Sample records for dynamic plasma screening

  1. Finite temperature static charge screening in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Akbari-Moghanjoughi, M.

    2016-07-01

    The shielding potential around a test charge is calculated, using the linearized quantum hydrodynamic formulation with the statistical pressure and Bohm potential derived from finite temperature kinetic theory, and the temperature effects on the force between ions is assessed. The derived screening potential covers the full range of electron degeneracy in the equation of state of the plasma electrons. An attractive force between shielded ions in an arbitrary degenerate plasma exists below a critical temperature and density. The effect of the temperature on the screening potential profile qualitatively describes the ion-ion bound interaction strength and length variations. This may be used to investigate physical properties of plasmas and in molecular-dynamics simulations of fermion plasma. It is further shown that the Bohm potential including the kinetic corrections has a profound effect on the Thomson scattering cross section in quantum plasmas with arbitrary degeneracy.

  2. Ionization-potential depression and dynamical structure factor in dense plasmas

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi

    2017-07-01

    The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

  3. Energy deposition of heavy ions in the regime of strong beam-plasma correlations.

    PubMed

    Gericke, D O; Schlanges, M

    2003-03-01

    The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.

  4. Electron capture and excitation processes in H+-H collisions in dense quantum plasmas

    NASA Astrophysics Data System (ADS)

    Jakimovski, D.; Markovska, N.; Janev, R. K.

    2016-10-01

    Electron capture and excitation processes in proton-hydrogen atom collisions taking place in dense quantum plasmas are studied by employing the two-centre atomic orbital close-coupling (TC-AOCC) method. The Debye-Hückel cosine (DHC) potential is used to describe the plasma screening effects on the Coulomb interaction between charged particles. The properties of a hydrogen atom with DHC potential are investigated as a function of the screening strength of the potential. It is found that the decrease in binding energy of nl levels with increasing screening strength is considerably faster than in the case of the Debye-Hückel (DH) screening potential, appropriate for description of charged particle interactions in weakly coupled classical plasmas. This results in a reduction in the number of bound states in the DHC potential with respect to that in the DH potential for the same plasma screening strength, and is reflected in the dynamics of excitation and electron capture processes for the two screened potentials. The TC-AOCC cross sections for total and state-selective electron capture and excitation cross sections with the DHC potential are calculated for a number of representative screening strengths in the 1-300 keV energy range and compared with those for the DH and pure Coulomb potential. The total capture cross sections for a selected number of screening strengths are compared with the available results from classical trajectory Monte Carlo calculations.

  5. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Dynamics of a plasma formed by a surface optical-discharge in a metal vapour interacting with a cw CO2 laser beam

    NASA Astrophysics Data System (ADS)

    Zaikin, A. E.; Levin, A. V.; Petrov, A. L.

    1995-02-01

    A surface optical-discharge plasma was formed in a metal vapour under normal conditions by steady-state irradiation with a cw CO2 laser delivering radiation of moderate (2-4.5 MW cm-2) intensity. This plasma strongly screened the irradiated surface. Under the selected experimental conditions the optical discharge was not a continuous (steady-state) process. The plasma cloud was displaced along the beam out of the waist to a region where the laser radiation intensity was almost an order of magnitude less than the threshold for excitation of the optical-discharge plasma in the vapour. A strong screening of the metal surface, which could even completely stop evaporation of the metal, was observed. Self-oscillations of the optical-discharge plasma were observed for the first time in a vapour interacting with cw CO2 radiation: this was attributed to screening of the target surface. Within one period of the self-oscillations there were additional hf plasma pulsations which led to stratification of the plasma cloud. The results obtained were interpreted.

  6. Low-energy electron elastic scattering and impact ionization with hydrogenlike helium in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Song Bin; Ye, Bang Jiao; Wang, Jian Guo; Janev, R. K.

    2017-09-01

    Low-energy electron elastic scattering and impact ionization with hydrogenlike helium in Debye plasmas have been investigated by employing the exterior complex scaling method. The interactions between charged particles in the plasmas have been represented by Debye-Hückel potentials. The 1 s -1 s elastic collision strengths below the n =2 excitation threshold of He+ dominated by resonance structures are calculated for different screening lengths. As the screening strength increases, the resonance peaks studied [2(1,0) 2 +1Se,3Po,1De , and 2(0,1) 2 +1Po] exhibit blueshifts and then redshifts with a further increase of the screening strength, which results in dramatic changes of the collision strengths. It is found that these dynamic variation features of the resonances are related to the changes of energy levels of He+ in the screened potential and geometric configurations of resonances. Triple-differential-ionization cross sections in coplanar geometries at 6-Ry incident electron energy are also reported, significant changes are observed with varying screening length.

  7. Resonant charge exchange for H-H+ in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Laricchiuta, Annarita; Colonna, Gianpiero; Capitelli, Mario; Kosarim, Alexander; Smirnov, Boris M.

    2017-11-01

    The dynamics of resonant charge exchange in proton-hydrogen collisions embedded in plasma is investigated in the framework of the asymptotic approach, modified to account for the effect of Debye-Hückel screening in particle interactions. The cross sections exhibit a marked dependence on the Debye length in regimes of severe plasma confinement. Processes involving excited states H( n)-H+ are also discussed.

  8. Molecular dynamic simulation of weakly magnetized complex plasmas

    NASA Astrophysics Data System (ADS)

    Funk, Dylan; Konopka, Uwe; Thomas, Edward

    2017-10-01

    A complex plasma consists of the usual plasma components (electrons, ions and neutrals), as well as a heavier component made of solid, micrometer-sized particles. The particles are in general highly charged as a result of the interaction with the other plasma components. The static and dynamic properties of a complex plasma such as its crystal structure or wave properties are influenced by many forces acting on the individual particles such as the dust particle interaction (a screened Coulomb interaction), neutral (Epstein) drag, the particle inertia and various plasma drag or thermophoretic forces. To study the behavior of complex plasmas we setup an experiment accompanying molecular dynamic simulation. We will present the approach taken in our simulation and give an overview of experimental situations that we want to cover with our simulation such as the particle charge under microgravity condition as performed on the PK-4 space experiment, or to study the detailed influences of high magnetic fields. This work was supported by the US Dept. of Energy (DE-SC0016330), NSF (PHY-1613087) and JPL/NASA (JPL-RSA 1571699).

  9. Unified concept of effective one component plasma for hot dense plasmas

    DOE PAGES

    Clerouin, Jean; Arnault, Philippe; Ticknor, Christopher; ...

    2016-03-17

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation timemore » scales of the correlation functions associated with ionic motion. Lastly, in the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.« less

  10. Back reaction effects on the dynamics of heavy probes in heavy quark cloud

    NASA Astrophysics Data System (ADS)

    Chakrabortty, Shankhadeep; Dey, Tanay K.

    2016-05-01

    We holographically study the effect of back reaction on the hydrodynamical properties of {N}=4 strongly coupled super Yang-Mills (SYM) thermal plasma. The back reaction we consider arises from the presence of static heavy quarks uniformly distributed over {N}=4 SYM plasma. In order to study the hydrodynamical properties, we use heavy quark as well as heavy quark-antiquark bound state as probes and compute the jet quenching parameter, screening length and binding energy. We also consider the rotational dynamics of heavy probe quark in the back-reacted plasma and analyse associated energy loss. We observe that the presence of back reaction enhances the energy-loss in the thermal plasma. Finally, we show that there is no effect of angular drag on the rotational motion of quark-antiquark bound state probing the back reacted thermal plasma.

  11. Effect of correlations on the polarizability of the one component plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, P.R.

    Correlational effects on the dynamical polarizability ..cap alpha..(k,..omega..) of the one component plasma (OCP) are investigated in both the weak (..gamma.. < 1) and strong (..gamma.. < 1) coupling regions (..gamma.. is the plasma parameter, ..gamma.. = k/sup 3//4..pi..n where k/sup -1/ is the Debye length and n is the number density. In the weak coupling region a numerical solution is presented over a wide range of frequencies of the complete first order (in ..gamma..) correction to the dynamical polarizability which fully accounts for dynamical screening effects and is exact in the long wavelength and weak coupling limits (k ..-->..more » 0, ..gamma.. ..-->.. 0). This complete result is compared with a similar numerical solution for the dynamical polarizability obtained from the Golden-Kalman (GK) dynamical theory for strongly coupled plasmas. Contrary to previous results reported in the literature it was found that both theories predict the change in the dispersion of the long wavelength plasmons due to finite ..gamma.. effects to be that the slope of the plasmon dispersion curve decreases from its Bohm-Gross value as the plasma parameter increases from 0. In the strong coupling region two hydrodynamical model solutions of the GK dynamical theory for the polarizability are presented.« less

  12. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  13. Screening Effect of Plasma Flow on RMP Penetration in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Frassinetti, Lorenzo; Olofsson, Erik; Brunsell, Per; Menmuir, Sheena; Drake, James

    2011-10-01

    The penetration of resonant magnetic perturbations (RMP) can be screened by plasma flow and the understanding of this phenomenon is important for ELM mitigation techniques. This work studies the screening effect in EXTRAP T2R. EXTRAP T2R is equipped with a feedback system able to suppress all error fields and to produce one or more external perturbations in a controlled fashion. The EXTRAP T2R feedback system is used to generate a RMP that interacts with the dynamics of its corresponding tearing mode (TM). The level of RMP penetration is quantified by analyzing the RMP effect on the TM amplitude and velocity. To study the screening effect, the flow is changed by applying a second perturbation that is non resonant (non-RMP). This produces the flow reduction without perturbing significantly the other parameters. By modifying the amplitude of the non-RMP, an experimental study of the flow effect on the RMP penetration is performed. Experimental results are compared with the model described in [Fitzpatrick R et al., Phys. Plasmas 8, 4489 (2001)].

  14. One-Dimensional Analysis of Hall Thruster Operating Modes

    DTIC Science & Technology

    2001-08-01

    Hall thruster structure with no screens or other control surfaces makes it difficult to understand the interrelationships which, in the end, localize and shape the various plasma regions existing in the accelerating channel. Since the radial magnetic field is usually shaped with a peak near the channel exit, the plasma structure has often been explained as simply a reflection of the magnetic field distribution. However, this is inadequate to explain the plasma dynamics inside the accelerating channel. We develop a macroscopic model gathering reliability and clarity.

  15. Ionic transport in high-energy-density matter

    DOE PAGES

    Stanton, Liam G.; Murillo, Michael S.

    2016-04-08

    Ionic transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. Here, we developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. These results have been validated with molecular-dynamics simulations for self-diffusion, interdiffusion, viscosity, and thermal conductivity. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. By using a velocity-dependent screening model, we examine the role of dynamical screening in transport. Implications of thesemore » results for Coulomb logarithm approaches are discussed.« less

  16. Observation of finite-wavelength screening in high-energy-density matter

    DOE PAGES

    Chapman, D. A.; Vorberger, J.; Fletcher, L. B.; ...

    2015-04-23

    A key component for the description of charged particle systems is the screening of the Coulomb interaction between charge carriers. First investigated in the 1920s by Debye and Hückel for electrolytes, charge screening is important for determining the structural and transport properties of matter as diverse as astrophysical and laboratory plasmas, nuclear matter such as quark-gluon plasmas, electrons in solids, planetary cores and charged macromolecules. For systems with negligible dynamics, screening is still mostly described using a Debye–Hückel-type approach. Here, we report the novel observation of a significant departure from the Debye–Hückel-type model in high-energy-density matter by probing laser-driven, shock-compressedmore » plastic with high-energy X-rays. We use spectrally resolved X-ray scattering in a geometry that enables direct investigation of the screening cloud, and demonstrate that the observed elastic scattering amplitude is only well described within a more general approach.« less

  17. Formation Process of Non-Neutral Plasmas by Multiple Electron Beams on BX-U

    NASA Astrophysics Data System (ADS)

    Sanpei, Akio; Himura, Haruhiko; Masamune, Sadao

    An imaging diagnostic system, which is composed of a handmade phosphor screen and a high-speed camera, has been applied to identify the dynamics of multiple electron beams on BX-U. The relaxation process of those toward a non-neutral plasma is experimentally identified. Also, the radial density profile of the plasma is measured as a function of time. Assuming that the plasma is a spheroidal shape, the value of electron density ne is in the range between 2.2 × 106 and 4.4 × 108 cm-3 on BX-U.

  18. Classical impurity ion confinement in a toroidal magnetized fusion plasma.

    PubMed

    Kumar, S T A; Den Hartog, D J; Caspary, K J; Magee, R M; Mirnov, V V; Chapman, B E; Craig, D; Fiksel, G; Sarff, J S

    2012-03-23

    High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.

  19. FAST TRACK COMMUNICATION: Oscillation structures in elastic and electron capture cross sections for H+-H collisions in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Wang, J. G.; Krstic, P. S.; Janev, R. K.

    2010-10-01

    We find that the number of vibrational states in the ground potential of a H2+ molecular ion embedded in the Debye plasma and the number of Regge oscillations in the resonant charge transfer cross section of the H+ + H collision system in the plasma are quasi-conserved when the Debye radius D is larger than 1.4a0. The elastic and resonant charge transfer processes in the H+ + H collision have been studied in the 0.1 meV-100 eV collision energy range for a wide range of Debye radii using a highly accurate calculation based on the modified ab initio multireference configuration interaction code. Remarkable plasma screening effects have been found in both the molecular structure and the collision dynamics of this system. Shape resonances, Regge and glory oscillations have been found in the integral cross sections in the considered energy range even for strong interaction screening, showing their ubiquitous nature.

  20. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    NASA Astrophysics Data System (ADS)

    Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.

    2018-03-01

    The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.

  1. Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Huang, Wenlong; Yan, Xingting

    2016-10-01

    It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  2. Universality in the Equilibration of Quenched Yukawa One Component Plasmas

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; McQuillen, Patrick; Strickler, Trevor; Maksimovic, Nikola; Pohl, Thomas; Killian, Thomas

    2015-11-01

    We study the equilibration of a Yukawa One Component Plasma (OCP) after a rapid change in the screening parameter from κ0 = ∞ to κf (n ,Te) , which is realized by photoionizing a laser cooled (T ~ 10 mK), uncorrelated gas of 88Sr atoms with density n between 1014 m-3 and 3 ×1016 m-3 using a two photon process in which the energy of one of the photons is adjustable. The excess photon energy above the ionization threshold sets the electron temperature, Te, and thus gives us control of κf. The resultant plasma is a classical plasma with strongly coupled ions, and is therefore described by the Yukawa OCP model with the electrons treated as a screening background. After photoionization, the ions develop spatial correlations to minimize their interaction energy, thus heating the ions. Since the dynamics of a Yukawa OCP depend solely on κ, we expect the heating process to be uniquely determined by κf. We verify this behavior by measuring the ion heating curve and comparing it to molecular dynamics simulations. We also report on how this behavior can be used to accurately measure n given a measured equilibration curve at a known Te. This work was supported by the United States National Science Foundation and the Department of Energy (PHY-0714603), the Air Force Office of Scientific Research (FA9550- 12-1-0267), and the Department of Defense (DoD) through the NDSEG Program.

  3. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  4. Pairing from dynamically screened Coulomb repulsion in bismuth

    NASA Astrophysics Data System (ADS)

    Ruhman, Jonathan; Lee, Patrick A.

    2017-12-01

    Recently, Prakash et al. have discovered bulk superconductivity in single crystals of bismuth, which is a semimetal with extremely low carrier density. At such low density, we argue that conventional electron-phonon coupling is too weak to be responsible for the binding of electrons into Cooper pairs. We study a dynamically screened Coulomb interaction with effective attraction generated on the scale of the collective plasma modes. We model the electronic states in bismuth to include three Dirac pockets with high velocity and one hole pocket with a significantly smaller velocity. We find a weak-coupling instability, which is greatly enhanced by the presence of the hole pocket. Therefore we argue that bismuth is the first material to exhibit superconductivity driven by retardation effects of Coulomb repulsion alone. By using realistic parameters for bismuth we find that the acoustic plasma mode does not play the central role in pairing. We also discuss a matrix element effect, resulting from the Dirac nature of the conduction band, which may affect Tc in the s -wave channel without breaking time-reversal symmetry.

  5. Nitrogen-Doped Carbon Fiber Paper by Active Screen Plasma Nitriding and Its Microwave Heating Properties.

    PubMed

    Zhu, Naishu; Ma, Shining; Sun, Xiaofeng

    2016-12-28

    In this paper, active screen plasma nitriding (ASPN) treatment was performed on polyacrylonitrile carbon fiber papers. Electric resistivity and microwave loss factor of carbon fiber were described to establish the relationship between processing parameters and fiber's ability to absorb microwaves. The surface processing effect of carbon fiber could be characterized by dynamic thermal mechanical analyzer testing on composites made of carbon fiber. When the process temperature was at 175 °C, it was conducive to obtaining good performance of dynamical mechanical properties. The treatment provided a way to change microwave heating properties of carbon fiber paper by performing different treatment conditions, such as temperature and time parameters. Atomic force microscope, scanning electron microscope, and X-ray photoelectron spectroscopy analysis showed that, during the course of ASPN treatment on carbon fiber paper, nitrogen group was introduced and silicon group was removed. The treatment of nitrogen-doped carbon fiber paper represented an alternative promising candidate for microwave curing materials used in repairing and heating technology, furthermore, an efficient dielectric layer material for radar-absorbing structure composite in metamaterial technology.

  6. Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.

    2011-11-01

    Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.

  7. Kinetic Energy Oscillations during Disorder Induced Heating in an Ultracold Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; McQuillen, Patrick; Strickler, Trevor; Pohl, Thomas; Killian, Thomas

    2015-05-01

    Ultracold neutral plasmas of strontium are generated by photoionizing laser-cooled atoms at temperature TMOT ~ 10 mK and density n ~1016 m-3 in a magneto-optical trap (MOT). After photoionization, the ions heat to ~ 1 K by a mechanism known as Disorder Induced Heating (DIH). During DIH kinetic energy oscillations (KEO) occur at a frequency ~ 2ωpi , where ωpi is the plasma frequency, indicating coupling to collective modes of the plasma. Electron screening also comes into play by changing the interaction from a Coulomb to a Yukawa interaction. Although DIH has been previously studied, improved measurements combined with molecular dynamics (MD) simulations allow us to probe new aspects. We demonstrate a measurement of the damping of the KEO due to electron screening which agrees with the MD simulations. We show that the MD simulations can be used to fit experimental DIH curves for plasma density n, resulting in very accurate density measurements. Finally, we discuss how ion temperature measurements are affected by the non-thermal distribution of the ions during the early stages of DIH. This work was supported by the United States National Science Foundation and the Department of Energy (PHY-0714603), the Air Force Office of Scientific Research (FA9550- 12-1-0267), the Shell Foundation, and the Department of Defense (NDSEG Fellowship)

  8. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE PAGES

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak; ...

    2017-08-16

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  9. Dynamic high energy density plasma environments at the National Ignition Facility for nuclear science research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerjan, Ch J.; Bernstein, L.; Hopkins, L. Berzak

    We present the generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capturemore » cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Lastly, achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.« less

  10. Application of relativistic distorted-wave method to electron-impact excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Zhanbin

    2018-05-01

    The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.

  11. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures.

    PubMed

    Haxhimali, Tomorr; Rudd, Robert E; Cabot, William H; Graziani, Frank R

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 10^{25} ions/cc. The motion of 30,000-120,000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  12. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  13. Ion extraction from a plasma

    NASA Technical Reports Server (NTRS)

    Aston, G.; Wilbur, P. J.

    1981-01-01

    The physical processes governing ion extraction from a plasma have been examined experimentally. The screen hole plasma sheath (the transition region wherein significant ion acceleration and complete electron retardation occurs) has been defined by equipotential plots for a variety of ion accelerator system geometries and operating conditions. It was found that the screen hole plasma sheath extends over a large distance, and influences ion and electron trajectories at least 15 Debye lengths within the discharge chamber. The electron density variation within the screen hole plasma sheath satisfied a Maxwell-Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary-to-Maxwellian electron density ratio. Plasma ion flow up to and through the sheath was predominantly one-dimensional, and the ions entered the sheath region with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio were found to give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

  14. Thermodynamic and Kinetic Properties of Shocks in Two-Dimensional Yukawa Systems [Thermodynamic and Kinetic Properties of Shocks in 2D Yukawa Systems

    DOE PAGES

    Marciante, Mathieu; Murillo, Michael Sean

    2017-01-10

    Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less

  15. Thermodynamic and Kinetic Properties of Shocks in Two-Dimensional Yukawa Systems [Thermodynamic and Kinetic Properties of Shocks in 2D Yukawa Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marciante, Mathieu; Murillo, Michael Sean

    Particle-level simulations of shocked plasmas are carried out to examine kinetic properties not captured by hydrodynamic models. In particular, molecular dynamics simulations of 2D Yukawa plasmas with variable couplings and screening lengths are used to examine shock features unique to plasmas, including the presence of dispersive shock structures for weak shocks. A phase-space analysis reveals several kinetic properties, including anisotropic velocity distributions, non-Maxwellian tails, and the presence of fast particles ahead of the shock, even for moderately low Mach numbers. As a result, we also examine the thermodynamics (Rankine-Hugoniot relations) of recent experiments and find no anomalies in their equationsmore » of state.« less

  16. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  17. Formation of H̅ in p̅-Ps collisions embedded in plasmas

    NASA Astrophysics Data System (ADS)

    Ratnavelu, Kuru; Ghoshal, Arijit; Nayek, Sujay; Bhattacharya, Arka; Mohamed Kamali, Mohd Zahurin

    2016-04-01

    Screening effects of plasmas on the formation of antihydrogen (H̅) in an arbitrary s-state from the ground state of the positronium atom (Ps) by antiproton (p̅) impact have been studied within the framework of charge-conjugation and time-reversal invariance. Two types of plasma environments have been considered, namely weakly coupled plasma and dense quantum plasma. For weakly coupled plasma, the interactions among the charged particles in plasma have been represented by Debye-Huckel screening model, whereas for dense quantum plasma, interactions among the charged particles in plasma have been represented by exponential cosine-screened Coulomb potentials. Effects of plasma screening on the antihydrogen formation cross section have been studied in the energy range 15-400 keV of incident antiproton. For the free atomic case, our results agree well with some of the most accurate results available in the literature. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  18. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    DOE PAGES

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; ...

    2015-11-24

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100–500 eV and a number density of 10 25 ions/cc. The motion of 30 000–120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function,more » a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high- Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. Here, we develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. Finally, this hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.« less

  19. Dependence of average inter-particle distance upon the temperature of neutrals in dusty plasma crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. S.; Timofeev, A. V.

    2018-01-01

    It is often suggested that inter-particle distance in stable dusty plasma structures decreases with cooling as a square root of neutral gas temperature. Deviations from this dependence (up to the increase at cryogenic temperatures) found in the experimental results for the pressures range 0.1-8.0 mbar and for the currents range 0.1-1.0 mA are given. Inter-particle distance dependences on the charge of particles, parameter of the trap and the screening length in surrounding plasma are obtained for different conditions from molecular dynamics simulations. They are well approximated by power functions in the mentioned range of parameters. It is found that under certain assumptions thermophoretical force is responsible for inter-particle distance increase at cryogenic temperatures.

  20. Validity of "sputtering and re-condensation" model in active screen cage plasma nitriding process

    NASA Astrophysics Data System (ADS)

    Saeed, A.; Khan, A. W.; Jan, F.; Abrar, M.; Khalid, M.; Zakaullah, M.

    2013-05-01

    The validity of "sputtering and re-condensation" model in active screen plasma nitriding for nitrogen mass transfer mechanism is investigated. The dominant species including NH, Fe-I, N2+, N-I and N2 along with Hα and Hβ lines are observed in the optical emission spectroscopy (OES) analysis. Active screen cage and dc plasma nitriding of AISI 316 stainless steel as function of treatment time is also investigated. The structure and phases composition of the nitrided layer is studied by X-ray diffraction (XRD). Surface morphology is studied by scanning electron microscopy (SEM) and hardness profile is obtained by Vicker's microhardness tester. Increasing trend in microhardness is observed in both cases but the increase in active screen plasma nitriding is about 3 times greater than that achieved by dc plasma nitriding. On the basis of metallurgical and OES observations the use of "sputtering and re-condensation" model in active screen plasma nitriding is tested.

  1. The line roughness improvement with plasma coating and cure treatment for 193nm lithography and beyond

    NASA Astrophysics Data System (ADS)

    Zheng, Erhu; Huang, Yi; Zhang, Haiyang

    2017-03-01

    As CMOS technology reaches 14nm node and beyond, one of the key challenges of the extension of 193nm immersion lithography is how to control the line edge and width roughness (LER/LWR). For Self-aligned Multiple Patterning (SaMP), LER becomes larger while LWR becomes smaller as the process proceeds[1]. It means plasma etch process becomes more and more dominant for LER reduction. In this work, we mainly focus on the core etch solution including an extra plasma coating process introduced before the bottom anti reflective coating (BARC) open step, and an extra plasma cure process applied right after BARC-open step. Firstly, we leveraged the optimal design experiment (ODE) to investigate the impact of plasma coating step on LER and identified the optimal condition. ODE is an appropriate method for the screening experiments of non-linear parameters in dynamic process models, especially for high-cost-intensive industry [2]. Finally, we obtained the proper plasma coating treatment condition that has been proven to achieve 32% LER improvement compared with standard process. Furthermore, the plasma cure scheme has been also optimized with ODE method to cover the LWR degradation induced by plasma coating treatment.

  2. Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1993-01-01

    Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.

  3. Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Yan, Xingting; Huang, Wenlong

    2017-10-01

    Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  4. Determination of Plasma Screening Effects for Thermonuclear Reactions in Laser-generated Plasmas

    NASA Astrophysics Data System (ADS)

    Wu, Yuanbin; Pálffy, Adriana

    2017-03-01

    Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario here and calculate the reaction events for the astrophysically relevant reaction 13C(4He, n)16O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.

  5. Calculation of Transport Coefficients in Dense Plasma Mixtures

    NASA Astrophysics Data System (ADS)

    Haxhimali, T.; Cabot, W. H.; Caspersen, K. J.; Greenough, J.; Miller, P. L.; Rudd, R. E.; Schwegler, E. R.

    2011-10-01

    We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. We use classical molecular dynamics (MD) to estimate species diffusivity and viscosity in mixed dense plasmas. The Yukawa potential is used to describe the screened Coulomb interaction between the ions. This potential has been used widely, providing the basis for models of dense stellar materials, inertial confined plasmas, and colloidal particles in electrolytes. We calculate transport coefficients in equilibrium simulations using the Green- Kubo relation over a range of thermodynamic conditions including the viscosity and the self - diffusivity for each component of the mixture. The interdiffusivity (or mutual diffusivity) can then be related to the self-diffusivities by using a generalization of the Darken equation. We have also employed non-equilibrium MD to estimate interdiffusivity during the broadening of the interface between two regions each with a high concentration of either species. Here we present results for an asymmetric mixture between Ar and H. These can easily be extended to other plasma mixtures. A main motivation for this study is to develop accurate transport models that can be incorporated into the hydrodynamic codes to study hydrodynamic instabilities. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  6. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  7. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    DOE PAGES

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-09-21

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less

  8. Effect of anisotropic thermal transport on the resistive plasma response to resonant magnetic perturbation field

    NASA Astrophysics Data System (ADS)

    Bai, Xue; Liu, Yueqiang; Gao, Zhe

    2017-10-01

    Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) in a slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. This physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, which resulted from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement, and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. Modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.

  9. Theoretical model of x-ray scattering as a dense matter probe.

    PubMed

    Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L

    2003-02-01

    We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.

  10. Dielectric response of an inhomogeneous quasi-two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Fernández-Velicia, F. J.; García-Moliner, F.; Velasco, V. R.

    1996-01-01

    The solution of the integral equation required to invert the dielectric function of a confined quasi-two-dimensional electron gas is studied by means of a formal analysis which yields a convergent algorithm. The dielectric function can then be inverted in real space for an arbitrary number of populated subbands and taking into account the effect of intersubband excitations involving empty subbands to any desired degree of accuracy. Plasma modes and screened potential can then be easily studied by using a basis which bears out explicitly the consequences of symmetry in symmetric systems. A model calculation of dynamical screening at frequencies of the order of those of confined polar optical modes in usual GaAs wells indicates that the empty states may play a quite significant role and the screened potential, explicitly obtained in real space, may exhibit a great variety of behaviors: the sign of the potential may change and its magnitude may be either reduced (ordinary screening) or enhanced (antiscreening).

  11. Chip-Based Dynamic Real-Time Quantification of Drug-Induced Cytotoxicity in Human Tumor Cells

    PubMed Central

    Wlodkowic, Donald; Skommer, Joanna; McGuinness, Dagmara; Faley, Shannon; Kolch, Walter; Darzynkiewicz, Zbigniew; Cooper, Jonathan M.

    2013-01-01

    Cell cytotoxicity tests are among the most common bioassays using flow cytometry and fluorescence imaging analysis. The permeability of plasma membranes to charged fluorescent probes serves, in these assays, as a marker distinguishing live from dead cells. Since it is generally assumed that probes, such as propidium iodide (PI) or 7-amino-actinomycin D (7-AAD), are themselves cytotoxic, they are currently generally used only as the end-point markers of assays for live versus dead cells. In the current study, we provide novel insights into potential applications of these classical plasma membrane integrity markers in the dynamic tracking of drug-induced cytotoxicity. We show that treatment of a number of different human tumor cell lines in cultures for up to 72 h with the PI, 7-AAD, SYTOX Green (SY-G), SYTOX Red (SYR), TO-PRO, and YO-PRO had no effect on cell viability assessed by the integrity of plasma membrane, cell cycle progression, and rate of proliferation. We subsequently explore the potential of dynamic labeling with these markers in real-time analysis, by comparing results from both conventional cytometry and microfluidic chips. Considering the simplicity of the staining protocols and their low cost combined with the potential for real-time data collection, we show how that real-time fluorescent imaging and Lab-on-a-Chip platforms have the potential to be used for automated drug screening routines. PMID:19572560

  12. Direct-injection screening for acidic drugs in plasma and neutral drugs in equine urine by differential-gradient LC-LC coupled MS/MS.

    PubMed

    Stanley, Shawn M R; Wee, Wei Khee; Lim, Boon Huat; Foo, Hsiao Ching

    2007-04-01

    Direct-injection LC-LC hybrid tandem MS methods have been developed for undertaking broad-based screening for acidic drugs in protein-precipitated plasma and neutral doping agents in equine urine. In both analyses, analytes present in the matrix were trapped using a HLB extraction column before being refocused and separated on a Chromolith RP-18e monolithic analytical column using a controlled differential gradient generated by proportional dilution of the first column's eluent with water. Each method has been optimised by the adoption of a mobile phase and gradient that was tailored to enhance ionisation in the MS source while maintaining good chromatographic behaviour for the majority of the target drugs. The analytical column eluent was fed into the heated nebulizer (HN) part of the Duospray interface attached to a 4000 QTRAP mass spectrometer. Information dependent acquisition (IDA) with dynamic background subtraction (DBS) was configured to trigger a sensitive enhanced product ion (EPI) scan when a multiple reaction monitoring (MRM) survey scan signal exceeded the defined criteria. Ninety-one percent of acidic drugs in protein-precipitated plasma and 80% of the neutral compounds in equine urine were detected when spiked at 10 ng/ml.

  13. Interfacial mixing in high energy-density matter with a multiphysics kinetic model

    NASA Astrophysics Data System (ADS)

    Haack, Jeff; Hauck, Cory; Murillo, Michael

    2017-10-01

    We have extended a recently-developed multispecies, multitemperature BGK model to include multiphysics capability that allows modeling of a wider range of plasma conditions. In particular, we have extended the model to describe one spatial dimension, and included a multispecies atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the new model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, similar to a recent molecular dynamics study, but for larger length and time scales and for much higher temperatures. From our numerical results we are able to explore a variety of phenomena, including hydrogen jetting, kinetic effects (non-Maxwellian and anisotropic distributions), plasma physics (size, persistence and role of electric fields) and transport (relative sizes of Fickean diffision, electrodiffusion and barodiffusion). As compared with the recent molecular dynamics work the kinetic model greatly extends the accessible physical domains we are able to model.

  14. Modeling viscosity and diffusion of plasma mixtures across coupling regimes

    NASA Astrophysics Data System (ADS)

    Arnault, Philippe

    2014-10-01

    Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.

  15. Generalized charge-screening in relativistic Thomas–Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.« less

  16. Numerical and Experimental Investigation on Electromagnetic Attenuation by Semi-Ellipsoidal Shaped Plasma

    NASA Astrophysics Data System (ADS)

    He, Xiang; Chen, Jianping; Zhang, Yachun; Chen, Yudong; Zeng, Xiaojun; Tang, Chunmei

    2015-10-01

    Some reports presented that the radar cross section (RCS) from the radar antenna of military airplanes can be reduced by using a low-temperature plasma screen. This paper gives a numerical and experimental analysis of this RCS-reduction method. The shape of the plasma screen was designed as a semi-ellipsoid in order to make full use of the space in the radar dome. In simulations, we discussed the scattering of the electromagnetic (EM) wave by a perfect electric conductor (PEC) covered with this plasma screen using the finite-difference-time-domain (FDTD) method. The variations of their return loss as a function of wave frequency, plasma density profile, and collision frequency were presented. In the experiments, a semi-ellipsoidal shaped plasma screen was produced. Electromagnetic attenuation of 1.5 GHz EM wave was measured for a radio frequency (RF) power of 5 kW at an argon pressure of 200-1150 Pa. A good agreement is found between simulated and experimental results. It can be confirmed that the plasma screen is useful in applications for stealth of radar antenna. supported by National Natural Science Foundation of China (No. 51107033) and the Fundamental Research Funds for the Central Universities, China (No. 2013B33614)

  17. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    NASA Astrophysics Data System (ADS)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  18. Structuring in complex plasma for nonlinearly screened dust particles

    NASA Astrophysics Data System (ADS)

    Tsytovich, Vadim; Gusein-zade, Namik

    2014-03-01

    An explanation is proposed for the recently discovered effect of spontaneous dusty plasma structuring (and the appearance of compact dust structures) under conditions of nonlinear dust screening. Physical processes are considered that make homogenous dusty plasma universally unstable and lead to the appearance of structures. It is shown for the first time that the efficiency of structuring increases substantially in the presence of plasma flows caused by the charging of nonlinearly screened dust grains. General results are obtained for arbitrary nonlinear screening, and special attention is paid to the model of nonlinear screening often used since 1964. The growth rate of structuring instability is derived. It is shown that, in the case of nonlinear screening, the structuring has a threshold determined by the friction of grains against the neutral gas. The theoretically obtained threshold agrees with recent experimental observations. The dispersion relation for dusty plasma structuring is shown to be similar to the dispersion relation for gravitational instability with an effective gravitational constant. The effective dust attraction caused by this instability is shown to be collective, and the dependence of the effective gravitational constant on the dust-to-ion density ratio is found explicitly for the first time. It is demonstrated that the proposed method of calculation of dust attraction by using the effective gravitational constant is the most efficient and straightforward. Understanding of the role of nonlinear screening gives deeper physical grounds for the theoretical interpretation of the observed phenomenon of dust crystal formation in complex plasmas.

  19. Ion extraction from a plasma. Ph.D. Thesis. Progress Report, 1 Dec. 1979 - 1 Dec. 1980

    NASA Technical Reports Server (NTRS)

    Aston, G.

    1980-01-01

    An experimental investigation of the physical processes governing ion extraction from a plasma is presented. The screen hole plasma sheath of a multiaperture ion accelerator system is defined by equipotential plots for a variety of accelerator system geometries and operating conditions. A sheath thickness of at least fifteen Debye lengths is shown to be typical. The electron density variation within the sheath satisfies a Maxwell Boltzmann density distribution at an effective electron temperature dependent on the discharge plasma primary to Maxwellian electron density ratio. Plasma ion flow up to and through the sheath is predominately one dimensional and the ions enter the sheath with a modified Bohm velocity. Low values of the screen grid thickness to screen hole diameter ratio give good ion focusing and high extracted ion currents because of the effect of screen webbing on ion focusing.

  20. Coherent control of plasma dynamics

    NASA Astrophysics Data System (ADS)

    He, Zhaohan

    2014-10-01

    The concept of coherent control - precise measurement or determination of a process through control of the phase of an applied oscillating field - has been applied to numerous systems with great success. Here, we demonstrate the use of coherent control on plasma dynamics in a laser wakefield electron acceleration experiment. A tightly focused femtosecond laser pulse (10 mJ, 35 fs) was used to generate electron beams by plasma wakefield acceleration in the density down ramp. The technique is based on optimization of the electron beam using a deformable mirror adaptive optical system with an iterative evolutionary genetic algorithm. The image of the electrons on a scintillator screen was processed and used in a fitness function as direct feedback for the optimization algorithm. This coherent manipulation of the laser wavefront leads to orders of magnitude improvement to the electron beam properties such as the peak charge and beam divergence. The laser beam optimized to generate the best electron beam was not the one with the ``best'' focal spot. When a particular wavefront of laser light interacts with plasma, it can affect the plasma wave structures and trapping conditions of the electrons in a complex way. For example, Raman forward scattering, envelope self-modulation, relativistic self-focusing, and relativistic self-phase modulation and many other nonlinear interactions modify both the pulse envelope and phase as the pulse propagates, in a way that cannot be easily predicted and that subsequently dictates the formation of plasma waves. The optimal wavefront could be successfully determined via the heuristic search under laser-plasma conditions that were not known a priori. Control and shaping of the electron energy distribution was found to be less effective, but was still possible. Particle-in-cell simulations were performed to show that the mode structure of the laser beam can affect the plasma wave structure and trapping conditions of electrons, which subsequently produces electron beams with a different divergence. The proof-of-principle demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications. This study should also enable a significantly improved understanding of the complex dynamics of laser plasma interactions. This work was supported by DARPA under Contract No. N66001-11-1-4208, the NSF under Contract No. 0935197 and MCubed at the University of Michigan.

  1. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    PubMed Central

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  2. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  3. Atomistic study of mixing at high Z / low Z interfaces at Warm Dense Matter Conditions

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Glosli, James; Rudd, Robert; Lawrence Livermore National Laboratory Team

    2016-10-01

    We use atomistic simulations to study different aspects of mixing occurring at an initially sharp interface of high Z and low Z plasmas in the Warm/Hot Dense Matter regime. We consider a system of Diamond (the low Z component) in contact with Ag (the high Z component), which undergoes rapid isochoric heating from room temperature up to 10 eV, rapidly changing the solids into warm dense matter at solid density. We simulate the motion of ions via the screened Coulomb potential. The electric field, the electron density and ionizations level are computed on the fly by solving Poisson equation. The spatially varying screening lengths computed from the electron cloud are included in this effective interaction; the electrons are not simulated explicitly. We compute the electric field generated at the Ag-C interface as well as the dynamics of the ions during the mixing process occurring at the plasma interface. Preliminary results indicate an anomalous transport of high Z ions (Ag) into the low Z component (C); a phenomenon that is partially related to the enhanced transport of ions due to the generated electric field. These results are in agreement with recent experimental observation on Au-diamond plasma interface. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  4. Normal Modes of Magnetized Finite Two-Dimensional Yukawa Crystals

    NASA Astrophysics Data System (ADS)

    Marleau, Gabriel-Dominique; Kaehlert, Hanno; Bonitz, Michael

    2009-11-01

    The normal modes of a finite two-dimensional dusty plasma in an isotropic parabolic confinement, including the simultaneous effects of friction and an external magnetic field, are studied. The ground states are found from molecular dynamics simulations with simulated annealing, and the influence of screening, friction, and magnetic field on the mode frequencies is investigated in detail. The two-particle problem is solved analytically and the limiting cases of weak and strong magnetic fields are discussed.[4pt] [1] C. Henning, H. K"ahlert, P. Ludwig, A. Melzer, and M.Bonitz. J. Phys. A 42, 214023 (2009)[2] B. Farokhi, M. Shahmansouri, and P. K. Shukla. Phys.Plasmas 16, 063703 (2009)[3] L. Cândido, J.-P. Rino, N. Studart, and F. M. Peeters. J. Phys.: Condens. Matter 10, 11627--11644 (1998)

  5. Quantum statistical mechanics of dense partially ionized hydrogen.

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogenic plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. In this theory, the effective interaction between any two charges is the dynamic screened potential obtained from the plasma dielectric function. We make the static approximation; and we carry out detailed numerical calculations with the bound and scattering states of the Debye potential, using the Beth-Uhlenbeck form of the quantum second virial coefficient. We compare our results with calculations from the Saha equation.

  6. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of "lightnings"

    NASA Astrophysics Data System (ADS)

    Istomin, Ya. N.; Sob'yanin, D. N.

    2011-10-01

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning—a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 1028. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).

  7. Equation of motion approach for describing allowed transitions in Ne and Al3+ under classical and quantum plasmas

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Chaudhuri, Rajat K.; Chattopadhyay, Sudip

    2018-04-01

    The equation of motion coupled cluster methodology within relativistic framework has been applied to analyze the electron correlation effects on the low lying dipole allowed excited states of Ne and Al3+ under classical and quantum plasma environments. The effect of confinement due to classical plasma has been incorporated through screened Coulomb potential, while that of quantum plasma has been treated by exponential cosine screened Coulomb potential. The confined structural properties investigated are the depression of ionization potential, low lying excitation energies (dipole allowed), oscillator strengths, transition probabilities, and frequency dependent polarizabilities under systematic variation of the plasma-atom coupling strength determined through the screening parameter. Specific atomic systems are chosen for their astrophysical importance and availability of experimental data related to laboratory plasma with special reference to Al3+ ion. Here, we consider 1 s22 s22 p6(1S0)→1 s22 s22 p5 n s /n d (1P1) (n =3 ,4 ) dipole allowed transitions of Ne and Al3+. Results for the free (isolated) atomic systems agree well with those available in the literature. Spectroscopic properties under confinement show systematic and interesting pattern with respect to plasma screening parameter.

  8. Canadian women's attitudes toward noninvasive prenatal testing of fetal DNA in maternal plasma (.).

    PubMed

    Pariente, Gali; Hasan, Lara; Gadot, Yifat; De Souza, Leanne R; Lebovic, Gerald; Berger, Howard

    2016-12-01

    To determine the perceptions and attitudes of Canadian women to Noninvasive Prenatal Testing of fetal DNA. A designed questionnaire was administered to women attending the outpatient antenatal clinic at a tertiary urban hospital. Attitudes to current and new prenatal screening modalities were assessed using a five-point Likert scale. Bowker's test of symmetry was used to compare individual responses regarding the two screening modalities. Changes in women's responses pre- and post-delivery were also compared. One hundred and twenty-nine women were enrolled in this study. 88% of women state that they would perform prenatal screening via fetal DNA in the maternal plasma if available. When compared to conventional screening, significantly less women believe that the NIPT should be available upon request for non-medical traits (36.4% versus 60.4%, p < 0.001). When compared to their answer before delivery, more women agreed that screening with fetal DNA in maternal plasma could be used in a negative way to select for desired non-medical traits such as gender. The use of fetal DNA in the maternal plasma is widely accepted in our Canadian population as a future method of noninvasive prenatal screening despite recognition of certain ethical concerns. This information can be used when implementing new genetic screening programs.

  9. On the existence of vapor-liquid phase transition in dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, M.; Sen, A.; Ganesh, R.

    2014-10-15

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram formore » a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.« less

  10. A new sniffer probe for the determination of hydrogen isotope ratios in the W7-AS stellarator

    NASA Astrophysics Data System (ADS)

    Zebisch, P.; Taglauer, E.

    1999-07-01

    An improved sniffer probe was constructed for measurements of the hydrogen isotope ratio and impurities in the plasma edge of the W7-AS stellarator. Details of the new design and the probe performance are presented. The new design allows changing the head without breaking the vacuum in the torus. It has a high mechanical stability, effective screening of the magnetic field and high sensitivity. The gas dynamic properties of the probe are analyzed using transmission line calculus, resulting in a rise time of 114 ms for hydrogen. During the 1997 spring measurement campaign, H/D isotope ratio measurements were carried through showing considerable outgassing of the walls during and after the discharge. He glow discharges reduce the isotope ratio drastically. Results from a typical experiment day are presented together with the analytic procedure for determining the isotope ratio in both the plasma edge and in the neutral gas region between the plasma and the vessel walls.

  11. A 96-well screen filter plate for high-throughput biological sample preparation and LC-MS/MS analysis.

    PubMed

    Peng, Sean X; Cousineau, Martin; Juzwin, Stephen J; Ritchie, David M

    2006-01-01

    A novel 96-well screen filter plate (patent pending) has been invented to eliminate a time-consuming and labor-intensive step in preparation of in vivo study samples--to remove blood or plasma clots. These clots plug the pipet tips during a manual or automated sample-transfer step causing inaccurate pipetting or total pipetting failure. Traditionally, these blood and plasma clots are removed by picking them out manually one by one from each sample tube before any sample transfer can be made. This has significantly slowed the sample preparation process and has become a bottleneck for automated high-throughput sample preparation using robotic liquid handlers. Our novel screen filter plate was developed to solve this problem. The 96-well screen filter plate consists of 96 stainless steel wire-mesh screen tubes connected to the 96 openings of a top plate so that the screen filter plate can be readily inserted into a 96-well sample storage plate. Upon insertion, the blood and plasma clots are excluded from entering the screen tube while clear sample solutions flow freely into it. In this way, sample transfer can be easily completed by either manual or automated pipetting methods. In this report, three structurally diverse compounds were selected to evaluate and validate the use of the screen filter plate. The plasma samples of these compounds were transferred and processed in the presence and absence of the screen filter plate and then analyzed by LC-MS/MS methods. Our results showed a good agreement between the samples prepared with and without the screen filter plate, demonstrating the utility and efficiency of this novel device for preparation of blood and plasma samples. The device is simple, easy to use, and reusable. It can be employed for sample preparation of other biological fluids that contain floating particulates or aggregates.

  12. Collision time measurements in a sonoluminescing microplasma with a large plasma parameter.

    PubMed

    Bataller, A; Kappus, B; Camara, C; Putterman, S

    2014-07-11

    The plasma which forms inside of a micron-sized sonoluminescing bubble in water for under a nanosecond has been probed with 3 ns long laser pulses. A comparison of the response to 532 and 1064 nm light indicates that the plasma number density is about 2×10(21)  cm(-3) and that transport properties are dominated by strong screening and correlation effects. The spherical shape, well-defined atomic density, and blackbody temperature make the sonoluminescing plasma a test bed for theories of strongly coupled plasmas. The plasma in this experiment distinguishes between competing theories of strong, intermediate, and weak effective screening.

  13. Collision Time Measurements in a Sonoluminescing Microplasma with a Large Plasma Parameter

    NASA Astrophysics Data System (ADS)

    Bataller, A.; Kappus, B.; Camara, C.; Putterman, S.

    2014-07-01

    The plasma which forms inside of a micron-sized sonoluminescing bubble in water for under a nanosecond has been probed with 3 ns long laser pulses. A comparison of the response to 532 and 1064 nm light indicates that the plasma number density is about 2×1021 cm-3 and that transport properties are dominated by strong screening and correlation effects. The spherical shape, well-defined atomic density, and blackbody temperature make the sonoluminescing plasma a test bed for theories of strongly coupled plasmas. The plasma in this experiment distinguishes between competing theories of strong, intermediate, and weak effective screening.

  14. Thomson scattering from a three-component plasma.

    PubMed

    Johnson, W R; Nilsen, J

    2014-02-01

    A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].

  15. The Use of a Dynamic Screening of Phonological Awareness to Predict Risk for Reading Disabilities in Kindergarten Children

    PubMed Central

    Bridges, Mindy Sittner; Catts, Hugh W.

    2013-01-01

    This study examined the usefulness and predictive validity of a dynamic screening of phonological awareness in two samples of kindergarten children. In one sample (n = 90), the predictive validity of the dynamic assessment was compared to a static version of the same screening measure. In the second sample (n = 96), the dynamic screening measure was compared to a commonly used screening tool, Dynamic Indicators of Basic Early Literacy Skills Initial Sound Fluency. Results showed that the dynamic screening measure uniquely predicted end-of-year reading achievement and outcomes in both samples. These results provide preliminary support for the usefulness of a dynamic screening measure of phonological awareness for kindergarten students. PMID:21571700

  16. Transition energies and polarizabilities of hydrogen like ions in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Madhusmita

    2012-09-15

    Effect of plasma screening on various properties like transition energy, polarizability (dipole and quadrupole), etc. of hydrogen like ions is studied. The bound and free state wave functions and transition matrix elements are obtained by numerically integrating the radial Schrodinger equation for appropriate plasma potential. We have used adaptive step size controlled Runge-Kutta method to perform the numerical integration. Debye-Huckel potential is used to investigate the variation in transition lines and polarizabilities (dipole and quadrupole) with increasing plasma screening. For a strongly coupled plasma, ion sphere potential is used to show the variation in excitation energy with decreasing ion spheremore » radius. It is observed that plasma screening sets in phenomena like continuum lowering and pressure ionization, which are unique to ions in plasma. Of particular interest is the blue (red) shift in transitions conserving (non-conserving) principal quantum number. The plasma environment also affects the dipole and quadrupole polarizability of ions in a significant manner. The bound state contribution to polarizabilities decreases with increase in plasma density whereas the continuum contribution is significantly enhanced. This is a result of variation in the behavior of bound and continuum state wave functions in the presence of plasma. We have compared the results with existing theoretical and experimental data wherever present.« less

  17. Anti-screening optically allowed and forbidden collisional excitations in nonthermal astrophysical plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr

    2014-08-01

    The influence of nonthermal shielding on the optically allowed and forbidden anti-screening channels for ion-ion collisional excitations is investigated in astrophysical Lorentzian plasmas. The semiclassical trajectory method and effective interaction Hamiltonian are employed to obtain the transition amplitudes, differential cross-sections, and momentum transfer-dependent effective projectile charges for the optically allowed and forbidden excitation channels as functions of the impact parameter, collision energy, Debye radius, and spectral index of nonthermal astrophysical plasmas. It is found that the nonthermal effect suppresses the ion-ion collisional excitation probability in astrophysical Lorentzian plasmas. Additionally, the influence of nonthermal shielding on the optically allowed transition ismore » found to be more significant than that on the optically forbidden transition. The variations of the nonthermal shielding effects on the optically allowed and forbidden anti-screening channels in astrophysical nonthermal plasmas are also discussed.« less

  18. Success and failure of the plasma analogy for Laughlin states on a torus

    NASA Astrophysics Data System (ADS)

    Fremling, Mikael

    2017-01-01

    We investigate the nature of the plasma analogy for the Laughlin wave function on a torus describing the quantum Hall plateau at ν =\\frac{1}{q} . We first establish, as expected, that the plasma is screening if there are no short nontrivial paths around the torus. We also find that when one of the handles has a short circumference—i.e. the thin-torus limit—the plasma no longer screens. To quantify this we compute the normalization of the Laughlin state, both numerically and analytically. In the thin torus limit, the analytical form of the normalization simplify and we can reconstruct the normalization and analytically extend it back into the 2D regime. We find that there are geometry dependent corrections to the normalization, and this in turn implies that the plasma in the plasma analogy is not screening when in the thin torus limit. Despite the breaking of the plasma analogy in this limit, the analytical approximation is still a good description of the normalization for all tori, and also allows us to compute hall viscosity at intermediate thickness.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yuanbin; Pálffy, Adriana, E-mail: yuanbin.wu@mpi-hd.mpg.de, E-mail: Palffy@mpi-hd.mpg.de

    Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario heremore » and calculate the reaction events for the astrophysically relevant reaction {sup 13}C({sup 4}He, n ){sup 16}O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.« less

  20. Effect of large magnetic islands on screening of external magnetic perturbation fields at slow plasma flow

    NASA Astrophysics Data System (ADS)

    Li, L.; Liu, Y. Q.; Huang, X.; Luan, Q.; Zhong, F. C.

    2017-02-01

    A toroidal resistive magneto-hydrodynamic plasma response model, involving large magnetic islands, is proposed and numerically investigated, based on local flattening of the equilibrium pressure profile near a rational surface. It is assumed that such islands can be generated near the edge of the tokamak plasma, due to the penetration of the resonant magnetic perturbations, used for the purpose of controlling the edge localized mode. Within this model, it is found that the local flattening of the equilibrium pressure helps to mitigate the toroidal curvature induced screening effect [Glasser et al., Phys. Fluids 7, 875 (1975)]—the so called Glasser-Greene-Johnson screening, when the local toroidal flow near the mode rational surface is very slow (for example, as a result of mode locking associated with the field penetration). The saturation level of the plasma response amplitude is computed, as the plasma rotation frequency approaches zero. The local modification of the plasma resistivity inside the magnetic island is found to also affect the saturation level of the plasma response at vanishing flow.

  1. Modeling thrombin generation: plasma composition based approach.

    PubMed

    Brummel-Ziedins, Kathleen E; Everse, Stephen J; Mann, Kenneth G; Orfeo, Thomas

    2014-01-01

    Thrombin has multiple functions in blood coagulation and its regulation is central to maintaining the balance between hemorrhage and thrombosis. Empirical and computational methods that capture thrombin generation can provide advancements to current clinical screening of the hemostatic balance at the level of the individual. In any individual, procoagulant and anticoagulant factor levels together act to generate a unique coagulation phenotype (net balance) that is reflective of the sum of its developmental, environmental, genetic, nutritional and pharmacological influences. Defining such thrombin phenotypes may provide a means to track disease progression pre-crisis. In this review we briefly describe thrombin function, methods for assessing thrombin dynamics as a phenotypic marker, computationally derived thrombin phenotypes versus determined clinical phenotypes, the boundaries of normal range thrombin generation using plasma composition based approaches and the feasibility of these approaches for predicting risk.

  2. Renin angiotensin aldosterone system altered in resistant hypertension in Sub-Saharan African diabetes patients without evidence of primary hyperaldosteronism.

    PubMed

    Edinga-Melenge, Bertille Elodie; Ama Moor, Vicky J; Nansseu, Jobert Richie N; Nguetse Djoumessi, Romance; Mengnjo, Michel K; Katte, Jean-Claude; Noubiap, Jean Jacques N; Sobngwi, Eugene

    2017-01-01

    The renin-angiotensin-aldosterone system may be altered in patients with resistant hypertension. This study aimed to evaluate the relation between renin-angiotensin-aldosterone system activity and resistant hypertension in Cameroonian diabetes patients with resistant hypertension. We carried out a case-control study including 19 diabetes patients with resistant hypertension and 19 diabetes patients with controlled hypertension matched to cases according to age, sex and duration of hypertension since diagnosis. After collection of data, fasting blood was collected for measurement of sodium, potassium, chloride, active renin and plasma aldosterone of which the aldosterone-renin ratio was derived to assess the activity of renin-angiotensin-aldosterone system. Then, each participant received 2000 ml infusion of saline solution after which plasma aldosterone was re-assayed. Potassium levels were lower among cases compared to controls (mean: (4.10 ± 0.63 mmol/l vs. 4.47 ± 0.58 mmol/l), though nonsignificant (p = 0.065). Active renin, plasma aldosterone both before and after the dynamic test and aldosterone-renin ratio were comparable between cases and controls (all p values > 0.05). Plasma aldosterone significantly decreased after the dynamic test in both groups (p < 0.001), but no participant exhibited a post-test value>280 pmol/l. We found a significant negative correlation between potassium ion and plasma aldosterone (ρ = -0.324; p  = 0.047), the other correlations being weak and unsignificant. Although this study failed to show an association between RH and primary hyperaldosteronism in our context, there was a hyperactivity of renin-angiotensin-aldosterone system. Moreover, this study confirms the importance of potassium dosage when screening the renin-angiotensin-aldosterone system.

  3. Relativistic corrections for screening effects on the energies of hydrogen-like atoms embedded in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poszwa, A., E-mail: poszwa@matman.uwm.edu.p; Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-01-15

    The influence of relativistic and plasma screening effects on energies of hydrogen-like atoms embedded in plasmas has been studied. The Dirac equation with a more general exponential cosine screened potential has been solved numerically and perturbatively, by employing the direct perturbation theory. Properties of spectra corresponding to bound states and to different sets of the potential parameters have been studied both in nonrelativistic and relativistic approximations. Binding energies, fine-structure splittings, and relativistic energy shifts have been determined as functions of parameters of the potential. The results have been compared with the ones known from the literature.

