliola, A; Schürmann, M; Başar, E
2001-01-30
Since traditional electrical brain signal analysis is mostly qualitative, the development of new quantitative methods is crucial for restricting the subjectivity in the study of brain signals. These methods are particularly fruitful when they are strongly correlated with intuitive physical concepts that allow a better understanding of brain dynamics. Here, new method based on orthogonal discrete wavelet transform (ODWT) is applied. It takes as a basic element the ODWT of the EEG signal, and defines the relative wavelet energy, the wavelet entropy (WE) and the relative wavelet entropy (RWE). The relative wavelet energy provides information about the relative energy associated with different frequency bands present in the EEG and their corresponding degree of importance. The WE carries information about the degree of order/disorder associated with a multi-frequency signal response, and the RWE measures the degree of similarity between different segments of the signal. In addition, the time evolution of the WE is calculated to give information about the dynamics in the EEG records. Within this framework, the major objective of the present work was to characterize in a quantitative way functional dynamics of order/disorder microstates in short duration EEG signals. For that aim, spontaneous EEG signals under different physiological conditions were analyzed. Further, specific quantifiers were derived to characterize how stimulus affects electrical events in terms of frequency synchronization (tuning) in the event related potentials.
Basili, Danilo; Zhang, Ji-Liang; Herbert, John; Kroll, Kevin; Denslow, Nancy D; Martyniuk, Christopher J; Falciani, Francesco; Antczak, Philipp
2018-06-15
In recent years, decreases in fish populations have been attributed, in part, to the effect of environmental chemicals on ovarian development. To understand the underlying molecular events we developed a dynamic model of ovary development linking gene transcription to key physiological end points, such as gonadosomatic index (GSI), plasma levels of estradiol (E2) and vitellogenin (VTG), in largemouth bass ( Micropterus salmoides). We were able to identify specific clusters of genes, which are affected at different stages of ovarian development. A subnetwork was identified that closely linked gene expression and physiological end points and by interrogating the Comparative Toxicogenomic Database (CTD), quercetin and tretinoin (ATRA) were identified as two potential candidates that may perturb this system. Predictions were validated by investigation of reproductive associated transcripts using qPCR in ovary and in the liver of both male and female largemouth bass treated after a single injection of quercetin and tretinoin (10 and 100 μg/kg). Both compounds were found to significantly alter the expression of some of these genes. Our findings support the use of omics and online repositories for identification of novel, yet untested, compounds. This is the first study of a dynamic model that links gene expression patterns across stages of ovarian development.
Phospho-control of TGF-β superfamily signaling
Wrighton, Katharine H; Lin, Xia; Feng, Xin-Hua
2010-01-01
Members of the transforming growth factor-β (TGF-β) family control a broad range of cellular responses in metazoan organisms via autocrine, paracrine, and endocrine modes. Thus, aberrant TGF-β signaling can play a key role in the pathogenesis of several diseases, including cancer. TGF-β signaling pathways are activated by a short phospho-cascade, from receptor phosphorylation to the subsequent phosphorylation and activation of downstream signal transducers called R-Smads. R-Smad phosphorylation state determines Smad complex assembly/disassembly, nuclear import/export, transcriptional activity and stability, and is thus the most critical event in TGF-β signaling. Dephosphorylation of R-Smads by specific phosphatases prevents or terminates TGF-β signaling, highlighting the need to consider Smad (de)phosphorylation as a tightly controlled and dynamic event. This article illustrates the essential roles of reversible phosphorylation in controlling the strength and duration of TGF-β signaling and the ensuing physiological responses. PMID:19114991
Protein-Coupled Fluorescent Probe To Visualize Potassium Ion Transition on Cellular Membranes.
Hirata, Tomoya; Terai, Takuya; Yamamura, Hisao; Shimonishi, Manabu; Komatsu, Toru; Hanaoka, Kenjiro; Ueno, Tasuku; Imaizumi, Yuji; Nagano, Tetsuo; Urano, Yasuteru
2016-03-01
K(+) is the most abundant metal ion in cells, and changes of [K(+)] around cell membranes play important roles in physiological events. However, there is no practical method to selectively visualize [K(+)] at the surface of cells. To address this issue, we have developed a protein-coupled fluorescent probe for K(+), TLSHalo. TLSHalo is responsive to [K(+)] in the physiological range, with good selectivity over Na(+) and retains its K(+)-sensing properties after covalent conjugation with HaloTag protein. By using cells expressing HaloTag on the plasma membrane, we successfully directed TLSHalo specifically to the outer surface of target cells. This enabled us to visualize localized extracellular [K(+)] change with TLSHalo under a fluorescence microscope in real time. To confirm the experimental value of this system, we used TLSHalo to monitor extracellular [K(+)] change induced by K(+) ionophores or by activation of a native Ca(2+)-dependent K(+) channel (BK channel). Further, we show that K(+) efflux via BK channel induced by electrical stimulation at the bottom surface of the cells can be visualized with TLSHalo by means of total internal reflection fluorescence microscope (TIRFM) imaging. Our methodology should be useful to analyze physiological K(+) dynamics with high spatiotemporal resolution.
Glutaraldehyde pretreatment blocks phospholipase A2 modulation of adrenergic receptors.
Cohen, R M; McLellan, C; Dauphin, M; Hirata, F
1985-01-07
Treatment of rat cerebral cortical membranes with phospholipase A2 affects, in a parallel fashion, beta-, alpha 1- and alpha 2-adrenergic receptor binding, but not the affinity of these receptors for their respective ligands. Pretreatment of membranes with 0.1 percent glutaraldehyde blocks the effects of phospholipase A2 on adrenergic receptor binding. The results support the hypothesis that desensitization or "masking" of adrenergic receptors may involve changes in membrane lipid composition. Furthermore, glutaraldehyde may prove a useful tool in the investigation of the dynamic roles of lipids in receptor function and more specifically, their regulation and coupling to physiological events.
Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis
NASA Technical Reports Server (NTRS)
Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)
1979-01-01
The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.
Predictive coding in autism spectrum disorder and attention deficit hyperactivity disorder.
Gonzalez-Gadea, Maria Luz; Chennu, Srivas; Bekinschtein, Tristan A; Rattazzi, Alexia; Beraudi, Ana; Tripicchio, Paula; Moyano, Beatriz; Soffita, Yamila; Steinberg, Laura; Adolfi, Federico; Sigman, Mariano; Marino, Julian; Manes, Facundo; Ibanez, Agustin
2015-11-01
Predictive coding has been proposed as a framework to understand neural processes in neuropsychiatric disorders. We used this approach to describe mechanisms responsible for attentional abnormalities in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). We monitored brain dynamics of 59 children (8-15 yr old) who had ASD or ADHD or who were control participants via high-density electroencephalography. We performed analysis at the scalp and source-space levels while participants listened to standard and deviant tone sequences. Through task instructions, we manipulated top-down expectation by presenting expected and unexpected deviant sequences. Children with ASD showed reduced superior frontal cortex (FC) responses to unexpected events but increased dorsolateral prefrontal cortex (PFC) activation to expected events. In contrast, children with ADHD exhibited reduced cortical responses in superior FC to expected events but strong PFC activation to unexpected events. Moreover, neural abnormalities were associated with specific control mechanisms, namely, inhibitory control in ASD and set-shifting in ADHD. Based on the predictive coding account, top-down expectation abnormalities could be attributed to a disproportionate reliance (precision) allocated to prior beliefs in ASD and to sensory input in ADHD. Copyright © 2015 the American Physiological Society.
Specific dynamic action: a review of the postprandial metabolic response.
Secor, Stephen M
2009-01-01
For more than 200 years, the metabolic response that accompanies meal digestion has been characterized, theorized, and experimentally studied. Historically labeled "specific dynamic action" or "SDA", this physiological phenomenon represents the energy expended on all activities of the body incidental to the ingestion, digestion, absorption, and assimilation of a meal. Specific dynamic action or a component of postprandial metabolism has been quantified for more than 250 invertebrate and vertebrate species. Characteristic among all of these species is a rapid postprandial increase in metabolic rate that upon peaking returns more slowly to prefeeding levels. The average maximum increase in metabolic rate stemming from digestion ranges from a modest 25% for humans to 136% for fishes, and to an impressive 687% for snakes. The type, size, composition, and temperature of the meal, as well as body size, body composition, and several environmental factors (e.g., ambient temperature and gas concentration) can each significantly impact the magnitude and duration of the SDA response. Meals that are large, intact or possess a tough exoskeleton require more digestive effort and thus generate a larger SDA than small, fragmented, or soft-bodied meals. Differences in the individual effort of preabsorptive (e.g., swallowing, gastric breakdown, and intestinal transport) and postabsorptive (e.g., catabolism and synthesis) events underlie much of the variation in SDA. Specific dynamic action is an integral part of an organism's energy budget, exemplified by accounting for 19-43% of the daily energy expenditure of free-ranging snakes. There are innumerable opportunities for research in SDA including coverage of unexplored taxa, investigating the underlying sources, determinants, and the central control of postprandial metabolism, and examining the integration of SDA across other physiological systems.
Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.
2013-01-01
This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735
Metz-Lutz, Marie-Noëlle; Bressan, Yannick; Heider, Nathalie; Otzenberger, Hélène
2010-01-01
Live theater is typically designed to alter the state of mind of the audience. Indeed, the perceptual inputs issuing from a live theatrical performance are intended to represent something else, and the actions, emphasized by the writing and staging, are the key prompting the adhesion of viewers to fiction, i.e., their belief that it is real. This phenomenon raises the issue of the cognitive processes governing access to a fictional reality during live theater and of their cerebral underpinnings. To get insight into the physiological substrates of adhesion we recreated the peculiar context of watching live drama in a functional magnetic resonance imaging (fMRI) experiment, with simultaneous recording of heart activity. The instants of adhesion were defined as the co-occurrence of theatrical events determined a priori by the stage director and the spectators' offline reports of moments when fiction acted as reality. These data served to specify, for each spectator, individual fMRI time-series, used in a random-effect group analysis to define the pattern of brain response to theatrical events. The changes in this pattern related to subjects' adhesion to fiction, were investigated using a region of interest analysis. The results showed that adhesion to theatrical events correlated with increased activity in the left BA47 and posterior superior temporal sulcus, together with a decrease in dynamic heart rate variability, leading us to discuss the hypothesis of subtle changes in the subjects' state of awareness, enabling them to mentally dissociate physical and mental (drama-viewing) experiences, to account for the phenomenon of adhesion to dramatic fiction.
NASA Astrophysics Data System (ADS)
Wlostowski, A. N.; Gooseff, M. N.; Adams, B. J.
2018-01-01
Antarctic soil ecosystems are strongly controlled by abiotic habitat variables. Regional climate change in the McMurdo Dry Valleys is expected to cause warming over the next century, leading to an increase in frequency of freeze-thaw cycling in the soil habitat. Previous studies show that physiological stress associated with freeze-thaw cycling adversely affects invertebrate populations by decreasing abundance and positively selecting for larger body sizes. However, it remains unclear whether or not climate warming will indeed enhance the frequency of annual freeze-thaw cycling and associated physiological stresses. This research quantifies the frequency, rate, and spatial heterogeneity of active layer freezing to better understand how regional climate change may affect active layer soil thermodynamics, and, in turn, affect soil macroinvertebrate communities. Shallow active layer temperature, specific conductance, and soil moisture were observed along natural wetness gradients. Field observations show that the frequency and rate of freeze events are nonlinearly related to freezable soil moisture (θf). Over a 2 year period, soils at θf < 0.080 m3/m3 experienced between 15 and 35 freeze events and froze rapidly compared to soils with θf > 0.080 m3/m3, which experienced between 2 and 6 freeze events and froze more gradually. A numerical soil thermodynamic model is able to simulate observed freezing rates across a range of θf, reinforcing a well-known causal relationship between soil moisture and active layer freezing dynamics. Findings show that slight increases in soil moisture can potentially offset the effect of climate warming on exacerbating soil freeze-thaw cycling.
Metz-Lutz, Marie-Noëlle; Bressan, Yannick; Heider, Nathalie; Otzenberger, Hélène
2010-01-01
Live theater is typically designed to alter the state of mind of the audience. Indeed, the perceptual inputs issuing from a live theatrical performance are intended to represent something else, and the actions, emphasized by the writing and staging, are the key prompting the adhesion of viewers to fiction, i.e., their belief that it is real. This phenomenon raises the issue of the cognitive processes governing access to a fictional reality during live theater and of their cerebral underpinnings. To get insight into the physiological substrates of adhesion we recreated the peculiar context of watching live drama in a functional magnetic resonance imaging (fMRI) experiment, with simultaneous recording of heart activity. The instants of adhesion were defined as the co-occurrence of theatrical events determined a priori by the stage director and the spectators’ offline reports of moments when fiction acted as reality. These data served to specify, for each spectator, individual fMRI time-series, used in a random-effect group analysis to define the pattern of brain response to theatrical events. The changes in this pattern related to subjects’ adhesion to fiction, were investigated using a region of interest analysis. The results showed that adhesion to theatrical events correlated with increased activity in the left BA47 and posterior superior temporal sulcus, together with a decrease in dynamic heart rate variability, leading us to discuss the hypothesis of subtle changes in the subjects’ state of awareness, enabling them to mentally dissociate physical and mental (drama-viewing) experiences, to account for the phenomenon of adhesion to dramatic fiction. PMID:20838472
Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun
2017-12-16
Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Jelinek, Herbert F; Karmakar, C; Kiviniemi, A M; Hautala, A J; Tulppo, M P; Mäkikallio, T H; Huikuri, H V; Khandoker, A H; Palaniswami, M
2015-10-01
Increased risk of arrhythmic events occurs at certain times during the circadian cycle with the highest risk being in the second and fourth quarter of the day. Exercise improves treatment outcome in individuals with cardiovascular disease. How different exercise protocols affect the circadian rhythm and the associated decrease in adverse cardiovascular risk over the circadian cycle has not been shown. Fifty sedentary male participants were randomized into an 8-week high volume and moderate volume training and a control group. Heart rate was recorded using Polar Electronics and investigated with Cosinor analysis and by Poincaré plot derived features of SD1, SD2 and the complex correlation measure (CCM) at 1-h intervals over the 24-h period. Moderate exercise significantly increased vagal modulation and the temporal dynamics of the heart rate in the second quarter of the circadian cycle (p = 0.004 and p = 0.007 respectively). High volume exercise had a similar effect on vagal output (p = 0.003) and temporal dynamics (p = 0.003). Cosinor analysis confirms that the circadian heart rate displays a shift in the acrophage following moderate and high volume exercise from before waking (1st quarter) to after waking (2nd quarter of day). Our results suggest that exercise shifts vagal influence and increases temporal dynamics of the heart rate to the 2nd quarter of the day and suggest that this may be the underlying physiological change leading to a decrease in adverse arrhythmic events during this otherwise high-risk period.
ERIC Educational Resources Information Center
Mead, John D.; Dengerink, Harold A.
1977-01-01
The major intent of this research was to provide a further test of the relationships between physiological arousal and event probability by experimentally generating subjective expectancies for shock. The relationship of event probability to stress was discussed with respect to length of the anticipatory periods and methods used to establish…
Physiological Event Prediction in Evaluations of Underwater Breathing Apparatus
2016-10-25
Navy Experimental Diving Unit TA 15-02 321 Bullfinch Rd. NEDU TR 16-04 Panama City, FL 32407-7015 October 2016 Physiological...Event Prediction in Evaluations of Underwater Breathing Apparatus NAVY EXPERIMENTAL DIVING UNIT Author...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Navy Experimental
Nonlinear dynamics, fractals, cardiac physiology and sudden death
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.
1987-01-01
The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.
Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics.
Okeke, Emmanuel; Dingsdale, Hayley; Parker, Tony; Voronina, Svetlana; Tepikin, Alexei V
2016-06-01
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology
NASA Astrophysics Data System (ADS)
Hrushesky, William J. M.; Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.
2011-03-01
Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10-11 and 5-6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9"N, 4°29"E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56"N, 93°8"W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology.
Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons.
Yapo, Cedric; Nair, Anu G; Clement, Lorna; Castro, Liliana R; Hellgren Kotaleski, Jeanette; Vincent, Pierre
2017-12-15
Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D 1 or D 2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D 2 than on D 1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Dynamics of salivary proteins and metabolites during extreme endurance sports - a case study.
Zauber, Henrik; Mosler, Stephan; von Heßberg, Andreas; Schulze, Waltraud X
2012-07-01
As noninvasively accessible body fluid, saliva is of growing interest in diagnostics. To exemplify the diagnostic potential of saliva, we used a mass spectrometry-based approach to gain insights into adaptive physiological processes underlying long-lasting endurance work load in a case study. Saliva was collected from male and female athlete at four diurnal time points throughout a 1060 km nonstop cycling event. Total sampling time covered 180 h comprising 62 h of endurance cycling as well as reference samples taken over 3 days before the event, and over 2 days after. Altogether, 1405 proteins and 62 metabolites were identified in these saliva samples, of which 203 could be quantified across the majority of the sampling time points. Many proteins show clear diurnal abundance patterns in saliva. In many cases, these patterns were disturbed and altered by the long-term endurance stress. During the stress phase, metabolites of energy mobilization, such as creatinine and glucose were of high abundance, as well as metabolites with antioxidant functions. Lysozyme, amylase, and proteins with redox-regulatory function showed significant increase in average abundance during work phase compared to rest or recovery phase. The recovery phase was characterized by an increased abundance of immunoglobulins. Our work exemplifies the application of high-throughput technologies to understand adaptive processes in human physiology. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Scale-Free Neural and Physiological Dynamics in Naturalistic Stimuli Processing
Lin, Amy
2016-01-01
Abstract Neural activity recorded at multiple spatiotemporal scales is dominated by arrhythmic fluctuations without a characteristic temporal periodicity. Such activity often exhibits a 1/f-type power spectrum, in which power falls off with increasing frequency following a power-law function: P(f)∝1/fβ, which is indicative of scale-free dynamics. Two extensively studied forms of scale-free neural dynamics in the human brain are slow cortical potentials (SCPs)—the low-frequency (<5 Hz) component of brain field potentials—and the amplitude fluctuations of α oscillations, both of which have been shown to carry important functional roles. In addition, scale-free dynamics characterize normal human physiology such as heartbeat dynamics. However, the exact relationships among these scale-free neural and physiological dynamics remain unclear. We recorded simultaneous magnetoencephalography and electrocardiography in healthy subjects in the resting state and while performing a discrimination task on scale-free dynamical auditory stimuli that followed different scale-free statistics. We observed that long-range temporal correlation (captured by the power-law exponent β) in SCPs positively correlated with that of heartbeat dynamics across time within an individual and negatively correlated with that of α-amplitude fluctuations across individuals. In addition, across individuals, long-range temporal correlation of both SCP and α-oscillation amplitude predicted subjects’ discrimination performance in the auditory task, albeit through antagonistic relationships. These findings reveal interrelations among different scale-free neural and physiological dynamics and initial evidence for the involvement of scale-free neural dynamics in the processing of natural stimuli, which often exhibit scale-free dynamics. PMID:27822495
Sjulson, Lucas; Miesenböck, Gero
2007-02-01
Optical imaging of physiological events in real time can yield insights into biological function that would be difficult to obtain by other experimental means. However, the detection of all-or-none events, such as action potentials or vesicle fusion events, in noisy single-trial data often requires a careful balance of tradeoffs. The analysis of such experiments, as well as the design of optical reporters and instrumentation for them, is aided by an understanding of the principles of signal detection. This review illustrates these principles, using as an example action potential recording with optical voltage reporters.
NASA Astrophysics Data System (ADS)
Ringuette, Dene; Jeffrey, Melanie A.; Carlen, Peter L.; Levi, Ofer
2016-03-01
Dysfunction of the vascular endothelium has been implicated in the development of epilepsy. To better understand the relation between vascular function and seizure and provide a foundation for interpreting results from functional imaging in chronic disease models, we investigate the relationship between intracellular calcium dynamics and local cerebral blood flow and blood oxygen saturation during acute seizure-like events and pharmacological seizure rescue. To probe the relation between the aforementioned physiological markers in an acute model of epilepsy in rats, we integrated three different optical modalities together with electrophysiological recordings: Laser speckle contrast imaging (LSCI) was used to study changes in flow speeds, Intrinsic optical signal imaging (IOSI) was used to monitor changes in oxygenated, de-oxygenated, and total hemoglobin concentration, and Calcium-sensitive dye imaging was used to monitor intracellular calcium dynamics. We designed a dedicated cortical flow chamber to remove superficial blood and dye resulting from the injection procedure, which reduced spurious artifacts. The near infrared light used for IOSI and LSCI was delivered via a light pipe integrated with the flow chamber to minimize the effect of fluid surface movement on illumination stability. Calcium-sensitive dye was injected via a glass electrode used for recording the local field potential. Our system allowed us to observe and correlate increases in intracellular calcium, blood flow and blood volume during seizure-like events and provide a quantitative analysis of neurovascular coupling changes associated with seizure rescue via injection of an anti-convulsive agent.
Schellewald, Vera; Kleinert, Jens; Ellegast, Rolf
2018-09-01
The aim of this study was to investigate the use of two types of dynamic workstations (Deskbike, activeLife Trainer) and their effects on physiological activation in an occupational setting. 30 employees were given access to the devices for 28 days. Frequency and duration of borrowing and use was recorded by a Chipcard-system. Physiological activation (energy expenditure, heart rate) while working in a seated position and using the workstations was measured with the activity tracker Fitbit Charge HR. Participants used dynamic workstations on 40% of their working days for an average of 54.3 ± 23.9 min per day. Energy expenditure and heart rate increased significantly while using the workstations compared to working seated. The Deskbike was used more frequently and resulted in greater heart rate elevation. Both types of dynamic workstations were used by the employees and had positive effects on physiological activation. The implementation of either type can be recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigation on maternal physiological and psychological factors of cheilopalatognathus.
Ma, J; Zhao, W; Ma, R M; Li, X J; Wen, Z H; Liu, X F; Hu, W D; Zhang, C B
2013-01-01
Case-control study on mothers of cheilopalatognathus children was conducted, to investigate the maternal physiological and psychological factors for occurrence of cheilopalatognathus. One hundred ten mothers of cheilopalatognathus children who were scheduled for one-stage surgery were selected as a research group, and 110 mothers of normal children served as a normal control group at the same time. Trait Anxiety Inventory (T-AI), Life Events Scale (LES), Trait Coping Style Questionnaire (TCSQ), Type C Behavior Scale (CBS), adult Eysenck Personality Questionnaire (EPQ), and homemade general questionnaire survey were employed for the investigation. Compared with the control group, the scores for negative event tension value, anxiety, and depressive factors were higher in the study group (p < 0.05); while the scores for positive event tension value, intellect, optimism, and social support factors were lower (p < 0.05). Regression analysis found that physiological factors included were five: education, changes in body weight during pregnancy, the intake amount of milk and beans, and intake of healthcare products, and supplementary folic acid taken or not, while the psychological factors included were four: positive event stimulation, negative event stimulation, the amount of social support, as well as introvert and extrovert personalities. The study results suggest that pregnant women's physiological and psychological factors can cause changes in cheilopalatognathus incidence, which is expected to be guidance for healthcare during pregnancy, to prevent the occurrence of cheilopalatognathus.
Linguistic Analysis of the Human Heartbeat Using Frequency and Rank Order Statistics
NASA Astrophysics Data System (ADS)
Yang, Albert C.-C.; Hseu, Shu-Shya; Yien, Huey-Wen; Goldberger, Ary L.; Peng, C.-K.
2003-03-01
Complex physiologic signals may carry unique dynamical signatures that are related to their underlying mechanisms. We present a method based on rank order statistics of symbolic sequences to investigate the profile of different types of physiologic dynamics. We apply this method to heart rate fluctuations, the output of a central physiologic control system. The method robustly discriminates patterns generated from healthy and pathologic states, as well as aging. Furthermore, we observe increased randomness in the heartbeat time series with physiologic aging and pathologic states and also uncover nonrandom patterns in the ventricular response to atrial fibrillation.
A new approach for designing self-organizing systems and application to adaptive control
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song
1993-01-01
There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.
Gehan, Malia A; Mockler, Todd C; Weinig, Cynthia; Ewers, Brent E
2017-01-01
The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop Brassica rapa during initial perception of drought, we applied a co-expression network approach to associate rhythmic gene expression changes with physiological responses. Coupled analysis of transcriptome and physiological parameters over a two-day time course in control and drought-stressed plants provided temporal resolution necessary for correlation of network modules with dynamic changes in stomatal conductance, photosynthetic rate, and photosystem II efficiency. This approach enabled the identification of drought-responsive genes based on their differential rhythmic expression profiles in well-watered versus droughted networks and provided new insights into the dynamic physiological changes that occur during drought. PMID:28826479
Quantification of brain macrostates using dynamical nonstationarity of physiological time series.
Latchoumane, Charles-Francois Vincent; Jeong, Jaeseung
2011-04-01
The brain shows complex, nonstationarity temporal dynamics, with abrupt micro- and macrostate transitions during its information processing. Detecting and characterizing these transitions in dynamical states of the brain is a critical issue in the field of neuroscience and psychiatry. In the current study, a novel method is proposed to quantify brain macrostates (e.g., sleep stages or cognitive states) from shifts of dynamical microstates or dynamical nonstationarity. A ``dynamical microstate'' is a temporal unit of the information processing in the brain with fixed dynamical parameters and specific spatial distribution. In this proposed approach, a phase-space-based dynamical dissimilarity map (DDM) is used to detect transitions between dynamically stationary microstates in the time series, and Tsallis time-dependent entropy is applied to quantify dynamical patterns of transitions in the DDM. We demonstrate that the DDM successfully detects transitions between microstates of different temporal dynamics in the simulated physiological time series against high levels of noise. Based on the assumption of nonlinear, deterministic brain dynamics, we also demonstrate that dynamical nonstationarity analysis is useful to quantify brain macrostates (sleep stages I, II, III, IV, and rapid eye movement (REM) sleep) from sleep EEGs with an overall accuracy of 77%. We suggest that dynamical nonstationarity is a useful tool to quantify macroscopic mental states (statistical integration) of the brain using dynamical transitions at the microscopic scale in physiological data.
Koschel, Tessa L; Young, John C; Navalta, James W
2017-01-01
Stress levels in university students peak during the final exam period. An inverse association exists between Physical Activity (PA) and poor mental health. UNLV has created Fitness4Finals (F4F), an event novel in its approach to academic stress reduction by incorporating both physical activity and mental relaxation. To our knowledge, a university-driven programming event aimed at reducing physiological and psychological stress among students approaching final exams had never been studied. Therefore, the aims of this research were to 1) examine the influence of F4F on physiological stress and perceived psychological stress (PPS) and 2) to examine the relationship between physiological stress and PPS. Fifteen full-time university students were recruited to participate in their choice of one of two groups: F4F or control (NonF4F). Pre-F4F and post-F4F measures of physiological stress, measured by salivary cortisol, and perceived psychological stress, measured by survey were collected. The F4F event was held the week prior to final examinations. Participants in the F4F group engaged in one F4F activity per day for the duration of the 3-day event. Results of the repeated measures MANOVA indicated nonsignificant interaction (p = .864) between F4F participation, physiological stress and PPS. PPS and cortisol were not correlated at the onset of the study (r = -0.18, p = 0.48) or at the last sampling period (r = 0.097, p = 0.73). Preemptive elevated levels of PA in the F4F group may have influenced results. Qualitative data indicates a unanimous perceived reduction in stress from F4F participation. While the physiological measures of stress in the present study were not significantly different, the perceived stress reduction reported by F4F participants is influential. Further investigation with improvements in timing and measurement tools is warranted.
Nieman, Gary F; Satalin, Josh; Kollisch-Singule, Michaela; Andrews, Penny; Aiash, Hani; Habashi, Nader M; Gatto, Louis A
2017-06-01
Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. In this Physiology in Medicine paper, the dynamic physiology of alveolar inflation and deflation during mechanical ventilation will be reviewed. In addition, the pathophysiologic mechanisms of VILI will be reviewed, and this knowledge will be used to suggest an optimal mechanical breath profile (MB P : all airway pressures, volumes, flows, rates, and the duration that they are applied at both inspiration and expiration) necessary to minimize VILI. Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MB P so as to minimize VILI will reduce the morbidity and mortality associated with ARDS. Copyright © 2017 the American Physiological Society.
Entropy for the Complexity of Physiological Signal Dynamics.
Zhang, Xiaohua Douglas
2017-01-01
Recently, the rapid development of large data storage technologies, mobile network technology, and portable medical devices makes it possible to measure, record, store, and track analysis of biological dynamics. Portable noninvasive medical devices are crucial to capture individual characteristics of biological dynamics. The wearable noninvasive medical devices and the analysis/management of related digital medical data will revolutionize the management and treatment of diseases, subsequently resulting in the establishment of a new healthcare system. One of the key features that can be extracted from the data obtained by wearable noninvasive medical device is the complexity of physiological signals, which can be represented by entropy of biological dynamics contained in the physiological signals measured by these continuous monitoring medical devices. Thus, in this chapter I present the major concepts of entropy that are commonly used to measure the complexity of biological dynamics. The concepts include Shannon entropy, Kolmogorov entropy, Renyi entropy, approximate entropy, sample entropy, and multiscale entropy. I also demonstrate an example of using entropy for the complexity of glucose dynamics.
Meeting report: IUPS and ADInstruments 2017 Teaching Workshop.
Marcondes, Fernanda Klein; Cardozo, Lais Tono; Luchi, Kelly Cristina Gaviao; Irfannuddin, Muhammad; Karatzaferi, Christina; Rocha, Maria José; Carroll, Robert G
2018-06-01
Every 4 yr, the International Union of Physiological Sciences (IUPS) Teaching Workshop is held as a traditional satellite event of the IUPS Congress. The 2017 satellite workshop was held August 5-8, 2017 in Búzios, Rio de Janeiro, Brazil. The workshop provided an opportunity for discussion and experiences in physiology teaching for educators at various levels, graduate students, and undergraduate students. This report describes the workshop activities and reports the participants' perceptions of this event. For evaluation of perception, an anonymous questionnaire was sent by e-mail to all participants, addressing nine items: appropriate topics, time of activities, poster session, congress venue, registration fee, attention of the organizing committee before and during the event, social event, and food. Responses were ranked according to a five-point Likert scale. Of the 145 participants, 77 answered the questionnaire. The participants' perception was positive, noting in particular opportunities to share knowledge, space for reflection of teaching practice, contact networks for future, exchanges of experience, and collaborations in research in physiological education.
Daches, Shimrit; Kovacs, Maria; George, Charles J; Yaroslavsky, Ilya; Kiss, Eniko; Vetró, Ágnes; Dochnal, Roberta; Benák, István; Baji, Ildikó; Halas, Kitti; Makai, Attila; Kapornai, Krisztina; Rottenberg, Jonathan
2017-11-01
Adversity during early development has been shown to have enduring negative physiological consequences. In turn, atypical physiological functioning has been associated with maladaptive processing of negative affect, including its regulation. The present study therefore explored whether exposure to adverse life events in childhood predicted maladaptive (less flexible) parasympathetic nervous system functioning during the processing of negative affect among adolescents with depression histories. An initially clinic-referred, pediatric sample (N=189) was assessed at two time points. At Time 1, when subjects were 10.17years old (SD=1.42), on average, and were depressed, parents reported on adverse life events the offspring experienced up to that point. At Time 2, when subjects were 17.18years old (SD=1.28), and were remitted from depression, parents again reported on adverse life events in their offspring's lives for the interim period. At time 2, subjects' parasympathetic nervous system functioning (quantified as respiratory sinus arrhythmia) also was assessed at rest, during sad mood induction, and during instructed mood repair. Extent of adverse life events experienced by T1 (but not events occurring between T1 and T2) predicted less flexible RSA functioning 7years later during the processing of negative affect. Adolescents with more extensive early life adversities exhibited less vagal withdrawal following negative mood induction and tended to show less physiological recovery following mood repair. Early adversities appear to be associated with less flexible physiological regulatory control during negative affect experience, when measured later in development. Stress-related autonomic dysfunction in vulnerable youths may contribute to the unfavorable clinical prognosis associated with juvenile-onset depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Stress in the zoo: Tracking the impact of stress on memory formation over time.
Vogel, Susanne; Schwabe, Lars
2016-09-01
Although stress is well known to modulate human memory, precisely how memory formation is altered by a stressful encounter remains unclear. Stress effects on cognition are mainly mediated by the rapidly acting sympathetic nervous system, resulting in the release of catecholamines, and the slower acting hypothalamus-pituitary-adrenal axis secreting cortisol, which induces its effects on cognition through fast, non-genomic actions and delayed, genomic actions. Importantly, these different waves of the physiological stress response are thought to dynamically alter neural processing in brain regions important for memory such as the amygdala and the hippocampus. However, the precise time course of stress effects on memory formation is still unclear. To track the development of stress effects on memory over time, we tested individuals who underwent a stressful experience or a control procedure before a 2-h walk through a zoo, while an automatic camera continuously photographed the events they encoded. In a recognition memory test one week later, participants were presented with target photographs of their own zoo tour and lure photographs from an alternate tour. Stressed participants showed better memory for the experimental treatment than control participants, and this memory enhancement for the stressful encounter itself was directly linked to the sympathetic stress response. Moreover, stress enhanced memory for events encoded 41-65min after stressor onset, which was associated with the cortisol stress response, most likely arising from non-genomic cortisol actions. However, memory for events encoded long after the stressor, when genomic cortisol actions had most likely developed, remained unchanged. Our findings provide novel insights into how stress effects on memory formation develop over time, depending on the activity of major physiological stress response systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Unconscious Acoustical Stimuli Effects on Event-related Potentials in Humans].
Kopeikina, E A; Choroshich, V V; Aleksandrov, A Y; Ivanova, V Y
2015-01-01
Unconscious perception essentially affects human behavior. The main results in this area obtained in experiments with visual stimuli. However, the acoustical stimuli play not less important role in behavior. The main idea of this paper is the electroencephalographic investigation of unconscious acoustical stimulation effects on electro-physiological activity of the brain. For this purpose, the event-related potentials were acquired under unconscious stimulus priming paradigm. The one syllable, three letter length, Russian words and pseudo-words with single letter substitution were used as primes and targets. As a result, we find out that repetition and alternative priming similarly affects the event-related potential's component with 200 ms latency after target application in frontal parietal and temporal areas. Under alternative priming the direction of potential amplitude modification nearby 400 ms was altered for word and semi-word targets. Alternative priming reliably increase ERP's amplitude in 400 ms locality with pseudo-word targets and decrease it under word targets. Taking into account, that all participants were unable to distinguish the applied prime stimuli, we can assume that the event-related potential changes evoked by unconscious perception of acoustical stimuli. The ERP amplitude dynamics revealed in current investigation demonstrate the opportunity of subliminal acoustical stimuli to modulate the electrical activity evoked by verbal acoustical stimulation.
Yang, Dong-Ping; Robinson, P A
2017-04-01
A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.
NASA Astrophysics Data System (ADS)
Yang, Dong-Ping; Robinson, P. A.
2017-04-01
A physiologically based corticothalamic model of large-scale brain activity is used to analyze critical dynamics of transitions from normal arousal states to epileptic seizures, which correspond to Hopf bifurcations. This relates an abstract normal form quantitatively to underlying physiology that includes neural dynamics, axonal propagation, and time delays. Thus, a bridge is constructed that enables normal forms to be used to interpret quantitative data. The normal form of the Hopf bifurcations with delays is derived using Hale's theory, the center manifold theorem, and normal form analysis, and it is found to be explicitly expressed in terms of transfer functions and the sensitivity matrix of a reduced open-loop system. It can be applied to understand the effect of each physiological parameter on the critical dynamics and determine whether the Hopf bifurcation is supercritical or subcritical in instabilities that lead to absence and tonic-clonic seizures. Furthermore, the effects of thalamic and cortical nonlinearities on the bifurcation type are investigated, with implications for the roles of underlying physiology. The theoretical predictions about the bifurcation type and the onset dynamics are confirmed by numerical simulations and provide physiologically based criteria for determining bifurcation types from first principles. The results are consistent with experimental data from previous studies, imply that new regimes of seizure transitions may exist in clinical settings, and provide a simplified basis for control-systems interventions. Using the normal form, and the full equations from which it is derived, more complex dynamics, such as quasiperiodic cycles and saddle cycles, are discovered near the critical points of the subcritical Hopf bifurcations.
Fractal Physiology and the Fractional Calculus: A Perspective
West, Bruce J.
2010-01-01
This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a fractal statistical process. Control of physiologic complexity is one of the goals of medicine, in particular, understanding and controlling physiological networks in order to ensure their proper operation. We emphasize the difference between homeostatic and allometric control mechanisms. Homeostatic control has a negative feedback character, which is both local and rapid. Allometric control, on the other hand, is a relatively new concept that takes into account long-time memory, correlations that are inverse power law in time, as well as long-range interactions in complex phenomena as manifest by inverse power-law distributions in the network variable. We hypothesize that allometric control maintains the fractal character of erratic physiologic time series to enhance the robustness of physiological networks. Moreover, allometric control can often be described using the fractional calculus to capture the dynamics of complex physiologic networks. PMID:21423355
Immediate causality network of stock markets
NASA Astrophysics Data System (ADS)
Zhou, Li; Qiu, Lu; Gu, Changgui; Yang, Huijie
2018-02-01
Extensive works show that a network of stocks within a single stock market stores rich information on evolutionary behaviors of the system, such as collapses and/or crises. But a financial event covers usually several markets or even the global financial system. This mismatch of scale leads to lack of concise information to coordinate the event. In this work by using the transfer entropy we reconstruct the influential network between ten typical stock markets distributed in the world. Interesting findings include, before a financial crisis the connection strength reaches a maximum, which can act as an early warning signal of financial crises. The markets in America are monodirectionally and strongly influenced by that in Europe and act as the center. Some strongly linked pairs have also close correlations. The findings are helpful in understanding the evolution and modelling the dynamical process of the global financial system. This method can be extended straightly to find early warning signals for physiological and ecological systems, etc.
[Rainfall effects on the sap flow of Hedysarum scoparium.
Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng
2016-03-01
In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (<20 mm) did not change the sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.
Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells.
Law, Robert; Levin, Michael
2015-10-15
Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts.
The physiological basis and clinical significance of lung volume measurements.
Lutfi, Mohamed Faisal
2017-01-01
From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.
Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory
ERIC Educational Resources Information Center
Medler, Scott; Harrington, Frederick
2013-01-01
Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…
Seymour, Christopher W; Kahn, Jeremy M; Schwab, C William; Fuchs, Barry D
2008-01-01
Introduction Patients triaged to tertiary care centers frequently undergo rotary-wing transport and may be exposed to additional risk for adverse events. The incidence of physiologic adverse events and their predisposing factors in mechanically ventilated patients undergoing aeromedical transport are unknown. Methods We performed a retrospective review of flight records of all interfacility, rotary-wing transports to a tertiary care, university hospital during 2001 to 2003. All patients receiving mechanical ventilation via endotracheal tube or tracheostomy were included; trauma, scene flights, and fixed transports were excluded. Data were abstracted from patient flight and hospital records. Adverse events were classified as either major (death, arrest, pneumothorax, or seizure) or minor (physiologic decompensation, new arrhythmia, or requirement for new sedation/paralysis). Bivariate associations between hospital and flight characteristics and the presence of adverse events were examined. Results Six hundred eighty-two interfacility flights occurred during the period of review, with 191 patients receiving mechanical ventilation. Fifty-eight different hospitals transferred patients, with diagnoses that were primarily cardiopulmonary (45%) and neurologic (37%). Median flight distance and time were 42 (31 to 83) km and 13 (8 to 22) minutes, respectively. No major adverse events occurred during flight. Forty patients (22%) experienced a minor physiologic adverse event. Vasopressor requirement prior to flight and flight distance were associated with the presence of adverse events in-flight (P < 0.05). Patient demographics, time of day, season, transferring hospital characteristics, and ventilator settings before and during flight were not associated with adverse events. Conclusion Major adverse events are rare during interfacility, rotary-wing transfer of critically ill, mechanically ventilated patients. Patients transferred over a longer distance or transferred on vasopressors may be at greater risk for minor adverse events during flight. PMID:18498659
Physiological and psychosocial factors that predict HIV-related fatigue.
Barroso, Julie; Hammill, Bradley G; Leserman, Jane; Salahuddin, Naima; Harmon, James L; Pence, Brian Wells
2010-12-01
Fatigue is one of the most common and debilitating symptoms experienced by HIV-infected people. We report the results of our longitudinal analysis of physiological and psychosocial factors that were thought to predict changes in HIV-related fatigue in 128 participants over a 1-year period, in an effort to sort out the complex interplay among a comprehensive set of physiological and psychosocial variables. Physiological measures included hepatic function (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, hepatitis C status), thyroid function (thyroid stimulating hormone, thyroxine), HIV viral load, immunologic function (CD4, CD8, CD4/CD8 ratio, CD16, CD8CD38), gonadal function (testosterone, dehydroepiandrosterone), hematologic function (hemoglobin, hematocrit, serum erythropoietin), and cellular injury (lactic acid). Psychosocial measures included childhood and adult trauma, anxiety, depression, social support, stressful life events, and post-traumatic stress disorder (PTSD). Unemployment, not being on antiretroviral therapy, having fewer years since HIV diagnosis, more childhood trauma, more stressful life events, less social support, and more psychological distress (e.g., PTSD, anxiety and depression) put HIV-infected persons at risk for greater fatigue intensity and fatigue-related impairment in functioning during 1-year follow-up. Physiological variables did not predict greater fatigue. Stressful life events had both direct and indirect effects on fatigue.
Physiological and Psychosocial Factors that Predict HIV-Related Fatigue
Hammill, Bradley G.; Leserman, Jane; Salahuddin, Naima; Harmon, James L.; Pence, Brian Wells
2010-01-01
Fatigue is one of the most common and debilitating symptoms experienced by HIV-infected people. We report the results of our longitudinal analysis of physiological and psychosocial factors that were thought to predict changes in HIV-related fatigue in 128 participants over a 1-year period, in an effort to sort out the complex interplay among a comprehensive set of physiological and psychosocial variables. Physiological measures included hepatic function (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, hepatitis C status), thyroid function (thyroid stimulating hormone, thyroxine), HIV viral load, immunologic function (CD4, CD8, CD4/CD8 ratio, CD16, CD8CD38), gonadal function (testosterone, dehydroepiandrosterone), hematologic function (hemoglobin, hematocrit, serum erythropoietin), and cellular injury (lactic acid). Psychosocial measures included childhood and adult trauma, anxiety, depression, social support, stressful life events, and post-traumatic stress disorder (PTSD). Unemployment, not being on antiretroviral therapy, having fewer years since HIV diagnosis, more childhood trauma, more stressful life events, less social support, and more psychological distress (e.g., PTSD, anxiety and depression) put HIV-infected persons at risk for greater fatigue intensity and fatigue-related impairment in functioning during 1-year follow-up. Physiological variables did not predict greater fatigue. Stressful life events had both direct and indirect effects on fatigue. PMID:20352317
Ning, Jing; Rahbar, Mohammad H; Choi, Sangbum; Piao, Jin; Hong, Chuan; Del Junco, Deborah J; Rahbar, Elaheh; Fox, Erin E; Holcomb, John B; Wang, Mei-Cheng
2017-08-01
In comparative effectiveness studies of multicomponent, sequential interventions like blood product transfusion (plasma, platelets, red blood cells) for trauma and critical care patients, the timing and dynamics of treatment relative to the fragility of a patient's condition is often overlooked and underappreciated. While many hospitals have established massive transfusion protocols to ensure that physiologically optimal combinations of blood products are rapidly available, the period of time required to achieve a specified massive transfusion standard (e.g. a 1:1 or 1:2 ratio of plasma or platelets:red blood cells) has been ignored. To account for the time-varying characteristics of transfusions, we use semiparametric rate models for multivariate recurrent events to estimate blood product ratios. We use latent variables to account for multiple sources of informative censoring (early surgical or endovascular hemorrhage control procedures or death). The major advantage is that the distributions of latent variables and the dependence structure between the multivariate recurrent events and informative censoring need not be specified. Thus, our approach is robust to complex model assumptions. We establish asymptotic properties and evaluate finite sample performance through simulations, and apply the method to data from the PRospective Observational Multicenter Major Trauma Transfusion study.
Kinases Involved in Both Autophagy and Mitosis.
Li, Zhiyuan; Zhang, Xin
2017-08-31
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.
Kinases Involved in Both Autophagy and Mitosis
2017-01-01
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations. PMID:28858266
Modelling drought-induced dieback of Aleppo pine at the arid timberline
NASA Astrophysics Data System (ADS)
Wingate, Lisa; Preisler, Yakir; Bert, Didier; Rotenberg, Eyal; Yakir, Dan; Maseyk, Kadmiel; Ogee, Jerome
2016-04-01
During the mid 1960's an ambitious afforestation programme was initiated in the Negev desert of Israel. After five decades enduring harsh growing conditions, the Aleppo pine forest of Yatir is now exhibiting signs of 'drought-induced' dieback. Since 2010, 5-10% of the entire Yatir population have died, however the pattern of mortality is extremely patchy with some areas exhibiting >80% mortality whilst others display none. In this presentation, we reflect on historic climatic and edaphic conditions that have triggered this landscape mosaic of survival and mortality and how physiological and hydraulic traits vary within this patchwork. In addition, we explore how these pine trees have responded physiologically over recent years (1996-2010) to a series of severe drought events using a combined approach that brings together micrometeorological, dendro-isotopic and dendro-climatological datasets alongside process-based modelling. In particular the dataset trends were investigated with the isotope-enabled ecosystem model MuSICA to explore the consequences of subsequent droughts and embolism on modelled carbohydrate and water pool dynamics and their impact on carbon allocation and ecosystem function.
NASA Astrophysics Data System (ADS)
Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2016-05-01
Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.
Method and apparatus for assessing cardiovascular risk
NASA Technical Reports Server (NTRS)
Albrecht, Paul (Inventor); Bigger, J. Thomas (Inventor); Cohen, Richard J. (Inventor)
1998-01-01
The method for assessing risk of an adverse clinical event includes detecting a physiologic signal in the subject and determining from the physiologic signal a sequence of intervals corresponding to time intervals between heart beats. The long-time structure of fluctuations in the intervals over a time period of more than fifteen minutes is analyzed to assess risk of an adverse clinical event. In a preferred embodiment, the physiologic signal is an electrocardiogram and the time period is at least fifteen minutes. A preferred method for analyzing the long-time structure variability in the intervals includes computing the power spectrum and fitting the power spectrum to a power law dependence on frequency over a selected frequency range such as 10.sup.-4 to 10.sup.-2 Hz. Characteristics of the long-time structure fluctuations in the intervals is used to assess risk of an adverse clinical event.
Amodio, David M.; Ito, Tiffany A.
2014-01-01
Event-related potential (ERP) approaches to social cognitive and affective neuroscience (SCAN) are not as widely used as other neuroimaging techniques, yet they offer several unique advantages. In particular, the high temporal resolution of ERP measures of neural activity make them ideally suited for studying the dynamic interplay of rapidly unfolding cognitive and affective processes. In this article, we highlight the utility of ERP methods for scientists investigating questions of SCAN. We begin with a brief description of the physiological basis of ERPs and discussion of methodological practices. We then discuss how ERPs may be used to address a range of questions concerning social perception, social cognition, attitudes, affect and self-regulation, with examples of research that has used the ERP approach to contribute important theoretical advances in these areas. Whether used alone or in combination with other techniques, the ERP is an indispensable part of the social and affective neuroscientist’s methodological toolkit. PMID:24319116
Morimoto, Mai M; Tanaka, Shinji; Mizutani, Shunsuke; Urata, Shinji; Kobayashi, Kazuto; Okabe, Shigeo
2018-01-01
Catecholaminergic (dopamine and norepinephrine) projections to the cortex play an important role in cognitive functions and dysfunctions including learning, addiction, and mental disorders. While dynamics of glutamatergic synapses have been well studied in such contexts, little is known regarding catecholaminergic projections, owing to lack of robust methods. Here we report a system to monitor catecholaminergic projections in vivo over the timeframes that such events occur. Green fluorescent protein (GFP) expression driven by tyrosine hydroxylase promoter in a transgenic mouse line enabled us to perform two-photon imaging of cortical catecholaminergic projections through a cranial window. Repetitive imaging of the same axons over 24 h revealed the highly dynamic nature of catecholaminergic boutons. Surprisingly, administration of single high dose methamphetamine (MAP) induced a transient increase in bouton volumes. This new method opens avenues for longitudinal in vivo evaluation of structural changes at single release sites of catecholamines in association with physiology and pathology of cortical functions.
Morimoto, Mai M.; Tanaka, Shinji; Mizutani, Shunsuke; Urata, Shinji; Kobayashi, Kazuto
2018-01-01
Catecholaminergic (dopamine and norepinephrine) projections to the cortex play an important role in cognitive functions and dysfunctions including learning, addiction, and mental disorders. While dynamics of glutamatergic synapses have been well studied in such contexts, little is known regarding catecholaminergic projections, owing to lack of robust methods. Here we report a system to monitor catecholaminergic projections in vivo over the timeframes that such events occur. Green fluorescent protein (GFP) expression driven by tyrosine hydroxylase promoter in a transgenic mouse line enabled us to perform two-photon imaging of cortical catecholaminergic projections through a cranial window. Repetitive imaging of the same axons over 24 h revealed the highly dynamic nature of catecholaminergic boutons. Surprisingly, administration of single high dose methamphetamine (MAP) induced a transient increase in bouton volumes. This new method opens avenues for longitudinal in vivo evaluation of structural changes at single release sites of catecholamines in association with physiology and pathology of cortical functions. PMID:29445765
Amodio, David M; Bartholow, Bruce D; Ito, Tiffany A
2014-03-01
Event-related potential (ERP) approaches to social cognitive and affective neuroscience (SCAN) are not as widely used as other neuroimaging techniques, yet they offer several unique advantages. In particular, the high temporal resolution of ERP measures of neural activity make them ideally suited for studying the dynamic interplay of rapidly unfolding cognitive and affective processes. In this article, we highlight the utility of ERP methods for scientists investigating questions of SCAN. We begin with a brief description of the physiological basis of ERPs and discussion of methodological practices. We then discuss how ERPs may be used to address a range of questions concerning social perception, social cognition, attitudes, affect and self-regulation, with examples of research that has used the ERP approach to contribute important theoretical advances in these areas. Whether used alone or in combination with other techniques, the ERP is an indispensable part of the social and affective neuroscientist's methodological toolkit.
HUMAN--A Comprehensive Physiological Model.
ERIC Educational Resources Information Center
Coleman, Thomas G.; Randall, James E.
1983-01-01
Describes computer program (HUMAN) used to simulate physiological experiments on patient pathology. Program (available from authors, including versions for microcomputers) consists of dynamic interactions of over 150 physiological variables and integrating approximations of cardiovascular, renal, lung, temperature regulation, and some hormone…
Reductive Potential - A Savior Turns Stressor in Protein Aggregation Cardiomyopathy
Narasimhan, Madhusudhanan; Rajasekaran, Namakkal S.
2015-01-01
Redox homeostasis is essential for basal signaling of several physiological processes, but a unilateral shift towards an ‘oxidative’ or ‘reductive’ trait will alter intracellular redox milieu. Typically, such an event influences the structure and the native function of a cell or an organelle. Numerous experimental research and clinical trials over the last 6 decades have demonstrated that enhanced oxygen-derived free radicals constitutes a major stimuli to trigger damage in several human diseases, including cardiovascular complications supporting the theory of oxidative stress (OS). However, until our key discovery, the dynamic interrelationship between “Reductive Stress (RS)” and cardiac health has been obscured by overwhelming OS studies (Rajasekaran et al., 2007). Notably, this seminal finding spurred considerable interest in investigations of other mechanistic insights, and thus far the results indicate a similar or stronger role for RS, than that of OS. In addition, from our own findings we strongly believe that constitutive activation of pathways that enable sustained generation of reducing equivalents glutathione (GSH), reduced nicotinamide adenine dinucleotide phosphate (NADPH) will cause RS and impair the basal cellular signaling mechanisms operating through harmless pro-oxidative events, in turn, disrupting single and/or a combination of key cellular processes such as growth, maturation, differentiation, survival, death etc., that govern healthy cell physiology. Here, we have discussed the role of RS as a causal or contributing factor in relevant pathophysiology of a major cardiac disease of human origin. PMID:25446995
Alvarado-Rojas, C; Huberfeld, G; Baulac, M; Clemenceau, S; Charpier, S; Miles, R; Menendez de la Prida, L; Le Van Quyen, M
2015-01-01
Transient high-frequency oscillations (150-600 Hz) in local field potential generated by human hippocampal and parahippocampal areas have been related to both physiological and pathological processes. The cellular basis and effects of normal and abnormal forms of high-frequency oscillations (HFO) has been controversial. Here, we searched for HFOs in slices of the subiculum prepared from human hippocampal tissue resected for treatment of pharmacoresistant epilepsy. HFOs occurred spontaneously in extracellular field potentials during interictal discharges (IID) and also during pharmacologically induced preictal discharges (PID) preceding ictal-like events. While most of these events might be considered pathological since they invaded the fast ripple band (>250 Hz), others were spectrally similar to physiological ripples (150-250 Hz). Do similar cellular mechanisms underly IID-ripples and PID-ripples? Are ripple-like oscillations a valid proxy of epileptogenesis in human TLE? With combined intra- or juxta-cellular and extracellular recordings, we showed that, despite overlapping spectral components, ripple-like IID and PID oscillations were associated with different cellular and synaptic mechanisms. IID-ripples were associated with rhythmic GABAergic and glutamatergic synaptic potentials with moderate neuronal firing. In contrast, PID-ripples were associated with depolarizing synaptic inputs frequently reaching the threshold for bursting in most cells. Thus ripple-like oscillations (100-250 Hz) in the human epileptic hippocampus are associated with different mechanisms for synchrony reflecting distinct dynamic changes in inhibition and excitation during interictal and pre-ictal states. PMID:25448920
Numerical simulation studies for optical properties of biomaterials
NASA Astrophysics Data System (ADS)
Krasnikov, I.; Seteikin, A.
2016-11-01
Biophotonics involves understanding how light interacts with biological matter, from molecules and cells, to tissues and even whole organisms. Light can be used to probe biomolecular events, such as gene expression and protein-protein interaction, with impressively high sensitivity and specificity. The spatial and temporal distribution of biochemical constituents can also be visualized with light and, thus, the corresponding physiological dynamics in living cells, tissues, and organisms in real time. Computer-based Monte Carlo (MC) models of light transport in turbid media take a different approach. In this paper, the optical and structural properties of biomaterials discussed. We explain the numerical simulationmethod used for studying the optical properties of biomaterials. Applications of the Monte-Carlo method in photodynamic therapy, skin tissue optics, and bioimaging described.
GABAergic anxiolytic drug in water increases migration behaviour in salmon
NASA Astrophysics Data System (ADS)
Hellström, Gustav; Klaminder, Jonatan; Finn, Fia; Persson, Lo; Alanärä, Anders; Jonsson, Micael; Fick, Jerker; Brodin, Tomas
2016-12-01
Migration is an important life-history event in a wide range of taxa, yet many migrations are influenced by anthropogenic change. Although migration dynamics are extensively studied, the potential effects of environmental contaminants on migratory physiology are poorly understood. In this study we show that an anxiolytic drug in water can promote downward migratory behaviour of Atlantic salmon (Salmo salar) in both laboratory setting and in a natural river tributary. Exposing salmon smolt to a dilute concentration of a GABAA receptor agonist (oxazepam) increased migration intensity compared with untreated smolt. These results implicate that salmon migration may be affected by human-induced changes in water chemical properties, such as acidification and pharmaceutical residues in wastewater effluent, via alterations in the GABAA receptor function.
Nonlinear dynamics applied to the study of cardiovascular effects of stress
NASA Astrophysics Data System (ADS)
Anishchenko, T. G.; Igosheva, N. B.
1998-03-01
We study cardiovascular responses to emotional stresses in humans and rats using traditional physiological parameters and methods of nonlinear dynamics. We found that emotional stress results in significant changes of chaos degree of ECG and blood pressure signals, estimated using a normalized entropy. We demonstrate that the normalized entropy is a more sensitive indicator of the stress-induced changes in cardiovascular systems compared with traditional physiological parameters Using the normalized entropy we discovered the significant individual differences in cardiovascular stress-reactivity that was impossible to obtain by traditional physiological methods.
A Dynamic Energy Budget (DEB) Model for the Keystone Predator Pisaster ochraceus
Monaco, Cristián J.; Wethey, David S.; Helmuth, Brian
2014-01-01
We present a Dynamic Energy Budget (DEB) model for the quintessential keystone predator, the rocky-intertidal sea star Pisaster ochraceus. Based on first principles, DEB theory is used to illuminate underlying physiological processes (maintenance, growth, development, and reproduction), thus providing a framework to predict individual-level responses to environmental change. We parameterized the model for P. ochraceus using both data from the literature and experiments conducted specifically for the DEB framework. We devoted special attention to the model’s capacity to (1) describe growth trajectories at different life-stages, including pelagic larval and post-metamorphic phases, (2) simulate shrinkage when prey availability is insufficient to meet maintenance requirements, and (3) deal with the combined effects of changing body temperature and food supply. We further validated the model using an independent growth data set. Using standard statistics to compare model outputs with real data (e.g. Mean Absolute Percent Error, MAPE) we demonstrated that the model is capable of tracking P. ochraceus’ growth in length at different life-stages (larvae: MAPE = 12.27%; post-metamorphic, MAPE = 9.22%), as well as quantifying reproductive output index. However, the model’s skill dropped when trying to predict changes in body mass (MAPE = 24.59%), potentially because of the challenge of precisely anticipating spawning events. Interestingly, the model revealed that P. ochraceus reserves contribute little to total biomass, suggesting that animals draw energy from structure when food is limited. The latter appears to drive indeterminate growth dynamics in P. ochraceus. Individual-based mechanistic models, which can illuminate underlying physiological responses, offer a viable framework for forecasting population dynamics in the keystone predator Pisaster ochraceus. The DEB model herein represents a critical step in that direction, especially in a period of increased anthropogenic pressure on natural systems and an observed recent decline in populations of this keystone species. PMID:25166351
Statistical physics and physiology: monofractal and multifractal approaches
NASA Technical Reports Server (NTRS)
Stanley, H. E.; Amaral, L. A.; Goldberger, A. L.; Havlin, S.; Peng, C. K.
1999-01-01
Even under healthy, basal conditions, physiologic systems show erratic fluctuations resembling those found in dynamical systems driven away from a single equilibrium state. Do such "nonequilibrium" fluctuations simply reflect the fact that physiologic systems are being constantly perturbed by external and intrinsic noise? Or, do these fluctuations actually, contain useful, "hidden" information about the underlying nonequilibrium control mechanisms? We report some recent attempts to understand the dynamics of complex physiologic fluctuations by adapting and extending concepts and methods developed very recently in statistical physics. Specifically, we focus on interbeat interval variability as an important quantity to help elucidate possibly non-homeostatic physiologic variability because (i) the heart rate is under direct neuroautonomic control, (ii) interbeat interval variability is readily measured by noninvasive means, and (iii) analysis of these heart rate dynamics may provide important practical diagnostic and prognostic information not obtainable with current approaches. The analytic tools we discuss may be used on a wider range of physiologic signals. We first review recent progress using two analysis methods--detrended fluctuation analysis and wavelets--sufficient for quantifying monofractual structures. We then describe recent work that quantifies multifractal features of interbeat interval series, and the discovery that the multifractal structure of healthy subjects is different than that of diseased subjects.
Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.
Thompson, M A
2017-08-01
Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in the public domain in the US.
A Abdel-Rahman, Engy; Mahmoud, Ali M; Khalifa, Abdulrahman M; Ali, Sameh S
2016-08-15
Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site-directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Disentangling physical and biological drivers of phytoplankton dynamics in a coastal system.
Cianelli, Daniela; D'Alelio, Domenico; Uttieri, Marco; Sarno, Diana; Zingone, Adriana; Zambianchi, Enrico; d'Alcalà, Maurizio Ribera
2017-11-20
This proof-of-concept study integrates the surface currents measured by high-frequency coastal radars with plankton time-series data collected at a fixed sampling point from the Mediterranean Sea (MareChiara Long Term Ecological Research site in the Gulf of Naples) to characterize the spatial origin of phytoplankton assemblages and to scrutinize the processes ruling their dynamics. The phytoplankton community generally originated from the coastal waters whereby species succession was mainly regulated by biological factors (life-cycle processes, species-specific physiological performances and inter-specific interactions). Physical factors, e.g. the alternation between coastal and offshore waters and the horizontal mixing, were also important drivers of phytoplankton dynamics promoting diversity maintenance by i) advecting species from offshore and ii) diluting the resident coastal community so as to dampen resource stripping by dominant species and thereby increase the numerical importance of rarer species. Our observations highlight the resilience of coastal communities, which may favour their persistence over time and the prevalence of successional events over small time and space scales. Although coastal systems may act differently from one another, our findings provide a conceptual framework to address physical-biological interactions occurring in coastal basins, which can be generalised to other areas.
Inhomogeneous point-process entropy: An instantaneous measure of complexity in discrete systems
NASA Astrophysics Data System (ADS)
Valenza, Gaetano; Citi, Luca; Scilingo, Enzo Pasquale; Barbieri, Riccardo
2014-05-01
Measures of entropy have been widely used to characterize complexity, particularly in physiological dynamical systems modeled in discrete time. Current approaches associate these measures to finite single values within an observation window, thus not being able to characterize the system evolution at each moment in time. Here, we propose a new definition of approximate and sample entropy based on the inhomogeneous point-process theory. The discrete time series is modeled through probability density functions, which characterize and predict the time until the next event occurs as a function of the past history. Laguerre expansions of the Wiener-Volterra autoregressive terms account for the long-term nonlinear information. As the proposed measures of entropy are instantaneously defined through probability functions, the novel indices are able to provide instantaneous tracking of the system complexity. The new measures are tested on synthetic data, as well as on real data gathered from heartbeat dynamics of healthy subjects and patients with cardiac heart failure and gait recordings from short walks of young and elderly subjects. Results show that instantaneous complexity is able to effectively track the system dynamics and is not affected by statistical noise properties.
Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.
Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L; Tindal, Christopher; Thomas, Howard; Ougham, Helen J; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J; Millar, Andrew J
2014-09-30
Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.
Papetti, Michael; Kozlowski, Piotr
2018-04-01
Many aspects of cell physiology, including migration, membrane function, and cell division, are best understood by observing live cell dynamics over time using video microscopy. To probe these phenomena in colon epithelial cells using simple components with a limited budget, we have constructed an inexpensive (<$410) self-contained apparatus, consisting of a closed-loop, feedback-controlled system regulated by a PID (proportional-integrative-derivative) controller contained within a 0.077 m 3 insulated acrylic box. Temperature, humidity, pH, and proliferative capacity of colon epithelial cells in this system mimic those in a standard tissue culture incubator for over four days. Our system offers significant advantages over existing cost-prohibitive commercially available and custom-made devices because of its very low cost, use of PID temperature control, lack of reliance on constant infusion of external humidified, heated air or carbon dioxide, ability to directly measure cell culture medium temperature, and combination of exquisite cellular detail with minimal focus drift under physiological conditions for extended periods of time. Using this apparatus, coupled with an inverted microscope equipped with phase contrast optics and a programmable digital camera, we have observed many events in colon epithelial cells not visible by static imaging, including kinetics of normal and abnormal mitoses, dynamic membrane structures, intracellular vesicle movements, and cell migration. © 2018 International Society for Advancement of Cytometry. © 2018 International Society for Advancement of Cytometry.
Stimulating Student Interest in Physiology: The Intermedical School Physiology Quiz
ERIC Educational Resources Information Center
Cheng, Hwee-Ming
2010-01-01
The Intermedical School Physiology Quiz (IMSPQ) was initiated in 2003 during the author's last sabbatical from the University of Malaya. At this inaugural event, there were just seven competing teams from Malaysian medical schools. The challenge trophy for the IMSPQ is named in honor of Prof. A. Raman, who was the first Malaysian Professor of…
Dugenne, Mathilde; Thyssen, Melilotus; Nerini, David; Mante, Claude; Poggiale, Jean-Christophe; Garcia, Nicole; Garcia, Fabrice; Grégori, Gérald J.
2014-01-01
Phytoplankton is a key component in marine ecosystems. It is responsible for most of the marine primary production, particularly in eutrophic lagoons, where it frequently blooms. Because they are very sensitive to their environment, the dynamics of these microbial communities has to be observed over different time scales, however, assessment of short term variability is often out of reach of traditional monitoring methods. To overcome these limitations, we set up a Cytosense automated flow cytometer (Cytobuoy b.v.), designed for high frequency monitoring of phytoplankton composition, abundance, cell size, and pigment content, in one of the largest Mediterranean lagoons, the Berre lagoon (South-Eastern France). During October 2011, it recorded the cell optical properties of 12 groups of pico-, nano-, and microphytoplankton. Daily variations in the cluster optical properties were consistent with individual changes observed using microscopic imaging, during the cell cycle. We therefore used an adaptation of the size-structured matrix population model, developed by Sosik et al. (2003) to process the single cell analysis of the clusters and estimate the division rates of 2 dinoflagellate populations before, during, and after a strong wind event. The increase in the estimated in situ daily cluster growth rates suggest that physiological changes in the cells can prevail over the response of abundance. PMID:25309523
Gunderson, Alex R; Armstrong, Eric J; Stillman, Jonathon H
2016-01-01
Abiotic conditions (e.g., temperature and pH) fluctuate through time in most marine environments, sometimes passing intensity thresholds that induce physiological stress. Depending on habitat and season, the peak intensity of different abiotic stressors can occur in or out of phase with one another. Thus, some organisms are exposed to multiple stressors simultaneously, whereas others experience them sequentially. Understanding these physicochemical dynamics is critical because how organisms respond to multiple stressors depends on the magnitude and relative timing of each stressor. Here, we first discuss broad patterns of covariation between stressors in marine systems at various temporal scales. We then describe how these dynamics will influence physiological responses to multi-stressor exposures. Finally, we summarize how multi-stressor effects are currently assessed. We find that multi-stressor experiments have rarely incorporated naturalistic physicochemical variation into their designs, and emphasize the importance of doing so to make ecologically relevant inferences about physiological responses to global change.
Hahn, Andrew D; Rowe, Daniel B
2012-02-01
As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.
Sunspot Dynamics Are Reflected in Human Physiology and Pathophysiology
Sothern, Robert B.; Du-Quiton, Jovelyn; Quiton, Dinah Faith T.; Rietveld, Wop; Boon, Mathilde E.
2011-01-01
Abstract Periodic episodes of increased sunspot activity (solar electromagnetic storms) occur with 10–11 and 5–6 year periodicities and may be associated with measurable biological events. We investigated whether this sunspot periodicity characterized the incidence of Pap smear-determined cervical epithelial histopathologies and human physiologic functions. From January 1983 through December 2003, monthly averages were obtained for solar flux and sunspot numbers; six infectious, premalignant and malignant changes in the cervical epithelium from 1,182,421 consecutive, serially independent, screening Pap smears (59°9″N, 4°29″E); and six human physiologic functions of a healthy man (oral temperature, pulse, systolic and diastolic blood pressure, respiration, and peak expiratory flow), which were measured ∼5 times daily during ∼34,500 self-measurement sessions (44°56″N, 93°8″W). After determining that sunspot numbers and solar flux, which were not annually rhythmic, occurred with a prominent 10-year and a less-prominent 5.75-year periodicity during this 21-year study span, each biological data set was analyzed with the same curve-fitting procedures. All six annually rhythmic Pap smear-detected infectious, premalignant and malignant cervical epithelial pathologies showed strong 10-year and weaker 5.75-year cycles, as did all six self-measured, annually rhythmic, physiologic functions. The phases (maxima) for the six histopathologic findings and five of six physiologic measurements were very near, or within, the first two quarters following the 10-year solar maxima. These findings add to the growing evidence that solar magnetic storm periodicities are mirrored by cyclic phase-locked rhythms of similar period length or lengths in human physiology and pathophysiology. Key Words: Cervical infections—Cervical premalignancy—Geo-solar magnetic interactions—Pap smear—Schwabe cycle—10-year rhythm. Astrobiology 11, 93–103. PMID:21391821
Burke, Tarryne; Page, Bruce; Van Dyk, Gus; Millspaugh, Josh; Slotow, Rob
2008-01-01
Background Hunting of male African elephants may pose ethical and risk concerns, particularly given their status as a charismatic species of high touristic value, yet which are capable of both killing people and damaging infrastructure. Methodology/Principal Findings We quantified the effect of hunts of male elephants on (1) risk of attack or damage (11 hunts), and (2) behavioural (movement dynamics) and physiological (stress hormone metabolite concentrations) responses (4 hunts) in Pilanesberg National Park. For eleven hunts, there were no subsequent attacks on people or infrastructure, and elephants did not break out of the fenced reserve. For three focal hunts, there was an initial flight response by bulls present at the hunting site, but their movements stabilised the day after the hunt event. Animals not present at the hunt (both bulls and herds) did not show movement responses. Physiologically, hunting elephant bulls increased faecal stress hormone levels (corticosterone metabolites) in both those bulls that were present at the hunts (for up to four days post-hunt) and in the broader bull and breeding herd population (for up to one month post-hunt). Conclusions/Significance As all responses were relatively minor, hunting male elephants is ethically acceptable when considering effects on the remaining elephant population; however bulls should be hunted when alone. Hunting is feasible in relatively small enclosed reserves without major risk of attack, damage, or breakout. Physiological stress assays were more effective than behavioural responses in detecting effects of human intervention. Similar studies should evaluate intervention consequences, inform and improve best practice, and should be widely applied by management agencies. PMID:18560517
2012 Gordon Research Conference, Mitochondria and Chloroplasts, July 29 - Aug 3 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkan, Alice
2012-08-03
The 2012 Gordon Research Conference on Mitochondria and Chloroplasts will assemble an international group of scientists investigating fundamental properties of these organelles, and their integration into broader physiological processes. The conference will emphasize the many commonalities between mitochondria and chloroplasts: their evolution from bacterial endosymbionts, their genomes and gene expression systems, their energy transducing membranes whose proteins derive from both nuclear and organellar genes, the challenge of maintaining organelle integrity in the presence of the reactive oxygen species that are generated during energy transduction, their incorporation into organismal signaling pathways, and more. The conference will bring together investigators working inmore » animal, plant, fungal and protozoan systems who specialize in cell biology, genetics, biochemistry, physiology, proteomics, genomics, and structural biology. As such, this conference will provide a unique forum that engenders cross-disciplinary discussions concerning the biogenesis, dynamics, and regulation of these key cellular structures. By fostering interactions among mammalian, fungal and plant organellar biologists, this conference also provides a conduit for the transmission of mechanistic insights obtained in model organisms to applications in medicine and agriculture. The 2012 conference will highlight areas that are moving rapidly and emerging themes. These include new insights into the ultrastructure and organization of the energy transducing membranes, the coupling of organellar gene expression with the assembly of photosynthetic and respiratory complexes, the regulatory networks that couple organelle biogenesis with developmental and physiological signals, the signaling events through which organellar physiology influences nuclear gene expression, and the roles of organelles in disease and development.« less
Webb, Andrea K; Vincent, Ashley L; Jin, Alvin B; Pollack, Mark H
2015-02-01
Post-traumatic stress disorder (PTSD) currently is diagnosed via clinical interview in which subjective self reports of traumatic events and associated experiences are discussed with a mental health professional. The reliability and validity of diagnoses can be improved with the use of objective physiological measures. In this study, physiological activity was recorded from 58 male veterans (PTSD Diagnosis n = 16; Trauma Exposed/No PTSD Diagnosis: n = 23; No Trauma/No PTSD Diagnosis: n = 19) with and without PTSD and combat trauma exposure in response to emotionally evocative non-idiographic virtual reality stimuli. Statistically significant differences among the Control, Trauma, and PTSD groups were present during the viewing of two virtual reality videos. Skin conductance and interbeat interval features were extracted for each of ten video events (five events of increasing severity per video). These features were submitted to three stepwise discriminant function analyses to assess classification accuracy for Control versus Trauma, Control versus PTSD, and Trauma versus PTSD pairings of participant groups. Leave-one-out cross-validation classification accuracy was between 71 and 94%. These results are promising and suggest the utility of objective physiological measures in assisting with PTSD diagnosis.
Annotation and prediction of stress and workload from physiological and inertial signals.
Ghosh, Arindam; Danieli, Morena; Riccardi, Giuseppe
2015-08-01
Continuous daily stress and high workload can have negative effects on individuals' physical and mental well-being. It has been shown that physiological signals may support the prediction of stress and workload. However, previous research is limited by the low diversity of signals concurring to such predictive tasks and controlled experimental design. In this paper we present 1) a pipeline for continuous and real-life acquisition of physiological and inertial signals 2) a mobile agent application for on-the-go event annotation and 3) an end-to-end signal processing and classification system for stress and workload from diverse signal streams. We study physiological signals such as Galvanic Skin Response (GSR), Skin Temperature (ST), Inter Beat Interval (IBI) and Blood Volume Pulse (BVP) collected using a non-invasive wearable device; and inertial signals collected from accelerometer and gyroscope sensors. We combine them with subjects' inputs (e.g. event tagging) acquired using the agent application, and their emotion regulation scores. In our experiments we explore signal combination and selection techniques for stress and workload prediction from subjects whose signals have been recorded continuously during their daily life. The end-to-end classification system is described for feature extraction, signal artifact removal, and classification. We show that a combination of physiological, inertial and user event signals provides accurate prediction of stress for real-life users and signals.
Physiological training courses for civil aviation pilots.
DOT National Transportation Integrated Search
2003-12-03
Pilots who are knowledge able about physiological phenomena encountered in the aviation environment are better prepared to deal with such potentially fatal in flight events. The FAA Civil Aerospace Medical Institute offers a 1-day training course to ...
Jimenez, Ana G; Williams, Joseph B
2014-12-01
Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal insult within 24h. Copyright © 2014. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Cheng, Hwee-Ming; Durairajanayagam, Damayanthi
2012-01-01
The annual Intermedical School Physiology Quiz (IMSPQ), initiated in 2003, is now an event that attracts a unique, large gathering of selected medical students from medical schools across the globe. The 8th IMSPQ, in 2010, hosted by the Department of Physiology, University of Malaya, in Kuala Lumpur, Malaysia, had 200 students representing 41…
Solution NMR views of dynamical ordering of biomacromolecules.
Ikeya, Teppei; Ban, David; Lee, Donghan; Ito, Yutaka; Kato, Koichi; Griesinger, Christian
2018-02-01
To understand the mechanisms related to the 'dynamical ordering' of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells. In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges. Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques. For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
Neonatal nursery noise: practice-based learning and improvement.
Hassanein, Sahar M A; El Raggal, Nehal M; Shalaby, Amani A
2013-03-01
To study the impact of interrupted loud noise in Neonatal Intensive Care Unit (NICU) on neonatal physiologic parameters, and apply methods to alleviate noise sources through teaching NICU's staff. Noise level measured at different day times and during different noisy events in the NICU. Changes in the heart rate, respiratory rate and oxygen saturation were recorded just before and immediately after providing noisy events for 36 preterm and 26 full-term neonates. Focused training, guided by sound-level-meter, was provided to the NICU's staff to minimize noise. The highest mean baseline noise level, 60.5 decibel (dB), was recorded in the NICU critical care area at 12:00 am. The lowest level, 55.2 dB was recorded at 10:00 pm. Noise level inside the incubators was significantly lower than outside, p < 0.001. Noisy events resulted in a significant increase in heart and respiratory rates in preterm neonates as compared to full-terms, p < 0.05. Noise in our NICU exceeded the international permissible levels. Noisy events are numerous, which altered the neonates' physiologic stability especially preterm infants. Staff education is mandatory in ameliorating noise pollution with its deleterious effects on neonatal physiologic homeostasis.
Thomey, Michell L; Collins, Scott L; Friggens, Michael T; Brown, Renee F; Pockman, William T
2014-11-01
For the southwestern United States, climate models project an increase in extreme precipitation events and prolonged dry periods. While most studies emphasize plant functional type response to precipitation variability, it is also important to understand the physiological characteristics of dominant plant species that define plant community composition and, in part, regulate ecosystem response to climate change. We utilized rainout shelters to alter the magnitude and frequency of rainfall and measured the physiological response of the dominant C4 grasses, Bouteloua eriopoda and Bouteloua gracilis. We hypothesized that: (1) the more drought-adapted B. eriopoda would exhibit faster recovery and higher rates of leaf-level photosynthesis (A(net)) than B. gracilis, (2) A(net) would be greater under the higher average soil water content in plots receiving 30-mm rainfall events, (3) co-dominance of B. eriopoda and B. gracilis in the ecotone would lead to intra-specific differences from the performance of each species at the site where it was dominant. Throughout the study, soil moisture explained 40-70% of the variation in A(net). Consequently, differences in rainfall treatments were not evident from intra-specific physiological function without sufficient divergence in soil moisture. Under low frequency, larger rainfall events B. gracilis exhibited improved water status and longer periods of C gain than B. eriopoda. Results from this study indicate that less frequent and larger rainfall events could provide a competitive advantage to B. gracilis and influence species composition across this arid-semiarid grassland ecotone.
Innis, Charles J; Merigo, Constance; Cavin, Julie M; Hunt, Kathleen; Dodge, Kara L; Lutcavage, Molly
2014-01-01
The physiological status of seven leatherback turtles (Dermochelys coriacea) was assessed at two time points during ecological research capture events in the northwestern Atlantic Ocean. Data were collected as soon as possible after securing each turtle onboard the capture vessel and again immediately prior to release. Measured parameters included sea surface temperature, body temperature, morphometric data, sex, heart rate, respiratory rate and various haematological and blood biochemical variables. Results indicated generally stable physiological status in comparison to previously published studies of this species. However, blood pH and blood potassium concentrations increased significantly between the two time points (P = 0.0018 and P = 0.0452, respectively). Turtles were affected by a mild initial acidosis (mean [SD] temperature-corrected pH = 7.29 [0.07]), and blood pH increased prior to release (mean [SD] = 7.39 [0.07]). Initial blood potassium concentrations were considered normal (mean [SD] = 4.2 [0.9] mmol/l), but turtles experienced a mild to moderate increase in blood potassium concentrations during the event (mean [SD] pre-release potassium = 5.9 [1.7] mmol/l, maximum = 8.5 mmol/l). While these data support the general safety of direct capture for study of this species, the observed changes in blood potassium concentrations are of potential concern due to possible adverse effects of hyperkalaemia on cardiac function. The results of this study highlight the importance of physiological monitoring during scientific capture events. The results are also likely to be relevant to unintentional leatherback capture events (e.g. fisheries interactions), when interactions may be more prolonged or extreme.
NASA Astrophysics Data System (ADS)
Consolini, Giuseppe; Kretzschmar, Matthieu
2007-12-01
The magnetosphere dynamics shows fast relaxation events following power-law distribution for many observable quantities during magnetic substorms. The emergence of such power-law distributions has been widely discussed in the framework of self-organized criticality and/or turbulence. Here, a different approach to the statistical features of these impulsive dynamical events is proposed in the framework of the thermodynamics of rare events [Lavenda, B.H., Florio, A., 1992. Thermodynamics of rare events, Int. J. Theor. Phys. 31, 1455-1475; Lavenda, B.H., 1995. Thermodynamics of Extremes. Albion]. In detail, an application of such a novel approach to the magnetospheric substorm avalanching dynamics as monitored by the auroral electroject index is discussed.
Osmotic Stress Signaling and Osmoadaptation in Yeasts
Hohmann, Stefan
2002-01-01
The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects. PMID:12040128
Neonatal pulmonary physiology.
Davis, Ryan P; Mychaliska, George B
2013-11-01
Managing pulmonary issues faced by both term and preterm infants remains a challenge to the practicing pediatric surgeon. An understanding of normal fetal and neonatal pulmonary development and physiology is the cornerstone for understanding the pathophysiology and treatment of many congenital and acquired problems in the neonate. Progression through the phases of lung development and the transition to postnatal life requires a symphony of complex and overlapping events to work in concert for smooth and successful transition to occur. Pulmonary physiology and oxygen transport in the neonate are similar to older children; however, there are critical differences that are important to take into consideration when treating the youngest of patients. Our understanding of fetal and neonatal pulmonary physiology continues to evolve as the molecular and cellular events governing these processes are better understood. This deeper understanding has helped to facilitate groundbreaking research, leading to improved technology and treatment of term and preterm infants. As therapeutics and research continue to advance, a review of neonatal pulmonary physiology is essential to assist the clinician with his/her management of the wide variety of challenging congenital and acquired pulmonary disease. © 2013 Published by Elsevier Inc.
ERIC Educational Resources Information Center
Cliff, William H.; Curtin, Leslie Nesbitt
2000-01-01
Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)
Focal adhesion kinase is a regulator of F-actin dynamics
Li, Stephen YT; Mruk, Dolores D; Cheng, C Yan
2013-01-01
During spermatogenesis, spermatogonia (2n, diploid) undergo a series of mitotic divisions as well as differentiation to become spermatocytes, which enter meiosis I to be followed by meiosis II to form round spermatids (1n, haploid), and then differentiate into spermatozoa (1n, haploid) via spermiogenesis. These events take place in the epithelium of the seminiferous tubule, involving extensive junction restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface to allow the transport of developing germ cells across the epithelium. Although structural aspects of these cell-cell junctions have been studied, the underlying mechanism(s) that governs these events has yet to be explored. Earlier studies have shown that a non-receptor protein tyrosine kinase known as focal adhesion kinase (FAK) is a likely regulator of these events due to the stage-specific and spatiotemporal expression of its various phosphorylated/activated forms at the testis-specific anchoring junctions in the testis, as well as its association with actin regulatory proteins. Recent studies have shown that FAK, in particular its two activated phosphorylated forms p-FAK-Tyr407 and p-FAK-Tyr397, are crucial regulators in modulating junction restructuring at the Sertoli cell-cell interface at the blood-testis barrier (BTB) known as the basal ectoplasmic specialization (basal ES), as well as at the Sertoli-spermatid interface called apical ES during spermiogenesis via its effects on the filamentous (F)-actin organization at the ES. We herein summarize and critically evaluate the current knowledge regarding the physiological significance of FAK in regulating BTB and apical ES dynamics by governing the conversion of actin filaments at the ES from a “bundled” to a “de-bundled/branched” configuration and vice versa. We also provide a molecular model on the role of FAK in regulating these events based on the latest findings in the field. PMID:24381802
2013-12-19
Physiological Responses of Belugas to "Stressors" to Aid in Assessing the Impact of Environmental and Anthropogenic Challenges on Health 5a. CONTRACT...ANSI Std.Z39.18 " DISTRIBUTION STATEMENT A. Approved for public release: distribution is unlimited. Investigation of the Physiological Responses... physiological i.e. neuroimmunoendocrino logical responses of beluga whales to "Stressors". "Stressor events" will allow for a better understanding and
Early warning signals detect critical impacts of experimental warming.
Jarvis, Lauren; McCann, Kevin; Tunney, Tyler; Gellner, Gabriel; Fryxell, John M
2016-09-01
Earth's surface temperatures are projected to increase by ~1-4°C over the next century, threatening the future of global biodiversity and ecosystem stability. While this has fueled major progress in the field of physiological trait responses to warming, it is currently unclear whether routine population monitoring data can be used to predict temperature-induced population collapse. Here, we integrate trait performance theory with that of critical tipping points to test whether early warning signals can be reliably used to anticipate thermally induced extinction events. We find that a model parameterized by experimental growth rates exhibits critical slowing down in the vicinity of an experimentally tested critical threshold, suggesting that dynamical early warning signals may be useful in detecting the potentially precipitous onset of population collapse due to global climate change.
Stress-induced O-GlcNAcylation: an adaptive process of injured cells.
Martinez, Marissa R; Dias, Thiago Braido; Natov, Peter S; Zachara, Natasha E
2017-02-08
In the 30 years, since the discovery of nucleocytoplasmic glycosylation, O -GlcNAc has been implicated in regulating cellular processes as diverse as protein folding, localization, degradation, activity, post-translational modifications, and interactions. The cell co-ordinates these molecular events, on thousands of cellular proteins, in concert with environmental and physiological cues to fine-tune epigenetics, transcription, translation, signal transduction, cell cycle, and metabolism. The cellular stress response is no exception: diverse forms of injury result in dynamic changes to the O -GlcNAc subproteome that promote survival. In this review, we discuss the biosynthesis of O -GlcNAc, the mechanisms by which O -GlcNAc promotes cytoprotection, and the clinical significance of these data. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Crossroads of integrins and cadherins in epithelia and stroma remodeling
Epifano, Carolina; Perez-Moreno, Mirna
2012-01-01
Adhesion events mediated by cadherin and integrin adhesion receptors have fundamental roles in the maintenance of the physiological balance of epithelial tissues, and it is well established that perturbations in their normal functional activity and/or changes in their expression are associated with tumorigenesis. Over the last decades, increasing evidence of a dynamic collaborative interaction between these complexes through their shared interactions with cytoskeletal proteins and common signaling pathways has emerged not only as an important regulator of several aspects of epithelial cell behavior, but also as a coordinated adhesion module that senses and transmits signals from and to the epithelia surrounding microenvironment. The tight regulation of their crosstalk is particularly important during epithelial remodeling events that normally take place during morphogenesis and tissue repair, and when defective it leads to cell transformation and aggravated responses of the tumor microenvironment that contribute to tumorigenesis. In this review we highlight some of the interactions that regulate their crosstalk and how this could be implicated in regulating signals across epithelial tissues to sustain homeostasis. PMID:22568988
The anatomy of microbial cell state transitions in response to oxygen.
Schmid, Amy K; Reiss, David J; Kaur, Amardeep; Pan, Min; King, Nichole; Van, Phu T; Hohmann, Laura; Martin, Daniel B; Baliga, Nitin S
2007-10-01
Adjustment of physiology in response to changes in oxygen availability is critical for the survival of all organisms. However, the chronology of events and the regulatory processes that determine how and when changes in environmental oxygen tension result in an appropriate cellular response is not well understood at a systems level. Therefore, transcriptome, proteome, ATP, and growth changes were analyzed in a halophilic archaeon to generate a temporal model that describes the cellular events that drive the transition between the organism's two opposing cell states of anoxic quiescence and aerobic growth. According to this model, upon oxygen influx, an initial burst of protein synthesis precedes ATP and transcription induction, rapidly driving the cell out of anoxic quiescence, culminating in the resumption of growth. This model also suggests that quiescent cells appear to remain actively poised for energy production from a variety of different sources. Dynamic temporal analysis of relationships between transcription and translation of key genes suggests several important mechanisms for cellular sustenance under anoxia as well as specific instances of post-transcriptional regulation.
The anatomy of microbial cell state transitions in response to oxygen
Schmid, Amy K.; Reiss, David J.; Kaur, Amardeep; Pan, Min; King, Nichole; Van, Phu T.; Hohmann, Laura; Martin, Daniel B.; Baliga, Nitin S.
2007-01-01
Adjustment of physiology in response to changes in oxygen availability is critical for the survival of all organisms. However, the chronology of events and the regulatory processes that determine how and when changes in environmental oxygen tension result in an appropriate cellular response is not well understood at a systems level. Therefore, transcriptome, proteome, ATP, and growth changes were analyzed in a halophilic archaeon to generate a temporal model that describes the cellular events that drive the transition between the organism’s two opposing cell states of anoxic quiescence and aerobic growth. According to this model, upon oxygen influx, an initial burst of protein synthesis precedes ATP and transcription induction, rapidly driving the cell out of anoxic quiescence, culminating in the resumption of growth. This model also suggests that quiescent cells appear to remain actively poised for energy production from a variety of different sources. Dynamic temporal analysis of relationships between transcription and translation of key genes suggests several important mechanisms for cellular sustenance under anoxia as well as specific instances of post-transcriptional regulation. PMID:17785531
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies
Hardaway, Aimalie L; Podgorski, Izabela
2013-01-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies. PMID:23795967
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies.
Hardaway, Aimalie L; Podgorski, Izabela
2013-06-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.
Kim, Sean H. J.; Jackson, Andre J.; Hunt, C. Anthony
2014-01-01
The objective of this study was to develop and explore new, in silico experimental methods for deciphering complex, highly variable absorption and food interaction pharmacokinetics observed for a modified-release drug product. Toward that aim, we constructed an executable software analog of study participants to whom product was administered orally. The analog is an object- and agent-oriented, discrete event system, which consists of grid spaces and event mechanisms that map abstractly to different physiological features and processes. Analog mechanisms were made sufficiently complicated to achieve prespecified similarity criteria. An equation-based gastrointestinal transit model with nonlinear mixed effects analysis provided a standard for comparison. Subject-specific parameterizations enabled each executed analog’s plasma profile to mimic features of the corresponding six individual pairs of subject plasma profiles. All achieved prespecified, quantitative similarity criteria, and outperformed the gastrointestinal transit model estimations. We observed important subject-specific interactions within the simulation and mechanistic differences between the two models. We hypothesize that mechanisms, events, and their causes occurring during simulations had counterparts within the food interaction study: they are working, evolvable, concrete theories of dynamic interactions occurring within individual subjects. The approach presented provides new, experimental strategies for unraveling the mechanistic basis of complex pharmacological interactions and observed variability. PMID:25268237
Venkataraman, Pranav; Browd, Samuel R; Lutz, Barry R
2016-09-01
OBJECTIVE The surgical placement of a shunt designed to resolve the brain's impaired ability to drain excess CSF is one of the most common treatments for hydrocephalus. The use of a dynamic testing platform is an important part of shunt testing that can faithfully reproduce the physiological environment of the implanted shunts. METHODS A simulation-based framework that serves as a proof of concept for enabling the application of virtual intracranial pressure (ICP) and CSF models to a physical shunt-testing system was engineered. This was achieved by designing hardware and software that enabled the application of dynamic model-driven inlet and outlet pressures to a shunt and the subsequent measurement of the resulting drainage rate. RESULTS A set of common physiological scenarios was simulated, including oscillations in ICP due to respiratory and cardiac cycles, changes in baseline ICP due to changes in patient posture, and transient ICP spikes caused by activities such as exercise, coughing, sneezing, and the Valsalva maneuver. The behavior of the Strata valve under a few of these physiological conditions is also demonstrated. CONCLUSIONS Testing shunts with dynamic ICP and CSF simulations can facilitate the optimization of shunts to be more failure resistant and better suited to patient physiology.