  4. Low energy electron-impact ionization of hydrogen atom for coplanar equal-energy-sharing kinematics in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhang, Song Bin; Ye, Bang Jiao; Wang, Jian Guo; Janev, R. K.

    2016-12-01

    Low energy electron-impact ionization of hydrogen atom in Debye plasmas has been investigated by employing the exterior complex scaling method. The interactions between the charged particles in the plasma have been represented by Debye-Hückel potentials. Triple differential cross sections (TDCS) in the coplanar equal-energy-sharing geometry at an incident energy of 15.6 eV for different screening lengths are reported. As the screening strength increases, TDCS change significantly. The evolutions of dominant typical peak structures of the TDCS are studied in detail for different screening lengths and for different coplanar equal-energy-sharing geometries.

  5. Strong Helioseismic Constraints on Weakly-Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Nayfonov, Alan

    The extraordinary accuracy of helioseismic data allows detailed theoretical studies of solar plasmas. The necessity to produce solar models matching the experimental results in accuracy imposes strong constrains on the equations of state of solar plasmas. Several discrepancies between the experimental data and models have been successfully identified as the signatures of various non-ideal phenomena. Of a particular interest are questions of the position of the energy levels and the continuum edge and of the effect of the excited states in the solar plasma. Calculations of energy level and continuum shifts, based on the Green function formalism, appeared recently in the literature. These results have been used to examine effects of the shifts on the thermodynamic quantities. A comparison with helioseismic data has shown that the calculations based on lower-level approximations, such as the static screening in the effective two-particle wave equation, agree very well with the experimental data. However, the case of full dynamic screening produces thermodynamic quantities inconsistent with observations. The study of the effect of different internal partition functions on a complete set of thermodynamic quantities has revealed the signature of the excited states in the MHD (Mihalas, Hummer, Dappen) equation of state. The presence of exited states causes a characteristic 'wiggle' in the thermodynamic quantities due to the density-dependent occupation probabilities. This effect is absent if the ACTEX (ACTivity EXpansion) equation of state is used. The wiggle has been found to be most prominent in the quantities sensitive to density. The size of this excited states effect is well within the observational power of helioseismology, and very recent inversion analyses of helioseismic data seem to indicate the presence of the wiggle in the sun. This has a potential importance for the helioseismic determination of the helium abundance of the sun.

  6. Plasma expansion dynamics physics: An understanding on ion energy reduction process

    NASA Astrophysics Data System (ADS)

    Ruzic, David; Srivastava, Shailendra; Thompson, Keith; Spencer, Joshua; Sporre, John

    2007-11-01

    This paper studies the expanding plasma dynamics of ions produced from a 5J Z-pinch xenon light source used for EUV lithography. Ion energy reduction is essential for the successful implementation of this technology. To aid this investigation, ion energy from a z-pinch DPP plasma source is measured using an ion energy analyzer and effect of introducing a small percentage of low Z material on the ion energy and flux is investigated. Presence of low mass such as H2 or N2, shows a considerable reduction in total flux and in average energy. For example, Xe^+ ion flux at 5 keV are recorded as 425 ± 42 ions/cm^2.eV.pulse at 157 cm and reduced to 125 ± 12 ions/cm^2.eV.pulse when using the low mass into the system at same energy. It is also noticed that such a combination leads to decrease in sputtering without changing the EUV output. Study of the possible mechanism supporting the experimental results is numerically calculated. This computational work indicates that the observed high energies of ions are probably resulting from coulomb explosion initiated by pinch instability. It is postulated that the electrons leave first setting up an electrostatic potential which accelerates the ions. The addition of small mass actually screens the potential and decorates the ions.

  7. Casimir forces in a plasma: possible connections to Yukawa potentials

    NASA Astrophysics Data System (ADS)

    Ninham, Barry W.; Boström, Mathias; Persson, Clas; Brevik, Iver; Buhmann, Stefan Y.; Sernelius, Bo E.

    2014-10-01

    We present theoretical and numerical results for the screened Casimir effect between perfect metal surfaces in a plasma. We show how the Casimir effect in an electron-positron plasma can provide an important contribution to nuclear interactions. Our results suggest that there is a connection between Casimir forces and nucleon forces mediated by mesons. Correct nuclear energies and meson masses appear to emerge naturally from the screened Casimir-Lifshitz effect.

  8. Absorption of gamma-ray photons in a vacuum neutron star magnetosphere: II. The formation of 'lightnings'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Istomin, Ya. N., E-mail: istomin@lpi.ru; Sob'yanin, D. N., E-mail: sobyanin@lpi.ru

    2011-10-15

    The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning-a lengthening and simultaneously expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number ofmore » electron-positron pairs produced in the lightning in its lifetime reaches 10{sup 28}. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).« less

  9. Quantitative trait loci mapping of the mouse plasma proteome (pQTL).

    PubMed

    Holdt, Lesca M; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-02-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F(2) intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins.

  10. Quantitative Trait Loci Mapping of the Mouse Plasma Proteome (pQTL)

    PubMed Central

    Holdt, Lesca M.; von Delft, Annette; Nicolaou, Alexandros; Baumann, Sven; Kostrzewa, Markus; Thiery, Joachim; Teupser, Daniel

    2013-01-01

    A current challenge in the era of genome-wide studies is to determine the responsible genes and mechanisms underlying newly identified loci. Screening of the plasma proteome by high-throughput mass spectrometry (MALDI-TOF MS) is considered a promising approach for identification of metabolic and disease processes. Therefore, plasma proteome screening might be particularly useful for identifying responsible genes when combined with analysis of variation in the genome. Here, we describe a proteomic quantitative trait locus (pQTL) study of plasma proteome screens in an F2 intercross of 455 mice mapped with 177 genetic markers across the genome. A total of 69 of 176 peptides revealed significant LOD scores (≥5.35) demonstrating strong genetic regulation of distinct components of the plasma proteome. Analyses were confirmed by mechanistic studies and MALDI-TOF/TOF, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the two strongest pQTLs: A pQTL for mass-to-charge ratio (m/z) 3494 (LOD 24.9, D11Mit151) was identified as the N-terminal 35 amino acids of hemoglobin subunit A (Hba) and caused by genetic variation in Hba. Another pQTL for m/z 8713 (LOD 36.4; D1Mit111) was caused by variation in apolipoprotein A2 (Apoa2) and cosegregated with HDL cholesterol. Taken together, we show that genome-wide plasma proteome profiling in combination with genome-wide genetic screening aids in the identification of causal genetic variants affecting abundance of plasma proteins. PMID:23172855

  11. Cost effectiveness of screening of all newly recruited employees for diabetes at a tertiary care hospital.

    PubMed

    Ali, Niloufer Sultan; Khuwaja, Ali Khan

    2007-01-01

    Diabetes Mellitus is a disease which remains asymptomatic for long duration of time and usually diagnosed either when gets complicated or by routine or opportunistic screening. The practice of universal screening is not recommended, particularly in constraint resources. However, we embarked with a study to assess the yield of recommended screening for Type 2 diabetes in all the newly recruited employees at a tertiary care hospital in Karachi. All the information required for this study was collected from medical records of all newly recruited employees of nursing services department of a tertiary care hospital of Karachi, Pakistan, over a period of 5 months (August 2004 to December 2004). Out of 360 subjects, 326, whose information was found to be complete, were included for final analysis. Mean age of the study subjects was 25.3 +/- 4.7 years and their mean casual plasma glucose level was 99.1 +/- 16.3 mg/dl. 315 (96.6%) study subjects had casual plasma glucose level of 139 mg/dl or less. Only 10 (3.1%) study subjects had casual plasma glucose levels between 140 to 199 mg/dl. Just one employee, 41 years old, was found to have casual plasma glucose level of 213 mg/dl. In this study, screening of all individuals for diabetes had a very low yield. Recommendation of universal screening for diabetes does not represent a good use of resources and perhaps not cost-effective. However, periodic screening of high risk individuals should be warranted.

  12. Equation of state for two-dimensional dusty plasma liquids and its applications

    NASA Astrophysics Data System (ADS)

    Feng, Yan

    2017-10-01

    Laboratory dusty plasma consists of free electrons, free ions, and micro-sized dust particles with thousands of negative elementary charges. Due to their extremely low charge-to-mass ratio, these dust particles are strongly coupled, arranging themselves like atoms in liquids or solids. Due to the shielding effects of electrons and ions, dust particles interact with each other through the Yukawa potential, so that simulations of Yukawa liquids or solids are used to study properties of dusty plasmas. In the past two decades, the properties of liquid 2D dusty plasmas have been widely studied from experiments to theories and simulations. However, from our literature search, we have not found a quantitative and comprehensive study of properties of 2D liquid dusty plasmas over a wide range of plasma conditions. Here, from molecular-dynamics simulations of Yukawa liquids, we have obtained a concise equation of state (EOS) for the 2D liquid dusty plasmas from empirical fitting, which contains three quantities of the internal pressure, the coupling parameter, and the screening parameter. From this EOS, different thermodynamical processes can be directly derived, such as isotherms, isobars and isochores. Also, various physical properties of 2D liquid dusty plasmas, like the bulk modulus of elasticity, can be analytically derived, so that the sound speeds can be obtained. Finally, an analytical expression of the specific heat for 2D liquid dusty plasmas has been achieved. Work supported by the National Natural Science Foundation of China under Grant No. 11505124, the 1000 Youth Talents Plan, and the startup funds from Soochow University.

  13. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    NASA Astrophysics Data System (ADS)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  14. Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-Based Untargeted Quantitative Proteomic Approach To Identify Change of the Plasma Proteins by Salbutamol Abuse in Beef Cattle.

    PubMed

    Zhang, Kai; Tang, Chaohua; Liang, Xiaowei; Zhao, Qingyu; Zhang, Junmin

    2018-01-10

    Salbutamol, a selective β 2 -agonist, endangers the safety of animal products as a result of illegal use in food animals. In this study, an iTRAQ-based untargeted quantitative proteomic approach was applied to screen potential protein biomarkers in plasma of cattle before and after treatment with salbutamol for 21 days. A total of 62 plasma proteins were significantly affected by salbutamol treatment, which can be used as potential biomarkers to screen for the illegal use of salbutamol in beef cattle. Enzyme-linked immunosorbent assay measurements of five selected proteins demonstrated the reliability of iTRAQ-based proteomics in screening of candidate biomarkers among the plasma proteins. The plasma samples collected before and after salbutamol treatment were well-separated by principal component analysis (PCA) using the differentially expressed proteins. These results suggested that an iTRAQ-based untargeted quantitative proteomic strategy combined with PCA pattern recognition methods can discriminate differences in plasma protein profiles collected before and after salbutamol treatment.

  15. PLASMA PROTEIN PROFILING AS A HIGH THROUGHPUT TOOL FOR CHEMICAL SCREENING USING A SMALL FISH MODEL

    EPA Science Inventory

    Hudson, R. Tod, Michael J. Hemmer, Kimberly A. Salinas, Sherry S. Wilkinson, James Watts, James T. Winstead, Peggy S. Harris, Amy Kirkpatrick and Calvin C. Walker. In press. Plasma Protein Profiling as a High Throughput Tool for Chemical Screening Using a Small Fish Model (Abstra...

  16. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.

    PubMed

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-12-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frerichs, H.; Reiter, D.; Schmitz, O.

    The impact of resonant magnetic perturbations (RMPs) on the plasma edge can be analyzed in detail by three dimensional computer simulations, which take the underlying magnetic field structure as input. Previously, the 'vacuum approximation' has been used to calculate the magnetic field structure although plasma response effects may result in a screening (or even an amplification) of the external perturbations. Simulation results for an ITER similar shape plasma at the DIII-D tokamak are presented for the full vacuum perturbation field and an ad hoc screening case in comparison to the unperturbed configuration. It is shown that the RMP induced helicalmore » patterns in the plasma edge and on the divertor target shrink once screening is taken into account. However, a flat temperature profile is still found in the 'open field line domain' inside the separatrix, while the 'density pump out effect' found in the vacuum RMP case is considerably weakened.« less

  18. Noninvasive Prenatal Screening for Genetic Diseases Using Massively Parallel Sequencing of Maternal Plasma DNA

    PubMed Central

    Chitty, Lyn S.; Lo, Y. M. Dennis

    2015-01-01

    The identification of cell-free fetal DNA (cffDNA) in maternal plasma in 1997 heralded the most significant change in obstetric care for decades, with the advent of safer screening and diagnosis based on analysis of maternal blood. Here, we describe how the technological advances offered by next-generation sequencing have allowed for the development of a highly sensitive screening test for aneuploidies as well as definitive prenatal molecular diagnosis for some monogenic disorders. PMID:26187875

  19. Structural changes in lymphocytes membrane of Chernobyl clean-up workers from Latvia.

    PubMed

    Kalnina, Inta; Zvagule, Tija; Gabruseva, Natalija; Kirilova, Jelena; Kurjane, Natalja; Bruvere, Ruta; Kesters, Andris; Kizane, Gunta; Kirilovs, Georgijs; Meirovics, Imants

    2007-11-01

    ABM (3-aminobenzanthrrone derivative) developed at the Riga Technical University, Riga, Latvia) has been previously shown as a potential probe for determination of the immune state of patients with different pathologies . The fist study (using probe ABM) of peripheral blood mononuclear cells (PBMC) membranes of 97 Chernobyl clean-up workers from Latvia was conducted in 1997. Now we repeatedly examine the same (n = 54) individuals in dynamics. ABM spectral parameters in PBMC suspension, fluorescence anisotropy and blood plasma albumin characteristics were recorded. In 1997 screening showed 5 different patterns of fluorescence spectra, from which in 2007 we obtained only two. These patterns of spectra had never been previously seen in healthy individuals or patients with tuberculosis, multiple sclerosis, rheumatoid arthritis, etc., examined by us. Patterns of ABM fluorescence spectra are associated with membrane anisotropy and conformational changes of blood plasma albumin. We observed that in dynamics 1997-2007 the lipid compartment of the membrane became more fluid while the lipid-protein interface became more rigid. The use of probe ANS and albumin auto-fluorescence allowed show conformational alterations in Chernobyl clean-up workers blood plasma. It is necessary to note that all investigated parameters significantly differ in observed groups of patients. These findings reinforce our understanding that that the cell membrane is a significant biological target of radiation. The role of the membrane in the expression and course of cell damage after radiation exposure must be considered. So ten years dynamic of PBMC membrane characteristics by ABM (spectral shift and anisotropy indexes) in Chernobyl clean-up workers reveal progressive trend toward certain resemblance with those of chronic B-cell lymphoid leukemia.

  20. Static electric dipole polarizability of lithium atoms in Debye plasmas

    NASA Astrophysics Data System (ADS)

    Ning, Li-Na; Qi, Yue-Ying

    2012-12-01

    The static electric dipole polarizabilities of the ground state and n <= 3 excited states of a lithium atom embedded in a weekly coupled plasma environment are investigated as a function of the plasma screening radium. The plasma screening of the Coulomb interaction is described by the Debye—Hückel potential and the interaction between the valence electron and the atomic core is described by a model potential. The electron energies and wave functions for both the bound and continuum states are calculated by solving the Schrödinger equation numerically using the symplectic integrator. The oscillator strengths, partial-wave, and total static dipole polarizabilities of the ground state and n <= 3 excited states of the lithium atom are calculated. Comparison of present results with those of other authors, when available, is made. The results for the 2s ground state demonstrated that the oscillator strengths and the static dipole polarizabilities from np orbitals do not always increase or decrease with the plasma screening effect increasing, unlike that for hydrogen-like ions, especially for 2s→3p transition there is a zero value for both the oscillator strength and the static dipole polarizability for screening length D = 10.3106a0, which is associated with the Cooper minima.

  1. Screening for diabetes and prediabetes should be cost-saving in patients at high risk.

    PubMed

    Chatterjee, Ranee; Narayan, K M Venkat; Lipscomb, Joseph; Jackson, Sandra L; Long, Qi; Zhu, Ming; Phillips, Lawrence S

    2013-07-01

    Although screening for diabetes and prediabetes is recommended, it is not clear how best or whom to screen. We therefore compared the economics of screening according to baseline risk. Five screening tests were performed in 1,573 adults without known diabetes--random plasma/capillary glucose, plasma/capillary glucose 1 h after 50-g oral glucose (any time, without previous fast, plasma glucose 1 h after a 50-g oral glucose challenge [GCTpl]/capillary glucose 1 h after a 50-g oral glucose challenge [GCTcap]), and A1C--and a definitive 75-g oral glucose tolerance test. Costs of screening included the following: costs of testing (screen plus oral glucose tolerance test, if screen is positive); costs for false-negative results; and costs of treatment of true-positive results with metformin, all over the course of 3 years. We compared costs for no screening, screening everyone for diabetes or high-risk prediabetes, and screening those with risk factors based on age, BMI, blood pressure, waist circumference, lipids, or family history of diabetes. Compared with no screening, cost-savings would be obtained largely from screening those at higher risk, including those with BMI >35 kg/m(2), systolic blood pressure ≥130 mmHg, or age >55 years, with differences of up to -46% of health system costs for screening for diabetes and -21% for screening for dysglycemia110, respectively (all P < 0.01). GCTpl would be the least expensive screening test for most high-risk groups for this population over the course of 3 years. From a health economics perspective, screening for diabetes and high-risk prediabetes should target patients at higher risk, particularly those with BMI >35 kg/m(2), systolic blood pressure ≥130 mmHg, or age >55 years, for whom screening can be most cost-saving. GCTpl is generally the least expensive test in high-risk groups and should be considered for routine use as an opportunistic screen in these groups.

  2. Chronic hypopituitarism is uncommon in survivors of aneurysmal subarachnoid haemorrhage.

    PubMed

    Hannon, M J; Behan, L A; O'Brien, M M; Tormey, W; Javadpour, M; Sherlock, M; Thompson, C J

    2015-01-01

    The incidence of hypopituitarism after aneurysmal subarachnoid haemorrhage (SAH) is unclear from the conflicting reports in the literature. As routine neuroendocrine screening for hypopituitarism for all patients would be costly and logistically difficult, there is a need for precise data on the frequency of hypopituitarism and on factors which might predict the later development of pituitary dysfunction. We aimed to: (i) Establish the incidence of long-term hypopituitarism in patients with aneurysmal SAH. (ii) Determine whether data from patients' acute admission with SAH could predict the occurrence of long-term hypopituitarism. One hundred patients were studied prospectively from the time of presentation with acute SAH. Plasma cortisol, plasma sodium and a variety of clinical and haemodynamic parameters were sequentially measured for the first 12 days of their acute admission. Forty-one patients then underwent dynamic pituitary testing at median 15 months following SAH (range 7-30 months), with insulin tolerance test (ITT) or, if contraindicated, a glucagon stimulation test (GST) plus short synacthen test (SST). If symptoms of cranial diabetes insipidus (CDI) were present, a water deprivation test was also performed. Forty-one patients attended for follow-up dynamic pituitary testing. Although 14 of 100 had acute glucocorticoid deficiency immediately following SAH, only two of 41 had long-term adrenocorticotrophic hormone (ACTH) deficiency and four of 41 had growth hormone (GH) deficiency. None were hypothyroid or gonadotrophin deficient. None had chronic CDI or hyponatraemia. There was no association between acute glucocorticoid deficiency, acute CDI or acute hyponatraemia and long-term pituitary dysfunction. Both anterior and posterior hypopituitarism are very uncommon following SAH and are not predicted by acute clinical, haemodynamic or endocrinological parameters. Routine neuroendocrine screening is not justified in SAH patients. © 2014 John Wiley & Sons Ltd.

  3. The first object oriented monitor for intravenous anesthesia.

    PubMed

    Cantraine, F R; Coussaert, E J

    2000-01-01

    To describe the design and implementation of "INFUSION TOOLBOX," a software tool to control and monitor multiple intravenous drug infusions simultaneously using pharmacokinetic and pharmacodynamic principles. INFUSION TOOLBOX has been designed to present a graphical interface. Object Oriented design was used and the software was implemented using Smalltalk, to run on a PC. Basic tools are available to manage patient, drugs, pumps and reports. These tools are the PatientPanel, the DrugPanel, the PumpPanel and the HistoryPanel. The screen is built dynamically. The panels may be collapsed or closed to avoid a crowded display. We also built control panels such as the Target ControlPanel which calculates the best infusion sequence to bring the drug concentration in the plasma compartment to a preset value. Before drug delivery, the user enters the patient's data, selects a drug, enters its dilution factor and chooses a pharmacokinetic model. The calculated plasma concentration is continually displayed and updated. The anesthetist may ask for the history of the delivery to obtain a graphic report or to add events to the logbook. A panel targeting the effect is used when a pharmacodynamic model is known. Data files for drugs, pumps and surgery are upgradable. By creating a resizeable ControlPanel we enable the anesthetist to display the information he wishes, when he wishes it. The available panels are diverse enough to meet the anesthetist needs; they may be adapted to the drug used, pumps used and surgery. It is the anesthetist who builds dynamically its different control screens. By adopting an evolutionary solution model we have achieved considerable success in building our drug delivery monitor. In addition we have gained valuable insight into the anesthesia information domain that will allow us to further enhance and expand the system.

  4. Dynamic unmagnetized plasma in the diamagnetic cavity around comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hajra, Rajkumar; Henri, Pierre; Vallières, Xavier; Moré, Jerome; Gilet, Nicolas; Wattieaux, Gaetan; Goetz, Charlotte; Richter, Ingo; Tsurutani, Bruce T.; Gunell, Herbert; Nilsson, Hans; Eriksson, Anders I.; Nemeth, Zoltan; Burch, James L.; Rubin, Martin

    2018-04-01

    The Rosetta orbiter witnessed several hundred diamagnetic cavity crossings (unmagnetized regions) around comet 67P/Churyumov-Gerasimenko during its two year survey of the comet. The characteristics of the plasma environment inside these diamagnetic regions are studied using in situ measurements by the Rosetta Plasma Consortium instruments. Although the unmagnetized plasma density has been observed to exhibit little dynamics compared to the very dynamical magnetized cometary plasma, we detected several localized dynamic plasma structures inside those diamagnetic regions. These plasma structures are not related to the direct ionization of local cometary neutrals. The structures are found to be steepened, asymmetric plasma enhancements with typical rising-to-descending slope ratio of ˜2.8 (±1.9), skewness ˜0.43 (±0.36), mean duration of ˜2.7 (±0.9) min and relative density variation ΔN/N of ˜0.5 (±0.2), observed close to the electron exobase. Similar steepened plasma density enhancements were detected at the magnetized boundaries of the diamagnetic cavity as well as outside the diamagnetic region. The plausible scalelength and propagation direction of the structures are estimated from simple plasma dynamics considerations. It is suggested that they are large-scale unmagnetized plasma enhancements, transmitted from the very dynamical outer magnetized region to the inner magnetic field-free cavity region.

  5. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    EPA Science Inventory

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  6. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J.; Börner, K.

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steelmore » samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.« less

  7. Direct measurement of the plasma screening length and surface potential near the lunar terminator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, J.

    1977-05-01

    Direct measurement of the lunar dayside surface potential and screening length has been made by the suprathermal ion detector experiment (Side) near the terminator. In a region 20degree--30degree from the terminator at the Apollo 14 and 15 sites the surface potential is found to be approximately 50 V negative, and the screening length to be about 1 km. This value of the screening length is more than 2 orders of magnitude greater than the solar wind 'Debye' length. The strong negative surface potential in this region may be due to enhanced temperature and density of the solar wind plasma.

  8. Direct measurement of the plasma screening length and surface potential near the lunar terminator

    NASA Technical Reports Server (NTRS)

    Benson, J.

    1977-01-01

    Direct measurement of the lunar dayside surface potential and screening length has been made by the suprathermal ion detector experiment (Side) near the terminator. In a region 20-30 deg from the terminator at the Apollo 14 and 15 sites the surface potential is found to be approximately 50 V negative, and the screening length to be about 1 km. This value of the screening length is more than 2 orders of magnitude greater than the solar wind 'Debye' length. The strong negative surface potential in this region may be due to enhanced temperature and density of the solar wind plasma.

  9. [Significance of Septin9 gene methylation detection of plasma circulation DNA in colorectal cancer screening].

    PubMed

    Kang, Qian; Jin, Peng; Yang, Lang; Wang, Xin; An, Hejuan; Liu, Lili; Li, Na; Sheng, Jianqiu

    2014-12-30

    To explore the role of detecting the methylation status of gene Septin9 (SEPT9) in plasma for colorectal cancer screening in Chinese population. Patients were collected from Beijing Military General Hospital since September 2013 to February 2014. The performance of SEPT9 assay was validated in a single-blind study of 80 cases with colonoscopy and pathologically verified colorectal cancer and 52 normal controls. The detection of Septin9 gene methylation in peripheral blood was performed by fluorescence quantitative polymerase chain reaction (PCR). And immunoassay fecal occult blood test was conducted to compare the superiority of methylated Septin9 for screening colorectal cancer. The Septin9 assay successfully identified 75.0% (95%CI:64.7%-83.6%) of cancers at a specificity of 98.1% (95%CI:90.9%-99.9%). And it was superior to fecal occult blood screening for colorectal cancer (sensitivity 79.5% vs 53.8%, P < 0.05). Determination of SEPT9 methylation status is an innovative non-invasive plasma screening test for colorectal cancer.

  10. History of plasma-product safety.

    PubMed

    Hoots, W K

    2001-04-01

    The evolution of transfusion or infusion therapies for diseases requiring specific protein replacements (e.g., hemophilia A and B and severe combined immunodeficiency syndrome) was dramatic over the second half of the 20th century. Unfortunately, it was accompanied by extreme manifestations of transfusion-transmitted diseases, such as human immunodeficiency virus (HIV), hepatitis B, and hepatitis C. The milestones of both the replacement therapies and the associated diseases are discussed in this presentation, which focuses on the technologic advances that resulted in even more "pure" replacement therapies for plasma-protein diseases. From donor screening to the development of viral attenuation techniques, every facet of production for these products was impacted by the exigent push for viral safety created by HIV and hepatitis. Almost invariably, this negatively affects total product yield. At the beginning of the 21st century, success in making plasma products safe from recognized and potential pathogens has dramatically increased societal pressures to produce a zero-risk, plasma-derived protein therapy. However, past improvements and low theoretic risks for future pathogen contamination have increased product cost. This is associated with a possible decrease in the overall supply of these plasma proteins because of the reduced numbers of acceptable donors and the loss of protein from expanded attenuation technology. These impacts and the role of dynamic societal and scientific pressures on these decision processes are discussed. Copyright 2001 by W.B. Saunders Company.

  11. Long-term in vitro reactivity for HLA antibodies and comparison of detection using serum vs. plasma

    PubMed Central

    Norris, Philip J.; Lee, Jar-How; Carrick, Danielle M.; Gottschall, Jerome L.; Lebedeva, Mila; de Castro, B.R.; Kleinman, Steven H.; Busch, Michael P.

    2010-01-01

    BACKGROUND HLA antibodies are a possible cause of transfusion-related acute lung injury (TRALI), and fluorescent bead assays are often used for antibody detection. Serum is the manufacturer’s recommended sample, but plasma may be easier to obtain for studies of HLA antibody prevalence and TRALI case investigations. STUDY DESIGN AND METHODS Specimens were obtained from 44 multiparous females positive for HLA antibodies by lymphocytotoxicity testing at least 13 years prior, and from 1,000 contemporary blood donors. Screening tests were performed using a Luminex-based assay. In addition to comparing results obtained with paired plasma and serum samples, the effects of storage at 4 °C for one week and of multiple freeze-thaw cycles were evaluated. RESULTS Of 42 evaluable subjects with HLA antibodies documented >13 years earlier, only 1 showed loss of detectable antibodies, with 39 (93%) positive in the screening assay for class I and 24 (57%) positive in the screening assay for HLA class II antibodies. In 968 evaluable contemporary donors, 291 screened positive for HLA class I and 206 for HLA class II antibodies using a low assay cut-off. Screening test concordance using paired plasma and serum samples was high, particularly for subjects with higher level antibodies. Refrigeration of samples for one week did not significantly affect assay results, while repeated freeze-thaw cycles caused a decrement in signal level. CONCLUSION Serum and plasma samples gave concordant results in the majority of cases, particularly for specimens with higher-level antibodies. High-level HLA antibodies were present in most individuals for over 13 years. PMID:18980615

  12. Kinetic Theory of Plasmas

    DTIC Science & Technology

    2009-09-01

    RTO-EN-AVT-162 means of a Coulomb potential screened at the Debye length (Delcroix and Bers, 1984; Balescu , 1988). 4. The plasma is composed of...Theory of Plasmas 2 - 28 RTO-EN-AVT-162 References Balescu , R. (1988). Transport Processes in Plasmas. Elsevier, Amsterdam. Barth, T. (2008

  13. Impurity screening behavior of the high-field side scrape-off layer in near-double-null configurations: prospect for mitigating plasma-material interactions on RF actuators and first-wall components

    NASA Astrophysics Data System (ADS)

    LaBombard, B.; Kuang, A. Q.; Brunner, D.; Faust, I.; Mumgaard, R.; Reinke, M. L.; Terry, J. L.; Howard, N.; Hughes, J. W.; Chilenski, M.; Lin, Y.; Marmar, E.; Rice, J. E.; Rodriguez-Fernandez, P.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.

    2017-07-01

    The impurity screening response of the high-field side (HFS) scrape-off layer (SOL) to localized nitrogen injection is investigated on Alcator C-Mod for magnetic equilibria spanning lower-single-null, double-null and upper-single-null configurations under otherwise identical plasma conditions. L-mode, EDA H-mode and I-mode discharges are investigated. HFS impurity screening is found to depend on magnetic flux balance and the direction of B  ×  \

  14. Personalized metabolomics for predicting glucose tolerance changes in sedentary women after high-intensity interval training.

    PubMed

    Kuehnbaum, Naomi L; Gillen, Jenna B; Gibala, Martin J; Britz-McKibbin, Philip

    2014-08-28

    High-intensity interval training (HIIT) offers a practical approach for enhancing cardiorespiratory fitness, however its role in improving glucose regulation among sedentary yet normoglycemic women remains unclear. Herein, multi-segment injection capillary electrophoresis-mass spectrometry is used as a high-throughput platform in metabolomics to assess dynamic responses of overweight/obese women (BMI > 25, n = 11) to standardized oral glucose tolerance tests (OGTTs) performed before and after a 6-week HIIT intervention. Various statistical methods were used to classify plasma metabolic signatures associated with post-prandial glucose and/or training status when using a repeated measures/cross-over study design. Branched-chain/aromatic amino acids and other intermediates of urea cycle and carnitine metabolism decreased over time in plasma after oral glucose loading. Adaptive exercise-induced changes to plasma thiol redox and orthinine status were measured for trained subjects while at rest in a fasting state. A multi-linear regression model was developed to predict changes in glucose tolerance based on a panel of plasma metabolites measured for naïve subjects in their untrained state. Since treatment outcomes to physical activity are variable between-subjects, prognostic markers offer a novel approach to screen for potential negative responders while designing lifestyle modifications that maximize the salutary benefits of exercise for diabetes prevention on an individual level.

  15. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    NASA Astrophysics Data System (ADS)

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.; Qu, Y. Z.

    2013-12-01

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ɛ /I2p (I2p is the ionization energy of 2p state and ɛ is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δnlc, corresponding to the special plasma condition when the bound state |nl⟩ just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δnlc, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.

  16. Diabetes Mellitus: Screening and Diagnosis.

    PubMed

    Pippitt, Karly; Li, Marlana; Gurgle, Holly E

    2016-01-15

    Diabetes mellitus is one of the most common diagnoses made by family physicians. Uncontrolled diabetes can lead to blindness, limb amputation, kidney failure, and vascular and heart disease. Screening patients before signs and symptoms develop leads to earlier diagnosis and treatment, but may not reduce rates of end-organ damage. Randomized trials show that screening for type 2 diabetes does not reduce mortality after 10 years, although some data suggest mortality benefits after 23 to 30 years. Lifestyle and pharmacologic interventions decrease progression to diabetes in patients with impaired fasting glucose or impaired glucose tolerance. Screening for type 1 diabetes is not recommended. The U.S. Preventive Services Task Force recommends screening for abnormal blood glucose and type 2 diabetes in adults 40 to 70 years of age who are overweight or obese, and repeating testing every three years if results are normal. Individuals at higher risk should be considered for earlier and more frequent screening. The American Diabetes Association recommends screening for type 2 diabetes annually in patients 45 years and older, or in patients younger than 45 years with major risk factors. The diagnosis can be made with a fasting plasma glucose level of 126 mg per dL or greater; an A1C level of 6.5% or greater; a random plasma glucose level of 200 mg per dL or greater; or a 75-g two-hour oral glucose tolerance test with a plasma glucose level of 200 mg per dL or greater. Results should be confirmed with repeat testing on a subsequent day; however, a single random plasma glucose level of 200 mg per dL or greater with typical signs and symptoms of hyperglycemia likely indicates diabetes. Additional testing to determine the etiology of diabetes is not routinely recommended.

  17. Bulk modulus of two-dimensional liquid dusty plasmas and its application

    NASA Astrophysics Data System (ADS)

    Li, Wei; Lin, Wei; Feng, Yan

    2017-04-01

    From the recently obtained equation of state [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016) and Feng et al., Phys. Plasmas 23, 093705 (2016); Erratum 23, 119904 (2016)], the bulk modulus of elasticity K of 2D liquid dusty plasmas is analytically derived as the expression of the temperature and the screening parameter. Exact values of the obtained bulk modulus of elasticity K are reported and also plotted in the 2D plane of the temperature and the screening parameter. As the temperature and the screening parameter change, the variation trend of K is reported and the corresponding interpretation is suggested. It has been demonstrated that the obtained bulk modulus of elasticity K can be used to predict the longitudinal sound speed, which agrees well with previous studies.

  18. Glow discharge plasma deposition of thin films

    DOEpatents

    Weakliem, Herbert A.; Vossen, Jr., John L.

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  19. Influence of semiclassical plasma on the energy levels and radiative transitions in highly charged ions★

    NASA Astrophysics Data System (ADS)

    Hu, Hong-Wei; Chen, Zhan-Bin; Chen, Wen-Cong; Liu, Xiao-Bin; Fu, Nian; Wang, Kai

    2017-11-01

    Considering the quantum effects of diffraction and the collective screening effects, the potential of test charge in semiclassical plasmas is derived. It is generalized exponential screened Coulomb potential. Using the Ritz variational method incorporating this potential, the effects of semiclassical plasma on the energy levels and radiative transitions are investigated systematically, taking highly charged H-like ion as an example. The Debye plasma model is also employed for comparison purposes. Comparisons and analysis are made between these two sets of results and the differences are discussed. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  20. Statically screened ion potential and Bohm potential in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moldabekov, Zhandos; Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Str., 050040 Almaty; Schoof, Tim

    2015-10-15

    The effective potential Φ of a classical ion in a weakly correlated quantum plasma in thermodynamic equilibrium at finite temperature is well described by the random phase approximation screened Coulomb potential. Additionally, collision effects can be included via a relaxation time ansatz (Mermin dielectric function). These potentials are used to study the quality of various statically screened potentials that were recently proposed by Shukla and Eliasson (SE) [Phys. Rev. Lett. 108, 165007 (2012)], Akbari-Moghanjoughi (AM) [Phys. Plasmas 22, 022103 (2015)], and Stanton and Murillo (SM) [Phys. Rev. E 91, 033104 (2015)] starting from quantum hydrodynamic (QHD) theory. Our analysis revealsmore » that the SE potential is qualitatively different from the full potential, whereas the SM potential (at any temperature) and the AM potential (at zero temperature) are significantly more accurate. This confirms the correctness of the recently derived [Michta et al., Contrib. Plasma Phys. 55, 437 (2015)] pre-factor 1/9 in front of the Bohm term of QHD for fermions.« less

  1. The Effect of a Coloring Prompt on Health Engagement

    ClinicalTrials.gov

    2017-05-03

    In Need of a Pap Smear (Cervical Cancer Screening); In Need of a Blood Pressure Check (Hypertension Screening); In Need of a Cholesterol Test (Lipid Disorder Screening); In Need of a Fasting Plasma Glucose Test (Diabetes)

  2. Self-consistent simulation of high-frequency driven plasma sheaths

    NASA Astrophysics Data System (ADS)

    Shihab, Mohammed; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf

    2011-10-01

    Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. The financial support from the Federal Ministry of Education and Research within the frame of the project ``Plasma-Technology-Grid'' and the support of the DFG via the collaborative research center SFB-TR87 is gratefully acknowledged.

  3. [Reference values for the blood coagulation tests in Mexico: usefulness of the pooled plasma from blood donors].

    PubMed

    Calzada-Contreras, Adriana; Moreno-Hernández, Manuel; Castillo-Torres, Noemi Patricia; Souto-Rosillo, Guadalupe; Hernández-Juárez, Jesús; Ricardo-Moreno, María Tania; Sánchez-Fernández, Maria Guadalupe de Jesús; García-González, América; Majluf-Cruz, Abraham

    2012-01-01

    The blood coagulation system maintains the blood in a liquid state and bleeding and thrombosis are the manifestations of its malfunction. Blood coagulation laboratory evaluates the physiology of this system. To establish both, the reference values for several tests performed at the blood coagulation laboratory as well as the utility of the pooled plasma to perform these assays. MATERIAL AND: In this descriptive, cross-sectional, randomized study, we collected plasma from Mexican Mestizos. Each pooled plasma was prepared with the plasma from at least 20 blood donors. We performed screening and special tests and the Levey-Jennings graphs were built and interpreted after each pass. Results of the tests were analyzed and their distribution was established using the Kolmogorov-Smirnov test. To establish the reference values we used 95% confidence intervals. We collected 72 pooled plasmas. The distribution for PT, APTT, and TT tests was abnormal. Although the PT test showed a bimodal distribution it was normal for factor VII. The reference values for the hemostatic, anticoagulant, and fibrinolytic factors were different from those suggested by the manufacturers. We established the reference values for the blood coagulation tests in the adult Mexican population. We have shown that the pooled plasma must be used for the screening tests. We suggest that each clinical laboratory should establish its own reference values (at least for the screening tests). To reach this objective, we encourage the use of the pooled plasma.

  4. SATELLITE PLASMA SHEATH ANOMALIES,

    DTIC Science & Technology

    Contents: Experimental Studies of the Kraus Effect Plasma Sheath and Screening around a Rapidly Moving Body Plasma Compression EEffects Produced...Kraus Effect Interaction of West Ford Needles with Earth’s Magnetosphere The Generation of Electromagnetic Waves in the Wake of a Satellite

  5. Which routine test for kidney function?

    PubMed Central

    Parkin, A; Smith, H C; Brocklebank, J T

    1989-01-01

    Eighty measurements of plasma creatinine concentration, height:creatinine ratio, and plasma beta 2 microglobulin concentration were made on 72 children (age 4 months-18.5 years) with known renal disease. Results were compared with simultaneous measurements of glomerular filtration rate using plasma clearance of 51Cr edetic acid to assess the performance of each test as an initial screening procedure of renal insufficiency. Height:creatinine index less than 2.1 was found to have a higher sensitivity and predictive value of a normal result than the other tests and is therefore the preferred test for a screening procedure. PMID:2510609

  6. Corrosion Behavior of Active Screen Plasma Nitrided 38CrMoAl Steel under Marine Environment

    NASA Astrophysics Data System (ADS)

    Yang, Li; He, Yongyong; Mao, JunYuan; Zhang, Lei

    2017-10-01

    The 38CrMoAl steels were nitrided at different temperatures for 7 h using active screen plasma discharge. The analysis showed that the thick compound layer composed of ɛ-Fe2-3N and γ‧-Fe4N was formed on the surface. The corrosion behavior was evaluated by measuring the anodic polarization curves in natural sea water (similar 3.5% NaCl solution), and observation of corroded surface were conducted. The electromechanical measurements indicated that the corrosion potential of the nitrided specimens shifted to a nobler value compared to that of untreated specimens. Passive regions were also observed in the polarization curves for all the nitrided specimens. These results indicate that active screen plasma nitriding can enhance the corrosion resistance of the 38CrMoAl steel under marine environment.

  7. Electron-exchange and quantum screening effects on the Thomson scattering process in quantum Fermi plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590

    2013-06-15

    The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with anmore » increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.« less

  8. Is maternal plasma DNA testing impacting serum-based screening for aneuploidy in the United States?

    PubMed

    Palomaki, Glenn E; Ashwood, Edward R; Best, Robert G; Lambert-Messerlian, Geralyn; Knight, George J

    2015-11-01

    We sought to determine whether tests for fetal aneuploidy based on next-generation sequencing of cell-free DNA in maternal circulation have had an impact on routine serum-based screening in the general pregnant population. We compared results from laboratory surveys in 2011 and 2014 that reported types of prenatal serum screening tests and numbers of tests performed. Testing records from two prenatal serum screening laboratories examined temporal trends in the proportion of screened women 35 years of age and older from 2008 (or 2009) to 2014. The 82 laboratory survey results available for comparison showed that 1.7 million women were screened in 2014, a 5% increase over 2011. In the two screening laboratories, the proportion of screened women age 35 and older increased for several years but then experienced reductions of 8 and 18% by mid-2014 when compared with the highest rates observed. As of 2014, maternal plasma DNA testing appears to have had only a minor impact on serum screening rates in the United States. Ongoing surveillance has the potential to determine if, and when, DNA testing begins to replace serum testing as a primary screen for Down syndrome in the United States.

  9. Modeling and Simulation of Plasma-Assisted Ignition and Combustion

    DTIC Science & Technology

    2013-10-01

    local plasma chemistry effects over heat transport in achieving “volumetric” ignition using pulse nanosecond discharges. •detailed parametric studies...electrical breakdown • cathode sheath formation • electron impact dynamics PLASMA DISCHARGE DYNAMICS Plasma Chemistry Ionization, Excitation...quenching of excited species nonequilibrium plasma chemistry low temperature radical chemistry high temperature combustion chemistry School of

  10. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    NASA Astrophysics Data System (ADS)

    Brandt, C.; Thakur, S. C.; Tynan, G. R.

    2016-04-01

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.

  11. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.

    2016-04-15

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less

  12. Effectiveness of plasma lyso-Gb3 as a biomarker for selecting high-risk patients with Fabry disease from multispecialty clinics for genetic analysis.

    PubMed

    Maruyama, Hiroki; Miyata, Kaori; Mikame, Mariko; Taguchi, Atsumi; Guili, Chu; Shimura, Masaru; Murayama, Kei; Inoue, Takeshi; Yamamoto, Saori; Sugimura, Koichiro; Tamita, Koichi; Kawasaki, Toshihiro; Kajihara, Jun; Onishi, Akifumi; Sugiyama, Hitoshi; Sakai, Teiko; Murata, Ichijiro; Oda, Takamasa; Toyoda, Shigeru; Hanawa, Kenichiro; Fujimura, Takeo; Ura, Shigehisa; Matsumura, Mimiko; Takano, Hideki; Yamashita, Satoshi; Matsukura, Gaku; Tazawa, Ryushi; Shiga, Tsuyoshi; Ebato, Mio; Satoh, Hiroshi; Ishii, Satoshi

    2018-03-15

    PurposePlasma globotriaosylsphingosine (lyso-Gb3) is a promising secondary screening biomarker for Fabry disease. Here, we examined its applicability as a primary screening biomarker for classic and late-onset Fabry disease in males and females.MethodsBetween 1 July 2014 and 31 December 2015, we screened 2,360 patients (1,324 males) referred from 169 Japanese specialty clinics (cardiology, nephrology, neurology, and pediatrics), based on clinical symptoms suggestive of Fabry disease. We used the plasma lyso-Gb3 concentration, α-galactosidase A (α-Gal A) activity, and analysis of the α-Gal A gene (GLA) for primary and secondary screens, respectively.ResultsOf 8 males with elevated lyso-Gb3 levels (≥2.0 ng ml -1 ) and low α-Gal A activity (≤4.0 nmol h -1  ml -1 ), 7 presented a GLA mutation (2 classic and 5 late-onset). Of 15 females with elevated lyso-Gb3, 7 displayed low α-Gal A activity (5 with GLA mutations; 4 classic and 1 late-onset) and 8 exhibited normal α-Gal A activity (1 with a classic GLA mutation and 3 with genetic variants of uncertain significance).ConclusionPlasma lyso-Gb3 is a potential primary screening biomarker for classic and late-onset Fabry disease probands.Genet Med advance online publication, 15 March 2018; doi:10.1038/gim.2018.31.

  13. Circular polarization of X-ray radiation emitted by longitudinally polarized electron impact excitation: Under a screened Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin

    2017-12-01

    Longitudinally polarized electron impact excitation from the ground state 1s2 to the excited state 1s2l (l =s,p) levels of highly charged He-like Fe24+ ions in weakly coupled hot-dense plasmas is investigated using a fully relativistic distorted-wave method. The Debye-Hückel potential is used to describe the plasma screening. Benchmark results such as the total cross sections, the magnetic sublevels cross sections, and the circular polarizations of corresponding X-ray radiations are presented. For the excitation process, results show that the plasma screening has an effect in reducing both the total and magnetic sublevels cross sections. For the de-excitation process, it is found that while the plasma screening as a slightly effect on the circular polarizations of radiations for the 1 s 2 s 3S1 → 1 s21S0,1 s 2 p 3P2 → 1 s21S0 , and 1 s 2 p 1P1 → 1 s21S0 transition lines, it gives a substantial contribution for the same properties of the 1 s 2 p 3P1 → 1 s21S0 line.

  14. Density profile and breathing mode of strongly correlated spherical Yukawa plasmas

    NASA Astrophysics Data System (ADS)

    Henning, Christian; Fujioka, Kenji; Ludwig, Patrick; Bonitz, Michael

    2007-11-01

    The structure of ``Yukawa balls,'' i.e. spherical 3D dust crystals, which recently have been produced [1], is well explained by computer simulations of charged Yukawa interacting particles within an external parabolic confinement [2]. Dynamical properties (e.g. breathing mode) of these systems were investigated by experiment, simulations as well as theoretically by using the ansatz of a uniform ground state density [3]. Here we show analytically that screening has a dramatic effect on the density profile which decreases away from the center [4,5] and which is in excellent agreement with MD simulations of Yukawa balls. This result is used to improve former calculations of the breathing mode [6].References[1] O. Arp et al. Phys. Rev. Lett. 93, 165004 (2004)[2] M. Bonitz et al., Phys. Rev. Lett. 96, 075001 (2006)[3] T. E. Sheridan, Phys. Plasmas 13, 022106 (2006)[4] C. Henning et al., Phys. Rev. E 74, 056403 (2006)[5] C. Henning at al., Phys. Rev. E (2007)[6] C. Henning at al., submitted for publication

  15. Improved Shell models for screened Coulomb balls

    NASA Astrophysics Data System (ADS)

    Bonitz, M.; Kaehlert, H.; Henning, C.; Baumgartner, H.; Filinov, A.

    2006-10-01

    Spherical Coulomb crystals in dusty plasmas [1] are well described by an isotropic Yukawa-type pair interaction and an external parabolic confinement as was shown by extensive molecular dynamics simulations [2]. A much simpler description is possible with analytical shell models which have been derived for Yukawas plasmas in [3,4]. Here we analyze improved Yukawa shell models which include correlations along the lines proposed for Coulomb crystals in [5]. The shell configurations are efficiently evaluated using a Monte Carlo procedure. [1] O. Arp, A. Piel and A. Melzer, Phys. Rev. Lett. 93, 165004 (2004). [2] M. Bonitz, D. Block, O. Arp, V. Golunychiy, H. Baumgartner, P. Ludwig, A. Piel and A. Filinov, Phys. Rev. Lett. 96, 075001 (2006). [3] H. Totsuji, C. Totsuji, T. Ogawa, and K. Tsuruta, Phys. Rev. E 71, 045401 (2005). [4] C. Henning, M. Bonitz, A. Piel, P. Ludwig, H. Baumgartner, V. Golubnichiy, and D. Block, submitted to Phys. Rev. E [5] W.D. Kraeft and M. Bonitz, J. Phys. Conf. Ser. 35, 94 (2006).

  16. Maxwell Prize Talk: Scaling Laws for the Dynamical Plasma Phenomena

    NASA Astrophysics Data System (ADS)

    Ryutov, Livermore, Ca 94550, Usa, D. D.

    2017-10-01

    The scaling and similarity technique is a powerful tool for developing and testing reduced models of complex phenomena, including plasma phenomena. The technique has been successfully used in identifying appropriate simplified models of transport in quasistationary plasmas. In this talk, the similarity and scaling arguments will be applied to highly dynamical systems, in which temporal evolution of the plasma leads to a significant change of plasma dimensions, shapes, densities, and other parameters with respect to initial state. The scaling and similarity techniques for dynamical plasma systems will be presented as a set of case studies of problems from various domains of the plasma physics, beginning with collisonless plasmas, through intermediate collisionalities, to highly collisional plasmas describable by the single-fluid MHD. Basic concepts of the similarity theory will be introduced along the way. Among the results discussed are: self-similarity of Langmuir turbulence driven by a hot electron cloud expanding into a cold background plasma; generation of particle beams in disrupting pinches; interference between collisionless and collisional phenomena in the shock physics; similarity for liner-imploded plasmas; MHD similarities with an emphasis on the effect of small-scale (turbulent) structures on global dynamics. Relations between astrophysical phenomena and scaled laboratory experiments will be discussed.

  17. Discharge dynamics and plasma density recovery by on/off switches of additional gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul

    2016-06-15

    Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less

  18. Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles

    NASA Astrophysics Data System (ADS)

    Krasovsky, Victor L.; Kiselyov, Alexander A.

    2017-12-01

    New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.

  19. Characteristics of Polarisation in the Ramsauer-Townsend Minima in Strongly Coupled Semiclassic Plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The influence of quantum shielding on the Ramsauer-Townsend phenomena for the total electron-atom polarisation collision cross-section is investigated in partially ionised strongly coupled semiclassic plasmas. The result shows that the quantum shielding effect changes the position of the Ramsauer energy in partially ionised strongly coupled plasmas. It is also found that the quantum shielding effect enhances the total electron-atom collision cross-section when the collision energy is greater than the Ramsauer energy; however, it suppresses the collision cross-section when the collision energy is smaller than the Ramsauer energy. In addition, it is shown that the plasma screening effect significantly changes the position of the Ramsauer energy and the influence of plasma screening on the magnitude of the collision cross-section is more significant near the Ramsauer energy domain. The variations of the Ramsauer energy and the collision cross-section due to the quantum shielding effect are also discussed.

  20. Interaction force in a vertical dust chain inside a glass box.

    PubMed

    Kong, Jie; Qiao, Ke; Matthews, Lorin S; Hyde, Truell W

    2014-07-01

    Small number dust particle clusters can be used as probes for plasma diagnostics. The number of dust particles as well as cluster size and shape can be easily controlled employing a glass box placed within a Gaseous Electronics Conference (GEC) rf reference chamber to provide confinement of the dust. The plasma parameters inside this box and within the larger plasma chamber have not yet been adequately defined. Adjusting the rf power alters the plasma conditions causing structural changes of the cluster. This effect can be used to probe the relationship between the rf power and other plasma parameters. This experiment employs the sloshing and breathing modes of small cluster oscillations to examine the relationship between system rf power and the particle charge and plasma screening length inside the glass box. The experimental results provided indicate that both the screening length and dust charge decrease as rf power inside the box increases. The decrease in dust charge as power increases may indicate that ion trapping plays a significant role in the sheath.

  1. Laser-driven two-electron quantum dot in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-06-01

    We have investigated the energies of two-electron parabolic quantum dots (TEPQdots) embedded in plasmas characterized by more general exponential cosine screened Coulomb (MGECSC) potential under the action of a monochromatic, linearly polarized laser field by solving the corresponding Schrödinger equation numerically via the asymptotic iteration method. The four different cases of the MGECSC potential constituted by various sets of the potential parameters are reckoned in modeling of the interactions in the plasma environments which are Debye and quantum plasmas. The plasma environment is a remarkable experimental argument for the quantum dots and the interactions in plasma environments are different compared to the interactions in an environment without plasma and the screening specifications of the plasmas can be controlled through the plasma parameters. These findings constitute our major motivation in consideration of the plasma environments. An appreciable confinement effect is made up by implementing the laser field on the TEPQdot. The influences of the laser field on the system are included by using the Ehlotzky approximation, and then Kramers-Henneberger transformation is carried out for the corresponding Schrödinger equation. The influences of the ponderomotive force on two-electron quantum dots embedded in plasmas are investigated. The behaviours, the similarities and the functionalities of the laser field, the plasma environment, and the quantum dot confinement are also scrutinized. In addition, the role of the plasma environments in the mentioned analysis is also discussed in detail.

  2. Plasma effect on fast-electron-impact-ionization from 2p state of hydrogen-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Y. Y.; Ning, L. N.; Wang, J. G.

    2013-12-15

    Plasma effects on the high-energy electron-impact ionization process from 2p orbital of Hydrogen-like ions embedded in weakly coupled plasmas are investigated in the first Born approximation. The plasma screening of the Coulomb interaction between charged particles is represented by the Debye Hückel model. The screening of Coulomb interactions decreases the ionization energies and varies the wave functions for not only the bound orbital but also the continuum; the number of the summation for the angular-momentum states in the generalized oscillator strength densities is reduced with the plasma screening stronger when the ratio of ε/I{sub 2p} (I{sub 2p} is the ionizationmore » energy of 2p state and ε is the energy of the continuum electron) is kept, and then the contribution from the lower-angular-momentum states dominates the generalized oscillator strength densities, so the threshold phenomenon in the generalized oscillator strength densities and the double differential cross sections are remarkable: The accessional minima, the outstanding enhancement, and the resonance peaks emerge a certain energy region, whose energy position and width are related to the vicinity between δ and the critical value δ{sub nl}{sup c}, corresponding to the special plasma condition when the bound state |nl just enters the continuum; the multiple virtual-state enhancement and the multiple shape resonances in a certain energy domain also appear in the single differential cross section whenever the plasma screening parameter passes through a critical value δ{sub nl}{sup c}, which is similar to the photo-ionization process but different from it, where the dipole transition only happens, but multi-pole transition will occur in the electron-impact ionization process, so its multiple virtual-state enhancements and the multiple shape resonances appear more frequently than the photo-ionization process.« less

  3. Ground state of a confined Yukawa plasma including correlation effects

    NASA Astrophysics Data System (ADS)

    Henning, C.; Ludwig, P.; Filinov, A.; Piel, A.; Bonitz, M.

    2007-09-01

    The ground state of an externally confined one-component Yukawa plasma is derived analytically using the local density approximation (LDA). In particular, the radial density profile is computed. The results are compared with the recently obtained mean-field (MF) density profile [Henning , Phys. Rev. E 74, 056403 (2006)]. While the MF results are more accurate for weak screening, the LDA with correlations included yields the proper description for large screening. By comparison with first-principles simulations for three-dimensional spherical Yukawa crystals, we demonstrate that the two approximations complement each other. Together they accurately describe the density profile in the full range of screening parameters.

  4. Plasma Screening for Progranulin Mutations in Patients with Progressive Supranuclear Palsy and Corticobasal Syndromes.

    PubMed

    Galimberti, Daniela; Bertram, Kelly; Formica, Alessandra; Fenoglio, Chiara; Cioffi, Sara M G; Arighi, Andrea; Scarpini, Elio; Colosimo, Carlo

    2016-05-04

    Progranulin gene (GRN) mutations are characterized by heterogeneous presentations. Corticobasal syndrome (CBS) is often associated with GRN mutations, whereas association with progressive supranuclear palsy syndrome (PSPS) is rare. Plasma progranulin levels were evaluated in 34 patients, including 19 with PSPS, 12 with CBS, and 3 with mixed signs, with the purpose to screen for the presence of causal mutations, associated with low levels. We found undetectable levels in a patient with CBS. Sequencing confirmed the presence of the Thr272fs deletion. Progranulin mutation screening is suggested in cases of CBS, even in the absence of positive family history for dementia and/or movement disorders.

  5. Personalized Metabolomics for Predicting Glucose Tolerance Changes in Sedentary Women After High-Intensity Interval Training

    PubMed Central

    Kuehnbaum, Naomi L.; Gillen, Jenna B.; Gibala, Martin J.; Britz-McKibbin, Philip

    2014-01-01

    High-intensity interval training (HIIT) offers a practical approach for enhancing cardiorespiratory fitness, however its role in improving glucose regulation among sedentary yet normoglycemic women remains unclear. Herein, multi-segment injection capillary electrophoresis-mass spectrometry is used as a high-throughput platform in metabolomics to assess dynamic responses of overweight/obese women (BMI > 25, n = 11) to standardized oral glucose tolerance tests (OGTTs) performed before and after a 6-week HIIT intervention. Various statistical methods were used to classify plasma metabolic signatures associated with post-prandial glucose and/or training status when using a repeated measures/cross-over study design. Branched-chain/aromatic amino acids and other intermediates of urea cycle and carnitine metabolism decreased over time in plasma after oral glucose loading. Adaptive exercise-induced changes to plasma thiol redox and orthinine status were measured for trained subjects while at rest in a fasting state. A multi-linear regression model was developed to predict changes in glucose tolerance based on a panel of plasma metabolites measured for naïve subjects in their untrained state. Since treatment outcomes to physical activity are variable between-subjects, prognostic markers offer a novel approach to screen for potential negative responders while designing lifestyle modifications that maximize the salutary benefits of exercise for diabetes prevention on an individual level. PMID:25164777

  6. An integrative time-varying frequency detection and channel sounding method for dynamic plasma sheath

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming

    2018-01-01

    The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.

  7. The influence of surface properties on the plasma dynamics in radio-frequency driven oxygen plasmas: Measurements and simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greb, Arthur; Niemi, Kari; O'Connell, Deborah

    2013-12-09

    Plasma parameters and dynamics in capacitively coupled oxygen plasmas are investigated for different surface conditions. Metastable species concentration, electronegativity, spatial distribution of particle densities as well as the ionization dynamics are significantly influenced by the surface loss probability of metastable singlet delta oxygen (SDO). Simulated surface conditions are compared to experiments in the plasma-surface interface region using phase resolved optical emission spectroscopy. It is demonstrated how in-situ measurements of excitation features can be used to determine SDO surface loss probabilities for different surface materials.

  8. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  9. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  10. Rapid screening test for porphyria diagnosis using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lang, A.; Stepp, H.; Homann, C.; Hennig, G.; Brittenham, G. M.; Vogeser, M.

    2015-07-01

    Porphyrias are rare genetic metabolic disorders, which result from deficiencies of enzymes in the heme biosynthesis pathway. Depending on the enzyme defect, different types of porphyrins and heme precursors accumulate for the different porphyria diseases in erythrocytes, liver, blood plasma, urine and stool. Patients with acute hepatic porphyrias can suffer from acute neuropathic attacks, which can lead to death when undiagnosed, but show only unspecific clinical symptoms such as abdominal pain. Therefore, in addition to chromatographic methods, a rapid screening test is required to allow for immediate identification and treatment of these patients. In this study, fluorescence spectroscopic measurements were conducted on blood plasma and phantom material, mimicking the composition of blood plasma of porphyria patients. Hydrochloric acid was used to differentiate the occurring porphyrins (uroporphyrin-III and coproporphyrin-III) spectroscopically despite their initially overlapping excitation spectra. Plasma phantom mixtures were measured using dual wavelength excitation and the corresponding concentrations of uroporphyrin-III and coproporphyrin-III were determined. Additionally, three plasma samples of porphyria patients were examined and traces of coproporphyrin-III and uroporphyrin-III were identified. This study may therefore help to establish a rapid screening test method with spectroscopic differentiation of the occurring porphyrins, which consequently allows for the distinction of different porphyrias. This may be a valuable tool for clinical porphyria diagnosis and rapid or immediate treatment.

  11. Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior

    NASA Astrophysics Data System (ADS)

    Li, Yang; He, Yongyong; Wang, Wei; Mao, Junyuan; Zhang, Lei; Zhu, Yijie; Ye, Qianwen

    2018-03-01

    In direct current plasma nitriding (DCPN), the treated components are subjected to a high cathodic potential, which brings several inherent shortcomings, e.g., damage by arcing and the edging effect. In active screen plasma nitriding (ASPN) processes, the cathodic potential is applied to a metal screen that surrounds the workload, and the component to be treated is placed in a floating potential. Such an electrical configuration allows plasma to be formed on the metal screen surface rather than on the component surface; thus, the shortcomings of the DCPN are eliminated. In this work, the nitrided experiments were performed using a plasma nitriding unit. Two groups of samples were placed on the table in the cathodic and the floating potential, corresponding to the DCPN and ASPN, respectively. The floating samples and table were surrounded by a steel screen. The DCPN and ASPN of the AISI 304 stainless steels are investigated as a function of the electric potential. The samples were characterized using scanning electron microscopy with energy-dispersive x-ray spectroscopy, x-ray diffraction, atomic force microscopy and transmission electron microscope. Dry sliding ball-on-disk wear tests were conducted on the untreated substrate, DCPN and ASPN samples. The results reveal that all nitrided samples successfully produced similar nitrogen-supersaturated S phase layers on their surfaces. This finding also shows the strong impact of the electric potential of the nitriding process on the morphology, chemical characteristics, hardness and tribological behavior of the DCPN and ASPN samples.

  12. Quantitative Microscopic Analysis of Plasma Membrane Receptor Dynamics in Living Plant Cells.

    PubMed

    Luo, Yu; Russinova, Eugenia

    2017-01-01

    Plasma membrane-localized receptors are essential for cellular communication and signal transduction. In Arabidopsis thaliana, BRASSINOSTEROID INSENSITIVE1 (BRI1) is one of the receptors that is activated by binding to its ligand, the brassinosteroid (BR) hormone, at the cell surface to regulate diverse plant developmental processes. The availability of BRI1 in the plasma membrane is related to its signaling output and is known to be controlled by the dynamic endomembrane trafficking. Advances in fluorescence labeling and confocal microscopy techniques enabled us to gain a better understanding of plasma membrane receptor dynamics in living cells. Here we describe different quantitative microscopy methods to monitor the relative steady-state levels of the BRI1 protein in the plasma membrane of root epidermal cells and its relative exocytosis and recycling rates. The methods can be applied also to analyze similar dynamics of other plasma membrane-localized receptors.

  13. Free energy and internal energy of electron-screened plasmas in a modified hypernetted-chain approximation

    NASA Astrophysics Data System (ADS)

    Perrot, F.

    1991-12-01

    We report results of Helmholtz-free-energy and internal-energy calculations using the modified hypernetted-chain (MHNC) equation method, in the formulation of Lado, Foiles, and Ashcroft [Phys. Rev. A 28, 2374 (1983)], for a model plasma of ions linearly screened by electrons. The results are compared with HNC calculations (no Bridge term), with variational calculations using a hard-spheres reference system, and with a numerical fit of Monte Carlo simulations.

  14. Screening of a dust particle charge in a humid air plasma created by an electron beam

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Derbenev, I. N.; Kurkin, S. A.

    2018-01-01

    A kinetic model has been developed for charged particle reactions in a humid air plasma produced by a fast electron beam. The model includes over 550 reactions with electrons, 33 positive ion species and 14 negative ion species. The model has been tested by solving 48 non-steady state equations for number densities of charged particles in humid air electron beam plasma, and by comparing with the available experimental data. The system of 48 steady state equations has been solved by iterative method in order to define the main ion species of the humid air plasma. A reduced kinetic model has been developed to describe the processes with the main ions and electrons. Screening constants have been calculated on the basis of the reduced system by means of Leverrier-Fadeev method. The dependencies of screening constants on gas ionization rates have been found for the rates from 10 to 1018 cm-3s-1 and the fraction of water molecules from 0 to 2%. The analysis of the constants has revealed that one of them is close to the inverse Debye length, and the other constants are defined by the inverse diffusion lengths passed by ions in the characteristic times of the attachment, recombination, and ion conversion. Pure imaginary screening constants appear at low rates of gas ionization.

  15. RPR test

    MedlinePlus

    Rapid plasma reagin test; Syphilis screening test ... Chernecky CC, Berger BJ. Rapid plasma regain (RPR) test – blood. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. St Louis, MO: Elsevier ...

  16. 21 CFR 640.70 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.70 Labeling. (a) In addition to the... container of Source Plasma: (1) The proper name of the product. (2) The statement “Caution: For... size and type of print as the proper name. If the Source Plasma has a reactive screening test for...

  17. 21 CFR 640.70 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Source Plasma § 640.70 Labeling. (a) In addition to the... container of Source Plasma: (1) The proper name of the product. (2) The statement “Caution: For... size and type of print as the proper name. If the Source Plasma has a reactive screening test for...

  18. In Situ Nanocalorimetric Investigations of Plasma Assisted Deposited Poly(ethylene oxide)-like Films by Specific Heat Spectroscopy.

    PubMed

    Madkou, Sherif; Melnichu, Iurii; Choukourov, Andrei; Krakovsky, Ivan; Biederman, Hynek; Schönhals, Andreas

    2016-04-28

    In recent years, highly cross-linked plasma polymers have started to unveil their potential in numerous biomedical applications in thin-film form. However, conventional diagnostic methods often fail due to their diverse molecular dynamics conformations. Here, glassy dynamics and the melting transition of thin PEO-like plasma assisted deposited (ppPEO) films (thickness 100 nm) were in situ studied by a combination of specific heat spectroscopy, utilizing a pJ/K sensitive ac-calorimeter chip, and composition analytical techniques. Different cross-linking densities were obtained by different plasma powers during the deposition of the films. Glassy dynamics were observed for all values of the plasma power. It was found that the glassy dynamics slows down with increasing the plasma power. Moreover, the underlying relaxation time spectra broaden indicating that the molecular motions become more heterogeneous with increasing plasma power. In a second set of the experiment, the melting behavior of the ppPEO films was studied. The melting temperature of ppPEO was found to decrease with increasing plasma power. This was explained by a decrease of the order in the crystals due to formation of chemical defects during the plasma process.

  19. Dynamic and Static Exercises Differentially Affect Plasma Cytokine Content in Elite Endurance- and Strength-Trained Athletes and Untrained Volunteers

    PubMed Central

    Kapilevich, Leonid V.; Zakharova, Anna N.; Kabachkova, Anastasia V.; Kironenko, Tatyana A.; Orlov, Sergei N.

    2017-01-01

    Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons. PMID:28194116

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, C.; Keppens, R.

    Solar prominences are long-lived cool and dense plasma curtains in the hot and rarefied outer solar atmosphere or corona. The physical mechanism responsible for their formation and especially for their internal plasma circulation has been uncertain for decades. The observed ubiquitous downflows in quiescent prominences are difficult to interpret because plasma with high conductivity seems to move across horizontal magnetic field lines. Here we present three-dimensional numerical simulations of prominence formation and evolution in an elongated magnetic flux rope as a result of in situ plasma condensations fueled by continuous plasma evaporation from the solar chromosphere. The prominence is bornmore » and maintained in a fragmented, highly dynamic state with continuous reappearance of multiple blobs and thread structures that move mainly downward, dragging along mass-loaded field lines. The circulation of prominence plasma is characterized by the dynamic balance between the drainage of prominence plasma back to the chromosphere and the formation of prominence plasma via continuous condensation. Plasma evaporates from the chromosphere, condenses into the prominence in the corona, and drains back to the chromosphere, establishing a stable chromosphere–corona plasma cycle. Synthetic images of the modeled prominence with the Solar Dynamics Observatory Atmospheric Imaging Assembly closely resemble actual observations, with many dynamical threads underlying an elliptical coronal cavity.« less

  1. EFFECTS OF LASER RADIATION ON MATTER: Efficient surface-erosion plasma formation in air due to the action of pulse-periodic laser radiation

    NASA Astrophysics Data System (ADS)

    Min'ko, L. Ya; Chumakou, A. N.; Bosak, N. A.

    1990-11-01

    A study was made of the interaction of a series of periodic laser (λ = 1.06 μm) pulses with a number of materials (aluminum, copper, graphite, ebonite) in air at laser radiation power densities q = 107-109 W/cm2 and repetition frequencies f<=50 kHz. The radiation was concentrated in spots of ~ 10 - 2 cm2 area. Efficient formation of plasma as a result of laser erosion (q > 2 × 108 W/cm2, f>=5 kHz) was observed. A screening layer of an air plasma created by the first pulse of the series was expelled from the interaction zone and this was followed by erosion plasma formation under conditions of slight screening of the target during the action of the subsequent laser pulses.

  2. Thermodynamics of Yukawa fluids near the one-component-plasma limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrapak, Sergey A.; Aix-Marseille-Université, CNRS, Laboratoire PIIM, UMR 7345, 13397 Marseille Cedex 20; Semenov, Igor L.

    Thermodynamics of weakly screened (near the one-component-plasma limit) Yukawa fluids in two and three dimensions is analyzed in detail. It is shown that the thermal component of the excess internal energy of these fluids, when expressed in terms of the properly normalized coupling strength, exhibits the scaling pertinent to the corresponding one-component-plasma limit (the scalings differ considerably between the two- and three-dimensional situations). This provides us with a simple and accurate practical tool to estimate thermodynamic properties of weakly screened Yukawa fluids. Particular attention is paid to the two-dimensional fluids, for which several important thermodynamic quantities are calculated to illustratemore » the application of the approach.« less

  3. Cuttlefish Sepia officinalis Preferentially Respond to Bottom Rather than Side Stimuli When Not Allowed Adjacent to Tank Walls

    DTIC Science & Technology

    2015-10-14

    especially because cuttlefish are colorblind. Another possible concern is the flicker frequency of the plasma screens. The plasma screens used in... flicker . Given these reasons, we believe that the most reliable behavior with the least amount of human disturbance resulted from our use of the...0138690 October 14, 2015 15 / 18 Image analysis To mitigate the likelihood of autocorrelation, we used the two usable (i.e., non-blurry) images that were

  4. Fundamental Study of Nuclear Pumped Laser Plasmas.

    DTIC Science & Technology

    1980-12-23

    PUMPED DYE LASER PMT PUMPING/ GAS HAND- LING SYSTEM ANODE SIGNAL TO SCREEN ROOM FIGURE 13 EXPERIMENTAL APPARATUS FROM ANODE OF PMT SCREEN ROOM...and G.A. Zdasiuk, " Laser Induced Collisional and Radiative Energy Transfer’, Proceedings of Laser Spectroscopy IV, June 1979. W. R. Green, M.D. Wright...AD-A130 988 FUNDAMENTAL STUDY 0F NUCLEAR PUMPED LASER PLASMAS(U) 1/ MIAMI UNIV OXFORD UHDi EPT OF PHYSIS Cs W DOWNES ET AL 23 DEC AS OASGAS 7A C OSAN

  5. A numerical study of neutral-plasma interaction in magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2017-10-01

    Interactions between plasma and neutral species can have a large effect on the dynamic behavior of magnetically confined plasma devices, such as the edge region of tokamaks and the plasma formation of Z-pinches. The presence of neutrals can affect the stability of the pinch and change the dynamics of the pinch collapse, and they can lead to deposition of high energy particles on the first wall. However, plasma-neutral interactions can also have beneficial effects such as quenching the disruptions in tokamaks. In this research a reacting plasma-neutral model, which combines a magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model, is used to study the interaction between plasma and neutral gas. Incorporating this model into NIMROD allows the study of electron-impact ionization, radiative recombination, and resonant charge-exchange in plasma-neutral systems. An accelerated plasma moving through a neutral gas background is modeled in both a parallel plate and a coaxial electrode configuration to explore the effect of neutral gas in pinch-like devices. This work is supported by a Grant from US DOE.

  6. Screening and analysis of the multiple absorbed bioactive components and metabolites in rat plasma after oral administration of Jitai tablets by high-performance liquid chromatography/diode-array detection coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Wang, Shu-Ping; Liu, Lei; Wang, Ling-Ling; Jiang, Peng; Zhang, Ji-Quan; Zhang, Wei-Dong; Liu, Run-Hui

    2010-06-15

    Based on the serum pharmacochemistry technique and high-performance liquid chromatography/diode-array detection (HPLC/DAD) coupled with electrospray tandem mass spectrometry (HPLC/ESI-MS/MS), a method for screening and analysis of the multiple absorbed bioactive components and metabolites of Jitai tablets (JTT) in orally dosed rat plasma was developed. Plasma was treated by methanol precipitation prior to liquid chromatography, and the separation was carried out on a Symmetry C(18) column, with a linear gradient (0.1% formic acid/water/acetonitrile). Mass spectra were acquired in negative and positive ion modes, respectively. As a result, 26 bioactive components originated from JTT and 5 metabolites were tentatively identified in orally dosed rat plasma by comparing their retention times and MS spectra with those of authentic standards and literature data. It is concluded that an effective and reliable analytical method was set up for screening the bioactive components of Chinese herbal medicine, which provided a meaningful basis for further pharmacology and active mechanism research of JTT. Copyright (c) 2010 John Wiley & Sons, Ltd.

  7. Effects of laser radiation field on energies of hydrogen atom in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahar, M. K., E-mail: mussiv58@gmail.com

    2015-09-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye andmore » quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.« less

  8. Confinement control mechanism for two-electron Hulthen quantum dots in plasmas

    NASA Astrophysics Data System (ADS)

    Bahar, M. K.; Soylu, A.

    2018-05-01

    In this study, for the first time, the energies of two-electron Hulthen quantum dots (TEHQdots) embedded in Debye and quantum plasmas modeled by the more general exponential cosine screened Coulomb (MGECSC) potential under the combined influence of electric and magnetic fields are investigated by numerically solving the Schrödinger equation using the asymptotic iteration method. To do this, the four different forms of the MGECSC potential, which set through the different cases of the potential parameters, are taken into consideration. We propose that plasma environments form considerable quantum mechanical effects for quantum dots and other atomic systems and that plasmas are important experimental arguments. In this study, by considering the quantum dot parameters, the external field parameters, and the plasma screening parameters, a control mechanism of the confinement on energies of TEHQdots and the frequency of the radiation emitted by TEHQdots as a result of any excitation is discussed. In this mechanism, the behaviors, similarities, the functionalities of the control parameters, and the influences of plasmas on these quantities are explored.

  9. Coulomb Logarithm in Nonideal and Degenerate Plasmas

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Starostin, A. N.; Gryaznov, V. K.

    2018-03-01

    Various methods for determining the Coulomb logarithm in the kinetic theory of transport and various variants of the choice of the plasma screening constant, taking into account and disregarding the contribution of the ion component and the boundary value of the electron wavevector are considered. The correlation of ions is taken into account using the Ornstein-Zernike integral equation in the hypernetted-chain approximation. It is found that the effect of ion correlation in a nondegenerate plasma is weak, while in a degenerate plasma, this effect must be taken into account when screening is determined by the electron component alone. The calculated values of the electrical conductivity of a hydrogen plasma are compared with the values determined experimentally in the megabar pressure range. It is shown that the values of the Coulomb logarithm can indeed be smaller than unity. Special experiments are proposed for a more exact determination of the Coulomb logarithm in a magnetic field for extremely high pressures, for which electron scattering by ions prevails.

  10. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. N.; Krauz, V. I.; Grabovski, E. V.; Myalton, V. V.; Vinogradov, V. P.; Paduch, M.; Scholz, M.; Karpiński, L.

    2015-05-01

    The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5-3 Torr in discharges with energies of 0.3-0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.

  11. Quantitation of 87 Proteins by nLC-MRM/MS in Human Plasma: Workflow for Large-Scale Analysis of Biobank Samples.

    PubMed

    Rezeli, Melinda; Sjödin, Karin; Lindberg, Henrik; Gidlöf, Olof; Lindahl, Bertil; Jernberg, Tomas; Spaak, Jonas; Erlinge, David; Marko-Varga, György

    2017-09-01

    A multiple reaction monitoring (MRM) assay was developed for precise quantitation of 87 plasma proteins including the three isoforms of apolipoprotein E (APOE) associated with cardiovascular diseases using nanoscale liquid chromatography separation and stable isotope dilution strategy. The analytical performance of the assay was evaluated and we found an average technical variation of 4.7% in 4-5 orders of magnitude dynamic range (≈0.2 mg/L to 4.5 g/L) from whole plasma digest. Here, we report a complete workflow, including sample processing adapted to 96-well plate format and normalization strategy for large-scale studies. To further investigate the MS-based quantitation the amount of six selected proteins was measured by routinely used clinical chemistry assays as well and the two methods showed excellent correlation with high significance (p-value < 10e-5) for the six proteins, in addition for the cardiovascular predictor factor, APOB: APOA1 ratio (r = 0.969, p-value < 10e-5). Moreover, we utilized the developed assay for screening of biobank samples from patients with myocardial infarction and performed the comparative analysis of patient groups with STEMI (ST- segment elevation myocardial infarction), NSTEMI (non ST- segment elevation myocardial infarction) and type-2 AMI (type-2 myocardial infarction) patients.

  12. Classical plasma dynamics of Mie-oscillations in atomic clusters

    NASA Astrophysics Data System (ADS)

    Kull, H.-J.; El-Khawaldeh, A.

    2018-04-01

    Mie plasmons are of basic importance for the absorption of laser light by atomic clusters. In this work we first review the classical Rayleigh-theory of a dielectric sphere in an external electric field and Thomson’s plum-pudding model applied to atomic clusters. Both approaches allow for elementary discussions of Mie oscillations, however, they also indicate deficiencies in describing the damping mechanisms by electrons crossing the cluster surface. Nonlinear oscillator models have been widely studied to gain an understanding of damping and absorption by outer ionization of the cluster. In the present work, we attempt to address the issue of plasmon relaxation in atomic clusters in more detail based on classical particle simulations. In particular, we wish to study the role of thermal motion on plasmon relaxation, thereby extending nonlinear models of collective single-electron motion. Our simulations are particularly adopted to the regime of classical kinetics in weakly coupled plasmas and to cluster sizes extending the Debye-screening length. It will be illustrated how surface scattering leads to the relaxation of Mie oscillations in the presence of thermal motion and of electron spill-out at the cluster surface. This work is intended to give, from a classical perspective, further insight into recent work on plasmon relaxation in quantum plasmas [1].

  13. Regulators of Lysosome Function and Dynamics in Caenorhabditis elegans

    PubMed Central

    Gee, Kevin; Zamora, Danniel; Horm, Teresa; George, Laeth; Upchurch, Cameron; Randall, Justin; Weaver, Colby; Sanford, Caitlin; Miller, Austin; Hernandez, Sebastian; Dang, Hope; Fares, Hanna

    2017-01-01

    Lysosomes, the major membrane-bound degradative organelles, have a multitude of functions in eukaryotic cells. Lysosomes are the terminal compartments in the endocytic pathway, though they display highly dynamic behaviors, fusing with each other and with late endosomes in the endocytic pathway, and with the plasma membrane during regulated exocytosis and for wound repair. After fusing with late endosomes, lysosomes are reformed from the resulting hybrid organelles through a process that involves budding of a nascent lysosome, extension of the nascent lysosome from the hybrid organelle, while remaining connected by a membrane bridge, and scission of the membrane bridge to release the newly formed lysosome. The newly formed lysosomes undergo cycles of homotypic fusion and fission reactions to form mature lysosomes. In this study, we used a forward genetic screen in Caenorhabditis elegans to identify six regulators of lysosome biology. We show that these proteins function in different steps of lysosome biology, regulating lysosome formation, lysosome fusion, and lysosome degradation. PMID:28122949

  14. Transfusion-Transmitted Hepatitis E: NAT Screening of Blood Donations and Infectious Dose.

    PubMed

    Dreier, Jens; Knabbe, Cornelius; Vollmer, Tanja

    2018-01-01

    The risk and importance of transfusion-transmitted hepatitis E virus (TT-HEV) infections by contaminated blood products is currently a controversial discussed topic in transfusion medicine. The infectious dose, in particular, remains an unknown quantity. In the present study, we illuminate and review this aspect seen from the viewpoint of a blood donation service with more than 2 years of experience in routine HEV blood donor screening. We systematically review the actual status of presently known cases of TT-HEV infections and available routine NAT-screening assays. The review of the literature revealed a significant variation regarding the infectious dose causing hepatitis E. We also present the outcome of six cases confronted with HEV-contaminated blood products, identified by routine HEV RNA screening of minipools using the highly sensitive RealStar HEV RT-PCR Kit (95% LOD: 4.7 IU/mL). Finally, the distribution of viral RNA in different blood components [plasma, red blood cell concentrate (RBC), platelet concentrates (PC)] was quantified using the first WHO international standard for HEV RNA for NAT-based assays. None of the six patients receiving an HEV-contaminated blood product from five different donors (donor 1: RBC, donor 2-5: APC) developed an acute hepatitis E infection, most likely due to low viral load in donor plasma (<100 IU/mL). Of note, the distribution of viral RNA in blood components depends on the plasma content of the component; nonetheless, HEV RNA could be detected in RBCs even when low viral plasma loads of 100-1,000 IU/mL are present. Comprehensive retrospective studies of TT-HEV infection offered further insights into the infectivity of HEV RNA-positive blood products. Minipool HEV NAT screening (96 samples) of blood donations should be adequate as a routine screening assay to identify high viremic donors and will cover at least a large part of viremic phases.

  15. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways*

    PubMed Central

    Lecat, Sandra; Matthes, Hans W.D.; Pepperkok, Rainer; Simpson, Jeremy C.; Galzi, Jean-Luc

    2015-01-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. PMID:25759509

  16. A Fluorescent Live Imaging Screening Assay Based on Translocation Criteria Identifies Novel Cytoplasmic Proteins Implicated in G Protein-coupled Receptor Signaling Pathways.

    PubMed

    Lecat, Sandra; Matthes, Hans W D; Pepperkok, Rainer; Simpson, Jeremy C; Galzi, Jean-Luc

    2015-05-01

    Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Picosecond Thermal Dynamics in an Underdense Plasma Measured with Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Katz, J.; Bucht, S.; Davies, A.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2017-10-01

    Field-ionized underdense plasmas have many promising applications within the laser-plasma interaction field: nuclear fusion, particle accelerators, x-ray sources, and laser-plasma amplification. Having complete knowledge of the plasma dynamics is essential to establishing optimal parameters for a given application. Here picosecond-resolved Thomson scattering measurements have been used to determine the electron thermal dynamics of an underdense ( 1019/cm) H2 plasma irradiated by a 60-ps, 1053-nm laser pulse with an intensity of 2 × 1014 W/cm2. The picosecond-resolved spectra were obtained with a novel pulse-front tilt compensated streaked optical spectrometer. The electron temperature was observed to rise from an initial 5 eV to a density-dependent plateau in 23 ps. Simulation results indicate that inverse bremsstrahlung heating, radiative cooling, and radial conduction cooling all play an important role in modeling the thermal dynamics. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Electron-lattice coupling after high-energy deposition in aluminum

    NASA Astrophysics Data System (ADS)

    Gorbunov, S. A.; Medvedev, N. A.; Terekhin, P. N.; Volkov, A. E.

    2015-07-01

    This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum, appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures, the electron heat capacity and the screening parameter are evaluated. The electron-phonon approximation of electron-lattice coupling is compared with its precise formulation based on the dynamic structure factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation including all possible limit cases of this response. In particular, it automatically provides realization of electron-phonon coupling as the low-temperature limit, while switching to the plasma-limit for high electron temperatures. Aluminum is chosen as a good model system for illustration of the presented methodology.

  19. The mirage of Mars magnetosphere

    NASA Astrophysics Data System (ADS)

    Mordovskaya, V.

    The spacecraft Phobos 2 has been on the circular orbit around Mars at the distance of 2 Mars's radiuses for a whole month. There are a lot of data and so we can speak about some statistics. The dependence of the perturbed magnetic field in the Mars wake on the density of the ambient solar wind plasma is traced but the same dependence from the velocity is absent. The picture of the solar wind interaction with Martian obstacle is not typical for magnetosphere. For high plasma density the value of the perturbed magnetic field in the wake of Mars and its size increase considerably and the perturbed region swells. The magnetosphere of Earth is compressed in the same cases. This points out that Mars has the weak protective magnetic screen. The estimation of its size gives the value about 160-220 km. Because of the lack of the protective magnetic screen, it seems, the solar wind with the density lower than 1 cm-3 interacts with the Martian atmosphere directly. The density of the ambient plasma is usually about 1 cm-3 and the thickness of the skin layers exceeds the scale of the Martian protective magnetic screen, the field freely passes over. The magnetosphere of Mars "disappears". The existence of the regions of the rarefied plasma behind Mars, due to a shading of particles of the solar wind plasma is an argument in favors of the disappearance of the Martian magnetosphere.

  20. Classical molecular dynamics simulations for non-equilibrium correlated plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Talin, B.

    2017-03-01

    A classical molecular dynamics model was recently extended to simulate neutral multi-component plasmas where various charge states of the same atom and electrons coexist. It is used to investigate the plasma effects on the ion charge and on the ionization potential in dense plasmas. Different simulated statistical properties will show that the concept of isolated particles is lost in such correlated plasmas. The charge equilibration is discussed for a carbon plasma at solid density and investigation on the charge distribution and on the ionization potential depression (IPD) for aluminum plasmas is discussed with reference to existing experiments.

  1. Drug use in pregnant women-a pilot study of the coherence between reported use of drugs and presence of drugs in plasma.

    PubMed

    Wolgast, Emelie; Josefsson, Ann; Josefsson, Martin; Lilliecreutz, Caroline; Reis, Margareta

    2018-04-01

    In Sweden, information on drug use during pregnancy is obtained through an interview and recorded in a standardized medical record at every visit to the antenatal care clinic throughout the pregnancy. Antenatal, delivery, and neonatal records constitute the basis for the Swedish Medical Birth Register (MBR). The purpose of this exploratory study was to investigate the reliability of reported drug use by simultaneous screening for drug substances in the blood stream of the pregnant woman and thereby validate self-reported data in the MBR. Plasma samples from 200 women were obtained at gestational weeks 10-12 and 25 and screened for drugs by using ultra-high performance liquid chromatography with time of flight mass spectrometry (UHPLC-TOF-MS). The results from the analysis were then compared to medical records. At the first sampling occasion, the drugs found by screening had been reported by 86% of the women and on the second sampling, 85.5%. Missed reported information was clearly associated with drugs for occasional use. The most common drugs in plasma taken in early and mid-pregnancy were meclizine and paracetamol. Two types of continuously used drugs, selective serotonin reuptake inhibitors and propranolol, were used. All women using them reported it and the drug screening revealed a 100% coherence. This study shows good coherence between reported drug intake and the drugs found in plasma samples, which in turn positively validates the MBR.

  2. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  3. Investigation of a staged plasma-focus apparatus. [pinch construction and current sheet dynamics investigation

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Harries, W. L.

    1978-01-01

    A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.

  4. Complex polarimetric and spectral techniques in diagnostics of blood plasma of patients with ovarian cancer as a preliminary stage molecular genetic screening

    NASA Astrophysics Data System (ADS)

    Grzegorzewski, B.; Peresunko, O. P.; Yermolenko, S. B.

    2018-01-01

    This work is devoted to the substantiation and selection of patients with ovarian cancer (OC) for the purpose of conducting expensive molecular genetic studies on genotyping. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues. Obtained results showed that the use of spectrophotometry in the range of 1000-3000 cm-1 allowed to establish quantitative parameters of the plasma absorption rate of blood of patients in the third group in different ranges, which would allow in the future to conduct an express analysis of the patient's condition (procedure screening) for further molecular-genetic typing on BRCA I and II.

  5. Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma

    NASA Astrophysics Data System (ADS)

    Newton, S. L.; Helander, P.; Mollén, A.; Smith, H. M.

    2017-10-01

    The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et al. (Phys. Rev. Lett., vol. 118, 2017a, 155002) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current.

  6. Gestational diabetes mellitus: Screening with fasting plasma glucose.

    PubMed

    Agarwal, Mukesh M

    2016-07-25

    Fasting plasma glucose (FPG) as a screening test for gestational diabetes mellitus (GDM) has had a checkered history. During the last three decades, a few initial anecdotal reports have given way to the recent well-conducted studies. This review: (1) traces the history; (2) weighs the advantages and disadvantages; (3) addresses the significance in early pregnancy; (4) underscores the benefits after delivery; and (5) emphasizes the cost savings of using the FPG in the screening of GDM. It also highlights the utility of fasting capillary glucose and stresses the value of the FPG in circumventing the cumbersome oral glucose tolerance test. An understanding of all the caveats is crucial to be able to use the FPG for investigating glucose intolerance in pregnancy. Thus, all health professionals can use the patient-friendly FPG to simplify the onerous algorithms available for the screening and diagnosis of GDM - thereby helping each and every pregnant woman.

  7. Dynamics of a pulsed laser generated tin plasma expanding in an oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Barreca, F.; Fazio, E.; Neri, F.; Barletta, E.; Trusso, S.; Fazio, B.

    2005-10-01

    Semiconducting tin oxide can be successfully deposited by means of the laser ablation technique. In particular by ablating metallic tin in a controlled oxygen atmosphere, thin films of SnOx have been deposited. The partial oxygen pressure at which the films are deposited strongly influences both the stoichiometry and the structural properties of the films. In this work, we present a study of the expansion dynamics of the plasma generated by ablating a tin target by means of a pulsed laser using time and space resolved optical emission spectroscopy and fast photography imaging of the expanding plasma. Both Sn I and Sn II optical emission lines have been observed from the time-integrated spectroscopy. Time resolved-measurements revealed the dynamics of the expanding plasma in the ambient oxygen atmosphere. Stoichiometry of the films has been determined by means of X-ray photoelectron spectroscopy and correlated to the expansion dynamics of the plasma.

  8. Variation in Cardiac Screening and Management of Carcinoid Heart Disease in the UK and Republic of Ireland.

    PubMed

    Dobson, R; Valle, J W; Burgess, M I; Poston, G J; Cuthbertson, D J

    2015-12-01

    Screening for carcinoid heart disease is an important, yet frequently neglected aspect of the management of patients with neuroendocrine tumours (NETs). Screening is advocated in international guidelines, although recommendations on the modality and frequency are poorly defined. We mapped current practice for the screening and management of carcinoid heart disease in specialist NET centres throughout the UK and Republic of Ireland. Thirty-five NET centres were invited to complete an online questionnaire outlining the size of NET service, patient selection criteria for carcinoid heart disease screening and the modality and frequency of screening. Twenty-eight centres responded (80%), representing over 5500 patients. Eleven per cent of centres screen all patients with any NET, 14% screen only patients with midgut NETs, 32% screen all patients with liver metastases and/or carcinoid syndrome and 43% screen all patients with evidence of syndrome or raised urinary/serum/plasma 5-hydroxyindoleacetic acid (5HIAA). The mode of screening included clinical examination, echocardiography and biomarker measurement: 89% of centres carry out echocardiography, ranging from at initial presentation only (24%), periodically without clearly defined intervals (28%), annually (36%) or less than annually (12%); three centres use a scoring system to report their echocardiograms. Fifty per cent of centres utilise biomarkers for screening (chromogranins, plasma/urinary 5HIAA or most commonly N-terminal pro-brain natriuretic peptide) at varying time intervals. There is considerable heterogeneity across the UK and Ireland in multiple aspects of screening and management of carcinoid heart disease. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Dynamics and Melting of Finite Plasma Crystals

    NASA Astrophysics Data System (ADS)

    Ludwig, Patrick; K"Ahlert, Hanno; Baumgartner, Henning; Thomsen, Hauke; Bonitz, Michael

    2009-11-01

    Interacting few-particle systems in external trapping potentials are of strong current interest since they allow to realize and control strong correlation and quantum effects [1]. Here, we present our recent results on the structural and thermodynamic properties of the crystal-like Wigner phase of complex plasma confined in a 3D harmonic potential. We discuss the linear response of the strongly correlated system to external excitations, which can be described in terms of normal modes [2]. By means of first-principle simulations the details of the melting phase transitions of these mesoscopic systems are systematically analysed with the melting temperatures being determined by a modified Lindemann parameter for the pair distance fluctuations [3]. The critical temperatures turn out to be utmost sensitive to finite size effects (i.e., the exact particle number), and form of the (screened) interaction potential.[4pt] [1] PhD Thesis, P. Ludwig, U Rostock (2008)[0pt] [2] C. Henning et al., J. Phys. A 42, 214023 (2009)[0pt] [3] B"oning et al., Phys. Rev. Lett. 100, 113401 (2008)

  10. Spiral waves in driven strongly coupled Yukawa systems

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Das, Amita

    2018-06-01

    Spiral wave formations are ubiquitous in nature. In the present paper, the excitation of spiral waves in the context of driven two-dimensional dusty plasma (Yukawa system) has been demonstrated at particle level using molecular-dynamics simulations. The interaction amidst dust particles is modeled by the Yukawa potential to take account of the shielding of dust charges by the lighter electron and ion species. The spatiotemporal evolution of these spiral waves has been characterized as a function of the frequency and amplitude of the driving force and dust neutral collisions. The effect of strong coupling has been studied, which shows that the excited spiral wave structures get clearer as the medium gets more strongly coupled. The radial propagation speed of the spiral wave is observed to remain unaltered with the coupling parameter. However, it is found to depend on the screening parameter of the dust medium and decreases when it is increased. In the crystalline phase (with screening parameter κ >0.58 ), the spiral wavefronts are shown to be hexagonal in shape. This shows that the radial propagation speed depends on the interparticle spacing.

  11. Distribution of inhomogeneities in the interstellar plasma in the directions of three distant pulsars from observations with the RadioAstron ground-space interferometer

    NASA Astrophysics Data System (ADS)

    Popov, M. V.; Andrianov, A. S.; Bartel, N.; Gwinn, C.; Joshi, B. C.; Jauncey, D.; Kardashev, N. S.; Rudnitskii, A. G.; Smirnova, T. V.; Soglasnov, V. A.; Fadeev, E. N.; Shishov, V. I.

    2016-09-01

    The RadioAstron ground-space interferometer has been used to measure the angular sizes of the scattering disks of the three distant pulsars B1641-45, B1749-28, and B1933+16. The observations were carried out with the participation of the Westerbork Synthesis Radio Telescope; two 32-m telescopes at Torun, Poland and Svetloe, Russia (the latter being one antenna of the KVAZAR network); the Saint Croix VLBA antenna; the Arecibo radio telescope; the Parkes, Narrabri (ATCA), Mopra, Hobart, and Ceduna Australian radio telescopes; and the Hartebeesthoek radio telescope in South Africa. The full widths at half maximum of the scattering disks were 27 mas at 1668 MHz for B1641-45, 0.5 mas at 1668 MHz for B1749-28, and 12.3 at 316 MHz and 0.84 mas at 1668 MHz for B1933+16. The characteristic time scales for scatter-broadening of the pulses on inhomogeneities in the interstellar plasma τsc were also measured for these pulsars using various methods. Joint knowledge of the size of the scattering disk and the scatter-broadening time scale enables estimation of the distance to the effective scattering screen d. For B1641-45, d = 3.0 kpc for a distance to the pulsar D = 4.9 kpc, and for B1749-28, d = 0.95 kpc for D = 1.3 kpc. Observations of B1933+16 were carried out simultaneously at 316 and 1668 MHz. The positions of the screen derived using the measurements at the two frequencies agree: d 1 = 2.6 and d 2 = 2.7 kpc, for a distance to the pulsar of 3.7 kpc. Two screens were detected for this pulsar from an analysis of parabolic arcs in the secondary dynamic spectrum at 1668 MHz, at 1.3 and 3.1 kpc. The scattering screens for two of the pulsars are identified with real physical objects located along the lines of sight toward the pulsars: G339.1-04 (B1641-45) and G0.55-0.85 (B1749-28).

  12. Penetration and screening of perpendicularly launched electromagnetic waves through bounded supercritical plasma confined in multicusp magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Indranuj; Bhattacharjee, Sudeep

    2011-02-15

    The question of electromagnetic wave penetration and screening by a bounded supercritical ({omega}{sub p}>{omega} with {omega}{sub p} and {omega} being the electron-plasma and wave frequencies, respectively) plasma confined in a minimum B multicusp field, for waves launched in the k perpendicular B{sub o} mode, is addressed through experiments and numerical simulations. The scale length of radial plasma nonuniformity (|n{sub e}/({partial_derivative}n{sub e}/{partial_derivative}r)|) and magnetostatic field (B{sub o}) inhomogeneity (|B{sub o}/({partial_derivative}B{sub o}/{partial_derivative}r)|) are much smaller than the free space ({lambda}{sub o}) and guided wavelengths ({lambda}{sub g}). Contrary to predictions of plane wave dispersion theory and the Clemow-Mullaly-Allis (CMA) diagram, for a boundedmore » plasma a finite propagation occurs through the central plasma regions where {alpha}{sub p}{sup 2}={omega}{sub p}{sup 2}/{omega}{sup 2}{>=}1 and {beta}{sub c}{sup 2}={omega}{sub ce}{sup 2}/{omega}{sup 2}<<1({approx}10{sup -4}), with {omega}{sub ce} being the electron cyclotron frequency. Wave screening, as predicted by the plane wave model, does not remain valid due to phase mixing and superposition of reflected waves from the conducting boundary, leading to the formation of electromagnetic standing wave modes. The waves are found to satisfy a modified upper hybrid resonance (UHR) relation in the minimum B field and are damped at the local electron cyclotron resonance (ECR) location.« less

  13. Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer

    PubMed Central

    Church, Timothy Robert; Wandell, Michael; Lofton-Day, Catherine; Mongin, Steven J; Burger, Matthias; Payne, Shannon R; Castaños-Vélez, Esmeralda; Blumenstein, Brent A; Rösch, Thomas; Osborn, Neal; Snover, Dale; Day, Robert W; Ransohoff, David F

    2014-01-01

    Background As screening methods for colorectal cancer (CRC) are limited by uptake and adherence, further options are sought. A blood test might increase both, but none has yet been tested in a screening setting. Objective We prospectively assessed the accuracy of circulating methylated SEPT9 DNA (mSEPT9) for detecting CRC in a screening population. Design Asymptomatic individuals ≥50 years old scheduled for screening colonoscopy at 32 US and German clinics voluntarily gave blood plasma samples before colon preparation. Using a commercially available assay, three independent blinded laboratories assayed plasma DNA of all CRC cases and a stratified random sample of other subjects in duplicate real time PCRs. The primary outcomes measures were standardised for overall sensitivity and specificity estimates. Results 7941 men (45%) and women (55%), mean age 60 years, enrolled. Results from 53 CRC cases and from 1457 subjects without CRC yielded a standardised sensitivity of 48.2% (95% CI 32.4% to 63.6%; crude rate 50.9%); for CRC stages I–IV, values were 35.0%, 63.0%, 46.0% and 77.4%, respectively. Specificity was 91.5% (95% CI 89.7% to 93.1%; crude rate 91.4%). Sensitivity for advanced adenomas was low (11.2%). Conclusions Our study using the blood based mSEPT9 test showed that CRC signal in blood can be detected in asymptomatic average risk individuals undergoing screening. However, the utility of the test for population screening for CRC will require improved sensitivity for detection of early cancers and advanced adenomas. Clinical Trial Registration Number: NCT00855348 PMID:23408352

  14. Screens and Displays.

    ERIC Educational Resources Information Center

    Edstrom, Malin

    1987-01-01

    Discusses the characteristics of different computer screen technologies including the possible harmful effects on health of cathode ray tube (CRT) terminals. CRT's are compared to other technologies including liquid crystal displays, plasma displays, electroluminiscence displays, and light emitting diodes. A chart comparing the different…

  15. Health economic evaluation of plasma oxysterol screening in the diagnosis of Niemann-Pick Type C disease among intellectually disabled using discrete event simulation.

    PubMed

    van Karnebeek, Clara D M; Mohammadi, Tima; Tsao, Nicole; Sinclair, Graham; Sirrs, Sandra; Stockler, Sylvia; Marra, Carlo

    2015-02-01

    Recently a less invasive method of screening and diagnosing Niemann-Pick C (NP-C) disease has emerged. This approach involves the use of a metabolic screening test (oxysterol assay) instead of the current practice of clinical assessment of patients suspected of NP-C (review of medical history, family history and clinical examination for the signs and symptoms). Our objective is to compare costs and outcomes of plasma oxysterol screening versus current practice in diagnosis of NP-C disease among intellectually disabled (ID) patients using decision-analytic methods. A discrete event simulation model was conducted to follow ID patients through the diagnosis and treatment of NP-C, forecast the costs and effectiveness for a cohort of ID patients and compare the outcomes and costs in two different arms of the model: plasma oxysterol screening and routine diagnosis procedure (anno 2013) over 5 years of follow up. Data from published sources and clinical trials were used in simulation model. Unit costs and quality-adjusted life-years (QALYs) were discounted at a 3% annual rate in the base case analysis. Deterministic and probabilistic sensitivity analyses were conducted. The outcomes of the base case model showed that using plasma oxysterol screening for diagnosis of NP-C disease among ID patients is a dominant strategy. It would result in lower total cost and would slightly improve patients' quality of life. The average amount of cost saving was $3642 CAD and the incremental QALYs per each individual ID patient in oxysterol screening arm versus current practice of diagnosis NP-C was 0.0022 QALYs. Results of sensitivity analysis demonstrated robustness of the outcomes over the wide range of changes in model inputs. Whilst acknowledging the limitations of this study, we conclude that screening ID children and adolescents with oxysterol tests compared to current practice for the diagnosis of NP-C is a dominant strategy with clinical and economic benefits. The less costly, more sensitive and specific oxysterol test has potential to save costs to the healthcare system while improving patients' quality of life and may be considered as a routine tool in the NP-C diagnosis armamentarium for ID. Further research is needed to elucidate its effectiveness in patients presenting characteristics other than ID in childhood and adolescence. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  17. The Topology and Dynamics of Mercury's Tail Plasma and Current Sheets

    NASA Astrophysics Data System (ADS)

    Al Asad, M. M.; Johnson, C. J.; Philpott, L. C.

    2018-05-01

    In Mercury's environment, the tail plasma and current sheets represent an integral part of the dynamic magnetosphere. Our study aims to understand the time-averaged, as well as the dynamic, properties of these "sheets" in 3D space using MAG data.

  18. Dynamical transitions associated with turbulence in a helicon plasma

    NASA Astrophysics Data System (ADS)

    Light, Adam D.; Tian, Li; Chakraborty Thakur, Saikat; Tynan, George R.

    2017-10-01

    Diagnostic capabilities are often cited as a limiting factor in our understanding of transport in fusion devices. Increasingly advanced multichannel diagnostics are being applied to classify transport regimes and to search for ``trigger'' features that signal an oncoming dynamical event, such as an ELM or an L-H transition. In this work, we explore a technique that yields information about global properties of plasma dynamics from a single time series of a relevant plasma quantity. Electrostatic probe data from the Controlled Shear Decorrelation eXperiment (CSDX) is analyzed using recurrence quantification analysis (RQA) in the context of previous work on the transition to weak drift-wave turbulence. The recurrence characteristics of a phase space trajectory provide a quantitative means to classify dynamics and identify transitions in a complex system. We present and quantify dynamical variations in the plasma variables as a function of the background magnetic field strength. A dynamical transition corresponding to the emergence of broadband fluctuations is identified using RQA measures.

  19. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities.

    PubMed

    Ticoş, C M; Wang, Zhehui; Wurden, G A; Kline, J L; Montgomery, D S; Dorf, L A; Shukla, P K

    2008-04-18

    Simultaneous acceleration of hundreds of dust particles to hypervelocities by collimated plasma flows ejected from a coaxial gun is demonstrated. Graphite and diamond grains with radii between 5 and 30 microm, and flying at speeds up to 3.7 km/s, have been recorded with a high-speed camera. The observations agree well with a model for plasma-drag acceleration of microparticles much larger than the plasma screening length.

  20. Conductive silver paste smeared glass substrates for label-free Raman spectroscopic detection of HIV-1 and HIV-1 p24 antigen in blood plasma.

    PubMed

    Otange, Ben O; Birech, Zephania; Okonda, Justus; Rop, Ronald

    2017-05-01

    We report on application of conductive silver paste smeared glass slides as Raman spectroscopy sample substrates for label-free detection of HIV-1 p24 antigen in blood plasma. We also show that the same substrates can be applied in Raman spectroscopic screening of blood plasma for presence of HIV. The characteristic Raman spectrum of HIV-1 p24 antigen displayed prominent bands that were assigned to ribonucleic acids (RNA) and proteins that constitute the antigen. This spectrum can be used as reference during Raman spectroscopic screening for HIV in plasma within the first few days after exposure (<7 days). The Raman spectra obtained from HIV+ plasma displayed unique peaks centered at wavenumbers 928, 990, 1270, 1397, and 1446 cm -1 attributed to the Raman active vibrations in the virion carbohydrates, lipids, and proteins. Other bands similar to those reported in literature were also seen and assignments made. The attachment of the HIV virions to silver nanoparticles via gp120 glycoprotein knobs was thought to be responsible for the enhanced Raman signals of proteins associated with the virus. The principal component analysis (PCA) applied on the combined spectral data showed that HIV- and HIV+ spectra had differing spectral patterns. This indicated the great power of Raman spectroscopy in HIV detection when plasma samples are deposited onto silver paste smeared glass substrates. The Raman peaks responsible for the segregation of the spectral data in PCA were mainly those assigned to the viral proteins (645, 725, 813, 1270, and 1658 cm -1 ). Excellent results were obtained from Artificial Neural Network (ANN) applied on the HIV+ Raman spectral data around the prominent peak centered at 1270 cm -1 with R (coefficient of correlation) and R 2 (coefficient of determination) values of 0.9958 and 0.9895, respectively. The method has the potential of being used as quick blood screening for HIV before blood transfusion with the Raman peaks assigned to the virion proteins acting as reference. Graphical Abstract The HIV type 1 virus particle gets attached to the silver nanoparticle contained in the conductive silver paste smear onto a glass slide. This results in strong Raman signals associated with the components of the virion. The signals are collected, dispersed in a spectrometer and displayed on a computer screen. Method can be used as a label-free and rapid HIV screening in blood plasma.

  1. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrkn@inbox.ru; Krauz, V. I., E-mail: krauz-vi@nrcki.ru, E-mail: vkrauz@yandex.ru; Grabovski, E. V.

    The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with amore » dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.« less

  2. Ion acoustic shock wave in collisional equal mass plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adak, Ashish, E-mail: ashish-adak@yahoo.com; Ghosh, Samiran, E-mail: sran-g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in

    The effect of ion-ion collision on the dynamics of nonlinear ion acoustic wave in an unmagnetized pair-ion plasma has been investigated. The two-fluid model has been used to describe the dynamics of both positive and negative ions with equal masses. It is well known that in the dynamics of the weakly nonlinear wave, the viscosity mediates wave dissipation in presence of weak nonlinearity and dispersion. This dissipation is responsible for the shock structures in pair-ion plasma. Here, it has been shown that the ion-ion collision in presence of collective phenomena mediated by the plasma current is the source of dissipationmore » that causes the Burgers' term which is responsible for the shock structures in equal mass pair-ion plasma. The dynamics of the weakly nonlinear wave is governed by the Korteweg-de Vries Burgers equation. The analytical and numerical investigations revealed that the ion acoustic wave exhibits both oscillatory and monotonic shock structures depending on the frequency of ion-ion collision parameter. The results have been discussed in the context of the fullerene pair-ion plasma experiments.« less

  3. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...

  4. General connected and reconnected fields in plasmas

    NASA Astrophysics Data System (ADS)

    Mahajan, Swadesh M.; Asenjo, Felipe A.

    2018-02-01

    For plasma dynamics, more encompassing than the magnetohydrodynamical (MHD) approximation, the foundational concepts of "magnetic reconnection" may require deep revisions because, in the larger dynamics, magnetic field is no longer connected to the fluid lines; it is replaced by more general fields (one for each plasma specie) that are weighted combination of the electromagnetic and the thermal-vortical fields. We study the two-fluid plasma dynamics plasma expressed in two different sets of variables: the two-fluid (2F) description in terms of individual fluid velocities, and the one-fluid (1F) variables comprising the plasma bulk motion and plasma current. In the 2F description, a Connection Theorem is readily established; we show that, for each specie, there exists a Generalized (Magnetofluid/Electro-Vortic) field that is frozen-in the fluid and consequently remains, forever, connected to the flow. This field is an expression of the unification of the electromagnetic, and fluid forces (kinematic and thermal) for each specie. Since the magnetic field, by itself, is not connected in the first place, its reconnection is never forbidden and does not require any external agency (like resistivity). In fact, a magnetic field reconnection (local destruction) must be interpreted simply as a consequence of the preservation of the dynamical structure of the unified field. In the 1F plasma description, however, it is shown that there is no exact physically meaningful Connection Theorem; a general and exact field does not exist, which remains connected to the bulk plasma flow. It is also shown that the helicity conservation and the existence of a Connected field follow from the same dynamical structure; the dynamics must be expressible as an ideal Ohm's law with a physical velocity. This new perspective, emerging from the analysis of the post MHD physics, must force us to reexamine the meaning as well as our understanding of magnetic reconnection.

  5. Age, BMI, and race are less important than random plasma glucose in identifying risk of glucose intolerance: the Screening for Impaired Glucose Tolerance Study (SIGT 5).

    PubMed

    Ziemer, David C; Kolm, Paul; Weintraub, William S; Vaccarino, Viola; Rhee, Mary K; Caudle, Jane M; Irving, Jade M; Koch, David D; Narayan, K M Venkat; Phillips, Lawrence S

    2008-05-01

    Age, BMI, and race/ethnicity are used in National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and American Diabetes Association (ADA) guidelines to prompt screening for pre-diabetes and diabetes, but cutoffs have not been evaluated rigorously. Random plasma glucose (RPG) was measured and 75-g oral glucose tolerance tests were performed in 1,139 individuals without known diabetes. Screening performance was assessed by logistic regression and area under the receiver operating characteristic curve (AROC). NIDDK/ADA indicators age >45 years and BMI >25 kg/m(2) provided significant detection of both diabetes and dysglycemia (both AROCs 0.63), but screening was better with continuous-variable models of age, BMI, and race and better still with models of age, BMI, race, sex, and family history (AROC 0.78 and 0.72). However, screening was even better with RPG alone (AROCs 0.81 and 0.72). RPG >125 mg/dl could be used to prompt further evaluation with an OGTT. Use of age, BMI, and race/ethnicity in guidelines for screening to detect diabetes and pre-diabetes may be less important than evaluation of RPG. RPG should be investigated further as a convenient, inexpensive screen with good predictive utility.

  6. Influence of the distance between target surface and focal point on the expansion dynamics of a laser-induced silicon plasma with spatial confinement

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Chen, Anmin; Wang, Xiaowei; Wang, Ying; Sui, Laizhi; Ke, Da; Li, Suyu; Jiang, Yuanfei; Jin, Mingxing

    2018-05-01

    Expansion dynamics of a laser-induced plasma plume, with spatial confinement, for various distances between the target surface and focal point were studied by the fast photography technique. A silicon wafer was ablated to induce the plasma with a Nd:YAG laser in an atmospheric environment. The expansion dynamics of the plasma plume depended on the distance between the target surface and focal point. In addition, spatially confined time-resolved images showed the different structures of the plasma plumes at different distances between the target surface and focal point. By analyzing the plume images, the optimal distance for emission enhancement was found to be approximately 6 mm away from the geometrical focus using a 10 cm focal length lens. This optimized distance resulted in the strongest compression ratio of the plasma plume by the reflected shock wave. Furthermore, the duration of the interaction between the reflected shock wave and the plasma plume was also prolonged.

  7. A plasma source driven predator-prey like mechanism as a potential cause of spiraling intermittencies in linear plasma devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiser, D.; Ohno, N.; Tanaka, H.