A mathematics for medicine: The Network Effect
West, Bruce J.
2014-01-01
The theory of medicine and its complement systems biology are intended to explain the workings of the large number of mutually interdependent complex physiologic networks in the human body and to apply that understanding to maintaining the functions for which nature designed them. Therefore, when what had originally been made as a simplifying assumption or a working hypothesis becomes foundational to understanding the operation of physiologic networks it is in the best interests of science to replace or at least update that assumption. The replacement process requires, among other things, an evaluation of how the new hypothesis affects modern day understanding of medical science. This paper identifies linear dynamics and Normal statistics as being such arcane assumptions and explores some implications of their retirement. Specifically we explore replacing Normal with fractal statistics and examine how the latter are related to non-linear dynamics and chaos theory. The observed ubiquity of inverse power laws in physiology entails the need for a new calculus, one that describes the dynamics of fractional phenomena and captures the fractal properties of the statistics of physiological time series. We identify these properties as a necessary consequence of the complexity resulting from the network dynamics and refer to them collectively as The Network Effect. PMID:25538622
Eventogram: A Visual Representation of Main Events in Biomedical Signals.
Elgendi, Mohamed
2016-09-22
Biomedical signals carry valuable physiological information and many researchers have difficulty interpreting and analyzing long-term, one-dimensional, quasi-periodic biomedical signals. Traditionally, biomedical signals are analyzed and visualized using periodogram, spectrogram, and wavelet methods. However, these methods do not offer an informative visualization of main events within the processed signal. This paper attempts to provide an event-related framework to overcome the drawbacks of the traditional visualization methods and describe the main events within the biomedical signal in terms of duration and morphology. Electrocardiogram and photoplethysmogram signals are used in the analysis to demonstrate the differences between the traditional visualization methods, and their performance is compared against the proposed method, referred to as the " eventogram " in this paper. The proposed method is based on two event-related moving averages that visualizes the main time-domain events in the processed biomedical signals. The traditional visualization methods were unable to find dominant events in processed signals while the eventogram was able to visualize dominant events in signals in terms of duration and morphology. Moreover, eventogram -based detection algorithms succeeded with detecting main events in different biomedical signals with a sensitivity and positive predictivity >95%. The output of the eventogram captured unique patterns and signatures of physiological events, which could be used to visualize and identify abnormal waveforms in any quasi-periodic signal.
St Clair Gibson, A; Swart, J; Tucker, R
2018-02-01
Either central (brain) or peripheral (body physiological system) control mechanisms, or a combination of these, have been championed in the last few decades in the field of Exercise Sciences as how physiological activity and fatigue processes are regulated. In this review, we suggest that the concept of 'central' or 'peripheral' mechanisms are both artificial constructs that have 'straight-jacketed' research in the field, and rather that competition between psychological and physiological homeostatic drives is central to the regulation of both, and that governing principles, rather than distinct physical processes, underpin all physical system and exercise regulation. As part of the Integrative Governor theory we develop in this review, we suggest that both psychological and physiological drives and requirements are underpinned by homeostatic principles, and that regulation of the relative activity of each is by dynamic negative feedback activity, as the fundamental general operational controller. Because of this competitive, dynamic interplay, we propose that the activity in all systems will oscillate, that these oscillations create information, and comparison of this oscillatory information with either prior information, current activity, or activity templates create efferent responses that change the activity in the different systems in a similarly dynamic manner. Changes in a particular system are always the result of perturbations occurring outside the system itself, the behavioural causative 'history' of this external activity will be evident in the pattern of the oscillations, and awareness of change occurs as a result of unexpected rather than planned change in physiological activity or psychological state.
Physiological reactivity to nonideographic virtual reality stimuli in veterans with and without PTSD
Webb, Andrea K; Vincent, Ashley L; Jin, Alvin B; Pollack, Mark H
2015-01-01
Background Post-traumatic stress disorder (PTSD) currently is diagnosed via clinical interview in which subjective self reports of traumatic events and associated experiences are discussed with a mental health professional. The reliability and validity of diagnoses can be improved with the use of objective physiological measures. Methods In this study, physiological activity was recorded from 58 male veterans (PTSD Diagnosis n = 16; Trauma Exposed/No PTSD Diagnosis: n = 23; No Trauma/No PTSD Diagnosis: n = 19) with and without PTSD and combat trauma exposure in response to emotionally evocative non-idiographic virtual reality stimuli. Results Statistically significant differences among the Control, Trauma, and PTSD groups were present during the viewing of two virtual reality videos. Skin conductance and interbeat interval features were extracted for each of ten video events (five events of increasing severity per video). These features were submitted to three stepwise discriminant function analyses to assess classification accuracy for Control versus Trauma, Control versus PTSD, and Trauma versus PTSD pairings of participant groups. Leave-one-out cross-validation classification accuracy was between 71 and 94%. Conclusions These results are promising and suggest the utility of objective physiological measures in assisting with PTSD diagnosis. PMID:25642387
Wikswo, J P; Prokop, A; Baudenbacher, F; Cliffel, D; Csukas, B; Velkovsky, M
2006-08-01
Systems biology, i.e. quantitative, postgenomic, postproteomic, dynamic, multiscale physiology, addresses in an integrative, quantitative manner the shockwave of genetic and proteomic information using computer models that may eventually have 10(6) dynamic variables with non-linear interactions. Historically, single biological measurements are made over minutes, suggesting the challenge of specifying 10(6) model parameters. Except for fluorescence and micro-electrode recordings, most cellular measurements have inadequate bandwidth to discern the time course of critical intracellular biochemical events. Micro-array expression profiles of thousands of genes cannot determine quantitative dynamic cellular signalling and metabolic variables. Major gaps must be bridged between the computational vision and experimental reality. The analysis of cellular signalling dynamics and control requires, first, micro- and nano-instruments that measure simultaneously multiple extracellular and intracellular variables with sufficient bandwidth; secondly, the ability to open existing internal control and signalling loops; thirdly, external BioMEMS micro-actuators that provide high bandwidth feedback and externally addressable intracellular nano-actuators; and, fourthly, real-time, closed-loop, single-cell control algorithms. The unravelling of the nested and coupled nature of cellular control loops requires simultaneous recording of multiple single-cell signatures. Externally controlled nano-actuators, needed to effect changes in the biochemical, mechanical and electrical environment both outside and inside the cell, will provide a major impetus for nanoscience.
Rate limit of protein elastic response is tether dependent.
Berkovich, Ronen; Hermans, Rodolfo I; Popa, Ionel; Stirnemann, Guillaume; Garcia-Manyes, Sergi; Berne, Bruce J; Fernandez, Julio M
2012-09-04
The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient D(eff) ~ 1,200 nm(2)/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at D(eff) ~ 10(8) nm(2)/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with D(eff) ~ 10(4)-10(6) nm(2)/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk.
Ang, Yan Shan; Yung, Lin-Yue Lanry
2014-01-01
Biomolecular interactions have important cellular implications, however, a simple method for the sensing of such proximal events is lacking in the current molecular toolbox. We designed a dynamic DNA circuit capable of recognizing targets in close proximity to initiate a pre-programmed signal transduction process resulting in localized signal amplification. The entire circuit was engineered to be self-contained, i.e. it can self-assemble onto individual target molecules autonomously and form localized signal with minimal cross-talk. α-thrombin was used as a model protein to evaluate the performance of the individual modules and the overall circuit for proximity interaction under physiologically relevant buffer condition. The circuit achieved good selectivity in presence of non-specific protein and interfering serum matrix and successfully detected for physiologically relevant α-thrombin concentration (50 nM–5 μM) in a single mixing step without any further washing. The formation of localized signal at the interaction site can be enhanced kinetically through the control of temperature and probe concentration. This work provides a basic general framework from which other circuit modules can be adapted for the sensing of other biomolecular or cellular interaction of interest. PMID:25056307
A mechanical microcompressor for high resolution imaging of motile specimens
Zinskie, Jessica A.; Shribak, Michael; Bruist, Michael F.; Aufderheide, Karl J.; Janetopoulos, Chris
2015-01-01
In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. PMID:26192819
A mechanical microcompressor for high resolution imaging of motile specimens.
Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F; Aufderheide, Karl J; Janetopoulos, Chris
2015-10-01
In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. Copyright © 2015 Elsevier Inc. All rights reserved.
Physiological reactions to capture in hibernating brown bears.
Evans, Alina L; Singh, Navinder J; Fuchs, Boris; Blanc, Stéphane; Friebe, Andrea; Laske, Timothy G; Frobert, Ole; Swenson, Jon E; Arnemo, Jon M
2016-01-01
Human disturbance can affect animal life history and even population dynamics. However, the consequences of these disturbances are difficult to measure. This is especially true for hibernating animals, which are highly vulnerable to disturbance, because hibernation is a process of major physiological changes, involving conservation of energy during a resource-depleted time of year. During the winters of 2011-15, we captured 15 subadult brown bears ( Ursus arctos ) and recorded their body temperatures ( n = 11) and heart rates ( n = 10) before, during and after capture using biologgers. We estimated the time for body temperature and heart rate to normalize after the capture event. We then evaluated the effect of the captures on the pattern and depth of hibernation and the day of den emergence by comparing the body temperature of captured bears with that of undisturbed subadult bears ( n = 11). Both body temperature and heart rate increased during capture and returned to hibernation levels after 15-20 days. We showed that bears required 2-3 weeks to return to hibernation levels after winter captures, suggesting high metabolic costs during this period. There were also indications that the winter captures resulted in delayed den emergence.
Physiologically relevant organs on chips
Yum, Kyungsuk; Hong, Soon Gweon; Lee, Luke P.
2015-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or organs on chips, that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue–tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. PMID:24357624
Alternative Polyadenylation of mRNAs: 3′-Untranslated Region Matters in Gene Expression
Yeh, Hsin-Sung; Yong, Jeongsik
2016-01-01
Almost all of eukaryotic mRNAs are subjected to polyadenylation during mRNA processing. Recent discoveries showed that many of these mRNAs contain more than one polyadenylation sites in their 3′ untranslated regions (UTR) and that alternative polyadenylation (APA) is prevalent among these genes. Many biological processes such as differentiation, proliferation, and tumorigenesis have been correlated to global APA events in the 3′ UTR of mRNAs, suggesting that these APA events are tightly regulated and may play important physiological roles. In this review, recent discoveries in the physiological roles of APA events, as well as the known and proposed mechanisms are summarized. Perspective for future directions is also discussed. PMID:26912084
Model system for plant cell biology: GFP imaging in living onion epidermal cells
NASA Technical Reports Server (NTRS)
Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.
1999-01-01
The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.
The Virtue of Just Enough Stress: A Molecular Model
Bishopric, Nanette H.
2012-01-01
Molecular biology emphasizes the study of all-or-nothing phenomena and molecular events with a large dynamic range. However, many important physiologic parameters in the clinical setting are tightly constrained (e.g., serum sodium concentration, body mass, venous oxygen saturation, sleep duration). Stress responses exhibit both a wide dynamic range and a potential for important effects at a “just-enough” threshold activation level. Stress responses occur in a number of body systems (e.g., neuropsychiatric, immune, cardiovascular) and are essential for short-term damage control, but also must be tightly constrained in range and duration to permit the organism to walk the narrow homeostatic path to long-term survival. Using an example of a newly appreciated stress-responsive molecule in the heart, acetyltransferase p300, as well as examples from the literature, this article discusses the advantages of self-limited stress, the adverse effects of sustained stress, and the built-in mechanisms that feed back on and terminate stress signals, and advances a hypothesis regarding stress as a pharmacological target in the heart. PMID:23303984
Sonuga-Barke, Edmund J S; Wiersema, Jan R; van der Meere, Jacob J; Roeyers, Herbert
2010-03-01
The ability to specify differential predictions is a mark of a scientific models' value. State regulation deficits (SRD) and delay aversion (DAv) have both been hypothesized as context-dependent dynamic dysfunctions in ADHD. However, to date there has been no systematic comparison of their common and unique elements. Here we review these hypotheses-and describe the core and secondary manifestations of the two constructs and review evidence in support of them. Second, we focus on what are seen as the hallmark indicators of the two deficits-preference of small immediate over large delayed rewards for DAv and the slow event rate effect for SRD. We describe the overlap between these two manifestations and then explore how experimental manipulations and the analysis of neuropsychological and physiological mediators of effects can allow us to differentiate these two patterns of neuropsychological dysfunction on the basis of specific predictions. Finally, we highlight the implications of neuropsychological heterogeneity for the practical implementation of tests of DAv and SRD.
Dynamics of neuroendocrine stress response: bistability, timing, and control of hypocortisolism
NASA Astrophysics Data System (ADS)
D'Orsogna, Maria; Chou, Tom; Kim, Lae
The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates numerous physiological processes. Disruptions in its activity are correlated with stress-related diseases such as post-traumatic stress disorder (PTSD) and major depressive disorder. We characterize ``normal'' and ``diseased'' states of the HPA axis as basins of attraction of a dynamical system describing the inhibition of peptide hormones, corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH), by circulating glucocorticoids such as cortisol (CORT). Our model includes ultradian oscillations, CRH self-upregulation of CRH release, and distinguishes two components of negative feedback by cortisol on circulating CRH levels: a slow direct suppression of CRH synthesis and a fast indirect effect on CRH release. The slow regulation mechanism mediates external stress-driven transitions between the stable states in novel, intensity, duration, and timing-dependent ways. We find that the timing of traumatic events may be an important factor in determining if and how the hallmarks of depressive disorders will manifest. Our model also suggests a mechanism whereby exposure therapy of stress disorders may act to normalize downstream dysregulation of the HPA axis.
Ketone bodies as epigenetic modifiers.
Ruan, Hai-Bin; Crawford, Peter A
2018-07-01
Ketone body metabolism is a dynamic and integrated metabolic node in human physiology, whose roles include but extend beyond alternative fuel provision during carbohydrate restriction. Here we discuss the most recent observations suggesting that ketosis coordinates cellular function via epigenomic regulation. Ketosis has been linked to covalent modifications, including lysine acetylation, methylation, and hydroxybutyrylation, to key histones that serve as dynamic regulators of chromatin architecture and gene transcription. Although it remains to be fully established whether these changes to the epigenome are attributable to ketone bodies themselves or other aspects of ketotic states, the regulated genes mediate classical responses to carbohydrate restriction. Direct regulation of gene expression may occur in-vivo via through ketone body-mediated histone modifications during adherence to low-carbohydrate diets, fasting ketosis, exogenous ketone body therapy, and diabetic ketoacidosis. Additional convergent functional genomics, metabolomics, and proteomics studies are required in both animal models and in humans to identify the molecular mechanisms through which ketosis regulates nuclear signaling events in a myriad of conditions relevant to disease, and the contexts in which the benefits of ketosis might outweigh the risks.
Cai, Tanxi; Yang, Fuquan
2017-01-01
Low-molecular-weight region (LMW, MW≤30kDa) of human serum/plasma proteins, including small intact proteins, truncated fragments of larger proteins, along with some other small components, has been associated with the ongoing physiological and pathological events, and thereby represent a treasure trove of diagnostic molecules. Great progress in the mining of novel biomarkers from this diagnostic treasure trove for disease diagnosis and health monitoring has been achieved based on serum samples from healthy individuals and patients and powerful new approaches in biochemistry and systems biology. However, cumulative evidence indicates that many potential LMW protein biomarkers might still have escaped from detection due to their low abundance, the dynamic complexity of serum/plasma, and the limited efficiency of characterization approaches. Here, we provide an overview of the current state of knowledge with respect to strategies for the characterization of low-abundant LMW proteins (small intact or truncated proteins) from human serum/plasma, involving prefractionation or enrichment methods to reduce dynamic range and mass spectrometry-based characterization of low-abundant LMW proteins. © 2017 Elsevier Inc. All rights reserved.
Impact of simulated heat waves on soybean physiology and yield
USDA-ARS?s Scientific Manuscript database
With increases in mean global temperatures and associated climate change, extreme temperature events are predicted to increase in both intensity and frequency. Despite the clearly documented negative public health impacts of heat waves, the impact on physiology and yields of key agricultural species...
Psikuta, Agnes; Kuklane, Kalev; Bogdan, Anna; Havenith, George; Annaheim, Simon; Rossi, René M
2016-03-01
Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.
NASA Astrophysics Data System (ADS)
Squibb, M. E.; Monismith, S. G.; Woodson, C. B.; Dunckley, J. F.; Martone, R. G.; Litvin, S. Y.
2015-12-01
Oceanographic data from the Kelp Forest Array (KFA) cabled observatory is used to determine the frequency, intensity, duration and seasonal variation of low-pH and low-DO events, and relate them to temperature and density variability associated with internal waves and upwelling. We employ standard time series analyses to determine the frequency distributions of variance in pH, DO, and T and coherence analysis to identify frequency dependent co-variability among the three variables. Statistical analysis is used to identify the probability of a hypoxic event of given strength (e.g., DO < 4.5 mg/l17) lasting for a given duration and compare this between habitats. Joint probability distribution functions of low-DO are computed from the data in the same way. This approach can be used to identify the likelihood of extreme events with respect to specific DO thresholds of physiological relevance for species of interest in MPAs. The time scales and vertical structure of velocities, temperature, and dissolved oxygen associated with low-DO events are also analyzed to determine the dominant transport mechanisms for these events and how they are tied to internal shoaling waves prevalent in the southern part of Monterey Bay. The structure and evolution of shoaling internal "bores" are also shown to substantially alter the background nearshore dynamics with their arrival and relaxation. Our work in 2015 is contextualized by multi-year data sets from the three previous years which contain observations of both upwelling and non-upwelling periods.
An assay to image neuronal microtubule dynamics in mice.
Kleele, Tatjana; Marinković, Petar; Williams, Philip R; Stern, Sina; Weigand, Emily E; Engerer, Peter; Naumann, Ronald; Hartmann, Jana; Karl, Rosa M; Bradke, Frank; Bishop, Derron; Herms, Jochen; Konnerth, Arthur; Kerschensteiner, Martin; Godinho, Leanne; Misgeld, Thomas
2014-09-12
Microtubule dynamics in neurons play critical roles in physiology, injury and disease and determine microtubule orientation, the cell biological correlate of neurite polarization. Several microtubule binding proteins, including end-binding protein 3 (EB3), specifically bind to the growing plus tip of microtubules. In the past, fluorescently tagged end-binding proteins have revealed microtubule dynamics in vitro and in non-mammalian model organisms. Here, we devise an imaging assay based on transgenic mice expressing yellow fluorescent protein-tagged EB3 to study microtubules in intact mammalian neurites. Our approach allows measurement of microtubule dynamics in vivo and ex vivo in peripheral nervous system and central nervous system neurites under physiological conditions and after exposure to microtubule-modifying drugs. We find an increase in dynamic microtubules after injury and in neurodegenerative disease states, before axons show morphological indications of degeneration or regrowth. Thus increased microtubule dynamics might serve as a general indicator of neurite remodelling in health and disease.
The engine of the reef: photobiology of the coral–algal symbiosis
Roth, Melissa S.
2014-01-01
Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral–algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral–algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral–algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral–algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing “omics” fields will provide new insights into the coral–algal symbiosis. Greater physiological and ecological understanding of the coral–algal symbiosis is needed for protection and conservation of coral reefs. PMID:25202301
Extracellular Matrix Reorganization During Wound Healing and Its Impact on Abnormal Scarring
Xue, Meilang; Jackson, Christopher J.
2015-01-01
Significance: When a cutaneous injury occurs, the wound heals via a dynamic series of physiological events, including coagulation, granulation tissue formation, re-epithelialization, and extracellular matrix (ECM) remodeling. The final stage can take many months, yet the new ECM forms a scar that never achieves the flexibility or strength of the original tissue. In certain circumstances, the normal scar is replaced by pathological fibrotic tissue, which results in hypertrophic or keloid scars. These scars cause significant morbidity through physical dysfunction and psychological stress. Recent Advances and Critical Issues: The cutaneous ECM comprises a complex assortment of proteins that was traditionally thought to simply provide structural integrity and scaffolding characteristics. However, recent findings show that the ECM has multiple functions, including, storage and delivery of growth factors and cytokines, tissue repair and various physiological functions. Abnormal ECM reconstruction during wound healing contributes to the formation of hypertrophic and keloid scars. Whereas adult wounds heal with scarring, the developing foetus has the ability to heal wounds in a scarless fashion by regenerating skin and restoring the normal ECM architecture, strength, and function. Recent studies show that the lack of inflammation in fetal wounds contributes to this perfect healing. Future Directions: Better understanding of the exact roles of ECM components in scarring will allow us to produce therapeutic agents to prevent hypertrophic and keloid scars. This review will focus on the components of the ECM and their role in both physiological and pathological (hypertrophic and keloid) cutaneous scar formation. PMID:25785236
Payne, Catherine J; Jessop, Tim S; Guay, Patrick-Jean; Johnstone, Michele; Feore, Megan; Mulder, Raoul A
2012-01-01
Wild animals in urban environments are exposed to a broad range of human activities that have the potential to disturb their life history and behaviour. Wildlife responses to disturbance can range from emigration to modified behaviour, or elevated stress, but these responses are rarely evaluated in concert. We simultaneously examined population, behavioural and hormonal responses of an urban population of black swans Cygnus atratus before, during and after an annual disturbance event involving large crowds and intense noise, the Australian Formula One Grand Prix. Black swan population numbers were lowest one week before the event and rose gradually over the course of the study, peaking after the event, suggesting that the disturbance does not trigger mass emigration. We also found no difference in the proportion of time spent on key behaviours such as locomotion, foraging, resting or self-maintenance over the course of the study. However, basal and capture stress-induced corticosterone levels showed significant variation, consistent with a modest physiological response. Basal plasma corticosterone levels were highest before the event and decreased over the course of the study. Capture-induced stress levels peaked during the Grand Prix and then also declined over the remainder of the study. Our results suggest that even intensely noisy and apparently disruptive events may have relatively low measurable short-term impact on population numbers, behaviour or physiology in urban populations with apparently high tolerance to anthropogenic disturbance. Nevertheless, the potential long-term impact of such disturbance on reproductive success, individual fitness and population health will need to be carefully evaluated.
Payne, Catherine J.; Jessop, Tim S.; Guay, Patrick-Jean; Johnstone, Michele; Feore, Megan; Mulder, Raoul A.
2012-01-01
Wild animals in urban environments are exposed to a broad range of human activities that have the potential to disturb their life history and behaviour. Wildlife responses to disturbance can range from emigration to modified behaviour, or elevated stress, but these responses are rarely evaluated in concert. We simultaneously examined population, behavioural and hormonal responses of an urban population of black swans Cygnus atratus before, during and after an annual disturbance event involving large crowds and intense noise, the Australian Formula One Grand Prix. Black swan population numbers were lowest one week before the event and rose gradually over the course of the study, peaking after the event, suggesting that the disturbance does not trigger mass emigration. We also found no difference in the proportion of time spent on key behaviours such as locomotion, foraging, resting or self-maintenance over the course of the study. However, basal and capture stress-induced corticosterone levels showed significant variation, consistent with a modest physiological response. Basal plasma corticosterone levels were highest before the event and decreased over the course of the study. Capture-induced stress levels peaked during the Grand Prix and then also declined over the remainder of the study. Our results suggest that even intensely noisy and apparently disruptive events may have relatively low measurable short-term impact on population numbers, behaviour or physiology in urban populations with apparently high tolerance to anthropogenic disturbance. Nevertheless, the potential long-term impact of such disturbance on reproductive success, individual fitness and population health will need to be carefully evaluated. PMID:23024783
Videophysiology--Videopsychology--Videoaesthetics.
ERIC Educational Resources Information Center
Malik, M. F.; Murphy, D.
This article considers the physiological, psychological, and aesthetical parameters of video on two levels--practical and conceptual. Physiological effects and processes are defined as those which occur within a human being when viewing a video event, while videopsychology focuses on how people use the medium of video and the possibilities for…
USDA-ARS?s Scientific Manuscript database
Placental separation is a complex physiological event in reproductive physiology and the underlying molecular mechanisms remain unclear. When comparing different experiments the timing of tissue collections is a significant consideration due to the variability in time between fetal expulsion and exp...
Analysis of early thrombus dynamics in a humanized mouse laser injury model.
Wang, Weiwei; Lindsey, John P; Chen, Jianchun; Diacovo, Thomas G; King, Michael R
2014-01-01
Platelet aggregation and thrombus formation at the site of injury is a dynamic process that involves the continuous addition of new platelets as well as thrombus rupture. In the early stages of hemostasis (within minutes after vessel injury) this process can be visualized by transfusing fluorescently labeled human platelets and observing their deposition and detachment. These two counterbalancing events help the developing thrombus reach a steady-state morphology, where it is large enough to cover the injured vessel surface but not too large to form a severe thrombotic occlusion. In this study, the spatial and temporal aspects of early stage thrombus dynamics which result from laser-induced injury on arterioles of cremaster muscle in the humanized mouse were visualized using fluorescent microscopy. It was found that rolling platelets show preference for the upstream region while tethering/detaching platelets were primarily found downstream. It was also determined that the platelet deposition rate is relatively steady, whereas the effective thrombus coverage area does not increase at a constant rate. By introducing a new method to graphically represent the real time in vivo physiological shear stress environment, we conclude that the thrombus continuously changes shape by regional growth and decay, and neither dominates in the high shear stress region.
Complex systems dynamics in aging: new evidence, continuing questions.
Cohen, Alan A
2016-02-01
There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.
In vitro studying corrosion behavior of porous titanium coating in dynamic electrolyte.
Chen, Xuedan; Fu, Qingshan; Jin, Yongzhong; Li, Mingtian; Yang, Ruisong; Cui, Xuejun; Gong, Min
2017-01-01
Porous titanium (PT) is considered as a promising biomaterials for orthopedic implants. Besides biocompatibility and mechanical properties, corrosion resistance in physiological environment is the other important factor affecting the long stability of an implant. In order to investigate the corrosion behavior of porous titanium implants in a dynamic physiological environment, a dynamic circle system was designed in this study. Then a titanium-based implant with PT coating was fabricated by plasma spraying. The corrosion resistance of PT samples in flowing 0.9% NaCl solution was evaluated by electrochemical measurements. Commercial pure solid titanium (ST) disc was used as a control. The studies of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) show that the pores in the PT play a negetive part in corrosion resistance and the flowing electrolyte can increase the corrosive rate of all titanium samples. The results suggest that pore design of titanium implants should pay attention to the effect of dynamic process of a physiological environment on the corrosion behavior of implants. Copyright © 2016 Elsevier B.V. All rights reserved.
Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models
The task of quantifying the uncertainty in both parameter estimates and model predictions has become more important with the increased use of dynamic computational toxicology models by the EPA. Dynamic toxicological models include physiologically-based pharmacokinetic (PBPK) mode...
2012-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Investigation of the Physiological Responses of Belugas...of this effort is to investigate the physiological i.e. neuroimmunoendocrinological responses of beluga whales to “stressors”. “Stressor events...hormone, aldosterone , catecholamines) in different matrices (blood, saliva, blow, feces) in conjunction with immune function. In addition, “stressor
Plasticity of brain wave network interactions and evolution across physiologic states
Liu, Kang K. L.; Bartsch, Ronny P.; Lin, Aijing; Mantegna, Rosario N.; Ivanov, Plamen Ch.
2015-01-01
Neural plasticity transcends a range of spatio-temporal scales and serves as the basis of various brain activities and physiologic functions. At the microscopic level, it enables the emergence of brain waves with complex temporal dynamics. At the macroscopic level, presence and dominance of specific brain waves is associated with important brain functions. The role of neural plasticity at different levels in generating distinct brain rhythms and how brain rhythms communicate with each other across brain areas to generate physiologic states and functions remains not understood. Here we perform an empirical exploration of neural plasticity at the level of brain wave network interactions representing dynamical communications within and between different brain areas in the frequency domain. We introduce the concept of time delay stability (TDS) to quantify coordinated bursts in the activity of brain waves, and we employ a system-wide Network Physiology integrative approach to probe the network of coordinated brain wave activations and its evolution across physiologic states. We find an association between network structure and physiologic states. We uncover a hierarchical reorganization in the brain wave networks in response to changes in physiologic state, indicating new aspects of neural plasticity at the integrated level. Globally, we find that the entire brain network undergoes a pronounced transition from low connectivity in Deep Sleep and REM to high connectivity in Light Sleep and Wake. In contrast, we find that locally, different brain areas exhibit different network dynamics of brain wave interactions to achieve differentiation in function during different sleep stages. Moreover, our analyses indicate that plasticity also emerges in frequency-specific networks, which represent interactions across brain locations mediated through a specific frequency band. Comparing frequency-specific networks within the same physiologic state we find very different degree of network connectivity and link strength, while at the same time each frequency-specific network is characterized by a different signature pattern of sleep-stage stratification, reflecting a remarkable flexibility in response to change in physiologic state. These new aspects of neural plasticity demonstrate that in addition to dominant brain waves, the network of brain wave interactions is a previously unrecognized hallmark of physiologic state and function. PMID:26578891
Dynamic Event Tree advancements and control logic improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonsi, Andrea; Rabiti, Cristian; Mandelli, Diego
The RAVEN code has been under development at the Idaho National Laboratory since 2012. Its main goal is to create a multi-purpose platform for the deploying of all the capabilities needed for Probabilistic Risk Assessment, uncertainty quantification, data mining analysis and optimization studies. RAVEN is currently equipped with three different sampling categories: Forward samplers (Monte Carlo, Latin Hyper Cube, Stratified, Grid Sampler, Factorials, etc.), Adaptive Samplers (Limit Surface search, Adaptive Polynomial Chaos, etc.) and Dynamic Event Tree (DET) samplers (Deterministic and Adaptive Dynamic Event Trees). The main subject of this document is to report the activities that have been donemore » in order to: start the migration of the RAVEN/RELAP-7 control logic system into MOOSE, and develop advanced dynamic sampling capabilities based on the Dynamic Event Tree approach. In order to provide to all MOOSE-based applications a control logic capability, in this Fiscal Year an initial migration activity has been initiated, moving the control logic system, designed for RELAP-7 by the RAVEN team, into the MOOSE framework. In this document, a brief explanation of what has been done is going to be reported. The second and most important subject of this report is about the development of a Dynamic Event Tree (DET) sampler named “Hybrid Dynamic Event Tree” (HDET) and its Adaptive variant “Adaptive Hybrid Dynamic Event Tree” (AHDET). As other authors have already reported, among the different types of uncertainties, it is possible to discern two principle types: aleatory and epistemic uncertainties. The classical Dynamic Event Tree is in charge of treating the first class (aleatory) uncertainties; the dependence of the probabilistic risk assessment and analysis on the epistemic uncertainties are treated by an initial Monte Carlo sampling (MCDET). From each Monte Carlo sample, a DET analysis is run (in total, N trees). The Monte Carlo employs a pre-sampling of the input space characterized by epistemic uncertainties. The consequent Dynamic Event Tree performs the exploration of the aleatory space. In the RAVEN code, a more general approach has been developed, not limiting the exploration of the epistemic space through a Monte Carlo method but using all the forward sampling strategies RAVEN currently employs. The user can combine a Latin Hyper Cube, Grid, Stratified and Monte Carlo sampling in order to explore the epistemic space, without any limitation. From this pre-sampling, the Dynamic Event Tree sampler starts its aleatory space exploration. As reported by the authors, the Dynamic Event Tree is a good fit to develop a goal-oriented sampling strategy. The DET is used to drive a Limit Surface search. The methodology that has been developed by the authors last year, performs a Limit Surface search in the aleatory space only. This report documents how this approach has been extended in order to consider the epistemic space interacting with the Hybrid Dynamic Event Tree methodology.« less
The psychophysiology of real-time financial risk processing.
Lo, Andrew W; Repin, Dmitry V
2002-04-01
A longstanding controversy in economics and finance is whether financial markets are governed by rational forces or by emotional responses. We study the importance of emotion in the decision-making process of professional securities traders by measuring their physiological characteristics (e.g., skin conductance, blood volume pulse, etc.) during live trading sessions while simultaneously capturing real-time prices from which market events can be detected. In a sample of 10 traders, we find statistically significant differences in mean electrodermal responses during transient market events relative to no-event control periods, and statistically significant mean changes in cardiovascular variables during periods of heightened market volatility relative to normal-volatility control periods. We also observe significant differences in these physiological responses across the 10 traders that may be systematically related to the traders' levels of experience.
Loss of 'complexity' and aging. Potential applications of fractals and chaos theory to senescence
NASA Technical Reports Server (NTRS)
Lipsitz, L. A.; Goldberger, A. L.
1992-01-01
The concept of "complexity," derived from the field of nonlinear dynamics, can be adapted to measure the output of physiologic processes that generate highly variable fluctuations resembling "chaos." We review data suggesting that physiologic aging is associated with a generalized loss of such complexity in the dynamics of healthy organ system function and hypothesize that such loss of complexity leads to an impaired ability to adapt to physiologic stress. This hypothesis is supported by observations showing an age-related loss of complex variability in multiple physiologic processes including cardiovascular control, pulsatile hormone release, and electroencephalographic potentials. If further research supports this hypothesis, measures of complexity based on chaos theory and the related geometric concept of fractals may provide new ways to monitor senescence and test the efficacy of specific interventions to modify the age-related decline in adaptive capacity.
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A
2017-04-01
Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Spike threshold dynamics in spinal motoneurons during scratching and swimming.
Grigonis, Ramunas; Alaburda, Aidas
2017-09-01
Action potential threshold can vary depending on firing history and synaptic inputs. We used an ex vivo carapace-spinal cord preparation from adult turtles to study spike threshold dynamics in motoneurons during two distinct types of functional motor behaviour - fictive scratching and fictive swimming. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Slow synaptic integration resulting in a wave of membrane potential depolarization is the factor influencing the threshold potential within firing bursts during motor behaviours. Depolarization of the threshold potential decreases the excitability of motoneurons and may provide a mechanism for stabilization of the response of a motoneuron to intense synaptic inputs to maintain the motor commands within an optimal range for muscle activation. During functional spinal neural network activity motoneurons receive intense synaptic input, and this could modulate the threshold for action potential generation, providing the ability to dynamically adjust the excitability and recruitment order for functional needs. In the present study we investigated the dynamics of action potential threshold during motor network activity. Intracellular recordings from spinal motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles were performed during two distinct types of motor behaviour - fictive scratching and fictive swimming. We found that the threshold of the first spike in episodes of scratching and swimming was the lowest. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Depolarization of the threshold potential results in decreased excitability of motoneurons. Synaptic inputs do not modulate the threshold of the first action potential during episodes of scratching or of swimming. There is no correlation between changes in spike threshold and interspike intervals within bursts. Slow synaptic integration that results in a wave of membrane potential depolarization rather than fast synaptic events preceding each spike is the factor influencing the threshold potential within firing bursts during motor behaviours. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Measuring dynamic kidney function in an undergraduate physiology laboratory.
Medler, Scott; Harrington, Frederick
2013-12-01
Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on a "dipstick" approach of urinalysis. Although this technique can provide some basic insights into the functioning of the kidneys, it overlooks the dynamic processes of filtration, reabsorption, and secretion. In the present article, we provide a straightforward approach of using renal clearance measurements to estimate glomerular filtration rate, fractional water reabsorption, glucose clearance, and other physiologically relevant parameters. The estimated values from our measurements in laboratory are in close agreement with those anticipated based on textbook parameters. For example, we found glomerular filtration rate to average 124 ± 45 ml/min, serum creatinine to be 1.23 ± 0.4 mg/dl, and fractional water reabsorption to be ∼96.8%. Furthermore, analyses for the class data revealed significant correlations between parameters like fractional water reabsorption and urine concentration, providing opportunities to discuss urine concentrating mechanisms and other physiological processes. The procedures outlined here are general enough that most undergraduate physiology laboratory courses should be able to implement them without difficulty.
Physiologically relevant organs on chips.
Yum, Kyungsuk; Hong, Soon Gweon; Healy, Kevin E; Lee, Luke P
2014-01-01
Recent advances in integrating microengineering and tissue engineering have generated promising microengineered physiological models for experimental medicine and pharmaceutical research. Here we review the recent development of microengineered physiological systems, or also known as "ogans-on-chips", that reconstitute the physiologically critical features of specific human tissues and organs and their interactions. This technology uses microengineering approaches to construct organ-specific microenvironments, reconstituting tissue structures, tissue-tissue interactions and interfaces, and dynamic mechanical and biochemical stimuli found in specific organs, to direct cells to assemble into functional tissues. We first discuss microengineering approaches to reproduce the key elements of physiologically important, dynamic mechanical microenvironments, biochemical microenvironments, and microarchitectures of specific tissues and organs in microfluidic cell culture systems. This is followed by examples of microengineered individual organ models that incorporate the key elements of physiological microenvironments into single microfluidic cell culture systems to reproduce organ-level functions. Finally, microengineered multiple organ systems that simulate multiple organ interactions to better represent human physiology, including human responses to drugs, is covered in this review. This emerging organs-on-chips technology has the potential to become an alternative to 2D and 3D cell culture and animal models for experimental medicine, human disease modeling, drug development, and toxicology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A mobile system for assessment of physiological response to posture transitions.
Jovanov, Emil; Milosevic, Mladen; Milenković, Aleksandar
2013-01-01
Posture changes initiate a dynamic physiological response that can be used as an indicator of the overall health status. We introduce an inconspicuous mobile wellness monitoring system (imWell) that continuously assesses the dynamic physiological response to posture transitions during activities of daily living. imWell utilizes a Zephyr BioHarness 3 physiological monitor that continually reports heart activity and physical activity via Bluetooth to a personal device (e.g. smartphone). The personal device processes the reported activity data in real-time to recognize posture transitions from the accelerometer data and to characterize dynamic heart response to posture changes. It annotates, logs, and uploads the heart activity data to our mHealth server. In this paper we present algorithms for detection of posture transitions and heart activity characterization during a sit-to-stand transition. The proposed system was tested on seven healthy subjects performing a predefined protocol. The total average and standard deviation for sit-to-stand transition time is 2.7 ± 0.69 s, resulting in the change of heart rate of 27.36 ± 9.30 bpm (from 63.3 ± 9.02 bpm to 90.66 ± 10.09 bpm).
The baladi curative system of Cairo, Egypt.
Early, E A
1988-03-01
The article explores the symbolic structure of the baladi (traditional) cultural system as revealed in everyday narratives, with a focus on baladi curative action. The everyday illness narrative provides a cultural window to the principles of fluidity and restorative balance of baladi curative practices. The body is seen as a dynamic organism through which both foreign objects and physiological entities can move. The body should be in balance, as with any humorally-influenced system, and so baladi cures aim to restore normal balance and functioning of the body. The article examines in detail a narrative on treatment of a sick child, and another on treatment of fertility problems. It traces such cultural oppositions as insider: outsider; authentic:inauthentic; home remedy:cosmopolitan medicine. In the social as well as the medical arena these themes organize social/medical judgements about correct action and explanations of events.
NASA Astrophysics Data System (ADS)
Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.
2009-08-01
The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from the individual level up to the level of evolutionary processes.
Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2016-01-01
Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991
ERIC Educational Resources Information Center
Kesner, Michael H.; Linzey, Alicia V.
2005-01-01
InterActive Physiology (IAP) is one of a new generation of anatomy and physiology learning aids with a broader range of sensory inputs than is possible from a static textbook or moderately dynamic lecture. This best-selling software has modules covering the muscular, respiratory, urinary, cardiovascular, and nervous systems plus a module on fluids…
Nonsinusoidal Beta Oscillations Reflect Cortical Pathophysiology in Parkinson's Disease.
Cole, Scott R; van der Meij, Roemer; Peterson, Erik J; de Hemptinne, Coralie; Starr, Philip A; Voytek, Bradley
2017-05-03
Oscillations in neural activity play a critical role in neural computation and communication. There is intriguing new evidence that the nonsinusoidal features of the oscillatory waveforms may inform underlying physiological and pathophysiological characteristics. Time-domain waveform analysis approaches stand in contrast to traditional Fourier-based methods, which alter or destroy subtle waveform features. Recently, it has been shown that the waveform features of oscillatory beta (13-30 Hz) events, a prominent motor cortical oscillation, may reflect near-synchronous excitatory synaptic inputs onto cortical pyramidal neurons. Here we analyze data from invasive human primary motor cortex (M1) recordings from patients with Parkinson's disease (PD) implanted with a deep brain stimulator (DBS) to test the hypothesis that the beta waveform becomes less sharp with DBS, suggesting that M1 input synchrony may be decreased. We find that, in PD, M1 beta oscillations have sharp, asymmetric, nonsinusoidal features, specifically asymmetries in the ratio between the sharpness of the beta peaks compared with the troughs. This waveform feature is nearly perfectly correlated with beta-high gamma phase-amplitude coupling ( r = 0.94), a neural index previously shown to track PD-related motor deficit. Our results suggest that the pathophysiological beta generator is altered by DBS, smoothing out the beta waveform. This has implications not only for the interpretation of the physiological mechanism by which DBS reduces PD-related motor symptoms, but more broadly for our analytic toolkit in general. That is, the often-overlooked time-domain features of oscillatory waveforms may carry critical physiological information about neural processes and dynamics. SIGNIFICANCE STATEMENT To better understand the neural basis of cognition and disease, we need to understand how groups of neurons interact to communicate with one another. For example, there is evidence that parkinsonian bradykinesia and rigidity may arise from an oversynchronization of afferents to the motor cortex, and that these symptoms are treatable using deep brain stimulation. Here we show that the waveform shape of beta (13-30 Hz) oscillations, which may reflect input synchrony onto the cortex, is altered by deep brain stimulation. This suggests that mechanistic inferences regarding physiological and pathophysiological neural communication may be made from the temporal dynamics of oscillatory waveform shape. Copyright © 2017 the authors 0270-6474/17/374830-11$15.00/0.
Alternating event processes during lifetimes: population dynamics and statistical inference.
Shinohara, Russell T; Sun, Yifei; Wang, Mei-Cheng
2018-01-01
In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions. In this paper, we consider the dynamics of a chronic disease and its associated exacerbation-remission process over two time scales: calendar time and time-since-onset. In particular, over calendar time, we explore population dynamics and the relationship between incidence, prevalence and duration for such alternating event processes. We provide nonparametric estimation techniques for characteristic quantities of the process. In some settings, exacerbation processes are observed from an onset time until death; to account for the relationship between the survival and alternating event processes, nonparametric approaches are developed for estimating exacerbation process over lifetime. By understanding the population dynamics and within-process structure, the paper provide a new and general way to study alternating event processes.
Dynamic Triggering of Seismic Events and Their Relation to Slow Slip in Interior Alaska
NASA Astrophysics Data System (ADS)
Sims, N. E.; Holtkamp, S. G.
2017-12-01
We conduct a search for dynamically triggered events in the Minto Flats Fault Zone (MFFZ), a left-lateral strike-slip zone expressed as multiple, partially overlapping faults, in central Alaska. We focus on the MFFZ because we have observed slow slip processes (earthquake swarms and Very Low Frequency Earthquakes) and interaction between earthquake swarms and larger main-shock (MS) events in this area before. We utilize the Alaska Earthquake Center catalog to identify potential earthquake swarms and dynamically triggered foreshock and mainshock events along the fault zone. We find 30 swarms occurring in the last two decades, five of which we classify as foreshock (FS) swarms due to their close proximity in both time and space to MS events. Many of the earthquake swarms cluster around 15-20 km depth, which is near the seismic-aseismic transition along this fault zone. Additionally, we observe instances of large teleseismic events such as the M8.6 2012 Sumatra earthquake and M7.4 2012 Guatemala earthquake triggering seismic events within the MFFZ, with the Sumatra earthquake triggering a mainshock event that was preceded by an ongoing earthquake swarm and the Guatemala event triggering earthquake swarms that subsequently transition into a larger mainshock event. In both cases an earthquake swarm transitioned into a mainshock-aftershock event and activity continued for several days after the teleseismic waves had passed, lending some evidence to delayed dynamic triggering of seismic events. We hypothesize that large dynamic transient strain associated with the passage of teleseismic surface waves is triggering slow slip processes near the base of the seismogenic zone. These triggered aseismic transient events result in earthquake swarms, which sometimes lead to the nucleation of larger earthquakes. We utilize network matched filtering to build more robust catalogs of swarm earthquake families in this region to search for additional swarm-like or triggered activity in response to teleseismic surface waves, and to test dynamic triggering hypotheses.
How is physiology relevant to behavior analysis?
Reese, Hayne W.
1996-01-01
Physiology is an important biological science; but behavior analysis is not a biological science, and behavior analysts can safely ignore biological processes. However, ignoring products of biological processes might be a serious mistake. The important products include behavior, instinctive drift, behavior potentials, hunger, and many developmental milestones and events. Physiology deals with the sources of such products; behavior analysis can deal with how the products affect behavior, which can be understood without understanding their sources. PMID:22478240
Raicevich, Saša; Minute, Fabrizio; Finoia, Maria Grazia; Caranfa, Francesca; Di Muro, Paolo; Scapolan, Lucia; Beltramini, Mariano
2014-01-01
This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours. PMID:25133593
Physiological studies of the brain: Implications for science teaching
NASA Astrophysics Data System (ADS)
Esler, William K.
Physiological changes resulting from repeated, long-term stimulation have been observed in the brains of both humans and laboratory animals. It may be speculated that these changes are related to short-term and long-term memory processes. A physiologically based model for memory processing (PBMMP) can serve to explain the interrelations of various areas of the brain as they process new stimuli and recall past events. The model can also serve to explain many current principles of learning theory and serve as a foundation for developing new theories of learning based upon the physiology of the brain.
Cardiac coherence, self-regulation, autonomic stability, and psychosocial well-being
McCraty, Rollin; Zayas, Maria A.
2014-01-01
The ability to alter one’s emotional responses is central to overall well-being and to effectively meeting the demands of life. One of the chief symptoms of events such as trauma, that overwhelm our capacities to successfully handle and adapt to them, is a shift in our internal baseline reference such that there ensues a repetitive activation of the traumatic event. This can result in high vigilance and over-sensitivity to environmental signals which are reflected in inappropriate emotional responses and autonomic nervous system dynamics. In this article we discuss the perspective that one’s ability to self-regulate the quality of feeling and emotion of one’s moment-to-moment experience is intimately tied to our physiology, and the reciprocal interactions among physiological, cognitive, and emotional systems. These interactions form the basis of information processing networks in which communication between systems occurs through the generation and transmission of rhythms and patterns of activity. Our discussion emphasizes the communication pathways between the heart and brain, as well as how these are related to cognitive and emotional function and self-regulatory capacity. We discuss the hypothesis that self-induced positive emotions increase the coherence in bodily processes, which is reflected in the pattern of the heart’s rhythm. This shift in the heart rhythm in turn plays an important role in facilitating higher cognitive functions, creating emotional stability and facilitating states of calm. Over time, this establishes a new inner-baseline reference, a type of implicit memory that organizes perception, feelings, and behavior. Without establishing a new baseline reference, people are at risk of getting “stuck” in familiar, yet unhealthy emotional and behavioral patterns and living their lives through the automatic filters of past familiar or traumatic experience. PMID:25324802
Closing the Loop in ICU Decision Support: Physiologic Event Detection, Alerts, and Documentation
Norris, Patrick R.; Dawant, Benoit M.
2002-01-01
Automated physiologic event detection and alerting is a challenging task in the ICU. Ideally care providers should be alerted only when events are clinically significant and there is opportunity for corrective action. However, the concepts of clinical significance and opportunity are difficult to define in automated systems, and effectiveness of alerting algorithms is difficult to measure. This paper describes recent efforts on the Simon project to capture information from ICU care providers about patient state and therapy in response to alerts, in order to assess the value of event definitions and progressively refine alerting algorithms. Event definitions for intracranial pressure and cerebral perfusion pressure were studied by implementing a reliable system to automatically deliver alerts to clinical users’ alphanumeric pagers, and to capture associated documentation about patient state and therapy when the alerts occurred. During a 6-month test period in the trauma ICU at Vanderbilt University Medical Center, 530 alerts were detected in 2280 hours of data spanning 14 patients. Clinical users electronically documented 81% of these alerts as they occurred. Retrospectively classifying documentation based on therapeutic actions taken, or reasons why actions were not taken, provided useful information about ways to potentially improve event definitions and enhance system utility.
Effects of daily kangaroo care on cardiorespiratory parameters in preterm infants.
Mitchell, A J; Yates, C; Williams, K; Hall, R W
2013-01-01
Kangaroo care (KC) has possible benefits for promoting physiological stability and positive developmental outcomes in preterm infants. The purpose of this study was to compare bradycardia and oxygen desaturation events in preterm infants in standard incubator care versus KC. Thirty-eight infants 27 to 30 weeks gestational age were randomly assigned to 2 hours of KC daily between days of life 5 to 10 or to standard incubator care. Infants were monitored for bradycardia (heart rate <80) or oxygen desaturation (<80%). Analysis of hourly events was based on three sets of data: standard care group 24 hours daily, KC group during incubator time 22 hours daily, and KC group during holding time 2 hours daily. The KC group had fewer bradycardia events per hour while being held compared to time spent in an incubator (p = 0.048). The KC group also had significantly fewer oxygen desaturation events while being held than while in the incubator (p = 0.017) and significantly fewer desaturation events than infants in standard care (p = 0.02). KC reduces bradycardia and oxygen desaturation events in preterm infants, providing physiological stability and possible benefits for neurodevelopmental outcomes.
Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress
NASA Astrophysics Data System (ADS)
Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.
2017-08-01
Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.
Shift of a limit cycle in biology: From pathological to physiological homeostasia*
NASA Astrophysics Data System (ADS)
Claude, Daniel
1995-03-01
Biological systems may show homeostatic behaviors that are similar to the ones of forced dynamic systems with a stable limit cycle. For a large class of dynamic systems, it is shown that a shift of a pathological limit cycle over the physiological limit cycle can never be executed by means of a control with a desired periodicity. The above statement shows that the only possibility is to reduce as much as possible the dimensions of a small residual limit cycle. Moreover, it is possible to give some information about the structure of feedback laws that would allow the shift of the limit cycle. The fact that it is generally not possible to recover a physiological limit cycle from a pathological one, results into the fear of never or hardly ever reaching a physiological behavior, and it seems that any hope of therapeutics is given up. This leads to introduce the locking concept, which permits system parameters to change and provides the basis for an adaptive and iterative control, which allows a step by step approach and to finally reach the physiological limit cycle.
Measuring Physiological Stress Responses in Children: Lessons from a Novice
ERIC Educational Resources Information Center
Quas, Jodi A.
2011-01-01
In this article the author describes challenges associated with integrating physiological measures of stress into developmental research, especially in the domains of memory and cognition. An initial critical challenge concerns how to define stress, which can refer to one or a series of events, a response, the consequence of that response, an…
ERIC Educational Resources Information Center
Gordon, Ronald D.
A 328-item checklist, suitable for the self-reporting of responses to any stimulus event, was administered to 107 upper division college students in an attempt to investigate the physiological-cognitive-emotional responses to defense arousing communication and to discover a greater range of the key features of the phenomena of…
A Life-stage Physiologically-Based Pharmacokinetic (PBPK) model was developed to include descriptions of several life-stage events such as pregnancy, fetal development, the neonate and child growth. The overall modeling strategy was used for in vitro to in vivo (IVIVE) extrapolat...
Anesthesiology Point of Care project.
McDonald, John S; Noback, Carl R; Cheng, Drew; Lee, T K; Nenov, Val
2002-01-01
We are developing a dynamic prototype visual communication system for the operating room environs. This has classically been viewed as an isolated and impenetrable workplace. All medical experiences and all teaching remain in a one to one closed loop with no recall or subsequent sharing for the training and education of other colleagues. The "Anesthesia Point of Care" (APOC) concept embraces the sharing of, recording of, and presentation of various physiological and pharmacological events so that real time memory can be shared at a later time for the edification of other colleagues who were not present at the time of the primary learning event. In addition it also provides a remarkably rapid tool for fellow faculty to respond to obvious stress and crisis events that can be broadcast instantly at the time of happening. Finally, it also serves as an efficient and effective means of paging and general communication throughout the daily routines among various healthcare providers in anesthesiology who work as a team unit; these include the staff, residents, CRNAs, physician assistants, and technicians. This system offers a unique opportunity to eventually develop future advanced ideas that can include training exercises, presurgical evaluations, surgical scheduling and improvements in efficiency based upon earlier than expected case completion or conversely later than expected case completion and even as a unique window to development of improved billing itemization and coordination.
Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep
Villalobos, Claudio
2017-01-01
Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples’ lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory. PMID:28158285
Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep.
Villalobos, Claudio; Maldonado, Pedro E; Valdés, José L
2017-01-01
Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples' lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory.
Lacour, C; Joannis, C; Gromaire, M-C; Chebbo, G
2009-01-01
Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification and common parameters, such as the antecedent dry weather period, total event volume per impervious hectare and both the mean and maximum hydraulic flow for each event, was also studied. Moreover, the dynamics of flow and turbidity signals were compared at the event scale. No simple relation between turbidity responses, hydraulic flow dynamics and the chosen parameters was derived from this effort. Knowledge of turbidity dynamics could therefore potentially improve wet weather management, especially when using pollution-based real-time control (P-RTC) since turbidity contains information not included in hydraulic flow dynamics and not readily predictable from such dynamics.
Khuan, L Y; Bister, M; Blanchfield, P; Salleh, Y M; Ali, R A; Chan, T H
2006-06-01
Increased inter-equipment connectivity coupled with advances in Web technology allows ever escalating amounts of physiological data to be produced, far too much to be displayed adequately on a single computer screen. The consequence is that large quantities of insignificant data will be transmitted and reviewed. This carries an increased risk of overlooking vitally important transients. This paper describes a technique to provide an integrated solution based on a single algorithm for the efficient analysis, compression and remote display of long-term physiological signals with infrequent short duration, yet vital events, to effect a reduction in data transmission and display cluttering and to facilitate reliable data interpretation. The algorithm analyses data at the server end and flags significant events. It produces a compressed version of the signal at a lower resolution that can be satisfactorily viewed in a single screen width. This reduced set of data is initially transmitted together with a set of 'flags' indicating where significant events occur. Subsequent transmissions need only involve transmission of flagged data segments of interest at the required resolution. Efficient processing and code protection with decomposition alone is novel. The fixed transmission length method ensures clutter-less display, irrespective of the data length. The flagging of annotated events in arterial oxygen saturation, electroencephalogram and electrocardiogram illustrates the generic property of the algorithm. Data reduction of 87% to 99% and improved displays are demonstrated.
Rate limit of protein elastic response is tether dependent
Berkovich, Ronen; Hermans, Rodolfo I.; Popa, Ionel; Stirnemann, Guillaume; Garcia-Manyes, Sergi; Berne, Bruce J.; Fernandez, Julio M.
2012-01-01
The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient Deff ∼ 1,200 nm2/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at Deff ∼ 108 nm2/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with Deff ∼ 104–106 nm2/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk. PMID:22895787
Liu, Hui; Hu, Dawei; Dong, Chen; Fu, Yuming; Liu, Guanghui; Qin, Youcai; Sun, Yi; Liu, Dianlei; Li, Lei; Liu, Hong
2017-08-01
There is much uncertainty about the risks of seed germination after repeated or protracted environmental low-dose ionizing radiation exposure. The purpose of this study is to explore the influence mechanism of low-dose ionizing radiation on wheat seed germination using a model linking physiological characteristics and developmental-dynamics simulation. A low-dose ionizing radiation environment simulator was built to investigate wheat (Triticum aestivum L.) seeds germination process and then a kinetic model expressing the relationship between wheat seed germination dynamics and low-dose ionizing radiation intensity variations was developed by experimental data, plant physiology, relevant hypotheses and system dynamics, and sufficiently validated and accredited by computer simulation. Germination percentages were showing no differences in response to different dose rates. However, root and shoot lengths were reduced significantly. Plasma governing equations were set up and the finite element analysis demonstrated H 2 O, CO 2 , O 2 as well as the seed physiological responses to the low-dose ionizing radiation. The kinetic model was highly valid, and simultaneously the related influence mechanism of low-dose ionizing radiation on wheat seed germination proposed in the modeling process was also adequately verified. Collectively these data demonstrate that low-dose ionizing radiation has an important effect on absorbing water, consuming O 2 and releasing CO 2 , which means the risk for embryo and endosperm development was higher. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of non-rainfall water on physiological activation in desert biological soil crusts
NASA Astrophysics Data System (ADS)
Zheng, Jiaoli; Peng, Chengrong; Li, Hua; Li, Shuangshuang; Huang, Shun; Hu, Yao; Zhang, Jinli; Li, Dunhai
2018-01-01
Non-rainfall water (NRW, e.g. fog and dew), in addition to rainfall and snowfall, are considered important water inputs to drylands. At the same time, biological soil crusts (BSCs) are important components of drylands. However, little information is available regarding the effect of NRW inputs on BSC activation. In this study, the effects of NRW on physiological activation in three BSC successional stages, including the cyanobacteria crust stage (Crust-C), moss colonization stage (Crust-CM), and moss crust stage (Crust-M), were studied in situ. Results suggest NRW inputs hydrated and activated physiological activity (Fv/Fm, carbon exchange, and nitrogen fixation) in BSCs but led to a negative carbon balance and low rates of nitrogen fixation in BSCs. One effective NRW event could hydrate BSCs for 7 h. Following simulated rainfall, the physiological activities recovered within 3 h, and net carbon gain occurred until 3 h after hydration, whereas NRW-induced physiological recovery processes were slower and exhibited lower activities, leading to a negative carbon balance. There were significant positive correlations between NRW amounts and the recovered values of Fv/Fm in all the three BSC stages (p < .001). The thresholds for Fv/Fm activation decreased with BSC succession, and the annual effective NRW events increased with BSC succession, with values of 29.8, 89.2, and 110.7 in Crust-C, Crust-CM and Crust-M, respectively. The results suggest that moss crust and moss-cyanobacteria crust use NRW to prolong metabolic activity and reduce drought stress more efficiently than cyanobacteria crusts. Therefore, these results suggest that BSCs utilize NRW to sustain life while growth and biomass accumulation require precipitation (rainfall) events over a certain threshold.
NASA Astrophysics Data System (ADS)
Teal, Lorna R.; Marras, Stefano; Peck, Myron A.; Domenici, Paolo
2018-02-01
Models are useful tools for predicting the impact of global change on species distribution and abundance. As ectotherms, fish are being challenged to adapt or track changes in their environment, either in time through a phenological shift or in space by a biogeographic shift. Past modelling efforts have largely been based on correlative Species Distribution Models, which use known occurrences of species across landscapes of interest to define sets of conditions under which species are likely to maintain populations. The practical advantages of this correlative approach are its simplicity and the flexibility in terms of data requirements. However, effective conservation management requires models that make projections beyond the range of available data. One way to deal with such an extrapolation is to use a mechanistic approach based on physiological processes underlying climate change effects on organisms. Here we illustrate two approaches for developing physiology-based models to characterize fish habitat suitability. (i) Aerobic Scope Models (ASM) are based on the relationship between environmental factors and aerobic scope (defined as the difference between maximum and standard (basal) metabolism). This approach is based on experimental data collected by using a number of treatments that allow a function to be derived to predict aerobic metabolic scope from the stressor/environmental factor(s). This function is then integrated with environmental (oceanographic) data of current and future scenarios. For any given species, this approach allows habitat suitability maps to be generated at various spatiotemporal scales. The strength of the ASM approach relies on the estimate of relative performance when comparing, for example, different locations or different species. (ii) Dynamic Energy Budget (DEB) models are based on first principles including the idea that metabolism is organised in the same way within all animals. The (standard) DEB model aims to describe empirical relationships which can be found consistently within physiological data across the animal kingdom. The advantages of the DEB models are that they make use of the generalities found in terms of animal physiology and can therefore be applied to species for which little data or empirical observations are available. In addition, the limitations as well as useful potential refinements of these and other physiology-based modelling approaches are discussed. Inclusion of the physiological response of various life stages and modelling the patterns of extreme events observed in nature are suggested for future work.
The plasma membrane: Penultimate regulator of ADAM sheddase function.
Reiss, Karina; Bhakdi, Sucharit
2017-11-01
ADAM10 and ADAM17 are the best characterized members of the ADAM (A Disintegrin and Metalloproteinase) - family of transmembrane proteases. Both are involved diverse physiological and pathophysiological processes. ADAMs are known to be regulated by posttranslational mechanisms. However, emerging evidence indicates that the plasma membrane with its unique dynamic properties may additionally play an important role in controlling sheddase function. Membrane events that could contribute to regulation of ADAM-function are summarized. Surface expression of peptidolytic activity should be differentiated from ADAM-sheddase function since the latter additionally requires that the protease finds its substrate in the lipid bilayer. We propose that this is achieved through horizontal and vertical reorganization of membrane nanoarchitecture coordinately occurring at the sites of sheddase activation. Reshuffling of nanodomains thereby guides traffic of enzyme and substrate to each other. For ADAM17 phosphatidylserine exposure is required to then induce its shedding function. The novel concept that physicochemical properties of the lipid bilayer govern the action of ADAM-proteases may be extendable to other functional proteins that act at the cell surface. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John. Copyright © 2017. Published by Elsevier B.V.
Quantitative PET of liver functions
Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord
2018-01-01
Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841
Quantitative PET of liver functions.
Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord
2018-01-01
Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.
Cabral, Laura A.; Velloso, Marcelo
2014-01-01
Background The practice of minimal handling is recommended for preterm infants (PTIs). However, few studies have investigated the effects of this practice among these infants or the time needed to ensure greater physiological stability, especially after exogenous surfactant treatments. Objective The current study compared the effects of two protocols of minimal handling on the physiological variables of PTIs after surfactant therapy. Method An exploratory prospective observational study was performed with 40 PTIs weighing less than 1,500 g. The infants were divided into two groups and monitored for 72 hours. One group received the standard minimal handling procedure during the first 12 hours after surfactant therapy; the other group (i.e., the modified group) received minimal handling within 72 hours after surfactant therapy. Infant heart rate (HR), oxygen saturation, body temperature, and the adverse events associated with changes to these variables were monitored every 10 minutes. Results Significant between-group differences were not found with regard to the occurrence of the adverse events associated with physiological changes (p>0.05). Conclusion The practice of minimal handling among very low birth weight infants did not alter their physiological stability when performed either 12 or 72 hours after surfactant therapy. PMID:24839044
Physiological and Selective Attention Demands during an International Rally Motor Sport Event
Turner, Anthony P.; Richards, Hugh
2015-01-01
Purpose. To monitor physiological and attention responses of drivers and codrivers during a World Rally Championship (WRC) event. Methods. Observational data were collected from ten male drivers/codrivers on heart rate (HR), core body (T core) and skin temperature (T sk), hydration status (urine osmolality), fluid intake (self-report), and visual and auditory selective attention (performance tests). Measures were taken pre-, mid-, and postcompetition day and also during the precompetition reconnaissance. Results. In ambient temperatures of 20.1°C (in-car peak 33.9°C) mean (SD) peak HR and T core were significantly elevated (P < 0.05) during rally compared to reconnaissance (166 (17) versus 111 (16) beats·min−1 and 38.5 (0.4) versus 37.6 (0.2)°C, resp.). Values during competitive stages were substantially higher in drivers. High urine osmolality was indicated in some drivers within competition. Attention was maintained during the event but was significantly lower prerally, though with considerable individual variation. Conclusions. Environmental and physical demands during rally competition produced significant physiological responses. Challenges to thermoregulation, hydration status, and cognitive function need to be addressed to minimise potentially negative effects on performance and safety. PMID:25866799
Physiological and selective attention demands during an international rally motor sport event.
Turner, Anthony P; Richards, Hugh
2015-01-01
To monitor physiological and attention responses of drivers and codrivers during a World Rally Championship (WRC) event. Observational data were collected from ten male drivers/codrivers on heart rate (HR), core body (T core) and skin temperature (T sk), hydration status (urine osmolality), fluid intake (self-report), and visual and auditory selective attention (performance tests). Measures were taken pre-, mid-, and postcompetition day and also during the precompetition reconnaissance. In ambient temperatures of 20.1°C (in-car peak 33.9°C) mean (SD) peak HR and T core were significantly elevated (P < 0.05) during rally compared to reconnaissance (166 (17) versus 111 (16) beats · min(-1) and 38.5 (0.4) versus 37.6 (0.2)°C, resp.). Values during competitive stages were substantially higher in drivers. High urine osmolality was indicated in some drivers within competition. Attention was maintained during the event but was significantly lower prerally, though with considerable individual variation. Environmental and physical demands during rally competition produced significant physiological responses. Challenges to thermoregulation, hydration status, and cognitive function need to be addressed to minimise potentially negative effects on performance and safety.
Proffitt, D R; Kaiser, M K; Whelan, S M
1990-07-01
In five experiments, assessments were made of people's understandings about the dynamics of wheels. It was found that undergraduates make highly erroneous dynamical judgments about the motions of this commonplace event, both in explicit problem-solving contexts and when viewing ongoing events. These problems were also presented to bicycle racers and high-school physics teachers; both groups were found to exhibit misunderstandings similar to those of naive undergraduates. Findings were related to our account of dynamical event complexity. The essence of this account is that people encounter difficulties when evaluating the dynamics of any mechanical system that has more than one dynamically relevant object parameter. A rotating wheel is multidimensional in this respect: in addition to the motion of its center of mass, its mass distribution is also of dynamical relevance. People do not spontaneously form the essential multidimensional quantities required to adequately evaluate wheel dynamics.
Structure, Folding Dynamics, and Amyloidogenesis of D76N β2-Microglobulin
Mangione, P. Patrizia; Esposito, Gennaro; Relini, Annalisa; Raimondi, Sara; Porcari, Riccardo; Giorgetti, Sofia; Corazza, Alessandra; Fogolari, Federico; Penco, Amanda; Goto, Yuji; Lee, Young-Ho; Yagi, Hisashi; Cecconi, Ciro; Naqvi, Mohsin M.; Gillmore, Julian D.; Hawkins, Philip N.; Chiti, Fabrizio; Rolandi, Ranieri; Taylor, Graham W.; Pepys, Mark B.; Stoppini, Monica; Bellotti, Vittorio
2013-01-01
Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins, which then aggregate extracellularly as insoluble fibrils, damaging the structure and function of affected organs. The formation of amyloid fibrils in vivo is poorly understood. We recently identified the first naturally occurring structural variant, D76N, of human β2-microglobulin (β2m), the ubiquitous light chain of class I major histocompatibility antigens, as the amyloid fibril protein in a family with a new phenotype of late onset fatal hereditary systemic amyloidosis. Here we show that, uniquely, D76N β2m readily forms amyloid fibrils in vitro under physiological extracellular conditions. The globular native fold transition to the fibrillar state is primed by exposure to a hydrophobic-hydrophilic interface under physiological intensity shear flow. Wild type β2m is recruited by the variant into amyloid fibrils in vitro but is absent from amyloid deposited in vivo. This may be because, as we show here, such recruitment is inhibited by chaperone activity. Our results suggest general mechanistic principles of in vivo amyloid fibrillogenesis by globular proteins, a previously obscure process. Elucidation of this crucial causative event in clinical amyloidosis should also help to explain the hitherto mysterious timing and location of amyloid deposition. PMID:24014031
New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.
Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji
2015-05-01
Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
In Vitro Cerebrovascular Modeling in the 21st Century: Current and Prospective Technologies
Palmiotti, Christopher A.; Prasad, Shikha; Naik, Pooja; Abul, Kaisar MD; Sajja, Ravi K.; Achyuta, Anilkumar H.; Cucullo, Luca
2014-01-01
The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-Brain Barrier. PMID:25098812
In vitro cerebrovascular modeling in the 21st century: current and prospective technologies.
Palmiotti, Christopher A; Prasad, Shikha; Naik, Pooja; Abul, Kaisar M D; Sajja, Ravi K; Achyuta, Anilkumar H; Cucullo, Luca
2014-12-01
The blood-brain barrier (BBB) maintains the brain homeostasis and dynamically responds to events associated with systemic and/or rheological impairments (e.g., inflammation, ischemia) including the exposure to harmful xenobiotics. Thus, understanding the BBB physiology is crucial for the resolution of major central nervous system CNS) disorders challenging both health care providers and the pharmaceutical industry. These challenges include drug delivery to the brain, neurological disorders, toxicological studies, and biodefense. Studies aimed at advancing our understanding of CNS diseases and promoting the development of more effective therapeutics are primarily performed in laboratory animals. However, there are major hindering factors inherent to in vivo studies such as cost, limited throughput and translational significance to humans. These factors promoted the development of alternative in vitro strategies for studying the physiology and pathophysiology of the BBB in relation to brain disorders as well as screening tools to aid in the development of novel CNS drugs. Herein, we provide a detailed review including pros and cons of current and prospective technologies for modelling the BBB in vitro including ex situ, cell based and computational (in silico) models. A special section is dedicated to microfluidic systems including micro-BBB, BBB-on-a-chip, Neurovascular Unit-on-a-Chip and Synthetic Microvasculature Blood-brain Barrier.
Using a Cyclical Diagram to Visualize the Events of the Ovulatory Menstrual Cycle
ERIC Educational Resources Information Center
Ho, Ivan Shun; Parmar, Navneet K.
2014-01-01
Over the past 10 years, college textbooks in human anatomy and physiology have typically presented the events of the ovulatory menstrual cycle in a linear format, with time in days shown on the x-axis, and hormone levels, follicular development, and uterine lining on the y-axis. In addition, the various events are often shown over a 28-day cycle,…
The Empathic Operating System (emOS)
2016-06-15
contextual data, including phone calls, locations, and events, to help mitigate the effects of stress on daily life. This approach offers novel...with their contextual data, including phone calls, locations, and events, to help mitigate the effects of stress on daily life. This approach offers...incorporates users’ physiology with their contextual data, including phone calls, locations, and events, to help mitigate the effects of stress on
Kleynhans, E; Clusella-Trullas, S; Terblanche, J S
2014-02-01
Physiological responses to transient conditions may result in costly responses with little fitness benefits, and therefore, a trade-off must exist between the speed of response and the duration of exposure to new conditions. Here, using the puparia of an important insect disease vector, Glossina pallidipes, we examine this potential trade-off using a novel combination of an experimental approach and a population dynamics model. Specifically, we explore and dissect the interactions between plastic physiological responses, treatment-duration and -intensity using an experimental approach. We then integrate these experimental results from organismal water-balance data and their plastic responses into a population dynamics model to examine the potential relative fitness effects of simulated transient weather conditions on population growth rates. The results show evidence for the predicted trade-off for plasticity of water loss rate (WLR) and the duration of new environmental conditions. When altered environmental conditions lasted for longer durations, physiological responses could match the new environmental conditions, and this resulted in a lower WLR and lower rates of population decline. At shorter time-scales however, a mismatch between acclimation duration and physiological responses was reflected by reduced overall population growth rates. This may indicate a potential fitness cost due to insufficient time for physiological adjustments to take place. The outcomes of this work therefore suggest plastic water balance responses have both costs and benefits, and these depend on the time-scale and magnitude of variation in environmental conditions. These results are significant for understanding the evolution of plastic physiological responses and changes in population abundance in the context of environmental variability. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Chronic alcoholism: insights from neurophysiology.
Campanella, S; Petit, G; Maurage, P; Kornreich, C; Verbanck, P; Noël, X
2009-01-01
Increasing knowledge of the anatomical structures and cellular processes underlying psychiatric disorders may help bridge the gap between clinical signs and basic physiological processes. Accordingly, considerable insight has been gained in recent years into a common psychiatric condition, i.e., chronic alcoholism. We reviewed various physiological parameters that are altered in chronic alcoholic patients compared to healthy individuals--continuous electroencephalogram, oculomotor measures, cognitive event-related potentials and event-related oscillations--to identify links between these physiological parameters, altered cognitive processes and specific clinical symptoms. Alcoholic patients display: (1) high beta and theta power in the resting electroencephalogram, suggesting hyperarousal of their central nervous system; (2) abnormalities in smooth pursuit eye movements, in saccadic inhibition during antisaccade tasks, and in prepulse inhibition, suggesting disturbed attention modulation and abnormal patterns of prefrontal activation that may stem from the same prefrontal "inhibitory" cortical dysfunction; (3) decreased amplitude for cognitive event-related potentials situated along the continuum of information-processing, suggesting that alcoholism is associated with neurophysiological deficits at the level of the sensory cortex and not only disturbances involving associative cortices and limbic structures; and (4) decreased theta, gamma and delta oscillations, suggesting cognitive disinhibition at a functional level. The heterogeneity of alcoholic disorders in terms of symptomatology, course and outcome is the result of various pathophysiological processes that physiological parameters may help to define. These alterations may be related to precise cognitive processes that could be easily monitored neurophysiologically in order to create more homogeneous subgroups of alcoholic individuals.
Cholinergic modulation of cognitive processing: insights drawn from computational models
Newman, Ehren L.; Gupta, Kishan; Climer, Jason R.; Monaghan, Caitlin K.; Hasselmo, Michael E.
2012-01-01
Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory, and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory, and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm plays a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers. PMID:22707936
Mechanisms of physiological and epileptic HFO generation
Jefferys, John G.R.; de la Prida, Liset Menendez; Wendling, Fabrice; Bragin, Anatol; Avoli, Massimo; Timofeev, Igor; Lopes da Silva, Fernando H.
2016-01-01
High frequency oscillations (HFO) have a variety of characteristics: band-limited or broad-band, transient burst-like phenomenon or steady-state. HFOs may be encountered under physiological or under pathological conditions (pHFO). Here we review the underlying mechanisms of oscillations, at the level of cells and networks, investigated in a variety of experimental in vitro and in vivo models. Diverse mechanisms are described, from intrinsic membrane oscillations to network processes involving different types of synaptic interactions, gap junctions and ephaptic coupling. HFOs with similar frequency ranges can differ considerably in their physiological mechanisms. The fact that in most cases the combination of intrinsic neuronal membrane oscillations and synaptic circuits are necessary to sustain network oscillations is emphasized. Evidence for pathological HFOs, particularly fast ripples, in experimental models of epilepsy and in human epileptic patients is scrutinized. The underlying mechanisms of fast ripples are examined both in the light of animal observations, in vivo and in vitro, and in epileptic patients, with emphasis on single cell dynamics. Experimental observations and computational modeling have led to hypotheses for these mechanisms, several of which are considered here, namely the role of out-of-phase firing in neuronal clusters, the importance of strong excitatory AMPA-synaptic currents and recurrent inhibitory connectivity in combination with the fast time scales of IPSPs, ephaptic coupling and the contribution of interneuronal coupling through gap junctions. The statistical behaviour of fast ripple events can provide useful information on the underlying mechanism and can help to further improve classification of the diverse forms of HFOs. PMID:22420980
Kajikawa, Yoshinao; Schroeder, Charles E
2015-01-01
Field potentials (FPs) recorded within the brain, often called "local field potentials" (LFPs), are useful measures of net synaptic activity in a neuronal ensemble. However, due to volume conduction, FPs spread beyond regions of underlying synaptic activity, and thus an "LFP" signal may not accurately reflect the temporal patterns of synaptic activity in the immediately surrounding neuron population. To better understand the physiological processes reflected in FPs, we explored the relationship between the FP and its membrane current generators using current source density (CSD) analysis in conjunction with a volume conductor model. The model provides a quantitative description of the spatiotemporal summation of immediate local and more distant membrane currents to produce the FP. By applying the model to FPs in the macaque auditory cortex, we have investigated a critical issue that has broad implications for FP research. We have shown that FP responses in particular cortical layers are differentially susceptible to activity in other layers. Activity in the supragranular layers has the strongest contribution to FPs in other cortical layers, and infragranular FPs are most susceptible to contributions from other layers. To define the physiological processes generating FPs recorded in loci of relatively weak synaptic activity, strong effects produced by synaptic events in the vicinity have to be taken into account. While outlining limitations and caveats inherent to FP measurements, our results also suggest specific peak and frequency band components of FPs can be related to activity in specific cortical layers. These results may help improving the interpretability of FPs. Copyright © 2015 the American Physiological Society.
McCue, Marshall D; Albach, Audrey; Salazar, Giovanni
The risk of food limitation and, ultimately, starvation dates back to the dawn of heterotrophy in animals, yet starvation remains a major factor in the regulation of modern animal populations. Researchers studying starvation more than a century ago suggested that animals subjected to sublethal periods of food limitation are somehow more tolerant of subsequent starvation events. This possibility has received little attention over the past decades, yet it is highly relevant to modern science for two reasons. First, animals in natural populations are likely to be exposed to bouts of food limitation once or more before they face prolonged starvation, during which the risk of mortality becomes imminent. Second, our current approach to studying starvation physiology in the laboratory focuses on nourished animals with no previous exposure to nutritional stress. We examined the relationship between previous exposure to food limitation and potentially adaptive physiological responses to starvation in adult rats and found several significant differences. On two occasions, rats were fasted until they lost 20% of their body mass maintained lower body temperatures, and had presumably lower energy requirements when subjected to prolonged starvation than their naive cohort that never experienced food limitation. These rats that were trained in starvation also had lower plasma glucose set -points and reduced their reliance on endogenous lipid oxidation. These findings underscore (1) the need for biologists to revisit the classic hypothesis that animals can become habituated to starvation, using a modern set of research tools; and (2) the need to design controlled experiments of starvation physiology that more closely resemble the dynamic nature of food availability.
Modeling extracellular matrix degradation balance with proteinase/transglutaminase cycle.
Larreta-Garde, Veronique; Berry, Hugues
2002-07-07
Extracellular matrix mass balance is implied in many physiological and pathological events, such as metastasis dissemination. Widely studied, its destructive part is mainly catalysed by extracellular proteinases. Conversely, the properties of the constructive part are less obvious, cellular neo-synthesis being usually considered as its only element. In this paper, we introduce the action of transglutaminase in a mathematical model for extracellular matrix remodeling. This extracellular enzyme, catalysing intermolecular protein cross-linking, is considered here as a reverse proteinase as far as the extracellular matrix physical state is concerned. The model is based on a proteinase/transglutaminase cycle interconverting insoluble matrix and soluble proteolysis fragments, with regulation of cellular proteinase expression by the fragments. Under "closed" (batch) conditions, i.e. neglecting matrix influx and fragment efflux from the system, the model is bistable, with reversible hysteresis. Extracellular matrix proteins concentration abruptly switches from low to high levels when transglutaminase activity exceeds a threshold value. Proteinase concentration usually follows the reverse complementary kinetics, but can become apparently uncoupled from extracellular matrix concentration for some parameter values. When matrix production by the cells and fragment degradation are taken into account, the dynamics change to sustained oscillations because of the emergence of a stable limit cycle. Transitions out of and into oscillation areas are controlled by the model parameters. Biological interpretation indicates that these oscillations could represent the normal homeostatic situation, whereas the other exhibited dynamics can be related to pathologies such as tumor invasion or fibrosis. These results allow to discuss the insights that the model could contribute to the comprehension of these complex biological events.
ERIC Educational Resources Information Center
Nock, Matthew K.; Mendes, Wendy Berry
2008-01-01
It has been suggested that people engage in nonsuicidal self-injury (NSSI) because they (a) experience heightened physiological arousal following stressful events and use NSSI to regulate experienced distress and (b) have deficits in their social problem-solving skills that interfere with the performance of more adaptive social responses. However,…
Regulating plant physiology with organic electronics.
Poxson, David J; Karady, Michal; Gabrielsson, Roger; Alkattan, Aziz Y; Gustavsson, Anna; Doyle, Siamsa M; Robert, Stéphanie; Ljung, Karin; Grebe, Markus; Simon, Daniel T; Berggren, Magnus
2017-05-02
The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.
Regulating plant physiology with organic electronics
Poxson, David J.; Karady, Michal; Alkattan, Aziz Y.; Gustavsson, Anna; Robert, Stéphanie; Grebe, Markus; Berggren, Magnus
2017-01-01
The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants. PMID:28420793
NASA Astrophysics Data System (ADS)
Huber, Martin; Braun, Hans; Krieg, J.\\:Urgen-Christian
2004-03-01
Sensitization is discussed as an important phenomenon playing a role in normal physiology but also with respect to the initiation and progression of a variety of neuropsychiatric disorders such as epilepsia, substance-related disorders or recurrent affective disorders. The relevance to understand the dynamics of sensitization phenomena is emphasized by recent findings that even single stimulations can induce longlasting changes in biological systems. To address specific questions associated with the sensitization dynamics, we use a computational approach and develop simple but physiologically-plausible models. In the present study we examine the effect of noisy stimulation on sensitization development in the model. We consider sub- and suprathresold stimulations with varying noise intensities and determine as response measures the (i) absolute number of stimulus-induced sensitzations and (ii) the temporal relsation of stimulus-sensitization coupling. The findings indicate that stochastic effects including stochastic resonance might well contribute to the physiology of sensitization mechanisms under both nomal and pathological conditions.
Palesse, S; Colombet, J; Pradeep Ram, A S; Sime-Ngando, T
2014-11-01
In aquatic ecosystems, fluctuations in environmental conditions and prokaryotic host physiological states can strongly affect the dynamics of viral life strategies. The influence of prokaryote physiology and environmental factors on viral replication cycles (lytic and lysogeny) was investigated from April to September 2011 at three different strata (epi, meta, and hypolimnion) in the mixolimnion of deep volcanic temperate freshwater Lake Pavin (France). Overall, the euphotic region (epi and metalimnion) was more dynamic and showed significant variation in microbial standing stocks, prokaryotic physiological state, and viral life strategies compared to the aphotic hypolimnion which was stable within sampled months. The prokaryotic host physiology as inferred from the nucleic acid content of prokaryotic cells (high or low nucleic acid) was strongly regulated by the chlorophyll concentration. The predominance of the high nucleic acid (HNA) prokaryotes (cells) over low nucleic acid (LNA) prokaryotes (cells) in the spring (HNA/LNA = 1.2) and vice versa in the summer period (HNA/LNA = 0.4) suggest that the natural prokaryotic communities underwent major shifts in their physiological states during investigated time period. The increase in the percentage of inducible lysogenic prokaryotes in the summer period was associated with the switch in the dominance of LNA over HNA cells, which coincided with the periods of strong resource (nutrient) limitation. This supports the idea that lysogeny represents a maintenance strategy for viruses in unproductive or harsh nutrient/host conditions. A negative correlation of percentage of lysogenic prokaryotes with HNA cell abundance and chlorophyll suggest that lysogenic cycle is closely related to prokaryotic cells which are stressed or starved due to unavailability of resources for its growth and activity. Our results provide support to previous findings that changes in prokaryote physiology are critical for the promotion and establishment of lysogeny in aquatic ecosystems, which are prone to constant environmental fluctuations.
NASA Astrophysics Data System (ADS)
Hanf, S.; Fischer, S.; Hartmann, H.; Trumbore, S.; Popp, J.; Frosch, T.
2014-12-01
Drought and heat waves have been linked to forest mortality event across the globe. The underlying physiological processes are still not elucidated but both tree carbon and water relations have been identified as the driving forces. While studies on tree hydraulics are straightforward, studies on the tree carbon balance are not. For example, the use of different carbon compounds for maintenance respiration during drought cannot be assessed with measurements of carbon pools but requires real-time analyses of respiration stoichiometry. However, so far there were no technical solutions for such applications. Here we introduce cavity-enhanced Raman spectrometry (CERS) for simultaneous real-time monitoring of O2 and CO2 and rapid and continuous quantification of dark respiration rates and the respiratory quotient (RQ), i.e. the ratio of CO2 produced over O2 consumed during respiration. This ratio indicates the proportions of different substrates (carbohydrates [COH], lipids, proteins) used during respiration and allows fundamental insights into tree physiology. CERS combines high temporal resolution with a high dynamic concentration range for all important gases, ranging from few ppm to 100 vol. % with a single measurement every few seconds. The respiration analysis of tree branches was performed in a closed chamber for two species of different drought tolerance, Pinus sylvestris and Picea abies. We applied not only drought but also a shading treatment because both cause reductions in carbon assimilation rates but have different effects on tree hydraulics. Declines in RQ during shading in both species indicate a switch from pure COH metabolism to a mixture of COH, lipids and proteins. During drought such declines occurred only in the drought-tolerant pine but not in spruce and the underlying more dynamic carbon use strategy in pine may provide a physiological basis for its drought tolerance, more detailed investigation still pending. Our study highlights the suitability of CERS for applications in plant ecophysiology. This technology can contribute to significant advances in research on the causes and mechanisms of tree and forest mortality.
Mitochondrial Dysfunction in Cancer
Boland, Michelle L.; Chourasia, Aparajita H.; Macleod, Kay F.
2013-01-01
A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment. PMID:24350057
Hrynyk, Michael; Neufeld, Ronald J
2014-12-01
Skin is a dynamic and complex organ that relies on the interaction of different cell types, biomacromolecules and signaling molecules. Injury triggers a cascade of events designed to quickly restore skin integrity. Depending on the size and severity of the wound, extensive physiological and metabolic changes can occur, resulting in impaired wound healing and increased morbidity resulting in higher rates of death. While wound dressings provide a temporary barrier, they are inherently incapable of significantly restoring metabolic upsets, post-burn insulin resistance, and impaired wound healing in patients with extensive burns. Exogenous insulin application has therefore been investigated as a potential therapeutic intervention for nearly a century to improve wound recovery. This review will highlight the important achievements that demonstrate insulin's ability to stimulate cellular migration and burn wound recovery, as well as providing a perspective on future therapeutic applications and research directions. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Maternity Charities, the Edinburgh Maternity Scheme and the Medicalisation of Childbirth, 1900–1925
Nuttall, Alison
2011-01-01
Summary Increased medical involvement in maternal welfare has been linked with the introduction of local authority administered schemes associated with government concern for women's health that reached a peak during the First World War. Although local studies have noted the work of philanthropic groups, the implication has been that their contribution to the medicalisation of childbirth was small. This article uses analysis of the personal health records of users of Edinburgh's maternity charities to argue that the process of medicalisation was begun by these charities, and preceded the introduction of the Edinburgh Maternity and Child Welfare Scheme in 1917. However, whilst it is argued that initially the Scheme had limited impact, the article concludes that its funding and stability offered the opportunity for more dynamic management of abnormal pregnancies. Thus this encouraged a gradual shift in attitude to birth from an essentially physiological event to a potentially pathological incident.
AP-1 subunits: quarrel and harmony among siblings.
Hess, Jochen; Angel, Peter; Schorpp-Kistner, Marina
2004-12-01
The AP-1 transcription factor is mainly composed of Jun, Fos and ATF protein dimers. It mediates gene regulation in response to a plethora of physiological and pathological stimuli, including cytokines, growth factors, stress signals, bacterial and viral infections, as well as oncogenic stimuli. Studies in genetically modified mice and cells have highlighted a crucial role for AP-1 in a variety of cellular events involved in normal development or neoplastic transformation causing cancer. However, emerging evidence indicates that the contribution of AP-1 to determination of cell fates critically depends on the relative abundance of AP-1 subunits, the composition of AP-1 dimers, the quality of stimulus, the cell type and the cellular environment. Therefore, AP-1-mediated regulation of processes such as proliferation, differentiation, apoptosis and transformation should be considered within the context of a complex dynamic network of signalling pathways and other nuclear factors that respond simultaneously.
Sex Steroid-Mediated Control of Oviductal Function in Cattle
Binelli, Mario; Gonella-Diaza, Angela Maria; Mesquita, Fernando Silveira; Membrive, Claudia Maria Bertan
2018-01-01
In cattle, the oviduct is a tubular organ that connects the ovary and the uterus. The oviduct lumen stages a dynamic set of cellular and molecular interactions to fulfill the noble role of generating a new individual. Specific anatomical niches along the oviduct lumen provide the appropriate microenvironment for final sperm capacitation, oocyte capture and fertilization, and early embryo development and transport. To accomplish such complex tasks, the oviduct undergoes spatially and temporally-regulated morphological, biochemical, and physiological changes that are associated with endocrine events of the estrous cycle. Specifically, elevated periovulatory concentrations of estradiol (E2) and progesterone (P4) influence gene expression and morphological changes that have been associated positively to fertility in beef cattle. In this review, we explore how E2 and P4 influence oviductal function in the beginning of the estrous cycle, and prepare the oviductal lumen for interactions with gametes and embryos. PMID:29393864
Fractal and Multifractal Analysis of Human Gait
NASA Astrophysics Data System (ADS)
Muñoz-Diosdado, A.; del Río Correa, J. L.; Angulo-Brown, F.
2003-09-01
We carried out a fractal and multifractal analysis of human gait time series of young and old individuals, and adults with three illnesses that affect the march: The Parkinson's and Huntington's diseases and the amyotrophic lateral sclerosis (ALS). We obtained cumulative plots of events, the correlation function, the Hurst exponent and the Higuchi's fractal dimension of these time series and found that these fractal markers could be a factor to characterize the march, since we obtained different values of these quantities for youths and adults and they are different also for healthy and ill persons and the most anomalous values belong to ill persons. In other physiological signals there is complexity lost related with the age and the illness, in the case of the march the opposite occurs. The multifractal analysis could be also a useful tool to understand the dynamics of these and other complex systems.
Sphingolipid topology and the dynamic organization and function of membrane proteins.
van Meer, Gerrit; Hoetzl, Sandra
2010-05-03
When acquiring internal membranes and vesicular transport, eukaryotic cells started to synthesize sphingolipids and sterols. The physical differences between these and the glycerophospholipids must have enabled the cells to segregate lipids in the membrane plane. Localizing this event to the Golgi then allowed them to create membranes of different lipid composition, notably a thin, flexible ER membrane, consisting of glycerolipids, and a sturdy plasma membrane containing at least 50% sphingolipids and sterols. Besides sorting membrane proteins, in the course of evolution the simple sphingolipids obtained key positions in cellular physiology by developing specific interactions with (membrane) proteins involved in the execution and control of signaling. The few signaling sphingolipids in mammals must provide basic transmission principles that evolution has built upon for organizing the specific regulatory pathways tuned to the needs of the different cell types in the body. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
A family health case study. Stillbirth.
Edmands, E M
1982-01-01
This is an example of a case study written to describe the physical and psychological impact of stillbirth on the patient and the family, and how it can be used in the teaching of family health. It is suggested that the teacher prepare the students by reviewing the known causes of stillbirth and the physiology of labor and delivery. The patient, her family, and her community are described in detail. The situation and events are given in the form of a story. After the presentation, questions are put to the students that require their assessment of the requirements of the patient and her family in terms of nursing-midwifery management. A number of follow-ups are suggested for the teacher and students. This material was prepared by INTRAH staff members. Other materials prepared include training exercise in group dynamics, how to use tracing techniques to create visual aids, how to evaluate teaching and how to create a family health case study.
Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter.
Zhang, Ji-Long; Zheng, Qing-Chuan; Yu, Li-Ying; Li, Zheng-Qiang; Zhang, Hong-Xing
2016-08-22
Substrate transport across a membrane accomplished by a secondary active transporter (SAT) is essential to the normal physiological function of living cells. In the present research, a series of all-atom molecular dynamics (MD) simulations under different electric field (EF) strengths was performed to investigate the effect of an external EF on the substrate transport of an SAT. The results show that EF both affects the interaction between substrate and related protein's residues by changing their conformations and tunes the timeline of the transport event, which collectively reduces the height of energy barrier for substrate transport and results in the appearance of two intermediate conformations under the existence of an external EF. Our work spotlights the crucial influence of external EFs on the substrate transport of SATs and could provide a more penetrating understanding of the substrate transport mechanism of SATs.
Changes of catecholamine excretion during long-duration confinement.
Kraft, N; Inoue, N; Ohshima, H; Sekiguchi, C
2002-06-01
Simulation studies have become the main source of data about small group interactions during prolonged isolation, from which it should be possible to anticipate crew problems during actual space missions. International Space Station (ISS) astronauts and cosmonauts will form one international crew, although living in different national modules. They will have joint flight protocols, and at the same time, fulfill a number of different tasks in accord with their national flight programs. Consistent with these concepts, we studied two simultaneously functioning groups in a simulation of ISS flight. The objective of this study was to investigate physiological parameters (such as catecholamine excretions) related to long-duration confinement in the hermetic chamber, simulating International Space Station flight conditions. We also planned to evaluate the relationship between epinephrine/norepinephrine with group dynamics and social events to predict unfavorable changes in health and work capability of the subjects related to psychological interaction in the isolation chamber.
Does reactivation trigger episodic memory change? A meta-analysis.
Scully, Iiona D; Napper, Lucy E; Hupbach, Almut
2017-07-01
According to the reconsolidation hypothesis, long-term memories return to a plastic state upon their reactivation, leaving them vulnerable to interference effects and requiring re-storage processes or else these memories might be permanently lost. The present study used a meta-analytic approach to critically evaluate the evidence for reactivation-induced changes in human episodic memory. Results indicated that reactivation makes episodic memories susceptible to physiological and behavioral interference. When applied shortly after reactivation, interference manipulations altered the amount of information that could be retrieved from the original learning event. This effect was more pronounced for remote memories and memories of narrative structure. Additionally, new learning following reactivation reliably increased the number of intrusions from new information into the original memory. These findings support a dynamic view of long-term memory by showing that memories can be changed long after they were acquired. Copyright © 2016 Elsevier Inc. All rights reserved.
Network Analysis: Applications for the Developing Brain
Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.
2011-01-01
Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762
Dong, Lu; Zhong, Xiangnan; Sun, Changyin; He, Haibo
2017-07-01
This paper presents the design of a novel adaptive event-triggered control method based on the heuristic dynamic programming (HDP) technique for nonlinear discrete-time systems with unknown system dynamics. In the proposed method, the control law is only updated when the event-triggered condition is violated. Compared with the periodic updates in the traditional adaptive dynamic programming (ADP) control, the proposed method can reduce the computation and transmission cost. An actor-critic framework is used to learn the optimal event-triggered control law and the value function. Furthermore, a model network is designed to estimate the system state vector. The main contribution of this paper is to design a new trigger threshold for discrete-time systems. A detailed Lyapunov stability analysis shows that our proposed event-triggered controller can asymptotically stabilize the discrete-time systems. Finally, we test our method on two different discrete-time systems, and the simulation results are included.
Obradović, Jelena
2012-05-01
The focus of this article is to present current progress in understanding the interplay among adversity, physiological sensitivity to context, and adaptive functioning, with an emphasis on implications and future directions for resilience researchers. It includes a review of current literature that demonstrates (a) links between various levels of adversity exposure and variability in physiological reactivity, (b) how the interplay between children's physiological reactivity and different sources of risk and adversity relates to variability in adaptive functioning, and (c) various approaches for capturing a more dynamic nature of physiological reactivity and related processes. Throughout, important conceptual and empirical issues are highlighted.
NASA Astrophysics Data System (ADS)
Germino, M. J.; Lazarus, B.; Castanha, C.; Moyes, A. B.; Kueppers, L. M.
2014-12-01
An understanding of physiological limitations to tree establishment at alpine treeline form the basis for predicting how this climate-driven boundary will respond to climate shifts. Most research on this topic has focused on limitations related to carbon balance and growth of trees. Carbon balance could limit survival and establishment primarily through slow-acting, chronic means. We asked whether tree survival and thus establishment patterns reflect control by chronic effects in comparison to acute, threshold responses, such as survival of frost events. Seedling survivorship patterns were compared to thresholds in freezing (temperature causing leaf freezing, or freezing point, FP; and physiological response to freezing) and water status (turgor loss point, TLP; and related physiological adjustments). Subject seedlings were from forest, treeline, and alpine sites in the Alpine Treeline Warming Experiment in Colorado, and included limber and lodgepole pine (a low-elevation species), and Engelmann Spruce. Preliminary results show survival increases with seedling age, but the only corresponding increase in stress acclimation was photosynthetic resistance to freezing and TLP, not FP. Differences in survivorship among the species were not consistent with variation in FP but they generally agreed with variation in photosynthetic resistance to deep freezing and to early-season drought avoidance. Mortality of limber pine increased 35% when minimum temperatures decreased below -9C, which compares with FPs of >-8.6C, and about 1/3 of its mortality occurred during cold/wet events, particularly in the alpine. The other major correlate of mortality is midsummer drying events, as previously reported. Also in limber pine, the TLP for year-old seedlings (-2.5 MPa) corresponded with seasonal-drought mortality. In summary, we show several examples of correspondence in physiological thresholds to mortality events within a species, although the relationships are not strong. Across species, photosynthetic resistance to freezing and early-season drought avoidance related well to mortality patterns. These results are generally more supportive of the role of chronic rather than acute climate effects in broad patterns of tree seedling establishment at treeline.
Choi, James J; Coussios, Constantin-C
2012-11-01
Ultrasound and microbubble-based therapies utilize cavitation to generate bioeffects, yet cavitation dynamics during individual pulses and across consecutive pulses remain poorly understood under physiologically relevant flow conditions. SonoVue(®) microbubbles were made to flow (fluid velocity: 10-40 mm/s) through a vessel in a tissue-mimicking material and were exposed to ultrasound [frequency: 0.5 MHz, peak-rarefactional pressure (PRP): 150-1200 kPa, pulse length: 1-100,000 cycles, pulse repetition frequency (PRF): 1-50 Hz, number of pulses: 10-250]. Radiated emissions were captured on a linear array, and passive acoustic mapping was used to spatiotemporally resolve cavitation events. At low PRPs, stable cavitation was maintained throughout several pulses, thus generating a steady rise in energy with low upstream spatial bias within the focal volume. At high PRPs, inertial cavitation was concentrated in the first 6.3 ± 1.3 ms of a pulse, followed by an energy reduction and high upstream bias. Multiple pulses at PRFs below a flow-dependent critical rate (PRF(crit)) produced predictable and consistent cavitation dynamics. Above the PRF(crit), energy generated was unpredictable and spatially biased. In conclusion, key parameters in microbubble-seeded flow conditions were matched with specific types, magnitudes, distributions, and durations of cavitation; this may help in understanding empirically observed in vivo phenomena and guide future pulse sequence designs.
Heat stroke risk for open-water swimmers during long-distance events.
Macaluso, Filippo; Barone, Rosario; Isaacs, Ashwin W; Farina, Felicia; Morici, Giuseppe; Di Felice, Valentina
2013-12-01
Open-water swimming is a rapidly growing sport discipline worldwide, and clinical problems associated with long-distance swimming are now better recognized and managed more effectively. The most prevalent medical risk associated with an open-water swimming event is hypothermia; therefore, the Federation Internationale De Natation (FINA) has instituted 2 rules to reduce this occurrence related to the minimum water temperature and the time taken to complete the race. Another medical risk that is relevant to open-water swimmers is heat stroke, a condition that can easily go unnoticed. The purpose of this review is to shed light on this physiological phenomenon by examining the physiological response of swimmers during long-distance events, to define a maximum water temperature limit for competitions. We conclude that competing in water temperatures exceeding 33°C should be avoided. Copyright © 2013 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Physiological and molecular determinants of embryo implantation
Zhang, Shuang; Lin, Haiyan; Kong, Shuangbo; Wang, Shumin; Wang, Hongmei; Wang, Haibin; Armant, D. Randall
2014-01-01
Embryo implantation involves the intimate interaction between an implantation-competent blastocyst and a receptive uterus, which occurs in a limited time period known as the window of implantation. Emerging evidence shows that defects originating during embryo implantation induce ripple effects with adverse consequences on later gestation events, highlighting the significance of this event for pregnancy success. Although a multitude of cellular events and molecular pathways involved in embryo-uterine crosstalk during implantation have been identified through gene expression studies and genetically engineered mouse models, a comprehensive understanding of the nature of embryo implantation is still missing. This review focuses on recent progress with particular attention to physiological and molecular determinants of blastocyst activation, uterine receptivity, blastocyst attachment and uterine decidualization. A better understanding of underlying mechanisms governing embryo implantation should generate new strategies to rectify implantation failure and improve pregnancy rates in women. PMID:23290997
Causal relations among events and states in dynamic geographical phenomena
NASA Astrophysics Data System (ADS)
Huang, Zhaoqiang; Feng, Xuezhi; Xuan, Wenling; Chen, Xiuwan
2007-06-01
There is only a static state of the real world to be recorded in conventional geographical information systems. However, there is not only static information but also dynamic information in geographical phenomena. So that how to record the dynamic information and reveal the relations among dynamic information is an important issue in a spatio-temporal information system. From an ontological perspective, we can initially divide the spatio-temporal entities in the world into continuants and occurrents. Continuant entities endure through some extended (although possibly very short) interval of time (e.g., houses, roads, cities, and real-estate). Occurrent entities happen and are then gone (e.g., a house repair job, road construction project, urban expansion, real-estate transition). From an information system perspective, continuants and occurrents that have a unique identity in the system are referred to as objects and events, respectively. And the change is represented implicitly by static snapshots in current spatial temporal information systems. In the previous models, the objects can be considered as the fundamental components of the system, and the change is modeled by considering time-varying attributes of these objects. In the spatio-temporal database, the temporal information that is either interval or instant is involved and the underlying data structures and indexes for temporal are considerable investigated. However, there is the absence of explicit ways of considering events, which affect the attributes of objects or the state. So the research issue of this paper focuses on how to model events in conceptual models of dynamic geographical phenomena and how to represent the causal relations among events and the objects or states. Firstly, the paper reviews the conceptual modeling in a temporal GIS by researchers. Secondly, this paper discusses the spatio-temporal entities: objects and events. Thirdly, this paper investigates the causal relations amongst events and states. The qualitative spatiotemporal change is an important issue in the dynamic geographic-scale phenomena. In real estate transition, the events and states are needed to be represented explicitly. In our modeling the evolution of a dynamic system, it can not avoid fetching in the view of causality. The object's transition is represented by the state of object. Event causes the state of objects changing and causes other events happen. Events connect with objects closely. The basic causal relations are the state-event and event-state relationships. Lastly, the paper concludes with the overview about the causal relations amongst events and states. And this future work is pointed.
Lott, Gus K; Johnson, Bruce R; Bonow, Robert H; Land, Bruce R; Hoy, Ronald R
2009-01-01
We present g-PRIME, a software based tool for physiology data acquisition, analysis, and stimulus generation in education and research. This software was developed in an undergraduate neurophysiology course and strongly influenced by instructor and student feedback. g-PRIME is a free, stand-alone, windows application coded and "compiled" in Matlab (does not require a Matlab license). g-PRIME supports many data acquisition interfaces from the PC sound card to expensive high throughput calibrated equipment. The program is designed as a software oscilloscope with standard trigger modes, multi-channel visualization controls, and data logging features. Extensive analysis options allow real time and offline filtering of signals, multi-parameter threshold-and-window based event detection, and two-dimensional display of a variety of parameters including event time, energy density, maximum FFT frequency component, max/min amplitudes, and inter-event rate and intervals. The software also correlates detected events with another simultaneously acquired source (event triggered average) in real time or offline. g-PRIME supports parameter histogram production and a variety of elegant publication quality graphics outputs. A major goal of this software is to merge powerful engineering acquisition and analysis tools with a biological approach to studies of nervous system function.
Closing the loop in ICU decision support: physiologic event detection, alerts, and documentation.
Norris, P. R.; Dawant, B. M.
2001-01-01
Automated physiologic event detection and alerting is a challenging task in the ICU. Ideally care providers should be alerted only when events are clinically significant and there is opportunity for corrective action. However, the concepts of clinical significance and opportunity are difficult to define in automated systems, and effectiveness of alerting algorithms is difficult to measure. This paper describes recent efforts on the Simon project to capture information from ICU care providers about patient state and therapy in response to alerts, in order to assess the value of event definitions and progressively refine alerting algorithms. Event definitions for intracranial pressure and cerebral perfusion pressure were studied by implementing a reliable system to automatically deliver alerts to clinical users alphanumeric pagers, and to capture associated documentation about patient state and therapy when the alerts occurred. During a 6-month test period in the trauma ICU at Vanderbilt University Medical Center, 530 alerts were detected in 2280 hours of data spanning 14 patients. Clinical users electronically documented 81% of these alerts as they occurred. Retrospectively classifying documentation based on therapeutic actions taken, or reasons why actions were not taken, provided useful information about ways to potentially improve event definitions and enhance system utility. PMID:11825238
Hsu, Ling-Yuan; Chen, Tsung-Lin
2012-11-13
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event.
Hsu, Ling-Yuan; Chen, Tsung-Lin
2012-01-01
This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231
Applied physiology of triathlon.
O'Toole, M L; Douglas, P S
1995-04-01
The triathlon is a 3-event endurance sport in which athletes compete sequentially in swimming, cycling and running. The primary determinant of success is the ability to sustain a high rate of energy expenditure for prolonged periods of time. Exercise training-induced physiological adaptations in virtually all systems of the body allow the athlete to accomplish this. Aerobic capacity (measured as maximal oxygen uptake, VO2max), economy of motion (submaximal VO2) and fractional utilisation of maximal capacity (%VO2max) reflect the integrated responses of these physiological adaptations. Numerous studies have reported relatively high mean VO2max values for various groups of triathletes that are comparable to those reported for athletes in single-event endurance sports and clearly above those reported for untrained individuals. In shorter distance triathlons and in studies using recreational (rather than elite) triathletes, VO2max is related to performance in the corresponding event of the triathlon (e.g. tethered swimming VO2max with swim time). In longer events and with more elite triathletes, VO2max correlates less well with performance. The physiological adaptations that correspond to and facilitate improved VO2max occur centrally in the cardiovascular system, centred on increased maximal cardiac output, and peripherally in the metabolic systems, centred around increased arterio-venous O2 (a-v O2) difference. While a high VO2max in individuals is clearly of importance to triathlon performance, energy output must be sustained for long periods of time, making economy of motion also very important. Studies suggests that competitive swimmers have better swimming economy than triathletes. However, since many triathletes have previously been competitive swimmers this finding is questionable. The finding suggests that triathletes from nonswimming backgrounds would benefit from improving swimming technique rather than concentrating training workouts solely on distance. In cycling and running, comparison studies have not been done. Economy of motion in swimming, cycling and running have all been found to be correlated with comparable event performance. Training to improve swimming economy can be done without prior exercise, but training to improve swimming economy can be done without prior exercise, but training to improve cycling and running economy should take the multimode nature of a triathlon into consideration. That is, swimming should precede cycling economy training, and cycling should precede running economy training. Cardiovascular, metabolic and neuromuscular adaptations are the main physiological correlates of improved movement economy. Since exercise-induced stress on most physiological systems is based on relative, rather than absolute, exercise intensity, training and racing intensities are frequently quantified as a percentage of maximal capacity of %VO2max.(ABSTRACT TRUNCATED AT 400 WORDS)
Physiological effects of handling and hauling stress on smallmouth bass
Carmichael, G.J.; Wedemeyer, G.A.; McCraren, J.P.; Millard, J.L.
1983-01-01
Basic physiological information on the stress caused by current hatchery practices is helpful in developing new and improved techniques to increase survival. In view of the present fishery management requirements for stocking smallmouth bas (Micropterus dolomieu), baseline information on the physiological effects of handling and hauling hatchery-reared fish is needed to serve as the foundation for improving transport methods. Shell (1959) summarized several physiological characteristics of smallmouth bass, but little information on their physiological tolerance to stress exists. The present study was designed to determine the physiological effects of handling and short-term hauling in small mouth bass. Plasma chloride, sodium, potassium, and glucose dynamics were monitored in indicate the severity of the resulting stress and the recovery time needed.
Illing, Björn; Rummer, Jodie L
2017-01-01
Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes.
NASA Astrophysics Data System (ADS)
Alves de Mesquita, Jayme; Lopes de Melo, Pedro
2004-03-01
Thermally sensitive devices—thermistors—have usually been used to monitor sleep-breathing disorders. However, because of their long time constant, these devices are not able to provide a good characterization of fast events, like hypopneas. Nasal pressure recording technique (NPR) has recently been suggested to quantify airflow during sleep. It is claimed that the short time constants of the devices used to implement this technique would allow an accurate analysis of fast abnormal respiratory events. However, these devices present errors associated with nonlinearities and acoustic resonance that could reduce the diagnostic value of the NPR. Moreover, in spite of the high scientific and clinical potential, there is no detailed description of a complete instrumentation system to implement this promising technique in sleep studies. In this context, the purpose of this work was twofold: (1) describe the development of a flexible NPR device and (2) evaluate the performance of this device when compared to pneumotachographs (PNTs) and thermistors. After the design details are described, the system static accuracy is evaluated by a comparative analysis with a PNT. This analysis revealed a significant reduction (p<0.001) of the static error when system nonlinearities were reduced. The dynamic performance of the NPR system was investigated by frequency response analysis and time constant evaluations and the results showed that the developed device response was as good as PNT and around 100 times faster (τ=5,3 ms) than thermistors (τ=512 ms). Experimental results obtained in simulated clinical conditions and in a patient are presented as examples, and confirmed the good features achieved in engineering tests. These results are in close agreement with physiological fundamentals, supplying substantial evidence that the improved dynamic and static characteristics of this device can contribute to a more accurate implementation of medical research projects and to improve the diagnoses of sleep-breathing disorders.
NASA Astrophysics Data System (ADS)
Itter, M.; D'Orangeville, L.; Dawson, A.; Kneeshaw, D.; Finley, A. O.
2017-12-01
Drought and insect defoliation have lasting impacts on the dynamics of the boreal forest. Impacts are expected to worsen under global climate change as hotter, drier conditions forecast for much of the boreal increase the frequency and severity of drought and defoliation events. Contemporary ecological theory predicts physiological feedbacks in tree responses to drought and defoliation amplify impacts potentially causing large-scale productivity losses and forest mortality. Quantifying the interactive impacts of drought and insect defoliation on regional forest health is difficult given delayed and persistent responses to disturbance events. We developed a Bayesian hierarchical model to estimate forest growth responses to interactions between drought and insect defoliation by species and size class. Delayed and persistent responses to past drought and defoliation were quantified using empirical memory functions allowing for improved detection of interactions. The model was applied to tree-ring data from stands in Western (Alberta) and Eastern (Québec) regions of the Canadian boreal forest with different species compositions, disturbance regimes, and regional climates. Western stands experience chronic water deficit and forest tent caterpillar (FTC) defoliation; Eastern stands experience irregular water deficit and spruce budworm (SBW) defoliation. Ecosystem memory to past water deficit peaked in the year previous to growth and decayed to zero within 5 (West) to 8 (East) years; memory to past defoliation ranged from 8 (West) to 12 (East) years. The drier regional climate and faster FTC defoliation dynamics (compared to SBW) likely contribute to shorter ecosystem memory in the West. Drought and defoliation had the largest negative impact on large-diameter, host tree growth. Surprisingly, a positive interaction was observed between drought and defoliation for large-diameter, non-host trees likely due to reduced stand-level competition for water. Results highlight the temporal persistence of drought and defoliation stress on boreal forest growth dynamics and provide an empirical estimate of their interactive effects with explicit uncertainty.
Gaetan, Sophie; Dousset, Erick; Marqueste, Tanguy; Bringoux, Lionel; Bourdin, Christophe; Vercher, Jean-Louis; Besson, Patricia
2015-12-01
Helicopter pilots are involved in a complex multitask activity, implying overuse of cognitive resources, which may result in piloting task impairment or in decision-making failure. Studies usually investigate this phenomenon in well-controlled, poorly ecological situations by focusing on the correlation between physiological values and either cognitive workload or emotional state. This study aimed at jointly exploring workload induced by a realistic simulated helicopter flight mission and emotional state, as well as physiological markers. The experiment took place in the helicopter full flight dynamic simulator. Six participants had to fly on two missions. Workload level, skin conductance, RMS-EMG, and emotional state were assessed. Joint analysis of psychological and physiological parameters associated with workload estimation revealed particular dynamics in each of three profiles. 1) Expert pilots showed a slight increase of measured physiological parameters associated with the increase in difficulty level. Workload estimates never reached the highest level and the emotional state for this profile only referred to positive emotions with low emotional intensity. 2) Non-Expert pilots showed increasing physiological values as the perceived workload increased. However, their emotional state referred to either positive or negative emotions, with a greater variability in emotional intensity. 3) Intermediate pilots were similar to Expert pilots regarding emotional states and similar to Non-Expert pilots regarding physiological patterns. Overall, high interindividual variability of these results highlight the complex link between physiological and psychological parameters with workload, and question whether physiology alone could predict a pilot's inability to make the right decision at the right time.
Wireless clinical alerts for physiologic, laboratory and medication data.
Shabot, M. M.; LoBue, M.; Chen, J.
2000-01-01
A fully interfaced clinical information system (CIS) contains physiologic, laboratory, blood gas, medication and other data that can be used as the information base for a comprehensive alerting system. Coupled with an event driven rules engine, a CIS can generate clinical alerts which may both prevent medical errors and assist caregivers in responding to critical events in a timely way. The authors have developed a clinical alerting system which delivers alerts and reminders to clinicians in real time via a alphanumeric display pagers. This paper will describe the system, the type and number of alerts generated, and the impact on clinical practice. A major issue remains in measuring the impact of wireless alerts on patient outcomes. PMID:11079992
APS: 125 Years of Progress of Physiology as a Scientific Discipline and a Profession
ERIC Educational Resources Information Center
Carroll, Robert G.; Frank, Martin; Ra'anan, Alice; Matyas, Marsha L.
2013-01-01
The Experimental Biology 2012 meeting in San Diego, CA, included events to celebrate the 125th anniversary of the founding of the American Physiological Society (APS) and reflect on the recent accomplishments of the society. Most of the APS activities in the past quarter century were guided by a series of strategic plans. Membership in the APS…
A stochastic differential equation model of diurnal cortisol patterns
NASA Technical Reports Server (NTRS)
Brown, E. N.; Meehan, P. M.; Dempster, A. P.
2001-01-01
Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.
Mind over motor mapping: Driver response to changing vehicle dynamics.
Bruno, Jennifer L; Baker, Joseph M; Gundran, Andrew; Harbott, Lene K; Stuart, Zachary; Piccirilli, Aaron M; Hosseini, S M Hadi; Gerdes, J Christian; Reiss, Allan L
2018-06-08
Improvements in vehicle safety require understanding of the neural systems that support the complex, dynamic task of real-world driving. We used functional near infrared spectroscopy (fNIRS) and pupilometry to quantify cortical and physiological responses during a realistic, simulated driving task in which vehicle dynamics were manipulated. Our results elucidate compensatory changes in driver behavior in response to changes in vehicle handling. We also describe associated neural and physiological responses under different levels of mental workload. The increased cortical activation we observed during the late phase of the experiment may indicate motor learning in prefrontal-parietal networks. Finally, relationships among cortical activation, steering control, and individual personality traits suggest that individual brain states and traits may be useful in predicting a driver's response to changes in vehicle dynamics. Results such as these will be useful for informing the design of automated safety systems that facilitate safe and supportive driver-car communication. © 2018 Wiley Periodicals, Inc.
Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.
1999-01-01
1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.
Tatum, William O; Langston, Michael E; Acton, Emily K
2016-06-01
The purpose of this case-matched study was to determine how frequently fibromyalgia is associated with different paroxysmal neurological disorders and explore the utility of fibromyalgia as a predictor for the diagnosis of psychogenic non-epileptic seizures. The billing diagnosis codes of 1,730 new, non-selected patient encounters were reviewed over a three-year period for an epileptologist in a neurology clinic to identify all patients with historical diagnoses of fibromyalgia. The frequency with which epileptic seizures, psychogenic non-epileptic seizures, and physiological non-epileptic events were comorbid with fibromyalgia was assessed. Age and gender case-matched controls were used for a between-group comparison. Wilcoxon tests were used to analyse interval data, and Chi-square was used to analyse categorical data (p<0.05). Fibromyalgia was retrospectively identified in 95/1,730 (5.5%) patients in this cohort. Females represented 95% of the fibromyalgia sample (age: 53 years; 95% CI: 57, 51). Forty-three percent of those with fibromyalgia had a non-paroxysmal, neurological primary clinical diagnosis, most commonly chronic pain. Paroxysmal events were present in 57% of fibromyalgia patients and 54% of case-matched controls. Among patients with fibromyalgia and paroxysmal disorders, 11% had epileptic seizures, 74% had psychogenic non-epileptic seizures, and 15% had physiological non-epileptic events, compared to case-matched controls with 37% epileptic seizures, 51% psychogenic non-epileptic events, and 12% physiological non-epileptic events (p = 0.009). Fibromyalgia was shown to be a predictor for the diagnosis of psychogenic non-epileptic seizures in patients with undifferentiated paroxysmal spells. However, our results suggest that the specificity and sensitivity of fibromyalgia as a marker for psychogenic non-epileptic seizures in a mixed general neurological population of patients is less than previously described.
Walders-Abramson, Natalie; Venditti, Elizabeth M; Ievers-Landis, Carolyn E; Anderson, Barbara; El Ghormli, Laure; Geffner, Mitchell; Kaplan, Joan; Koontz, Michaela B; Saletsky, Ron; Payan, Marisa; Yasuda, Patrice
2014-09-01
To examine the relationships between stressful life events and physiological measures, adherence to prescribed oral medication regimens, depressive symptoms, and impaired quality of life (QoL) in adolescents with recent-onset type 2 diabetes (T2D). Data were collected from 497 ethnically diverse participants (66% female) in the final year of the Treatment Options for Type 2 Diabetes in Adolescents and Youth multicenter clinical trial. Exposure to 32 possible events over the previous year and rating of subsequent distress were collected by self-report and summarized as a major stressors score. This score was analyzed for relationship to glycemic control (hemoglobin A1c and treatment failure), body mass index, diagnosis of hypertension or triglyceride dyslipidemia, adherence to a prescribed oral medication regimen, presence of depressive symptoms, and impaired QoL. The total number of major stressful life events in the adolescents with T2D was calculated, with 33% reporting none, 67% reporting ≥ 1, 47% reporting ≥ 2, 33% reporting ≥ 3, and 20% reporting ≥ 4. There were no associations between the major stressors score and physiological measures or diagnosis of comorbidities. The odds of medication nonadherence increased significantly from those reporting ≥ 1 major stressor (OR, 1.58; P = .0265) to those reporting ≥ 4 major stressors (OR, 2.70; P = .0009). Significant odds of elevated depressive symptoms and impaired QoL were also found with increased reporting of major stressors. Exposure to major stressful life events is associated with lower adherence to prescribed oral medication regimens and impaired psychosocial functioning in adolescents with T2D. Copyright © 2014 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Understanding how intensification of abiotic stress due to global climate change affects crop yields is important for continued agricultural productivity. Coupling genomic technologies with physiological crop responses in a dynamic field environment is an effective approach to dissect the mechanisms...
USDA-ARS?s Scientific Manuscript database
Background/Question/Methods Variation in precipitation expected with climate change may impact plant fitness and alter ecosystem dynamics by modifying species phenology, productivity, and physiology. Species responses to varied precipitation will depend in part on plastic responses of genotypes ad...
Potential formulation of sleep dynamics
NASA Astrophysics Data System (ADS)
Phillips, A. J. K.; Robinson, P. A.
2009-02-01
A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics of the physiologically based model from which it is derived, and is then fitted directly to a set of experimentally derived criteria. These criteria place rigorous constraints on the parameter values, and within these constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation. Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied mechanical systems. These include the relation between friction in the mechanical system and the timecourse of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The model derived here also serves as a platform for future investigations of sleep-wake phenomena from a dynamical perspective.
Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.
2016-01-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571
Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H
2017-05-01
Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.
Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W
2013-10-01
Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.
Interpersonal Autonomic Physiology: A Systematic Review of the Literature.
Palumbo, Richard V; Marraccini, Marisa E; Weyandt, Lisa L; Wilder-Smith, Oliver; McGee, Heather A; Liu, Siwei; Goodwin, Matthew S
2017-05-01
Interpersonal autonomic physiology is defined as the relationship between people's physiological dynamics, as indexed by continuous measures of the autonomic nervous system. Findings from this field of study indicate that physiological activity between two or more people can become associated or interdependent, often referred to as physiological synchrony. Physiological synchrony has been found in both new and established relationships across a range of contexts, and it correlates with a number of psychosocial constructs. Given these findings, interpersonal physiological interactions are theorized to be ubiquitous social processes that co-occur with observable behavior. However, this scientific literature is fragmented, making it difficult to evaluate consistency across reports. In an effort to facilitate more standardized scholarly approaches, this systematic review provides a description of existing work in the area and highlights theoretical, methodological, and statistical issues to be addressed in future interpersonal autonomic physiology research.
Sensorimotor coordination and the structure of space.
McCollum, Gin
2003-01-01
Embedded in neural and behavioral organization is a structure of sensorimotor space. Both this embedded spatial structure and the structure of physical space inform sensorimotor control. This paper reviews studies in which the gravitational vertical and horizontal are crucial. The mathematical expressions of spatial geometry in these studies indicate methods for investigating sensorimotor control in freefall. In freefall, the spatial structure introduced by gravitation - the distinction between vertical and horizontal - does not exist. However, an astronaut arriving in space carries the physiologically-embedded distinction between horizontal and vertical learned on earth. The physiological organization based on this distinction collapses when the strong otolith activity and other gravitational cues for sensorimotor behavior become unavailable. The mathematical methods in this review are applicable in understanding the changes in physiological organization as an astronaut adapts to sensorimotor control in freefall. Many mathematical languages are available for characterizing the logical structures in physiological organization. Here, group theory is used to characterize basic structure of physical and physiological spaces. Dynamics and topology allow the grouping of trajectory ranges according to the outcomes or attractors. The mathematics of ordered structures express complex orderings, such as in multiphase movements in which different parts of the body are moving in different phase sequences. Conditional dynamics, which combines dynamics with the mathematics of ordered structures, accommodates the parsing of movement sequences into trajectories and transitions. Studies reviewed include those of the sit-to-stand movement and early locomotion, because of the salience of gravitation in those behaviors. Sensorimotor transitions and the conditions leading to them are characterized in conditional dynamic control structures that do not require thinking of an organism as an input-output device. Conditions leading to sensorimotor transitions on earth assume the presence of a gravitational vertical which is lacking in space. Thus, conditions used on earth for sensorimotor transitions may become ambiguous in space. A platform study in which sensorimotor transition conditions are ambiguous and are related to motion sickness is reviewed.
Analyzing the Possibility of Dynamic Earthquake Triggering in Socorro, New Mexico
NASA Astrophysics Data System (ADS)
Morton, E.; Bilek, S. L.
2011-12-01
The release of energy during an earthquake changes the stress state and seismicity both locally and remotely. Far-field stress changes can lead to triggered earthquakes coinciding with the arrival of the surface waves. This dynamic triggering is found to occur in a variety of tectonic settings, but in particular magmatic regions. Here we test whether the Socorro Magma Body region in central New Mexico hosts triggered seismicity. Preliminary inspection of continuous network data in central New Mexico suggested a local triggered event with the passage of surface waves from an MW 6.9 event in 2009. For a more comprehensive view, we examine data from 379 earthquakes MW ≥ 6.0 between January 15, 2008 to March 13, 2010 recorded on the EarthScope USArray Transportable Network stations located within New Mexico and providing more dense coverage for better detectability. Waveforms from twenty EarthScope stations were windowed around the time of the large event, high-pass filtered at 5 Hz to remove low frequency signals and analyzed to detect high frequency triggered local earthquakes. For each possible trigger detected, waveforms from nine short-period stations in the Socorro Seismic Network were added to aid in locating the events. In the time period analyzed, twelve triggered events were detected. Only one of these events, on August 30, 2009, corresponded to the arrival of surface waves, occurring about a minute after their arrival. The majority of the triggered events occur well after the arrival of the surface waves, indicating that they are either independent of the main shock or the result of delayed dynamic triggering. Delayed dynamic triggering can occur hours or days after the passage of surface waves, and are marked by an increase in seismicity relative to background. Only one of the events, on September 18, 2009, occurred within the Socorro Magma Body area. The rest of these events occur spread throughout New Mexico. The widely spread distribution of possibly triggered events and the low ratio of triggers to main shocks indicates that the rifted magmatic region above the Socorro Magma Body is not particularly susceptible to dynamic triggering from remote main shocks. The lack of direct correspondence to a seismic phase can mean that the detected events may be independent (not triggered events), or the result of delayed dynamic triggering. A comparison to randomly chosen waveforms within the time period as background will reveal if the possible events are a result of delayed dynamic triggering or part of the background.
Characterization of dynamic physiology of the bladder by optical coherence tomography
NASA Astrophysics Data System (ADS)
Yuan, Zhijia; Keng, Kerri; Pan, Rubin; Ren, Hugang; Du, Congwu; Kim, Jason; Pan, Yingtian
2012-03-01
Because of its high spatial resolution and noninvasive imaging capabilities, optical coherence tomography has been used to characterize the morphological details of various biological tissues including urinary bladder and to diagnose their alternations (e.g., cancers). In addition to static morphology, the dynamic features of tissue morphology can provide important information that can be used to diagnose the physiological and functional characteristics of biological tissues. Here, we present the imaging studies based on optical coherence tomography to characterize motion related physiology and functions of rat bladder detrusor muscles and compared the results with traditional biomechanical measurements. Our results suggest that optical coherence tomography is capable of providing quantitative evaluation of contractile functions of intact bladder (without removing bladder epithelium and connective tissue), which is potentially of more clinical relevance for future clinical diagnosis - if incorporated with cystoscopic optical coherence tomography.
Modeling liver physiology: combining fractals, imaging and animation.
Lin, Debbie W; Johnson, Scott; Hunt, C Anthony
2004-01-01
Physiological modeling of vascular and microvascular networks in several key human organ systems is critical for a deeper understanding of pharmacology and the effect of pharmacotherapies on disease. Like the lung and the kidney, the morphology of its vascular and microvascular system plays a major role in its functional capability. To understand liver function in absorption and metabolism of food and drugs, one must examine the morphology and physiology at both higher and lower level liver function. We have developed validated virtualized dynamic three dimensional (3D) models of liver secondary units and primary units by combining a number of different methods: three-dimensional rendering, fractals, and animation. We have simulated particle dynamics in the liver secondary unit. The resulting models are suitable for use in helping researchers easily visualize and gain intuition on results of in silico liver experiments.
Culen, Martin; Rezacova, Anna; Jampilek, Josef; Dohnal, Jiri
2013-09-01
Development of new pharmaceutical compounds and dosage forms often requires in vitro dissolution testing with the closest similarity to the human gastrointestinal (GI) tract. To create such conditions, one needs a suitable dissolution apparatus and the appropriate data on the human GI physiology. This review discusses technological approaches applicable in biorelevant dissolutions as well as the physiology of stomach and small intestine in both fasted and fed state, that is, volumes of contents, transit times for water/food and various solid oral dosage forms, pH, osmolality, surface tension, buffer capacity, and concentrations of bile salts, phospholipids, enzymes, and Ca(2+) ions. The information is aimed to provide clear suggestions on how these conditions should be set in a dynamic biorelevant dissolution test. Copyright © 2013 Wiley Periodicals, Inc.
The Tour de France: a physiological review.
Lucia, Alejandro; Earnest, Conrad; Arribas, Carlos
2003-10-01
On 5 July 2003, the Tour de France (TDF) has celebrated 100th running. Instead of a chimney sweep competing during his free time (as in 1903), the recent winner is a highly trained, professional cyclist whose entire life-style has been dedicated to reach his pinnacle during this event. The TDF has been held successfully for 100 years, but the application of the physiologic sciences to the sport is a relatively recent phenomenon. Although some historical reports help to understand the unique physiological characteristics of this race, scientific studies were not available in Sports Science/Applied Physiology journals until the 1990s. The aim of this article is to review the history of the TDF. Special emphasis is placed on the last decade where classic physiology has been integrated into applied scientific cycling data.
Observer properties for understanding dynamical displays: Capacities, limitations, and defaults
NASA Technical Reports Server (NTRS)
Proffitt, Dennis R.; Kaiser, Mary K.
1991-01-01
People's ability to extract relevant information while viewing ongoing events is discussed in terms of human capabilities, limitations, and defaults. A taxonomy of event complexity is developed which predicts which dynamical events people can and cannot construe. This taxonomy is related to the distinction drawn in classical mechanics between particle and extended body motions. People's commonsense understandings of simple mechanical systems are impacted little by formal training, but rather reflect heuristical simplifications that focus on a single dimension of perceived dynamical relevance.
Molecular Dynamics Study of the Opening Mechanism for DNA Polymerase I
Miller, Bill R.; Parish, Carol A.; Wu, Eugene Y.
2014-01-01
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics. PMID:25474643
The role of glutamate in neuronal ion homeostasis: A case study of spreading depolarization.
Hübel, Niklas; Hosseini-Zare, Mahshid S; Žiburkus, Jokūbas; Ullah, Ghanim
2017-10-01
Simultaneous changes in ion concentrations, glutamate, and cell volume together with exchange of matter between cell network and vasculature are ubiquitous in numerous brain pathologies. A complete understanding of pathological conditions as well as normal brain function, therefore, hinges on elucidating the molecular and cellular pathways involved in these mostly interdependent variations. In this paper, we develop the first computational framework that combines the Hodgkin-Huxley type spiking dynamics, dynamic ion concentrations and glutamate homeostasis, neuronal and astroglial volume changes, and ion exchange with vasculature into a comprehensive model to elucidate the role of glutamate uptake in the dynamics of spreading depolarization (SD)-the electrophysiological event underlying numerous pathologies including migraine, ischemic stroke, aneurysmal subarachnoid hemorrhage, intracerebral hematoma, and trauma. We are particularly interested in investigating the role of glutamate in the duration and termination of SD caused by K+ perfusion and oxygen-glucose deprivation. Our results demonstrate that glutamate signaling plays a key role in the dynamics of SD, and that impaired glutamate uptake leads to recovery failure of neurons from SD. We confirm predictions from our model experimentally by showing that inhibiting astrocytic glutamate uptake using TFB-TBOA nearly quadruples the duration of SD in layers 2-3 of visual cortical slices from juvenile rats. The model equations are either derived purely from first physical principles of electroneutrality, osmosis, and conservation of particles or a combination of these principles and known physiological facts. Accordingly, we claim that our approach can be used as a future guide to investigate the role of glutamate, ion concentrations, and dynamics cell volume in other brain pathologies and normal brain function.
Burroughs, Amelia; Wise, Andrew K; Xiao, Jianqiang; Houghton, Conor; Tang, Tianyu; Suh, Colleen Y; Lang, Eric J; Apps, Richard; Cerminara, Nadia L
2017-01-01
Purkinje cells are the sole output of the cerebellar cortex and fire two distinct types of action potential: simple spikes and complex spikes. Previous studies have mainly considered complex spikes as unitary events, even though the waveform is composed of varying numbers of spikelets. The extent to which differences in spikelet number affect simple spike activity (and vice versa) remains unclear. We found that complex spikes with greater numbers of spikelets are preceded by higher simple spike firing rates but, following the complex spike, simple spikes are reduced in a manner that is graded with spikelet number. This dynamic interaction has important implications for cerebellar information processing, and suggests that complex spike spikelet number may maintain Purkinje cells within their operational range. Purkinje cells are central to cerebellar function because they form the sole output of the cerebellar cortex. They exhibit two distinct types of action potential: simple spikes and complex spikes. It is widely accepted that interaction between these two types of impulse is central to cerebellar cortical information processing. Previous investigations of the interactions between simple spikes and complex spikes have mainly considered complex spikes as unitary events. However, complex spikes are composed of an initial large spike followed by a number of secondary components, termed spikelets. The number of spikelets within individual complex spikes is highly variable and the extent to which differences in complex spike spikelet number affects simple spike activity (and vice versa) remains poorly understood. In anaesthetized adult rats, we have found that Purkinje cells recorded from the posterior lobe vermis and hemisphere have high simple spike firing frequencies that precede complex spikes with greater numbers of spikelets. This finding was also evident in a small sample of Purkinje cells recorded from the posterior lobe hemisphere in awake cats. In addition, complex spikes with a greater number of spikelets were associated with a subsequent reduction in simple spike firing rate. We therefore suggest that one important function of spikelets is the modulation of Purkinje cell simple spike firing frequency, which has implications for controlling cerebellar cortical output and motor learning. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
NASA Astrophysics Data System (ADS)
Potirakis, Stelios M.; Zitis, Pavlos I.; Eftaxias, Konstantinos
2013-07-01
The field of study of complex systems considers that the dynamics of complex systems are founded on universal principles that may be used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. Several authors have suggested that earthquake dynamics and the dynamics of economic (financial) systems can be analyzed within similar mathematical frameworks. We apply concepts of the nonextensive statistical physics, on time-series data of observable manifestations of the underlying complex processes ending up with these different extreme events, in order to support the suggestion that a dynamical analogy exists between a financial crisis (in the form of share or index price collapse) and a single earthquake. We also investigate the existence of such an analogy by means of scale-free statistics (the Gutenberg-Richter distribution of event sizes). We show that the populations of: (i) fracto-electromagnetic events rooted in the activation of a single fault, emerging prior to a significant earthquake, (ii) the trade volume events of different shares/economic indices, prior to a collapse, and (iii) the price fluctuation (considered as the difference of maximum minus minimum price within a day) events of different shares/economic indices, prior to a collapse, follow both the traditional Gutenberg-Richter law as well as a nonextensive model for earthquake dynamics, with similar parameter values. The obtained results imply the existence of a dynamic analogy between earthquakes and economic crises, which moreover follow the dynamics of seizures, magnetic storms and solar flares.
Leaky synapses: Regulation of spontaneous neurotransmission in central synapses
Wasser, Catherine R.; Kavalali, Ege T.
2009-01-01
The mechanisms underlying spontaneous neurotransmitter release are not well understood. Under physiological as well as pathophysiological circumstances, spontaneous fusion events can set the concentration of ambient levels of neurotransmitter within the synaptic cleft and in the extracellular milieu. In the brain, unregulated release of excitatory neurotransmitters, exacerbated during pathological conditions such as stroke, can lead to neuronal damage and death. In addition, recent findings suggest that under physiological circumstances spontaneous release events can trigger postsynaptic signaling events independent of evoked neurotransmitter release. Therefore, elucidation of mechanisms underlying spontaneous neurotransmission may help us better understand the functional significance of this form of release and provide tools for its selective manipulation. For instance, our recent investigations indicate that the level of cholesterol in the synapse plays a critical role in limiting spontaneous synaptic vesicle fusion. Therefore, alterations in synaptic cholesterol metabolism can be a critical determinant of glutamatergic neurotransmission at rest. This article aims to provide a closer look into our current understanding of the mechanisms underlying spontaneous neurotransmission and the signaling triggered by these unitary release events. PMID:18434032
NASA Technical Reports Server (NTRS)
Eisner, M. (Editor)
1974-01-01
The possible utilization of the zero gravity resource for studies in a variety of fluid dynamics and fluid-dynamic related problems was investigated. A group of experiments are discussed and described in detail; these include experiments in the areas of geophysical fluid models, fluid dynamics, mass transfer processes, electrokinetic separation of large particles, and biophysical and physiological areas.