    2014-03-15

    Three-dimensional global drift fluid simulations are carried out to analyze coherent plasma structures appearing in the NAGDIS-II linear device (nagoya divertor plasma Simulator-II). The numerical simulations reproduce several features of the intermittent spiraling structures observed, for instance, statistical properties, rotation frequency, and the frequency of plasma expulsion. The detailed inspection of the three-dimensional plasma dynamics allows to identify the key mechanism behind the formation of these intermittent events. The resistive coupling between electron pressure and parallel electric field in the plasma source region gives rise to a quasilinear predator-prey like dynamics where the axisymmetric mode represents the prey and themore » spiraling structure with low azimuthal mode number represents the predator. This interpretation is confirmed by a reduced one-dimensional quasilinear model derived on the basis of the findings in the full three-dimensional simulations. The dominant dynamics reveals certain similarities to the classical Lotka-Volterra cycle.« less

  8. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  9. Parvovirus B19V DNA contamination in Chinese plasma and plasma derivatives

    PubMed Central

    2012-01-01

    Background To ensure the safety of plasma derivatives, screening for human parvovirus B19V genomic DNA in donated plasma using a pooling strategy is performed in some countries. We investigated the prevalence of B19V DNA and anti-B19V antibodies in Chinese plasma pools, plasma derivatives and plasma donations to evaluate the risk posed by B19V. Methods Using a Q-PCR assay developed in-house, we tested for B19V genomic DNA in 142 plasma pools collected between January 2009 and June 2011 from two Chinese blood products manufacturers. Plasma derivatives collected between 1993–1995 (10 batches of albumin, 155 batches of intravenous immunoglobulin, IVIG) and 2009–2011 (50 batches of albumin, 54 batches of IVIG, 35 batches of factor VIII, 7 batches of fibrinogen, and 17 batches of prothrombin complex concentrate, PCC) were also tested for B19V contamination. In addition, B19V genome prevalence in minipools(including 90 individual donations) of 49680 individual plasma samples collected between August 2011 and March 2012 by a single Chinese manufacturer was investigated. IgM/IgG was also investigated in plasma pools/derivatives and in minipools with B19V-DNA titers above 1x104 and 1x106 geq/mL using B19 ELISA IgM/IgG assay(Virion-Serion, Würzburg, Germany), respectively. Results B19V-DNA was detected in 54.2% of plasma pools from two Chinese blood product manufacturers; among recently produced blood products, B19V was detected in 21/54 IVIG samples, 19/35 factor VIII samples, 6/7 fibrinogen samples, and 12/17 PCC samples, but not in albumin samples. The levels of B19V-DNA in these samples varied from 102-107 geq/mL. In samples with >104 geq/mL genome DNA, B19V-specific IgG was also found in all corresponding plasma pools and IVIG, whereas none was detected in the majority of other plasma derivatives. Screening of plasma donations indicated that most minipools were contaminated with B19V-DNA (102-108 geq/mL) and one donation had 1.09 × 1010 geq/mL B19V genomic DNA along with a non-classical IgG/IgM profile. Conclusions Despite the implementation of some inactivation/removal methods designed to prevent viral contamination, B19V DNA was detectable in Chinese plasma pools and plasma derivatives. Thus, the introduction of B19V screening and discard donation with high viramic concentration for Chinese plasma donors would be desirable. PMID:22978673

  10. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  11. Hydrodynamic limit of the Yukawa one-component plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salin, Gwenaeel

    This paper presents a detailed mathematical analysis of the dynamical correlation of density fluctuations of the Yukawa one component plasma in the framework of linearized hydrodynamics. In particular, expressions for the hydrodynamic modes which hold both for the plasma and the neutral fluid are derived. This work constitutes an extension of the computation of the dynamical structure factor in the hydrodynamic limit done by Vieillefosse and Hansen [Phys. Rev. A 12, 1106 (1975)]. As a typical result of Yukawa plasma, a coupling appears between thermal and mechanical effects in the damping of the sound modes, which does not exist inmore » the classical one component plasma. Theoretical and numerical results obtained by means of equilibrium molecular-dynamic simulations in the microcanonical ensemble are compared and discussed.« less

  12. Analytical study of spheroidal dust grains in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahed, H.; Mahmoodi, J.; Sobhanian, S.

    2006-05-15

    Using the modified spheroidal equations, the potential of a spheroidal conducting grain, floated in a plasma, is calculated. The electric field and capacitance for both prolate and oblate spheroidal grains are investigated. The solutions, obtained up to the second-order approximation, show that the plasma screening causes the equipotential surfaces around the grain to be more elongated or flattened than the potential spheroids of the Laplace equation. This leads to the variation of the plasma concentration around the grain.

  13. Fractional power-law spatial dispersion in electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru; Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna, Tenerife; Trujillo, Juan J., E-mail: jtrujill@ullmat.es

    2013-07-15

    Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type. -- Highlights: •Plasma-like non-local media with power-law spatial dispersion. •Fractional differential equations for electric fields in the media. •The generalizations of Coulomb’s lawmore » and Debye’s screening for the media.« less

  14. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  15. A PROTEOMIC (SELDI-TOF-MS) APPROACH TO ESTROGEN AGONIST SCREENING

    EPA Science Inventory

    A small fish model and surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI) were used to investigate plasma protein expression as a means to screen chemicals for estrogenic activity. Adult male sheepshead minnows (Cyprinodon variegatus) were place...

  16. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    PubMed

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  17. Identification of promising DNA GyrB inhibitors for Tuberculosis using pharmacophore-based virtual screening, molecular docking and molecular dynamics studies.

    PubMed

    Islam, Md Ataul; Pillay, Tahir S

    2017-08-01

    In this study, we searched for potential DNA GyrB inhibitors using pharmacophore-based virtual screening followed by molecular docking and molecular dynamics simulation approaches. For this purpose, a set of 248 DNA GyrB inhibitors was collected from the literature and a well-validated pharmacophore model was generated. The best pharmacophore model explained that two each of hydrogen bond acceptors and hydrophobicity regions were critical for inhibition of DNA GyrB. Good statistical results of the pharmacophore model indicated that the model was robust in nature. Virtual screening of molecular databases revealed three molecules as potential antimycobacterial agents. The final screened promising compounds were evaluated in molecular docking and molecular dynamics simulation studies. In the molecular dynamics studies, RMSD and RMSF values undoubtedly explained that the screened compounds formed stable complexes with DNA GyrB. Therefore, it can be concluded that the compounds identified may have potential for the treatment of TB. © 2017 John Wiley & Sons A/S.

  18. Large tangential electric fields in plasmas close to temperature screening

    NASA Astrophysics Data System (ADS)

    Velasco, J. L.; Calvo, I.; García-Regaña, J. M.; Parra, F. I.; Satake, S.; Alonso, J. A.; the LHD team

    2018-07-01

    Low collisionality stellarator plasmas usually display a large negative radial electric field that has been expected to cause accumulation of impurities due to their high charge number. In this paper, two combined effects that can potentially modify this scenario are discussed. First, it is shown that, in low collisionality plasmas, the kinetic contribution of the electrons to the radial electric field can make it negative but small, bringing the plasma close to impurity temperature screening (i.e., to a situation in which the ion temperature gradient is the main drive of impurity transport and causes outward flux); in plasmas of very low collisionality, such as those of the large helical device displaying impurity hole (Ida et al (The LHD Experimental Group) 2009 Phys. Plasmas 16 056111; Yoshinuma et al (The LHD Experimental Group) 2009 Nucl. Fusion 49 062002), screening may actually occur. Second, the component of the electric field that is tangent to the flux surface (in other words, the variation of the electrostatic potential on the flux surface), although smaller than the radial component, has recently been suggested to be an additional relevant drive for radial impurity transport. Here, it is explained that, especially when the radial electric field is small, the tangential magnetic drift has to be kept in order to correctly compute the tangential electric field, that can be larger than previously expected. This can have a strong impact on impurity transport, as we illustrate by means of simulations using the newly developed code kinetic orbit-averaging-solver for stellarators, although it is not enough to explain by itself the behavior of the fluxes in situations like the impurity hole.

  19. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients.

    PubMed

    Taly, Valerie; Pekin, Deniz; Benhaim, Leonor; Kotsopoulos, Steve K; Le Corre, Delphine; Li, Xinyu; Atochin, Ivan; Link, Darren R; Griffiths, Andrew D; Pallier, Karine; Blons, Hélène; Bouché, Olivier; Landi, Bruno; Hutchison, J Brian; Laurent-Puig, Pierre

    2013-12-01

    Multiplex digital PCR (dPCR) enables noninvasive and sensitive detection of circulating tumor DNA with performance unachievable by current molecular-detection approaches. Furthermore, picodroplet dPCR facilitates simultaneous screening for multiple mutations from the same sample. We investigated the utility of multiplex dPCR to screen for the 7 most common mutations in codons 12 and 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) oncogene from plasma samples of patients with metastatic colorectal cancer. Fifty plasma samples were tested from patients for whom the primary tumor biopsy tissue DNA had been characterized by quantitative PCR. Tumor characterization revealed that 19 patient tumors had KRAS mutations. Multiplex dPCR analysis of the plasma DNA prepared from these samples identified 14 samples that matched the mutation identified in the tumor, 1 sample contained a different KRAS mutation, and 4 samples had no detectable mutation. Among the tumor samples that were wild type for KRAS, 2 KRAS mutations were identified in the corresponding plasma samples. Duplex dPCR (i.e., wild-type and single-mutation assay) was also used to analyze plasma samples from patients with KRAS-mutated tumors and 5 samples expected to contain the BRAF (v-raf murine sarcoma viral oncogene homolog B) V600E mutation. The results for the duplex analysis matched those for the multiplex analysis for KRAS-mutated samples and, owing to its higher sensitivity, enabled detection of 2 additional samples with low levels of KRAS-mutated DNA. All 5 samples with BRAF mutations were detected. This work demonstrates the clinical utility of multiplex dPCR to screen for multiple mutations simultaneously with a sensitivity sufficient to detect mutations in circulating DNA obtained by noninvasive blood collection.

  20. Oscillatory vapour shielding of liquid metal walls in nuclear fusion devices.

    PubMed

    van Eden, G G; Kvon, V; van de Sanden, M C M; Morgan, T W

    2017-08-04

    Providing an efficacious plasma facing surface between the extreme plasma heat exhaust and the structural materials of nuclear fusion devices is a major challenge on the road to electricity production by fusion power plants. The performance of solid plasma facing surfaces may become critically reduced over time due to progressing damage accumulation. Liquid metals, however, are now gaining interest in solving the challenge of extreme heat flux hitting the reactor walls. A key advantage of liquid metals is the use of vapour shielding to reduce the plasma exhaust. Here we demonstrate that this phenomenon is oscillatory by nature. The dynamics of a Sn vapour cloud are investigated by exposing liquid Sn targets to H and He plasmas at heat fluxes greater than 5 MW m -2 . The observations indicate the presence of a dynamic equilibrium between the plasma and liquid target ruled by recombinatory processes in the plasma, leading to an approximately stable surface temperature.Vapour shielding is one of the interesting mechanisms for reducing the heat load to plasma facing components in fusion reactors. Here the authors report on the observation of a dynamic equilibrium between the plasma and the divertor liquid Sn surface leading to an overall stable surface temperature.

  1. Thermodynamics of Thomas-Fermi screened Coulomb systems

    NASA Technical Reports Server (NTRS)

    Firey, B.; Ashcroft, N. W.

    1977-01-01

    We obtain in closed analytic form, estimates for the thermodynamic properties of classical fluids with pair potentials of Yukawa type, with special reference to dense fully ionized plasmas with Thomas-Fermi or Debye-Hueckel screening. We further generalize the hard-sphere perturbative approach used for similarly screened two-component mixtures, and demonstrate phase separation in this simple model of a liquid mixture of metallic helium and hydrogen.

  2. Spectra of confined positronium

    NASA Astrophysics Data System (ADS)

    Munjal, D.; Silotia, P.; Prasad, V.

    2017-12-01

    Positronium is studied under the effect of spherically confined plasma environment. Exponentially Cosine Screened Coulomb potential (ECSC) has been used to include the dense plasma screening effect on positronium. Time independent Schrodinger equation is solved numerically. Various physical parameters such as energy eigenvalues, radial matrix elements, oscillator strengths, and polarizability are well explored as a function of confinement parameters. Oscillator strength gets drastically modified under confinement. We have also obtained the results for Ps confined under spherically confined Debye potential and compared with results of ECSC potential. Also incidental degeneracy for different values of confinement parameters has been reported for the first time for positronium.

  3. Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode

    NASA Astrophysics Data System (ADS)

    Tian, Gang; Zhang, Xiao-Qing; Zhu, Ming-Song; Zhang, Zhong; Shi, Zheng-Hu; Ding, Min

    2016-03-01

    Simple, rapid and accurate detection of ethanol concentration in blood is very crucial in the diagnosis and management of potential acute ethanol intoxication patients. A novel electrochemical detection method was developed for the quantification of ethanol in human plasma with disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation procedure. Ethanol was detected indirectly by the reaction product of ethanol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD+). Method validation indicated good quantitation precisions with intra-day and inter-day relative standard deviations of ≤9.4% and 8.0%, respectively. Ethanol concentration in plasma is linear ranging from 0.10 to 3.20 mg/mL, and the detection limit is 40.0 μg/mL (S/N > 3). The method shows satisfactory correlation with the reference method of headspace gas chromatography in twenty human plasma samples (correlation coefficient 0.9311). The proposed method could be applied to diagnose acute ethanol toxicity or ethanol-related death.

  4. Quantification of ethanol in plasma by electrochemical detection with an unmodified screen printed carbon electrode

    PubMed Central

    Tian, Gang; Zhang, Xiao-Qing; Zhu, Ming-Song; Zhang, Zhong; Shi, Zheng-Hu; Ding, Min

    2016-01-01

    Simple, rapid and accurate detection of ethanol concentration in blood is very crucial in the diagnosis and management of potential acute ethanol intoxication patients. A novel electrochemical detection method was developed for the quantification of ethanol in human plasma with disposable unmodified screen-printed carbon electrode (SPCE) without sample preparation procedure. Ethanol was detected indirectly by the reaction product of ethanol dehydrogenase (ADH) and cofactor nicotinamide adenine dinucleotide (NAD+). Method validation indicated good quantitation precisions with intra-day and inter-day relative standard deviations of ≤9.4% and 8.0%, respectively. Ethanol concentration in plasma is linear ranging from 0.10 to 3.20 mg/mL, and the detection limit is 40.0 μg/mL (S/N > 3). The method shows satisfactory correlation with the reference method of headspace gas chromatography in twenty human plasma samples (correlation coefficient 0.9311). The proposed method could be applied to diagnose acute ethanol toxicity or ethanol-related death. PMID:27006081

  5. Five-year review of a UK 24 hour testing service for plasma ethylene glycol and diethylene glycol.

    PubMed

    Ford, Loretta T; Berg, Jonathan D

    2016-07-01

    We present a 5-year review of our UK service for plasma ethylene glycol and diethylene glycol determination in cases of acute poisoning. Ethylene glycol and diethylene glycol have been measured on all samples received for screening for toxicity by gas chromatography-flame ionization detection over a five-year period. A detailed audit of the results has been undertaken. In this period, we received 811 requests, 56% were for first-time screening and 44% repeat analysis where a positive sample has already been received. Of the first-time screen samples, 33.5% screened positive for glycol poisoning. The mean positive ethylene glycol concentration was 1204 mg/L (range 31 to 8666 mg/L). Diethylene glycol was present in 14% of ethylene glycol positive samples but never found alone. The data presented here suggest it is not essential to measure diethylene glycol since its inclusion is rarely likely to change patient management. © The Author(s) 2015.

  6. Enhancement of Schizochytrium DHA synthesis by plasma mutagenesis aided with malonic acid and zeocin screening.

    PubMed

    Zhao, Ben; Li, Yafei; Li, Changling; Yang, Hailin; Wang, Wu

    2018-03-01

    Schizochytrium sp. accumulates valuable polyunsaturated fatty acid (PUFA), such as docosahexaenoic acid (DHA). In order to increase DHA synthesis in this microorganism, physical or chemical mutagenesis aided with powerful screening methods are still preferable, as its DHA synthetic pathway has not yet been clearly defined for gene manipulation. To breed this agglomerate microorganism of thick cell wall and rather large genome for increasing lipid content and DHA percentage, a novel strategy of atmospheric and room temperature plasma (ARTP) mutagenesis coupled with stepped malonic acid (MA) and zeocin resistance screening was developed. The final resulted mutant strain mz-17 was selected with 1.8-fold increased DHA production. Accompanied with supplementation of Fe 2+ in shake flask cultivation, DHA production of 14.0 g/L on average was achieved. This work suggests that ARTP mutation combined with stepped MA and zeocin resistance screening is an efficient method of breeding Schizochytrium sp. of high DHA production, and might be applied on other microorganisms for obtaining higher desired PUFA products.

  7. TaqMan 5′-Nuclease Human Immunodeficiency Virus Type 1 PCR Assay with Phage-Packaged Competitive Internal Control for High-Throughput Blood Donor Screening

    PubMed Central

    Drosten, C.; Seifried, E.; Roth, W. K.

    2001-01-01

    Screening of blood donors for human immunodeficiency virus type 1 (HIV-1) infection by PCR permits the earlier diagnosis of HIV-1 infection compared with that by serologic assays. We have established a high-throughput reverse transcription (RT)-PCR assay based on 5′-nuclease PCR. By in-tube detection of HIV-1 RNA with a fluorogenic probe, the 5′-nuclease PCR technology (TaqMan PCR) eliminates the risk of carryover contamination, a major problem in PCR testing. We outline the development and evaluation of the PCR assay from a technical point of view. A one-step RT-PCR that targets the gag genes of all known HIV-1 group M isolates was developed. An internal control RNA detectable with a heterologous 5′-nuclease probe was derived from the viral target cDNA and was packaged into MS2 coliphages (Armored RNA). Because the RNA was protected against digestion with RNase, it could be spiked into patient plasma to control the complete sample preparation and amplification process. The assay detected 831 HIV-1 type B genome equivalents per ml of native plasma (95% confidence interval [CI], 759 to 936 HIV-1 B genome equivalents per ml) with a ≥95% probability of a positive result, as determined by probit regression analysis. A detection limit of 1,195 genome equivalents per ml of (individual) donor plasma (95% CI, 1,014 to 1,470 genome equivalents per ml of plasma pooled from individuals) was achieved when 96 samples were pooled and enriched by centrifugation. Up to 4,000 plasma samples per PCR run were tested in a 3-month trial period. Although data from the present pilot feasibility study will have to be complemented by a large clinical validation study, the assay is a promising approach to the high-throughput screening of blood donors and is the first noncommercial test for high-throughput screening for HIV-1. PMID:11724836

  8. A blood-based screening tool for Alzheimer's disease that spans serum and plasma: findings from TARC and ADNI.

    PubMed

    O'Bryant, Sid E; Xiao, Guanghua; Barber, Robert; Huebinger, Ryan; Wilhelmsen, Kirk; Edwards, Melissa; Graff-Radford, Neill; Doody, Rachelle; Diaz-Arrastia, Ramon

    2011-01-01

    There is no rapid and cost effective tool that can be implemented as a front-line screening tool for Alzheimer's disease (AD) at the population level. To generate and cross-validate a blood-based screener for AD that yields acceptable accuracy across both serum and plasma. Analysis of serum biomarker proteins were conducted on 197 Alzheimer's disease (AD) participants and 199 control participants from the Texas Alzheimer's Research Consortium (TARC) with further analysis conducted on plasma proteins from 112 AD and 52 control participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). The full algorithm was derived from a biomarker risk score, clinical lab (glucose, triglycerides, total cholesterol, homocysteine), and demographic (age, gender, education, APOE*E4 status) data. Alzheimer's disease. 11 proteins met our criteria and were utilized for the biomarker risk score. The random forest (RF) biomarker risk score from the TARC serum samples (training set) yielded adequate accuracy in the ADNI plasma sample (training set) (AUC = 0.70, sensitivity (SN) = 0.54 and specificity (SP) = 0.78), which was below that obtained from ADNI cerebral spinal fluid (CSF) analyses (t-tau/Aβ ratio AUC = 0.92). However, the full algorithm yielded excellent accuracy (AUC = 0.88, SN = 0.75, and SP = 0.91). The likelihood ratio of having AD based on a positive test finding (LR+) = 7.03 (SE = 1.17; 95% CI = 4.49-14.47), the likelihood ratio of not having AD based on the algorithm (LR-) = 3.55 (SE = 1.15; 2.22-5.71), and the odds ratio of AD were calculated in the ADNI cohort (OR) = 28.70 (1.55; 95% CI = 11.86-69.47). It is possible to create a blood-based screening algorithm that works across both serum and plasma that provides a comparable screening accuracy to that obtained from CSF analyses.

  9. Abnormal plasma DNA profiles in early ovarian cancer using a non-invasive prenatal testing platform: implications for cancer screening.

    PubMed

    Cohen, Paul A; Flowers, Nicola; Tong, Stephen; Hannan, Natalie; Pertile, Mark D; Hui, Lisa

    2016-08-24

    Non-invasive prenatal testing (NIPT) identifies fetal aneuploidy by sequencing cell-free DNA in the maternal plasma. Pre-symptomatic maternal malignancies have been incidentally detected during NIPT based on abnormal genomic profiles. This low coverage sequencing approach could have potential for ovarian cancer screening in the non-pregnant population. Our objective was to investigate whether plasma DNA sequencing with a clinical whole genome NIPT platform can detect early- and late-stage high-grade serous ovarian carcinomas (HGSOC). This is a case control study of prospectively-collected biobank samples comprising preoperative plasma from 32 women with HGSOC (16 'early cancer' (FIGO I-II) and 16 'advanced cancer' (FIGO III-IV)) and 32 benign controls. Plasma DNA from cases and controls were sequenced using a commercial NIPT platform and chromosome dosage measured. Sequencing data were blindly analyzed with two methods: (1) Subchromosomal changes were called using an open source algorithm WISECONDOR (WIthin-SamplE COpy Number aberration DetectOR). Genomic gains or losses ≥ 15 Mb were prespecified as "screen positive" calls, and mapped to recurrent copy number variations reported in an ovarian cancer genome atlas. (2) Selected whole chromosome gains or losses were reported using the routine NIPT pipeline for fetal aneuploidy. We detected 13/32 cancer cases using the subchromosomal analysis (sensitivity 40.6 %, 95 % CI, 23.7-59.4 %), including 6/16 early and 7/16 advanced HGSOC cases. Two of 32 benign controls had subchromosomal gains ≥ 15 Mb (specificity 93.8 %, 95 % CI, 79.2-99.2 %). Twelve of the 13 true positive cancer cases exhibited specific recurrent changes reported in HGSOC tumors. The NIPT pipeline resulted in one "monosomy 18" call from the cancer group, and two "monosomy X" calls in the controls. Low coverage plasma DNA sequencing used for prenatal testing detected 40.6 % of all HGSOC, including 38 % of early stage cases. Our findings demonstrate the potential of a high throughput sequencing platform to screen for early HGSOC in plasma based on characteristic multiple segmental chromosome gains and losses. The performance of this approach may be further improved by refining bioinformatics algorithms and targeting selected cancer copy number variations.

  10. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  11. Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma

    NASA Astrophysics Data System (ADS)

    Yang, LIU; Yue, TONG; Ying, WANG; Dan, ZHANG; Suyu, LI; Yuanfei, JIANG; Anmin, CHEN; Mingxing, JIN

    2017-12-01

    In this paper, we investigated the influence of sample temperature on the expansion dynamics and the optical emission spectroscopy of laser-induced plasma, and Ge was selected as the test sample. The target was heated from room temperature (22 °C) to 300 °C, and excited in atmospheric environment by using a Q-Switched Nd:YAG pulse laser with the wavelength of 1064 nm. To study the plasma expansion dynamics, we observed the plasma plume at different laser energies (5.0, 7.4 and 9.4 mJ) and different sample temperatures by using time-resolved image. We found that the heated target temperature could accelerate the expansion of plasma plume. Moreover, we also measured the effect of target temperature on the optical emission spectroscopy and signal-to-noise ratio.

  12. Invariants of the Axisymmetric Plasma Flows

    NASA Astrophysics Data System (ADS)

    Bogoyavlenskij, Oleg

    2018-06-01

    Infinite families of new functionally independent invariants are derived for the axisymmetric dynamics of viscous plasmas with zero electrical resistance. As a consequence, we find that, if two axisymmetric plasma states are dynamically connected, then their total number of magnetic rings must be equal (the same as for the total numbers of magnetic blobs) and the corresponding infinitely many new invariants must coincide.

  13. Simulations of the plasma dynamics in high-current ion diodes

    NASA Astrophysics Data System (ADS)

    Boine-Frankenheim, O.; Pointon, T. D.; Mehlhorn, T. A.

    Our time-implicit fluid/Particle-In-Cell (PIC) code DYNAID [1]is applied to problems relevant for applied- B ion diode operation. We present simulations of the laser ion source, which will soon be employed on the SABRE accelerator at SNL, and of the dynamics of the anode source plasma in the applied electric and magnetic fields. DYNAID is still a test-bed for a higher-dimensional simulation code. Nevertheless, the code can already give new theoretical insight into the dynamics of plasmas in pulsed power devices.

  14. On the theory of dynamics of dust grain in plasma

    NASA Astrophysics Data System (ADS)

    Stepanenko, A. A.; Krasheninnikov, S. I.

    2013-03-01

    The dynamics of rotationally symmetric dust grains in plasma embedded in a magnetic field are of concern. The general expressions for forces and torques acting on dust are found. It is shown that dust spinning is determined by torques related to both the Lorentz force (dominant for relatively small grains) and the gyro-motion of plasma particles impinging the grain (which prevails for large grains). The stability of grain spinning is analyzed and it is shown that, for some cases (e.g., oblate spheroid), there is no stable dynamic equilibrium of grain spinning.

  15. Strong-Field Control of Laser Filamentation Mechanisms

    NASA Astrophysics Data System (ADS)

    Levis, Robert; Romanov, Dmitri; Filin, Aleskey; Compton, Ryan

    2008-05-01

    The propagation of short strong-file laser pulses in gas and solution phases often result in formation of filaments. This phenomenon involves many nonlinear processes including Kerr lensing, group velocity dispersion, multi-photon ionization, plasma defocusing, intensity clamping, and self-steepening. Of these, formation and dynamics of pencil-shape plasma areas plays a crucial role. The fundamental understanding of these laser-induced plasmas requires additional effort, because the process is highly nonlinear and complex. We studied the ultrafast laser-generated plasma dynamics both experimentally and theoretically. Ultrafast plasma dynamics was probed using Coherent Anti-Stokes Raman Scattering. The measurements were made in a room temperature gas maintained at 1 atm in a flowing cell. The time dependent scattering was measured by delaying the CARS probe with respect to the intense laser excitation pulse. A general trend is observed between the spacing of the ground state and the first allowed excited state with the rise time for the noble gas series and the molecular gases. This trend is consistent with our theoretical model, which considers the ultrafast dynamics of the strong field generated plasma as a three-step process; (i) strong-field ionization followed by the electron gaining considerable kinetic energy during the pulse; (ii) immediate post-pulse dynamics: fast thermalization, impact-ionization-driven electron multiplication and cooling; (iii) ensuing relaxation: evolution to electron-ion equilibrium and eventual recombination.

  16. Liquid Biopsy Analysis of FGFR3 and PIK3CA Hotspot Mutations for Disease Surveillance in Bladder Cancer.

    PubMed

    Christensen, Emil; Birkenkamp-Demtröder, Karin; Nordentoft, Iver; Høyer, Søren; van der Keur, Kirstin; van Kessel, Kim; Zwarthoff, Ellen; Agerbæk, Mads; Ørntoft, Torben Falck; Jensen, Jørgen Bjerggaard; Dyrskjøt, Lars

    2017-06-01

    Disease surveillance in patients with bladder cancer is important for early diagnosis of progression and metastasis and for optimised treatment. To develop urine and plasma assays for disease surveillance for patients with FGFR3 and PIK3CA tumour mutations. Droplet digital polymerase chain reaction (ddPCR) assays were developed and tumour DNA from two patient cohorts was screened for FGFR3 and PIK3CA hotspot mutations. One cohort included 363 patients with non-muscle-invasive bladder cancer (NMIBC). The other cohort included 468 patients with bladder cancer undergoing radical cystectomy (Cx). Urine supernatants (NMIBC n=216, Cx n=27) and plasma samples (NMIBC n=39, Cx n=27) from patients harbouring mutations were subsequently screened using ddPCR assays. Progression-free survival, recurrence-free survival, and overall survival were measured. Fisher's exact test, the Wilcoxon rank-sum test and Cox regression analysis were applied. In total, 36% of the NMIBC patients (129/363) and 11% of the Cx patients (44/403) harboured at least one FGFR3 or PIK3CA mutation. Screening of DNA from serial urine supernatants from the NMIBC cohort revealed that high levels of tumour DNA (tDNA) were associated with later disease progression in NMIBC (p=0.003). Furthermore, high levels of tDNA in plasma samples were associated with recurrence in the Cx cohort (p=0.016). A positive correlation between tDNA levels in urine and plasma was observed (correlation coefficient 0.6). The retrospective study design and low volumes of plasma available for analysis were limitations of the study. Increased levels of FGFR3 and PIK3CA mutated DNA in urine and plasma are indicative of later progression and metastasis in bladder cancer. Urine and plasma from patients with bladder cancer may be monitored for diagnosis of progression and metastasis using mutation assays. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  17. Radiative transition of hydrogen-like ions in quantum plasma

    NASA Astrophysics Data System (ADS)

    Hu, Hongwei; Chen, Zhanbin; Chen, Wencong

    2016-12-01

    At fusion plasma electron temperature and number density regimes of 1 × 103-1 × 107 K and 1 × 1028-1 × 1031/m3, respectively, the excited states and radiative transition of hydrogen-like ions in fusion plasmas are studied. The results show that quantum plasma model is more suitable to describe the fusion plasma than the Debye screening model. Relativistic correction to bound-state energies of the low-Z hydrogen-like ions is so small that it can be ignored. The transition probability decreases with plasma density, but the transition probabilities have the same order of magnitude in the same number density regime.

  18. von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Verdini, Andrea; Landi, Simone; Franci, Luca; Matteini, Lorenzo

    2018-04-01

    A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation.

  19. A rapid, accurate and robust particle-based assay for the simultaneous screening of plasma samples for the presence of five different anti-cytokine autoantibodies.

    PubMed

    Guldager, Daniel Kring Rasmussen; von Stemann, Jakob Hjorth; Larsen, Rune; Bay, Jakob Thaning; Galle, Pia Søndergaard; Svenson, Morten; Ullum, Henrik; Hansen, Morten Bagge

    2015-10-01

    To establish and validate a rapid, cost-effective and accurate screening assay for the simultaneous testing of human naturally occurring anti-cytokine autoantibodies (c-aAb) targeting interleukin-1α (IL-1α), interleukin-6 (IL-6), interleukin-10 (IL-10), granulocyte-macrophage colony-stimulating factor (GM-CSF), and interferon α (IFNα). Because the c-aAbs can be transferred to patients through blood transfusion, the assay was used to assess c-aAb levels in a cohort of patients who were receiving blood transfusions and subsequently presented with or without febrile reactions. The microsphere-based Luminex platform was used. Recombinant forms of human IL-1α, IL-6, IL-10, GM-CSF, and IFNα were gently coupled to MAG-PLEX beads. Plasma IgG binding was measured with phycoerythrin (PE)-labeled secondary antibodies. Previously confirmed c-aAb positive and negative donor plasma samples and pooled normal immunoglobulin preparations were used to validate the assay. Plasma samples from 98 transfusion recipients, half of whom presented with febrile reactions, were tested by the assay. The assay detected specific and saturable immunoglobulin G (IgG) binding to each of the tested cytokines in previously confirmed c-aAb positive plasmas and in preparations of pooled normal immunoglobulin. Confirmed c-aAb negative plasmas gave no saturable binding. The detection limit of the cytokine autoantibodies was estimated to be between 1 pM and 10 pM. The recovery of confirmed cytokine autoantibodies quantities in the negative plasma samples ranged between 80% and 125%. The analytical intra- and inter-assay variations were 4% and 11%, respectively. Varying c-aAb levels were detectable in the transfusion recipients. There was no difference in c-aAb frequency between the patients with or without febrile transfusion reactions. The c-aAb level before and after the blood transfusions varied only slightly and in an irregular manner. This assay simultaneously detected up to five different c-aAbs in pooled human IgG and in plasma from individual blood donors, and it was deemed suitable for larger screenings. Based on confirmed antibody binding characteristics and the resultant reactivity in this multiplex assay, a classification of the c-aAb levels was suggested. The screening results of the recipients who received blood transfusions indicate that more studies are needed to clarify the role of antibodies, if any, in transfusion medicine and in high-dose immunoglobulin treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The plasma dynamics of hypersonic spacecraft: Applications of laboratory simulations and active in situ experiments

    NASA Technical Reports Server (NTRS)

    Stone, N. H.; Samir, Uri

    1986-01-01

    Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research.

  1. A Review on Glycosylated Hemoglobin in Polycystic Ovary Syndrome.

    PubMed

    Rezaee, Mohsen; Asadi, Nasrin; Pouralborz, Yasna; Ghodrat, Mahshid; Habibi, Shaghayegh

    2016-12-01

    Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders among women of reproductive age, with a variety of complications and consequences mostly due to hyperandrogenism and insulin resistance (IR). PCOS patients with IR are at risk for metabolic syndrome and diabetes mellitus (DM) along with its complications such as cardiovascular events. There are several methods for screening IR in patients with PCOS to predict DM and other complications. Fasting plasma glucose test, oral glucose tolerance test, and insulin and glycosylated hemoglobin (HbA1c) levels are some available screening tools for IR. The American Diabetes Association recommended HbA1c to screen for DM because HbA1c is not affected by day-to-day plasma glucose levels and reflects the plasma glucose status during 2-3 months before measurement. Some studies have evaluated the role of HbA1c as a screening method to predict DM in PCOS patients, however, there are still controversies in this matter. Also some studies reported that HbA1c has a correlation with complications of PCOS such as metabolic syndrome and cardiovascular events. We found that HbA1c could be a suitable screening test for IR in PCOS patients but more studies are recommended, omitting confounding factors that could affect IR in patients with PCOS, such as antihyperglycemic agents like metformin, or lifestyle modification, which can be effective in reducing IR in patients with PCOS. Copyright © 2016 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  2. Study of Plasma Flows Generated in Plasma Focus Discharge in Different Regimes of Working Gas Filling

    NASA Astrophysics Data System (ADS)

    Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.

    2017-12-01

    Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.

  3. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; Chalupský, J.; Chung, H.-K.; Ciricosta, O.; Dakovski, G. L.; Hájková, V.; Hollebon, P.; Juha, L.; Krzywinski, J.; Lee, R. W.; Minitti, M. P.; Preston, T. R.; de la Varga, A. G.; Vozda, V.; Zastrau, U.; Wark, J. S.; Velarde, P.; Vinko, S. M.

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1 s →2 p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We present a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.

  4. Clocking Femtosecond Collisional Dynamics via Resonant X-Ray Spectroscopy

    DOE PAGES

    van den Berg, Q. Y.; Fernandez-Tello, E. V.; Burian, T.; ...

    2018-02-01

    Electron-ion collisional dynamics is of fundamental importance in determining plasma transport properties, nonequilibrium plasma evolution, and electron damage in diffraction imaging applications using bright x-ray free-electron lasers (FELs). Here in this paper, we describe the first experimental measurements of ultrafast electron impact collisional ionization dynamics using resonant core-hole spectroscopy in a solid-density magnesium plasma, created and diagnosed with the Linac Coherent Light Source x-ray FEL. By resonantly pumping the 1s → 2p transition in highly charged ions within an optically thin plasma, we have measured how off-resonance charge states are populated via collisional processes on femtosecond time scales. We presentmore » a collisional cross section model that matches our results and demonstrates how the cross sections are enhanced by dense-plasma effects including continuum lowering. Nonlocal thermodynamic equilibrium collisional radiative simulations show excellent agreement with the experimental results and provide new insight on collisional ionization and three-body-recombination processes in the dense-plasma regime.« less

  5. The efficacy and cost of alternative strategies for systematic screening for type 2 diabetes in the U.S. population 45-74 years of age.

    PubMed

    Johnson, Susan L; Tabaei, Bahman P; Herman, William H

    2005-02-01

    To simulate the outcomes of alternative strategies for screening the U.S. population 45-74 years of age for type 2 diabetes. We simulated screening with random plasma glucose (RPG) and cut points of 100, 130, and 160 mg/dl and a multivariate equation including RPG and other variables. Over 15 years, we simulated screening at intervals of 1, 3, and 5 years. All positive screening tests were followed by a diagnostic fasting plasma glucose or an oral glucose tolerance test. Outcomes include the numbers of false-negative, true-positive, and false-positive screening tests and the direct and indirect costs. At year 15, screening every 3 years with an RPG cut point of 100 mg/dl left 0.2 million false negatives, an RPG of 130 mg/dl or the equation left 1.3 million false negatives, and an RPG of 160 mg/dl left 2.8 million false negatives. Over 15 years, the absolute difference between the most sensitive and most specific screening strategy was 4.5 million true positives and 476 million false-positives. Strategies using RPG cut points of 130 mg/dl or the multivariate equation every 3 years identified 17.3 million true positives; however, the equation identified fewer false-positives. The total cost of the most sensitive screening strategy was $42.7 billion and that of the most specific strategy was $6.9 billion. Screening for type 2 diabetes every 3 years with an RPG cut point of 130 mg/dl or the multivariate equation provides good yield and minimizes false-positive screening tests and costs.

  6. Head-to-Head Comparison and Evaluation of 92 Plasma Protein Biomarkers for Early Detection of Colorectal Cancer in a True Screening Setting.

    PubMed

    Chen, Hongda; Zucknick, Manuela; Werner, Simone; Knebel, Phillip; Brenner, Hermann

    2015-07-15

    Novel noninvasive blood-based screening tests are strongly desirable for early detection of colorectal cancer. We aimed to conduct a head-to-head comparison of the diagnostic performance of 92 plasma-based tumor-associated protein biomarkers for early detection of colorectal cancer in a true screening setting. Among all available 35 carriers of colorectal cancer and a representative sample of 54 men and women free of colorectal neoplasms recruited in a cohort of screening colonoscopy participants in 2005-2012 (N = 5,516), the plasma levels of 92 protein biomarkers were measured. ROC analyses were conducted to evaluate the diagnostic performance. A multimarker algorithm was developed through the Lasso logistic regression model and validated in an independent validation set. The .632+ bootstrap method was used to adjust for the potential overestimation of diagnostic performance. Seventeen protein markers were identified to show statistically significant differences in plasma levels between colorectal cancer cases and controls. The adjusted area under the ROC curves (AUC) of these 17 individual markers ranged from 0.55 to 0.70. An eight-marker classifier was constructed that increased the adjusted AUC to 0.77 [95% confidence interval (CI), 0.59-0.91]. When validating this algorithm in an independent validation set, the AUC was 0.76 (95% CI, 0.65-0.85), and sensitivities at cutoff levels yielding 80% and 90% specificities were 65% (95% CI, 41-80%) and 44% (95% CI, 24-72%), respectively. The identified profile of protein biomarkers could contribute to the development of a powerful multimarker blood-based test for early detection of colorectal cancer. ©2015 American Association for Cancer Research.

  7. Protein Changes in Macrophages Induced by Plasma from Rats Exposed to 35-GHz Millimeter Waves

    DTIC Science & Technology

    2010-12-01

    HumanEffectiveness Directorate, Air Force Research Laboratory, Brooks City-Base,Texas A macrophage assay and proteomic screening were used to...mW/cm2 until core temperature reached 41.0 8C. Two-dimensional polyacrylamide gel electrophoresis, image analysis, and Western blotting were used to...stimulation. Proteins of interest were identified using peptide mass fingerprinting. Compared to plasma from sham- exposed rats, plasma from

  8. Is screening for fetal anomalies reliable in HIV-infected pregnant women? A multicentre study.

    PubMed

    Brossard, Philippe; Boulvain, Michel; Coll, Oriol; Barlow, Patricia; Aebi-Popp, Karoline; Bischof, Paul; Martinez de Tejada, Begoña

    2008-10-01

    To assess the impact of HIV infection on the reliability of the first-trimester screening for Down syndrome, using free beta-human chorionic gonadotrophin, pregnancy-associated plasma protein-A and fetal nuchal translucency, and of the second-trimester screening for neural tube defects, using alpha-fetoprotein. Multicentre study comparing the multiples of the median of markers for Down syndrome and neural tube defect screening among 214 HIV-infected pregnant women and 856 HIV-negative controls undergoing a first-trimester Down syndrome screening test, and 209 HIV-positive women and 836 HIV-negative controls with a risk evaluation for neural tube defect. The influence of treatment, chronic hepatitis and HIV disease characteristics were also evaluated. Multiples of the median medians for pregnancy-associated plasma protein-A and beta-human chorionic gonadotrophin were lower in HIV-positive women than controls (0.88 vs. 1.05 and 0.84 vs. 1.09, respectively; P < 0.005), but these differences had no impact on risk estimation; no differences were observed for the other markers. No association was found between HIV disease characteristics, antiretroviral treatment use at the time of screening or chronic hepatitis and marker levels. Screening for Down syndrome during the first trimester and for neural tube defect during the second trimester is accurate for HIV-infected women and should be offered, similar to HIV-negative women.

  9. Simultaneous use of camera and probe diagnostics to unambiguously identify and study the dynamics of multiple underlying instabilities during the route to plasma turbulence.

    PubMed

    Thakur, S C; Brandt, C; Light, A; Cui, L; Gosselin, J J; Tynan, G R

    2014-11-01

    We use multiple-tip Langmuir probes and fast imaging to unambiguously identify and study the dynamics of underlying instabilities during the controlled route to fully-developed plasma turbulence in a linear magnetized helicon plasma device. Langmuir probes measure radial profiles of electron temperature, plasma density and potential; from which we compute linear growth rates of instabilities, cross-phase between density and potential fluctuations, Reynold's stress, particle flux, vorticity, time-delay estimated velocity, etc. Fast imaging complements the 1D probe measurements by providing temporally and spatially resolved 2D details of plasma structures associated with the instabilities. We find that three radially separated plasma instabilities exist simultaneously. Density gradient driven resistive drift waves propagating in the electron diamagnetic drift direction separate the plasma into an edge region dominated by strong, velocity shear driven Kelvin-Helmholtz instabilities and a central core region which shows coherent Rayleigh-Taylor modes propagating in the ion diamagnetic drift direction. The simultaneous, complementary use of both probes and camera was crucial to identify the instabilities and understand the details of the very rich plasma dynamics.

  10. H+ and O+ dynamics during ultra-low frequency waves in the Earth's magnetotail plasma sheet

    NASA Astrophysics Data System (ADS)

    De Spiegeleer, Alexandre; Hamrin, Maria; Pitkänen, Timo; Volwerk, Martin; Mouikis, Christopher; Kistler, Lynn; Nilsson, Hans; Norqvist, Patrik; Andersson, Laila

    2017-04-01

    The concentration of ionospheric oxygen (O^+) in the magnetotail plasma sheet can be relatively elevated depending on, for instance, the geomagnetic activity as well as the solar cycle. The dynamics of the tail plasma sheet can be affected by the presence of O+ via for example the generation of instabilities such as the Kelvin-Helmholtz instability. However, the O+ is not always taken into account when studying the dynamics of the tail plasma sheet. We investigate proton (H^+) and O+ during ultra-low frequency waves (period > 5 min) in the mid-tail plasma sheet (beyond 10R_E) using Cluster data. We observe that the velocity of O+ can be significantly different from that of H^+. When occuring, this velocity difference always seems to be in the direction parallel to the magnetic field. The parallel velocity of the two species can be observed to be somewhat out of phase, meaning that while one species flows in the parallel direction, the other flows in the anti-parallel direction. Possible causes for such large discrepancies between the dynamics of O+ and H+ are discussed.

  11. Magnetic field in expanding quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  12. Dynamics of multiple double layers in high pressure glow discharge in a simple torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar Paul, Manash, E-mail: manashkr@gmail.com; Sharma, P. K.; Thakur, A.

    2014-06-15

    Parametric characterization of multiple double layers is done during high pressure glow discharge in a toroidal vessel of small aspect ratio. Although glow discharge (without magnetic field) is known to be independent of device geometry, but the toroidal boundary conditions are conducive to plasma growth and eventually the plasma occupy the toroidal volume partially. At higher anode potential, the visibly glowing spots on the body of spatially extended anode transform into multiple intensely luminous spherical plasma blob structures attached to the tip of the positive electrode. Dynamics of multiple double layers are observed in argon glow discharge plasma in presencemore » of toroidal magnetic field. The radial profiles of plasma parameters measured at various toroidal locations show signatures of double layer formation in our system. Parametric dependence of double layer dynamics in presence of toroidal magnetic field is presented here.« less

  13. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  14. Influence of magnetic fields on the color screening masses

    NASA Astrophysics Data System (ADS)

    Bonati, Claudio; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco

    2018-03-01

    We present some recent results obtained in the study of the color magnetic and electric screening masses in the QCD plasma. In particular, we discuss how the masses get modified by strong external fields which are expected to be created in physical situations such as heavy-ion collisions.

  15. Time-dependent areal mass density for disc-shaped substrates in a corona-activated flow stream at atmospheric pressure for argon/acetylene admixture

    NASA Astrophysics Data System (ADS)

    Xie, Shuzheng; Islam, Rokibul; Hussein, Bashir; Englund, Karl; Pedrow, Patrick

    2015-09-01

    In this research we use a 40-needle array energized with 60 Hz AC voltage in the range 5 to 15 kV RMS. Plasma processing takes place downstream from a grounded planar screen (the opposing electrode). The needle-to-screen gap is in the range 4 to 10 cm and its E-field generates weakly ionized plasma via streamers and back corona. Deposited material is plasma-polymerized acetylene. Substrates are potassium bromide, mica, wood, paper, and gold-covered solids. Substrate chemical species influence the efficiency with which the disc amasses plasma-polymerized material, at least until the substrate is fully covered with film. Early plasma-polymerization is accompanied by nucleation-site-dominated nodules but longer term deposition results in a film that fully covers the substrate. We will report on time-dependent areal mass density associated with run times in the range 5-60 minutes. Film thickness will be measured using instruments that include visible light microscopy, TEM, and SEM. Others in our research group are studying areal mass density for early times (1-5 minutes) when nodule growth (at nucleation sites) dominates the deposition process.

  16. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Wei, Wenfu; Li, Xingwen

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag modelmore » was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.« less

  17. A criterion for pure pair-ion plasmas and the role of quasineutrality in nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Saleem, H.

    2007-01-01

    A criterion is presented to decide whether a produced plasma can be called a pure pair-ion plasma or not. The theory is discussed in the light of recent experiments which claim that a pure pair-ion fullerene (C60±) plasma has been produced. It is also shown that the ion acoustic wave is replaced by the pair ion convective cell (PPCC) mode as the electron density becomes vanishingly small in a magnetized plasma comprised of positive and negative ions. The nonlinear dynamics of pure pair plasmas is described by two coupled equations which have no analog in electron-ion plasmas. In a stationary frame, it becomes similar to the Hasegawa-Mima equation but does not contain drift waves and ion acoustic waves.

  18. Simulating the dynamics of complex plasmas.

    PubMed

    Schwabe, M; Graves, D B

    2013-08-01

    Complex plasmas are low-temperature plasmas that contain micrometer-size particles in addition to the neutral gas particles and the ions and electrons that make up the plasma. The microparticles interact strongly and display a wealth of collective effects. Here we report on linked numerical simulations that reproduce many of the experimental results of complex plasmas. We model a capacitively coupled plasma with a fluid code written for the commercial package comsol. The output of this model is used to calculate forces on microparticles. The microparticles are modeled using the molecular dynamics package lammps, which we extended to include the forces from the plasma. Using this method, we are able to reproduce void formation, the separation of particles of different sizes into layers, lane formation, vortex formation, and other effects.

  19. A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface

    NASA Astrophysics Data System (ADS)

    Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao

    2018-06-01

    Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.

  20. Dynamics of a Focussed Discharge.

    DTIC Science & Technology

    This report describes theoretical and experimental investigations on the dynamics of a dense plasma focus . The characteristics of the focus in terms...also described. The results of a preliminary theoretical investigation of the heating of a dense plasma focus by a laser is given.

  1. Definition of preclinical and clinical character of human symptomatic status by quasi-elastic light scattering (QELS) investigations of blood plasma

    NASA Astrophysics Data System (ADS)

    Ivanova, Mariya A.; Klopov, Nicolay V.; Lebedev, Andrei D.; Noskin, Leonid A.; Noskin, Valentin A.; Pavlov, Michail Y.

    1997-05-01

    We discuss the use of the QELS method for screening of population groups for verified pathologies. For mathematical analysis of experimental data the regularization procedure have been used. This allows us to determine the histograms of particle size distribution of blood plasma samples. For the interpretation of the histogram data the special program of the mathematical processing - 'semiotic classifier' - have been created. The main idea of the 'semiotic classifier' is based on the fact, that formation of the pathological trace in human organism depends not only on concrete disease nature but also on the interaction between the organism sanogenetic mechanisms. We separate five pathological symptomatic complexes of organism status: allergic diseases, intoxications, organism catabolic shifts, auto-immune diseases and degenerative-dystrophy processes. The use of this 'semiotic classifier' in the system of monitoring investigations allows to solve the next problems: (1) to separate the persons with the expressed initial level of pathological processes to the risk groups for the special clinical investigations, (2) to set up the predisposition of the concrete individual towards definite pathologies at the preclinical stage, (3) under the conditions of expressed clinical pathology to study the dynamics of pathology processes.

  2. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    NASA Astrophysics Data System (ADS)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  3. Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutson, M. Shane; Ma Xiaoyan

    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo)--specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo --especially at 355 nm--due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.

  4. ESA Swarm Mission - Level 1b Products

    NASA Astrophysics Data System (ADS)

    Tøffner-Clausen, Lars; Floberghagen, Rune; Mecozzi, Riccardo; Menard, Yvon

    2014-05-01

    Swarm, a three-satellite constellation to study the dynamics of the Earth's magnetic field and its interactions with the Earth system, has been launched in November 2013. The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal evolution, which will bring new insights into the Earth system by improving our understanding of the Earth's interior and environment. The Level 1b Products of the Swarm mission contain time-series of the quality screened, calibrated, corrected, and fully geo-localized measurements of the magnetic field intensity, the magnetic field vector (provided in both instrument and Earth-fixed frames), the plasma density, temperature, and velocity. Additionally, quality screened and pre-calibrated measurements of the nongravitational accelerations are provided. Geo-localization is performed by 24- channel GPS receivers and by means of unique, three head Advanced Stellar Compasses for high-precision satellite attitude information. The Swarm Level 1b data will be provided in daily products separately for each of the three Swarm spacecrafts. This poster will present detailed lists of the contents of the Swarm Level 1b Products and brief descriptions of the processing algorithms used in the generation of these data.

  5. Laser correlation spectrometry: a new approach to organizing oncological screening for a population exposed to chronic irradiation

    NASA Astrophysics Data System (ADS)

    Akleyev, Alexander; Pashkov, Igor; Kisselyov, Mikhail; Noskin, Leonid A.

    1999-12-01

    The issue of stochastic effects of radiation exposure (mostly leukemia and cancer), and early detection of malignant tumors, as a key aspect of the problem, is of crucial importance to the population chronically exposed due to the activities of the Mayak Production Association in the Urals region, Russia). Given the large number of exposed population, screening is considered to be the most expedient method to organize medical observation of exposed persons. As was shown by the results of medical examinations conducted for 1 391 residents of the Techa riverside villages, laser correlation spectrometry (LCS) of blood plasma has proved to be a highly effective screening method for early (pre-clinical) detection of malignant neoplasms and pre-cancerous conditions. It was established that LC- spectra of blood plasma in persons with cancer and pre- cancer can easily be differentiated from non-cancer conditions. Of particular diagnostic significance is the high-frequency range of the spectrum. The development of a diagnostic algorithm has allowed to carry out a computer- based classification of blood plasma LC spectra as a component of exposed population health monitoring system.

  6. Prospective screening for occult cardiomyopathy in dogs by measurement of plasma atrial natriuretic peptide, B-type natriuretic peptide, and cardiac troponin-I concentrations.

    PubMed

    Oyama, Mark A; Sisson, D David; Solter, Phil F

    2007-01-01

    To evaluate the use of measuring plasma concentrations of atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and cardiac troponin-I (cTnI) to detect dogs with occult dilated cardiomyopathy (DCM). 118 client-owned dogs. Dogs were prospectively examined by use of ECG; echocardiography; and evaluation of concentrations of ANP, BNP, and cTnI. Occult DCM was diagnosed by evaluation of echocardiographic left ventricular dimensions and detection of ventricular arrhythmias on ECG. Sensitivity and specificity of assays for measurement of plasma concentrations of ANP, BNP, and cTnI to detect dogs with occult DCM were determined. Occult DCM was diagnosed in 21 dogs. A concentration of > 6.21 pg/mL for BNP had a sensitivity of 95.2% and specificity of 61.9% for identifying dogs with occult DCM. In contrast, concentrations of ANP and cTnI had relatively low predictive values. Blood-based screening for occult DCM in dogs can be accomplished by use of a BNP assay. Additional studies should be performed to optimize this method of screening dogs to detect occult DCM.

  7. Relativistic electromagnetic waves in an electron-ion plasma

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  8. The charmonium dissociation in an ''anomalous wind''

    DOE PAGES

    Sadofyev, Andrey V.; Yin, Yi

    2016-01-11

    We study the charmonium dissociation in a strongly coupled chiral plasma in the presence of magnetic field and axial charge imbalance. This type of plasma carries "anomalous flow" induced by the chiral anomaly and exhibits novel transport phenomena such as chiral magnetic effect. We found that the "anomalous flow" would modify the charmonium color screening length by using the gauge/gravity correspondence. We derive an analytical expression quantifying the "anomalous flow" experienced by a charmonium for a large class of chiral plasma with a gravity dual. We elaborate on the similarity and it qualitative difference between anomalous effects on the charmoniummore » color screening length which are model-dependent and those on the heavy quark drag force which are fixed by the second law of thermodynamics. As a result, we speculate on the possible charmonium dissociation induced by the chiral anomaly in heavy ion collisions.« less

  9. An experiment on the dynamics of ion implantation and sputtering of surfaces

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Barnard, H. A.; Kesler, L. A.; Peterson, E. E.; Stahle, P. W.; Sullivan, R. M.; Whyte, D. G.; Woller, K. B.

    2014-02-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  10. An experiment on the dynamics of ion implantation and sputtering of surfaces.

    PubMed

    Wright, G M; Barnard, H A; Kesler, L A; Peterson, E E; Stahle, P W; Sullivan, R M; Whyte, D G; Woller, K B

    2014-02-01

    A major impediment towards a better understanding of the complex plasma-surface interaction is the limited diagnostic access to the material surface while it is undergoing plasma exposure. The Dynamics of ION Implantation and Sputtering Of Surfaces (DIONISOS) experiment overcomes this limitation by uniquely combining powerful, non-perturbing ion beam analysis techniques with a steady-state helicon plasma exposure chamber, allowing for real-time, depth-resolved in situ measurements of material compositions during plasma exposure. Design solutions are described that provide compatibility between the ion beam analysis requirements in the presence of a high-intensity helicon plasma. The three primary ion beam analysis techniques, Rutherford backscattering spectroscopy, elastic recoil detection, and nuclear reaction analysis, are successfully implemented on targets during plasma exposure in DIONISOS. These techniques measure parameters of interest for plasma-material interactions such as erosion/deposition rates of materials and the concentration of plasma fuel species in the material surface.

  11. Validation of a Type 2 Diabetes Screening Tool in Rural Honduras

    PubMed Central

    Milton, Evan C.; Herman, William H.; Aiello, Allison E.; Danielson, Kris R.; Mendoza-Avelarez, Milton O.; Piette, John D.

    2010-01-01

    OBJECTIVE To validate a low-cost tool for identifying diabetic patients in rural areas of Latin America. RESEARCH DESIGN AND METHODS A regression equation incorporating postprandial time and a random plasma glucose was used to screen 800 adults in Honduras. Patients with a probability of diabetes of ≥20% were asked to return for a fasting plasma glucose (FPG). A random fifth of those with a screener-based probability of diabetes <20% were also asked to return for follow-up. The gold standard was an FPG ≥126 mg/dl. RESULTS The screener had very good test characteristics (area under the receiver operating characteristic curve = 0.89). Using the screening criterion of ≥0.42, the equation had a sensitivity of 74.1% and specificity of 97.2%. CONCLUSIONS This screener is a valid measure of diabetes risk in Honduras and could be used to identify diabetic patients in poor clinics in Latin America. PMID:19918008

  12. Deciphering Interplay between Salmonella Invasion Effectors

    PubMed Central

    Koronakis, Vassilis

    2008-01-01

    Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction. PMID:18389058

  13. Propagation of monochromatic light in a hot and dense medium

    NASA Astrophysics Data System (ADS)

    Masood, Samina S.

    2017-12-01

    Photons, as quanta of electromagnetic fields, determine the electromagnetic properties of an extremely hot and dense medium. Considering the properties of the photons in the interacting medium of charged particles, we explicitly calculate the electromagnetic properties such as the electric permittivity, magnetic permeability, refractive index and the propagation speed of electromagnetic signals in an extremely hot and dense background. Photons acquire a dynamically generated mass in such a medium. The screening mass of the photon, the Debye shielding length and the plasma frequency are calculated as functions of the statistical parameters of the medium. We study the properties of the propagating particles in astrophysical systems of distinct statistical conditions. The modifications in the properties of the medium lead to the equation of state of the system. We mainly calculate all these parameters for extremely high temperatures of the early universe.

  14. Onset of normal and inverse homoclinic bifurcation in a double plasma system near a plasma fireball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Vramori; Sarma, Bornali; Sarma, Arun

    Plasma fireballs are generated due to a localized discharge and appear as a luminous glow with a sharp boundary, which suggests the presence of a localized electric field such as electrical sheath or double layer structure. The present work reports the observation of normal and inverse homoclinic bifurcation phenomena in plasma oscillations that are excited in the presence of fireball in a double plasma device. The controlling parameters for these observations are the ratio of target to source chamber (n{sub T}/n{sub S}) densities and applied electrode voltage. Homoclinic bifurcation is noticed in the plasma potential fluctuations as the system evolvesmore » from narrow to long time period oscillations and vice versa with the change of control parameter. The dynamical transition in plasma fireball is demonstrated by spectral analysis, recurrence quantification analysis (RQA), and statistical measures, viz., skewness and kurtosis. The increasing trend of normalized variance reflects that enhancing n{sub T}/n{sub S} induces irregularity in plasma dynamics. The exponential growth of the time period is strongly indicative of homoclinic bifurcation in the system. The gradual decrease of skewness and increase of kurtosis with the increase of n{sub T}/n{sub S} also reflect growing complexity in the system. The visual change of recurrence plot and gradual enhancement of RQA variables DET, L{sub max}, and ENT reflects the bifurcation behavior in the dynamics. The combination of RQA and spectral analysis is a clear evidence that homoclinic bifurcation occurs due to the presence of plasma fireball with different density ratios. However, inverse bifurcation takes place due to the change of fireball voltage. Some of the features observed in the experiment are consistent with a model that describes the dynamics of ionization instabilities.« less

  15. A new hydrodynamic analysis of double layers

    NASA Technical Reports Server (NTRS)

    Hora, Heinrich

    1987-01-01

    A genuine two-fluid model of plasmas with collisions permits the calculation of dynamic (not necessarily static) electric fields and double layers inside of plasmas including oscillations and damping. For the first time a macroscopic model for coupling of electromagnetic and Langmuir waves was achieved with realistic damping. Starting points were laser-produced plasmas showing very high dynamic electric fields in nonlinear force-produced cavitous and inverted double layers in agreement with experiments. Applications for any inhomogeneous plasma as in laboratory or in astrophysical plasmas can then be followed up by a transparent hydrodynamic description. Results are the rotation of plasmas in magnetic fields and a new second harmonic resonance, explanation of the measured inverted double layers, explanation of the observed density-independent, second harmonics emission from laser-produced plasmas, and a laser acceleration scheme by the very high fields of the double layers.

  16. Understanding the Effect of Gas Dynamics in Plasma Gun Performance for Simulating Fusion Wall Response to Disruption Events

    NASA Astrophysics Data System (ADS)

    Riedel, Will; Underwood, Thomas; Righetti, Fabio; Cappelli, Mark

    2017-10-01

    In this work, the suitability of a pulsed coaxial plasma accelerator to simulate the interaction of edge-localized modes with plasma first wall materials is investigated. Experimental measurements derived from a suite of diagnostics are presented that focus on both the properties of the plasma flow and the manner in which such jets couple with material interfaces. Specific emphasis is placed on quantifying the variation in these properties using tungsten tokens exposed to the plasma plume as the gun volume is progressively filled with more neutral gas. These results are mapped to the operational dynamics of the gun via a time-resolved Schlieren cinematic visualization of the density gradient within the flow. Resulting videos indicate the existence of two distinct modes with vastly different characteristic timescales, spatial evolution, and plasma properties. Time resolved quantification of the associated plasma heat flux for both modes, including a range spanning 150 MW m-2 - 10 GW m-2, is presented using both a fast thermocouple gauge and an IR camera. Both diagnostics in conjunction with a heat transfer model provide an accurate description of the energy transfer dynamics and operational characteristics of plasma guns. This work is supported by the U.S. Department of Energy Stewardship Science Academic Program.

  17. Spectroscopic diagnostics of plume rebound and shockwave dynamics of confined aluminum laser plasma plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeates, P.; Kennedy, E. T.; School of Physical Sciences, Dublin City University

    2011-06-15

    Generation and expansion dynamics of aluminum laser plasma plumes generated between parallel plates of varying separation ({Delta}Z = 2.0, 3.2, 4.0, and 5.6 mm), which confined plume expansion normal to the ablation surface, were diagnosed. Space and time resolved visible emission spectroscopy in the spectral range {lambda} = 355-470 nm and time gated visible imaging were employed to record emission spectra and plume dynamics. Space and time resolved profiles of N{sub e} (the electron density), T{sub e} (the electron temperature), and T{sub ionz} (the ionization temperature) were compared for different positions in the plasma plume. Significant modifications of the profilesmore » of the above parameters were observed for plasma-surface collisions at the inner surface of the front plate, which formed a barrier to the free expansion of the plasma plume generated by the laser light on the surface of the back plate. Shockwave generation at the collision interface resulted in delayed compression of the low-density plasma plume near the inner ablation surface, at late stages in the plasma history. Upon exiting the cavity formed by the two plates, through an aperture in the front plate, the plasma plume underwent a second phase of free expansion.« less

  18. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks gestation.

    PubMed

    O'Gorman, Neil; Wright, David; Syngelaki, Argyro; Akolekar, Ranjit; Wright, Alan; Poon, Leona C; Nicolaides, Kypros H

    2016-01-01

    Preeclampsia affects approximately 3% of all pregnancies and is a major cause of maternal and perinatal morbidity and death. In the last decade, extensive research has been devoted to early screening for preeclampsia with the aim of reducing the prevalence of the disease through pharmacologic intervention in the high-risk group starting from the first trimester of pregnancy. The purpose of this study was to develop a model for preeclampsia based on maternal demographic characteristics and medical history (maternal factors) and biomarkers. The data for this study were derived from prospective screening for adverse obstetric outcomes in women who attended for their routine first hospital visit at 11-13 weeks gestation in 2 maternity hospitals in England. We screened 35,948 singleton pregnancies that included 1058 pregnancies (2.9%) that experienced preeclampsia. Bayes theorem was used to combine the a priori risk from maternal factors with various combinations of uterine artery pulsatility index, mean arterial pressure, serum pregnancy-associated plasma protein-A, and placental growth factor multiple of the median values. Five-fold cross validation was used to assess the performance of screening for preeclampsia that delivered at <37 weeks gestation (preterm-preeclampsia) and ≥37 weeks gestation (term-preeclampsia) by models that combined maternal factors with individual biomarkers and their combination with screening by maternal factors alone. In pregnancies that experienced preeclampsia, the values of uterine artery pulsatility index and mean arterial pressure were increased, and the values of serum pregnancy-associated plasma protein-A and placental growth factor were decreased. For all biomarkers, the deviation from normal was greater for early than late preeclampsia; therefore, the performance of screening was related inversely to the gestational age at which delivery became necessary for maternal and/or fetal indications. Combined screening by maternal factors, uterine artery pulsatility index, mean arterial pressure, and placental growth factor predicted 75% (95% confidence interval, 70-80%) of preterm-preeclampsia and 47% (95% confidence interval, 44-51%) of term-preeclampsia, at a false-positive rate of 10%; inclusion of pregnancy-associated plasma protein-A did not improve the performance of screening. Such detection rates are superior to the respective values of 49% (95% confidence interval, 43-55%) and 38% (34-41%) that were achieved by screening with maternal factors alone. Combination of maternal factors and biomarkers provides effective first-trimester screening for preterm-preeclampsia. Copyright © 2016. Published by Elsevier Inc.

  19. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    PubMed Central

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-01-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions. PMID:23983449

  20. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  1. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode.

    PubMed

    Rieker, G B; Poehlmann, F R; Cappelli, M A

    2013-07-01

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  2. Influence of dense plasma on the energy levels and transition properties in highly charged ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Hu, Hong-Wei; Ma, Kun; Liu, Xiao-Bin; Guo, Xue-Ling; Li, Shuang; Zhu, Bo-Hong; Huang, Lian; Wang, Kai

    2018-03-01

    The studies of the influence of plasma environments on the level structures and transition properties for highly charged ions are presented. For the relativistic treatment, we implemented the multiconfiguration Dirac-Fock method incorporating the ion sphere (IS) model potential, in which the plasma screening is taken into account as a modified interaction potential between the electron and the nucleus. For the nonrelativistic treatment, analytical solutions of the Schrödinger equation with two types of the IS screened potential are proposed. The Ritz variation method is used with hydrogenic wave function as a trial wave function that contains two unknown variational parameters. Bound energies are derived from an energy equation, and the variational parameters are obtained from the minimisation condition of the expectation value of the energy. Numerical results for hydrogen-like ions in dense plasmas are presented as examples. A detailed analysis of the influence of relativistic effects on the energy levels and transition properties is also reported. Our results are compared with available results in the literature showing a good quantitative agreement.

  3. Nonlinear screening of dust grains and structurization of dusty plasma: II. formation and stability of dust structures

    NASA Astrophysics Data System (ADS)

    Tsytovich, V. N.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-10-01

    The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.

  4. Plasma physics analysis of SERT-2 operation

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1980-01-01

    An analysis of the major plasma processes involved in the SERT 2 spacecraft experiments was conducted to aid in the interpretation of recent data. A plume penetration model was developed for neutralization electron conduction to the ion beam and showed qualitative agreement with flight data. In the SERT 2 configuration conduction of neutralization electrons between thrusters was experimentally demonstrated in space. The analysis of this configuration suggests that the relative orientation of the two magnetic fields was an important factor in the observed results. Specifically, the opposed field orientation appeared to provide a high conductivity channel between thrusters and a barrier to the ambient low energy electrons in space. The SERT 2 neutralizer currents with negative neutralizer biases were up to about twice the theoretical prediction for electron collection by the ground screen. An explanation for the higher experimental values was a possible conductive path from the neutralizer plume to a nearby part of the ground screen. Plasma probe measurements of SERT 2 gave the clearest indication of plasma electron temperature, with normal operation being near 5 eV and discharge only operation near 2 eV.

  5. Resonant states for the scattering of slow particles by screened potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruk, Yu. M., E-mail: yubruk@gmail.com; Voloshchuk, A. N.

    2016-09-15

    Partial resonant situations for the scattering of slow particles with nonzero angular momenta by short-range screened Yukawa and Buckingham potentials are considered. The problem of electron scattering by a hydrogen atom placed in a plasma medium is discussed. A general scheme of resonances has been constructed in the Pais approximation.

  6. Generalized model screening potentials for Fermi-Dirac plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2016-04-01

    In this paper, some properties of relativistically degenerate quantum plasmas, such as static ion screening, structure factor, and Thomson scattering cross-section, are studied in the framework of linearized quantum hydrodynamic theory with the newly proposed kinetic γ-correction to Bohm term in low frequency limit. It is found that the correction has a significant effect on the properties of quantum plasmas in all density regimes, ranging from solid-density up to that of white dwarf stars. It is also found that Shukla-Eliasson attractive force exists up to a few times the density of metals, and the ionic correlations are seemingly apparent in the radial distribution function signature. Simplified statically screened attractive and repulsive potentials are presented for zero-temperature Fermi-Dirac plasmas, valid for a wide range of quantum plasma number-density and atomic number values. Moreover, it is observed that crystallization of white dwarfs beyond a critical core number-density persists with this new kinetic correction, but it is shifted to a much higher number-density value of n0 ≃ 1.94 × 1037 cm-3 (1.77 × 1010 gr cm-3), which is nearly four orders of magnitude less than the nuclear density. It is found that the maximal Thomson scattering with the γ-corrected structure factor is a remarkable property of white dwarf stars. However, with the new γ-correction, the maximal scattering shifts to the spectrum region between hard X-ray and low-energy gamma-rays. White dwarfs composed of higher atomic-number ions are observed to maximally Thomson-scatter at slightly higher wavelengths, i.e., they maximally scatter slightly low-energy photons in the presence of correction.

  7. Dynamics of tokamak plasma surface current in 3D ideal MHD model

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.

    2013-10-01

    Interest in the surface current which can arise on perturbed sharp plasma vacuum interface in tokamaks was recently generated by a few papers (see and references therein). In dangerous disruption events with plasma-touching-wall scenarios, the surface current can be shared with the wall leading to the strong, damaging forces acting on the wall A relatively simple analytic definition of δ-function surface current proportional to a jump of tangential component of magnetic field nevertheless leads to a complex computational problem on the moving plasma-vacuum interface, requiring the incorporation of non-linear 3D plasma dynamics even in one-fluid ideal MHD. The Disruption Simulation Code (DSC), which had recently been developed in a fully 3D toroidal geometry with adaptation to the moving plasma boundary, is an appropriate tool for accurate self-consistent δfunction surface current calculation. Progress on the DSC-3D development will be presented. Self-consistent surface current calculation under non-linear dynamics of low m kink mode and VDE will be discussed. Work is supported by the US DOE SBIR grant #DE-SC0004487.

  8. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides.

    PubMed

    Saarikangas, Juha; Zhao, Hongxia; Lappalainen, Pekka

    2010-01-01

    The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.

  9. Continued reduction and analysis of data from the Dynamics Explorer Plasma Wave Instrument

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.; Weimer, Daniel R.

    1994-01-01

    The plasma wave instrument on the Dynamics Explorer 1 spacecraft provided measurements of the electric and magnetic components of plasma waves in the Earth's magnetosphere. Four receiver systems processed signals from five antennas. Sixty-seven theses, scientific papers and reports were prepared from the data generated. Data processing activities and techniques used to analyze the data are described and highlights of discoveries made and research undertaken are tabulated.

  10. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrailh, P.; LAPLACE, CNRS, F-31062 Toulouse; Schneider Electric, Centre de Recherche 38 TEC, 38050 Grenoble Cedex 09

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion inmore » this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.« less

  11. Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Sarrailh, P.; Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P.; Sandolache, G.; Rowe, S.

    2009-09-01

    During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.

  12. Cell surface dynamics - how Rho GTPases orchestrate the interplay between the plasma membrane and the cortical cytoskeleton.

    PubMed

    de Curtis, Ivan; Meldolesi, Jacopo

    2012-10-01

    Small GTPases are known to regulate hundreds of cell functions. In particular, Rho family GTPases are master regulators of the cytoskeleton. By regulating actin nucleation complexes, Rho GTPases control changes in cell shape, including the extension and/or retraction of surface protrusions and invaginations. Protrusion and invagination of the plasma membrane also involves the interaction between the plasma membrane and the cortical cytoskeleton. This interplay between membranes and the cytoskeleton can lead to an increase or decrease in the plasma membrane surface area and its tension as a result of the fusion (exocytosis) or internalization (endocytosis) of membranous compartments, respectively. For a long time, the cytoskeleton and plasma membrane dynamics were investigated separately. However, studies from many laboratories have now revealed that Rho GTPases, their modulation of the cytoskeleton, and membrane traffic are closely connected during the dynamic remodeling of the cell surface. Arf- and Rab-dependent exocytosis of specific vesicles contributes to the targeting of Rho GTPases and their regulatory factors to discrete sites of the plasma membrane. Rho GTPases regulate the tethering of exocytic vesicles and modulate their subsequent fusion. They also have crucial roles in the different forms of endocytosis, where they participate in the sorting of membrane domains as well as the sculpting and sealing of membrane flasks and cups. Here, we discuss how cell surface dynamics depend on the orchestration of the cytoskeleton and the plasma membrane by Rho GTPases.

  13. Elevated levels of CXC chemokine connective tissue activating peptide (CTAP)-III in lung cancer patients.

    PubMed

    Lee, Gina; Gardner, Brian K; Elashoff, David A; Purcell, Colleen M; Sandha, Harpavan S; Mao, Jenny T; Krysan, Kostyantyn; Lee, Jay M; Dubinett, Steven M

    2011-05-15

    Despite advances in treatments, lung cancer has been the leading cause of cancer-related deaths in the United States for the past several decades. Recent findings from the National Lung Screening Trial reveal that low-dose helical computed tomography (CT) scan screening of high-risk individuals reduces lung cancer mortality. This suggests that early detection is of key importance to improving patient outcome. However, of those screened with CT scans, 25% had positive scans that require further follow-up studies which often involve more radiation exposure and invasive tests to reduce false positive results. The purpose of this study was to identify candidate plasma biomarkers to aid in diagnosis of lung cancer in at-risk individuals. We found increased expression of the CXC chemokine connective tissue-activating peptide (CTAP)-III from plasma specimens of lung cancer patients compared to at-risk control subjects. Identification of the peptide was confirmed by the addition of an anti-NAP-2 antibody that recognizes CTAP-III and NAP-2. We also quantified and verified the increased levels of plasma CTAP-III with ELISA in patients with lung cancer (mean ± SD, 1859 ± 1219 ng/mL) compared to controls (698 ± 434 ng/mL; P<0.001). Our findings demonstrate elevated plasma levels of CTAP-III occur in lung cancer patients. Further studies are required to determine if this chemokine could be utilized in a blood-based biomarker panel for the diagnosis of lung cancer.

  14. Re-evaluation of the regulation of omeprazole in racehorses: An evidence-based approach.

    PubMed

    Viljanto, M; Hillyer, L; Hincks, P; Pearce, C; Paine, S W

    2018-06-01

    Medication control and doping control have been established in horse racing to ensure the integrity of the sport and the welfare of the horses. This ensures that horses do not compete under the influence of any drugs, including omeprazole, a therapeutic medication used to treat equine gastric ulcer syndrome. In this study, pharmacokinetic data were produced in equine plasma and urine following an oral administration of 4 mg/kg of generic buffered formulation of omeprazole to six Thoroughbred horses in five daily doses to determine an appropriate screening limit and detection time in equine plasma and to assess whether the current detection time of 72 hr in equine urine would be applicable when an alternative omeprazole product is administered. C max of 436-2,432 ng/ml and AUC 0-tau of 1,476-4,371 ng hr ml -1 were obtained for plasma and indicated, in conjunction with other published oral omeprazole studies, that an appropriate plasma screening limit would be 500 pg/ml with a detection time of 48 hr. Urine analysis showed that omeprazole could be detected for up to 25 hr above the previously established urine screening limit of 500 pg/ml and thus indicated that the detection time advice could be potentially reduced from 72 to 48 hr to allow more comprehensive treatment of gastric lesions. © 2018 John Wiley & Sons Ltd.

  15. Comparative study of HbA1c and fasting plasma glucose vs the oral glucose tolerance test for diagnosis of diabetes in people with tuberculosis.

    PubMed

    Aftab, H; Ambreen, A; Jamil, M; Garred, P; Petersen, J H; Nielsen, S D; Bygbjerg, I C; Christensen, D L

    2017-06-01

    To compare HbA 1c and fasting plasma glucose assessment, with the 2-h oral glucose tolerance test as reference, in screening for diabetes in people with turberculosis. Individuals (N=268) with newly diagnosed smear-positive tuberculosis were screened for diabetes at a tertiary hospital in Lahore, Pakistan. Diabetes diagnosis was based on WHO criteria: thresholds were ≥48 mmol/mol (≥6.5%) for HbA 1c and ≥7.0mmol/l for fasting plasma glucose. The proportion of participants diagnosed with diabetes was 4.9% (n =13) by oral glucose tolerance test, while 11.9% (n =32) and 14.6% (n =39) were diagnosed with diabetes using HbA 1c and fasting plasma glucose criteria, respectively. The area under the receiver-operating characteristic curve was 0.79 (95% CI 0.64 to 0.94) for HbA 1c and 0.61 (95% CI 0.50 to 0.73) for fasting plasma glucose, with a borderline significant difference between the two tests (P=0.07). HbA 1c and fasting plasma glucose performed equally in terms of diagnosing new diabetes cases in individuals with tuberculosis, but the proportion of participants falsely classified as positive was higher for fasting plasma glucose. This may be explained by acute blood glucose fluctuations when using fasting plasma glucose. HbA 1c may be a more reliable test in individuals with transient hyperglycaemia. © 2017 Diabetes UK.

  16. A dynamical model of plasma turbulence in the solar wind

    PubMed Central

    Howes, G. G.

    2015-01-01

    A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kinetic plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfvén waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfvén waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature. PMID:25848075

  17. A bifractal nature of reticular patterns induced by oxygen plasma on polymer films

    NASA Astrophysics Data System (ADS)

    Bae, Junwan; Lee, I. J.

    2015-05-01

    Plasma etching was demonstrated to be a promising tool for generating self-organized nano-patterns on various commercial films. Unfortunately, dynamic scaling approach toward fundamental understanding of the formation and growth of the plasma-induced nano-structure has not always been straightforward. The temporal evolution of self-aligned nano-patterns may often evolve with an additional scale-invariance, which leads to breakdown of the well-established dynamic scaling law. The concept of a bifractal interface is successfully applied to reticular patterns induced by oxygen plasma on the surface of polymer films. The reticular pattern, composed of nano-size self-aligned protuberances and underlying structure, develops two types of anomalous dynamic scaling characterized by super-roughening and intrinsic anomalous scaling, respectively. The diffusion and aggregation of short-cleaved chains under the plasma environment are responsible for the regular distribution of the nano-size protuberances. Remarkably, it is uncovered that the dynamic roughening of the underlying structure is governed by a relaxation mechanism described by the Edwards-Wilkinson universality class with a conservative noise. The evidence for the basic phase, characterized by the negative roughness and growth exponents, has been elusive since its first theoretical consideration more than two decades ago.

  18. Physics in Screening Environments

    NASA Astrophysics Data System (ADS)

    Certik, Ondrej

    In the current study, we investigated atoms in screening environments like plasmas. It is common practice to extract physical data, such as temperature and electron densities, from plasma experiments. We present results that address inherent computational difficulties that arise when the screening approach is extended to include the interaction between the atomic electrons. We show that there may arise an ambiguity in the interpretation of physical properties, such as temperature and charge density, from experimental data due to the opposing effects of electron-nucleus screening and electron-electron screening. The focus of the work, however, is on the resolution of inherent computational challenges that appear in the computation of two-particle matrix elements. Those enter already at the Hartree-Fock level. Furthermore, as examples of post Hartree-Fock calculations, we show second-order Green's function results and many body perturbation theory results of second order. A self-contained derivation of all necessary equations has been included. The accuracy of the implementation of the method is established by comparing standard unscreened results for various atoms and molecules against literature for Hartree-Fock as well as Green's function and many body perturbation theory. The main results of the thesis are presented in the chapter called Screened Results, where the behavior of several atomic systems depending on electron-electron and electron-nucleus Debye screening was studied. The computer code that we have developed has been made available for anybody to use. Finally, we present and discuss results obtained for screened interactions. We also examine thoroughly the computational details of the calculations and particular implementations of the method.

  19. Corruption of radio metric Doppler due to solar plasma dynamics: S/X dual-frequency Doppler calibration for these effects

    NASA Technical Reports Server (NTRS)

    Winn, F. B.; Reinbold, S. R.; Yip, K. W.; Koch, R. E.; Lubeley, A.

    1975-01-01

    Doppler data from Mariner 6, 7, 9, and 10 and Pioneer 10 and 11 were discussed and the rms noise level for various sun-earth-probe angles were shown. The noise levels of both S- and X-band Doppler data for sun-earth-probe angles smaller than 20 deg were observed to be orders of magnitude greater than nominal. Such solar plasma-related Doppler degradation reduced the Mariner 10-Mercury 11 encounter navigation accuracy by nearly a factor of 10. Furthermore, this degradation was shown to be indirectly related to plasma dynamics and not a direct measure of the dynamics.

  20. An Experimental Study of a Pulsed Electromagnetic Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Lee, Mike; Smith, James; Martin, Adam; Markusic, Tom E.; Cassibry, Jason T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) pulsed electromagnetic plasma accelerator (PEPA-0). Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  1. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  2. Screening for phaeochromocytoma and paraganglioma: impact of using supine reference intervals for plasma metanephrines with samples collected from fasted/seated patients.

    PubMed

    Casey, R; Griffin, T P; Wall, D; Dennedy, M C; Bell, M; O'Shea, P M

    2017-01-01

    Background The Endocrine Society Clinical Practice Guideline on Phaeochomocytoma and Paraganglioma recommends phlebotomy for plasma-free metanephrines with patients fasted and supine using appropriately defined reference intervals. Studies have shown higher diagnostic sensitivities using these criteria. Further, with seated-sampling protocols, for result interpretation, reference intervals that do not compromise diagnostic sensitivity should be employed. Objective To determine the impact on diagnostic performance and financial cost of using supine reference intervals for result interpretation with our current plasma-free metanephrines fasted/seated-sampling protocol. Methods We conducted a retrospective cohort study of patients who underwent screening for PPGL using plasma-free metanephrines from 2009 to 2014 at Galway University Hospitals. Plasma-free metanephrines were measured using liquid chromatography-tandem mass spectrometry. Supine thresholds for plasma normetanephrine and metanephrine set at 610 pmol/L and 310 pmol/L, respectively, were used. Results A total of 183 patients were evaluated. Mean age of participants was 53.4 (±16.3) years. Five of 183 (2.7%) patients had histologically confirmed PPGL (males, n=4). Using seated reference intervals for plasma-free metanephrines, diagnostic sensitivity and specificity were 100% and 98.9%, respectively, with two false-positive cases. Application of reference intervals established in subjects supine and fasted to this cohort gave diagnostic sensitivity of 100% with specificity of 74.7%. Financial analysis of each pretesting strategy demonstrated cost-equivalence (€147.27/patient). Conclusion Our cost analysis, together with the evidence that fasted/supine-sampling for plasma-free metanephrines, offers more reliable exclusion of PPGL mandates changing our current practice. This study highlights the important advantages of standardized diagnostic protocols for plasma-free metanephrines to ensure the highest diagnostic accuracy for investigation of PPGL.

  3. Ras plasma membrane signalling platforms

    PubMed Central

    2005-01-01

    The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction. PMID:15954863

  4. Dynamics of HIV-1 RNA Near the Plasma Membrane during Virus Assembly.

    PubMed

    Sardo, Luca; Hatch, Steven C; Chen, Jianbo; Nikolaitchik, Olga; Burdick, Ryan C; Chen, De; Westlake, Christopher J; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2015-11-01

    To increase our understanding of the events that lead to HIV-1 genome packaging, we examined the dynamics of viral RNA and Gag-RNA interactions near the plasma membrane by using total internal reflection fluorescence microscopy. We labeled HIV-1 RNA with a photoconvertible Eos protein via an RNA-binding protein that recognizes stem-loop sequences engineered into the viral genome. Near-UV light exposure causes an irreversible structural change in Eos and alters its emitted fluorescence from green to red. We studied the dynamics of HIV-1 RNA by photoconverting Eos near the plasma membrane, and we monitored the population of photoconverted red-Eos-labeled RNA signals over time. We found that in the absence of Gag, most of the HIV-1 RNAs stayed near the plasma membrane transiently, for a few minutes. The presence of Gag significantly increased the time that RNAs stayed near the plasma membrane: most of the RNAs were still detected after 30 min. We then quantified the proportion of HIV-1 RNAs near the plasma membrane that were packaged into assembling viral complexes. By tagging Gag with blue fluorescent protein, we observed that only a portion, ∼13 to 34%, of the HIV-1 RNAs that reached the membrane were recruited into assembling particles in an hour, and the frequency of HIV-1 RNA packaging varied with the Gag expression level. Our studies reveal the HIV-1 RNA dynamics on the plasma membrane and the efficiency of RNA recruitment and provide insights into the events leading to the generation of infectious HIV-1 virions. Nascent HIV-1 particles assemble on plasma membranes. During the assembly process, HIV-1 RNA genomes must be encapsidated into viral complexes to generate infectious particles. To gain insights into the RNA packaging and virus assembly mechanisms, we labeled and monitored the HIV-1 RNA signals near the plasma membrane. Our results showed that most of the HIV-1 RNAs stayed near the plasma membrane for only a few minutes in the absence of Gag, whereas most HIV-1 RNAs stayed at the plasma membrane for 15 to 60 min in the presence of Gag. Our results also demonstrated that only a small proportion of the HIV-1 RNAs, approximately 1/10 to 1/3 of the RNAs that reached the plasma membrane, was incorporated into viral protein complexes. These studies determined the dynamics of HIV-1 RNA on the plasma membrane and obtained temporal information on RNA-Gag interactions that lead to RNA encapsidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François

    2016-09-01

    Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.

  6. Evidence of Mixed-mode oscillations and Farey arithmetic in double plasma system in presence of fireball

    NASA Astrophysics Data System (ADS)

    Mitra, Vramori; Sarma, Bornali; Sarma, Arun

    2017-10-01

    Plasma fireballs are luminous glowing region formed around a positively biased electrode. The present work reports the observation of mix mode oscillation (MMO) in the dynamics of plasma oscillations that are excited in the presence of fireball in a double plasma device. Source voltage and applied electrode voltage are considered as the controlling parameters for the experiment. Many sequences of distinct multi peaked periodic states reflects the presence of MMO with the variation of control parameter. The sequences of states with two patterns are characterized well by Farey arithmetic, which provides rational approximations of irrational numbers. These states can be characterized by a firing number, the ratio of the number of small amplitude oscillations to the total number of oscillations per period. The dynamical transition in plasma fireball is also demonstrated by spectral analysis, recurrence quantification analysis (RQA) and by statistical measures viz., skewness and kurtosis. The mix mode phenomenon observed in the experiment is consistent with a model that describes the dynamics of ionization instabilities.

  7. The dynamic effects of metal vapour in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Haidar, Jawad

    2010-04-01

    Numerical simulations for the dynamic effects of metal vapour in gas metal arc welding (GMAW) suggest that vapour from the welding droplet at the tip of the welding wire has a significant influence on the plasma properties. It is found that for the evaporation rates calculated for arcs in pure argon, the dynamic effects of metal vapour markedly cool down the plasma in the central region of the arc, leading to the formation of a low temperature zone centred on the arc axis, in agreement with experimental measurements in the literature. Radiation effects, omitted in this paper, may produce further cooling of the plasma gas. The results highlight major deficiencies in the common approach to modelling the GMAW process and suggest that accurate description of GMAW must include the influence of metal vapour on the plasma.

  8. Implosion dynamics of condensed Z-pinch at the Angara-5-1 facility

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. V.; Grabovski, E. V.; Gritsuk, A. N.; Volobuev, I. V.; Kazakov, E. D.; Kalinin, Yu. G.; Korolev, V. D.; Laukhin, Ya. I.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Frolov, I. N.

    2017-08-01

    The implosion dynamics of a condensed Z-pinch at load currents of up to 3.5 MA and a current rise time of 100 ns was studied experimentally at the Angara-5-1 facility. To increase the energy density, 1- to 3-mm-diameter cylinders made of a deuterated polyethylene-agar-agar mixture or microporous deuterated polyethylene with a mass density of 0.03-0.5 g/cm3 were installed in the central region of the loads. The plasma spatiotemporal characteristics were studied using the diagnostic complex of the Angara-5-1 facility, including electron-optical streak and frame imaging, time-integrated X-ray imaging, soft X-ray (SXR) measurements, and vacuum UV spectroscopy. Most information on the plasma dynamics was obtained using a ten-frame X-ray camera ( E > 100 eV) with an exposure of 4 ns. SXR pulses were recorded using photoemissive vacuum X-ray detectors. The energy characteristics of neutron emission were measured using the time-offlight method with the help of scintillation detectors arranged along and across the pinch axis. The neutron yield was measured by activation detectors. The experimental results indicate that the plasma dynamics depends weakly on the load density. As a rule, two stages of plasma implosion were observed. The formation of hot plasma spots in the initial stage of plasma expansion from the pinch axis was accompanied by short pulses of SXR and neutron emission. The neutron yield reached (0.4-3) × 1010 neutrons/shot and was almost independent of the load density due to specific features of Z-pinch dynamics.

  9. The Structure of Solar Active Regions

    NASA Astrophysics Data System (ADS)

    Vourlidas, A.; Bastian, T. S.

    1992-05-01

    In past years, x-ray observations of solar active regions have lead to the expectation of greater brightness temperatures at radio wavelengths than those typically observed. It has been suggested that cool plasma in the corona along the line of sight attenuates radio emission via free-free absorption. If such plasma is present, it has consequences for both the microwave spectrum and its polarization properties. In order to test these ideas, high quality radio and x-ray maps are required. We present a comprehensive set of observations of a large solar active region (NOAO/USAF number 5131) made during the IAU sanctioned International Solar Month in September, 1988. The VLA was used to image the Sun in the 90, 20, 6 and 3.6 cm bands between 1--4 September. To improve the image quality we used the technique of frequency synthesis at 3.6, 6 and 20 cm. The final maps are among the best in dynamic range yet obtained. In addition to the radio maps, the data base includes images from the SMM XRP in Fe XVII, magnetograms, and Hα observations. We reconcile the x-ray and radio observations with a simple model which differs somewhat from past models. Rather than relying on a screen of cool plasma between the source and the observer, we take explicit account of the highly inhomogeneous structure of solar active regions. We briefly compare and contrast the consequences of this model with existing models.

  10. Dust particles interaction with plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticos, C. M.; Jepu, I.; Lungu, C. P.

    2009-11-10

    The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.

  11. Computation of the spectrum of spatial Lyapunov exponents for the spatially extended beam-plasma systems and electron-wave devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hramov, Alexander E.; Saratov State Technical University, Politechnicheskaja str., 77, Saratov 410054; Koronovskii, Alexey A.

    2012-08-15

    The spectrum of Lyapunov exponents is powerful tool for the analysis of the complex system dynamics. In the general framework of nonlinear dynamics, a number of the numerical techniques have been developed to obtain the spectrum of Lyapunov exponents for the complex temporal behavior of the systems with a few degree of freedom. Unfortunately, these methods cannot be applied directly to analysis of complex spatio-temporal dynamics of plasma devices which are characterized by the infinite phase space, since they are the spatially extended active media. In the present paper, we propose the method for the calculation of the spectrum ofmore » the spatial Lyapunov exponents (SLEs) for the spatially extended beam-plasma systems. The calculation technique is applied to the analysis of chaotic spatio-temporal oscillations in three different beam-plasma model: (1) simple plasma Pierce diode, (2) coupled Pierce diodes, and (3) electron-wave system with backward electromagnetic wave. We find an excellent agreement between the system dynamics and the behavior of the spectrum of the spatial Lyapunov exponents. Along with the proposed method, the possible problems of SLEs calculation are also discussed. It is shown that for the wide class of the spatially extended systems, the set of quantities included in the system state for SLEs calculation can be reduced using the appropriate feature of the plasma systems.« less

  12. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  13. The viscosity to entropy ratio: From string theory motivated bounds to warm dense matter

    DOE PAGES

    Faussurier, G.; Libby, S. B.; Silvestrelli, P. L.

    2014-07-04

    Here, we study the ratio of viscosity to entropy density in Yukawa one-component plasmas as a function of coupling parameter at fixed screening, and in realistic warm dense matter models as a function of temperature at fixed density. In these two situations, the ratio is minimized for values of the coupling parameters that depend on screening, and for temperatures that in turn depend on density and material. In this context, we also examine Rosenfeld arguments relating transport coefficients to excess reduced entropy for Yukawa one-component plasmas. For these cases we show that this ratio is always above the lower-bound conjecturemore » derived from string theory ideas.« less

  14. Lipidomics study of plasma phospholipid metabolism in early type 2 diabetes rats with ancient prescription Huang-Qi-San intervention by UPLC/Q-TOF-MS and correlation coefficient.

    PubMed

    Wu, Xia; Zhu, Jian-Cheng; Zhang, Yu; Li, Wei-Min; Rong, Xiang-Lu; Feng, Yi-Fan

    2016-08-25

    Potential impact of lipid research has been increasingly realized both in disease treatment and prevention. An effective metabolomics approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) along with multivariate statistic analysis has been applied for investigating the dynamic change of plasma phospholipids compositions in early type 2 diabetic rats after the treatment of an ancient prescription of Chinese Medicine Huang-Qi-San. The exported UPLC/Q-TOF-MS data of plasma samples were subjected to SIMCA-P and processed by bioMark, mixOmics, Rcomdr packages with R software. A clear score plots of plasma sample groups, including normal control group (NC), model group (MC), positive medicine control group (Flu) and Huang-Qi-San group (HQS), were achieved by principal-components analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). Biomarkers were screened out using student T test, principal component regression (PCR), partial least-squares regression (PLS) and important variable method (variable influence on projection, VIP). Structures of metabolites were identified and metabolic pathways were deduced by correlation coefficient. The relationship between compounds was explained by the correlation coefficient diagram, and the metabolic differences between similar compounds were illustrated. Based on KEGG database, the biological significances of identified biomarkers were described. The correlation coefficient was firstly applied to identify the structure and deduce the metabolic pathways of phospholipids metabolites, and the study provided a new methodological cue for further understanding the molecular mechanisms of metabolites in the process of regulating Huang-Qi-San for treating early type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. A computer model of solar panel-plasma interactions

    NASA Technical Reports Server (NTRS)

    Cooke, D. L.; Freeman, J. W.

    1980-01-01

    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.

  16. MicroRNA-6826 and -6875 in plasma are valuable non‑invasive biomarkers that predict the efficacy of vaccine treatment against metastatic colorectal cancer.

    PubMed

    Kijima, Taiki; Hazama, Shoichi; Tsunedomi, Ryouichi; Tanaka, Hironori; Takenouchi, Hiroko; Kanekiyo, Shinsuke; Inoue, Yuka; Nakashima, Masao; Iida, Michihisa; Sakamoto, Kazuhiko; Suzuki, Nobuaki; Takeda, Shigeru; Ueno, Tomio; Yamamoto, Shigeru; Yoshino, Shigefumi; Okuno, Kiyotaka; Nagano, Hiroaki

    2017-01-01

    Various vaccine treatments against metastatic colorectal cancer have been developed and applied. However, to improve the efficacy of immunotherapy, biomarkers that can predict the effects are needed. It has been reported that various microRNAs (miRNAs) in peripheral blood may be useful as non-invasive biomarkers. In this study, miRNAs influencing the efficacy of vaccine treatment were screened for in a microarray analysis of 13 plasma samples that were obtained from patients prior to vaccine treatment. To validate the screening results, real-time RT-PCR was performed using 93 plasma samples obtained from patients prior to vaccine treatment. Four candidate miRNAs were selected according to the results of the comprehensive analysis of miRNA expression, which were ranked using the Fisher criterion and the absolute value of the log2 ratio in the screening analysis. The validation analysis showed that in the HLA-A*2402‑matched patient group (vaccine-treated group), patients with a high expression of plasma miR-6826 had a poorer prognosis than those with a low expression (P=0.048). In contrast, in the HLA-A*2402-unmatched patient group (control group), there was no difference between the patients with high or low plasma miR-6826 expression (P=0.168). Similar results were obtained in the analysis of miR-6875 (P=0.029 and P=0.754, respectively). Moreover, multivariate analysis of the Cox regression model indicated that the expression of miR-6826 was the most significant predictor for overall survival (P=0.003, hazard ratio, 3.670). In conclusion, plasma miR-6826 and miR-6875 may be predictive biomarkers for a poor response to vaccine treatment. Although further clarification is needed regarding the functions of miR-6826 and miR-6875 and their relationship to immune‑related molecules, plasma miR-6826 and miR-6875 may be useful negative biomarkers for predicting the efficacy of vaccine treatment.

  17. A Sensitized Screen for Genes Promoting Invadopodia Function In Vivo: CDC-42 and Rab GDI-1 Direct Distinct Aspects of Invadopodia Formation

    PubMed Central

    Naegeli, Kaleb M.; Chi, Qiuyi; Ziel, Joshua W.; Hagedorn, Elliott J.; Park, Jieun E.; Jayadev, Ranjay; Sherwood, David R.

    2016-01-01

    Invadopodia are specialized membrane protrusions composed of F-actin, actin regulators, signaling proteins, and a dynamically trafficked invadopodial membrane that drive cell invasion through basement membrane (BM) barriers in development and cancer. Due to the challenges of studying invasion in vivo, mechanisms controlling invadopodia formation in their native environments remain poorly understood. We performed a sensitized genome-wide RNAi screen and identified 13 potential regulators of invadopodia during anchor cell (AC) invasion into the vulval epithelium in C. elegans. Confirming the specificity of this screen, we identified the Rho GTPase cdc-42, which mediates invadopodia formation in many cancer cell lines. Using live-cell imaging, we show that CDC-42 localizes to the AC-BM interface and is activated by an unidentified vulval signal(s) that induces invasion. CDC-42 is required for the invasive membrane localization of WSP-1 (N-WASP), a CDC-42 effector that promotes polymerization of F-actin. Loss of CDC-42 or WSP-1 resulted in fewer invadopodia and delayed BM breaching. We also characterized a novel invadopodia regulator, gdi-1 (Rab GDP dissociation inhibitor), which mediates membrane trafficking. We show that GDI-1 functions in the AC to promote invadopodia formation. In the absence of GDI-1, the specialized invadopodial membrane was no longer trafficked normally to the invasive membrane, and instead was distributed to plasma membrane throughout the cell. Surprisingly, the pro-invasive signal(s) from the vulval cells also controls GDI-1 activity and invadopodial membrane trafficking. These studies represent the first in vivo screen for genes regulating invadopodia and demonstrate that invadopodia formation requires the integration of distinct cellular processes that are coordinated by an extracellular cue. PMID:26765257

  18. A Sensitized Screen for Genes Promoting Invadopodia Function In Vivo: CDC-42 and Rab GDI-1 Direct Distinct Aspects of Invadopodia Formation.

    PubMed

    Lohmer, Lauren L; Clay, Matthew R; Naegeli, Kaleb M; Chi, Qiuyi; Ziel, Joshua W; Hagedorn, Elliott J; Park, Jieun E; Jayadev, Ranjay; Sherwood, David R

    2016-01-01

    Invadopodia are specialized membrane protrusions composed of F-actin, actin regulators, signaling proteins, and a dynamically trafficked invadopodial membrane that drive cell invasion through basement membrane (BM) barriers in development and cancer. Due to the challenges of studying invasion in vivo, mechanisms controlling invadopodia formation in their native environments remain poorly understood. We performed a sensitized genome-wide RNAi screen and identified 13 potential regulators of invadopodia during anchor cell (AC) invasion into the vulval epithelium in C. elegans. Confirming the specificity of this screen, we identified the Rho GTPase cdc-42, which mediates invadopodia formation in many cancer cell lines. Using live-cell imaging, we show that CDC-42 localizes to the AC-BM interface and is activated by an unidentified vulval signal(s) that induces invasion. CDC-42 is required for the invasive membrane localization of WSP-1 (N-WASP), a CDC-42 effector that promotes polymerization of F-actin. Loss of CDC-42 or WSP-1 resulted in fewer invadopodia and delayed BM breaching. We also characterized a novel invadopodia regulator, gdi-1 (Rab GDP dissociation inhibitor), which mediates membrane trafficking. We show that GDI-1 functions in the AC to promote invadopodia formation. In the absence of GDI-1, the specialized invadopodial membrane was no longer trafficked normally to the invasive membrane, and instead was distributed to plasma membrane throughout the cell. Surprisingly, the pro-invasive signal(s) from the vulval cells also controls GDI-1 activity and invadopodial membrane trafficking. These studies represent the first in vivo screen for genes regulating invadopodia and demonstrate that invadopodia formation requires the integration of distinct cellular processes that are coordinated by an extracellular cue.

  19. Diagnostic study of multiple double layer formation in expanding RF plasma

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shamik; Paul, Manash Kumar; Roy, Jitendra Nath; Nath, Aparna

    2018-03-01

    Intensely luminous double layers develop and then expand in size in a visibly glowing RF discharge produced using a plasma source consisting of a semi-transparent cylindrical mesh with a central electrode, in a linear plasma chamber. Although RF discharge is known to be independent of device geometry in the absence of magnetic field, the initiation of RF discharge using such a plasma source results in electron drift and further expansion of the plasma in the vessel. The dynamics of complex plasma structures are studied through electric probe diagnostics in the expanding RF plasma. The measurements made to study the parametric dependence of evolution of double layer structures are analyzed and presented here. The plasma parameter measurements suggest that the complex potential structures initially form with low potential difference between the layers and then gradually expand producing burst oscillations. The present study provides interesting information about the stability of plasma sheath and charge particle dynamics in it that are important to understand the underlying basic sheath physics along with applications in plasma acceleration and propulsion.

  20. Comparison of Estrogen-Responsive Plasma Protein Biomarkers and Reproductive Endpoints in Sheepshead Minnows Exposed to 17B-Trenbolone

    EPA Science Inventory

    Protein profiling can be used for detection of biomarkers that can be applied diagnostically to screen chemicals for endocrine modifying activity. In previous studies, mass spectral analysis revealed four peptides (2950.5, 2972.5, 3003.4, 3025.5 m/z) in the plasma of estrogen ag...

  1. 77 FR 68133 - Guidance for Industry: Use of Nucleic Acid Tests on Pooled and Individual Samples From Donors of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Blood and Blood Components, Including Source Plasma, To Reduce the Risk of Transmission of Hepatitis B... Components, including Source Plasma, to Reduce the Risk of Transmission of Hepatitis B Virus,'' dated October... (NAT) to screen blood donors for hepatitis B virus (HBV) deoxyribonucleic acid (DNA) and...

  2. Dynamic security contingency screening and ranking using neural networks.

    PubMed

    Mansour, Y; Vaahedi, E; El-Sharkawi, M A

    1997-01-01

    This paper summarizes BC Hydro's experience in applying neural networks to dynamic security contingency screening and ranking. The idea is to use the information on the prevailing operating condition and directly provide contingency screening and ranking using a trained neural network. To train the two neural networks for the large scale systems of BC Hydro and Hydro Quebec, in total 1691 detailed transient stability simulation were conducted, 1158 for BC Hydro system and 533 for the Hydro Quebec system. The simulation program was equipped with the energy margin calculation module (second kick) to measure the energy margin in each run. The first set of results showed poor performance for the neural networks in assessing the dynamic security. However a number of corrective measures improved the results significantly. These corrective measures included: 1) the effectiveness of output; 2) the number of outputs; 3) the type of features (static versus dynamic); 4) the number of features; 5) system partitioning; and 6) the ratio of training samples to features. The final results obtained using the large scale systems of BC Hydro and Hydro Quebec demonstrates a good potential for neural network in dynamic security assessment contingency screening and ranking.

  3. Comparing point-of-care A1C and random plasma glucose for screening diabetes in migrant farm workers.

    PubMed

    Wensil, Ashley M; Smith, Jennifer D; Pound, Melanie W; Herring, Charles

    2013-01-01

    To compare point-of-care (POC) glycosylated hemoglobin (A1C) and random plasma glucose (RPG) as a POC screening tool for prediabetes and diabetes in migrant farm workers of eastern North Carolina. Prospective, observational, single-center study. Federally qualified community health center in eastern North Carolina, from August to October 2011. Migrant farm workers 18 years or older who resided in a migrant camp in eastern North Carolina. Diabetes screening using POC A1C and RPG via fingerstick followed by venipuncture A1C and basic metabolic panel in individuals with a positive screening. Positive predictive value (PPV) of POC A1C and RPG, incidence of positive screening, incidence of confirmed diagnosis, concordance rate of the screening tools, and correlation between POC A1C and laboratory A1C. 206 workers participated in the screenings; screening identified 39 individuals with a POC A1C greater than 5.7% and 1 individual with both an RPG of 200 mg/dL or more and a POC A1C greater than 5.7%. Of the 39 individuals found to have a positive screening, 24 presented to Carolina Family Health Centers, Inc., for follow-up venipuncture; however, 1 participant did not have a venipuncture A1C, leaving 23 individuals with complete data. Two participants were diagnosed with diabetes and 17 with prediabetes. POC A1C had a PPV of 82.6%; however, the PPV of RPG could not be calculated due to the number of participants lost to follow-up. POC A1C correlated well with laboratory A1C regardless of time to follow-up. POC A1C should be considered for diabetes screening in high-risk populations. If the screening had been performed with RPG alone, 38 individuals would have gone undetected. Early identification of individuals with elevated blood glucose will likely decrease the risk of long-term complications.

  4. Reliability and Validity of Observational Risk Screening in Evaluating Dynamic Knee Valgus

    PubMed Central

    Ekegren, Christina L.; Miller, William C.; Celebrini, Richard G.; Eng, Janice J.; MacIntyre, Donna L.

    2012-01-01

    Study Design Nonexperimental methodological study. Objectives To determine the interrater and intrarater reliability and validity of using observational risk screening guidelines to evaluate dynamic knee valgus. Background A deficiency in the neuromuscular control of the hip has been identified as a key risk factor for non-contact anterior cruciate ligament (ACL) injury in post pubescent females. This deficiency can manifest itself as a valgus knee alignment during tasks involving hip and knee flexion. There are currently no scientifically tested methods to screen for dynamic knee valgus in the clinic or on the field. Methods Three physiotherapists used observational risk screening guidelines to rate 40 adolescent female soccer players according to their risk of ACL injury. The rating was based on the amount of dynamic knee valgus observed on a drop jump landing. Ratings were evaluated for intrarater and interrater agreement using kappa coefficients. Sensitivity and specificity of ratings were evaluated by comparing observational ratings with measurements obtained using 3-dimensional (3D) motion analysis. Results Kappa coefficients for intrarater and interrater agreement ranged from 0.75 to 0.85, indicating that ratings were reasonably consistent over time and between physiotherapists. Sensitivity values were inadequate, ranging from 67–87%. This indicated that raters failed to detect up to a third of “truly high risk” individuals. Specificity values ranged from 60–72% which was considered adequate for the purposes of the screen. Conclusion Observational risk screening is a practical and cost-effective method of screening for ACL injury risk. Rater agreement and specificity were acceptable for this method but sensitivity was not. To detect a greater proportion of individuals at risk of ACL injury, coaches and clinicians should ensure that they include additional tests for other high risk characteristics in their screening protocols. PMID:19721212

  5. Glass strengthening and patterning methods

    DOEpatents

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  6. The 3 DLE instrument on ATS-5. [plasma electron counter

    NASA Technical Reports Server (NTRS)

    Deforest, S. E.

    1973-01-01

    The performance and operation of the DLE plasma electron counter on board the ATS 5 are described. Two methods of data presentation, microfilm line plots and spectrograms, are discussed along with plasma dynamics, plasma flow velocity, electrostatic charging, and wave-particle interactions.

  7. Investigation of plasma dynamics during the growth of amorphous titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Jee, Hyeok; Yu, Young-Hun; Seo, Hye-Won

    2018-06-01

    We have grown amorphous titanium dioxide thin films by reactive DC sputtering method using a different argon/oxygen partial pressure at a room temperature. The plasma dynamics of the process, reactive and sputtered gas particles was investigated via optical emission spectroscopy. We then studied the correlations between the plasma states and the structural/optical properties of the films. The growth rate and morphology of the titanium dioxide thin films turned out to be contingent with the population and the energy profile of Ar, O, and TiO plasma. In particular, the films grown under energetic TiO plasma have shown a direct band-to-band transition with an optical energy band gap up to ∼4.2 eV.

  8. Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.

    2009-11-01

    The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.

  9. Blood test using surface-enhanced Raman spectroscopy with colloidal silver nanoparticle substrate to detect polyps and colorectal cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Feng, Shangyuan; Tai, Isabella T.; Chen, Guannan; Chen, Rong; Zeng, Haishan

    2016-03-01

    Colorectal cancer (CRC) is the third most common type of cancer and forth leading cause of cancer-related death. Early diagnosis is the key to long-term patient survival. Programmatic screening for the general population has shown to be cost-effective in reducing the incidence and mortality from CRC. Current CRC screening strategy relies on a broad range of test techniques such as fecal based tests and endoscopic exams. Occult blood tests like fecal immunochemical test is a cost effective way to detect CRC but have limited diagnostic values in detecting adenomatous polyp, the most treatable precursor to CRC. In the present work, we proposed the use of surface enhanced Raman spectroscopy (SERS) with silver nanoparticles as substrate to analyze blood plasma for detecting both CRC and adenomatous polyps. Blood plasma samples collected from healthy subjects and patients diagnosed with adenomas and CRC were prepared with nanoparticles and measured using a real-time fiber optic probe based Raman system. The collected SERS spectra are analyzed with partial least squares-discriminant analysis. Classification of normal versus CRC plus adenomatous polyps achieved diagnostic sensitivity of 86.4% and specificity of 80%. This exploratory study suggests that blood plasma SERS analysis has potential to become a screening test for detecting both CRC and adenomas.

  10. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion. Overview of OSU Research Plan

    DTIC Science & Technology

    2009-11-04

    air, low-temperature plasma chemistry kinetic model Nonequilibrium Thermodynamics Laboratories The Ohio State University • Air plasma model...problems require separate analysis: • Nsec pulse plasma / sheath models cannot incorporate detailed reactive plasma chemistry : too many species ( 100...and reactions ( 1 000)~ ~ , • Detailed plasma chemistry models (quasi-neutral) cannot incorporate repetitive, nsec time scale sheath dynamics and plasma

  11. The dynamics of a surface plasma generated by an independent source in the field of laser emission

    NASA Astrophysics Data System (ADS)

    Kovalev, A. S.; Popov, A. M.; Seleznev, B. V.; Feoktistov, V. A.

    1986-09-01

    A study is made of the evolution of a plasma formation generated by a high-power short pulse of an Nd laser on a metal surface, with the relatively weak emission of a CO2 laser focused on the surface. The thresholds of a sustained breakdown plasma are measured as a function of the plasma-generating pulse energy. The dynamics of plasma front propagation along the target surface and in the direction opposite to the laser beam direction is investigated. It is shown that the use of an additional laser with an energy less than that of the CO2 laser by 2-3 orders of magnitude makes it possible to generate a surface plasma capable of absorbing and transferring to the target a significantly greater fraction of the CO2 laser energy.

  12. Particle in cell simulation on plasma grating contrast enhancement induced by infrared laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Yuan, T.; Xu, Y. X.; Wang, J. X.; Luo, S. N.

    2018-05-01

    The dynamics of plasma grating contrast enhancement (PGCE) irradiated by an infrared laser pulse is investigated with one dimensional particle-in-cell simulation where field ionization and impact ionization are simultaneously considered for the first time. The numeric results show that the impact ionization dominates the PGCE process. Upon the interaction with the laser pulse, abundant free electrons are efficiently accelerated and subsequently triggered massive impact ionizations in the density ridges of the plasma grating for the higher local plasma energy density, which efficiently enhances the grating contrast. Besides the dynamic analysis of PGCE, we explore the parameter space of the incident infrared laser pulse to optimize the PGCE effect, which can provide useful guidance to experiments related to laser-plasma-grating interactions and may find applications in prolonging the duration of the plasma grating.

  13. Experimental measurement of self-diffusion in a strongly coupled plasma

    DOE PAGES

    Strickler, Trevor S.; Langin, Thomas K.; McQuillen, Paul; ...

    2016-05-17

    Here, we present a study of the collisional relaxation of ion velocities in a strongly coupled, ultracold neutral plasma on short time scales compared to the inverse collision rate. The measured average velocity of a tagged population of ions is shown to be equivalent to the ion-velocity autocorrelation function. We thus gain access to fundamental aspects of the single-particle dynamics in strongly coupled plasmas and to the ion self-diffusion constant under conditions where experimental measurements have been lacking. Nonexponential decay towards equilibrium of the average velocity heralds non-Markovian dynamics that are not predicted by traditional descriptions of weakly coupled plasmas.more » This demonstrates the utility of ultracold neutral plasmas for studying the effects of strong coupling on collisional processes, which is of interest for dense laboratory and astrophysical plasmas.« less

  14. Equations of state and diagrams of two-dimensional liquid dusty plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Lin, Wei; Li, Wei; Wang, Qiaoling

    2016-09-01

    Recently, the pressure of two-dimensional (2D) Yukawa liquids has been calculated from the simulations of isochores [Feng et al., J. Phys. D: Appl. Phys. 49, 235203 (2016)], which is applicable to 2D dusty plasmas. Thus, the equation of state for 2D strongly coupled liquid dusty plasmas is obtained. Isobars and isotherms of 2D liquid dusty plasmas are derived from this equation of state. For 2D liquid dusty plasmas, the surface corresponding to this equation of state has also been obtained in the 3D space of the pressure, the temperature, and the screening parameter which is related to the volume in the equilibrium state.