Finotello, Simone; Feckler, Alexander; Bundschuh, Mirco; Johansson, Frank
2017-10-01
Damselflies form an essential part of the aquatic and terrestrial food web. Pesticides may, however, negatively affect their behavior, physiology, and survival. To assess this, a 42-day-lasting bioassay was conducted, during which damselfly larvae (Ischnura graellsii; n = 20) were repeatedly exposed to lambda-cyhalothrin (3 days at; 0, 10, 50, 250, 1250, and 6250ng LCH L -1 ), followed by recovery phases (4 days) in pesticide-free medium for six weeks. This exposure design was used to simulate frequent runoff events in the field. Variables related to the behavior (strikes against prey and capture success), growth, physiology (lipid content and fatty acid composition), as well as mortality were assessed throughout the experiment. The two highest LCH concentrations induced 100% mortality within the first 48h, whereas 85% of the test organisms survived 28 days under control conditions. The number of strikes against prey was not affected by LCH. In contrast, prey capture success decreased significantly (up to ~50% at 250ng LCH L -1 , for instance, after the third pulse exposure) following LCH-exposures compared to the control. This difference was not observed after recovery phases, however, which did not counteract the enhanced energy demand for detoxification and defense mechanisms indicated by a lower growth rate (up to ~20%) and lipid content (up to ~30%) of damselflies at 50 and 250ng LCH L -1 . In addition, two essential fatty acids (eicosapentaenoic acid and arachidonic acid) and two precursors (linolenic acid and α-linolenic acid) decreased in their concentrations upon exposure towards 250ng LCH L -1 . Thus the results of this study indicate that long-term exposure towards LCH pulses can affect damselfly behavior, physiology and survival. Given the essential role of damselflies in food web dynamics, these effects may potentially translate into local population impairments with subsequent bottom-up directed effects within and across ecosystem boundaries. Copyright © 2017 Elsevier Inc. All rights reserved.
Common features in diverse insect clocks.
Numata, Hideharu; Miyazaki, Yosuke; Ikeno, Tomoko
2015-01-01
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
Live maternal speech and singing have beneficial effects on hospitalized preterm infants.
Filippa, Manuela; Devouche, Emmanuel; Arioni, Cesare; Imberty, Michel; Gratier, Maya
2013-10-01
To study the effects of live maternal speaking and singing on physiological parameters of preterm infants in the NICU and to test the hypothesis that vocal stimulation can have differential effects on preterm infants at a behavioural level. Eighteen mothers spoke and sang to their medically stable preterm infants in their incubators over 6 days, between 1 and 2 pm. Heart rate (HR), oxygen saturation (OxSat), number of critical events (hypoxemia, bradycardia and apnoea) and change in behavioural state were measured. Comparisons of periods with and without maternal vocal stimulation revealed significantly greater oxygen saturation level and heart rate and significantly fewer negative critical events (p < 0.0001) when the mother was speaking and singing. Unexpected findings were the comparable effects of maternal talk and singing on infant physiological parameters and the differential ones on infant behavioural state. A renewed connection to the mother's voice can be an important and significant experience for preterm infants. Exposure to maternal speech and singing shows significant early beneficial effects on physiological state, such as oxygen saturation levels, number of critical events and prevalence of calm alert state. These findings have implications for NICU interventions, encouraging maternal interaction with their medically stable preterm infants. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Manczak, Erika M; McLean, Kate C; McAdams, Dan P; Chen, Edith
2015-08-01
Parents and adolescents commonly discuss stressful experiences. However, little is known about the features of these conversations that may have implications for health. One hundred five adolescents and their parents engaged in conversations about two challenging events, with parental contributions to the discussions coded for four scaffolding behaviors (reiterations, negations, move alongs, and new interpretations). Systolic blood pressure, diastolic blood pressure, and heart rate were measured in both participants at baseline and throughout the conversation. Parent-reported relationship quality was also assessed. For both parents and adolescents, negative scaffolding behaviors were associated with increased physiological reactivity, whereas positive scaffolding behaviors were associated with decreased reactivity. Furthermore, children in higher quality parent-child relationships showed greater reactivity to reiterations and lower reactivity to new interpretations, but those in lower quality relationships demonstrated the opposite patterns. Specific aspects of parent-child interactions appear to contribute to physiological responses to challenging events, which in turn may have implications for health.
Physiological limits to endurance exercise performance: influence of sex
2017-01-01
Abstract This brief review summarizes factors associated with elite endurance performance, trends in distance running training, and participation by men and more recently women. It is framed in the context of key ideas about the physiological determinants of endurance performance but also touches on some historical and sociological factors relevant to the overall topic. Historical trends that served to increase women's participation in elite endurance events are also discussed as is the role of increased volume and intensity of training. The rapid improvement in women's world record marathon times in the 1970s and 80s are emblematic of these trends and represent a combination of increased training volume and intensity and more competitive opportunities. This occurred as bans on participation by women in endurance events were lifted. For men these same trends evolved over a much longer time frame. The main physiological factor responsible for 10–12% slower times in women compared to men at the elite level are also considered and probably centre aroundV˙O2 max . PMID:28028816
Fundamentals of quantitative dynamic contrast-enhanced MR imaging.
Paldino, Michael J; Barboriak, Daniel P
2009-05-01
Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.
Cardiovascular and other dynamic systems in long-term space flight
NASA Technical Reports Server (NTRS)
Tipton, David A.
1987-01-01
The paper examines the physiology of the cardiovascular system, and to a lesser extent the endocrine, renal, and hematopoietic systems. The paper highlights the aspects of these areas that are most pertinent to space manufacturing, i.e., working in space. Areas covered include the physiological costs of working in microgravity and partial gravity (e.g., the moon or Mars), countermeasures to potentially adverse physiological adaptations, and problems associated with return to earth after long periods of weightlessness.
Dynamics of Mouth Opening in Hydra
Carter, Jason A.; Hyland, Callen; Steele, Robert E.; Collins, Eva-Maria S.
2016-01-01
Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo. PMID:26958895
Dynamics of Mouth Opening in Hydra.
Carter, Jason A; Hyland, Callen; Steele, Robert E; Collins, Eva-Maria S
2016-03-08
Hydra, a simple freshwater animal famous for its regenerative capabilities, must tear a hole through its epithelial tissue each time it opens its mouth. The feeding response of Hydra has been well-characterized physiologically and is regarded as a classical model system for environmental chemical biology. However, due to a lack of in vivo labeling and imaging tools, the biomechanics of mouth opening have remained completely unexplored. We take advantage of the availability of transgenic Hydra lines to perform the first dynamical analysis, to our knowledge, of Hydra mouth opening and test existing hypotheses regarding the underlying cellular mechanisms. Through cell position and shape tracking, we show that mouth opening is accompanied by changes in cell shape, but not cellular rearrangements as previously suggested. Treatment with a muscle relaxant impairs mouth opening, supporting the hypothesis that mouth opening is an active process driven by radial contractile processes (myonemes) in the ectoderm. Furthermore, we find that all events exhibit the same relative rate of opening. Because one individual can open consecutively to different amounts, this suggests that the degree of mouth opening is controlled through neuronal signaling. Finally, from the opening dynamics and independent measurements of the elastic properties of the tissues, we estimate the forces exerted by the myonemes to be on the order of a few nanoNewtons. Our study provides the first dynamical framework, to our knowledge, for understanding the remarkable plasticity of the Hydra mouth and illustrates that Hydra is a powerful system for quantitative biomechanical studies of cell and tissue behaviors in vivo. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Twilight spectral dynamics and the coral reef invertebrate spawning response.
Sweeney, Alison M; Boch, Charles A; Johnsen, Sonke; Morse, Daniel E
2011-03-01
There are dramatic and physiologically relevant changes in both skylight color and intensity during evening twilight as the pathlength of direct sunlight through the atmosphere increases, ozone increasingly absorbs long wavelengths and skylight becomes increasingly blue shifted. The moon is above the horizon at sunset during the waxing phase of the lunar cycle, on the horizon at sunset on the night of the full moon and below the horizon during the waning phase. Moonlight is red shifted compared with daylight, so the presence, phase and position of the moon in the sky could modulate the blue shifts during twilight. Therefore, the influence of the moon on twilight color is likely to differ somewhat each night of the lunar cycle, and to vary especially rapidly around the full moon, as the moon transitions from above to below the horizon during twilight. Many important light-mediated biological processes occur during twilight, and this lunar effect may play a role. One particularly intriguing biological event tightly correlated with these twilight processes is the occurrence of mass spawning events on coral reefs. Therefore, we measured downwelling underwater hyperspectral irradiance on a coral reef during twilight for several nights before and after the full moon. We demonstrate that shifts in twilight color and intensity on nights both within and between evenings, immediately before and after the full moon, are correlated with the observed times of synchronized mass spawning, and that these optical phenomena are a biologically plausible cue for the synchronization of these mass spawning events.
Direct test of static stress versus dynamic stress triggering of aftershocks
Pollitz, F.F.; Johnston, M.J.S.
2006-01-01
Aftershocks observed over time scales of minutes to months following a main shock are plausibly triggered by the static stress change imparted by the main shock, dynamic shaking effects associated with passage of seismic waves from the main shock, or a combination of the two. We design a direct test of static versus dynamic triggering of aftershocks by comparing the near-field temporal aftershock patterns generated by aseismic and impulsive events occurring in the same source area. The San Juan Bautista, California, area is ideally suited for this purpose because several events of both types of M???5 have occurred since 1974. We find that aftershock rates observed after impulsive events are much higher than those observed after aseismic events, and this pattern persists for several weeks after the event. This suggests that, at least in the near field, dynamic triggering is the dominant cause of aftershocks, and that it generates both immediate and delayed aftershock activity.
A. Abdel‐Rahman, Engy; Mahmoud, Ali M.; Khalifa, Abdulrahman M.
2016-01-01
Abstract Reactive oxygen and nitrogen species (ROS and RNS) play crucial roles in triggering, mediating and regulating physiological and pathophysiological signal transduction pathways within the cell. Within the cell, ROS efflux is firmly controlled both spatially and temporally, making the study of ROS dynamics a challenging task. Different approaches have been developed for ROS assessment; however, many of these assays are not capable of direct identification or determination of subcellular localization of different ROS. Here we highlight electron paramagnetic resonance (EPR) spectroscopy as a powerful technique that is uniquely capable of addressing questions on ROS dynamics in different biological specimens and cellular compartments. Due to their critical importance in muscle functions and dysfunction, we discuss in some detail spin trapping of various ROS and focus on EPR detection of nitric oxide before highlighting how EPR can be utilized to probe biophysical characteristics of the environment surrounding a given stable radical. Despite the demonstrated ability of EPR spectroscopy to provide unique information on the identity, quantity, dynamics and environment of radical species, its applications in the field of muscle physiology, fatiguing and ageing are disproportionately infrequent. While reviewing the limited examples of successful EPR applications in muscle biology we conclude that the field would greatly benefit from more studies exploring ROS sources and kinetics by spin trapping, protein dynamics by site‐directed spin labelling, and membrane dynamics and global redox changes by spin probing EPR approaches. PMID:26801204
NASA Astrophysics Data System (ADS)
Jablonski, Piotr; Poe, Gina; Zochowski, Michal
2007-03-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
NASA Astrophysics Data System (ADS)
Jablonski, Piotr; Poe, Gina R.; Zochowski, Michal
2007-01-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
Morris, Paul D; Silva Soto, Daniel Alejandro; Feher, Jeroen F A; Rafiroiu, Dan; Lungu, Angela; Varma, Susheel; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2017-08-01
Fractional flow reserve (FFR)-guided percutaneous intervention is superior to standard assessment but remains underused. The authors have developed a novel "pseudotransient" analysis protocol for computing virtual fractional flow reserve (vFFR) based upon angiographic images and steady-state computational fluid dynamics. This protocol generates vFFR results in 189 s (cf >24 h for transient analysis) using a desktop PC, with <1% error relative to that of full-transient computational fluid dynamics analysis. Sensitivity analysis demonstrated that physiological lesion significance was influenced less by coronary or lesion anatomy (33%) and more by microvascular physiology (59%). If coronary microvascular resistance can be estimated, vFFR can be accurately computed in less time than it takes to make invasive measurements.
Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation
Wong, Cheuk-Yin
2017-05-25
In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less
Event-by-Event Study of Space-Time Dynamics in Flux-Tube Fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Cheuk-Yin
In the semi-classical description of the flux-tube fragmentation process for hadron production and hadronization in high-energymore » $e^+e^-$ annihilations and $pp$ collisions, the rapidity-space-time ordering and the local conservation laws of charge, flavor, and momentum provide a set of powerful tools that may allow the reconstruction of the space-time dynamics of quarks and mesons in exclusive measurements of produced hadrons, on an event-by-event basis. We propose procedures to reconstruct the space-time dynamics from event-by-event exclusive hadron data to exhibit explicitly the ordered chain of hadrons produced in a flux tube fragmentation. As a supplementary tool, we infer the average space-time coordinates of the $q$-$$\\bar q$$ pair production vertices from the $$\\pi^-$$ rapidity distribution data obtained by the NA61/SHINE Collaboration in $pp$ collisions at $$\\sqrt{s}$$ = 6.3 to 17.3 GeV.« less
Petrov, Andrii Y; Herbst, Michael; Andrew Stenger, V
2017-08-15
Rapid whole-brain dynamic Magnetic Resonance Imaging (MRI) is of particular interest in Blood Oxygen Level Dependent (BOLD) functional MRI (fMRI). Faster acquisitions with higher temporal sampling of the BOLD time-course provide several advantages including increased sensitivity in detecting functional activation, the possibility of filtering out physiological noise for improving temporal SNR, and freezing out head motion. Generally, faster acquisitions require undersampling of the data which results in aliasing artifacts in the object domain. A recently developed low-rank (L) plus sparse (S) matrix decomposition model (L+S) is one of the methods that has been introduced to reconstruct images from undersampled dynamic MRI data. The L+S approach assumes that the dynamic MRI data, represented as a space-time matrix M, is a linear superposition of L and S components, where L represents highly spatially and temporally correlated elements, such as the image background, while S captures dynamic information that is sparse in an appropriate transform domain. This suggests that L+S might be suited for undersampled task or slow event-related fMRI acquisitions because the periodic nature of the BOLD signal is sparse in the temporal Fourier transform domain and slowly varying low-rank brain background signals, such as physiological noise and drift, will be predominantly low-rank. In this work, as a proof of concept, we exploit the L+S method for accelerating block-design fMRI using a 3D stack of spirals (SoS) acquisition where undersampling is performed in the k z -t domain. We examined the feasibility of the L+S method to accurately separate temporally correlated brain background information in the L component while capturing periodic BOLD signals in the S component. We present results acquired in control human volunteers at 3T for both retrospective and prospectively acquired fMRI data for a visual activation block-design task. We show that a SoS fMRI acquisition with an acceleration of four and L+S reconstruction can achieve a brain coverage of 40 slices at 2mm isotropic resolution and 64 x 64 matrix size every 500ms. Copyright © 2017 Elsevier Inc. All rights reserved.
A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS
We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...
Physiology of motion sickness symptoms
NASA Technical Reports Server (NTRS)
Harm, Deborah L.
1990-01-01
Motion sickness research is reviewed with the emphasis placed on theories developed to explain its symptomatology. A general review of central nervous system, autonomic nervous system, and neuroendocrine system involvement in the syndrome. Particular attention is given to signs, symptoms, and physiological correlates, methodological issues, and directions for future research based on a dynamic interactive systems model.
Integrative Metabolism: An Interactive Learning Tool for Nutrition, Biochemistry, and Physiology
ERIC Educational Resources Information Center
Carey, Gale
2010-01-01
Metabolism is a dynamic, simultaneous, and integrative science that cuts across nutrition, biochemistry, and physiology. Teaching this science can be a challenge. The use of a scenario-based, visually appealing, interactive, computer-animated CD may overcome the limitations of learning "one pathway at a time" and engage two- and…
Who is Crossing Where?: Infants’ Discrimination of Figures and Grounds in Events
Göksun, Tilbe; Hirsh-Pasek, Kathy; Golinkoff, Roberta Michnick; Imai, Mutsumi; Konishi, Haruka; Okada, Hiroyuki
2011-01-01
To learn relational terms such as verbs and prepositions, children must first dissect and process dynamic event components. This paper investigates the way in which 8- to 14-month-old English-reared infants notice the event components, figure (i.e., the moving entity) and ground (i.e., stationary setting), in both dynamic (Experiment 1) and static representations of events (Experiment 2) for categorical ground distinctions expressed in Japanese, but not in English. We then compare both 14- and 19-month-old English- and Japanese-reared infants’ processing of grounds to understand how language learning interacts with the conceptualization of these constructs (Experiment 3). Results suggest that 1) infants distinguish between figures and grounds in events; 2) they do so differently for static vs. dynamic displays; 3) early in the second year, children from diverse language environments form nonnative - perhaps universal - event categories; and 4) these event categories shift over time as children have more exposure to their native tongue. PMID:21839990
Erem, B; Hyde, D E; Peters, J M; Duffy, F H; Brooks, D H; Warfield, S K
2015-04-01
The dynamical structure of the brain's electrical signals contains valuable information about its physiology. Here we combine techniques for nonlinear dynamical analysis and manifold identification to reveal complex and recurrent dynamics in interictal epileptiform discharges (IEDs). Our results suggest that recurrent IEDs exhibit some consistent dynamics, which may only last briefly, and so individual IED dynamics may need to be considered in order to understand their genesis. This could potentially serve to constrain the dynamics of the inverse source localization problem.
Conservation at a slow pace: terrestrial gastropods facing fast-changing climate
Ansart, Armelle
2017-01-01
Abstract The climate is changing rapidly, and terrestrial ectotherms are expected to be particularly vulnerable to changes in temperature and water regime, but also to an increase in extreme weather events in temperate regions. Physiological responses of terrestrial gastropods to climate change are poorly studied. This is surprising, because they are of biodiversity significance among litter-dwelling species, playing important roles in ecosystem function, with numerous species being listed as endangered and requiring efficient conservation management. Through a summary of our ecophysiological work on snail and slug species, we gained some insights into physiological and behavioural responses to climate change that we can organize into the following four threat categories. (i) Winter temperature and snow cover. Terrestrial gastropods use different strategies to survive sub-zero temperatures in buffered refuges, such as the litter or the soil. Absence of the insulating snow cover exposes species to high variability in temperature. The extent of specific cold tolerance might influence the potential of local extinction, but also of invasion. (ii) Drought and high temperature. Physiological responses involve high-cost processes that protect against heat and dehydration. Some species decrease activity periods, thereby reducing foraging and reproduction time. Related costs and physiological limits are expected to increase mortality. (iii) Extreme events. Although some terrestrial gastropod communities can have a good resilience to fire, storms and flooding, an increase in the frequency of those events might lead to community impoverishment. (iv) Habitat loss and fragmentation. Given that terrestrial gastropods are poorly mobile, landscape alteration generally results in an increased risk of local extinction, but responses are highly variable between species, requiring studies at the population level. There is a great need for studies involving non-invasive methods on the plasticity of physiological and behavioural responses and the ability for local adaptation, considering the spatiotemporally heterogeneous climatic landscape, to allow efficient management of ecosystems and conservation of biodiversity. PMID:28852510
Message-adjusted network (MAN) hypothesis in gastro-entero-pancreatic (GEP) endocrine system.
Aykan, N Faruk
2007-01-01
Several types of communication coordinate body functions to maintain homeostasis. Clarifying intercellular communication systems is as important as intracellular signal mechanisms. In this study, we propose an intercellular network model to establish novel targets in GEP-endocrine system, based on up-to-date information from medical publications. As materials, two physiologic events which are Pavlov's sham-feeding assay and bicarbonate secretion into the duodenum from pancreas were explored by new biologic data from the literature. Major key words used in Pub-Med were modes of regulations (autocrine, paracrine, endocrine, neurocrine, juxtacrine, lumencrine), GEP cells, hormones, peptides and neuro-transmitters. In these two examples of physiologic events, we can design a model of network to clarify transmission of a message. When we take a simple, unique message, we can observe a complete intercellular network. In our examples, these messages are "food is coming" and "hydrogen ions are increasing" in human language (humanese). We need to find molecular counterparts of these unique messages in cell language (cellese). In this network (message-adjusted network; MAN), message is an input which can affect the physiologic equilibrium, mission is an output to improve the disequilibrium and aim is always maintenance of homeostasis. If we orientate to a transmission of a unique message we can distinguish that different cells use different chemical messengers in different modes of regulations to transmit the same message. This study also supports Shannon's information theory and cell language theories such as von Neumann-Patte principles. After human genome project (HU-GO) and protein organisations (HU-PO), finding true messages and the establishment of their networks (in our model HU-MAN project) can be a novel and exciting field in cell biology. We established an intercellular network model to understand intercellular communication in the physiology of GEP endocrine system. This model could help to explain complex physiologic events as well as to generate new treatment concepts.
Conservation at a slow pace: terrestrial gastropods facing fast-changing climate.
Nicolai, Annegret; Ansart, Armelle
2017-01-01
The climate is changing rapidly, and terrestrial ectotherms are expected to be particularly vulnerable to changes in temperature and water regime, but also to an increase in extreme weather events in temperate regions. Physiological responses of terrestrial gastropods to climate change are poorly studied. This is surprising, because they are of biodiversity significance among litter-dwelling species, playing important roles in ecosystem function, with numerous species being listed as endangered and requiring efficient conservation management. Through a summary of our ecophysiological work on snail and slug species, we gained some insights into physiological and behavioural responses to climate change that we can organize into the following four threat categories. (i) Winter temperature and snow cover. Terrestrial gastropods use different strategies to survive sub-zero temperatures in buffered refuges, such as the litter or the soil. Absence of the insulating snow cover exposes species to high variability in temperature. The extent of specific cold tolerance might influence the potential of local extinction, but also of invasion. (ii) Drought and high temperature. Physiological responses involve high-cost processes that protect against heat and dehydration. Some species decrease activity periods, thereby reducing foraging and reproduction time. Related costs and physiological limits are expected to increase mortality. (iii) Extreme events. Although some terrestrial gastropod communities can have a good resilience to fire, storms and flooding, an increase in the frequency of those events might lead to community impoverishment. (iv) Habitat loss and fragmentation. Given that terrestrial gastropods are poorly mobile, landscape alteration generally results in an increased risk of local extinction, but responses are highly variable between species, requiring studies at the population level. There is a great need for studies involving non-invasive methods on the plasticity of physiological and behavioural responses and the ability for local adaptation, considering the spatiotemporally heterogeneous climatic landscape, to allow efficient management of ecosystems and conservation of biodiversity.
Conservation physiology of marine fishes: state of the art and prospects for policy.
McKenzie, David J; Axelsson, Michael; Chabot, Denis; Claireaux, Guy; Cooke, Steven J; Corner, Richard A; De Boeck, Gudrun; Domenici, Paolo; Guerreiro, Pedro M; Hamer, Bojan; Jørgensen, Christian; Killen, Shaun S; Lefevre, Sjannie; Marras, Stefano; Michaelidis, Basile; Nilsson, Göran E; Peck, Myron A; Perez-Ruzafa, Angel; Rijnsdorp, Adriaan D; Shiels, Holly A; Steffensen, John F; Svendsen, Jon C; Svendsen, Morten B S; Teal, Lorna R; van der Meer, Jaap; Wang, Tobias; Wilson, Jonathan M; Wilson, Rod W; Metcalfe, Julian D
2016-01-01
The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.
Extreme-volatility dynamics in crude oil markets
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei
2017-02-01
Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.
Unveiling causal activity of complex networks
NASA Astrophysics Data System (ADS)
Williams-García, Rashid V.; Beggs, John M.; Ortiz, Gerardo
2017-07-01
We introduce a novel tool for analyzing complex network dynamics, allowing for cascades of causally-related events, which we call causal webs (c-webs), to be separated from other non-causally-related events. This tool shows that traditionally-conceived avalanches may contain mixtures of spatially-distinct but temporally-overlapping cascades of events, and dynamical disorder or noise. In contrast, c-webs separate these components, unveiling previously hidden features of the network and dynamics. We apply our method to mouse cortical data with resulting statistics which demonstrate for the first time that neuronal avalanches are not merely composed of causally-related events. The original version of this article was uploaded to the arXiv on March 17th, 2016 [1].
The 1973 Nobel Prize for Physiology or Medicine: recognition for behavioral science?
Dewsbury, Donald A
2003-09-01
The Nobel Prize for Physiology or Medicine for 1973 was awarded to 3 ethologists: Karl von Frisch, Konrad Lorenz, and Nikolaas Tinbergen. This was a landmark event in the history of the field of ethology and potentially for the behavioral sciences more broadly. For the first time, the prize was awarded for research of a purely behavioral nature. The language used in making the award emphasized the implications of ethological work for human health and appeared to suggest that more such awards might be forthcoming; few were. The author provides an overview of the 3 men, their work, the events surrounding the award, the controversy that arose, and the significance of the award as viewed in contemporary perspective.
Bai, Jinwei; Shen, Li; Sun, Huimin; Shen, Bairong
2017-01-01
Physiological data from wearable sensors and smartphone are accumulating rapidly, and this provides us the chance to collect dynamic and personalized information as phenotype to be integrated to genotype for the holistic understanding of complex diseases. This integration can be applied to early prediction and prevention of disease, therefore promoting the shifting of disease care tradition to the healthcare paradigm. In this chapter, we summarize the physiological signals which can be detected by wearable sensors, the sharing of the physiological big data, and the mining methods for the discovery of disease-associated patterns for personalized diagnosis and treatment. We discuss the challenges of physiological informatics about the storage, the standardization, the analyses, and the applications of the physiological data from the wearable sensors and smartphone. At last, we present our perspectives on the models for disentangling the complex relationship between early disease prediction and the mining of physiological phenotype data.
Use of Event-Related Potentials in the Study of Typical and Atypical Development
ERIC Educational Resources Information Center
Nelson, Charles A., III; McCleery, Joseph P.
2008-01-01
Event-related potential is a kind of neuroimaging tool which can be used in the study of neurodevelopment. Two areas of atypical development, children diagnosed with autism and children experiencing early psychosocial neglect, have benefited from ERPs. The physiological basis of ERPs and the constraints on their applications are also discussed.
Meal-Insulin Cycle: A Visual Summary of the Biochemical Events between Meals
ERIC Educational Resources Information Center
Kalogiannis, Stavros
2017-01-01
In the present article, a scheme that summarizes the biochemical events occurring in the human body after the consumption of a meal is proposed. The scheme illustrates the metabolic sequence as a series of counteracting components occupying opposite positions in a cycle, indicating their opposite actions or physiological states, such as meal…
Fractals in physiology and medicine
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.; West, Bruce J.
1987-01-01
The paper demonstrates how the nonlinear concepts of fractals, as applied in physiology and medicine, can provide an insight into the organization of such complex structures as the tracheobronchial tree and heart, as well as into the dynamics of healthy physiological variability. Particular attention is given to the characteristics of computer-generated fractal lungs and heart and to fractal pathologies in these organs. It is shown that alterations in fractal scaling may underlie a number of pathophysiological disturbances, including sudden cardiac death syndromes.
Multifractal spectrum of physiological signals: a mechanism-related approach
NASA Astrophysics Data System (ADS)
Pavlov, Alexey N.; Pavlova, Olga N.; Abdurashitov, Arkady S.; Arinushkin, Pavel A.; Runnova, Anastasiya E.; Semyachkina-Glushkovskaya, Oxana V.
2017-04-01
In this paper we discuss an approach for mechanism-related analysis of physiological signals performed with the wavelet-based multifractal formalism. This approach assumes estimation of the singularity spectrum for the band-pass filtered processes at different physiological conditions in order to provide explanation of the occurred changes in the Hölder exponents and the multi-fractality degree. We illustrate the considered approach using two examples, namely, the dynamics of the cerebral blood flow (CBF) and the electrical activity of the brain.
An optimization formulation for characterization of pulsatile cortisol secretion.
Faghih, Rose T; Dahleh, Munther A; Brown, Emery N
2015-01-01
Cortisol is released to relay information to cells to regulate metabolism and reaction to stress and inflammation. In particular, cortisol is released in the form of pulsatile signals. This low-energy method of signaling seems to be more efficient than continuous signaling. We hypothesize that there is a controller in the anterior pituitary that leads to pulsatile release of cortisol, and propose a mathematical formulation for such controller, which leads to impulse control as opposed to continuous control. We postulate that this controller is minimizing the number of secretory events that result in cortisol secretion, which is a way of minimizing the energy required for cortisol secretion; this controller maintains the blood cortisol levels within a specific circadian range while complying with the first order dynamics underlying cortisol secretion. We use an ℓ0-norm cost function for this controller, and solve a reweighed ℓ1-norm minimization algorithm for obtaining the solution to this optimization problem. We use four examples to illustrate the performance of this approach: (i) a toy problem that achieves impulse control, (ii) two examples that achieve physiologically plausible pulsatile cortisol release, (iii) an example where the number of pulses is not within the physiologically plausible range for healthy subjects while the cortisol levels are within the desired range. This novel approach results in impulse control where the impulses and the obtained blood cortisol levels have a circadian rhythm and an ultradian rhythm that are in agreement with the known physiology of cortisol secretion. The proposed formulation is a first step in developing intermittent controllers for curing cortisol deficiency. This type of bio-inspired pulse controllers can be employed for designing non-continuous controllers in brain-machine interface design for neuroscience applications.
Event-chain algorithm for the Heisenberg model: Evidence for z≃1 dynamic scaling.
Nishikawa, Yoshihiko; Michel, Manon; Krauth, Werner; Hukushima, Koji
2015-12-01
We apply the event-chain Monte Carlo algorithm to the three-dimensional ferromagnetic Heisenberg model. The algorithm is rejection-free and also realizes an irreversible Markov chain that satisfies global balance. The autocorrelation functions of the magnetic susceptibility and the energy indicate a dynamical critical exponent z≈1 at the critical temperature, while that of the magnetization does not measure the performance of the algorithm. We show that the event-chain Monte Carlo algorithm substantially reduces the dynamical critical exponent from the conventional value of z≃2.
Visualization and classification of physiological failure modes in ensemble hemorrhage simulation
NASA Astrophysics Data System (ADS)
Zhang, Song; Pruett, William Andrew; Hester, Robert
2015-01-01
In an emergency situation such as hemorrhage, doctors need to predict which patients need immediate treatment and care. This task is difficult because of the diverse response to hemorrhage in human population. Ensemble physiological simulations provide a means to sample a diverse range of subjects and may have a better chance of containing the correct solution. However, to reveal the patterns and trends from the ensemble simulation is a challenging task. We have developed a visualization framework for ensemble physiological simulations. The visualization helps users identify trends among ensemble members, classify ensemble member into subpopulations for analysis, and provide prediction to future events by matching a new patient's data to existing ensembles. We demonstrated the effectiveness of the visualization on simulated physiological data. The lessons learned here can be applied to clinically-collected physiological data in the future.
Bacterial growth, flow, and mixing shape human gut microbiota density and composition.
Arnoldini, Markus; Cremer, Jonas; Hwa, Terence
2018-03-13
The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.
Giladi, Moshe; Tal, Inbal; Khananshvili, Daniel
2016-01-01
Na+/Ca2+ exchanger (NCX) proteins extrude Ca2+ from the cell to maintain cellular homeostasis. Since NCX proteins contribute to numerous physiological and pathophysiological events, their pharmacological targeting has been desired for a long time. This intervention remains challenging owing to our poor understanding of the underlying structure-dynamic mechanisms. Recent structural studies have shed light on the structure-function relationships underlying the ion-transport and allosteric regulation of NCX. The crystal structure of an archaeal NCX (NCX_Mj) along with molecular dynamics simulations and ion flux analyses, have assigned the ion binding sites for 3Na+ and 1Ca2+, which are being transported in separate steps. In contrast with NCX_Mj, eukaryotic NCXs contain the regulatory Ca2+-binding domains, CBD1 and CBD2, which affect the membrane embedded ion-transport domains over a distance of ~80 Å. The Ca2+-dependent regulation is ortholog, isoform, and splice-variant dependent to meet physiological requirements, exhibiting either a positive, negative, or no response to regulatory Ca2+. The crystal structures of the two-domain (CBD12) tandem have revealed a common mechanism involving a Ca2+-driven tethering of CBDs in diverse NCX variants. However, dissociation kinetics of occluded Ca2+ (entrapped at the two-domain interface) depends on the alternative-splicing segment (at CBD2), thereby representing splicing-dependent dynamic coupling of CBDs. The HDX-MS, SAXS, NMR, FRET, equilibrium 45Ca2+ binding and stopped-flow techniques provided insights into the dynamic mechanisms of CBDs. Ca2+ binding to CBD1 results in a population shift, where more constraint conformational states become highly populated without global conformational changes in the alignment of CBDs. This mechanism is common among NCXs. Recent HDX-MS studies have demonstrated that the apo CBD1 and CBD2 are stabilized by interacting with each other, while Ca2+ binding to CBD1 rigidifies local backbone segments of CBD2, but not of CBD1. The extent and strength of Ca2+-dependent rigidification at CBD2 is splice-variant dependent, showing clear correlations with phenotypes of matching NCX variants. Therefore, diverse NCX variants share a common mechanism for the initial decoding of the regulatory signal upon Ca2+ binding at the interface of CBDs, whereas the allosteric message is shaped by CBD2, the dynamic features of which are dictated by the splicing segment. PMID:26903880
A study of potential Olympic swimmers: I, the starting point.
Bagnall, K. M.; Kellett, D. W.
1977-01-01
Physiological and anthropometric profiles of a group of successful young swimmers are presented. Anthropometrically the swimmers appear to fall within fairly narrow limits but are physically more mature than their peers. Physiologically there is greater diversity within the group representing perhaps the varying demands of the swimming events practised. All values for the physiological parameters measured are high compared with children of similar ages. For the future it is hoped to relate performance in swimming to the variables measured and to assess any changes which occur thus perhaps colouring the profiles presented here. PMID:922274
Werlang, Monia E; Pimentel, Mario R; Diaz-Gomez, Jose L
2017-07-01
A large pleural effusion causing cardiac tamponade physiology and severe hemodynamic compromise is an uncommon event. We report a case of a 53-year-old woman with severe hypothyroidism presenting with myxedema coma and refractory shock. Her hemodynamic status failed to respond to fluid resuscitation and vasopressors. A transthoracic echocardiogram and chest radiograph demonstrated a pericardial fluid accumulation associated with a large left-sided pleural effusion. Thoracostomy tube insertion resulted in prompt improvement of the patient's hemodynamic status. Our finding demonstrates that a large pleural effusion may play an important role in cardiac tamponade physiology.
NASA Astrophysics Data System (ADS)
Hu, Wenyan; Fu, Ling
2013-05-01
Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (p<0.001, analysis of variance linear contrast; n=8 for each group). Pathological events relating to these components were observed, including presence of inflammatory cells, deposited collagen, and phenotype conversion of PSCs. We demonstrate that label-free nonlinear optical microscopy is an efficient tool for dissecting PSCs and other pancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.
Zieba, Agata; Pardali, Katerina; Söderberg, Ola; Lindbom, Lena; Nyström, Erik; Moustakas, Aristidis; Heldin, Carl-Henrik; Landegren, Ulf
2012-01-01
Fundamental open questions in signal transduction remain concerning the sequence and distribution of molecular signaling events among individual cells. In this work, we have characterized the intercellular variability of transforming growth factor β-induced Smad interactions, providing essential information about TGF-β signaling and its dependence on the density of cell populations and the cell cycle phase. By employing the recently developed in situ proximity ligation assay, we investigated the dynamics of interactions and modifications of Smad proteins and their partners under native and physiological conditions. We analyzed the kinetics of assembly of Smad complexes and the influence of cellular environment and relation to mitosis. We report rapid kinetics of formation of Smad complexes, including native Smad2-Smad3-Smad4 trimeric complexes, in a manner influenced by the rate of proteasomal degradation of these proteins, and we found a striking cell to cell variation of signaling complexes. The single-cell analysis of TGF-β signaling in genetically unmodified cells revealed previously unknown aspects of regulation of this pathway, and it provided a basis for analysis of these signaling events to diagnose pathological perturbations in patient samples and to evaluate their susceptibility to drug treatment. PMID:22442258
NASA Astrophysics Data System (ADS)
Lapusta, N.; Liu, Y.
2007-12-01
Heterogeneity in fault properties can have significant effect on dynamic rupture propagation and aseismic slip. It is often assumed that a fixed heterogeneity would have similar effect on fault slip throughout the slip history. We investigate dynamic rupture interaction with a fault patch of higher normal stress over several earthquake cycles in a three-dimensional model. We find that the influence of the heterogeneity on dynamic events has significant variation and depends on prior slip history. We consider a planar strike-slip fault governed by rate and state friction and driven by slow tectonic loading on deeper extension of the fault. The 30 km by 12 km velocity-weakening region, which is potentially seismogenic, is surrounded by steady-state velocity-strengthening region. The normal stress is constant over the fault, except in a circular patch of 2 km in diameter located in the seismogenic region, where normal stress is higher than on the rest of the fault. Our simulations employ the methodology developed by Lapusta and Liu (AGU, 2006), which is able to resolve both dynamic and quasi-static stages of spontaneous slip accumulation in a single computational procedure. The initial shear stress is constant on the fault, except in a small area where it is higher and where the first large dynamic event initiates. For patches with 20%, 40%, 60% higher normal stress, the first event has significant dynamic interaction with the patch, creating a rupture speed decrease followed by a supershear burst and larger slip around the patch. Hence, in the first event, the patch acts as a seismic asperity. For the case of 100% higher stress, the rupture is not able to break the patch in the first event. In subsequent dynamic events, the behavior depends on the strength of heterogeneity. For the patch with 20% higher normal stress, dynamic rupture in subsequent events propagates through the patch without any noticeable perturbation in rupture speed or slip. In particular, supershear propagation and additional slip accumulation around the patch are never repeated in the simulated history of the fault, and the patch stops manifesting itself as a seismic asperity. This is due to higher shear stress that is established at the patch after the first earthquake cycle. For patches with higher normal stress, shear stress redistribution also occurs, but it is less effective. The patches with 40% and 60% higher normal stress continue to affect rupture speed and fault slip in some of subsequent events, although the effect is much diminished with respect to the first event. For example, there are no supershear bursts. The patch with 100% higher normal stress is first broken in the second large event, and it retains significant influence on rupture speed and slip throughout the fault history, occasionally resulting in supershear bursts. Additional slip complexity emerges for patches with 40% and higher normal stress contrast. Since higher normal stress corresponds to a smaller nucleation size, nucleation of some events moves from the rheological transitions (where nucleation occurs in the cases with no stronger patch and with the patch of 20% higher normal stress) to the patches of higher normal stress. The patches nucleate both large, model-spanning, events, and small events that arrest soon after exiting the patch. Hence not every event that originates at the location of a potential seismic asperity is destined to be large, as its subsequent propagation is significantly influenced by the state of stress outside the patch.
Influence of animation on dynamical judgments
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Proffitt, Dennis R.; Whelan, Susan M.; Hecht, Heiko
1992-01-01
The motions of objects in the environment reflect underlying dynamical constraints and regularities. The conditions under which people are sensitive to natural dynamics are considered. In particular, the article considers what determines whether observers can distinguish canonical and anomalous dynamics when viewing ongoing events. The extent to which such perceptual appreciations are integrated with and influence common-sense reasoning about mechanical events is examined. It is concluded that animation evokes accurate dynamical intuitions when there is only 1 dimension of information that is of dynamical relevance. This advantage is lost when the observed motion reflects higher dimension dynamics or when the kinematic information is removed or degraded.
A physiologically based nonhomogeneous Poisson counter model of visual identification.
Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren
2018-04-30
A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Neural Correlates of Object-Associated Choice Behavior in the Perirhinal Cortex of Rats
Ahn, Jae-Rong
2015-01-01
The perirhinal cortex (PRC) is reportedly important for object recognition memory, with supporting physiological evidence obtained largely from primate studies. Whether neurons in the rodent PRC also exhibit similar physiological correlates of object recognition, however, remains to be determined. We recorded single units from the PRC in a PRC-dependent, object-cued spatial choice task in which, when cued by an object image, the rat chose the associated spatial target from two identical discs appearing on a touchscreen monitor. The firing rates of PRC neurons were significantly modulated by critical events in the task, such as object sampling and choice response. Neuronal firing in the PRC was correlated primarily with the conjunctive relationships between an object and its associated choice response, although some neurons also responded to the choice response alone. However, we rarely observed a PRC neuron that represented a specific object exclusively regardless of spatial response in rats, although the neurons were influenced by the perceptual ambiguity of the object at the population level. Some PRC neurons fired maximally after a choice response, and this post-choice feedback signal significantly enhanced the neuronal specificity for the choice response in the subsequent trial. Our findings suggest that neurons in the rat PRC may not participate exclusively in object recognition memory but that their activity may be more dynamically modulated in conjunction with other variables, such as choice response and its outcomes. PMID:25632144
NASA Astrophysics Data System (ADS)
Meir, P.; Rowland, L.; da Costa, A. C. L.; Mencuccini, M.; Oliveira, A.; Binks, O.; Christoffersen, B. O.; Eliane, M.; Vasconcelos, S.; Kruijt, B.; Ferreira, L.
2014-12-01
Our understanding of how forests respond to drought is especially constrained with respect to widespread tree mortality events. This limitation is particularly clear for tropical forests, despite the risk of drought to these ecosystems during the coming decades. We present new findings from the only current long-term 'ecosystem-scale' (1 ha) rainfall manipulation experiment in tropical rainforest, the Esecaflor experiment at Caxiuana National Forest, Para State, Brazil. Throughfall has been partially excluded from experimental forest at the Esecaflor experiment for more than a decade. We have previously demonstrated a capacity to model short-term physiological responses well, but longer term physiology and ecological dynamics remain challenging to understand and represent. In particular, high mortality and increased autotrophic respiration following extended drought are poorly understood phenomena, and their interaction with hydraulic responses and limitations needs to be characterised. We present initial data that for the first time combine carbon use and hydraulic metrics, comparing drought-vulnerable and non-vulnerable species that have experienced extended soil moisture deficit, as imposed in the experiment, also considering the response in soil respiration. We also discuss how these findings can be used to develop future empirical and modelling studies aimed at improving our capacity to predict the effects of drought on tropical forest ecosystems in Amazonia and in other tropical forest regions where species characteristics and environmental constraints may influence both short and long-term responses to drought.
Personalized glucose-insulin model based on signal analysis.
Goede, Simon L; de Galan, Bastiaan E; Leow, Melvin Khee Shing
2017-04-21
Glucose plasma measurements for diabetes patients are generally presented as a glucose concentration-time profile with 15-60min time scale intervals. This limited resolution obscures detailed dynamic events of glucose appearance and metabolism. Measurement intervals of 15min or more could contribute to imperfections in present diabetes treatment. High resolution data from mixed meal tolerance tests (MMTT) for 24 type 1 and type 2 diabetes patients were used in our present modeling. We introduce a model based on the physiological properties of transport, storage and utilization. This logistic approach follows the principles of electrical network analysis and signal processing theory. The method mimics the physiological equivalent of the glucose homeostasis comprising the meal ingestion, absorption via the gastrointestinal tract (GIT) to the endocrine nexus between the liver, pancreatic alpha and beta cells. This model demystifies the metabolic 'black box' by enabling in silico simulations and fitting of individual responses to clinical data. Five-minute intervals MMTT data measured from diabetic subjects result in two independent model parameters that characterize the complete glucose system response at a personalized level. From the individual data measurements, we obtain a model which can be analyzed with a standard electrical network simulator for diagnostics and treatment optimization. The insulin dosing time scale can be accurately adjusted to match the individual requirements of characterized diabetic patients without the physical burden of treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Physiological Responses to Racism and Discrimination: An Assessment of the Evidence
Harrell, Jules P.; Hall, Sadiki; Taliaferro, James
2003-01-01
A growing body of research explores the impact of encounters with racism or discrimination on physiological activity. Investigators have collected these data in laboratories and in controlled clinical settings. Several but not all of the studies suggest that higher blood pressure levels are associated with the tendency not to recall or report occurrences identified as racist and discriminatory. Investigators have reported that physiological arousal is associated with laboratory analogues of ethnic discrimination and mistreatment. Evidence from survey and laboratory studies suggests that personality variables and cultural orientation moderate the impact of racial discrimination. The neural pathways that mediate these physiological reactions are not known. The evidence supports the notion that direct encounters with discriminatory events contribute to negative health outcomes. PMID:12554577
Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe; ...
2017-04-07
In this study, the increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed “unsteady-state flux balance analysis” (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBAmore » predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bordbar, Aarash; Yurkovich, James T.; Paglia, Giuseppe
In this study, the increasing availability of metabolomics data necessitates novel methods for deeper data analysis and interpretation. We present a flux balance analysis method that allows for the computation of dynamic intracellular metabolic changes at the cellular scale through integration of time-course absolute quantitative metabolomics. This approach, termed “unsteady-state flux balance analysis” (uFBA), is applied to four cellular systems: three dynamic and one steady-state as a negative control. uFBA and FBA predictions are contrasted, and uFBA is found to be more accurate in predicting dynamic metabolic flux states for red blood cells, platelets, and Saccharomyces cerevisiae. Notably, only uFBAmore » predicts that stored red blood cells metabolize TCA intermediates to regenerate important cofactors, such as ATP, NADH, and NADPH. These pathway usage predictions were subsequently validated through 13C isotopic labeling and metabolic flux analysis in stored red blood cells. Utilizing time-course metabolomics data, uFBA provides an accurate method to predict metabolic physiology at the cellular scale for dynamic systems.« less
Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.; Boyle, Richard D.
2014-01-01
Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.
An action potential-driven model of soleus muscle activation dynamics for locomotor-like movements
NASA Astrophysics Data System (ADS)
Kim, Hojeong; Sandercock, Thomas G.; Heckman, C. J.
2015-08-01
Objective. The goal of this study was to develop a physiologically plausible, computationally robust model for muscle activation dynamics (A(t)) under physiologically relevant excitation and movement. Approach. The interaction of excitation and movement on A(t) was investigated comparing the force production between a cat soleus muscle and its Hill-type model. For capturing A(t) under excitation and movement variation, a modular modeling framework was proposed comprising of three compartments: (1) spikes-to-[Ca2+]; (2) [Ca2+]-to-A; and (3) A-to-force transformation. The individual signal transformations were modeled based on physiological factors so that the parameter values could be separately determined for individual modules directly based on experimental data. Main results. The strong dependency of A(t) on excitation frequency and muscle length was found during both isometric and dynamically-moving contractions. The identified dependencies of A(t) under the static and dynamic conditions could be incorporated in the modular modeling framework by modulating the model parameters as a function of movement input. The new modeling approach was also applicable to cat soleus muscles producing waveforms independent of those used to set the model parameters. Significance. This study provides a modeling framework for spike-driven muscle responses during movement, that is suitable not only for insights into molecular mechanisms underlying muscle behaviors but also for large scale simulations.
Regulation of Mammalian Physiology by Interconnected Circadian and Feeding Rhythms
Atger, Florian; Mauvoisin, Daniel; Weger, Benjamin; Gobet, Cédric; Gachon, Frédéric
2017-01-01
Circadian clocks are endogenous timekeeping systems that adapt in an anticipatory fashion the physiology and behavior of most living organisms. In mammals, the master pacemaker resides in the suprachiasmatic nucleus and entrains peripheral clocks using a wide range of signals that differentially schedule physiology and gene expression in a tissue-specific manner. The peripheral clocks, such as those found in the liver, are particularly sensitive to rhythmic external cues like feeding behavior, which modulate the phase and amplitude of rhythmic gene expression. Consequently, the liver clock temporally tunes the expression of many genes involved in metabolism and physiology. However, the circadian modulation of cellular functions also relies on multiple layers of posttranscriptional and posttranslational regulation. Strikingly, these additional regulatory events may happen independently of any transcriptional oscillations, showing that complex regulatory networks ultimately drive circadian output functions. These rhythmic events also integrate feeding-related cues and adapt various metabolic processes to food availability schedules. The importance of such temporal regulation of metabolism is illustrated by metabolic dysfunctions and diseases resulting from circadian clock disruption or inappropriate feeding patterns. Therefore, the study of circadian clocks and rhythmic feeding behavior should be of interest to further advance our understanding of the prevention and therapy of metabolic diseases. PMID:28337174
Medical, Psychophysiological, and Human Performance Problems During Extended EVA
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JP1, the discussion focuses on the following topics: New Developments in the Assessment of the Risk of Decompression Sickness in Null Gravity During Extravehicular Activity; The Dynamic of Physiological Reactions of Cosmonauts Under the Influence of Repeated EVA Workouts, The Russian Experience; Medical Emergencies in Space; The Evolution from 'Physiological Adequacy' to 'Physiological Tuning'; Five Zones of Symmetrical and Asymmetrical Conflicting Temperatures on the Human Body, Physiological Consequences; Human Performance and Subjective Perception in Nonuniform Thermal Conditions; The Hand as a Control System, Implications for Hand-Finger Dexterity During Extended EVA; and Understanding the Skill of Extravehicular Mass Handling.
Uprimny, Christian; Kroiss, Alexander Stephan; Decristoforo, Clemens; Fritz, Josef; Warwitz, Boris; Scarpa, Lorenza; Roig, Llanos Geraldo; Kendler, Dorota; von Guggenberg, Elisabeth; Bektic, Jasmin; Horninger, Wolfgang; Virgolini, Irene Johanna
2017-05-01
PET/CT with 68 Ga-labelled prostate-specific membrane antigen (PSMA)-ligands has been proven to establish a promising imaging modality in the work-up of prostate cancer (PC) patients with biochemical relapse. Despite a high overall detection rate, the visualisation of local recurrence may be hampered by high physiologic tracer accumulation in the urinary bladder on whole body imaging, usually starting 60 min after injection. This study sought to verify whether early dynamic 68 Ga-PSMA-11 (HBED-CC)PET/CT can differentiate pathologic PC-related tracer uptake from physiologic tracer accumulation in the urinary bladder. Eighty consecutive PC patients referred to 68 Ga -PSMA-11 PET/CT were included in this retrospective analysis (biochemical relapse: n = 64; primary staging: n = 8; evaluation of therapy response/restaging: n = 8). In addition to whole-body PET/CT acquisition 60 min post injection early dynamic imaging of the pelvis in the first 8 min after tracer injection was performed. SUV max of pathologic lesions was calculated and time-activity curves were generated and compared to those of urinary bladder and areas of physiologic tracer uptake. A total of 55 lesions consistent with malignancy on 60 min whole body imaging exhibited also pathologic 68 Ga-PSMA-11 uptake during early dynamic imaging (prostatic bed/prostate gland: n = 27; lymph nodes: n = 12; bone: n = 16). All pathologic lesions showed tracer uptake within the first 3 min, whereas urinary bladder activity was absent within the first 3 min of dynamic imaging in all patients. Suv max was significantly higher in PC lesions in the first 6 min compared to urinary bladder accumulation (p < 0.001). In the subgroup of PC patients with biochemical relapse the detection rate of local recurrence could be increased from 20.3 to 29.7%. Early dynamic imaging in 68 Ga-PSMA-11 PET/CT reliably enables the differentiation of pathologic tracer uptake in PC lesions from physiologic bladder accumulation. Performance of early dynamic imaging in addition to whole body imaging 60 min after tracer injection might improve the detection rate of local recurrence in PC patients with biochemical relapse referred for 68 Ga-PSMA-11 PET/CT.
Copper signaling in the brain and beyond.
Ackerman, Cheri M; Chang, Christopher J
2018-03-30
Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.
The complex interplay between mitochondrial dynamics and cardiac metabolism
Parra, Valentina; Verdejo, Hugo; del Campo, Andrea; Pennanen, Christian; Kuzmicic, Jovan; Iglewski, Myriam; Hill, Joseph A.; Rothermel, Beverly A.
2012-01-01
Mitochondria are highly dynamic organelles, capable of undergoing constant fission and fusion events, forming networks. These dynamic events allow the transmission of chemical and physical messengers and the exchange of metabolites within the cell. In this article we review the signaling mechanisms controlling mitochondrial fission and fusion, and its relationship with cell bioenergetics, especially in the heart. Furthermore we also discuss how defects in mitochondrial dynamics might be involved in the pathogenesis of metabolic cardiac diseases. PMID:21258852
Non-Lipschitz Dynamics Approach to Discrete Event Systems
NASA Technical Reports Server (NTRS)
Zak, M.; Meyers, R.
1995-01-01
This paper presents and discusses a mathematical formalism for simulation of discrete event dynamics (DED) - a special type of 'man- made' system designed to aid specific areas of information processing. A main objective is to demonstrate that the mathematical formalism for DED can be based upon the terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.
Frequency Dependence of Single-event Upset in Advanced Commerical PowerPC Microprocessors
NASA Technical Reports Server (NTRS)
Irom, Frokh; Farmanesh, Farhad F.; Swift, Gary M.; Johnston, Allen H.
2004-01-01
This paper examines single-event upsets in advanced commercial SOI microprocessors in a dynamic mode, studying SEU sensitivity of General Purpose Registers (GPRs) with clock frequency. Results are presented for SOI processors with feature sizes of 0.18 microns and two different core voltages. Single-event upset from heavy ions is measured for advanced commercial microprocessors in a dynamic mode with clock frequency up to 1GHz. Frequency and core voltage dependence of single-event upsets in registers is discussed.
NASA Astrophysics Data System (ADS)
Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi
2016-04-01
Within the last decade, extreme weather event attribution has emerged as a new field of science and garnered increasing attention from the wider scientific community and the public. Numerous methods have been put forward to determine the contribution of anthropogenic climate change to individual extreme weather events. So far nearly all such analyses were done months after an event has happened. First, we present our newly established method which can assess the fraction of attributable risk (FAR) of a severe weather event due to an external driver in real-time. The method builds on a large ensemble of atmosphere-only GCM/RCM simulations forced by seasonal forecast sea surface temperatures (SSTs). Taking the UK 2013/14 winter floods as an example, we demonstrate that the change in risk for heavy rainfall during the England floods due to anthropogenic climate change is of similar magnitude using either observed or seasonal forecast SSTs. While FAR is assumed to be independent from event-specific dynamic contributions due to anomalous circulation patterns as a first approximation, the risk of an event to occur under current conditions is clearly a function of the state of the atmosphere. The shorter the event, the more it is a result of chaotic internal weather variability. Hence we are interested to (1) attribute the event to thermodynamic and dynamic causes and to (2) establish a sensible time-scale for which we can make a useful and potentially robust attribution statement with regard to event-specific dynamics. Having tested the dynamic response of our model to SST conditions in January 2014, we find that observed SSTs are required to establish a discernible link between anomalous ocean temperatures and the atmospheric circulation over the North Atlantic in general and the UK in particular. However, for extreme events occurring under strongly anomalous SST patterns, associated with known low-frequency climate modes such as El Nino or La Nina, forecast SSTs can provide sufficient guidance to determine the dynamic contribution to the event on the basis of monthly mean values. No such link can be made (North Atlantic/Western Europe region) for shorter time-scales, unless the observed state of the circulation is taken as reference for the model analysis (e.g. Christidis et al. 2014). We present results from our most recent attribution analysis for the December 2015 UK floods (Storm Desmond and Eva), during which we find a robust teleconnection link between Pacific SSTs and North Atlantic Jetstream anomalies. This is true for both experiments, with forecast and observed SSTs. We propose a fast and simple analysis method based on the comparison of current climatological circulation patterns with actual and natural conditions. Alternative methods are discussed and analysed regarding their potential for fast-track attribution of the role of dynamics. Also, we briefly revisit the issue of internal vs forced dynamic contributions.
ERIC Educational Resources Information Center
Hwang, Isabel; Tam, Michael; Lam, Shun Leung; Lam, Paul
2012-01-01
Dynamic concepts are difficult to explain in traditional media such as still slides. Animations seem to offer the advantage of delivering better representations of these concepts. Compared with static images and text, animations can present procedural information (e.g. biochemical reaction steps, physiological activities) more explicitly as they…
NASA Astrophysics Data System (ADS)
Thakar, Juilee; Albert, Réka
The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References
Kohrs, Christin; Hrabal, David; Angenstein, Nicole; Brechmann, André
2014-11-01
System response time research is an important issue in human-computer interactions. Experience with technical devices and general rules of human-human interactions determine the user's expectation, and any delay in system response time may lead to immediate physiological, emotional, and behavioral consequences. We investigated such effects on a trial-by-trial basis during a human-computer interaction by measuring changes in skin conductance (SC), heart rate (HR), and the dynamics of button press responses. We found an increase in SC and a deceleration of HR for all three delayed system response times (0.5, 1, 2 s). Moreover, the data on button press dynamics was highly informative since subjects repeated a button press with more force in response to delayed system response times. Furthermore, the button press dynamics could distinguish between correct and incorrect decisions and may thus even be used to infer the uncertainty of a user's decision. Copyright © 2014 Society for Psychophysiological Research.
An integrated physiology model to study regional lung damage effects and the physiologic response
2014-01-01
Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032
Bentley, David J; Cox, Gregory R; Green, Daniel; Laursen, Paul B
2008-07-01
Triathlon is a sport consisting of sequential swimming, cycling and running. The main diversity within the sport of triathlon resides in the varying event distances, which creates specific technical, physiological and nutritional considerations for athlete and practitioner alike. The purpose of this article is to review physiological as well as nutritional aspects of triathlon and to make recommendations on ways to enhance performance. Aside from progressive conditioning and training, areas that have shown potential to improve triathlon performance include drafting when possible during both the swim and cycle phase, wearing a wetsuit, and selecting a lower cadence (60-80 rpm) in the final stages of the cycle phase. Adoption of a more even racing pace during cycling may optimise cycling performance and induce a "metabolic reserve" necessary for elevated running performance in longer distance triathlon events. In contrast, drafting in swimming and cycling may result a better tactical approach to increase overall performance in elite Olympic distance triathlons. Daily energy intake should be modified to reflect daily training demands to assist triathletes in achieving body weight and body composition targets. Carbohydrate loading strategies and within exercise carbohydrate intake should reflect the specific requirements of the triathlon event contested. Development of an individualised fluid plan based on previous fluid balance observations may assist to avoid both dehydration and hyponatremia during prolonged triathlon racing.
Fouda, Mohamed B; Thankam, Finosh G; Dilisio, Matthew F; Agrawal, Devendra K
2017-01-01
Rotator cuff (RC) tendons could beinflicted in many ways with an eventual outcome of pain, weakness and disability, which represent a large burden on health care cost. However, optimal healing, either conservatively or with surgical intervention, remains an issue that needs further investigation. Disorders of the RC tendons may result from external factors like trauma, or internal factors through physiologic and metabolic derangement. Most RC tendon disorders may be asymptomatic and may result from an over-activity of the inflicted shoulder and its tendons. Such tendon disorders are poorly diagnosed since patients do not seek medical attention until pain or weakness ensue. Immunological and biochemical events in RC disorders due to mechanical intolerance have not been investigated. Generally, the mechanical load drives normal physiological properties of the tendon. But, mechanical overload/burden exerts stress on tenocytes, and disrupts the tendon microenvironment by triggering a multitude of signaling pathways leading to extracellular matrix remodeling, disorganization, alteration in collagen composition and apoptosis. These events result in weak tendon which is highly susceptible to rupture or tear. In this article, we critically reviewed the intrinsic signaling pathways that are excessively triggered by continuous mechanical load and the counteracting physiological responses and associated derangements. The elucidation of the molecular events underlying mechanical stress-induced symptomatic/asymptomatic tendinopathy could provide information on potential target sites for translational application in the management of rotator cuff disorders. PMID:29118899
Physiology can contribute to better understanding, management, and conservation of coral reef fishes
Rummer, Jodie L.
2017-01-01
Abstract Coral reef fishes, like many other marine organisms, are affected by anthropogenic stressors such as fishing and pollution and, owing to climate change, are experiencing increasing water temperatures and ocean acidification. Against the backdrop of these various stressors, a mechanistic understanding of processes governing individual organismal performance is the first step for identifying drivers of coral reef fish population dynamics. In fact, physiological measurements can help to reveal potential cause-and-effect relationships and enable physiologists to advise conservation management by upscaling results from cellular and individual organismal levels to population levels. Here, we highlight studies that include physiological measurements of coral reef fishes and those that give advice for their conservation. A literature search using combined physiological, conservation and coral reef fish key words resulted in ~1900 studies, of which only 99 matched predefined requirements. We observed that, over the last 20 years, the combination of physiological and conservation aspects in studies on coral reef fishes has received increased attention. Most of the selected studies made their physiological observations at the whole organism level and used their findings to give conservation advice on population dynamics, habitat use or the potential effects of climate change. The precision of the recommendations differed greatly and, not surprisingly, was least concrete when studies examined the effects of projected climate change scenarios. Although more and more physiological studies on coral reef fishes include conservation aspects, there is still a lack of concrete advice for conservation managers, with only very few published examples of physiological findings leading to improved management practices. We conclude with a call to action to foster better knowledge exchange between natural scientists and conservation managers to translate physiological findings more effectively in order to obtain evidence-based and adaptive management strategies for the conservation of coral reef fishes. PMID:28852508
Consensus Recommendations on Training and Competing in the Heat.
Racinais, Sébastien; Alonso, Juan-Manuel; Coutts, Aaron J; Flouris, Andreas D; Girard, Olivier; González-Alonso, José; Hausswirth, Christophe; Jay, Ollie; Lee, Jason K W; Mitchell, Nigel; Nassis, George P; Nybo, Lars; Pluim, Babette M; Roelands, Bart; Sawka, Michael N; Wingo, Jonathan; Périard, Julien D
2015-07-01
Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise-heat exposures over 1-2 weeks. In addition, athletes should initiate competition and training in an euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vests), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat.
DynamO: a free O(N) general event-driven molecular dynamics simulator.
Bannerman, M N; Sargant, R; Lue, L
2011-11-30
Molecular dynamics algorithms for systems of particles interacting through discrete or "hard" potentials are fundamentally different to the methods for continuous or "soft" potential systems. Although many software packages have been developed for continuous potential systems, software for discrete potential systems based on event-driven algorithms are relatively scarce and specialized. We present DynamO, a general event-driven simulation package, which displays the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than the O(N) scaling found in most standard algorithms. DynamO provides reference implementations of the best available event-driven algorithms. These techniques allow the rapid simulation of both complex and large (>10(6) particles) systems for long times. The performance of the program is benchmarked for elastic hard sphere systems, homogeneous cooling and sheared inelastic hard spheres, and equilibrium Lennard-Jones fluids. This software and its documentation are distributed under the GNU General Public license and can be freely downloaded from http://marcusbannerman.co.uk/dynamo. Copyright © 2011 Wiley Periodicals, Inc.
Brain Oscillations in Sport: Toward EEG Biomarkers of Performance.
Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard
2016-01-01
Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.
Beyond mice and men: Environmental change, immunity and infections in wild ungulates
Jolles, Anna E.; Beechler, Brianna R.; Dolan, Brian P.
2014-01-01
In the face of rapid environmental change, anticipating shifts in microparasite and macroparasite dynamics, including emergence events, is an enormous challenge. We argue that immunological studies in natural populations are pivotal to meeting this challenge: Many components of environmental change – shifts in biotic assemblages, altered climate patterns, and reduced environmental predictability – may affect host immunity. We suggest that wild ungulates can serve as model systems aiding the discovery of immunological mechanisms that link environmental change with parasite transmission dynamics. Our review of eco-immunological studies in wild ungulates reveals progress in understanding how co-infections affect immunity and parasite transmission; and how environmental and genetic factors interact to shape immunity. Changes in bioavailability of micronutrients have been linked to immunity and health in wild ungulates. Although physiological stress in response to environmental change has been assessed, downstream effects on immunity have not been studied. Moreover, the taxonomic range of ungulates studied is limited to bovids (bighorn sheep, Soay sheep, chamois, musk oxen, bison, African buffalo) and a few cervids (red deer, black-tailed deer). We discuss areas where future studies in ungulates could lead to significant contributions in understanding patterns of immunity and infection in natural populations and across species. PMID:25354672
Spatiotemporal Evolution of the Wound Repairing Process in a 3D Human Dermis Equivalent.
Lombardi, Bernadette; Casale, Costantino; Imparato, Giorgia; Urciuolo, Francesco; Netti, Paolo Antonio
2017-07-01
Several skin equivalent models have been developed to investigate in vitro the re-epithelialization process occurring during wound healing. Although these models recapitulate closure dynamics of epithelial cells, they fail to capture how a wounded connective tissue rebuilds its 3D architecture until the evolution in a scar. Here, the in vitro tissue repair dynamics of a connective tissue is replicated by using a 3D human dermis equivalent (3D-HDE) model composed of fibroblasts embedded in their own extracellular matrix (ECM). After inducing a physical damage, 3D-HDE undergoes a series of cellular and extracellular events quite similar to those occurring in the native dermis. In particular, fibroblasts differentiation toward myofibroblasts phenotype and neosynthesis of hyaluronic acid, fibronectin, and collagen during the repair process are assessed. Moreover, tissue reorganization after physical damage is investigated by measuring the diameter of bundles and the orientation of fibers of the newly formed ECM network. Finally, the ultimate formation of a scar-like tissue as physiological consequence of the repair and closure process is demonstrated. Taking together, the results highlight that the presence of cell-assembled and responsive stromal components enables quantitative and qualitative in vitro evaluation of the processes involved in scarring during wound healing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brain Oscillations in Sport: Toward EEG Biomarkers of Performance
Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard
2016-01-01
Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators. PMID:26955362
Hormonally mediated maternal effects, individual strategy and global change
Meylan, Sandrine; Miles, Donald B.; Clobert, Jean
2012-01-01
A challenge to ecologists and evolutionary biologists is predicting organismal responses to the anticipated changes to global ecosystems through climate change. Most evidence suggests that short-term global change may involve increasing occurrences of extreme events, therefore the immediate response of individuals will be determined by physiological capacities and life-history adaptations to cope with extreme environmental conditions. Here, we consider the role of hormones and maternal effects in determining the persistence of species in altered environments. Hormones, specifically steroids, are critical for patterning the behaviour and morphology of parents and their offspring. Hence, steroids have a pervasive influence on multiple aspects of the offspring phenotype over its lifespan. Stress hormones, e.g. glucocorticoids, modulate and perturb phenotypes both early in development and later into adulthood. Females exposed to abiotic stressors during reproduction may alter the phenotypes by manipulation of hormones to the embryos. Thus, hormone-mediated maternal effects, which generate phenotypic plasticity, may be one avenue for coping with global change. Variation in exposure to hormones during development influences both the propensity to disperse, which alters metapopulation dynamics, and population dynamics, by affecting either recruitment to the population or subsequent life-history characteristics of the offspring. We suggest that hormones may be an informative index to the potential for populations to adapt to changing environments. PMID:22566673
Monitoring of Freezing Dynamics in Trees: A Simple Phase Shift Causes Complexity1[OPEN
Charra-Vaskou, Katline
2017-01-01
During winter, trees have to cope with harsh conditions, including extreme freeze-thaw stress. This study focused on ice nucleation and propagation, related water shifts and xylem cavitation, as well as cell damage and was based on in situ monitoring of xylem (thermocouples) and surface temperatures (infrared imaging), ultrasonic emissions, and dendrometer analysis. Field experiments during late winter on Picea abies growing at the alpine timberline revealed three distinct freezing patterns: (1) from the top of the tree toward the base, (2) from thin branches toward the main stem’s top and base, and (3) from the base toward the top. Infrared imaging showed freezing within branches from their base toward distal parts. Such complex freezing causes dynamic and heterogenous patterns in water potential and probably in cavitation. This study highlights the interaction between environmental conditions upon freezing and thawing and demonstrates the enormous complexity of freezing processes in trees. Diameter shrinkage, which indicated water fluxes within the stem, and acoustic emission analysis, which indicated cavitation events near the ice front upon freezing, were both related to minimum temperature and, upon thawing, related to vapor pressure deficit and soil temperature. These complex patterns, emphasizing the common mechanisms between frost and drought stress, shed new light on winter tree physiology. PMID:28242655
Structure and Dynamics of Quiescent Prominence Eruptions
NASA Astrophysics Data System (ADS)
Su, Y.; Lu, M.; van Ballegooijen, A.
2012-05-01
We present a survey on the fine structure and dynamics of quiescent prominence eruptions observed both on the disk and at the limb. We have identified 45 quiescent prominence eruptions by looking at the SDO (Solar Dynamics Observatory)/AIA (Atmospheric Imaging Assembly) daily movies from April to June in 2011. Among these events, there are 24 symmetric eruptions (coherent loop-like eruptions) and 21 asymmetric eruptions (one footpoint lifts off) as shown by AIA and STEREO/EUVI observations. Vertical filament threads are identified in 10 out of the 45 events, while horizontal threads are observed in almost all eruptions. We find 23 events with twisting/untwisting motions. For 14 selected limb events, we carry out a detailed study of the eruption dynamics using AIA observations at 304 Å. We find that the initial heights of these erupting prominences are located around 50-110 Mm above the limb. The eruptions start from a speed of less than 5 km/s, then increase to several tens km/s in the AIA field of view. The maximum speed of these events is 50 km/s. The acceleration plots show a positive acceleration in the range of 0 to 20 m/s2. No significant difference is identified in the dynamics of the symmetric and asymmetric eruptions.
Clark, Matthew T.; Calland, James Forrest; Enfield, Kyle B.; Voss, John D.; Lake, Douglas E.; Moorman, J. Randall
2017-01-01
Background Charted vital signs and laboratory results represent intermittent samples of a patient’s dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. Methods and findings We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Conclusions Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in acute care patients and improve performance of conventional models that use only laboratory results and vital signs. PMID:28771487
Moss, Travis J; Clark, Matthew T; Calland, James Forrest; Enfield, Kyle B; Voss, John D; Lake, Douglas E; Moorman, J Randall
2017-01-01
Charted vital signs and laboratory results represent intermittent samples of a patient's dynamic physiologic state and have been used to calculate early warning scores to identify patients at risk of clinical deterioration. We hypothesized that the addition of cardiorespiratory dynamics measured from continuous electrocardiography (ECG) monitoring to intermittently sampled data improves the predictive validity of models trained to detect clinical deterioration prior to intensive care unit (ICU) transfer or unanticipated death. We analyzed 63 patient-years of ECG data from 8,105 acute care patient admissions at a tertiary care academic medical center. We developed models to predict deterioration resulting in ICU transfer or unanticipated death within the next 24 hours using either vital signs, laboratory results, or cardiorespiratory dynamics from continuous ECG monitoring and also evaluated models using all available data sources. We calculated the predictive validity (C-statistic), the net reclassification improvement, and the probability of achieving the difference in likelihood ratio χ2 for the additional degrees of freedom. The primary outcome occurred 755 times in 586 admissions (7%). We analyzed 395 clinical deteriorations with continuous ECG data in the 24 hours prior to an event. Using only continuous ECG measures resulted in a C-statistic of 0.65, similar to models using only laboratory results and vital signs (0.63 and 0.69 respectively). Addition of continuous ECG measures to models using conventional measurements improved the C-statistic by 0.01 and 0.07; a model integrating all data sources had a C-statistic of 0.73 with categorical net reclassification improvement of 0.09 for a change of 1 decile in risk. The difference in likelihood ratio χ2 between integrated models with and without cardiorespiratory dynamics was 2158 (p value: <0.001). Cardiorespiratory dynamics from continuous ECG monitoring detect clinical deterioration in acute care patients and improve performance of conventional models that use only laboratory results and vital signs.
Aldao, Amelia; McLaughlin, Katie A; Hatzenbuehler, Mark L; Sheridan, Margaret A
Although previous studies have established that rumination influences responses to stressful life events, the mechanisms underlying this relationship remain inadequately understood. The current study examines the relationship between trait rumination and affective, cognitive, and physiological responses to a standardized laboratory-based stressor in adolescents. A community-based sample of adolescents (N = 157) aged 13-17 completed the Trier Social Stress Test (TSST). Affective, cognitive, and physiological responses were obtained before, during, and after the TSST. Adolescents who engaged in habitual rumination experienced greater negative affect and more negative cognitive appraisals in response to the TSST than adolescents with lower levels of rumination. Rumination was unrelated to heart rate reactivity, but predicted slower heart rate recovery from the TSST, indicating that rumination might be specifically associated with physiological recovery from stress. Rumination is associated with negative affective, cognitive, and physiological responses following stressors, suggesting potential mechanisms through which it might increase risk for psychopathology.
Termination of respiratory events with and without cortical arousal in obstructive sleep apnea.
Jordan, Amy S; Eckert, Danny J; Wellman, Andrew; Trinder, John A; Malhotra, Atul; White, David P
2011-11-15
A total of 20-30% of respiratory events in obstructive sleep apnea are terminated without clear arousal. Arousals are thought to predispose to further events by promoting hyperventilation, hypocapnia, and upper-airway dilator muscle hypotonia. Therefore, events terminated without arousal may promote stable breathing. To compare physiologic changes at respiratory event termination with American Sleep Disorders Association (ASDA) Arousal to No Arousal, and determine whether secondary respiratory events are less common and have higher dilator muscle activity after No Arousal compared with ASDA Arousal. Patients with obstructive sleep apnea wore sleep staging, genioglossus (EMG(GG)), and tensor palatini (EMG(TP)) electrodes plus a nasal mask and pneumotachograph. During stable sleep, continuous positive airway pressure (CPAP) was lowered for 3-minute periods to induce respiratory events. Physiologic variables were compared between events terminated with (1) ASDA Arousal, (2) No Arousal, or (3) sudden CPAP increase (CPAPinc, control). Sixteen subjects had adequate data. EMG(GG), EMG(TP), and heart rate increased after ASDA Arousal (340 ± 57%, 215 ± 28%, and 110.7 ± 2.3%) and No Arousal (185 ± 32%, 167 ± 15%, and 108.5 ± 1.6%) but not CPAPinc (90 ± 10%, 94 ± 11%, and 102.1 ± 1%). Ventilation increased more after ASDA Arousal than No Arousal and CPAPinc, but not after accounting for the severity of respiratory event. Fewer No Arousals were followed by secondary events than ASDA Arousals. However, low dilator muscle activity did not occur after ASDA Arousal or No Arousal (EMG(GG) rose from 75 ± 5 to 125 ± 7%) and secondary events were less severe than initial events (ventilation rose 4 ± 0.4 to 5.5 ± 0.51 L/min). Respiratory events that were terminated with ASDA Arousal were more severely flow-limited, had enhanced hyperventilation after event termination, and were more often followed by secondary events than No arousal. However, secondary events were not associated with low dilator muscle activity and airflow was improved after both No Arousal and ASDA Arousal.
Termination of Respiratory Events with and without Cortical Arousal in Obstructive Sleep Apnea
Eckert, Danny J.; Wellman, Andrew; Trinder, John A.; Malhotra, Atul; White, David P.
2011-01-01
Rationale: A total of 20–30% of respiratory events in obstructive sleep apnea are terminated without clear arousal. Arousals are thought to predispose to further events by promoting hyperventilation, hypocapnia, and upper-airway dilator muscle hypotonia. Therefore, events terminated without arousal may promote stable breathing. Objectives: To compare physiologic changes at respiratory event termination with American Sleep Disorders Association (ASDA) Arousal to No Arousal, and determine whether secondary respiratory events are less common and have higher dilator muscle activity after No Arousal compared with ASDA Arousal. Methods: Patients with obstructive sleep apnea wore sleep staging, genioglossus (EMGGG), and tensor palatini (EMGTP) electrodes plus a nasal mask and pneumotachograph. During stable sleep, continuous positive airway pressure (CPAP) was lowered for 3-minute periods to induce respiratory events. Physiologic variables were compared between events terminated with (1) ASDA Arousal, (2) No Arousal, or (3) sudden CPAP increase (CPAPinc, control). Measurements and Main Results: Sixteen subjects had adequate data. EMGGG, EMGTP, and heart rate increased after ASDA Arousal (340 ± 57%, 215 ± 28%, and 110.7 ± 2.3%) and No Arousal (185 ± 32%, 167 ± 15%, and 108.5 ± 1.6%) but not CPAPinc (90 ± 10%, 94 ± 11%, and 102.1 ± 1%). Ventilation increased more after ASDA Arousal than No Arousal and CPAPinc, but not after accounting for the severity of respiratory event. Fewer No Arousals were followed by secondary events than ASDA Arousals. However, low dilator muscle activity did not occur after ASDA Arousal or No Arousal (EMGGG rose from 75 ± 5 to 125 ± 7%) and secondary events were less severe than initial events (ventilation rose 4 ± 0.4 to 5.5 ± 0.51 L/min). Conclusions: Respiratory events that were terminated with ASDA Arousal were more severely flow-limited, had enhanced hyperventilation after event termination, and were more often followed by secondary events than No arousal. However, secondary events were not associated with low dilator muscle activity and airflow was improved after both No Arousal and ASDA Arousal. PMID:21836132
Dynamic Loading and Characterization of Fiber-Reinforced Composites
NASA Astrophysics Data System (ADS)
Sierakowski, Robert L.; Chaturvedi, Shive K.
1997-02-01
Emphasizing polymer based fiber-reinforced composites, this book is designed to provide readers with a significant understanding of the complexities involved in characterizing dynamic events and the corresponding response of advanced fiber composite materials and structures. These elements include dynamic loading devices, material properties characterization, analytical and experimental techniques to assess the damage and failure modes associated with various dynamic loading events. Concluding remarks are presented throughout the text which summarize key points and raise issues related to important research needed.
NASA Astrophysics Data System (ADS)
Han, Libo; Peng, Zhigang; Johnson, Christopher W.; Pollitz, Fred F.; Li, Lu; Wang, Baoshan; Wu, Jing; Li, Qiang; Wei, Hongmei
2017-12-01
We present a case of remotely triggered seismicity in Southwest China by the 2015/04/25 M7.8 Gorkha, Nepal earthquake. A local magnitude ML3.8 event occurred near the Qijiang district south of Chongqing city approximately 12 min after the Gorkha mainshock. Within 30 km of this ML3.8 event there are 62 earthquakes since 2009 and only 7 ML > 3 events, which corresponds to a likelihood of 0.3% for a ML > 3 on any given day by a random chance. This observation motivates us to investigate the relationship between the ML3.8 event and the Gorkha mainshock. The ML3.8 event was listed in the China Earthquake National Center (CENC) catalog and occurred at shallow depth (∼3 km). By examining high-frequency waveforms, we identify a smaller local event (∼ML 2.5) ∼ 15 s before the ML3.8 event. Both events occurred during the first two cycles of the Rayleigh waves from the Gorkha mainshock. We perform seismic event detection based on envelope function and waveform matching by using the two events as templates. Both analyses found a statistically significant rate change during the mainshock, suggesting that they were indeed dynamically triggered by the Rayleigh waves. Both events occurred during the peak normal and dilatational stress changes (∼10-30 kPa), consistent with observations of dynamic triggering in other geothermal/volcanic regions. Although other recent events (i.e., the 2011 M9.1 Tohoku-Oki earthquake) produced similar peak ground velocities, the 2015 Gorkha mainshock was the only event that produced clear dynamic triggering in this region. The triggering site is close to hydraulic fracturing wells that began production in 2013-2014. Hence we suspect that fluid injections may increase the region's susceptibility to remote dynamic triggering.
Han, Libo; Peng, Zhigang; Johnson, Christopher W.; Pollitz, Fred; Li, Lu; Wang, Baoshan; Wu, Jing; Li, Qiang; Wei, Hongmei
2017-01-01
We present a case of remotely triggered seismicity in Southwest China by the 2015/04/25 M7.8 Gorkha, Nepal earthquake. A local magnitude ML3.8 event occurred near the Qijiang district south of Chongqing city approximately 12 min after the Gorkha mainshock. Within 30km of this ML3.8 event there are 62 earthquakes since 2009 and only 7 ML>3events, which corresponds to a likelihood of 0.3% for a ML>3on any given day by a random chance. This observation motivates us to investigate the relationship between the ML3.8 event and the Gorkha mainshock. The ML3.8 event is listed in the China Earthquake National Center (CENC) catalog and occurred at shallow depth (∼3km). By examining high-frequency waveforms, we identify a smaller local event (∼ML2.5) ∼15s before the ML3.8 event. Both events occurred during the first two cycles of the Rayleigh waves from the Gorkha mainshock. We perform seismic event detection based on envelope function and waveform matching by using the two events as templates. Both analyses found a statistically significant rate change during the mainshock, suggesting that they were indeed dynamically triggered by the Rayleigh waves. Both events occurred during the peak normal and dilatational stress changes (∼10–30 kPa), consistent with observations of dynamic triggering in other geothermal/volcanic regions. Although other recent events (i.e., the 2011 M9.1 Tohoku-Oki earthquake) produced similar peak ground velocities, the 2015 Gorkha mainshock was the only event that produced clear dynamic triggering in this region. The triggering site is close to hydraulic fracturing wells that began production in 2013–2014. Hence we suspect that fluid injections may increase the region’s susceptibility to remote dynamic triggering.
Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans
NASA Astrophysics Data System (ADS)
Garilli, Vittorio; Rodolfo-Metalpa, Riccardo; Scuderi, Danilo; Brusca, Lorenzo; Parrinello, Daniela; Rastrick, Samuel P. S.; Foggo, Andy; Twitchett, Richard J.; Hall-Spencer, Jason M.; Milazzo, Marco
2015-07-01
Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partially repair shell dissolution. These observations of the long-term chronic effects of increased CO2 levels forewarn of changes we can expect in marine ecosystems as CO2 emissions continue to rise unchecked, and support the hypothesis that ocean acidification contributed to past extinction events. The ability to adapt through dwarfing can confer physiological advantages as the rate of CO2 emissions continues to increase.
Terminal Dynamics Approach to Discrete Event Systems
NASA Technical Reports Server (NTRS)
Zak, Michail; Meyers, Ronald
1995-01-01
This paper presents and discusses a mathematical formalism for simulation of discrete event dynamic (DED)-a special type of 'man-made' systems to serve specific purposes of information processing. The main objective of this work is to demonstrate that the mathematical formalism for DED can be based upon a terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.!.
ERIC Educational Resources Information Center
Heald, James E.
1977-01-01
Events common to all people, although in differing degrees, such as physiological and technological changes at mid-life, constitute important influences on career change and development in the mid-life period. (Author)
Franzini-Armstrong, Clara
2018-02-05
The concept of excitation-contraction coupling is almost as old as Journal of General Physiology It was understood as early as the 1940s that a series of stereotyped events is responsible for the rapid contraction response of muscle fibers to an initial electrical event at the surface. These early developments, now lost in what seems to be the far past for most young investigators, have provided an endless source of experimental approaches. In this Milestone in Physiology, I describe in detail the experiments and concepts that introduced and established the field of excitation-contraction coupling in skeletal muscle. More recent advances are presented in an abbreviated form, as readers are likely to be familiar with recent work in the field. © 2018 Franzini-Armstrong.
[Change in laryngeal vibratory mechanism: a physiological entity].
Roubeau, B; Chevrie-Muller, C; Arabia, C; Arragon, C
1993-01-01
The purpose of this paper is to examine the change of laryngeal vibratory mechanism in 10 males and 9 females trained and untrained singers. The electroglottographic (E.G.G.) data analysis demonstrated strong evidence to support the view that such event could be considered as a whole physiological entity. In fact findings clearly indicated biomechanical, neuromuscular and central levels in the control of the laryngeal vibration involved in the change of mechanism.
Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments
NASA Astrophysics Data System (ADS)
Mclaskey, G.
2017-12-01
The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.
NASA Astrophysics Data System (ADS)
Zamuriano, Marcelo; Brönnimann, Stefan
2017-04-01
It's known that some extremes such as heavy rainfalls, flood events, heatwaves and droughts depend largely on the atmospheric circulation and local features. Bolivia is no exception and while the large scale dynamics over the Amazon has been largely investigated, the local features driven by the Andes Cordillera and the Altiplano is still poorly documented. New insights on the regional atmospheric dynamics preceding heavy precipitation and flood events over the complex topography of the Andes-Amazon interface are added through numerical investigations of several case events: flash flood episodes over La Paz city and the extreme 2014 flood in south-western Amazon basin. Large scale atmospheric water transport is dynamically downscaled in order to take into account the complex topography forcing and local features as modulators of these events. For this purpose, a series of high resolution numerical experiments with the WRF-ARW model is conducted using various global datasets and parameterizations. While several mechanisms have been suggested to explain the dynamics of these episodes, they have not been tested yet through numerical modelling experiments. The simulations captures realistically the local water transport and the terrain influence over atmospheric circulation, even though the precipitation intensity is in general unrealistic. Nevertheless, the results show that Dynamical Downscaling over the tropical Andes' complex terrain provides useful meteorological data for a variety of studies and contributes to a better understanding of physical processes involved in the configuration of these events.
Modeling Gas Dynamics in California Sea Lions
2015-09-30
W. and Fahlman, A. (2009). Could beaked whales get the bends?. Effect of diving behaviour and physiology on modelled gas exchange for three species...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Modeling Gas Dynamics in California Sea Lions Andreas...to update a current gas dynamics model with recently acquired data for respiratory compliance (P-V), and body compartment size estimates in
NASA Astrophysics Data System (ADS)
Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.
2007-03-01
Various metal cations in physiological solutions interact with lipid headgroups in biological membranes, having an impact on their structure and stability, yet little is known about the molecular-scale dynamics of the lipid-ion interactions. Here we directly investigate the extensive lipid-ion interaction networks and their transient formation between headgroups in a dipalmitoylphosphatidylcholine bilayer under physiological conditions. The spatial distribution of ion occupancy is imaged in real space by frequency modulation atomic force microscopy with sub-Ångstrom resolution.
LCP method for a planar passive dynamic walker based on an event-driven scheme
NASA Astrophysics Data System (ADS)
Zheng, Xu-Dong; Wang, Qi
2018-06-01
The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.
LCP method for a planar passive dynamic walker based on an event-driven scheme
NASA Astrophysics Data System (ADS)
Zheng, Xu-Dong; Wang, Qi
2018-02-01
The main purpose of this paper is to present a linear complementarity problem (LCP) method for a planar passive dynamic walker with round feet based on an event-driven scheme. The passive dynamic walker is treated as a planar multi-rigid-body system. The dynamic equations of the passive dynamic walker are obtained by using Lagrange's equations of the second kind. The normal forces and frictional forces acting on the feet of the passive walker are described based on a modified Hertz contact model and Coulomb's law of dry friction. The state transition problem of stick-slip between feet and floor is formulated as an LCP, which is solved with an event-driven scheme. Finally, to validate the methodology, four gaits of the walker are simulated: the stance leg neither slips nor bounces; the stance leg slips without bouncing; the stance leg bounces without slipping; the walker stands after walking several steps.
Multivariate Dynamical Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah
2014-01-01
The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in intergrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.
Multivariate Dynamic Modeling to Investigate Human Adaptation to Space Flight: Initial Concepts
NASA Technical Reports Server (NTRS)
Shelhamer, Mark; Mindock, Jennifer; Zeffiro, Tom; Krakauer, David; Paloski, William H.; Lumpkins, Sarah
2014-01-01
The array of physiological changes that occur when humans venture into space for long periods presents a challenge to future exploration. The changes are conventionally investigated independently, but a complete understanding of adaptation requires a conceptual basis founded in integrative physiology, aided by appropriate mathematical modeling. NASA is in the early stages of developing such an approach.
ERIC Educational Resources Information Center
Gopal, Tamilselvi; Herron, Sherry S.; Mohn, Richard S.; Hartsell, Taralynn; Jawor, Jodie M.; Blickenstaff, Jacob C.
2010-01-01
This study provides an understanding of how different interactive technology tools that are integrated into a Website can be used for teaching undergraduate human anatomy and physiology laboratory students. Technology tools refer to a Website that the authors created to teach the Cardiovascular System that includes dynamic tools such as the…
A GENERAL PHYSIOLOGICAL AND TOXICOKINETIC (GPAT) MODEL FOR SIMULATION OF COMPLEX TOLUENE EXPOSURE SCENARIOS IN HUMANS. E M Kenyon1, T Colemen2, C R Eklund1 and V A Benignus3. 1U.S. EPA, ORD, NHEERL, ETD, PKB, RTP, NC, USA; 2Biological Simulators, Inc., Jackson MS, USA, 3U.S. EP...
Rajan, J Pandia; Rajan, S Edward
2018-01-01
Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.
Spatiotemporal microbiota dynamics from quantitative in vitro and in silico models of the gut
NASA Astrophysics Data System (ADS)
Hwa, Terence
The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth behaviors, which ultimately dictate the gut microbiota composition. Combining measurements of bacterial growth physiology with analysis of published data on human physiology into a quantitative modeling framework, we show how hydrodynamic forces in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla in the gut. Our model quantitatively explains the observed variation of microbiota composition among healthy adults, and predicts colonic water absorption (manifested as stool consistency) and nutrient intake to be two key factors determining this composition. The model further reveals that both factors, which have been identified in recent correlative studies, exert their effects through the same mechanism: changes in colonic pH that differentially affect the growth of different bacteria. Our findings show that a predictive and mechanistic understanding of microbial ecology in the human gut is possible, and offer the hope for the rational design of intervention strategies to actively control the microbiota. This work is supported by the Bill and Melinda Gates Foundation.
Nock, Matthew K; Mendes, Wendy Berry
2008-02-01
It has been suggested that people engage in nonsuicidal self-injury (NSSI) because they (a) experience heightened physiological arousal following stressful events and use NSSI to regulate experienced distress and (b) have deficits in their social problem-solving skills that interfere with the performance of more adaptive social responses. However, objective physiological and behavioral data supporting this model are lacking. The authors compared adolescent self-injurers (n = 62) with noninjurers (n = 30) and found that self-injurers showed higher physiological reactivity (skin conductance) during a distressing task, a poorer ability to tolerate this distress, and deficits in several social problem-solving abilities. These findings highlight the importance of attending to increased arousal, distress tolerance, and problem-solving skills in the assessment and treatment of NSSI.
Overview of exocrine pancreatic pathobiology.
Pandiri, Arun R
2014-01-01
Exocrine pancreas is a source of several enzymes that are essential for the digestive process. The exocrine pancreatic secretion is tightly regulated by the neuroendocrine system. The endocrine pancreas is tightly integrated anatomically and physiologically with the exocrine pancreas and modulates its function. Compound-induced pancreatitis is not a common event in toxicology or drug development, but it becomes a significant liability when encountered. Understanding the species-specific differences in physiology is essential to understand the underlying pathobiology of pancreatic disease in animal models and its relevance to human disease. This review will mainly focus on understanding the morphology and physiology of the pancreas, unique islet-exocrine interactions, and pancreatitis.
A statistical model of diurnal variation in human growth hormone
NASA Technical Reports Server (NTRS)
Klerman, Elizabeth B.; Adler, Gail K.; Jin, Moonsoo; Maliszewski, Anne M.; Brown, Emery N.