  15. Gas separation and bubble behavior at a woven screen

    NASA Astrophysics Data System (ADS)

    Conrath, Michael; Dreyer, Michael E.

    Gas-liquid two phase flows are widespread and in many applications the separation of both phases is necessary. Chemical reactors, water treatment devices or gas-free delivery of liquids like propellant are only some of them. We study the performance of a woven metal screen in respect to its phase separation behavior under static and dynamic conditions. Beside hydraulic screen resistance and static bubble point, our study also comprises the bubble detachment from the screen upon gas breakthrough. Since a woven screen is essentially an array of identical pores, analogies to bubble detachment from a needle can be established. While the bubble point poses an upper limit for pressurized gas at a wetted screen to preclude gas breakthrough, the necessary pressure for growing bubbles to detach from the screen pores a lower limit when breakthrough is already in progress. Based on that inside, the dynamic bubble point effects were constituted that relate to a trapped bubble at such a screen in liquid flow. A trapped is caused to break through the screen by the flow-induced pressure drop across it. Our model includes axially symmetric bubble shapes, degree of coverage of the screen and bubble pressurization due to hydraulic losses in the rest of the circuit. We have built an experiment that consists of a Dutch Twilled woven screen made of stainless steel in a vertical acrylic glass tube. The liquid is silicon oil SF0.65. The screen is suspended perpendicular to the liquid flow which is forced through it at variable flow rate. Controlled injection of air from a needle allows us to examine the ability of the screen to separate gas and liquid along the former mentioned effects. We present experimental data on static bubble point and detachment pressure for breakthrough at different gas supply rates that suggest a useful criterion for reliable static bubble point measurements. Results for the dynamic bubble point are presented that include i) screen pressure drop for different trapped bubble volumes, liquid flow rates and flow-induced compression, ii) typical breakthrough of a trapped bubble at rising liquid flow rate and iii) steady gas supply in steady liquid flow. It shows that our model can explain the experimental observations. One of the interesting findings for the dynamic bubble point is that hydraulic losses in the rest of the circuit will shift the breakthrough of gas to higher liquid flow rates.

  16. Nonlinear Dynamic Polarization Force on a Relativistic Test Particle in a Nonequilibrium Beam-Plasma System.

    DTIC Science & Technology

    1983-09-01

    AD-Ai36 768 NONLINEAR DYNAMIC POLARIZATION FORCE ON A RELATIVISTIC i / i TEST PARTICLE IN A NONEDUILIBRIUM BEAM-PLASMA SYSTEM (U) HARRY DIAMOND LABS...longer needed. Do not return I to the orgiatr A prellmiiary version of this report was Issued as HDL-PRL82-6 in May I D82...conditions for the occurrence of radiative instability in relativistic beam-plasma systems. DD FmOA 43 MTION OF I Nov 5s OBSOETE- IIS -- - 1 UNCLASSIFIED

  17. An Experimental Study of the Dynamics of an Unsteady Turbulent Boundary Layer.

    DTIC Science & Technology

    1982-12-01

    honeycomb combination into the screen box. The screen box is made of plexiglas, and the screens are made of stainless steel wire (24 gauge, 70% porosity...port plug was modified to accommodate at its cen- ter a stainless steel stem with a disk on the end toward the inside of the tunnel. The stem is spring...necessay and Identify by block nomber) * turbulent boundary layers fluid dynamics free stream velocity A B r R CT si royy.rs ebb it ,imseesa nd ideiiit

  18. Discharge dynamics of pin-to-plate dielectric barrier discharge at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Liqun; Huang, Xiaojiang; Member of Magnetic Confinement Fusion Research Center, Ministry of Education of the People's Republic of China, Shanghai 201620

    2010-11-15

    The discharge dynamics of pin-to-plate dielectric barrier discharge was studied in atmospheric helium at 20 kHz. The discharge was predominately ignited in positive half cycle of applied voltage with sinusoidal waveform. The temporal evolution of the discharge was investigated vertically along the discharge gap and radically on the dielectric surface by time resolved imaging. It is found that a discharge column with a diameter of 2 mm was ignited above the pin electrode and expanded toward a plate electrode. On the dielectric surface with space charge accumulation, plasma disk in terms of plasma ring was formed with radius up tomore » 25 mm. The expansion velocity of plasma ring can reach a hypersonic speed of 3.0 km/s. The ionization wave due to electron diffusion is considered to be the mechanism for plasma ring formation and dynamics.« less

  19. Discharge dynamics of pin-to-plate dielectric barrier discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sun, Liqun; Huang, Xiaojiang; Zhang, Jie; Zhang, Jing; Shi, J. J.

    2010-11-01

    The discharge dynamics of pin-to-plate dielectric barrier discharge was studied in atmospheric helium at 20 kHz. The discharge was predominately ignited in positive half cycle of applied voltage with sinusoidal waveform. The temporal evolution of the discharge was investigated vertically along the discharge gap and radically on the dielectric surface by time resolved imaging. It is found that a discharge column with a diameter of 2 mm was ignited above the pin electrode and expanded toward a plate electrode. On the dielectric surface with space charge accumulation, plasma disk in terms of plasma ring was formed with radius up to 25 mm. The expansion velocity of plasma ring can reach a hypersonic speed of 3.0 km/s. The ionization wave due to electron diffusion is considered to be the mechanism for plasma ring formation and dynamics.

  20. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    NASA Astrophysics Data System (ADS)

    Ida, K.; Sakamoto, Y.; Inagaki, S.; Takenaga, H.; Isayama, A.; Matsunaga, G.; Sakamoto, R.; Tanaka, K.; Ide, S.; Fujita, T.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; LHD experimental Group; JT-60 Team

    2009-01-01

    Transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and the JT-60U tokamak is described. In the dynamic transport study the time of transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of flattening of the temperature profile in the core region and a spontaneous phase transition from a zero curvature ITB (hyperbolic tangent shaped ITB) or a positive curvature ITB (concaved shaped ITB) to a negative curvature ITB (convex shaped ITB) and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a zero curvature ITB and a convex ITB suggest the strong interaction of turbulent transport in space.

  1. Three-dimensional modeling of plasma edge transport and divertor fluxes during application of resonant magnetic perturbations on ITER

    NASA Astrophysics Data System (ADS)

    Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.

    2016-06-01

    Results from three-dimensional modeling of plasma edge transport and plasma-wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q  =  10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95  =  4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced RMP coil current yield a reduction of the width of the divertor flux spreading to about 20-25 cm and cause increased peak heat fluxes back to values similar to those in the axisymmetric case. The dependencies of these features on the divertor recycling regime and the perpendicular transport assumptions, as well as toroidal averaged effects mimicking rotation of the RMP field, are discussed in the paper.

  2. Investigation of the spatial structure and developmental dynamics of near-Earth plasma perturbations under the action of powerful HF radio waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, A. S., E-mail: alexis-belov@yandex.ru

    2015-10-15

    Results of numerical simulations of the near-Earth plasma perturbations induced by powerful HF radio waves from the SURA heating facility are presented. The simulations were performed using a modified version of the SAMI2 ionospheric model for the input parameters corresponding to the series of in-situ SURA–DEMETER experiments. The spatial structure and developmental dynamics of large-scale plasma temperature and density perturbations have been investigated. The characteristic formation and relaxation times of the induced large-scale plasma perturbations at the altitudes of the Earth’s outer ionosphere have been determined.

  3. 3D Global Braginskii Simulations of Plasma Dynamics and Turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin; Rogers, Barrett

    2013-10-01

    3D global two-fluid simulations are presented in an ongoing effort to identify and understand the plasma dynamics in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. Modeling is done using a modified version of the Global Braginskii Solver (GBS) that models the plasma from source to edge region on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping. Progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and biasing the front and side walls. Along with trying to understand the effect sheath's and neutrals have in setting the plasma potential, work is being done to model the biasable limiter recently used by colleagues at UCLA to better understand flow shear and particle transport in the LAPD. Comparisons of the zero bias case are presented along with analysis of the growth and dynamics of turbulent structures (such as drift waves) seen in the simulations. Supported through CICART under the auspices of the DOE's EPSCoR Grant No. DE-FG02-10ER46372.

  4. Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticoş, Cǎtǎlin M.; Wurden, Glen A.

    2007-10-01

    Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 1015m-3 electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas (˜10eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry.

  5. One-Dimensional Spacecraft Formation Flight Testbed for Terrestrial Charged Relative Motion Experiments

    NASA Astrophysics Data System (ADS)

    Seubert, Carl R.

    Spacecraft operating in a desired formation offers an abundance of attractive mission capabilities. One proposed method of controlling a close formation of spacecraft is with Coulomb (electrostatic) forces. The Coulomb formation flight idea utilizes charge emission to drive the spacecraft to kilovolt-level potentials and generate adjustable, micronewton- to millinewton-level Coulomb forces for relative position control. In order to advance the prospects of the Coulomb formation flight concept, this dissertation presents the design and implementation of a unique one-dimensional testbed. The disturbances of the testbed are identified and reduced below 1 mN. This noise level offers a near-frictionless platform that is used to perform relative motion actuation with electrostatics in a terrestrial atmospheric environment. Potentials up to 30 kV are used to actuate a cart over a translational range of motion of 40 cm. A challenge to both theoretical and hardware implemented electrostatic actuation developments is correctly modeling the forces between finite charged bodies, outside a vacuum. To remedy this, studies of Earth orbit plasmas and Coulomb force theory is used to derive and propose a model of the Coulomb force between finite spheres in close proximity, in a plasma. This plasma force model is then used as a basis for a candidate terrestrial force model. The plasma-like parameters of this terrestrial model are estimated using charged motion data from fixed-potential, single-direction experiments on the testbed. The testbed is advanced to the level of autonomous feedback position control using solely Coulomb force actuation. This allows relative motion repositioning on a flat and level track as well as an inclined track that mimics the dynamics of two charged spacecraft that are aligned with the principal orbit axis. This controlled motion is accurately predicted with simulations using the terrestrial force model. This demonstrates similarities between the partial charge shielding of space-based plasmas to the electrostatic screening in the laboratory atmosphere.

  6. Plasma levels of lysine, tyrosine, and valine during pregnancy are independent risk factors of insulin resistance and gestational diabetes.

    PubMed

    Park, Sunmin; Park, Jin Young; Lee, Ju Hong; Kim, Sung-Hoon

    2015-03-01

    This study compared plasma concentrations of amino acids in pregnant women with and without gestational diabetes mellitus (GDM) and identified the association between plasma amino acid levels and GDM, insulin resistance, and insulin secretion at 24-28 weeks of pregnancy. Circulating amino acid levels were evaluated using high-performance liquid chromatography at 24-28 weeks of pregnancy in 25 non-GDM and 64 GDM women after adjusting for covariates such as maternal age, body mass index (BMI) before pregnancy, BMI and gestational age at screening GDM, and daily caloric intake. Backward stepwise logistic regression analysis was used to identify the predictors of developing GDM, and homeostatic model assessments for insulin resistance (HOMA-IR) and β-cell function (HOMA-B). Circulating levels of amino acids except threonine and tyrosine were significantly higher in GDM women than non-GDM women. Along with the intakes of energy, protein, and fat from animal sources, the intakes of each amino acid were significantly higher in the GDM group without a direct correlation to plasma amino acid levels. The variation in GDM development was explained by maternal age, diastolic blood pressure, and plasma lysine levels (R(2)=0.691). Height, BMI before pregnancy, systolic blood pressure, and plasma tyrosine and valine levels accounted for the variation in HOMA-IR (R(2)=0.589). The 53.3% variation of HOMA-B was explained by maternal age, BMI at GDM screening, plasma insulin level at 1 h during the oral glucose tolerance test (OGTT), and plasma valine level. Circulating concentrations of lysine, tyrosine, and valine were independently and positively associated with GDM through modifying insulin resistance and secretion.

  7. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tao; Qian, Weijun; Gritsenko, Marina A.

    2006-06-08

    While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this ''divide-and-conquer'' strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) thatmore » covered 3654 nonredundant proteins. Numerous low-abundance proteins were identified, exemplified by 78 ''classic'' cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.« less

  8. An extended model of vesicle fusion at the plasma membrane to estimate protein lateral diffusion from TIRF microscopy images.

    PubMed

    Basset, Antoine; Bouthemy, Patrick; Boulanger, Jérôme; Waharte, François; Salamero, Jean; Kervrann, Charles

    2017-07-24

    Characterizing membrane dynamics is a key issue to understand cell exchanges with the extra-cellular medium. Total internal reflection fluorescence microscopy (TIRFM) is well suited to focus on the late steps of exocytosis at the plasma membrane. However, it is still a challenging task to quantify (lateral) diffusion and estimate local dynamics of proteins. A new model was introduced to represent the behavior of cargo transmembrane proteins during the vesicle fusion to the plasma membrane at the end of the exocytosis process. Two biophysical parameters, the diffusion coefficient and the release rate parameter, are automatically estimated from TIRFM image sequences, to account for both the lateral diffusion of molecules at the membrane and the continuous release of the proteins from the vesicle to the plasma membrane. Quantitative evaluation on 300 realistic computer-generated image sequences demonstrated the efficiency and accuracy of the method. The application of our method on 16 real TIRFM image sequences additionally revealed differences in the dynamic behavior of Transferrin Receptor (TfR) and Langerin proteins. An automated method has been designed to simultaneously estimate the diffusion coefficient and the release rate for each individual vesicle fusion event at the plasma membrane in TIRFM image sequences. It can be exploited for further deciphering cell membrane dynamics.

  9. Modeling of laser induced air plasma and shock wave dynamics using 2D-hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; S, Sai Shiva; Chelikani, Leela; Ikkurthi, Venkata Ramana; C. D., Sijoy; Chaturvedi, Shashank; Acrhem, University Of Hyderabad Team; Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam Team

    2017-06-01

    The laser induced air plasma dynamics and the SW evolution modeled using the two dimensional hydrodynamic code by considering two different EOS: ideal gas EOS with charge state effects taken into consideration and Chemical Equilibrium applications (CEA) EOS considering the chemical kinetics of different species will be presented. The inverse bremsstrahlung absorption process due to electron-ion and electron-neutrals is considered for the laser-air interaction process for both the models. The numerical results obtained with the two models were compared with that of the experimental observations over the time scales of 200 - 4000 ns at an input laser intensity of 2.3 ×1010 W/cm2. The comparison shows that the plasma and shock dynamics differ significantly for two EOS considered. With the ideas gas EOS the asymmetric expansion and the subsequent plasma dynamics have been well reproduced as observed in the experiments, whereas with the CEA model these processes were not reproduced due to the laser energy absorption occurring mostly at the focal volume. ACRHEM team thank DRDO, India for funding.

  10. Plasma dynamics and structural modifications induced by femtosecond laser pulses in quartz

    NASA Astrophysics Data System (ADS)

    Hernandez-Rueda, J.; Puerto, D.; Siegel, J.; Galvan-Sosa, M.; Solis, J.

    2012-09-01

    We have investigated plasma formation and relaxation dynamics induced by single femtosecond laser pulses at the surface of crystalline SiO2 (quartz) along with the corresponding topography modifications. The use of fs-resolved pump-probe microscopy allows combining spatial and temporal resolution and simultaneous access to phenomena occurring in adjacent regions excited with different local fluences. The results show the formation of a transient free-electron plasma ring surrounding the location of the inner ablation crater. Optical microscopy measurements reveal a 30% reflectivity decrease in this region, consistent with local amorphization. The accompanying weak depression of ≈15 nm in this region is explained by gentle material removal via Coulomb explosion. Finally, we discuss the timescales of the plasma dynamics and its role in the modifications produced, by comparing the results with previous studies obtained in amorphous SiO2 (fused silica). For this purpose, we have conceived a new representation concept of time-resolved microscopy image stacks in a single graph, which allows visualizing quickly suble differences of the overall similar dynamic response of both materials.

  11. Pharmacokinetics and pharmacodynamics study of rhein treating renal fibrosis based on metabonomics approach.

    PubMed

    Sun, Hao; Luo, Guangwen; Xiang, Zheng; Cai, Xiaojun; Chen, Dahui

    2016-12-01

    The selection of effect indicators in the pharmacokinetic/ pharmacodynamic study of complex diseases to describe the relationship between plasma concentration and effect indicators is difficult. Three effect indicators of renal fibrosis were successfully determined. The relationship between pharmacokinetics and pharmacodynamics of rhein in rhubarb was elucidated. The study was a metabolomics analysis of rat plasma and pharmacokinetics/ pharmacodynamics of rhein. A sensitive and simple ultra performance liquid chromatography-tandem triple quadrupole mass spectrometry (UPLC-MS/MS) method was applied to determine the rhein plasma concentration in the rat model of renal fibrosis and rat sham-operated group after the administration of rhubarb decoction. Then, the ultra performance liquid chromatography-Micromass quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS) metabolomics method was used to screen biomarkers of renal fibrosis in rat plasma. Furthermore, the relationship between the plasma concentration of rhein and the concentration of three biomarkers directly related to renal fibrosis were analyzed. The three screened biomarkers could represent the effect of rhein treatment on renal fibrosis. Increasing the plasma concentration of rhein tended to restore the concentration of the three biomarkers in the model group compared with that in the sham-operated group. Evident differences in the area under the plasma concentration-time curve (AUC) of rhein were also observed under different pathological states. The results provide valuable information for the clinical application of rhubarb. Rhein intervention could recover the physiological balance in living organisms from the pharmacokinetic/pharmacodynamic levels. New information on the pharmacokinetic/pharmacodynamic study of complex diseases is provided. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Single-centre study of the diagnostic performance of plasma metanephrines with seated sampling for the diagnosis of phaeochromocytoma/paraganglioma.

    PubMed

    Boot, Christopher; Toole, Barry; Johnson, Sarah J; Ball, Stephen; Neely, Dermot

    2017-01-01

    Background Measurement of plasma metanephrines is regarded as one of the best screening tests for phaeochromocytoma/paraganglioma. Current guidelines recommend that samples are ideally collected in the supine position after 30 min rest and interpreted using supine reference ranges, in order to optimize the diagnostic performance of the test. Current practice in our centre is to collect samples for plasma metanephrines from seated patients. The aim of the study was to determine, if seated sampling for plasma metanephrines provides acceptable diagnostic performance in our centre. Methods Clinical and laboratory data of 113 patients, gathered over a four-year period 2010-2014, were reviewed. All had undergone preoperative plasma metanephrines measurement and had postoperative histopathology confirmation or exclusion of phaeochromocytoma/paraganglioma. Results Of 113 patients included in the study, 40 had a histological diagnosis of phaeochromocytoma/paraganglioma. The remaining 73 patients had an alternative adrenal pathology. The diagnostic sensitivity of normetanephrine or metanephrine above the upper limit of our in-house seated reference range was 93%. However, excluding three cases of paraganglioma determined clinically and biochemically to be non-functional raised the sensitivity to 100%. Diagnostic specificity was 90%. Applying published supine reference ranges made no difference to diagnostic sensitivity in this group of patients but decreased diagnostic specificity to 75%. Conclusions While these data are derived from a relatively small study population, they demonstrate acceptable diagnostic performance for seated plasma metanephrines as a screening test for phaeochromocytoma/paraganglioma. These data highlight a high diagnostic sensitivity for plasma metanephrines with seated sampling in our centre.

  13. Random plasma glucose in serendipitous screening for glucose intolerance: screening for impaired glucose tolerance study 2.

    PubMed

    Ziemer, David C; Kolm, Paul; Foster, Jovonne K; Weintraub, William S; Vaccarino, Viola; Rhee, Mary K; Varughese, Rincy M; Tsui, Circe W; Koch, David D; Twombly, Jennifer G; Narayan, K M Venkat; Phillips, Lawrence S

    2008-05-01

    With positive results from diabetes prevention studies, there is interest in convenient ways to incorporate screening for glucose intolerance into routine care and to limit the need for fasting diagnostic tests. The aim of this study is to determine whether random plasma glucose (RPG) could be used to screen for glucose intolerance. This is a cross-sectional study. The participants of this study include a voluntary sample of 990 adults not known to have diabetes. RPG was measured, and each subject had a 75-g oral glucose tolerance test several weeks later. Glucose intolerance targets included diabetes, impaired glucose tolerance (IGT), and impaired fasting glucose(110) (IFG(110); fasting glucose, 110-125 mg/dl, and 2 h glucose < 140 mg/dl). Screening performance was measured by area under receiver operating characteristic curves (AROC). Mean age was 48 years, and body mass index (BMI) was 30.4 kg/m(2); 66% were women, and 52% were black; 5.1% had previously unrecognized diabetes, and 24.0% had any "high-risk" glucose intolerance (diabetes or IGT or IFG(110)). The AROC was 0.80 (95% CI 0.74-0.86) for RPG to identify diabetes and 0.72 (0.68-0.75) to identify any glucose intolerance, both highly significant (p < 0.001). Screening performance was generally consistent at different times of the day, regardless of meal status, and across a range of risk factors such as age, BMI, high density lipoprotein cholesterol, triglycerides, and blood pressure. RPG values should be considered by health care providers to be an opportunistic initial screening test and used to prompt further evaluation of patients at risk of glucose intolerance. Such "serendipitous screening" could help to identify unrecognized diabetes and prediabetes.

  14. Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: a prospective multicenter study.

    PubMed

    Johnson, David A; Barclay, Robert L; Mergener, Klaus; Weiss, Gunter; König, Thomas; Beck, Jürgen; Potter, Nicholas T

    2014-01-01

    Screening improves outcomes related to colorectal cancer (CRC); however, suboptimal participation for available screening tests limits the full benefits of screening. Non-invasive screening using a blood based assay may potentially help reach the unscreened population. To compare the performance of a new Septin9 DNA methylation based blood test with a fecal immunochemical test (FIT) for CRC screening. In this trial, fecal and blood samples were obtained from enrolled patients. To compare test sensitivity for CRC, patients with screening identified colorectal cancer (n = 102) were enrolled and provided samples prior to surgery. To compare test specificity patients were enrolled prospectively (n = 199) and provided samples prior to bowel preparation for screening colonoscopy. Plasma and fecal samples were analyzed using the Epi proColon and OC Fit-Check tests respectively. For all samples, sensitivity for CRC detection was 73.3% (95% CI 63.9-80.9%) and 68.0% (95% CI 58.2-76.5%) for Septin9 and FIT, respectively. Specificity of the Epi proColon test was 81.5% (95% CI 75.5-86.3%) compared with 97.4% (95% CI 94.1-98.9%) for FIT. For paired samples, the sensitivity of the Epi proColon test (72.2% -95% CI 62.5-80.1%) was shown to be statistically non-inferior to FIT (68.0%-95% CI 58.2-76.5%). When test results for Epi proColon and FIT were combined, CRC detection was 88.7% at a specificity of 78.8%. At a sensitivity of 72%, the Epi proColon test is non- inferior to FIT for CRC detection, although at a lower specificity. With negative predictive values of 99.8%, both methods are identical in confirming the absence of CRC. ClinicalTrials.gov NCT01580540.

  15. The effects of RF plasma ashing on zinc orthotitanate/potassium silicate thermal control coatings

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.

    1992-01-01

    Samples of YB-71, a white thermal control coating composed of zinc orthotitanate pigment in a potassium silicate binder, were exposed in air plasma and in oxygen plasma to determine optical property and surface chemistry changes. Results show that YB-71 undergoes a significant reflectance decrease upon exposure to the simulated LEO atomic oxygen environment provided by an air plasma asher. YB-71 samples exposed to the same effective fluence in oxygen plasma, or in a UV screening Faraday cage in air or oxygen, do not undergo as severe reflectance decreases as the samples exposed in the air plasma asher environment. The UV and VUV radiation present in the plasma ashers affects the YB-71 degradation. It is noted that, when using plasma ashers to determine LEO degradation, it is necessary to take into account the sensitivity of the material to the synergistic effects of atomic oxygen and accelerated UV radiation.

  16. Ti film deposition process of a plasma focus: Study by an experimental design

    NASA Astrophysics Data System (ADS)

    Inestrosa-Izurieta, M. J.; Moreno, J.; Davis, S.; Soto, L.

    2017-10-01

    The plasma generated by plasma focus (PF) devices have substantially different physical characteristics from another plasma, energetic ions and electrons, compared with conventional plasma devices used for plasma nanofabrication, offering new and unique opportunities in the processing and synthesis of Nanomaterials. This article presents the use of a plasma focus of tens of joules, PF-50J, for the deposition of materials sprayed from the anode by the plasma dynamics in the axial direction. This work focuses on the determination of the most significant effects of the technological parameters of the system on the obtained depositions through the use of a statistical experimental design. The results allow us to give a qualitative understanding of the Ti film deposition process in our PF device depending on four different events provoked by the plasma dynamics: i) an electric erosion of the outer material of the anode; ii) substrate ablation generating an interlayer; iii) electron beam deposition of material from the center of the anode; iv) heat load provoking clustering or even melting of the deposition surface.

  17. Evidence of the charge-density wave state in polypyrrole nanotubes

    DOE PAGES

    Sarma, Abhisakh; Sanyal, Milan K.; Littlewood, Peter B.

    2015-04-13

    Here, we present a detailed investigation of the low-frequency dielectric and conductivity properties of conducting polymer nanowires. Our results, obtained by connecting ~10 7 nanowires in parallel, show that these polypyrrole nanowires behave like conventional charge-density wave (CDW) materials, in their nonlinear and dynamic response, together with scaling of relaxation time and conductivity. The observed Arrhenius law for both these quantities gives a CDW gap of 3.5 meV in the regime of temperature (~40 K) in which the CDW state survives. We find good agreement with a theory of weakly pinned CDW, screened by thermally excited carriers across the CDWmore » gap. The identification of polymer nanowires as CDW provides us a model system to investigate charge ordering owing to electrostatic interaction, relevant to a variety of systems from dusty plasma to molecular biology.« less

  18. Revisiting the origin of satellites in core-level photoemission of transparent conducting oxides: The case of n -doped SnO2

    NASA Astrophysics Data System (ADS)

    Borgatti, Francesco; Berger, J. A.; Céolin, Denis; Zhou, Jianqiang Sky; Kas, Joshua J.; Guzzo, Matteo; McConville, C. F.; Offi, Francesco; Panaccione, Giancarlo; Regoutz, Anna; Payne, David J.; Rueff, Jean-Pascal; Bierwagen, Oliver; White, Mark E.; Speck, James S.; Gatti, Matteo; Egdell, Russell G.

    2018-04-01

    The longstanding problem of interpretation of satellite structures in core-level photoemission spectra of metallic systems with a low density of conduction electrons is addressed using the specific example of Sb-doped SnO2. Comparison of ab initio many-body calculations with experimental hard x-ray photoemission spectra of the Sn 4 d states shows that strong satellites are produced by coupling of the Sn core hole to the plasma oscillations of the free electrons introduced by doping. Within the same theoretical framework, spectral changes of the valence band spectra are also related to dynamical screening effects. These results demonstrate that, for the interpretation of electron correlation features in the core-level photoelectron spectra of such narrow-band materials, going beyond the homogeneous electron gas electron-plasmon coupling model is essential.

  19. The scientific targets of the SCOPE mission

    NASA Astrophysics Data System (ADS)

    Fujimoto, M.; Saito, Y.; Tsuda, Y.; Shinohara, I.; Kojima, H.

    Future Japanese magnetospheric mission "SCOPE" is now under study (planned to be launched in 2012). The main purpose of this mission is to investigate the dynamic behaviors of plasmas in the Earth's magnetosphere from the view-point of cross-scale coupling. Dynamical collisionless space plasma phenomena, be they large scale as a whole, are chracterized by coupling over various time and spatial scales. The best example would be the magnetic reconnection process, which is a large scale energy conversion process but has a small key region at the heart of its engine. Inside the key region, electron scale dynamics plays the key role in liberating the frozen-in constraint, by which reconnection is allowed to proceed. The SCOPE mission is composed of one large mother satellite and four small daughter satellites. The mother spacecraft will be equiped with the electron detector that has 10 msec time resolution so that scales down to the electron's will be resolved. Three of the four daughter satellites surround the mother satellite 3-dimensionally with the mutual distances between several km and several thousand km, which are varied during the mission. Plasma measurements on these spacecrafts will have 1 sec resolution and will provide information on meso-scale plasma structure. The fourth daughter satellite stays near the mother satellite with the distance less than 100km. By correlation between the two plasma wave instruments on the daughter and the mother spacecrafts, propagation of the waves and the information on the electron scale dynamics will be obtained. By this strategy, both meso- and micro-scale information on dynamics are obtained, that will enable us to investigate the physics of the space plasma from the cross-scale coupling point of view.

  20. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer.

    PubMed

    Rothé, F; Laes, J-F; Lambrechts, D; Smeets, D; Vincent, D; Maetens, M; Fumagalli, D; Michiels, S; Drisis, S; Moerman, C; Detiffe, J-P; Larsimont, D; Awada, A; Piccart, M; Sotiriou, C; Ignatiadis, M

    2014-10-01

    Molecular screening programs use next-generation sequencing (NGS) of cancer gene panels to analyze metastatic biopsies. We interrogated whether plasma could be used as an alternative to metastatic biopsies. The Ion AmpliSeq™ Cancer Hotspot Panel v2 (Ion Torrent), covering 2800 COSMIC mutations from 50 cancer genes was used to analyze 69 tumor (primary/metastases) and 31 plasma samples from 17 metastatic breast cancer patients. The targeted coverage for tumor DNA was ×1000 and for plasma cell-free DNA ×25 000. Whole blood normal DNA was used to exclude germline variants. The Illumina technology was used to confirm observed mutations. Evaluable NGS results were obtained for 60 tumor and 31 plasma samples from 17 patients. When tumor samples were analyzed, 12 of 17 (71%, 95% confidence interval (CI) 44% to 90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1 or IDH2 gene. When plasma samples were analyzed, 12 of 17 (71%, 95% CI: 44-90%) patients had ≥1 mutation (median 1 mutation per patient, range 0-2 mutations) in either p53, PIK3CA, PTEN, AKT1, IDH2 and SMAD4. All mutations were confirmed. When we focused on tumor and plasma samples collected at the same time-point, we observed that, in four patients, no mutation was identified in either tumor or plasma; in nine patients, the same mutations was identified in tumor and plasma; in two patients, a mutation was identified in tumor but not in plasma; in two patients, a mutation was identified in plasma but not in tumor. Thus, in 13 of 17 (76%, 95% CI 50% to 93%) patients, tumor and plasma provided concordant results whereas in 4 of 17 (24%, 95% CI 7% to 50%) patients, the results were discordant, providing complementary information. Plasma can be prospectively tested as an alternative to metastatic biopsies in molecular screening programs. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Reevaluation of confirmatory tests for human T-cell leukemia virus Type 1 using a luciferase immunoprecipitation system in blood donors.

    PubMed

    Furuta, Rika A; Ma, Guangyong; Matsuoka, Masao; Otani, Satoshi; Matsukura, Harumichi; Hirayama, Fumiya

    2015-04-01

    Recently, Japanese Red Cross blood centers have changed the confirmatory test method from an indirect immunofluorescence (IF) technique to Western blotting (WB) for antibodies against human T-cell leukemia virus Type 1 (HTLV-1). In this study, these HTLV-1 tests were assessed using another sensitive method, that is, a luciferase immunoprecipitation system (LIPS), to identify a better confirmatory test for HTLV-1 infection. Plasma samples from 54 qualified donors and 114 HTLV-1 screening-positive donors were tested by LIPS for antibodies against HTLV-1 Gag, Tax, Env, and HBZ recombinant proteins. The donors were categorized into six groups, namely, (Group I) qualified donors, screening positive; (Group II) IF positive; (Group III) IF negative; (Group IV) WB positive; (Group V) WB negative; and (Group VI) screening positive in the previous blood donation, but WB-indeterminate during this study period. In Groups II and IV, all plasma samples tested positive by LIPS for antibodies against Gag and Env proteins. In Group V, all samples tested negative by LIPS, whereas some Group III samples reacted with single or double antigens in LIPS. In Group VI, the LIPS test identified a donor with suspected HTLV-1 infection. The first case of a blood donor with plasma that reacted with HBZ was identified by LIPS. Reevaluation of the current HTLV-1 screening method using the LIPS test showed that both confirmatory tests had similar sensitivity and specificity only when WB indeterminate results were eliminated. LIPS is a promising method for detecting and characterizing HTLV-1 antibodies. © 2014 AABB.

  2. A System Dynamics Model of Serum Prostate-Specific Antigen Screening for Prostate Cancer.

    PubMed

    Palma, Anton; Lounsbury, David W; Schlecht, Nicolas F; Agalliu, Ilir

    2016-02-01

    Since 2012, US guidelines have recommended against prostate-specific antigen (PSA) screening for prostate cancer. However, evidence of screening benefit from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening trial and the European Randomized Study of Screening for Prostate Cancer has been inconsistent, due partly to differences in noncompliance and contamination. Using system dynamics modeling, we replicated the PLCO trial and extrapolated follow-up to 20 years. We then simulated 3 scenarios correcting for contamination in the PLCO control arm using Surveillance, Epidemiology, and End Results (SEER) incidence and survival data collected prior to the PSA screening era (scenario 1), SEER data collected during the PLCO trial period (1993-2001) (scenario 2), and data from the European trial's control arm (1991-2005) (scenario 3). In all scenarios, noncompliance was corrected using incidence and survival rates for men with screen-detected cancer in the PLCO screening arm. Scenarios 1 and 3 showed a benefit of PSA screening, with relative risks of 0.62 (95% confidence interval: 0.53, 0.72) and 0.70 (95% confidence interval: 0.59, 0.83) for cancer-specific mortality after 20 years, respectively. In scenario 2, however, there was no benefit of screening. This simulation showed that after correcting for noncompliance and contamination, there is potential benefit of PSA screening in reducing prostate cancer mortality. It also demonstrates the utility of system dynamics modeling for synthesizing epidemiologic evidence to inform public policy. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The Diagnostics of the External Plasma for the Plasma Rocket

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1997-01-01

    Three regions of plasma temperature/energy are being investigated to understand fully the behavior of the plasma created by the propulsion device and the operation of the RPA. Each type of plasma has a RPA associated with it; i.e. a thermal RPA, a collimated RPA, and a high temperature RPA. Through the process of developing the thermal and collimated RPAs, the proper knowledge and experience has been gained to not only design a high temperature RPA for the plasma rocket, but to understand its operation, results, and uncertainty. After completing a literature search for, reading published papers on, and discussing the operation of the RPA with electric propulsion researchers, I applied the knowledge gained to the development of a RPA for thermal plasma. A design of a thermal RPA was made which compensates for a large Debye length and low ionized plasma. From this design a thermal RPA was constructed. It consists of an outer stainless steel casing, a phenolic insulator (outgases slightly), and stainless steel mesh for the voltage screens. From the experience and knowledge gained in the development of the thermal RPA, a RPA for collimated plasma was developed. A collimated RPA has been designed and constructed. It compensate for a smaller Debye length and much higher ionization than that existing in the thermal plasma. It is 17% of the size of the thermal RPA. A stainless steel casing shields the detector from impinging electrons and ions. An insulating material, epoxy resin, was utilized which has a negligible outgassing. This material can be molded in styrofoam and machined quite nicely. It is capable of withstanding moderately high temperatures. Attached to this resin insulator are inconel screens attached by silver plated copper wire to a voltage supply. All the work on the RPAs and thermal ion source, I performed in the University of Alabama in Huntsville's (UAH) engineering machine shop.

  4. Effects of resistivity and rotation on the linear plasma response to non-axisymmetric magnetic perturbations on DIII-D

    DOE PAGES

    Haskey, Shaun R.; Lanctot, Matthew J.; Liu, Y. Q.; ...

    2015-01-05

    Parameter scans show the strong dependence of the plasma response on the poloidal structure of the applied field highlighting the importance of being able to control this parameter using non-axisymmetric coil sets. An extensive examination of the linear single fluid plasma response to n = 3 magnetic perturbations in L-mode DIII-D lower single null plasmas is presented. The effects of plasma resistivity, toroidal rotation and applied field structure are calculated using the linear single fluid MHD code, MARS-F. Measures which separate the response into a pitch-resonant and resonant field amplification (RFA) component are used to demonstrate the extent to whichmore » resonant screening and RFA occurs. The ability to control the ratio of pitch-resonant fields to RFA by varying the phasing between upper and lower resonant magnetic perturbations coils sets is shown. The predicted magnetic probe outputs and displacement at the x-point are also calculated for comparison with experiments. Additionally, modelling of the linear plasma response using experimental toroidal rotation profiles and Spitzer like resistivity profiles are compared with results which provide experimental evidence of a direct link between the decay of the resonant screening response and the formation of a 3D boundary. As a result, good agreement is found during the initial application of the MP, however, later in the shot a sudden drop in the poloidal magnetic probe output occurs which is not captured in the linear single fluid modelling.« less

  5. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl

    The study entitled, "Transport and Dynamics in Toroidal Fusion Systems," (TDTFS) applied analytical theory and numerical computation to investigate topics of importance to confining plasma, the fourth state of matter, with magnetic fields. A central focus of the work is how non-thermal components of the ion particle distribution affect the "sawtooth" collective oscillation in the core of the tokamak magnetic configuration. Previous experimental and analytical research had shown and described how the oscillation frequency decreases and amplitude increases, leading to "monster" or "giant" sawteeth, when the non-thermal component is increased by injecting particle beams or by exciting ions with imposedmore » electromagnetic waves. The TDTFS study applied numerical computation to self-consistently simulate the interaction between macroscopic collective plasma dynamics and the non-thermal particles. The modeling used the NIMROD code [Sovinec, Glasser, Gianakon, et al., J. Comput. Phys. 195, 355 (2004)] with the energetic component represented by simulation particles [Kim, Parker, Sovinec, and the NIMROD Team, Comput. Phys. Commun. 164, 448 (2004)]. The computations found decreasing growth rates for the instability that drives the oscillations, but they were ultimately limited from achieving experimentally relevant parameters due to computational practicalities. Nonetheless, this effort provided valuable lessons for integrated simulation of macroscopic plasma dynamics. It also motivated an investigation of the applicability of fluid-based modeling to the ion temperature gradient instability, leading to the journal publication [Schnack, Cheng, Barnes, and Parker, Phys. Plasmas 20, 062106 (2013)]. Apart from the tokamak-specific topics, the TDTFS study also addressed topics in the basic physics of magnetized plasma and in the dynamics of the reversed-field pinch (RFP) configuration. The basic physics work contributed to a study of two-fluid effects on interchange dynamics, where "two-fluid" refers to modeling independent dynamics of electron and ion species without full kinetic effects. In collaboration with scientist Ping Zhu, who received separate support, it was found that the rule-of-thumb criteria on stabilizing interchange has caveats that depend on the plasma density and temperature profiles. This work was published in [Zhu, Schnack, Ebrahimi, et al., Phys. Rev. Lett. 101, 085005 (2008)]. An investigation of general nonlinear relaxation with fluid models was partially supported by the TDTFS study and led to the publication [Khalzov, Ebrahimi, Schnack, and Mirnov, Phys. Plasmas 19, 012111 (2012)]. Work specific to the RFP included an investigation of interchange at large plasma pressure and support for applications [for example, Scheffel, Schnack, and Mirza, Nucl. Fusion 53, 113007 (2013)] of the DEBS code [Schnack, Barnes, Mikic, Harned, and Caramana, J. Comput. Phys. 70, 330 (1987)]. Finally, the principal investigator over most of the award period, Dalton Schnack, supervised a numerical study of modeling magnetic island suppression [Jenkins, Kruger, Hegna, Schnack, and Sovinec, Phys. Plasmas 17, 12502 (2010)].« less

  6. Dynamic Response of a Magnetized Plasma to AN External Source: Application to Space and Solid State Plasmas

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-Bei

    This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure in emf inducing tethered satellite systems (TSS), generation of ELF/VLF waves by ionospheric heating, current closure and quasineutrality in thin magnetopause transitions, and short electromagnetic pulse generation in solid state plasmas. The cross-field current in TSS builds up on a time scale corresponding to the whistler waves and results in local current closure. Amplitude modulated HF ionospheric heating generates ELF/VLF waves by forming a horizontal magnetic dipole. The dipole is formed by the current closure in the modified region. For thin transition the time-dependent cross-field polarization field at the magnetopause could be neutralized by the formation of field aligned current loops that close by a cross-field electron Hall current. A moving current source in a solid state plasma results in microwave emission if the speed of the source exceeds the local phase velocity of the helicon or Alfven waves. Detailed analysis of the above problems is presented in the thesis.

  7. Tsallis non-extensive statistics and solar wind plasma complexity

    NASA Astrophysics Data System (ADS)

    Pavlos, G. P.; Iliopoulos, A. C.; Zastenker, G. N.; Zelenyi, L. M.; Karakatsanis, L. P.; Riazantseva, M. O.; Xenakis, M. N.; Pavlos, E. G.

    2015-03-01

    This article presents novel results revealing non-equilibrium phase transition processes in the solar wind plasma during a strong shock event, which took place on 26th September 2011. Solar wind plasma is a typical case of stochastic spatiotemporal distribution of physical state variables such as force fields (B → , E →) and matter fields (particle and current densities or bulk plasma distributions). This study shows clearly the non-extensive and non-Gaussian character of the solar wind plasma and the existence of multi-scale strong correlations from the microscopic to the macroscopic level. It also underlines the inefficiency of classical magneto-hydro-dynamic (MHD) or plasma statistical theories, based on the classical central limit theorem (CLT), to explain the complexity of the solar wind dynamics, since these theories include smooth and differentiable spatial-temporal functions (MHD theory) or Gaussian statistics (Boltzmann-Maxwell statistical mechanics). On the contrary, the results of this study indicate the presence of non-Gaussian non-extensive statistics with heavy tails probability distribution functions, which are related to the q-extension of CLT. Finally, the results of this study can be understood in the framework of modern theoretical concepts such as non-extensive statistical mechanics (Tsallis, 2009), fractal topology (Zelenyi and Milovanov, 2004), turbulence theory (Frisch, 1996), strange dynamics (Zaslavsky, 2002), percolation theory (Milovanov, 1997), anomalous diffusion theory and anomalous transport theory (Milovanov, 2001), fractional dynamics (Tarasov, 2013) and non-equilibrium phase transition theory (Chang, 1992).

  8. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening

    PubMed Central

    Li, Guoliang; Yuan, Hui; Zhang, Hongchao; Li, Yanjun; Xie, Xixian; Chen, Ning

    2017-01-01

    In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.7 and 30.3 g/L uridine after 30 h in shake-flask and 48 h in fed-batch fermentation, respectively, which represented a 4.4- and 8.7-fold increase over the parent strain. Sequence analysis of the pyrimidine nucleotide biosynthetic operon in the representative mutants showed that proline 1016 and glutamate 949 in the large subunit of B. subtilis carbamoyl phosphate synthetase were of importance for the allosteric regulation caused by uridine 5′-monophosphate. The proposed mutation method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain uridine-overproducing strain. PMID:28472077

  9. Improvement of uridine production of Bacillus subtilis by atmospheric and room temperature plasma mutagenesis and high-throughput screening.

    PubMed

    Fan, Xiaoguang; Wu, Heyun; Li, Guoliang; Yuan, Hui; Zhang, Hongchao; Li, Yanjun; Xie, Xixian; Chen, Ning

    2017-01-01

    In the present study, a novel breeding strategy of atmospheric and room temperature plasma (ARTP) mutagenesis was used to improve the uridine production of engineered Bacillus subtilis TD12np. A high-throughput screening method was established using both resistant plates and 96-well microplates to select the ideal mutants with diverse phenotypes. Mutant F126 accumulated 5.7 and 30.3 g/L uridine after 30 h in shake-flask and 48 h in fed-batch fermentation, respectively, which represented a 4.4- and 8.7-fold increase over the parent strain. Sequence analysis of the pyrimidine nucleotide biosynthetic operon in the representative mutants showed that proline 1016 and glutamate 949 in the large subunit of B. subtilis carbamoyl phosphate synthetase were of importance for the allosteric regulation caused by uridine 5'-monophosphate. The proposed mutation method with efficient high-throughput screening assay was proved to be an appropriate strategy to obtain uridine-overproducing strain.

  10. Method and system for nanoscale plasma processing of objects

    DOEpatents

    Oehrlein, Gottlieb S [Clarksville, MD; Hua, Xuefeng [Hyattsville, MD; Stolz, Christian [Baden-Wuerttemberg, DE

    2008-12-30

    A plasma processing system includes a source of plasma, a substrate and a shutter positioned in close proximity to the substrate. The substrate/shutter relative disposition is changed for precise control of substrate/plasma interaction. This way, the substrate interacts only with a fully established, stable plasma for short times required for nanoscale processing of materials. The shutter includes an opening of a predetermined width, and preferably is patterned to form an array of slits with dimensions that are smaller than the Debye screening length. This enables control of the substrate/plasma interaction time while avoiding the ion bombardment of the substrate in an undesirable fashion. The relative disposition between the shutter and the substrate can be made either by moving the shutter or by moving the substrate.

  11. The Mochi project: a field theory approach to plasma dynamics and self-organization

    NASA Astrophysics Data System (ADS)

    You, Setthivoine; von der Linden, Jens; Lavine, Eric Sander; Card, Alexander; Carroll, Evan

    2016-10-01

    The Mochi project is designed to study the interaction between plasma flows and magnetic fields from the point-of-view of canonical flux tubes. The Mochi Labjet experiment is being commissioned after achieving first plasma. Analytical and numerical tools are being developed to visualize canonical flux tubes. One analytical tool described here is a field theory approach to plasma dynamics and self-organization. A redefinition of the Lagrangian of a multi-particle system in fields reformulates the single-particle, kinetic, and fluid equations governing fluid and plasma dynamics as a single set of generalized Maxwell's equations and Ohm's law for canonical force-fields. The Lagrangian includes new terms representing the coupling between the motion of particle distributions, between distributions and electromagnetic fields, with relativistic contributions. The formulation shows that the concepts of self-organization and canonical helicity transport are applicable across single-particle, kinetic, and fluid regimes, at classical and relativistic scales. The theory gives the basis for comparing canonical helicity change to energy change in general systems. This work is supported by by US DOE Grant DE-SC0010340.

  12. Integrating Dynamic Positron Emission Tomography and Conventional Pharmacokinetic Studies to Delineate Plasma and Tumor Pharmacokinetics of FAU, a Prodrug Bioactivated by Thymidylate Synthase.

    PubMed

    Li, Jing; Kim, Seongho; Shields, Anthony F; Douglas, Kirk A; McHugh, Christopher I; Lawhorn-Crews, Jawana M; Wu, Jianmei; Mangner, Thomas J; LoRusso, Patricia M

    2016-11-01

    FAU, a pyrimidine nucleotide analogue, is a prodrug bioactivated by intracellular thymidylate synthase to form FMAU, which is incorporated into DNA, causing cell death. This study presents a model-based approach to integrating dynamic positron emission tomography (PET) and conventional plasma pharmacokinetic studies to characterize the plasma and tissue pharmacokinetics of FAU and FMAU. Twelve cancer patients were enrolled into a phase 1 study, where conventional plasma pharmacokinetic evaluation of therapeutic FAU (50-1600 mg/m 2 ) and dynamic PET assessment of 18 F-FAU were performed. A parent-metabolite population pharmacokinetic model was developed to simultaneously fit PET-derived tissue data and conventional plasma pharmacokinetic data. The developed model enabled separation of PET-derived total tissue concentrations into the parent drug and metabolite components. The model provides quantitative, mechanistic insights into the bioactivation of FAU and retention of FMAU in normal and tumor tissues and has potential utility to predict tumor responsiveness to FAU treatment. © 2016, The American College of Clinical Pharmacology.

  13. Structure and Dynamics of Colliding Plasma Jets

    DOE PAGES

    Li, C.; Ryutov, D.; Hu, S.; ...

    2013-12-01

    Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model’s prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generatedmore » by the well-known ∇T e ×∇n e Biermann battery effect near the periphery of the laser spots, are demonstrated to be “frozen in” the plasma (due to high magnetic Reynolds number R M ~5×10⁴) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.« less

  14. Energy loss of α-particle moving in warm dense deuterium plasma: Role of local field corrections

    NASA Astrophysics Data System (ADS)

    Fu, Zhen-Guo; Wang, Zhigang; Zhang, Ping

    2017-11-01

    We theoretically study the energy loss of α-particles traveling in the warm dense plasma (WDP) of deuterium (D) with temperatures from 10 to 100 eV and electron number densities from 1023 to 1024 cm-3. Beyond the random phase approximation (RPA) model, the extended Mermin dielectric function (MDF) model including the static and dynamic local field corrections (LFC) is employed in the calculations. Compared with the static LFC, the dynamic LFC introduced in the extended MDF model gives rise to a more significant departure from the RPA result. For the plasma conditions focused in this work, the departure induced by dynamic LFC reaches almost ˜ 30 % , which may be detected in the inertial confinement fusion (ICF) related experiment. Moreover, we find that the effect of static e-e collision may be of importance (unimportance) for the WDP of D with a temperature of tens (hundreds) of eV. Our findings may be important for ICF ignition since the uncertainty induced by the correlation effects between plasma component particles is crucial for the prediction of α-particle heating in fusion plasmas.

  15. Three-dimensional modeling of the plasma arc in arc welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.; Tsai, H. L.; Hu, J.

    2008-11-15

    Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less

  16. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  17. Caveolae as plasma membrane sensors, protectors and organizers.

    PubMed

    Parton, Robert G; del Pozo, Miguel A

    2013-02-01

    Caveolae are submicroscopic, plasma membrane pits that are abundant in many mammalian cell types. The past few years have seen a quantum leap in our understanding of the formation, dynamics and functions of these enigmatic structures. Caveolae have now emerged as vital plasma membrane sensors that can respond to plasma membrane stresses and remodel the extracellular environment. Caveolae at the plasma membrane can be removed by endocytosis to regulate their surface density or can be disassembled and their structural components degraded. Coat proteins, called cavins, work together with caveolins to regulate the formation of caveolae but also have the potential to dynamically transmit signals that originate in caveolae to various cellular destinations. The importance of caveolae as protective elements in the plasma membrane, and as membrane organizers and sensors, is highlighted by links between caveolae dysfunction and human diseases, including muscular dystrophies and cancer.

  18. Characteristics of an under-expanded supersonic flow in arcjet plasmas

    NASA Astrophysics Data System (ADS)

    Namba, Shinichi; Shikama, Taiichi; Sasano, Wataru; Tamura, Naoki; Endo, Takuma

    2018-06-01

    A compact apparatus to produce arcjet plasma was fabricated to investigate supersonic flow dynamics. Periodic bright–dark emission structures were formed in the arcjets, depending on the plasma source and ambient gas pressures in the vacuum chamber. A directional Langmuir probe (DLP) and emission spectroscopy were employed to characterize plasma parameters such as the Mach number of plasma flows and clarify the mechanism for the generation of the emission pattern. In particular, in order to investigate the influence of the Mach number on probe size, we used two DLPs of different probe size. The results indicated that the arcjets could be classified into shock-free expansion and under-expansion, and the behavior of plasma flow could be described by compressible fluid dynamics. Comparison of the Langmuir probe results with emission and laser absorption spectroscopy showed that the small diameter probe was reliable to determine the Mach number, even for the supersonic jet.

  19. Laser dynamics in transversely inhomogeneous plasma and its relevance to wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pathak, V. B.; Vieira, J.; Silva, L. O.; Nam, Chang Hee

    2018-05-01

    We present full set of coupled equations describing the weakly relativistic dynamics of a laser in a plasma with transverse inhomogeneity. We apply variational principle approach to obtain these coupled equations governing laser spot-size, transverse wavenumber, curvature, transverse centroid, etc. We observe that such plasma inhomogeneity can lead to stronger self-focusing. We further discuss the guiding conditions of laser in parabolic plasma channels. With the help of multi-dimensional particle in cell simulations the study is extended to the blowout regime of laser wakefield acceleration to show laser as well as self-injected electron bunch steering in plasma to generate unconventional particle trajectories. Our simulation results demonstrate that such transverse inhomogeneities due to asymmetric self focusing lead to asymmetric bubble excitation, thus inducing off-axis self-injection.

  20. Evaluation of Different Blood Collection Tubes and Blood Storage Conditions for the Preservation and Stability of Cell-Free Circulating DNA for the Analysis of the Methylated mSEPT9 Colorectal Cancer Screening Marker.

    PubMed

    Distler, Jurgen; Tetzner, Reimo; Weiss, Gunter; König, Thomas; Schlegel, Anne; Bagrowski, Michal

    2016-01-01

    For the subsequent analysis of the methylated mSEPT9 colorectal cancer screening marker in plasma, different blood collection tubes and blood storage conditions were investigated. The study demonstrated that methylated Septin 9 ( m SEPT9) can be consistently detected in plasma samples derived from whole blood samples collected with S-Monovette® K3E and BD Vacutainer ® K2EDTA tubes stored at 2-8 °C for a maximum of 24 h and for samples collected in S-Monovette CPDA tubes stored at 18-25 °C for up to 48 h.

  1. Contrasting plasma free amino acid patterns in elite athletes: association with fatigue and infection

    PubMed Central

    Kingsbury, K. J.; Kay, L.; Hjelm, M.

    1998-01-01

    AIM: There is little information on the plasma free amino acid patterns of elite athletes against which fatigue and nutrition can be considered. Therefore the aim was to include analysis of this pattern in the medical screening of elite athletes during both especially intense and light training periods. METHODS: Plasma amino acid analysis was undertaken in three situations. (1) A medical screening service was offered to elite athletes during an intense training period before the 1992 Olympics. Screening included a blood haematological/biochemical profile and a microbial screen in athletes who presented with infection. The athletes were divided into three groups who differed in training fatigue and were considered separately. Group A (21 track and field athletes) had no lasting fatigue; group B (12 judo competitors) reported heavy fatigue at night but recovered overnight to continue training; group C (18 track and field athletes, one rower) had chronic fatigue and had been unable to train normally for at least several weeks. (2) Athletes from each group were further screened during a post- Olympic light training period. (3) Athletes who still had low amino acid levels during the light training period were reanalysed after three weeks of additional protein intake. RESULTS: (1) The pre-Olympics amino acid patterns were as follows. Group A had a normal amino acid pattern (glutamine 554 (25.2) micromol/l, histidine 79 (6.1) micromol/l, total amino acids 2839 (92.1) micromol/l); all results are means (SEM). By comparison, both groups B and C had decreased plasma glutamine (average 33%; p<0.001) with, especially in group B, decreased histidine, glucogenic, ketogenic, and branched chain amino acids (p<0.05 to p<0.001). None in group A, one in group B, but ten athletes in group C presented with infection: all 11 athletes had plasma glutamine levels of less than 450 micromol/l. No intergroup differences in haematological or other blood biochemical parameters, apart from a lower plasma creatine kinase activity in group C than in group B (p<0.05) and a low neutrophil to lymphocyte ratio in the athletes with viral infections (1.2 (0.17)), were found. (2) During post-Olympic light training, group A showed no significant amino acid changes. In contrast, group B recovered normal amino acid levels (glutamine 528 (41.4) micromol/l, histidine 76 (5.3) micromol/l, and total amino acids 2772 (165) micromol/l) (p<0.05 to p<0.001) to give a pattern comparable with that of group A, whereas, in group C, valine and threonine had increased (p<0.05), but glutamine (441 (24.5) micromol/l) and histidine (58 (5.3) micromol/l) remained low. Thus none in group A, two in group B, but ten (53%) in group C still had plasma glutamine levels below 450 micromol/l, including eight of the 11 athletes who had presented with infection. (3) With the additional protein intake, virtually all persisting low glutamine levels increased to above 500 micromol/l. Plasma glutamine rose to 592 (35.1) micromol/l and histidine to 86 (6.0) micromol/l. Total amino acids increased to 2761 (128) micromol/l (p<0.05 to p<0.001) and the amino acid pattern normalised. Six of the ten athletes on this protein intake returned to increased training within the three weeks. CONCLUSION: Analysis of these results provided contrasting plasma amino acid patterns: (a) a normal pattern in those without lasting fatigue; (b) marked but temporary changes in those with acute fatigue; (c) a persistent decrease in plasma amino acids, mainly glutamine, in those with chronic fatigue and infection, for which an inadequate protein intake appeared to be a factor. 