2003-01-01
The diurnal pattern of growth hormone (GH) serum levels depends on the frequency and amplitude of GH secretory events, the kinetics of GH infusion into and clearance from the circulation, and the feedback of GH on its secretion. We present a two-dimensional linear differential equation model based on these physiological principles to describe GH diurnal patterns. The model characterizes the onset times of the secretory events, the secretory event amplitudes, as well as the infusion, clearance, and feedback half-lives of GH. We illustrate the model by using maximum likelihood methods to fit it to GH measurements collected in 12 normal, healthy women during 8 h of scheduled sleep and a 16-h circadian constant-routine protocol. We assess the importance of the model components by using parameter standard error estimates and Akaike's Information Criterion. During sleep, both the median infusion and clearance half-life estimates were 13.8 min, and the median number of secretory events was 2. During the constant routine, the median infusion half-life estimate was 12.6 min, the median clearance half-life estimate was 11.7 min, and the median number of secretory events was 5. The infusion and clearance half-life estimates and the number of secretory events are consistent with current published reports. Our model gave an excellent fit to each GH data series. Our analysis paradigm suggests an approach to decomposing GH diurnal patterns that can be used to characterize the physiological properties of this hormone under normal and pathological conditions.
Stehle, Jörg H; Saade, Anastasia; Rawashdeh, Oliver; Ackermann, Katrin; Jilg, Antje; Sebestény, Tamás; Maronde, Erik
2011-08-01
The human pineal gland is a neuroendocrine transducer that forms an integral part of the brain. Through the nocturnally elevated synthesis and release of the neurohormone melatonin, the pineal gland encodes and disseminates information on circadian time, thus coupling the outside world to the biochemical and physiological internal demands of the body. Approaches to better understand molecular details behind the rhythmic signalling in the human pineal gland are limited but implicitly warranted, as human chronobiological dysfunctions are often associated with alterations in melatonin synthesis. Current knowledge on melatonin synthesis in the human pineal gland is based on minimally invasive analyses, and by the comparison of signalling events between different vertebrate species, with emphasis put on data acquired in sheep and other primates. Together with investigations using autoptic pineal tissue, a remnant silhouette of premortem dynamics within the hormone's biosynthesis pathway can be constructed. The detected biochemical scenario behind the generation of dynamics in melatonin synthesis positions the human pineal gland surprisingly isolated. In this neuroendocrine brain structure, protein-protein interactions and nucleo-cytoplasmic protein shuttling indicate furthermore a novel twist in the molecular dynamics in the cells of this neuroendocrine brain structure. These findings have to be seen in the light that an impaired melatonin synthesis is observed in elderly and/or demented patients, in individuals affected by Alzheimer's disease, Smith-Magenis syndrome, autism spectrum disorder and sleep phase disorders. Already, recent advances in understanding signalling dynamics in the human pineal gland have significantly helped to counteract chronobiological dysfunctions through a proper restoration of the nocturnal melatonin surge. © 2011 John Wiley & Sons A/S.
Ivanov, Plamen Ch.; Hu, Kun; Hilton, Michael F.; Shea, Steven A.; Stanley, H. Eugene
2007-01-01
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at ≈10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to ≈10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5–9 p.m. (≈9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at ≈10 a.m. PMID:18093917
Ivanov, Plamen Ch; Hu, Kun; Hilton, Michael F; Shea, Steven A; Stanley, H Eugene
2007-12-26
The endogenous circadian pacemaker influences key physiologic functions, such as body temperature and heart rate, and is normally synchronized with the sleep/wake cycle. Epidemiological studies demonstrate a 24-h pattern in adverse cardiovascular events with a peak at approximately 10 a.m. It is unknown whether this pattern in cardiac risk is caused by a day/night pattern of behaviors, including activity level and/or influences from the internal circadian pacemaker. We recently found that a scaling index of cardiac vulnerability has an endogenous circadian peak at the circadian phase corresponding to approximately 10 a.m., which conceivably could contribute to the morning peak in cardiac risk. Here, we test whether this endogenous circadian influence on cardiac dynamics is caused by circadian-mediated changes in motor activity or whether activity and heart rate dynamics are decoupled across the circadian cycle. We analyze high-frequency recordings of motion from young healthy subjects during two complementary protocols that decouple the sleep/wake cycle from the circadian cycle while controlling scheduled behaviors. We find that static activity properties (mean and standard deviation) exhibit significant circadian rhythms with a peak at the circadian phase corresponding to 5-9 p.m. ( approximately 9 h later than the peak in the scale-invariant index of heartbeat fluctuations). In contrast, dynamic characteristics of the temporal scale-invariant organization of activity fluctuations (long-range correlations) do not exhibit a circadian rhythm. These findings suggest that endogenous circadian-mediated activity variations are not responsible for the endogenous circadian rhythm in the scale-invariant structure of heartbeat fluctuations and likely do not contribute to the increase in cardiac risk at approximately 10 a.m.
Sorby, Kris L; Green, Mark P; Dempster, Tim D; Jessop, Tim S
2018-05-29
Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia , subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml -1 ), heat hardening plus methionine (0.79 mg ml -1 ), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events. © 2018. Published by The Company of Biologists Ltd.
A computational framework for prime implicants identification in noncoherent dynamic systems.
Di Maio, Francesco; Baronchelli, Samuele; Zio, Enrico
2015-01-01
Dynamic reliability methods aim at complementing the capability of traditional static approaches (e.g., event trees [ETs] and fault trees [FTs]) by accounting for the system dynamic behavior and its interactions with the system state transition process. For this, the system dynamics is here described by a time-dependent model that includes the dependencies with the stochastic transition events. In this article, we present a novel computational framework for dynamic reliability analysis whose objectives are i) accounting for discrete stochastic transition events and ii) identifying the prime implicants (PIs) of the dynamic system. The framework entails adopting a multiple-valued logic (MVL) to consider stochastic transitions at discretized times. Then, PIs are originally identified by a differential evolution (DE) algorithm that looks for the optimal MVL solution of a covering problem formulated for MVL accident scenarios. For testing the feasibility of the framework, a dynamic noncoherent system composed of five components that can fail at discretized times has been analyzed, showing the applicability of the framework to practical cases. © 2014 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Voter, Arthur
Many important materials processes take place on time scales that far exceed the roughly one microsecond accessible to molecular dynamics simulation. Typically, this long-time evolution is characterized by a succession of thermally activated infrequent events involving defects in the material. In the accelerated molecular dynamics (AMD) methodology, known characteristics of infrequent-event systems are exploited to make reactive events take place more frequently, in a dynamically correct way. For certain processes, this approach has been remarkably successful, offering a view of complex dynamical evolution on time scales of microseconds, milliseconds, and sometimes beyond. We have recently made advances in all three of the basic AMD methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics (TAD)), exploiting both algorithmic advances and novel parallelization approaches. I will describe these advances, present some examples of our latest results, and discuss what should be possible when exascale computing arrives in roughly five years. Funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Los Alamos Laboratory Directed Research and Development program.
Computational fluid dynamics tools can be used to predict the progression of coronary artery disease
NASA Astrophysics Data System (ADS)
Coşkun, A. Ümit; Chen, Caixia; Stone, Peter H.; Feldman, Charles L.
2006-03-01
Atherosclerosis is focal and individual plaques evolve in an independent manner. The endothelium regulates arterial behavior by responding to its local shear stress. In vitro studies indicate that low endothelial shear stress (ESS) upregulates the genetic and molecular responses leading to the initiation and progression of atherosclerosis and promotes inflammation and formation of other features characteristic of vulnerable plaque. Physiologic ESS is vasculoprotective and fosters quiescence of the endothelium and vascular wall. High ESS promotes platelet aggregation. ESS and vascular wall morphology along the course of human coronary arteries can now be characterized in vivo, and may predict the focal areas in which atherosclerosis progression occurs. Rapidly evolving methodologies are able to characterize the arterial wall and the local hemodynamic factors likely responsible for progression of coronary disease in man. These new diagnostic modalities allow for identification of plaque progression. Accurate identification of arterial segments at high-risk for progression may permit pre-emptive intervention strategies to avoid adverse coronary events.
Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres
NASA Astrophysics Data System (ADS)
Oakes, Patrick W.; Wagner, Elizabeth; Brand, Christoph A.; Probst, Dimitri; Linke, Marco; Schwarz, Ulrich S.; Glotzer, Michael; Gardel, Margaret L.
2017-06-01
Cytoskeletal mechanics regulates cell morphodynamics and many physiological processes. While contractility is known to be largely RhoA-dependent, the process by which localized biochemical signals are translated into cell-level responses is poorly understood. Here we combine optogenetic control of RhoA, live-cell imaging and traction force microscopy to investigate the dynamics of actomyosin-based force generation. Local activation of RhoA not only stimulates local recruitment of actin and myosin but also increased traction forces that rapidly propagate across the cell via stress fibres and drive increased actin flow. Surprisingly, this flow reverses direction when local RhoA activation stops. We identify zyxin as a regulator of stress fibre mechanics, as stress fibres are fluid-like without flow reversal in its absence. Using a physical model, we demonstrate that stress fibres behave elastic-like, even at timescales exceeding turnover of constituent proteins. Such molecular control of actin mechanics likely plays critical roles in regulating morphodynamic events.
NASA Technical Reports Server (NTRS)
Gaver, Donald P., III; Bilek, A. M.; Kay, S.; Dee, K. C.
2004-01-01
Pulmonary airway closure is a potentially dangerous event that can occur in microgravity environments and may result in limited gas exchange for flight crew during long-term space flight. Repetitive airway collapse and reopening subjects the pulmonary epithelium to large, dynamic, and potentially injurious mechanical stresses. During ventilation at low lung volumes and pressures, airway instability leads to repetitive collapse and reopening. During reopening, air must progress through a collapsed airway, generating stresses on the airway walls, potentially damaging airway tissues. The normal lung can tolerate repetitive collapse and reopening. However, combined with insufficient or dysfunctional pulmonary surfactant, repetitive airway collapse and reopening produces severe lung injury. Particularly at risk is the pulmonary epithelium. As an important regulator of lung function and physiology, the degree of pulmonary epithelial damage influences the course and outcome of lung injury. In this paper we present experimental and computational studies to explore the hypothesis that the mechanical stresses associated with airway reopening inflict injury to the pulmonary epithelium.
Developmental trajectories of brain maturation and behavior: Relevance to major mental illnesses.
Lockhart, Sedona; Sawa, Akira; Niwa, Minae
2018-05-01
Adverse events in childhood and adolescence, such as social neglect or drug abuse, are known to lead to behavioral changes in young adulthood. This is particularly true for the subset of people who are intrinsically more vulnerable to stressful conditions. Yet the underlying mechanisms for such developmental trajectory from early life insult to aberrant adult behavior remains elusive. Adolescence is a period of dynamic physiological, psychological, and behavioral changes, encompassing a distinct neurodevelopmental stage called the 'critical period'. During adolescence, the brain is uniquely susceptible to stress. Stress mediators may lead to disturbances to biological processes that can cause permanent alterations in the adult stage, even as severe as the onset of mental illness when paired with genetic risk and environmental factors. Understanding the molecular factors governing the critical period and how stress can disturb the maturation processes will allow for better treatment and prevention of late adolescent/young adult onset psychiatric disorders. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Role for the actomyosin complex in regulated exocytosis revealed by intravital microscopy
Masedunskas, Andrius; Sramkova, Monika; Parente, Laura; Sales, Katiuchia Uzzun; Amornphimoltham, Panomwat; Bugge, Thomas H.; Weigert, Roberto
2011-01-01
The regulation and the dynamics of membrane trafficking events have been studied primarily in in vitro models that often do not fully reflect the functional complexity found in a living multicellular organism. Here we used intravital microscopy in the salivary glands of live rodents to investigate regulated exocytosis, a fundamental process in all of the secretory organs. We found that β-adrenergic stimulation elicits exocytosis of large secretory granules, which gradually collapse with the apical plasma membrane without any evidence of compound exocytosis, as was previously described. Furthermore, we show that the driving force required to complete the collapse of the granules is provided by the recruitment of F-actin and nonmuscle myosin II on the granule membranes that is triggered upon fusion with the plasma membrane. Our results provide information on the machinery controlling regulated secretion and show that intravital microscopy provides unique opportunities to address fundamental questions in cell biology under physiological conditions. PMID:21808006
The energy landscape of adenylate kinase during catalysis
Kerns, S. Jordan; Agafonov, Roman V.; Cho, Young-Jin; ...
2015-01-12
Kinases perform phosphoryl-transfer reactions in milliseconds; without enzymes, these reactions would take about 8,000 years under physiological conditions. Despite extensive studies, a comprehensive understanding of kinase energy landscapes, including both chemical and conformational steps, is lacking. In this paper, we scrutinize the microscopic steps in the catalytic cycle of adenylate kinase, through a combination of NMR measurements during catalysis, pre-steady-state kinetics, molecular-dynamics simulations and crystallography of active complexes. We find that the Mg 2+ cofactor activates two distinct molecular events: phosphoryl transfer (>10 5-fold) and lid opening (10 3-fold). In contrast, mutation of an essential active site arginine decelerates phosphorylmore » transfer 10 3-fold without substantially affecting lid opening. Finally, our results highlight the importance of the entire energy landscape in catalysis and suggest that adenylate kinases have evolved to activate key processes simultaneously by precise placement of a single, charged and very abundant cofactor in a preorganized active site.« less
Rapid light-induced activation of retinal microglia in mice lacking Arrestin-1.
Levine, Emily S; Zam, Azhar; Zhang, Pengfei; Pechko, Alina; Wang, Xinlei; FitzGerald, Paul; Pugh, Edward N; Zawadzki, Robert J; Burns, Marie E
2014-09-01
Microglia dynamically prune synaptic contacts during development, and digest waste that accumulates in degeneration and aging. In many neurodegenerative diseases, microglial activation and phagocytosis gradually increase over months or years, with poorly defined initial triggering events. Here, we describe rapid retinal microglial activation in response to physiological light levels in a mouse model of photoreceptor degeneration that arises from defective rhodopsin deactivation and prolonged signaling. Activation, migration and proliferation of microglia proceeded along a well-defined time course apparent within 12 h of light onset. Retinal imaging in vivo with optical coherence tomography revealed dramatic increases in light-scattering from photoreceptors prior to the outer nuclear layer thinning classically used as a measure of retinal neurodegeneration. This model is valuable for mechanistic studies of microglial activation in a well-defined and optically accessible neural circuit, and for the development of novel methods for detecting early signs of pending neurodegeneration in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecular mechanism of Mg2+-dependent gating in CorA
NASA Astrophysics Data System (ADS)
Dalmas, Olivier; Sompornpisut, Pornthep; Bezanilla, Francisco; Perozo, Eduardo
2014-04-01
CorA is the major transport system responsible for Mg2+ uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg2+ uptake remains to be established. Here we use electron paramagnetic resonance spectroscopy, electrophysiology and molecular dynamic simulations to show that CorA is regulated by cytoplasmic Mg2+ acting as a ligand and elucidate the basic conformational rearrangements responsible for Mg2+-dependent gating. Mg2+ unbinding at the divalent cation sensor triggers a conformational change that leads to the inward motion of the stalk helix, which propagates to the pore-forming transmembrane helix TM1. Helical tilting and rotation in TM1 generates an iris-like motion that increases the diameter of the permeation pathway, triggering ion conduction. This work establishes the molecular basis of a Mg2+-driven negative feedback loop in CorA as the key physiological event controlling Mg2+ uptake and homeostasis in prokaryotes.
Modeling molecular mechanisms in the axon
NASA Astrophysics Data System (ADS)
de Rooij, R.; Miller, K. E.; Kuhl, E.
2017-03-01
Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.
Beyond the G-spot: clitourethrovaginal complex anatomy in female orgasm.
Jannini, Emmanuele A; Buisson, Odile; Rubio-Casillas, Alberto
2014-09-01
The search for the legendary, highly erogenous vaginal region, the Gräfenberg spot (G-spot), has produced important data, substantially improving understanding of the complex anatomy and physiology of sexual responses in women. Modern imaging techniques have enabled visualization of dynamic interactions of female genitals during self-sexual stimulation or coitus. Although no single structure consistent with a distinct G-spot has been identified, the vagina is not a passive organ but a highly dynamic structure with an active role in sexual arousal and intercourse. The anatomical relationships and dynamic interactions between the clitoris, urethra, and anterior vaginal wall have led to the concept of a clitourethrovaginal (CUV) complex, defining a variable, multifaceted morphofunctional area that, when properly stimulated during penetration, could induce orgasmic responses. Knowledge of the anatomy and physiology of the CUV complex might help to avoid damage to its neural, muscular, and vascular components during urological and gynaecological surgical procedures.
Mental states as macrostates emerging from brain electrical dynamics
NASA Astrophysics Data System (ADS)
Allefeld, Carsten; Atmanspacher, Harald; Wackermann, Jiří
2009-03-01
Psychophysiological correlations form the basis for different medical and scientific disciplines, but the nature of this relation has not yet been fully understood. One conceptual option is to understand the mental as "emerging" from neural processes in the specific sense that psychology and physiology provide two different descriptions of the same system. Stating these descriptions in terms of coarser- and finer-grained system states (macro- and microstates), the two descriptions may be equally adequate if the coarse-graining preserves the possibility to obtain a dynamical rule for the system. To test the empirical viability of our approach, we describe an algorithm to obtain a specific form of such a coarse-graining from data, and illustrate its operation using a simulated dynamical system. We then apply the method to an electroencephalographic recording, where we are able to identify macrostates from the physiological data that correspond to mental states of the subject.
Motifs, modules and games in bacteria.
Wolf, Denise M; Arkin, Adam P
2003-04-01
Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.
Torres, M E; Añino, M M; Schlotthauer, G
2003-12-01
It is well known that, from a dynamical point of view, sudden variations in physiological parameters which govern certain diseases can cause qualitative changes in the dynamics of the corresponding physiological process. The purpose of this paper is to introduce a technique that allows the automated temporal localization of slight changes in a parameter of the law that governs the nonlinear dynamics of a given signal. This tool takes, from the multiresolution entropies, the ability to show these changes as statistical variations at each scale. These variations are held in the corresponding principal component. Appropriately combining these techniques with a statistical changes detector, a complexity change detection algorithm is obtained. The relevance of the approach, together with its robustness in the presence of moderate noise, is discussed in numerical simulations and the automatic detector is applied to real and simulated biological signals.
Motifs, modules and games in bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Denise M.; Arkin, Adam P.
2003-04-01
Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment.more » Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.« less
A Quantitative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population DynamicsAn adverse outcome pathway (AOP) is a qualitative description linking a molecular initiating event (MIE) with measureable key events leading to an adverse outcome (AO). ...
Analytically Solvable Model of Spreading Dynamics with Non-Poissonian Processes
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Perotti, Juan I.; Kaski, Kimmo; Kertész, János
2014-01-01
Non-Poissonian bursty processes are ubiquitous in natural and social phenomena, yet little is known about their effects on the large-scale spreading dynamics. In order to characterize these effects, we devise an analytically solvable model of susceptible-infected spreading dynamics in infinite systems for arbitrary inter-event time distributions and for the whole time range. Our model is stationary from the beginning, and the role of the lower bound of inter-event times is explicitly considered. The exact solution shows that for early and intermediate times, the burstiness accelerates the spreading as compared to a Poisson-like process with the same mean and same lower bound of inter-event times. Such behavior is opposite for late-time dynamics in finite systems, where the power-law distribution of inter-event times results in a slower and algebraic convergence to a fully infected state in contrast to the exponential decay of the Poisson-like process. We also provide an intuitive argument for the exponent characterizing algebraic convergence.
Krishnan, Ranjani; Walton, Emily B; Van Vliet, Krystyn J
2009-11-01
As computational resources increase, molecular dynamics simulations of biomolecules are becoming an increasingly informative complement to experimental studies. In particular, it has now become feasible to use multiple initial molecular configurations to generate an ensemble of replicate production-run simulations that allows for more complete characterization of rare events such as ligand-receptor unbinding. However, there are currently no explicit guidelines for selecting an ensemble of initial configurations for replicate simulations. Here, we use clustering analysis and steered molecular dynamics simulations to demonstrate that the configurational changes accessible in molecular dynamics simulations of biomolecules do not necessarily correlate with observed rare-event properties. This informs selection of a representative set of initial configurations. We also employ statistical analysis to identify the minimum number of replicate simulations required to sufficiently sample a given biomolecular property distribution. Together, these results suggest a general procedure for generating an ensemble of replicate simulations that will maximize accurate characterization of rare-event property distributions in biomolecules.
Controlling extreme events on complex networks
NASA Astrophysics Data System (ADS)
Chen, Yu-Zhong; Huang, Zi-Gang; Lai, Ying-Cheng
2014-08-01
Extreme events, a type of collective behavior in complex networked dynamical systems, often can have catastrophic consequences. To develop effective strategies to control extreme events is of fundamental importance and practical interest. Utilizing transportation dynamics on complex networks as a prototypical setting, we find that making the network ``mobile'' can effectively suppress extreme events. A striking, resonance-like phenomenon is uncovered, where an optimal degree of mobility exists for which the probability of extreme events is minimized. We derive an analytic theory to understand the mechanism of control at a detailed and quantitative level, and validate the theory numerically. Implications of our finding to current areas such as cybersecurity are discussed.
Johanson, Bradley E.; Fox, Armando; Winograd, Terry A.; Hanrahan, Patrick M.
2010-04-20
An efficient and adaptive middleware infrastructure called the Event Heap system dynamically coordinates application interactions and communications in a ubiquitous computing environment, e.g., an interactive workspace, having heterogeneous software applications running on various machines and devices across different platforms. Applications exchange events via the Event Heap. Each event is characterized by a set of unordered, named fields. Events are routed by matching certain attributes in the fields. The source and target versions of each field are automatically set when an event is posted or used as a template. The Event Heap system implements a unique combination of features, both intrinsic to tuplespaces and specific to the Event Heap, including content based addressing, support for routing patterns, standard routing fields, limited data persistence, query persistence/registration, transparent communication, self-description, flexible typing, logical/physical centralization, portable client API, at most once per source first-in-first-out ordering, and modular restartability.
Sharif, Behzad; Bresler, Yoram
2013-01-01
Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475
Fluid dynamics in flexible tubes: An application to the study of the pulmonary circulation
NASA Technical Reports Server (NTRS)
Kuchar, N. R.
1971-01-01
Based on an analysis of unsteady, viscous flow through distensible tubes, a lumped-parameter model for the dynamics of blood flow through the pulmonary vascular bed was developed. The model is nonlinear, incorporating the variation of flow resistance with transmural pressure. Solved using a hybrid computer, the model yields information concerning the time-dependent behavior of blood pressures, flow rates, and volumes in each important class of vessels in each lobe of each lung in terms of the important physical and environmental parameters. Simulations of twenty abnormal or pathological situations of interest in environmental physiology and clinical medicine were performed. The model predictions agree well with physiological data.
Monitoring of endogenous carbon monoxide dynamics in human breath by tunable diode laser
NASA Astrophysics Data System (ADS)
Stepanov, Eugene V.; Daraselia, Mikhail V.; Zyrianov, Pavel V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.
1996-01-01
High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Temporal variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation and sport loading were first studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.
Endogenous CO dynamics monitoring in breath by tunable diode laser
NASA Astrophysics Data System (ADS)
Kouznetsov, Andrian I.; Stepanov, Eugene V.; Shulagin, Yurii A.; Skrupskii, Vladimir A.
1996-04-01
High sensitive CO gas analyzer based on tunable diode laser (TDL) was used as a real time monitor of endogenous carbon monoxide in a set of breath physiology experiments. The measurements of the CO content dynamics in exhaled air with 10 ppb sensitivity were attended with detection of carbon dioxide and O2 in breath, lung ventilation parameters, heart rate and blood analysis using conventional techniques. Variations of endogenous CO in human breath caused by hyperoxia, hypoxia, hyperventilation as well as sport loading were studied in real time. Scattering of the CO variation time constants was observed for different tested persons. Possible reasons for this scattering related with the organisms' physiology peculiarities are discussed.
A non-orthogonal decomposition of flows into discrete events
NASA Astrophysics Data System (ADS)
Boxx, Isaac; Lewalle, Jacques
1998-11-01
This work is based on the formula for the inverse Hermitian wavelet transform. A signal can be interpreted as a (non-unique) superposition of near-singular, partially overlapping events arising from Dirac functions and/or its derivatives combined with diffusion.( No dynamics implied: dimensionless diffusion is related to the definition of the analyzing wavelets.) These events correspond to local maxima of spectral energy density. We successfully fitted model events of various orders on a succession of fields, ranging from elementary signals to one-dimensional hot-wire traces. We document edge effects, event overlap and its implications on the algorithm. The interpretation of the discrete singularities as flow events (such as coherent structures) and the fundamental non-uniqueness of the decomposition are discussed. The dynamics of these events will be examined in the companion paper.
Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points
NASA Astrophysics Data System (ADS)
Jia, Bing; Gu, Huaguang
2017-06-01
Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.
NASA Astrophysics Data System (ADS)
Donges, J. F.; Schleussner, C.-F.; Siegmund, J. F.; Donner, R. V.
2016-05-01
Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Physiological mechanisms underlying animal social behaviour.
Seebacher, Frank; Krause, Jens
2017-08-19
Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).
Physiological mechanisms underlying animal social behaviour
2017-01-01
Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission–fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673909
Mandibuloacral dysplasia: A premature ageing disease with aspects of physiological ageing.
Cenni, Vittoria; D'Apice, Maria Rosaria; Garagnani, Paolo; Columbaro, Marta; Novelli, Giuseppe; Franceschi, Claudio; Lattanzi, Giovanna
2018-03-01
Mandibuloacral dysplasia (MAD) is a rare genetic condition characterized by bone abnormalities including localized osteolysis and generalized osteoporosis, skin pigmentation, lipodystrophic signs and mildly accelerated ageing. The molecular defects associated with MAD are mutations in LMNA or ZMPSTE24 (FACE1) gene, causing type A or type B MAD, respectively. Downstream of LMNA or ZMPSTE24 mutations, the lamin A precursor, prelamin A, is accumulated in cells and affects chromatin dynamics and stress response. A new form of mandibuloacral dysplasia has been recently associated with mutations in POLD1 gene, encoding DNA polymerase delta, a major player in DNA replication. Of note, involvement of prelamin A in chromatin dynamics and recruitment of DNA repair factors has been also determined under physiological conditions, at the border between stress response and cellular senescence. Here, we review current knowledge on MAD clinical and pathogenetic aspects and highlight aspects typical of physiological ageing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Enhancing the Benefits of Written Emotional Disclosure through Response Training
Konig, Andrea; Eonta, Alison; Dyal, Stephanie R.; Vrana, Scott R.
2014-01-01
Writing about a personal stressful event has been found to have psychological and physical health benefits, especially when physiological response increases during writing. Response training was developed to amplify appropriate physiological reactivity in imagery exposure. The present study examined whether response training enhances the benefits of written emotional disclosure. Participants were assigned to either a written emotional disclosure condition (n = 113) or a neutral writing condition (n = 133). Participants in each condition wrote for 20 minutes on three occasions and received response training (n = 79), stimulus training (n = 84) or no training (n = 83). Heart rate and skin conductance were recorded throughout a 10-minute baseline, 20-minute writing, and a 10-minute recovery period. Self-reported emotion was assessed in each session. One month after completing the sessions, participants completed follow-up assessments of psychological and physical health outcomes. Emotional disclosure elicited greater physiological reactivity and self-reported emotion than neutral writing. Response training amplified physiological reactivity to emotional disclosure. Greater heart rate during emotional disclosure was associated with the greatest reductions in event-related distress, depression, and physical illness symptoms at follow-up, especially among response trained participants. Results support an exposure explanation of emotional disclosure effects and are the first to demonstrate that response training facilitates emotional processing and may be a beneficial adjunct to written emotional disclosure. PMID:24680230
Enhancing the benefits of written emotional disclosure through response training.
Konig, Andrea; Eonta, Alison; Dyal, Stephanie R; Vrana, Scott R
2014-05-01
Writing about a personal stressful event has been found to have psychological and physical health benefits, especially when physiological response increases during writing. Response training was developed to amplify appropriate physiological reactivity in imagery exposure. The present study examined whether response training enhances the benefits of written emotional disclosure. Participants were assigned to either a written emotional disclosure condition (n=113) or a neutral writing condition (n=133). Participants in each condition wrote for 20 minutes on 3 occasions and received response training (n=79), stimulus training (n=84) or no training (n=83). Heart rate and skin conductance were recorded throughout a 10-minute baseline, 20-minute writing, and a 10-minute recovery period. Self-reported emotion was assessed in each session. One month after completing the sessions, participants completed follow-up assessments of psychological and physical health outcomes. Emotional disclosure elicited greater physiological reactivity and self-reported emotion than neutral writing. Response training amplified physiological reactivity to emotional disclosure. Greater heart rate during emotional disclosure was associated with the greatest reductions in event-related distress, depression, and physical illness symptoms at follow-up, especially among response trained participants. Results support an exposure explanation of emotional disclosure effects and are the first to demonstrate that response training facilitates emotional processing and may be a beneficial adjunct to written emotional disclosure. Copyright © 2014. Published by Elsevier Ltd.
Metcalfe, J. D.; Le Quesne, W. J. F.; Cheung, W. W. L.; Righton, D. A.
2012-01-01
Physiological studies focus on the responses of cells, tissues and individuals to stressors, usually in laboratory situations. Conservation and management, on the other hand, focus on populations. The field of conservation physiology addresses the question of how abiotic drivers of physiological responses at the level of the individual alter requirements for successful conservation and management of populations. To achieve this, impacts of physiological effects at the individual level need to be scaled to impacts on population dynamics, which requires consideration of ecology. Successfully realizing the potential of conservation physiology requires interdisciplinary studies incorporating physiology and ecology, and requires that a constructive dialogue develops between these traditionally disparate fields. To encourage this dialogue, we consider the increasingly explicit incorporation of physiology into ecological models applied to marine fish conservation and management. Conservation physiology is further challenged as the physiology of an individual revealed under laboratory conditions is unlikely to reflect realized responses to the complex variable stressors to which it is exposed in the wild. Telemetry technology offers the capability to record an animal's behaviour while simultaneously recording environmental variables to which it is exposed. We consider how the emerging insights from telemetry can strengthen the incorporation of physiology into ecology. PMID:22566680
Coupling Protein Dynamics with Proton Transport in Human Carbonic Anhydrase II
2016-01-01
The role of protein dynamics in enzyme catalysis is one of the most highly debated topics in enzymology. The main controversy centers around what may be defined as functionally significant conformational fluctuations and how, if at all, these fluctuations couple to enzyme catalyzed events. To shed light on this debate, the conformational dynamics along the transition path surmounting the highest free energy barrier have been herein investigated for the rate limiting proton transport event in human carbonic anhydrase (HCA) II. Special attention has been placed on whether the motion of an excess proton is correlated with fluctuations in the surrounding protein and solvent matrix, which may be rare on the picosecond and subpicosecond time scales of molecular motions. It is found that several active site residues, which do not directly participate in the proton transport event, have a significant impact on the dynamics of the excess proton. These secondary participants are shown to strongly influence the active site environment, resulting in the creation of water clusters that are conducive to fast, moderately slow, or slow proton transport events. The identification and characterization of these secondary participants illuminates the role of protein dynamics in the catalytic efficiency of HCA II. PMID:27063577
Causse, Mickaël; Sénard, Jean-Michel; Démonet, Jean François; Pastor, Josette
2010-06-01
The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error.
Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity.
López-Lluch, Guillermo
2017-03-01
Mitochondria play an essential role in ageing and longevity. During ageing, a general deregulation of metabolism occurs, affecting molecular, cellular and physiological activities in the organism. Dysfunction of mitochondria has been associated with ageing and age-related diseases indicating their importance in the maintenance of cell homeostasis. Three major nutritional sensors, mTOR, AMPK and Sirtuins are involved in the control of mitochondrial physiology. These nutritional sensors control mitochondrial biogenesis, dynamics by regulating fusion and fission processes, and turnover through mito- and autophagy. Apart of the known factors involved in fusion, OPA1 and mitofusins, and fission, DRP1 and FIS1, emerging factors such as prohibitins and sestrins can play important functions in mitochondrial dynamics regulation. Mitochondria is also affected by sexual hormones that suffer drastic changes during ageing. The recent literature demonstrates the complex interaction between nutritional sensors and mitochondrial homeostasis in the physiology of adipose tissue and in the accumulation of fat in other organs such as muscle and liver. In this article, the role of mitochondrial homeostasis in ageing and age-dependent fat accumulation is revised. This review highlights the importance of mitochondria in the accumulation of fat during ageing and related diseases such as obesity, metabolic syndrome or type 2 diabetes mellitus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Bringing physiology into PET of the liver.
Keiding, Susanne
2012-03-01
Several physiologic features make interpretation of PET studies of liver physiology an exciting challenge. As with other organs, hepatic tracer kinetics using PET is quantified by dynamic recording of the liver after the administration of a radioactive tracer, with measurements of time-activity curves in the blood supply. However, the liver receives blood from both the portal vein and the hepatic artery, with the peak of the portal vein time-activity curve being delayed and dispersed compared with that of the hepatic artery. The use of a flow-weighted dual-input time-activity curve is of importance for the estimation of hepatic blood perfusion through initial dynamic PET recording. The portal vein is inaccessible in humans, and methods of estimating the dual-input time-activity curve without portal vein measurements are being developed. Such methods are used to estimate regional hepatic blood perfusion, for example, by means of the initial part of a dynamic (18)F-FDG PET/CT recording. Later, steady-state hepatic metabolism can be assessed using only the arterial input, provided that neither the tracer nor its metabolites are irreversibly trapped in the prehepatic splanchnic area within the acquisition period. This is used in studies of regulation of hepatic metabolism of, for example, (18)F-FDG and (11)C-palmitate.
NASA Astrophysics Data System (ADS)
Rheinstadter, Maikel
2008-03-01
We use neutron, X-ray and light scattering techniques to determine dynamical and structural properties of artificial and biological membranes. The combination of various techniques enlarges the window to length scales from the nearest-neighbor distances of lipid molecules to more than 10-6m, covering time scales from about 0.1 ps to 1 s. The main research objective is to quantify collective molecular fluctuations in these systems and to establish relationships to physiological and biological functions of the bilayers, such as transmembrane transport. The motivation for this project is twofold: 1) By understanding fundamental properties of bilayers at the microscopic and mesoscopic level, we aim to tailor membranes with specific properties such as permeability and elasticity. 2) By relating dynamical fluctuations to physiological and biological functions, we can gain a deeper understanding of the bilayers on a molecular scale that may help optimizing the transmembrane transport of certain drugs. We show how bilayer permeability, elasticity and inter protein excitations can be determined from the experiments. M.C. Rheinstädter et al., Phys. Rev. Lett. 93, 108107 (2004); Phys. Rev. Lett. 97, 048103 (2006); Phys. Rev. E 75, 011907 (2007);J. Vac. Soc. Technol. A 24, 1191 (2006).
Predicting the risk of sudden cardiac death.
Lerma, Claudia; Glass, Leon
2016-05-01
Sudden cardiac death (SCD) is the result of a change of cardiac activity from normal (typically sinus) rhythm to a rhythm that does not pump adequate blood to the brain. The most common rhythms leading to SCD are ventricular tachycardia (VT) or ventricular fibrillation (VF). These result from an accelerated ventricular pacemaker or ventricular reentrant waves. Despite significant efforts to develop accurate predictors for the risk of SCD, current methods for risk stratification still need to be improved. In this article we briefly review current approaches to risk stratification. Then we discuss the mathematical basis for dynamical transitions (called bifurcations) that may lead to VT and VF. One mechanism for transition to VT or VF involves a perturbation by a premature ventricular complex (PVC) during sinus rhythm. We describe the main mechanisms of PVCs (reentry, independent pacemakers and abnormal depolarizations). An emerging approach to risk stratification for SCD involves the development of individualized dynamical models of a patient based on measured anatomy and physiology. Careful analysis and modelling of dynamics of ventricular arrhythmia on an individual basis will be essential in order to improve risk stratification for SCD and to lay a foundation for personalized (precision) medicine in cardiology. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
NASA Astrophysics Data System (ADS)
Gale, Charles; Jeon, Sangyong; Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju
2013-01-01
Anisotropic flow coefficients v1-v5 in heavy ion collisions are computed by combining a classical Yang-Mills description of the early time Glasma flow with the subsequent relativistic viscous hydrodynamic evolution of matter through the quark-gluon plasma and hadron gas phases. The Glasma dynamics, as realized in the impact parameter dependent Glasma (IP-Glasma) model, takes into account event-by-event geometric fluctuations in nucleon positions and intrinsic subnucleon scale color charge fluctuations; the preequilibrium flow of matter is then matched to the music algorithm describing viscous hydrodynamic flow and particle production at freeze-out. The IP-Glasma+MUSIC model describes well both transverse momentum dependent and integrated vn data measured at the Large Hadron Collider and the Relativistic Heavy Ion Collider. The model also reproduces the event-by-event distributions of v2, v3 and v4 measured by the ATLAS Collaboration. The implications of our results for better understanding of the dynamics of the Glasma and for the extraction of transport properties of the quark-gluon plasma are outlined.
A network of discrete events for the representation and analysis of diffusion dynamics.
Pintus, Alberto M; Pazzona, Federico G; Demontis, Pierfranco; Suffritti, Giuseppe B
2015-11-14
We developed a coarse-grained description of the phenomenology of diffusive processes, in terms of a space of discrete events and its representation as a network. Once a proper classification of the discrete events underlying the diffusive process is carried out, their transition matrix is calculated on the basis of molecular dynamics data. This matrix can be represented as a directed, weighted network where nodes represent discrete events, and the weight of edges is given by the probability that one follows the other. The structure of this network reflects dynamical properties of the process of interest in such features as its modularity and the entropy rate of nodes. As an example of the applicability of this conceptual framework, we discuss here the physics of diffusion of small non-polar molecules in a microporous material, in terms of the structure of the corresponding network of events, and explain on this basis the diffusivity trends observed. A quantitative account of these trends is obtained by considering the contribution of the various events to the displacement autocorrelation function.
Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations.
Rossetti, G; Musiani, F; Abad, E; Dibenedetto, D; Mouhib, H; Fernandez, C O; Carloni, P
2016-02-17
We perform here enhanced sampling simulations of N-terminally acetylated human α-synuclein, an intrinsically disordered protein involved in Parkinson's disease. The calculations, consistent with experiments, suggest that the post-translational modification leads to the formation of a transient amphipathic α-helix. The latter, absent in the non-physiological form, alters protein dynamics at the N-terminal and intramolecular interactions.
Schulman, Martin; Becker, Annet; Ganswindt, Stefanie; Guthrie, Alan; Stout, Tom; Ganswindt, Andre
2014-01-17
Validation of a method for the minimally-invasive measurement of physiological stress will help understanding of risk factors that may contribute to stress-associated events including recrudescence of Equid herpesvirus (EHV), which is anecdotally associated with sales consignment of pregnant Thoroughbred mares. In this study we compared two similar groups of late-gestation Thoroughbred broodmares on the same farm: a consigned Sales group (N = 8) and a non-consigned Control group (N = 6). The Sales mares were separated from their paddock companions and grouped prior to their preparation for, transport to, and return from the sales venue. Both groups were monitored by sampling at regular intervals from 5 days prior to until 14 days after the sales date (D0) to measure physiological stress in terms of changes in faecal glucocorticoid metabolite (FGM) concentrations, and for event-related viral recrudescence via daily body temperature measurements and periodic nasal swabs for PCR analysis for EHV-1 and -4 DNA. In both groups, FGM levels increased post-sales before returning to pre-sales levels. Specifically, FGM concentrations in the Sales mares were significantly higher on D + 3 and D + 10 than on D-4 and D-3 (F = 12.03, P < 0.0001, Post hoc: P = 0.0003-0.0008) and in the Control group FGM concentrations were higher on D + 10 than D-4 (F = 5.52, P = 0.004, Post hoc: P = 0.005). Interestingly, mean FGM levels in Control mares were significantly higher at 4 of the 5 sampling points (t = 5.64-2.25, p = 0.0001-0.044). Only one (Sales) mare showed PCR evidence of EHV-1 shedding. Using FGM to measure physiological stress was supported by the increases observed in all mares after Sales consignment, including those not consigned to the sale. Monitoring FGM levels therefore represents an appropriate, minimally-invasive method for future studies to assess the contribution of physiological stress to EHV recrudescence in horses transported to sales or equestrian events.
2014-01-01
Background Validation of a method for the minimally-invasive measurement of physiological stress will help understanding of risk factors that may contribute to stress-associated events including recrudescence of Equid herpesvirus (EHV), which is anecdotally associated with sales consignment of pregnant Thoroughbred mares. In this study we compared two similar groups of late-gestation Thoroughbred broodmares on the same farm: a consigned Sales group (N = 8) and a non-consigned Control group (N = 6). The Sales mares were separated from their paddock companions and grouped prior to their preparation for, transport to, and return from the sales venue. Both groups were monitored by sampling at regular intervals from 5 days prior to until 14 days after the sales date (D0) to measure physiological stress in terms of changes in faecal glucocorticoid metabolite (FGM) concentrations, and for event-related viral recrudescence via daily body temperature measurements and periodic nasal swabs for PCR analysis for EHV-1 and -4 DNA. Results In both groups, FGM levels increased post-sales before returning to pre-sales levels. Specifically, FGM concentrations in the Sales mares were significantly higher on D + 3 and D + 10 than on D-4 and D-3 (F = 12.03, P < 0.0001, Post hoc: P = 0.0003 – 0.0008) and in the Control group FGM concentrations were higher on D + 10 than D-4 (F = 5.52, P = 0.004, Post hoc: P = 0.005). Interestingly, mean FGM levels in Control mares were significantly higher at 4 of the 5 sampling points (t = 5.64 – 2.25, p = 0.0001 – 0.044). Only one (Sales) mare showed PCR evidence of EHV-1 shedding. Conclusions Using FGM to measure physiological stress was supported by the increases observed in all mares after Sales consignment, including those not consigned to the sale. Monitoring FGM levels therefore represents an appropriate, minimally-invasive method for future studies to assess the contribution of physiological stress to EHV recrudescence in horses transported to sales or equestrian events. PMID:24433380
Corey, Emily; Linnansaari, Tommi; Cunjak, Richard A; Currie, Suzanne
2017-01-01
The frequency of extreme thermal events in temperate freshwater systems is expected to increase alongside global surface temperature. The Miramichi River, located in eastern Canada, is a prominent Atlantic salmon ( Salmo salar ) river where water temperatures can exceed the proposed upper thermal limit for the species (~27°C). Current legislation closes the river to recreational angling when water temperatures exceed 20°C for two consecutive nights. We aimed to examine how natural thermal variation, representative of extreme high thermal events, affected the thermal tolerance and physiology of wild, juvenile Atlantic salmon. We acclimated fish to four thermal cycles, characteristic of real-world thermal conditions while varying daily thermal minima (16°C, 18°C, 20°C or 22°C) and diel thermal fluctuation (e.g. Δ5°C-Δ9°C). In each cycling condition, we assessed the role that thermal minima played on the acute thermal tolerance (critical thermal maximum, (CTMax)), physiological (e.g. heat shock protein 70 (HSP70), ubiquitin) and energetic (e.g. hepatic glycogen, blood glucose and lactate) status of juvenile Atlantic salmon throughout repeated thermal cycles. Exposure to 16-21°C significantly increased CTMax (+0.9°C) compared to a stable acclimation temperature (16°C), as did exposure to diel thermal fluctuations of 18-27°C, 20-27°C and 22-27°C, yet repeated exposure provided no further increases in acute thermal tolerance. In comparison to the reference condition (16-21°C), consecutive days of high temperature cycling with different thermal minima resulted in significant increases in HSP70 and ubiquitin, a significant decrease in liver glycogen, and no significant cumulative effect on either blood glucose or lactate. However, comparison between thermally taxed treatments suggested the diel thermal minima had little influence on the physiological or energetic response of juvenile salmon, despite the variable thermal cycling condition. Our results suggest that relatively cooler night temperatures in the summer months may play a limited role in mitigating physiological stress throughout warm diel cycle events.
Dynamic Statistical Characterization of Variation in Source Processes of Microseismic Events
NASA Astrophysics Data System (ADS)
Smith-Boughner, L.; Viegas, G. F.; Urbancic, T.; Baig, A. M.
2015-12-01
During a hydraulic fracture, water is pumped at high pressure into a formation. A proppant, typically sand is later injected in the hope that it will make its way into a fracture, keep it open and provide a path for the hydrocarbon to enter the well. This injection can create micro-earthquakes, generated by deformation within the reservoir during treatment. When these injections are monitored, thousands of microseismic events are recorded within several hundred cubic meters. For each well-located event, many source parameters are estimated e.g. stress drop, Savage-Wood efficiency and apparent stress. However, because we are evaluating outputs from a power-law process, the extent to which the failure is impacted by fluid injection or stress triggering is not immediately clear. To better detect differences in source processes, we use a set of dynamic statistical parameters which characterize various force balance assumptions using the average distance to the nearest event, event rate, volume enclosed by the events, cumulative moment and energy from a group of events. One parameter, the Fracability index, approximates the ratio of viscous to elastic forcing and highlights differences in the response time of a rock to changes in stress. These dynamic parameters are applied to a database of more than 90 000 events in a shale-gas play in the Horn River Basin to characterize spatial-temporal variations in the source processes. In order to resolve these differences, a moving window, nearest neighbour approach was used. First, the center of mass of the local distribution was estimated for several source parameters. Then, a set of dynamic parameters, which characterize the response of the rock were estimated. These techniques reveal changes in seismic efficiency and apparent stress and often coincide with marked changes in the Fracability index and other dynamic statistical parameters. Utilizing these approaches allowed for the characterization of fluid injection related processes.