 PMID:9562160

  2. Understanding Plasmas with a High Degree of Correlation Through Modeling: From Rydberg and Fermionic Plasmas to Penning Plasmas

    NASA Astrophysics Data System (ADS)

    Christlieb, Andrew

    2015-09-01

    Ultra cold neutral plasmas have gained attention over the past 15 years as being a unique environment for studying moderately to strongly coupled neutral systems. The first ultra cold neutral plasmas were generated by ionizing a Bose Einstein condensate, generating a plasma with .1K ions and 2-4K electrons. These neutral plasmas have the unique property that the ratio of their potential energy to their kinetic energy, (Γ = PE / KE), can greatly exceed 1, leading to a strongly correlated system. The high degree of correlation means that everything from wave propagation through collision dynamics behaves quite differently from their counterpart in traditional neutral plasmas. Currently, a range of gases and different methods for cooling have been used to generate these plasmas from supersonic expansion, through penning trap configurations (reference Tom, Jake and Ed). These systems have time scales form picoseconds to milliseconds have a particle numbers from 105 to 109. These systems present a unique environment for studying the physics of correlation due to their low particle number and small size. We start by reviewing ultra cold plasmas and the current sate of the art in generating these correlated systems. Then we introduce the methods we will use for exploring these systems through direct simulation of Molecular Dynamics models; Momentum Dependent Potentials, Treecodes and Particle-Particle Particle-Mesh methods. We use these tools to look at two key areas of ultra cold plasmas; development of methods to generate a plasma with a Γ >> 1 and the impact of correlation of collisional relaxation. Our eventual goal is to use what we learn to develop models that can simulate correlation in large plasma systems that are outside of the scope of Molecular Dynamics models. In collaboration with Gautham Dharmuman, Mayur Jain, Michael Murillo and John Verboncoeur. This work it supposed by Air Force Office of Scientific Research.

  3. Membrane tension regulates clathrin-coated pit dynamics

    NASA Astrophysics Data System (ADS)

    Liu, Allen

    2014-03-01

    Intracellular organization depends on close communication between the extracellular environment and a network of cytoskeleton filaments. The interactions between cytoskeletal filaments and the plasma membrane lead to changes in membrane tension that in turns help regulate biological processes. Endocytosis is thought to be stimulated by low membrane tension and the removal of membrane increases membrane tension. While it is appreciated that the opposing effects of exocytosis and endocytosis have on keeping plasma membrane tension to a set point, it is not clear how membrane tension affects the dynamics of clathrin-coated pits (CCPs), the individual functional units of clathrin-mediated endocytosis. Furthermore, although it was recently shown that actin dynamics counteracts membrane tension during CCP formation, it is not clear what roles plasma membrane tension plays during CCP initiation. Based on the notion that plasma membrane tension is increased when the membrane area increases during cell spreading, we designed micro-patterned surfaces of different sizes to control the cell spreading sizes. Total internal reflection fluorescence microscopy of living cells and high content image analysis were used to quantify the dynamics of CCPs. We found that there is an increased proportion of CCPs with short (<20s) lifetime for cells on larger patterns. Interestingly, cells on larger patterns have higher CCP initiation density, an effect unexpected based on the conventional view of decreasing endocytosis with increasing membrane tension. Furthermore, by analyzing the intensity profiles of CCPs that were longer-lived, we found CCP intensity decreases with increasing cell size, indicating that the CCPs are smaller with increasing membrane tension. Finally, disruption of actin dynamics significantly increased the number of short-lived CCPs, but also decreased CCP initiation rate. Together, our study reveals new mechanistic insights into how plasma membrane tension regulates the dynamics of CCPs.

  4. Self-organized criticality and the dynamics of near-marginal turbulent transport in magnetically confined fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Newman, D. E.

    2015-12-01

    The high plasma temperatures expected at reactor conditions in magnetic confinement fusion toroidal devices suggest that near-marginal operation could be a reality in future devices and reactors. By near-marginal it is meant that the plasma profiles might wander around the local critical thresholds for the onset of instabilities. Self-organized criticality (SOC) was suggested in the mid 1990s as a more proper paradigm to describe the dynamics of tokamak plasma transport in near-marginal conditions. It advocated that, near marginality, the evolution of mean profiles and fluctuations should be considered simultaneously, in contrast to the more common view of a large separation of scales existing between them. Otherwise, intrinsic features of near-marginal transport would be missed, that are of importance to understand the properties of energy confinement. In the intervening 20 years, the relevance of the idea of SOC for near-marginal transport in fusion plasmas has transitioned from an initial excessive hype to the much more realistic standing of today, which we will attempt to examine critically in this review paper. First, the main theoretical ideas behind SOC will be described. Secondly, how they might relate to the dynamics of near-marginal transport in real magnetically confined plasmas will be discussed. Next, we will review what has been learnt about SOC from various numerical studies and what it has meant for the way in which we do numerical simulation of fusion plasmas today. Then, we will discuss the experimental evidence available from the several experiments that have looked for SOC dynamics in fusion plasmas. Finally, we will conclude by identifying the various problems that still remain open to investigation in this area. Special attention will be given to the discussion of frequent misconceptions and ongoing controversies. The review also contains a description of ongoing efforts that seek effective transport models better suited than traditional equations to capture SOC dynamics. Most of these models, based on the use of fractional transport equations and related concepts, could prove useful both in reactor operation and experiment control and design.

  5. Breast cancer screening services: trade-offs in quality, capacity, outreach, and centralization.

    PubMed

    Güneş, Evrim D; Chick, Stephen E; Akşin, O Zeynep

    2004-11-01

    This work combines and extends previous work on breast cancer screening models by explicitly incorporating, for the first time, aspects of the dynamics of health care states, program outreach, and the screening volume-quality relationship in a service system model to examine the effect of public health policy and service capacity decisions on public health outcomes. We consider the impact of increasing standards for minimum reading volume to improve quality, expanding outreach with or without decentralization of service facilities, and the potential of queueing due to stochastic effects and limited capacity. The results indicate a strong relation between screening quality and the cost of screening and treatment, and emphasize the importance of accounting for service dynamics when assessing the performance of health care interventions. For breast cancer screening, increasing outreach without improving quality and maintaining capacity results in less benefit than predicted by standard models.

  6. Investigation of complexity dynamics in a DC glow discharge magnetized plasma using recurrence quantification analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Vramori; Sarma, Bornali; Sarma, Arun

    Recurrence is an ubiquitous feature which provides deep insights into the dynamics of real dynamical systems. A suitable tool for investigating recurrences is recurrence quantification analysis (RQA). It allows, e.g., the detection of regime transitions with respect to varying control parameters. We investigate the complexity of different coexisting nonlinear dynamical regimes of the plasma floating potential fluctuations at different magnetic fields and discharge voltages by using recurrence quantification variables, in particular, DET, L{sub max}, and Entropy. The recurrence analysis reveals that the predictability of the system strongly depends on discharge voltage. Furthermore, the persistent behaviour of the plasma time seriesmore » is characterized by the Detrended fluctuation analysis technique to explore the complexity in terms of long range correlation. The enhancement of the discharge voltage at constant magnetic field increases the nonlinear correlations; hence, the complexity of the system decreases, which corroborates the RQA analysis.« less

  7. Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination.

    PubMed

    Thakar, Juilee; Mohanty, Subhasis; West, A Phillip; Joshi, Samit R; Ueda, Ikuyo; Wilson, Jean; Meng, Hailong; Blevins, Tamara P; Tsang, Sui; Trentalange, Mark; Siconolfi, Barbara; Park, Koonam; Gill, Thomas M; Belshe, Robert B; Kaech, Susan M; Shadel, Gerald S; Kleinstein, Steven H; Shaw, Albert C

    2015-01-01

    To elucidate gene expression pathways underlying age-associated impairment in influenza vaccine response, we screened young (age 21-30) and older (age≥65) adults receiving influenza vaccine in two consecutive seasons and identified those with strong or absent response to vaccine, including a subset of older adults meeting criteria for frailty. PBMCs obtained prior to vaccination (Day 0) and at day 2 or 4, day 7 and day 28 post-vaccine were subjected to gene expression microarray analysis. We defined a response signature and also detected induction of a type I interferon response at day 2 and a plasma cell signature at day 7 post-vaccine in young responders. The response signature was dysregulated in older adults, with the plasma cell signature induced at day 2, and was never induced in frail subjects (who were all non-responders). We also identified a mitochondrial signature in young vaccine responders containing genes mediating mitochondrial biogenesis and oxidative phosphorylation that was consistent in two different vaccine seasons and verified by analyses of mitochondrial content and protein expression. These results represent the first genome-wide transcriptional profiling analysis of age-associated dynamics following influenza vaccination, and implicate changes in mitochondrial biogenesis and function as a critical factor in human vaccine responsiveness.

  8. Acetobixan, an Inhibitor of Cellulose Synthesis Identified by Microbial Bioprospecting

    PubMed Central

    Xia, Ye; Lei, Lei; Brabham, Chad; Stork, Jozsef; Strickland, James; Ladak, Adam; Gu, Ying; Wallace, Ian; DeBolt, Seth

    2014-01-01

    In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis. PMID:24748166

  9. Dynamic complexity: plant receptor complexes at the plasma membrane.

    PubMed

    Burkart, Rebecca C; Stahl, Yvonne

    2017-12-01

    Plant receptor complexes at the cell surface perceive many different external and internal signalling molecules and relay these signals into the cell to regulate development, growth and immunity. Recent progress in the analyses of receptor complexes using different live cell imaging approaches have shown that receptor complex formation and composition are dynamic and take place at specific microdomains at the plasma membrane. In this review we focus on three prominent examples of Arabidopsis thaliana receptor complexes and how their dynamic spatio-temporal distribution at the PM has been studied recently. We will elaborate on the newly emerging concept of plasma membrane microdomains as potential hubs for specific receptor complex assembly and signalling outputs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Plasma-Powder Feedstock Interaction During Plasma Spray-Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Hongbo; Zhang, Baopeng

    2017-02-01

    Plasma spray-physical vapor deposition is a new process developed to produce coatings from the vapor phase. To achieve deposition from the vapor phase, the plasma-feedstock interaction inside the plasma torch, i.e., from the powder injection point to the nozzle exit, is critical. In this work, the plasma characteristics and the momentum and heat transfer between the plasma and powder feedstock at different torch input power levels were investigated theoretically to optimize the net plasma torch power, among other important factors such as the plasma gas composition, powder feed rate, and carrier gas. The plasma characteristics were calculated using the CEA2 code, and the plasma-feedstock interaction was studied inside the torch nozzle at low-pressure (20-25 kPa) conditions. A particle dynamics model was introduced to compute the particle velocity, coupled with Xi Chen's drag model for nonevaporating particles. The results show that the energy transferred to the particles and the coating morphology are greatly influenced by the plasma gas characteristics and the particle dynamics inside the nozzle. The heat transfer between the plasma gas and feedstock material increased with the net torch power up to an optimum at 64 kW, at which a maximum of 3.4% of the available plasma energy was absorbed by the feedstock powder. Experimental results using agglomerated 7-8 wt.% yttria-stabilized zirconia (YSZ) powder as feedstock material confirmed the theoretical predictions.

  11. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  12. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  13. Classroom Dynamics and Young Children Identified as At Risk for the Development of Serious Emotional Disturbance.

    ERIC Educational Resources Information Center

    Lago-Delello, Ellie

    This study examined differences between kindergarten and first-grade children identified as at risk (AR) or not at risk (NAR) for the development of severe emotional disturbance on selected factors of classroom dynamics. Screening, using the Systematic Screening for Behavior Disorders measure, of all 628 kindergarten and first-grade children at…

  14. Precise energy eigenvalues of hydrogen-like ion moving in quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, S.; Saha, Jayanta K.; Mukherjee, T. K.

    2015-06-15

    The analytic form of the electrostatic potential felt by a slowly moving test charge in quantum plasma is developed. It has been shown that the electrostatic potential is composed of two parts: the Debye-Huckel screening term and the near-field wake potential. The latter depends on the velocity of the test charge as well as on the number density of the plasma electrons. Rayleigh-Ritz variational calculation has been done to estimate precise energy eigenvalues of hydrogen-like carbon ion under such plasma environment. A detailed analysis shows that the energy levels gradually move to the continuum with increasing plasma electron density whilemore » the level crossing phenomenon has been observed with the variation of ion velocity.« less

  15. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.

    2010-10-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  16. Note on lightning temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alanakyan, Yu. R., E-mail: yralanak@mail.ru

    2015-10-15

    In this paper, some features of the dynamics of a lightning channel that emerges after the leader-streamer process, are theoretically studied. It is shown that the dynamic pinch effect in the channel becomes possible if a discharge current before the main (quasi-steady) stage of a lightning discharge increases rapidly. The ensuing magnetic compression of the channel increases plasma temperature to several million degrees leading to a soft x-ray flash within the highly ionized plasma. The relation between the plasma temperature and the channel radius during the main stage of a lightning discharge is derived.

  17. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qaisrani, M. Hasnain; Xian, Yubin, E-mail: yubin.xian@hotmail.com; Li, Congyun

    2016-06-15

    In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma tomore » propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.« less

  18. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Huaming; Yang, Bo; Mao, Xianglei

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  19. Characteristics of plasma plume in ultrafast laser ablation with a weakly ionized air channel

    DOE PAGES

    Hou, Huaming; Yang, Bo; Mao, Xianglei; ...

    2018-05-10

    We report the influence of femtosecond (fs) laser weakly ionized air channel on characteristics of plasma induced from fs-laser ablation of solid Zr metal target. A novel method to create high temperature, low electron density plasma with intense elemental emission and weak bremsstrahlung emission was demonstrated. Weakly ionized air channel was generated as a result of a non-linear phenomenon. Two-dimensional time-resolved optical-emission images of plasma plumes were taken for plume dynamics analysis. Dynamic physical properties of filament channels were simulated. In particular, we investigated the influence of weakly ionized air channel on the evolution of solid plasma plume. Plasma plumemore » splitting was observed whilst longer weakly ionized air channel formed above the ablation spot. The domination mechanism for splitting is attributed to the long-lived underdense channel created by fs-laser induced weakly ionization of air. The evolutions of atomic/molecular emission intensity, peak broadening, and plasma temperature were analyzed, and the results show that the part of plasma entering weakly ionized air channel features higher initial temperature, lower electron density and faster decay.« less

  20. Electron density and plasma dynamics of a colliding plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor ofmore » 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.« less

  1. Dynamics of bulk electron heating and ionization in solid density plasmas driven by ultra-short relativistic laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.

    The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less

  2. The linear and non-linear characterization of dust ion acoustic mode in complex plasma in presence of dynamical charging of dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharjee, Saurav, E-mail: sauravtsk.bhattacharjee@gmail.com; Das, Nilakshi

    2015-10-15

    A systematic theoretical investigation has been carried out on the role of dust charging dynamics on the nature and stability of DIA (Dust Ion Acoustic) mode in complex plasma. The study has been made for both linear and non-linear scale regime of DIA mode. The observed results have been characterized in terms of background plasma responses towards dust surface responsible for dust charge fluctuation, invoking important dusty plasma parameters, especially the ion flow speed and dust size. The linear analyses confirm the nature of instability in DIA mode in presence of dust charge fluctuation. The instability shows a damping ofmore » DIA mode in subsonic flow regime followed by a gradual growth in instability in supersonic limit of ion flow. The strength of non-linearity and their existence domain is found to be driven by different dusty plasma parameters. As dust is ubiquitous in interstellar medium with plasma background, the study also addresses the possible effect of dust charging dynamics in gravito-electrostatic characterization and the stability of dust molecular clouds especially in proto-planetary disc. The observations are influential and interesting towards the understanding of dust settling mechanism and formation of dust environments in different regions in space.« less

  3. Comparative properties of the interior and blowoff plasmas in a dynamic hohlraum

    DOE PAGES

    Apruzese, J. P.; Clark, R. W.; Davis, J.; ...

    2007-04-20

    A Dynamic Hohlraum (DH) is formed when arrays of tungsten wires driven by a high-current pulse implode and compress a cylindrical foam target. The resulting radiation is confined by the wire plasma and forms an intense, ~200–250 eV Planckian x-ray source. The internal radiation can be used for indirect drive inertial confinement fusion. The radiation emitted from the ends can be employed for radiation flow and material interaction studies. This external radiation is accompanied by an expanding blowoff plasma. In this paper, we have diagnosed this blowoff plasma using K-shell spectra of Mg tracer layers placed at the ends ofmore » some of the Dynamic Hohlraum targets. A similar diagnosis of the interior hohlraum has been carried out using Al and Mg tracers placed at 2mm depth from the ends. It is found that the blowoff plasma is about 20–25% as dense as that of the interior hohlraum, and that its presence does not significantly affect the outward flow of the nearly Planckian radiation field generated in the hohlraum interior. Finally, however, the electron temperature of the blowoff region, at ~120 eV, is only about half that of the interior hohlraum plasma.« less

  4. Comparative study of INPIStron and spark gap

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.

  5. Turbulent complex (dusty) plasma

    NASA Astrophysics Data System (ADS)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  6. Sensitivity and specificity of a new automated system for the detection of hepatitis B virus, hepatitis C virus, and human immunodeficiency virus nucleic acid in blood and plasma donations.

    PubMed

    Galel, Susan A; Simon, Toby L; Williamson, Phillip C; AuBuchon, James P; Waxman, Dan A; Erickson, Yasuko; Bertuzis, Rasa; Duncan, John R; Malhotra, Khushbeer; Vaks, Jeffrey; Huynh, Nancy; Pate, Lisa Lee

    2018-03-01

    Use of nucleic acid testing (NAT) in donor infectious disease screening improves transfusion safety. Advances in NAT technology include improvements in assay sensitivity and system automation, and real-time viral target discrimination in multiplex assays. This article describes the sensitivity and specificity of cobas MPX, a multiplex assay for detection of human immunodeficiency virus (HIV)-1 Group M, HIV-2 and HIV-1 Group O RNA, HCV RNA, and HBV DNA, for use on the cobas 6800/8800 Systems. The specificity of cobas MPX was evaluated in samples from donors of blood and source plasma in the United States. Analytic sensitivity was determined with reference standards. Infectious window periods (WPs) before NAT detectability were calculated for current donor screening assays. The specificity of cobas MPX was 99.946% (99.883%-99.980%) in 11,203 blood donor samples tested individually (IDT), 100% (99.994%-100%) in 63,012 donor samples tested in pools of 6, and 99.994% (99.988%-99.998%) in 108,306 source plasma donations tested in pools of 96. Seven HCV NAT-yield donations and one seronegative occult HBV infection were detected. Ninety-five percent and 50% detection limits in plasma (IU/mL) were 25.7 and 3.8 for HIV-1M, 7.0 and 1.3 for HCV, and 1.4 and 0.3 for HBV. The HBV WP was 1 to 4 days shorter than other donor screening assays by IDT. cobas MPX demonstrated high specificity in blood and source plasma donations tested individually and in pools. High sensitivity, in particular for HBV, shortens the WP and may enhance detection of occult HBV. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  7. A Novel Method to Detect Early Colorectal Cancer Based on Chromosome Copy Number Variation in Plasma.

    PubMed

    Xu, Jun-Feng; Kang, Qian; Ma, Xing-Yong; Pan, Yuan-Ming; Yang, Lang; Jin, Peng; Wang, Xin; Li, Chen-Guang; Chen, Xiao-Chen; Wu, Chao; Jiao, Shao-Zhuo; Sheng, Jian-Qiu

    2018-01-01

    Colonoscopy screening has been accepted broadly to evaluate the risk and incidence of colorectal cancer (CRC) during health examination in outpatients. However, the intrusiveness, complexity and discomfort of colonoscopy may limit its application and the compliance of patients. Thus, more reliable and convenient diagnostic methods are necessary for CRC screening. Genome instability, especially copy-number variation (CNV), is a hallmark of cancer and has been proved to have potential in clinical application. We determined the diagnostic potential of chromosomal CNV at the arm level by whole-genome sequencing of CRC plasma samples (n = 32) and healthy controls (n = 38). Arm level CNV was determined and the consistence of arm-level CNV between plasma and tissue was further analyzed. Two methods including regular z score and trained Support Vector Machine (SVM) classifier were applied for detection of colorectal cancer. In plasma samples of CRC patients, the most frequent deletions were detected on chromosomes 6, 8p, 14q and 1p, and the most frequent amplifications occurred on chromosome 19, 5, 2, 9p and 20p. These arm-level alterations detected in plasma were also observed in tumor tissues. We showed that the specificity of regular z score analysis for the detection of colorectal cancer was 86.8% (33/38), whereas its sensitivity was only 56.3% (18/32). Applying a trained SVM classifier (n = 40 in trained group) as the standard to detect colorectal cancer relevance ratio in the test samples (n = 30), a sensitivity of 91.7% (11/12) and a specificity 88.9% (16/18) were finally reached. Furthermore, all five early CRC patients in stages I and II were successfully detected. Trained SVM classifier based on arm-level CNVs can be used as a promising method to screen early-stage CRC. © 2018 The Author(s). Published by S. Karger AG, Basel.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Louise, E-mail: louise.marks@astrazeneca.com; Borland, Samantha; Philp, Karen

    Despite rigorous preclinical and clinical safety evaluation, adverse cardiac effects remain a leading cause of drug attrition and post-approval drug withdrawal. A number of cardiovascular screens exist within preclinical development. These screens do not, however, provide a thorough cardiac liability profile and, in many cases, are not preventing the progression of high risk compounds. We evaluated the suitability of the anaesthetised guinea-pig for the assessment of drug-induced changes in cardiovascular parameters. Sodium pentobarbitone anaesthetised male guinea-pigs received three 15 minute intravenous infusions of ascending doses of amoxicillin, atenolol, clonidine, dobutamine, dofetilide, flecainide, isoprenaline, levosimendan, milrinone, moxifloxacin, nifedipine, paracetamol, verapamil ormore » vehicle, followed by a 30 minute washout. Dose levels were targeted to cover clinical exposure and above, with plasma samples obtained to evaluate effect/exposure relationships. Arterial blood pressure, heart rate, contractility function (left ventricular dP/dt{sub max} and QA interval) and lead II electrocardiogram were recorded throughout. In general, the expected reference compound induced effects on haemodynamic, contractility and electrocardiographic parameters were detected confirming that all three endpoints can be measured accurately and simultaneously in one small animal. Plasma exposures obtained were within, or close to the expected clinical range of therapeutic plasma levels. Concentration–effect curves were produced which allowed a more complete understanding of the margins for effects at different plasma exposures. This single in vivo screen provides a significant amount of information pertaining to the cardiovascular risk of drug candidates, ultimately strengthening strategies addressing cardiovascular-mediated compound attrition and drug withdrawal. -- Highlights: ► Evaluation of the anaesthetised guinea-pig to determine cardiac liability. ► Haemodynamic, contractility, ECG parameters and plasma exposure all measurable. ► Single small animal model offering extensive evaluation of a drug's CV risk. ► Potential to strengthen drug discovery cardiovascular strategy. ► Potential to halt progression of drugs with CV liability, reducing drug attrition.« less

  9. Model of melting (crystallization) process of the condensed disperse phase in the smoky plasmas

    NASA Astrophysics Data System (ADS)

    Dragan, G. S.; Kolesnikov, K. V.; Kutarov, V. V.

    2018-01-01

    The paper presents an analysis of the causes of a formation of spatial ordered grain structures in a smoky plasma. We are modeling the process of melting (crystallization) of a condensed phase in this environment taking into account the screened electrostatic interaction and the diffusion-drift force. We discuss an influence of the charge on the melting temperatures.

  10. Evaluation of the filter paper IP-10 tests in school children after exposure to tuberculosis: a prospective cohort study with a 4-year follow-up

    PubMed Central

    Tuuminen, Tamara; Salo, Eeva; Kotilainen, Hannele; Ruhwald, Morten

    2012-01-01

    Objectives The prevalence of active tuberculosis (TB) is low in Finland, but outbreaks do occur. Following exposure national guidelines recommend either tuberculosis skin test or interferon-γ-release assay-testing of asymptomatic children. The aim of this study was to compare QuantiFERON-TB Gold In-Tube test (QFT) and interferon-γ-inducible protein (IP-10) release assay for detection of Mycobacterium tuberculosis infection following exposure to TB in a primary school. Design A prospective cohort study. Setting School children in Helsinki, Finland. Participants Two siblings of the index case and 58 classmates exposed to M tuberculosis. Intervention All the children were screened using the QFT, which was used to guide preventive treatment. All those exposed were followed up through the national TB registry. Outcome measures IP-10 was measured in plasma supernatants from the QFT test supernatants and in plasma dried and stored for 1 year on filter paper. IP-10 test results were calculated using preset algorithms for positive and indeterminate tests. The negative predictive values of the tests were assessed. Results At an initial screening 2 months after the debut of symptoms in the index case, QFT was positive in two children; 56 tests were negative; one was indeterminate and one was borderline. IP-10 showed a perfect concordance between the dried plasma spot and plasma method; two children were IP-10 positive and two were IP-10 indeterminate. There were two (3%) discordant results between the QFT and IP-10 tests. Four children converted to positive QFT at a 1–3 month follow-up. None of the QFT negative/borderline children developed TB in the 4-year period since exposure. Conclusions We demonstrated that IP-10 and QFT perform comparably as screening tools for infection with M tuberculosis in a contact investigation. IP-10 determined in dried plasma spots was at par with IP-10 determined in plasma, which further supports the usefulness of this alternative approach. PMID:23212994

  11. Comparison of glomerular filtration rate determined by use of single-slice dynamic computed tomography and scintigraphy in cats.

    PubMed

    Schmidt, David M; Scrivani, Peter V; Dykes, Nathan L; Goldstein, Richard M; Erb, Hollis N; Reeves, Anthony P

    2012-04-01

    To compare estimation of glomerular filtration rate determined via conventional methods (ie, scintigraphy and plasma clearance of technetium Tc 99m pentetate) and dynamic single-slice computed tomography (CT). 8 healthy adult cats. Scintigraphy, plasma clearance testing, and dynamic CT were performed on each cat on the same day; order of examinations was randomized. Separate observers performed GFR calculations for scintigraphy, plasma clearance testing, or dynamic CT. Methods were compared via Bland-Altman plots and considered interchangeable and acceptable when the 95% limits of agreement (mean difference between methods ± 1.96 SD of the differences) were ≤ 0.7 mL/min/kg. Global GFR differed < 0.7 mL/min/kg in 5 of 8 cats when comparing plasma clearance testing and dynamic CT; the limits of agreement were 1.4 and -1.7 mL/min/kg. The mean ± SD difference was -0.2 ± 0.8 mL/min/kg, and the maximum difference was 1.6 mL/min/kg. The mean ± SD difference (absolute value) for percentage filtration by individual kidneys was 2.4 ± 10.5% when comparing scintigraphy and dynamic CT; the maximum difference was 20%, and the limits of agreement were 18% and 23% (absolute value). GFR estimation via dynamic CT exceeded the definition for acceptable clinical use, compared with results for conventional methods, which was likely attributable to sample size and preventable technical complications. Because 5 of 8 cats had comparable values between methods, further investigation of dynamic CT in a larger sample population with a wide range of GFR values should be performed.

  12. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease.

    PubMed

    Soares, Holly D; Potter, William Z; Pickering, Eve; Kuhn, Max; Immermann, Frederick W; Shera, David M; Ferm, Mats; Dean, Robert A; Simon, Adam J; Swenson, Frank; Siuciak, Judith A; Kaplow, June; Thambisetty, Madhav; Zagouras, Panayiotis; Koroshetz, Walter J; Wan, Hong I; Trojanowski, John Q; Shaw, Leslie M

    2012-10-01

    A blood-based test that could be used as a screen for Alzheimer disease (AD) may enable early intervention and better access to treatment. To apply a multiplex immunoassay panel to identify plasma biomarkers of AD using plasma samples from the Alzheimer's Disease Neuroimaging Initiative cohort. Cohort study. The Biomarkers Consortium Alzheimer's Disease Plasma Proteomics Project. Plasma samples at baseline and at 1 year were analyzed from 396 (345 at 1 year) patients with mild cognitive impairment, 112 (97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy control subjects. Multivariate and univariate statistical analyses were used to examine differences across diagnostic groups and relative to the apolipoprotein E (ApoE) genotype. Increased levels of eotaxin 3, pancreatic polypeptide, and N-terminal protein B-type brain natriuretic peptide were observed in patients, confirming similar changes reported in cerebrospinal fluid samples of patients with AD and MCI. Increases in tenascin C levels and decreases in IgM and ApoE levels were also observed. All participants with Apo ε3/ε4 or ε4/ε4 alleles showed a distinct biochemical profile characterized by low C-reactive protein and ApoE levels and by high cortisol, interleukin 13, apolipoprotein B, and gamma interferon levels. The use of plasma biomarkers improved specificity in differentiating patients with AD from controls, and ApoE plasma levels were lowest in patients whose mild cognitive impairment had progressed to dementia. Plasma biomarker results confirm cerebrospinal fluid studies reporting increased levels of pancreatic polypeptide and N-terminal protein B-type brain natriuretic peptide in patients with AD and mild cognitive impairment. Incorporation of plasma biomarkers yielded high sensitivity with improved specificity, supporting their usefulness as a screening tool. The ApoE genotype was associated with a unique biochemical profile irrespective of diagnosis, highlighting the importance of genotype on blood protein profiles.

  13. Clinical Performance of Aspergillus PCR for Testing Serum and Plasma: a Study by the European Aspergillus PCR Initiative.

    PubMed

    White, P Lewis; Barnes, Rosemary A; Springer, Jan; Klingspor, Lena; Cuenca-Estrella, Manuel; Morton, C Oliver; Lagrou, Katrien; Bretagne, Stéphane; Melchers, Willem J G; Mengoli, Carlo; Donnelly, J Peter; Heinz, Werner J; Loeffler, Juergen

    2015-09-01

    Aspergillus PCR testing of serum provides technical simplicity but with potentially reduced sensitivity compared to whole-blood testing. With diseases for which screening to exclude disease represents an optimal strategy, sensitivity is paramount. The associated analytical study confirmed that DNA concentrations were greater in plasma than those in serum. The aim of the current investigation was to confirm analytical findings by comparing the performance of Aspergillus PCR testing of plasma and serum in the clinical setting. Standardized Aspergillus PCR was performed on plasma and serum samples concurrently obtained from hematology patients in a multicenter retrospective anonymous case-control study, with cases diagnosed according to European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) consensus definitions (19 proven/probable cases and 42 controls). Clinical performance and clinical utility (time to positivity) were calculated for both kinds of samples. The sensitivity and specificity for Aspergillus PCR when testing serum were 68.4% and 76.2%, respectively, and for plasma, they were 94.7% and 83.3%, respectively. Eighty-five percent of serum and plasma PCR results were concordant. On average, plasma PCR was positive 16.8 days before diagnosis and was the earliest indicator of infection in 13 cases, combined with other biomarkers in five cases. On average, serum PCR was positive 10.8 days before diagnosis and was the earliest indicator of infection in six cases, combined with other biomarkers in three cases. These results confirm the analytical finding that the sensitivity of Aspergillus PCR using plasma is superior to that using serum. PCR positivity occurs earlier when testing plasma and provides sufficient sensitivity for the screening of invasive aspergillosis while maintaining methodological simplicity. Copyright © 2015 White et al.

  14. Sequential cloud-point extraction for toxicological screening analysis of medicaments in human plasma by high pressure liquid chromatography with diode array detector.

    PubMed

    Madej, Katarzyna; Persona, Karolina; Wandas, Monika; Gomółka, Ewa

    2013-10-18

    A complex extraction system with the use of cloud-point extraction technique (CPE) was developed for sequential isolation of basic and acidic/neutral medicaments from human plasma/serum, screened by HPLC/DAD method. Eight model drugs (paracetamol, promazine, chlorpromazine, amitriptyline, salicyclic acid, opipramol, alprazolam and carbamazepine) were chosen for the study of optimal CPE conditions. The CPE technique consists in partition of an aqueous sample with addition of a surfactant into two phases: micelle-rich phase with the isolated compounds and water phase containing a surfactant below the critical micellar concentration, mainly under influence of temperature change. The proposed extraction system consists of two chief steps: isolation of basic compounds (from pH 12) and then isolation of acidic/neutral compounds (from pH 6) using surfactant Triton X-114 as the extraction medium. Extraction recovery varied from 25.2 to 107.9% with intra-day and inter-day precision (RSD %) ranged 0.88-1087 and 5.32-17.96, respectively. The limits of detection for the studied medicaments at λ 254nm corresponded to therapeutic or low toxic plasma concentration levels. Usefulness of the proposed CPE-HPLC/DAD method for toxicological drug screening was tested via its application to analysis of two serum samples taken from patients suspected of drug overdosing. Published by Elsevier B.V.

  15. Measurements of Ion and Neutral Fluctuation Changes with Pressure in a Large-Scale Helicon Plasma

    NASA Astrophysics Data System (ADS)

    Dwyer, R. H.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Gilmore, M.

    2017-10-01

    Neutral particle dynamics may play an important role both in laboratory plasmas and in the edge of magnetic fusion devices. However, studies of neutral dynamics in these plasmas have been limited to date. Here we report on a basic study of ion and neutral fluctuations as a function of background neutral gas pressure. These experiments have been conducted in helicon discharges in the HelCat (Helicon-Cathode) dual-source plasma device at the University of New Mexico. The goal is to measure changes in ion and neutral density fluctuations with pressure and to gain an improved understanding of plasma-neutral interactions. Langmuir probe, Ar-I LIF, and high-speed imaging measurements of the fluctuations will be presented. Supported by U.S. National Science Foundation Award 1500423 and The University of New Mexico School of Engineering.

  16. Plasma dynamics in a packed bed dielectric barrier discharge (DBD) operated in helium

    NASA Astrophysics Data System (ADS)

    Mujahid, Zaka-ul-Islam; Hala, Ahmed

    2018-03-01

    Packed bed dielectric barrier discharges (DBDs) are very promising for several applications including remediation of environmental pollutants and greenhouse gas conversion. In this work, we have investigated the space and time-resolved emission from a packed bed DBD operated in helium, to understand the plasma dynamics. We have chosen a simple planar DBD arrangement with a patterned dielectric, which mimics the spherical boundaries between the dielectric pellets and allows the optical access to the plasma. The results show that plasma is sustained in a packed bed DBD by three mechanisms: filamentary discharge in the void (between the center of dielectric structures and the opposite electrode), microdischarges at the contact points and surface ionization waves over the dielectric surface. It is observed that for most of the duration plasma is generated at the contact points between the dielectric structures.

  17. Six different plasma enzymes in bald eagles (Haliaeetus leucocephalus) and their usefulness in pathological diagnosis

    USGS Publications Warehouse

    Dieter, M.P.; Wiemeyer, Stanley N.

    1978-01-01

    1. Activities of creatine phosphokinase, glutamic oxalacetic transaminase, glutamic pyruvic transaminase, lactate dehydrogenase, fructose diphosphate aldolase and cholinesterase were measured in plasma of bald eagles.2. There were no sex differences in the plasma enzyme activities.3. An acute dieldrin dosage (10 mg/kg) of a female bald eagle resulted in 400% increases in activities of plasma creatine phosphokinase and glutamic oxalacetic transaminase and 250% increases in activities of lactate dehydrogenase and glutamic pyruvic transaminase.4. At 11 days post-dosage all but one of the plasma enzyme activities had returned to normal; glutamic oxalacetic transaminase activity remained 100% above pre-dosage values.5. Plasma enzyme assays constitute a non-destrcutive procedure that can be used in valuable wildlife species to screen for the presence and prevalence of environmental contaminants.

  18. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies

    PubMed Central

    2011-01-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170–180 A/cm2 were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma. PMID:27502662

  19. Investigation on the Plasma-Induced Emission Properties of Large Area Carbon Nanotube Array Cathodes with Different Morphologies.

    PubMed

    Liao, Qingliang; Qin, Zi; Zhang, Zheng; Qi, Junjie; Zhang, Yue; Huang, Yunhua; Liu, Liang

    2011-12-01

    Large area well-aligned carbon nanotube (CNT) arrays with different morphologies were synthesized by using a chemical vapor deposition. The plasma-induced emission properties of CNT array cathodes with different morphologies were investigated. The ratio of CNT height to CNT-to-CNT distance has considerable effects on their plasma-induced emission properties. As the ratio increases, emission currents of CNT array cathodes decrease due to screening effects. Under the pulse electric field of about 6 V/μm, high-intensity electron beams of 170-180 A/cm(2) were emitted from the surface plasma. The production mechanism of the high-intensity electron beams emitted from the CNT arrays was plasma-induced emission. Moreover, the distribution of the electron beams was in situ characterized by the light emission from the surface plasma.

  20. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack.

    PubMed

    van der Goot, F G; Harder, T

    2001-04-01

    While the existence of cholesterol/sphingolipid (raft) membrane domains in the plasma membrane is now supported by strong experimental evidence, the structure of these domains, their size, their dynamics, and their molecular composition remain to be understood. Raft domains are thought to represent a specific physical state of lipid bilayers, the liquid-ordered phase. Recent observations suggest that in the mammalian plasma membrane small raft domains in ordered lipid phases are in a dynamic equilibrium with a less ordered membrane environment. Rafts may be enlarged and/or stabilized by protein-mediated cross-linking of raft-associated components. These changes of plasma membrane structure are perceived by the cells as signals, most likely an important element of immunoreceptor signalling. Pathogens abuse raft domains on the host cell plasma membrane as concentration devices, as signalling platforms and/or entry sites into the cell. Elucidation of these interactions requires a detailed understanding raft structure and dynamics. Copyright 2001 Academic Press.

  1. Simulating the Solar Wind Interaction with Comet 67P/Churyumov-Gerasimenko: Latest Results

    NASA Astrophysics Data System (ADS)

    Deca, J.; Divin, A. V.; Henri, P.; Eriksson, A. I.; Markidis, S.; Olshevsky, V.; Goldstein, R.; Myllys, M. E.; Horanyi, M.

    2017-12-01

    First observed in 1969, comet 67P/Churyumov-Gerasimenko was escorted for almost two years along its 6.45-yr elliptical orbit by ESA's Rosetta orbiter spacecraft. When a comet is sufficiently close to the Sun, the sublimation of ice leads to an outgassing atmosphere and the formation of a coma, and a dust and plasma tail. Comets are critical to decipher the physics of gas release processes in space. The latter result in mass-loaded plasmas, which more than three decades after the Active Magnetospheric Particle Tracer Explorers (AMPTE) space release experiments are still not fully understood. Using a 3D fully kinetic approach, we study the solar wind interaction with comet 67P/Churyumov-Gerasimenko, focusing in particular on the ion-electron dynamics for various outgassing rates. A detailed kinetic treatment of the electron dynamics is critical to fully capture the complex physics of mass-loading plasmas and to describe the strongly inhomogeneous plasma dynamics observed by Rosetta, down to electron kinetic scales.

  2. Simulative research on the anode plasma dynamics in the high-power electron beam diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Dan; Liu, Lie; Ju, Jin-Chuan

    2015-07-15

    Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anodemore » gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.« less

  3. Holographic Tools for Probing the Dynamics of Strongly Coupled Field Theories

    NASA Astrophysics Data System (ADS)

    Fuini, John F.

    Since it was conjectured almost 20 years ago, AdS/CFT duality, or holography, has enabled steady progress in understanding certain gauge theories in the strongly coupled limit. In this thesis we examine various aspects of holography and holographic techniques, as well as particular applications to the dynamics of strongly coupled plasmas. We discuss the energy loss of general probe defects in generic holographic plasmas and the lifetime of quasinormal modes of sufficiently short-wavelength in a strongly coupled N = 4 Super Yang-Mills (SYM) plasma. We then perform a thorough investigation of the far-from-equilibrium dynamics of the SYM plasma, focusing on how the presence of large magnetic fields or chemical potentials affect the timescale of equilibration. Finally we discuss some non-relativistic directions by finding a covariant construction of Lagrangians for spinor fields in generic Newton-Cartan backgrounds via a non-relativistic reduction, which may assist in the construction of non-relativistic versions of holography.

  4. Periodic Phenomena In Laser-Ablation Plasma Plumes: A Self-Organization Scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurlui, S.; Sanduloviciu, M.; Mihesan, C.

    2006-01-15

    Experimental evidence of the appearance of a proper periodic dynamics in a plasma plume created by pulsed laser ablation is considered as a hint for the presence of a self-organization scenario that explains similar phenomena observed in plasma diodes.

  5. Sensitive Detection of Colorectal Cancer in Peripheral Blood by Septin 9 DNA Methylation Assay

    PubMed Central

    Grützmann, Robert; Molnar, Bela; Pilarsky, Christian; Habermann, Jens K.; Schlag, Peter M.; Saeger, Hans D.; Miehlke, Stephan; Stolz, Thomas; Model, Fabian; Roblick, Uwe J.; Bruch, Hans-Peter; Koch, Rainer; Liebenberg, Volker; deVos, Theo; Song, Xiaoling; Day, Robert H.; Sledziewski, Andrew Z.; Lofton-Day, Catherine

    2008-01-01

    Background Colorectal cancer (CRC) is the second leading cause of cancer deaths despite the fact that detection of this cancer in early stages results in over 90% survival rate. Currently less than 45% of at-risk individuals in the US are screened regularly, exposing a need for better screening tests. We performed two case-control studies to validate a blood-based test that identifies methylated DNA in plasma from all stages of CRC. Methodology/Principal Findings Using a PCR assay for analysis of Septin 9 (SEPT9) hypermethylation in DNA extracted from plasma, clinical performance was optimized on 354 samples (252 CRC, 102 controls) and validated in a blinded, independent study of 309 samples (126 CRC, 183 controls). 168 polyps and 411 additional disease controls were also evaluated. Based on the training study SEPT9-based classification detected 120/252 CRCs (48%) and 7/102 controls (7%). In the test study 73/126 CRCs (58%) and 18/183 control samples (10%) were positive for SEPT9 validating the training set results. Inclusion of an additional measurement replicate increased the sensitivity of the assay in the testing set to 72% (90/125 CRCs detected) while maintaining 90% specificity (19/183 for controls). Positive rates for plasmas from the other cancers (11/96) and non-cancerous conditions (41/315) were low. The rate of polyp detection (>1 cm) was ∼20%. Conclusions/Significance Analysis of SEPT9 DNA methylation in plasma represents a straightforward, minimally invasive method to detect all stages of CRC with potential to satisfy unmet needs for increased compliance in the screening population. Further clinical testing is warranted. PMID:19018278

  6. Formation and plasma circulation of solar prominences and coronal rains

    NASA Astrophysics Data System (ADS)

    Xia, C.

    2016-12-01

    Solar prominences are long-lived cool and dense plasma curtains in the hot and rarefied corona. The physical mechanism responsible for their formation and especially for their internal plasma circulation has been uncertain for decades. The observed ubiquitous down flows in quiescent prominences are difficult to interpret as plasma with high conductivity seems to move across horizontal magnetic field lines. Here we present three-dimensional (3D) numerical simulations of prominence formation and evolution in an elongated magnetic flux rope as a result of in-situ plasma condensations fueled by continuous plasma evaporation from the solar chromosphere. The prominence is born and maintained in a fragmented, highly dynamic state with continuous reappearance of multiple blobs and thread structures that move mainly downward dragging along mass-loaded field lines. The prominence plasma circulation is characterized by the dynamic balance between the drainage of prominence plasma back to the chromosphere and the formation of prominence plasma via continuous condensation. Plasma evaporates from the chromosphere, condenses into the prominence in the corona, and drains back to the chromosphere, establishing a stable chromosphere-corona plasma cycle. Another form of cool and dense plasma in the corona is coronal rain, which forms in-situ and drain down arched pathways along loops near active regions. We present 3D simulations of coronal rain in a bipolar arcade and compare it with observational results.

  7. Validation of the Use of Dried Blood Spot (DBS) Method to Assess Vitamin A Status

    PubMed Central

    Fallah, Elham; Peighambardoust, Seyed Hadi

    2012-01-01

    Background: Vitamin A deficiency is an important dietary deficiency in the world. Thus, the ne¬cessity of screening for deficient populations is obvious. This paper introduces a fast, cheap and relatively reliable method called “dried blood spot” (DBS) method in screening the deficient populations. The validity of this method for retinol measurement was investigated. Method: The “precision” and “agreement” criteria of the DBS method were assessed. The preci¬sion was calculated and compared with those of plasma using F-test. The agreement was eva¬luated using Bland-Altman plot. Results: The imprecision of retinol measurements in dried spots was not significantly different from those of the control (plasma). A good correlation coefficient (r2=0.78) was obtained for dried spots’ retinol measurements versus plasma’s retinol analysis (P < 0.01). Paired t-test showed no significant difference between the DBS and retinol methods on a group level. Imprecision of DBS measurement was acceptable, compared to that of the plasma method. The difference be¬tween these two methods was not statistically significant on a group level. Conclusion: Application of DBS standard samples, in which a part of the plasma was replaced with the artificial plasma, was shown to be a reliable calibration mean for retinol measurements in DBS samples. Retinol in dried spots was stable for 90 days. Overall, the DBS method provided a precise measurement of retinol, showing results that were comparable with the measurement of retinol in plasma. PMID:24688932

  8. Information-theoretic measures of hydrogen-like ions in weakly coupled Debye plasmas

    NASA Astrophysics Data System (ADS)

    Zan, Li Rong; Jiao, Li Guang; Ma, Jia; Ho, Yew Kam

    2017-12-01

    Recent development of information theory provides researchers an alternative and useful tool to quantitatively investigate the variation of the electronic structure when atoms interact with the external environment. In this work, we make systematic studies on the information-theoretic measures for hydrogen-like ions immersed in weakly coupled plasmas modeled by Debye-Hückel potential. Shannon entropy, Fisher information, and Fisher-Shannon complexity in both position and momentum spaces are quantified in high accuracy for the hydrogen atom in a large number of stationary states. The plasma screening effect on embedded atoms can significantly affect the electronic density distributions, in both conjugate spaces, and it is quantified by the variation of information quantities. It is shown that the composite quantities (the Shannon entropy sum and the Fisher information product in combined spaces and Fisher-Shannon complexity in individual space) give a more comprehensive description of the atomic structure information than single ones. The nodes of wave functions play a significant role in the changes of composite information quantities caused by plasmas. With the continuously increasing screening strength, all composite quantities in circular states increase monotonously, while in higher-lying excited states where nodal structures exist, they first decrease to a minimum and then increase rapidly before the bound state approaches the continuum limit. The minimum represents the most reduction of uncertainty properties of the atom in plasmas. The lower bounds for the uncertainty product of the system based on composite information quantities are discussed. Our research presents a comprehensive survey in the investigation of information-theoretic measures for simple atoms embedded in Debye model plasmas.

  9. Measurements of ion species separation in strong plasma shocks

    NASA Astrophysics Data System (ADS)

    Rinderknecht, Hans

    2017-10-01

    Shocks are important dynamic phenomena in inertial confinement fusion (ICF) and astrophysical plasmas. While the relationship between upstream and downstream plasmas far from the shock front is fully determined by conservation equations, the structure of shock fronts is determined by dynamic kinetic processes. Kinetic theory and simulations predict that the width of a strong (M >2) collisional plasma shock front is on the order of tens of ion mean-free-paths. The shock front structure plays an important role for overall dynamics when the shock front width approaches plasma scale lengths, as in the spherically converging shock in the DT-vapor in an ICF implosion. However, there has been no experimental data benchmarking shock front structure in the plasma phase. The structure of a shock front in a plasma with multiple ion species has been directly measured for the first time using a combination of Thomson scattering and proton radiography in experiments on the OMEGA laser. Thomson scattering of a 263.25 nm probe beam is used to diagnose electron density, electron and ion temperature, ion species concentration, and flow velocity in strong shocks (M 5) propagating through low-density (ρ 0.1 mg/cc) plasmas composed of H(98%) +Ne(2%). Within the shock front, velocity separation of the ion species is observed for the first time: the light species (H) accelerates to of order the shocked fluid velocity (450 microns/ns) before the heavy species (Ne) begins to move. This velocity-space separation implies that the separation of ion species occurs at the shock front, a predicted feature of shocks in multi-species plasmas but never observed experimentally until now. Comparison of experimental data with PIC, Vlasov-Fokker-Planck, and multi-component hydrodynamic simulations will be presented.

  10. Fast screening of analytes for chemical reactions by reactive low-temperature plasma ionization mass spectrometry.

    PubMed

    Zhang, Wei; Huang, Guangming

    2015-11-15

    Approaches for analyte screening have been used to aid in the fine-tuning of chemical reactions. Herein, we present a simple and straightforward analyte screening method for chemical reactions via reactive low-temperature plasma ionization mass spectrometry (reactive LTP-MS). Solution-phase reagents deposited on sample substrates were desorbed into the vapor phase by action of the LTP and by thermal desorption. Treated with LTP, both reagents reacted through a vapor phase ion/molecule reaction to generate the product. Finally, protonated reagents and products were identified by LTP-MS. Reaction products from imine formation reaction, Eschweiler-Clarke methylation and the Eberlin reaction were detected via reactive LTP-MS. Products from the imine formation reaction with reagents substituted with different functional groups (26 out of 28 trials) were successfully screened in a time of 30 s each. Besides, two short-lived reactive intermediates of Eschweiler-Clarke methylation were also detected. LTP in this study serves both as an ambient ionization source for analyte identification (including reagents, intermediates and products) and as a means to produce reagent ions to assist gas-phase ion/molecule reactions. The present reactive LTP-MS method enables fast screening for several analytes from several chemical reactions, which possesses good reagent compatibility and the potential to perform high-throughput analyte screening. In addition, with the detection of various reactive intermediates (intermediates I and II of Eschweiler-Clarke methylation), the present method would also contribute to revealing and elucidating reaction mechanisms. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Relativistic longitudinal self-compression of ultrashort time-domain hollow Gaussian pulses in plasma

    NASA Astrophysics Data System (ADS)

    Cao, Xiaochao; Fang, Feiyun; Wang, Zhaoying; Lin, Qiang

    2017-10-01

    We report a study on dynamical evolution of the ultrashort time-domain dark hollow Gaussian (TDHG) pulses beyond the slowly varying envelope approximation in homogenous plasma. Using the complex-source-point model, an analytical formula is proposed for describing TDHG pulses based on the oscillating electric dipoles, which is the exact solution of the Maxwell's equations. The numerical simulations show the relativistic longitudinal self-compression (RSC) due to the relativistic mass variation of moving electrons. The influences of plasma oscillation frequency and collision effect on dynamics of the TDHG pulses in plasma have been considered. Furthermore, we analyze the evolution of instantaneous energy density of the TDHG pulses on axis as well as the off axis condition.

  12. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons

    NASA Astrophysics Data System (ADS)

    Ahmadi, Abrishami S.; Nouri, Kadijani M.

    2014-06-01

    In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.

  13. Characteristics of thermal and suprathermal ions associated with the dayside plasma trough as measured by the dynamics explorer retarding ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Johnson, J. F. E.; Waite, J. H.; Chappell, C. R.

    1983-01-01

    The thermal and suprathermal ion populations present in the refilling regions after a magnetic storm are examined using retarding ion mass spectrometer (RIMS) data from the Dynamics Explorer 1 spacecraft. The RIMS instrument is described, and data are presented and discussed in detail for the outer plasmasphere, plasmapause, depleted dayside magnetosphere, and dayside cusp. Three distinct populations were observed: thermal ions, warm anisotropic plasma, and the polar wind. The characteristics of these populations are considered, including the densities, temperatures, and density ratios. Aspects of the ionospheric plasma outflow are discussed, including the field-aligned flow speed, the ionospheric plasma escape flux, plasmaspheric refilling, and wave-particle phenomena.

  14. Plasma crystal dynamics measured with a three-dimensional plenoptic camera

    NASA Astrophysics Data System (ADS)

    Jambor, M.; Nosenko, V.; Zhdanov, S. K.; Thomas, H. M.

    2016-03-01

    Three-dimensional (3D) imaging of a single-layer plasma crystal was performed using a commercial plenoptic camera. To enhance the out-of-plane oscillations of particles in the crystal, the mode-coupling instability (MCI) was triggered in it by lowering the discharge power below a threshold. 3D coordinates of all particles in the crystal were extracted from the recorded videos. All three fundamental wave modes of the plasma crystal were calculated from these data. In the out-of-plane spectrum, only the MCI-induced hot spots (corresponding to the unstable hybrid mode) were resolved. The results are in agreement with theory and show that plenoptic cameras can be used to measure the 3D dynamics of plasma crystals.

  15. Plasma crystal dynamics measured with a three-dimensional plenoptic camera.

    PubMed

    Jambor, M; Nosenko, V; Zhdanov, S K; Thomas, H M

    2016-03-01

    Three-dimensional (3D) imaging of a single-layer plasma crystal was performed using a commercial plenoptic camera. To enhance the out-of-plane oscillations of particles in the crystal, the mode-coupling instability (MCI) was triggered in it by lowering the discharge power below a threshold. 3D coordinates of all particles in the crystal were extracted from the recorded videos. All three fundamental wave modes of the plasma crystal were calculated from these data. In the out-of-plane spectrum, only the MCI-induced hot spots (corresponding to the unstable hybrid mode) were resolved. The results are in agreement with theory and show that plenoptic cameras can be used to measure the 3D dynamics of plasma crystals.

  16. A DE-1/whistler study of the thermal plasma structure and dynamics in the dusk bulge sector of the magnetosphere

    NASA Technical Reports Server (NTRS)

    Carpenter, D. L.

    1992-01-01

    The objective of this research was to obtain new understanding of the thermal plasma structure and dynamics of the plasmasphere bulge region of the magnetosphere, with special emphasis on the erosion process that results in a reduction in plasmasphere size and on the manner in which erosion leads to the presence of patches of dense plasma in the middle and outer afternoon-dusk magnetosphere. Case studies involving data from the DE 1, GEOS 2, and ISEE 1 satellites and from ground whistler stations Siple, Halley, and Kerguelen were used. A copy of the published paper entitled 'A case study of plasma structure in the dusk sector associated with enhanced magnetospheric convection,' is included.

  17. Variational principles for dissipative waves

    NASA Astrophysics Data System (ADS)

    Dodin, I. Y.; Ruiz, D. E.

    2016-10-01

    Variational methods are a powerful tool in plasma theory. However, their applications are typically restricted to conservative systems or require doubling of variables, which often contradicts the purpose of the variational approach altogether. We show that these restrictions can be relaxed for some classes of dynamical systems that are of practical interest in plasma physics, particularly including dissipative plasma waves. Applications will be discussed to calculating dispersion relations and modulational dynamics of individual plasma waves and wave ensembles. The work was supported by the NNSA SSAA Program through DOE Research Grant No. DE-NA0002948, by the U.S. DOE through Contract No. DE-AC02-09CH11466, and by the U.S. DOD NDSEG Fellowship through Contract No. 32-CFR-168a.

  18. Three-dimensional simulations of plasma turbulence in the RFX-mod scrape-off layer and comparison with experimental measurements

    NASA Astrophysics Data System (ADS)

    Riva, Fabio; Vianello, Nicola; Spolaore, Monica; Ricci, Paolo; Cavazzana, Roberto; Marrelli, Lionello; Spagnolo, Silvia

    2018-02-01

    The tokamak scrape-off layer (SOL) plasma dynamics is investigated in a circular limiter configuration with a low edge safety factor. Focusing on the experimental parameters of two ohmic tokamak inner-wall limited plasma discharges in RFX-mod [Sonato et al., Fusion Eng. Des. 74, 97 (2005)], nonlinear SOL plasma simulations are performed with the GBS code [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. The numerical results are compared with the experimental measurements, assessing the reliability of the GBS model in describing the RFX-mod SOL plasma dynamics. It is found that the simulations are able to quantitatively reproduce the RFX-mod experimental measurements of the electron plasma density, electron temperature, and ion saturation current density (jsat) equilibrium profiles. Moreover, there are indications that the turbulent transport is driven by the same instability in the simulations and in the experiment, with coherent structures having similar statistical properties. On the other hand, it is found that the simulation results are not able to correctly reproduce the floating potential equilibrium profile and the jsat fluctuation level. It is likely that these discrepancies are, at least in part, related to simulating only the tokamak SOL region, without including the plasma dynamics inside the last close flux surface, and to the limits of applicability of the drift approximation. The turbulence drive is then identified from the nonlinear simulations and with the linear theory. It results that the inertial drift wave is the instability driving most of the turbulent transport in the considered discharges.

  19. Charging of a conducting sphere in a weakly ionized collisional plasma: Temporal dynamics and stationary state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grach, V. S., E-mail: vsgrach@app.sci-nnov.ru; Garasev, M. A.

    2015-07-15

    We consider the interaction of a isolated conducting sphere with a collisional weakly ionized plasma in an external field. We assume that the plasma consists of two species of ions neglecting of electrons. We take into account charging of the sphere due to sedimentation of plasma ions on it, the field of the sphere charge and the space charge, as well as recombination and molecular diffusion. The nonstationary problem of interaction of the sphere with the surrounding plasma is solved numerically. The temporal dynamics of the sphere charge and plasma perturbations is analyzed, as well as the properties of themore » stationary state. It is shown that the duration of transient period is determined by the recombination time and by the reverse conductivity of ions. The temporal dynamics of the sphere charge and plasma perturbations is determined by the intensity of recombination processes relative to the influence of the space charge field and diffusion. The stationary absolute value of the sphere charge increases linearly with the external electric field, decreases with the relative intensity of recombination processes and increases in the presence of substantial diffusion. The scales of the perturbed region in the plasma are determined by the radius of the sphere, the external field, the effect of diffusion, and the relative intensity of recombination processes. In the limiting case of the absence of molecular diffusion and a strong external field, the properties of the stationary state coincide with those obtained earlier as a result of approximate solution.« less

  20. Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster

    NASA Astrophysics Data System (ADS)

    Jaisankar, S.; Sheshadri, T. S.

    2018-05-01

    Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.

  1. Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line

    NASA Astrophysics Data System (ADS)

    Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.

    2004-11-01

    Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.

  2. A parallelization method for time periodic steady state in simulation of radio frequency sheath dynamics

    NASA Astrophysics Data System (ADS)

    Kwon, Deuk-Chul; Shin, Sung-Sik; Yu, Dong-Hun

    2017-10-01

    In order to reduce the computing time in simulation of radio frequency (rf) plasma sources, various numerical schemes were developed. It is well known that the upwind, exponential, and power-law schemes can efficiently overcome the limitation on the grid size for fluid transport simulations of high density plasma discharges. Also, the semi-implicit method is a well-known numerical scheme to overcome on the simulation time step. However, despite remarkable advances in numerical techniques and computing power over the last few decades, efficient multi-dimensional modeling of low temperature plasma discharges has remained a considerable challenge. In particular, there was a difficulty on parallelization in time for the time periodic steady state problems such as capacitively coupled plasma discharges and rf sheath dynamics because values of plasma parameters in previous time step are used to calculate new values each time step. Therefore, we present a parallelization method for the time periodic steady state problems by using period-slices. In order to evaluate the efficiency of the developed method, one-dimensional fluid simulations are conducted for describing rf sheath dynamics. The result shows that speedup can be achieved by using a multithreading method.

  3. Characterization of human plasma proteome dynamics using deuterium oxide.

    PubMed

    Wang, Ding; Liem, David A; Lau, Edward; Ng, Dominic C M; Bleakley, Brian J; Cadeiras, Martin; Deng, Mario C; Lam, Maggie P Y; Ping, Peipei

    2014-08-01

    High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide ((2) H2 O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of (2) H2 O to human subjects. We recruited ten healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of (2) H2 O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% (2) H2 O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. This protocol was successfully applied in ten human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from (2) H2 O consumption. Our investigation supports the utility of a (2) H2 O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of human plasma proteome dynamics using deuterium oxide

    PubMed Central

    Wang, Ding; Liem, David A; Lau, Edward; Ng, Dominic CM; Bleakley, Brian J; Cadeiras, Martin; Deng, Mario C; Lam, Maggie PY; Ping, Peipei

    2016-01-01

    Purpose High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide (2H2O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of 2H2O to human subjects. Experimental design We recruited 10 healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of 2H2O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% 2H2O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. Results This protocol was successfully applied in 10 human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from 2H2O consumption. Conclusions and clinical relevance Our investigation supports the utility of a 2H2O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases. PMID:24946186

  5. Observations of nonlinear and nonuniform kink dynamics in a laboratory flux rope

    NASA Astrophysics Data System (ADS)

    Sears, J.; Intrator, T.; Feng, Y.; Swan, H.; Gao, K.; Chapdelaine, L.

    2013-12-01

    A plasma column with axial magnetic field and current has helically twisted field lines. When current density in the column exceeds the kink instability threshold this magnetic configuration becomes unstable. Flux ropes in the solar wind and some solar prominences exhibit this topology, with their dynamics strongly and nonlinearly coupled to the ratio of axial current to magnetic field. The current-driven kink mode is ubiquitous in laboratory plasmas and well suited to laboratory study. In the Reconnection Scaling Experiment (RSX), nonlinear stability properties beyond the simple perturbative kink model are observed and readily diagnosed. We use a plasma gun to generate a single plasma column 0.50 m in length, in which we then drive an axial plasma current at the limit of marginal kink stability. With plasma current maintained at this threshold, we observe a deformation to a new dynamic equilibrium with finite gyration amplitude, where the currents and magnetic fields that support the force balance have surprising axial structure. Three dimensional measurements of magnetic field, plasma density, plasma potential, and ion flow velocity in the deformed plasma column show variation in the axial direction of the instability parameter and in the terms of the momentum equation. Likewise the pitch of the kink is measured to be nonuniform over the column length. In addition there is a return current antiparallel to the driven plasma current at distances up to 0.30 m from the gun that also modifies the force balance. These axial inhomogeneities, which are not considered in the model of an ideal kink, may be the terms that allow the deformed equilibrium of the RSX plasma to exist. Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Snyder, P. B.; Chang, C. S.

    2017-06-01

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] is used in carrying out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. Simulations with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.

  7. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE PAGES

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; ...

    2017-06-08

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.« less

  8. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.« less

  9. Screening in perturbative approaches to LSS

    DOE PAGES

    Fasiello, Matteo; Vlah, Zvonimir

    2017-08-24

    A specific value for the cosmological constant Λ can account for late-time cosmic acceleration. However, motivated by the so-called cosmological constant problem(s), several alternative mechanisms have been explored. To date, a host of well-studied dynamical dark energy and modified gravity models exists. Going beyond ΛCDM often comes with additional degrees of freedom (dofs). For these to pass existing observational tests, an efficient screening mechanism must be in place. Furthermore, the linear and quasi-linear regimes of structure formation are ideal probes of such dofs and can capture the onset of screening. We propose here a semi-phenomenological “filter” to account for screeningmore » dynamics on LSS observables, with special emphasis on Vainshtein-type screening.« less

  10. An Integrated In Silico Method to Discover Novel Rock1 Inhibitors: Multi- Complex-Based Pharmacophore, Molecular Dynamics Simulation and Hybrid Protocol Virtual Screening.

    PubMed

    Chen, Haining; Li, Sijia; Hu, Yajiao; Chen, Guo; Jiang, Qinglin; Tong, Rongsheng; Zang, Zhihe; Cai, Lulu

    2016-01-01

    Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is an important regulator of focal adhesion, actomyosin contraction and cell motility. In this manuscript, a combination of the multi-complex-based pharmacophore (MCBP), molecular dynamics simulation and a hybrid protocol of a virtual screening method, comprised of multipharmacophore- based virtual screening (PBVS) and ensemble docking-based virtual screening (DBVS) methods were used for retrieving novel ROCK1 inhibitors from the natural products database embedded in the ZINC database. Ten hit compounds were selected from the hit compounds, and five compounds were tested experimentally. Thus, these results may provide valuable information for further discovery of more novel ROCK1 inhibitors.

  11. Structure and dynamics of the umagnetized plasma around comet 67P/CG

    NASA Astrophysics Data System (ADS)

    Henri, P.; Vallières, X.; Gilet, N.; Hajra, R.; Moré, J.; Goetz, C.; Richter, I.; Glassmeier, K. H.; Galand, M. F.; Heritier, K. L.; Eriksson, A. I.; Nemeth, Z.; Tsurutani, B.; Rubin, M.; Altwegg, K.

    2016-12-01

    At distances close enough to the Sun, when comets are characterised by a significant outgassing, the cometary neutral density may become large enough for both the cometary plasma and the cometary gas to be coupled, through ion-neutral and electron-neutral collisions. This coupling enables the formation of an unmagnetised expanding cometary ionosphere around the comet nucleus, also called diamagnetic cavity, within which the solar wind magnetic field cannot penetrate. The instruments of the Rosetta Plasma Consortium (RPC), onboard the Rosetta Orbiter, enable us to better constrain the structure, dynamics and stability of the plasma around comet 67P/CG. Recently, magnetic field measurements (RPC-MAG) have shown the existence of such a diamagnetic region around comet 67P/CG [Götz et al., 2016]. Contrary to a single, large scale, diamagnetic cavity such as what was observed around comet Halley, Rosetta have crossed several diamagnetic structures along its trajectory around comet 67P/CG. Using electron density measurements from the Mutual Impedance Probe (RPC-MIP) during the different diamagnetic cavity crossings, identified by the flux gate magnetometer (RPC-MAG), we map the unmagnetised plasma density around comet 67P/CG. Our aims is to better constrain the structure, dynamics and stability of this inner cometary plasma layer characterised by cold electrons (as witnessed by the Langmuir Probes RPC-LAP). The ionisation ratio in these unmagnetised region(s) is computed from the measured electron (RPC-MIP) and neutral gas (ROSINA/COPS) densities. In order to assess the importance of solar EUV radiation as a source of ionisation, the observed electron density will be compared to a the density expected from an ionospheric model taking into account solar radiation absorption. The crossings of diamagnetic region(s) by Rosetta show that the unmagnetised cometary plasma is particularly homogeneous, compared to the highly dynamical magnetised plasma observed in adjacent magnetised regions. Moreover, during the crossings of multiple, successive diamagnetic region(s) over time scales of tens of minutes or hours, the plasma density is almost identical in the different unmagnetised regions, suggesting that these unmagnetised regions may be a single diamagnetic structure crossed several times by Rosetta.

  12. What is the fate of runaway positrons in tokamaks?

    DOE PAGES

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; ...

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  13. What is the fate of runaway positrons in tokamaks?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian; Qin, Hong, E-mail: hongqin@ustc.edu.cn; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

    2014-06-15

    Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  14. Dynamics of blood plasma by spectropolarimetry and biochemical techniques

    NASA Astrophysics Data System (ADS)

    Voloshynska, Katerina; Ilashchuka, Tetjana; Prydij, Olexander; Gruia, Maria

    2014-08-01

    The aim of the study was to establish objective parameters of the field of laser and incoherent radiation of different spectral ranges (UV, visible, IR) as a non-invasive optical method of interaction with different samples of biological tissues and fluids of patients to determine the dynamics of metabolic syndrome and choosing the best personal treatment. As diagnostic methods have been used ultraviolet spectrometry samples of blood plasma in the liquid state, infrared spectroscopy middle range (2,5 - 25 microns) dry residue of plasma polarization and laser diagnostic technique of thin histological sections of biological tissues.

  15. Lenard-Balescu calculations and classical molecular dynamics simulations of electrical and thermal conductivities of hydrogen plasmas

    DOE PAGES

    Whitley, Heather D.; Scullard, Christian R.; Benedict, Lorin X.; ...

    2014-12-04

    Here, we present a discussion of kinetic theory treatments of linear electrical and thermal transport in hydrogen plasmas, for a regime of interest to inertial confinement fusion applications. In order to assess the accuracy of one of the more involved of these approaches, classical Lenard-Balescu theory, we perform classical molecular dynamics simulations of hydrogen plasmas using 2-body quantum statistical potentials and compute both electrical and thermal conductivity from out particle trajectories using the Kubo approach. Our classical Lenard-Balescu results employing the identical statistical potentials agree well with the simulations.

  16. Impact of single particle oscillations on screening of a test charge

    NASA Astrophysics Data System (ADS)

    Ramazanov, Tlekkabul S.; Moldabekov, Zhandos A.; Gabdullin, Maratbek T.

    2018-06-01

    Screening of a test charge by electrons oscillating in an external alternating electrical (laser) field is analyzed. It is shown that single particle oscillations lead to the creation of an oscillatory pattern of the test charge's potential at large distances. Analysis has been done by considering and neglecting the contribution of ions on the screening. Impact of the quantum diffraction (non-locality) and of the collisional damping on the test charge's potential is considered. It is shown that electrons are unable to provide screening of the test charge if the frequency of the induced single particle oscillations larger than the electron-plasma frequency. In the opposite case of low frequencies, the potential of the test charge changes its sign if the screening by ions is neglected.

  17. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    NASA Astrophysics Data System (ADS)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  18. Consistent kinetic simulation of plasma and sputtering in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Schmidt, Frederik; Trieschmann, Jan; Mussenbrock, Thomas

    2016-09-01

    Plasmas are commonly used in sputtering applications for the deposition of thin films. Although magnetron sources are a prominent choice, capacitively coupled plasmas have certain advantages (e.g., sputtering of non-conducting and/or ferromagnetic materials, aside of excellent control of the ion energy distribution). In order to understand the collective plasma and sputtering dynamics, a kinetic simulation model is helpful. Particle-in-Cell has been proven to be successful in simulating the plasma dynamics, while the Test-Multi-Particle-Method can be used to describe the sputtered neutral species. In this talk a consistent combination of these methods is presented by consistently coupling the simulated ion flux as input to a neutral particle transport model. The combined model is used to simulate and discuss the spatially dependent densities, fluxes and velocity distributions of all particles. This work is supported by the German Research Foundation (DFG) in the frame of Transregional Collaborative Research Center (SFB) TR-87.

  19. Controlled Growth of Gigantic Swirls in a Laboratory Magnetosphere

    NASA Astrophysics Data System (ADS)

    Worstell, M. W.; Mauel, M. E.; Roberts, T. M.

    2012-10-01

    Space and laboratory plasma confined by a strong magnetic field have remarkable properties. Low frequency mixing of the plasma occurs through the interchange of long plasma-filled tubes aligned with the magnetic field. The plasma dynamics becomes two-dimensional because these tubes can only move radially or circulate around the poles of the magnetic dipole. Studies of turbulent interchange dynamics made using the Collisionless Terella Experiment (CTX) show that turbulence appears as chaotic time-varying modes with broad global mode structures that interact nonlinearly and form an inverse cascade.footnotetextB.A. Grierson, M.W. Worstell, M.E. Mauel, Phys. Plasmas 16 055902 (2009) When we drive vortex mixing through the application of electrostatic bias to multiple probes, we break the rotational symmetry of the plasma and small vortex tubes are seen to drive larger ``gigantic'' swirls. Statistical analysis of the time-evolving spectra and measurement of the bicoherence of the turbulence show an increase of three wave coupling during non-axisymmetric electrostatic drive of the probe array.

  20. Dynamics of L-Carnitine in Plasma and Urine in Patients Undergoing Cisplatin Chemotherapy.

    PubMed

    Gomi, Daisuke; Tanaka, Aika; Fukushima, Toshirou; Kobayashi, Takashi; Matsushita, Hirohide; Sekiguchi, Nodoka; Sakamoto, Akiyuki; Sasaki, Shigeru; Mamiya, Keiko; Koizumi, Tomonobu

    2017-01-01

    Several studies have indicated that cisplatin (cis-diamminedichloroplatinum II; CDDP) causes urinary excretion of L-carnitine (LC). However, the underlying cofactors affecting the increased urinary excretion remain unclear. The present study was performed to evaluate the dynamics of LC in plasma and urine after CDDP chemotherapy and to examine the relations with clinical parameters, such as gender, body mass index (BMI), and renal function. Twenty-two patients treated with CDDP therapy were selected. Blood and urine samples were taken from patients before starting CDDP treatment (day 0), on the next day (day 1), and on the seventh day (day 7). We measured plasma and urine concentrations of total, free, and acyl-LC, and examined the relationships with gender, age, treatment cycle, skeletal muscle mass, BMI, glomerular filtration rate, and change in creatinine concentration after CDDP administration. Both urinary and plasma concentrations of 3 types of LC increased markedly on day 1 and subsequently reverted to the pre-CDDP level on day 7. There was a positive correlation between the % changes in plasma and urine LC (correlation coefficient 0.59, p = 0.003) on day 1, but no significant relations were seen in other clinical parameters. CDDP transiently increased plasma LC levels. The mechanism seemed to involve recruitment for marked urinary loss of LC. However, these changes in plasma and urinary LC levels were not related to clinical factors, suggesting that the dynamics of LC were independent of preexisting physical parameters. © 2017 S. Karger AG, Basel.

  1. Mechanisms of Decreased Plasma Volume During Acute Psychological Stress and Postural Change in Humans

    DTIC Science & Technology

    1993-09-14

    follicular phase of their menstrual cycle as defined as 1 to 11 days post menses . Experimental Protocol Each subject was screened by telephone to...studies exist regarding possible gender differences in plasma volume changes during acute psychological stress. Menstrual cycle effects on physiologic...the different phases of the menstrual cycle (Strauss, Schultheiss, & Cohen, 1983; Carroll , ’I\\lrner I Lee I & Stephenson, 1984). Conflicting

  2. Investigation of Seminal Plasma Hypersensitivity Reactions

    DTIC Science & Technology

    1998-10-01

    the same questionnaire which has been used to screen civilian populations of women with localized and/or systemic seminal plasma hypersensitivity. This...3. If not, how many times have you experienced a reaction with other sexual partners? 4. Did you have the reaction on your first intercourse? A...YES B. NO 5. 6. If the answer above is no, how many years after your first intercourse did the firstreaction occur? Prior to the

  3. Chromatographic behavior of co-eluted plasma compounds and effect on screening of drugs by APCI-LC-MS(/MS): Applications to selected cardiovascular drugs.

    PubMed

    Tahboub, Yahya R

    2014-12-01

    Chromatographic behavior of co-eluted compounds from un-extracted drug-free plasma samples was studied by LC-MS and LC-MS/MS with positive APCI. Under soft gradient, total ion chromatogram (TIC) consisted of two major peaks separated by a constant lower intensity region. Early peak (0.15-0.4 min) belongs to polar plasma compounds and consisted of smaller mass ions ( m / z <250); late peak (3.6-4.6 min) belongs to thermally unstable phospholipids and consisted of fragments with m / z <300. Late peak is more sensitive to variations in chromatographic and MS parameters. Screening of most targeted cardiovascular drugs at levels lower than 50 ng/mL has been possible by LC-MS for drugs with retention factors larger than three. Matrix effects and recovery, at 20 and 200 ng/mL, were evaluated for spiked plasma samples with 15 cardiovascular drugs, by MRM-LC-MS/MS. Average recoveries were above 90% and matrix effects expressed as percent matrix factor (% MF) were above 100%, indicating enhancement character for APCI. Large uncertainties were significant for drugs with smaller masses ( m / z <250) and retention factors lower than two.

  4. In situ measurement of plasma and shock wave properties inside laser-drilled metal holes

    NASA Astrophysics Data System (ADS)

    Brajdic, Mihael; Hermans, Martin; Horn, Alexander; Kelbassa, Ingomar

    2008-10-01

    High-speed imaging of shock wave and plasma dynamics is a commonly used diagnostic method for monitoring processes during laser material treatment. It is used for processes such as laser ablation, cutting, keyhole welding and drilling. Diagnosis of laser drilling is typically adopted above the material surface because lateral process monitoring with optical diagnostic methods inside the laser-drilled hole is not possible due to the hole walls. A novel method is presented to investigate plasma and shock wave properties during the laser drilling inside a confined environment such as a laser-drilled hole. With a novel sample preparation and the use of high-speed imaging combined with spectroscopy, a time and spatial resolved monitoring of plasma and shock wave dynamics is realized. Optical emission of plasma and shock waves during drilling of stainless steel with ns-pulsed laser radiation is monitored and analysed. Spatial distributions and velocities of shock waves and of plasma are determined inside the holes. Spectroscopy is accomplished during the expansion of the plasma inside the drilled hole allowing for the determination of electron densities.

  5. Modeling Zika plasma viral dynamics in non-human primates: insights into viral pathogenesis and antiviral strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Katharine; Guedj, Jeremie; Madelain, Vincent

    2016-10-24

    The recent outbreak of Zika virus (ZIKV) has been associated with fetal abnormalities and neurological complications, prompting global concern. Here we present the first mathematical analysis of the within-host dynamics of plasma ZiKV burden in a non-human primate model, allowing for characterization of the growth and clearance of ZIKV within an individual macaque.

  6. Dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gravitational waves

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-01-01

    The model problem of the dynamics of a planar plasma ring rotating in the dipole magnetic field of a central body is considered. A finite-dimensional mathematical model of the system is synthesized by the Boubnov-Galerkin method. The class of solutions corresponding to magneto-gravitational waves associated with deformations of the ring boundaries is investigated.

  7. Transport induced by large scale convective structures in a dipole-confined plasma.

    PubMed

    Grierson, B A; Mauel, M E; Worstell, M W; Klassen, M

    2010-11-12

    Convective structures characterized by E×B motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  8. Evaluation of commercial multi-drug oral fluid devices to identify 39 new amphetamine-designer drugs.

    PubMed

    Nieddu, Maria; Burrai, Lucia; Trignano, Claudia; Boatto, Gianpiero

    2014-03-01

    Recently, the diffusion on the black market of new psychoactive substances not controlled and often sold as 'legal highs', is exponentially increasing in Europe. Generally, the first analysis for these drugs involves an immunoassay screening in urine or plasma. Actually, there is growing interest in the use of oral fluid (OF) as alternative specimen over conventional biological fluids for drug testing, because of the significant advantages, as a non-invasive collection under direct observation without undue embarrassment or invasion of privacy, and a good correlation with plasma analytical data. Few assays have been developed for detection of new psychoactive compounds in biological samples, so it is important to investigate how they may or may not react in pre-existing commercial immunoassays. In this paper, two different multi-drugs oral fluid screen devices (OFDs) (Screen® Multi-Drug OFD and GIMA One Step Multi-Line Screen Test OFD) were evaluated to determine the cross-reactivity of thirty-nine new amphetamine designer drugs, including twelve substances officially recognized as illicit by italian legislation. Cross-reactivity towards most drugs analyzed was <1 in assays targeting amphetamine (AMP) or methamphetamine (MET). Only two (p-methoxyamphetamine and p-methoxymethamphetamine) of all tested amphetamines gave a positive result. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. A new mathematical approach for shock-wave solution in a dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, G.C.; Dwivedi, C.B.; Talukdar, M.

    1997-12-01

    The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust chargemore » fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}« less

  10. A plasma deflagration accelerator as a platform for laboratory astrophysics

    NASA Astrophysics Data System (ADS)

    Underwood, Thomas C.; Loebner, Keith T. K.; Cappelli, Mark A.

    2017-06-01

    The replication of astrophysical flows in the laboratory is critical for isolating particular phenomena and dynamics that appear in complex, highly-coupled natural systems. In particular, plasma jets are observed in astrophysical contexts at a variety of scales, typically at high magnetic Reynolds number and driven by internal currents. In this paper, we present detailed measurements of the plasma parameters within deflagration-produced plasma jets, the scaling of these parameters against both machine operating conditions and the corresponding astrophysical phenomena. Using optical and spectroscopic diagnostics, including Schlieren cinematography, we demonstrate the production of current-driven plasma jets of ∼100 km/s and magnetic Reynolds numbers of ∼100, and discuss the dynamics of their acceleration into vacuum. The results of this study will contribute to the reproduction of various types of astrophysical jets in the laboratory and indicate the ability to further probe active research areas such as jet collimation, stability, and interaction.

  11. Nonlinear dynamics of beam-plasma instability in a finite magnetic field

    NASA Astrophysics Data System (ADS)

    Bogdankevich, I. L.; Goncharov, P. Yu.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-06-01

    The nonlinear dynamics of beam-plasma instability in a finite magnetic field is investigated numerically. In particular, it is shown that decay instability can develop. Special attention is paid to the influence of the beam-plasma coupling factor on the spectral characteristics of a plasma relativistic microwave accelerator (PRMA) at different values of the magnetic field. It is shown that two qualitatively different physical regimes take place at two values of the external magnetic field: B 0 = 4.5 kG (Ω ω B p ) and 20 kG (Ω B ≫ ωp). For B 0 = 4.5 kG, close to the actual experimental value, there exists an optimal value of the gap length between the relativistic electron beam and the plasma (and, accordingly, an optimal value of the coupling factor) at which the PRMA output power increases appreciably, while the noise level decreases.

  12. Coherent control of plasma dynamics by feedback-optimized wavefront manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.-H.; Hou, B.; Gao, G.

    2015-05-15

    Plasmas generated by an intense laser pulse can support coherent structures such as large amplitude wakefield that can affect the outcome of an experiment. We investigate the coherent control of plasma dynamics by feedback-optimized wavefront manipulation using a deformable mirror. The experimental outcome is directly used as feedback in an evolutionary algorithm for optimization of the phase front of the driving laser pulse. In this paper, we applied this method to two different experiments: (i) acceleration of electrons in laser driven plasma waves and (ii) self-compression of optical pulses induced by ionization nonlinearity. The manipulation of the laser wavefront leadsmore » to orders of magnitude improvement to electron beam properties such as the peak charge, beam divergence, and transverse emittance. The demonstration of coherent control for plasmas opens new possibilities for future laser-based accelerators and their applications.« less

  13. The Role of Helium Metastable States in Radio-Frequency Helium-Oxygen Atmospheric Pressure Plasma Jets: Measurement and Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Niemi, Kari; Waskoenig, Jochen; Sadeghi, Nader; Gans, Timo; O'Connell, Deborah

    2011-10-01

    Absolute densities of metastable He atoms were measured line-of sight integrated along the plasma channel of a capacitively-coupled radio-frequency driven atmospheric pressure plasma jet operated in helium oxygen mixtures by tunable diode-laser absorption spectroscopy. Dependencies of the He metastable density with oxygen admixtures up to 1 percent were investigated. Results are compared to a 1-d numerical simulation, which includes a semi-kinetical treatment of the electron dynamics and the complex plasma chemistry (20 species, 184 reactions), and very good agreement is found. The main formation mechanisms for the helium metastables are identified and analyzed, including their pronounced spatio-temporal dynamics. Penning ionization through helium metastables is found to be significant for plasma sustainment, while it is revealed that helium metastables are not an important energy carrying species into the jet effluent and therefore will not play a direct role in remote surface treatments.

  14. The Earth: Plasma Sources, Losses, and Transport Processes

    NASA Astrophysics Data System (ADS)

    Welling, Daniel T.; André, Mats; Dandouras, Iannis; Delcourt, Dominique; Fazakerley, Andrew; Fontaine, Dominique; Foster, John; Ilie, Raluca; Kistler, Lynn; Lee, Justin H.; Liemohn, Michael W.; Slavin, James A.; Wang, Chih-Ping; Wiltberger, Michael; Yau, Andrew

    2015-10-01

    This paper reviews the state of knowledge concerning the source of magnetospheric plasma at Earth. Source of plasma, its acceleration and transport throughout the system, its consequences on system dynamics, and its loss are all discussed. Both observational and modeling advances since the last time this subject was covered in detail (Hultqvist et al., Magnetospheric Plasma Sources and Losses, 1999) are addressed.

  15. Charging of Space Debris and Their Dynamical Consequences

    DTIC Science & Technology

    2016-01-08

    field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the

  16. Femtosecond self-reconfiguration of laser-induced plasma patterns in dielectrics

    NASA Astrophysics Data System (ADS)

    Déziel, Jean-Luc; Dubé, Louis J.; Messaddeq, Sandra H.; Messaddeq, Younès; Varin, Charles

    2018-05-01

    Laser-induced modification of transparent solids by intense femtosecond laser pulses allows fast integration of nanophotonic and nanofluidic devices with controlled optical properties. Experimental observations suggest that the local and dynamic nature of the interactions between light and the transient plasma plays an important role during fabrication. Current analytical models neglect these aspects and offer limited coverage of nanograting formation on dielectric surfaces. In this paper, we present a self-consistent dynamic treatment of the plasma buildup and its interaction with light within a three-dimensional electromagnetic framework. The main finding of this work is that local light-plasma interactions are responsible for the reorientation of laser-induced periodic plasma patterns with respect to the incident light polarization, when a certain energy density threshold is reached. Plasma reconfiguration occurs within a single laser pulse, on a femtosecond time scale. Moreover, we show that the reconfigured subwavelength plasma structures actually grow into the bulk of the sample, which agrees with the experimental observations of self-organized volume nanogratings. We find that mode coupling of the incident and transversely scattered light with the periodic plasma structures is sufficient to initiate the growth and self-organization of the pattern inside the medium with a characteristic half-wavelength periodicity.

  17. Three-dimensional modeling of the neutral gas depletion effect in a helicon discharge plasma

    NASA Astrophysics Data System (ADS)

    Kollasch, Jeffrey; Schmitz, Oliver; Norval, Ryan; Reiter, Detlev; Sovinec, Carl

    2016-10-01

    Helicon discharges provide an attractive radio-frequency driven regime for plasma, but neutral-particle dynamics present a challenge to extending performance. A neutral gas depletion effect occurs when neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. The Monte Carlo neutral particle tracking code EIRENE was setup for the MARIA helicon experiment at UW Madison to study its neutral particle dynamics. Prescribed plasma temperature and density profiles similar to those in the MARIA device are used in EIRENE to investigate the main causes of the neutral gas depletion effect. The most dominant plasma-neutral interactions are included so far, namely electron impact ionization of neutrals, charge exchange interactions of neutrals with plasma ions, and recycling at the wall. Parameter scans show how the neutral depletion effect depends on parameters such as Knudsen number, plasma density and temperature, and gas-surface interaction accommodation coefficients. Results are compared to similar analytic studies in the low Knudsen number limit. Plans to incorporate a similar Monte Carlo neutral model into a larger helicon modeling framework are discussed. This work is funded by the NSF CAREER Award PHY-1455210.

  18. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey B.; Adamovich, Igor V.; Soloviev, Victor R.

    2016-12-01

    The main focus of the review is on dynamics and kinetics of near-surface discharge plasmas, such as surface dielectric barrier discharges sustained by AC and repetitively pulsed waveforms, pulsed DC discharges, and quasi-DC discharges, generated in quiescent air and in the airflow. A number of technical issues related to plasma flow control applications are discussed in detail, including discharge development via surface ionization waves, charge transport and accumulation on dielectric surface, discharge contraction, different types of flow perturbations generated by surface discharges, and effect of high-speed flow on discharge dynamics. In the first part of the manuscript, plasma morphology and results of electrical and optical emission spectroscopy measurements are discussed. Particular attention is paid to dynamics of surface charge accumulation and dissipation, both in diffuse discharges and during development of ionization instabilities resulting in discharge contraction. Contraction leads to significant increase of both the surface area of charge accumulation and the energy coupled to the plasma. The use of alternating polarity pulse waveforms accelerates contraction of surface dielectric barrier discharges and formation of filamentary plasmas. The second part discusses the interaction of discharge plasmas with quiescent air and the external airflow. Four major types of flow perturbations have been identified: (1) low-speed near-surface jets generated by electrohydrodynamic interaction (ion wind); (2) spanwise and streamwise vortices formed by both electrohydrodynamic and thermal effects; (3) weak shock waves produced by rapid heating in pulsed discharges on sub-microsecond time scale; and (4) near-surface localized stochastic perturbations, on sub-millisecond time, detected only recently. The mechanism of plasma-flow interaction remains not fully understood, especially in filamentary surface dielectric barrier discharges. Localized quasi-DC surface discharges sustained in a high-speed flow are discussed in the third part of the review. Although dynamics of this type of the discharge is highly transient, due to its strong interaction with the flow, the resultant flow structure is stationary, including the oblique shock and the flow separation region downstream of the discharge. The oblique shock is attached to a time-averaged, wedge-shaped, near-wall plasma layer, with the shock angle controlled by the discharge power, which makes possible changing the flow structure and parameters in a controlled way. Finally, unresolved and open-ended issues are discussed in the summary.

  19. Effect of plasma grid bias on extracted currents in the RF driven surface-plasma negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu., E-mail: belchenko@inp.nsk.su; Ivanov, A.; Sanin, A.

    2016-02-15

    Extraction of negative ions from the large inductively driven surface-plasma negative ion source was studied. The dependencies of the extracted currents vs plasma grid (PG) bias potential were measured for two modifications of radio-frequency driver with and without Faraday screen, for different hydrogen feeds and for different levels of cesium conditioning. The maximal PG current was independent of driver modification and it was lower in the case of inhibited cesium. The maximal extracted negative ion current depends on the potential difference between the near-PG plasma and the PG bias potentials, while the absolute value of plasma potential in the drivermore » and in the PG area is less important for the negative ion production. The last conclusion confirms the main mechanism of negative ion production through the surface conversion of fast atoms.« less

  20. Tunable synthesis and in situ growth of silicon-carbon mesostructures using impermeable plasma.

    PubMed

    Yaghoubi, Alireza; Mélinon, Patrice

    2013-01-01

    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement.

  1. Tunable synthesis and in situ growth of silicon-carbon mesostructures using impermeable plasma

    PubMed Central

    Yaghoubi, Alireza; Mélinon, Patrice

    2013-01-01

    In recent years, plasma-assisted synthesis has been extensively used in large scale production of functional nano- and micro-scale materials for numerous applications in optoelectronics, photonics, plasmonics, magnetism and drug delivery, however systematic formation of these minuscule structures has remained a challenge. Here we demonstrate a new method to closely manipulate mesostructures in terms of size, composition and morphology by controlling permeability at the boundaries of an impermeable plasma surrounded by a blanket of neutrals. In situ and rapid growth of thin films in the core region due to ion screening is among other benefits of our method. Similarly we can take advantage of exceptional properties of plasma to control the morphology of the as deposited nanostructures. Probing the plasma at boundaries by means of observing the nanostructures, further provides interesting insights into the behaviour of gas-insulated plasmas with possible implications on efficacy of viscous heating and non-magnetic confinement. PMID:23330064

  2. Role of enzyme-treated cells in RBC antibody screening using the gel test: a study of anti-RH1, -RH2, and -RH3 antibodies.

    PubMed

    Conne, Jocelyne; Schneider, Philippe; Tissot, Jean-Daniel

    2007-01-01

    The role of enzyme-treated cells (ETCs) in red blood cell (RBC) antibody screening has been the subject of controversy, and its place in the clinical routine remains to be determined. In this work, plasma samples containing anti-RH1 (anti-D; N = 10), anti-RH2 (anti-C; N = 10), or anti-RH3 (anti-E; N = 10) antibodies were studied. The samples were diluted in nonbuffered or buffered normal saline, as well as in a pool of AB plasma samples. Titers and scores were determined by means of the gel test, using the indirect antiglobulin test (IAT) as well as ETCs, with R(0)r, r'r, or r''r test cells. Our results showed that compared to the IAT, ETCs allowed a clearer detection of anti-RH2 and anti-RH3, but not of anti-RH1 antibodies. Based on our study, it is not clear whether the ETC phase of the gel test should be maintained for RBC antibody screening. 2007 Wiley-Liss, Inc.

  3. Dynamic amphiphile libraries to screen for the "fragrant" delivery of siRNA into HeLa cells and human primary fibroblasts.

    PubMed

    Gehin, Charlotte; Montenegro, Javier; Bang, Eun-Kyoung; Cajaraville, Ana; Takayama, Shota; Hirose, Hisaaki; Futaki, Shiroh; Matile, Stefan; Riezman, Howard

    2013-06-26

    Dynamic amphiphiles are amphiphiles with dynamic covalent bridges between their hydrophilic heads and their hydrophobic tails. Their usefulness to activate ion transporters, for odorant release, and for differential sensing of odorants and perfumes, has been demonstrated recently. Here, we report that the same "fragrant" dynamic amphiphiles are ideal to screen for new siRNA transfection agents. The advantages of this approach include rapid access to fairly large libraries of complex structures, and possible transformation en route to assist uptake and minimize toxicity. We report single-component systems that exceed the best commercially available multicomponent cocktails with regard to both efficiency and velocity of EGFP knockdown in HeLa cells. In human primary fibroblasts, siRNA-mediated enzyme knockdown nearly doubled from >30% for Lipofectamine to >60% for our best hit. The identified structures were predictable neither from literature nor from results in fluorogenic vesicles and thus support the importance of conceptually innovative screening approaches.

  4. Simulation of perturbation produced by an absorbing spherical body in collisionless plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasovsky, V. L., E-mail: vkrasov@iki.rssi.ru; Kiselyov, A. A., E-mail: alexander.kiselyov@stonehenge-3.net.ru; Dolgonosov, M. S.

    2017-01-15

    A steady plasma state reached in the course of charging of an absorbing spherical body is found using computational methods. Numerical simulations provide complete information on this process, thereby allowing one to find the spatiotemporal dependences of the physical quantities and observe the kinetic phenomena accompanying the formation of stable electron and ion distributions in phase space. The distribution function of trapped ions is obtained, and their contribution to the screening of the charged sphere is determined. The sphere charge and the charge of the trapped-ion cloud are determined as functions of the unperturbed plasma parameters.

  5. Two-fluid (plasma-neutral) Extended-MHD simulations of spheromak configurations in the HIT-SI experiment with PSI-Tet

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.

    2017-10-01

    A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.

  6. Hemostatic Abnormalities in Multiple Myeloma Patients

    PubMed Central

    Gogia, Aarti; Sikka, Meera; Sharma, Satender; Rusia, Usha

    2018-01-01

    Background: Multiple myeloma (MM) is a neoplastic plasma cell disorder characterized by clonal proliferation of plasma cells in the bone marrow. Diverse hemostatic abnormalities have been reported in patients with myeloma which predispose to bleeding and also thrombosis. Methods: Complete blood count, biochemical parameters and parameters of hemostasis i.e. platelet count, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), factor VIII assay results, plasma fibrinogen, D-dimer and lupus anticoagulant, were assessed in 29 MM patients and 30 age matched controls. Results: The most frequent abnormal screening parameter was APTT. Of the six indicative of a bleeding tendency i.e. thrombocytopenia, prolonged PT, APTT, TT, reduced plasma fibrinogen and factor VIII, at least one was abnormal in 8 (27.6%) patients. Of the four prothrombotic markers, lupus anticoagulant, D-dimer, elevated factor VIII and plasma fibrinogen, one or more marker was present in 24 (82.7%). D-dimer was the most common prothrombotic marker, being elevated in 22 (75.9%) patients. One or more laboratory parameter of hemostasis was abnormal in all 29 (100%) patients. Though thrombotic complications are reported to be less frequent as compared to hemorrhagic manifestations, one or more marker of thrombosis was present in 24 (82.7%) patients. Conclusion: This study provided laboratory evidence of hemostatic dysfunction which may be associated with thrombotic or bleeding complications at diagnosis in all MM patients. Hence, screening for these abnormalities at the time of diagnosis should help improved prognosis in such cases. PMID:29373903

  7. Determination of modafinil in plasma and urine by reversed phase high-performance liquid-chromatography.

    PubMed

    Schwertner, Harvey A; Kong, Suk Bin

    2005-03-09

    Modafinil (Provigil) is a new wake-promoting drug that is being used for the management of excessive sleepiness in patients with narcolepsy. It has pharmacological properties similar to that of amphetamine, but without some of the side effects associated with amphetamine-like stimulants. Since modafinil has the potential to be abused, accurate drug-screening methods are needed for its analysis. In this study, we developed a high-performance liquid-chromatographic procedure (HPLC) for the quantitative analysis of modafinil in plasma and urine. (Phenylthio)acetic acid was used as an internal standard for the analysis of both plasma and urine. Modafinil was extracted from urine and plasma with ethyl acetate and ethyl acetate-acetic acid (100:1, v/v), respectively, and analyzed on a C18 reverse phase column with methanol-water-acetic acid (500:500:1, v/v) as the mobile phase. Recoveries from urine and plasma were 80.0 and 98.9%, respectively and the limit of quantitation was 0.1 microg/mL at 233 nm. Forty-eight 2-h post-dose urine samples from sham controls and from individuals taking 200 or 400 mg of modafinil were analyzed without knowledge of drug administration. All 16-placebo urine samples and all 32 2-h post-dose urine samples were correctly classified. The analytical procedure is accurate and reproducible and can be used for therapeutic drug monitoring, pharmacokinetic studies, and drug abuse screening.

  8. A novel emissive projection display (EPD) on transparent phosphor screen

    NASA Astrophysics Data System (ADS)

    Cheng, Botao; Sun, Leonard; Yu, Ge; Sun, Ted X.

    2017-03-01

    A new paradigm of digital projection is on the horizon, based on innovative emissive screen that are made fully transparent. It can be readily applied and convert any surface to a high image quality emissive digital display, without affecting the surface appearance. For example, it can convert any glass window or windshield to completely see-through display, with unlimited field of view and viewing angles. It also enables a scalable and economic projection display on a pitch-black emissive screen with black level and image contrast that rivals other emissive displays such as plasma display or OLED.

  9. Triple Negative Breast Cancer Team Project — EDRN Public Portal

    Cancer.gov

    Triple negative breast cancers (TNBC), comprise 15-20% of breast cancers, and are associated with later stage at diagnosis, increased mortality, and occur more frequently in younger women where mammographic screening is less reliable. TNBCs are more likely to be diagnosed by physical exam than by mammographic screening. There is an unmet clinical need for biomarkers for the early detection of TNBC. Here, we are proposing the development of a plasma-based biomarker panel for the routine screening of women over the age of 40 for TNBC that can be used to identify women for further imaging.

  10. Charging and shielding of a non-spherical dust grain in a plasma

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Delzanno, G.

    2013-12-01

    The interaction of objects with a plasma is a classic problem of plasma physics. Originally, it was investigated in the framework of probe theory but more recently its interest has grown in connection with space and complex or dusty plasmas. It is customary to assume that the dust grains are spherical, and theories such as the Orbital Motion Limited (OML) theory are usually applied to calculate the dust charge. However, in nature dust grains have a variety of sizes and shapes. It is therefore natural to ask about the influence of the dust shape on the charging and shielding process. In order to answer this question, we study the charging and shielding of a non-spherical dust grain immersed in a Maxwellian plasma at rest. We consider prolate ellipsoids, varying parametrically the aspect ratio while keeping the surface area constant. The study is conducted with CPIC [1], a newly developed Particle-In-Cell code in curvilinear geometry that conforms to objects of arbitrary shape. For a plasma with temperature ratio equal to unity and for a dust grain with characteristic size of the order of the Debye length, it is shown that the floating potential has a very weak dependence on the geometry, while the charge on the grain increases by a factor of three when the aspect ratio changes from one (a sphere) to hundred (a needle-like ellipsoid). These results are consistent with the higher capacitance of ellipsoidal dust grains, but also indicate that the screening length depends on the geometry. Scaling studies of the dependence of the charging time and screening length on the aspect ratio and plasma conditions are presented, including theoretical considerations to support the numerical results. [1] G.L. Delzanno, et al, ';CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies', under review.

  11. Shifting from glucose diagnostic criteria to the new HbA(1c) criteria would have a profound impact on prevalence of diabetes among a high-risk Spanish population.

    PubMed

    Costa, B; Barrio, F; Cabré, J-J; Piñol, J-L; Cos, F-X; Solé, C; Bolibar, B; Castell, C; Lindström, J; Barengo, N; Tuomilehto, J

    2011-10-01

    To investigate changes in the prevalence of diabetes and pre-diabetes by shifting from 2-h plasma glucose and/or fasting plasma glucose diagnostic criteria to the proposed new HbA(1c) -based criteria when applied to a Mediterranean population detected to have a high risk of Type 2 diabetes. Individuals without diabetes aged 45-75 years (n = 2287) were screened using the Finnish Diabetes Risk Score questionnaire, a 2-h oral glucose tolerance test plus HbA(1c) test. Prevalence and degree of diagnostic overlap between three sets of criteria (2-h plasma glucose, fasting plasma glucose and HbA(1c) ) and three diagnostic categories (normal, pre-diabetes and diabetes) were calculated. Defining diabetes by a single HbA(1c) measurement resulted in a dramatic decrease in prevalence (1.3%), particularly in comparison with diabetes defined by 2-h plasma glucose (8.6%), but was also significant with regard to fasting plasma glucose (2.8%). A total of 201 screened subjects (8.8%) were classified as having diabetes and 1023 (44.7%) as having pre-diabetes based on at least one of these criteria; among these, the presence of all three criteria simultaneously classified only 21 and 110 individuals respectively, about ten percent of each group. The single overlap index between subjects diagnosed as having diabetes by 2-h plasma glucose/fasting plasma glucose vs. HbA(1c) was 13.9/28%. Similarly, the single overlap index regarding pre-diabetes was 19.2/27.1%. A shift from the glucose-based diagnosis to the HbA(1c) -based diagnosis for diabetes will reduce diabetes prevalence with a low overall or single degree of overlap between diagnostic categories in this high-risk Spanish population. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.

  12. Biomarkers Associated With the Apolipoprotein E Genotype and Alzheimer Disease

    PubMed Central

    Soares, Holly D.; Potter, William Z.; Pickering, Eve; Kuhn, Max; Immermann, Frederick W.; Shera, David M; Ferm, Mats; Dean, Robert A.; Simon, Adam J.; Swenson, Frank; Siuciak, Judith A.; Kaplow, June; Thambisetty, Madhav; Zagouras, Panayiotis; Koroshetz, Walter J.; Wan, Hong I.; Trojanowski, John Q.; Shaw, Leslie M.

    2013-01-01

    Background A blood-based test that could be used as a screen for Alzheimer disease (AD) may enable early intervention and better access to treatment. Objective To apply a multiplex immunoassay panel to identify plasma biomarkers of AD using plasma samples from the Alzheimer’s Disease Neuroimaging Initiative cohort. Design Cohort study. Setting The Biomarkers Consortium Alzheimer’s Disease Plasma Proteomics Project. Participants Plasma samples at baseline and at 1 year were analyzed from 396 (345 at 1 year) patients with mild cognitive impairment, 112 (97 at 1 year) patients with AD, and 58 (54 at 1 year) healthy control subjects. Main Outcome Measures Multivariate and univariate statistical analyses were used to examine differences across diagnostic groups and relative to the apolipoprotein E (ApoE) genotype. Results Increased levels of eotaxin 3, pancreatic polypeptide, and N-terminal protein B–type brain natriuretic peptide were observed in patients, confirming similar changes reported in cerebrospinal fluid samples of patients with AD and MCI. Increases in tenascin C levels and decreases in IgM and ApoE levels were also observed. All participants with Apo ε3/ε4 or ε4/ε4 alleles showed a distinct biochemical profile characterized by low C-reactive protein and ApoE levels and by high Cortisol, interleukin 13, apolipoprotein B, and gamma interferon levels. The use of plasma biomarkers improved specificity in differentiating patients with AD from controls, and ApoE plasma levels were lowest in patients whose mild cognitive impairment had progressed to dementia. Conclusions Plasma biomarker results confirm cerebrospinal fluid studies reporting increased levels of pancreatic polypeptide and N-terminal protein B–type brain natriuretic peptide in patients with AD and mild cognitive impairment. Incorporation of plasma biomarkers yielded high sensitivity with improved specificity, supporting their usefulness as a screening tool. The ApoE genotype was associated with a unique biochemical profile irrespective of diagnosis, highlighting the importance of genotype on blood protein profiles. PMID:22801723

  13. A Survey of Nanoflare Properties in Active Regions Observed with the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2017-01-01

    In this paper, we examine 15 different active regions (ARs) observed with the Solar Dynamics Observatory and analyze their nanoflare properties. We have recently developed a technique that systematically identifies and measures plasma temperature dynamics by computing time lags between light curves. The time lag method tests whether the plasma is maintained at a steady temperature, or if it is dynamic, undergoing heating and cooling cycles. An important aspect of our technique is that it analyzes both observationally distinct coronal loops as well as the much more prevalent diffuse emission between them. We find that the widespread cooling reported previously for NOAA AR 11082 is a generic property of all ARs. The results are consistent with impulsive nanoflare heating followed by slower cooling. Only occasionally, however, is there full cooling from above 7 megakelvins to well below 1 megakelvin. More often, the plasma cools to approximately 1-2 megakelvins before being reheated by another nanoflare. These same 15 ARs were first studied by Warren et al. We find that the degree of cooling is not well correlated with the reported slopes of the mission measure distribution. We also conclude that the Fe (sup XVIII)-emitting plasma that they measured is mostly in a state of cooling. These results support the idea that nanoflares have a distribution of energies and frequencies, with the average delay between successive events on an individual flux tube being comparable to the plasma cooling timescale.

  14. A Survey of Nanoflare Properties in Active Regions Observed with the Solar Dynamics Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viall, Nicholeen M.; Klimchuk, James A.

    In this paper, we examine 15 different active regions (ARs) observed with the Solar Dynamics Observatory and analyze their nanoflare properties. We have recently developed a technique that systematically identifies and measures plasma temperature dynamics by computing time lags between light curves. The time lag method tests whether the plasma is maintained at a steady temperature, or if it is dynamic, undergoing heating and cooling cycles. An important aspect of our technique is that it analyzes both observationally distinct coronal loops as well as the much more prevalent diffuse emission between them. We find that the widespread cooling reported previouslymore » for NOAA AR 11082 is a generic property of all ARs. The results are consistent with impulsive nanoflare heating followed by slower cooling. Only occasionally, however, is there full cooling from above 7 MK to well below 1 MK. More often, the plasma cools to approximately 1–2 MK before being reheated by another nanoflare. These same 15 ARs were first studied by Warren et al. We find that the degree of cooling is not well correlated with the reported slopes of the emission measure distribution. We also conclude that the Fe xviii emitting plasma that they measured is mostly in a state of cooling. These results support the idea that nanoflares have a distribution of energies and frequencies, with the average delay between successive events on an individual flux tube being comparable to the plasma cooling timescale.« less

  15. Plasma Septin9 versus Fecal Immunochemical Testing for Colorectal Cancer Screening: A Prospective Multicenter Study

    PubMed Central

    Johnson, David A.; Barclay, Robert L.; Mergener, Klaus; Weiss, Gunter; König, Thomas; Beck, Jürgen; Potter, Nicholas T.

    2014-01-01

    Background Screening improves outcomes related to colorectal cancer (CRC); however, suboptimal participation for available screening tests limits the full benefits of screening. Non-invasive screening using a blood based assay may potentially help reach the unscreened population. Objective To compare the performance of a new Septin9 DNA methylation based blood test with a fecal immunochemical test (FIT) for CRC screening. Design: In this trial, fecal and blood samples were obtained from enrolled patients. To compare test sensitivity for CRC, patients with screening identified colorectal cancer (n = 102) were enrolled and provided samples prior to surgery. To compare test specificity patients were enrolled prospectively (n = 199) and provided samples prior to bowel preparation for screening colonoscopy. Measurements Plasma and fecal samples were analyzed using the Epi proColon and OC Fit-Check tests respectively. Results For all samples, sensitivity for CRC detection was 73.3% (95% CI 63.9–80.9%) and 68.0% (95% CI 58.2–76.5%) for Septin9 and FIT, respectively. Specificity of the Epi proColon test was 81.5% (95% CI 75.5–86.3%) compared with 97.4% (95% CI 94.1–98.9%) for FIT. For paired samples, the sensitivity of the Epi proColon test (72.2% –95% CI 62.5–80.1%) was shown to be statistically non-inferior to FIT (68.0%–95% CI 58.2–76.5%). When test results for Epi proColon and FIT were combined, CRC detection was 88.7% at a specificity of 78.8%. Conclusions At a sensitivity of 72%, the Epi proColon test is non- inferior to FIT for CRC detection, although at a lower specificity. With negative predictive values of 99.8%, both methods are identical in confirming the absence of CRC. Trial Registration ClinicalTrials.gov NCT01580540 PMID:24901436

  16. Development of an image analysis screen for estrogen receptor alpha (ERα) ligands through measurement of nuclear translocation dynamics.

    PubMed

    Dull, Angie; Goncharova, Ekaterina; Hager, Gordon; McMahon, James B

    2010-11-01

    We have developed a robust high-content assay to screen for novel estrogen receptor alpha (ERα) agonists and antagonists by quantitation of cytoplasmic to nuclear translocation of an estrogen receptor chimera in 384-well plates. The screen utilizes a green fluorescent protein tagged-glucocorticoid/estrogen receptor (GFP-GRER) chimera which consisted of the N-terminus of the glucocorticoid receptor fused to the human ER ligand binding domain. The GFP-GRER exhibited cytoplasmic localization in the absence of ERα ligands, and translocated to the nucleus in response to stimulation with ERα agonists or antagonists. The BD Pathway 435 imaging system was used for image acquisition, analysis of translocation dynamics, and cytotoxicity measurements. The assay was validated with known ERα agonists and antagonists, and the Library of Pharmacologically Active Compounds (LOPAC 1280). Additionally, screening of crude natural product extracts demonstrated the robustness of the assay, and the ability to quantitate the effects of toxicity on nuclear translocation dynamics. The GFP-GRER nuclear translocation assay was very robust, with z' values >0.7, CVs <5%, and has been validated with known ER ligands, and inclusion of cytotoxicity filters will facilitate screening of natural product extracts. This assay has been developed for future primary screening of synthetic, pure natural products, and natural product extracts libraries available at the National Cancer Institute at Frederick. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Dynamic screening in a two-species asymmetric exclusion process

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hyuk; den Nijs, Marcel

    2007-08-01

    The dynamic scaling properties of the one-dimensional Burgers equation are expected to change with the inclusion of additional conserved degrees of freedom. We study this by means of one-dimensional (1D) driven lattice gas models that conserve both mass and momentum. The most elementary version of this is the Arndt-Heinzel-Rittenberg (AHR) process, which is usually presented as a two-species diffusion process, with particles of opposite charge hopping in opposite directions and with a variable passing probability. From the hydrodynamics perspective this can be viewed as two coupled Burgers equations, with the number of positive and negative momentum quanta individually conserved. We determine the dynamic scaling dimension of the AHR process from the time evolution of the two-point correlation functions, and find numerically that the dynamic critical exponent is consistent with simple Kardar-Parisi-Zhang- (KPZ) type scaling. We establish that this is the result of perfect screening of fluctuations in the stationary state. The two-point correlations decay exponentially in our simulations and in such a manner that in terms of quasiparticles, fluctuations fully screen each other at coarse grained length scales. We prove this screening rigorously using the analytic matrix product structure of the stationary state. The proof suggests the existence of a topological invariant. The process remains in the KPZ universality class but only in the sense of a factorization, as (KPZ)2 . The two Burgers equations decouple at large length scales due to the perfect screening.

  18. Ionization-potential depression and other dense plasma statistical property studies - Application to spectroscopic diagnostics.

    NASA Astrophysics Data System (ADS)

    Calisti, Annette; Ferri, Sandrine; Mossé, Caroline; Talin, Bernard

    2017-02-01

    The radiative properties of an emitter surrounded by a plasma, are modified through various mechanisms. For instance the line shapes emitted by bound-bound transitions are broadened and carry useful information for plasma diagnostics. Depending on plasma conditions the electrons occupying the upper quantum levels of radiators no longer exist as they belong to the plasma free electron population. All the charges present in the radiator environment contribute to the lowering of the energy required to free an electron in the fundamental state. This mechanism is known as ionization potential depression (IPD). The knowledge of IPD is useful as it affects both the radiative properties of the various ionic states and their populations. Its evaluation deals with highly complex n-body coupled systems, involving particles with different dynamics and attractive ion-electron forces. A classical molecular dynamics (MD) code, the BinGo-TCP code, has been recently developed to simulate neutral multi-component (various charge state ions and electrons) plasma accounting for all the charge correlations. In the present work, results on IPD and other dense plasma statistical properties obtained using the BinGo-TCP code are presented. The study focuses on aluminum plasmas for different densities and several temperatures in order to explore different plasma coupling conditions.

  19. Theory and Simulations of Solar System Plasmas

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  20. Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    M. Nouri, Kadijani; Zareamoghaddam, H.

    2013-11-01

    In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are also investigated numerically.

Top