Sample records for dynamic population effects

  1. Effects of constant immigration on the dynamics and persistence of stable and unstable Drosophila populations

    PubMed Central

    Dey, Snigdhadip; Joshi, Amitabh

    2013-01-01

    Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546

  2. Geographic variation in density-dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity

    Treesearch

    Andrew M. Liebhold; Derek M. Johnson; Ottar N. Bj& #248rnstad

    2006-01-01

    Explanations for the ubiquitous presence of spatially synchronous population dynamics have assumed that density-dependent processes governing the dynamics of local populations are identical among disjunct populations, and low levels of dispersal or small amounts of regionalized stochasticity ("Moran effect") can act to synchronize populations. In this study...

  3. Density dependence in group dynamics of a highly social mongoose, Suricata suricatta.

    PubMed

    Bateman, Andrew W; Ozgul, Arpat; Coulson, Tim; Clutton-Brock, Tim H

    2012-05-01

    1. For social species, the link between individual behaviour and population dynamics is mediated by group-level demography. 2. Populations of obligate cooperative breeders are structured into social groups, which may be subject to inverse density dependence (Allee effects) that result from a dependence on conspecific helpers, but evidence for population-wide Allee effects is rare. 3. We use field data from a long-term study of cooperative meerkats (Suricata suricatta; Schreber, 1776) - a species for which local Allee effects are not reflected in population-level dynamics - to empirically model interannual group dynamics. 4. Using phenomenological population models, modified to incorporate environmental conditions and potential Allee effects, we first investigate overall patterns of group dynamics and find support only for conventional density dependence that increases after years of low rainfall. 5. To explain the observed patterns, we examine specific demographic rates and assess their contributions to overall group dynamics. Although per-capita meerkat mortality is subject to a component Allee effect, it contributes relatively little to observed variation in group dynamics, and other (conventionally density dependent) demographic rates - especially emigration - govern group dynamics. 6. Our findings highlight the need to consider demographic processes and density dependence in subpopulations before drawing conclusions about how behaviour affects population processes in socially complex systems. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  4. Considering transient population dynamics in the conservation of slow life-history species: An application to the sandhill crane

    USGS Publications Warehouse

    Gerber, Brian D.; Kendall, William L.

    2016-01-01

    The importance of transient dynamics of structured populations is increasingly recognized in ecology, yet these implications are not largely considered in conservation practices. We investigate transient and long-term population dynamics to demonstrate the process and utility of incorporating transient dynamics into conservation research and to better understand the population management of slow life-history species; these species can be theoretically highly sensitive to short- and long-term transient effects. We are specifically interested in the effects of anthropogenic removal of individuals from populations, such as caused by harvest, poaching, translocation, or incidental take. We use the sandhill crane (Grus canadensis) as an exemplar species; it is long-lived, has low reproduction, late maturity, and multiple populations are subject to sport harvest. We found sandhill cranes to have extremely high potential, but low likelihood for transient dynamics, even when the population is being harvested. The typically low population growth rate of slow life-history species appears to buffer against many perturbations causing large transient effects. Transient dynamics will dominate population trajectories of these species when stage structures are highly biased towards the younger and non-reproducing individuals, a situation that may be rare in established populations of long-lived animals. However, short-term transient population growth can be highly sensitive to vital rates that are relatively insensitive under equilibrium, suggesting that stage structure should be known if perturbation analysis is used to identify effective conservation strategies. For populations of slow life-history species that are not prone to large perturbations to their most productive individuals, population growth may be approximated by equilibrium dynamics.

  5. Populational Growth Models Proportional to Beta Densities with Allee Effect

    NASA Astrophysics Data System (ADS)

    Aleixo, Sandra M.; Rocha, J. Leonel; Pestana, Dinis D.

    2009-05-01

    We consider populations growth models with Allee effect, proportional to beta densities with shape parameters p and 2, where the dynamical complexity is related with the Malthusian parameter r. For p>2, these models exhibit a population dynamics with natural Allee effect. However, in the case of 1

  6. Combined effects of climate, predation, and density dependence on Greater and Lesser Scaup population dynamics

    USGS Publications Warehouse

    Ross, Beth E.; Hooten, Mevin B.; DeVink, Jean-Michel; Koons, David N.

    2015-01-01

    An understanding of species relationships is critical in the management and conservation of populations facing climate change, yet few studies address how climate alters species interactions and other population drivers. We use a long-term, broad-scale data set of relative abundance to examine the influence of climate, predators, and density dependence on the population dynamics of declining scaup (Aythya) species within the core of their breeding range. The state-space modeling approach we use applies to a wide range of wildlife species, especially populations monitored over broad spatiotemporal extents. Using this approach, we found that immediate snow cover extent in the preceding winter and spring had the strongest effects, with increases in mean snow cover extent having a positive effect on the local surveyed abundance of scaup. The direct effects of mesopredator abundance on scaup population dynamics were weaker, but the results still indicated a potential interactive process between climate and food web dynamics (mesopredators, alternative prey, and scaup). By considering climate variables and other potential effects on population dynamics, and using a rigorous estimation framework, we provide insight into complex ecological processes for guiding conservation and policy actions aimed at mitigating and reversing the decline of scaup.

  7. Effects of temporal variation in temperature and density dependence on insect population dynamics

    USDA-ARS?s Scientific Manuscript database

    Understanding effects of environmental variation on insect populations is important in light of predictions about increasing future climatic variability. In order to understand the effects of changing environmental variation on population dynamics and life history evolution in insects one would need...

  8. Stochastic gain in finite populations

    NASA Astrophysics Data System (ADS)

    Röhl, Torsten; Traulsen, Arne; Claussen, Jens Christian; Schuster, Heinz Georg

    2008-08-01

    Flexible learning rates can lead to increased payoffs under the influence of noise. In a previous paper [Traulsen , Phys. Rev. Lett. 93, 028701 (2004)], we have demonstrated this effect based on a replicator dynamics model which is subject to external noise. Here, we utilize recent advances on finite population dynamics and their connection to the replicator equation to extend our findings and demonstrate the stochastic gain effect in finite population systems. Finite population dynamics is inherently stochastic, depending on the population size and the intensity of selection, which measures the balance between the deterministic and the stochastic parts of the dynamics. This internal noise can be exploited by a population using an appropriate microscopic update process, even if learning rates are constant.

  9. Interactions between demography and environmental effects are important determinants of population dynamics

    PubMed Central

    Gamelon, Marlène; Grøtan, Vidar; Nilsson, Anna L. K.; Engen, Steinar; Hurrell, James W.; Jerstad, Kurt; Phillips, Adam S.; Røstad, Ole W.; Slagsvold, Tore; Walseng, Bjørn; Stenseth, Nils C.; Sæther, Bernt-Erik

    2017-01-01

    Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions. PMID:28164157

  10. [Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling].

    PubMed

    Soukhovolsky, V G; Ponomarev, V I; Sokolov, G I; Tarasova, O V; Krasnoperova, P A

    2015-01-01

    The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.

  11. Soybean Yield and Heterodera glycines Population Dynamics as Affected by Cultural Practices in Major Production Areas of the United States and Canada

    USDA-ARS?s Scientific Manuscript database

    Little information is available on the interactive effects of tillage and row spacing on yield of soybean and population dynamics of H. glycines. This study investigated the effects of rotation of soybean and corn, tillage, row spacing, and cultivar on yield of soybean and population dynamics of H. ...

  12. The finite state projection approach to analyze dynamics of heterogeneous populations

    NASA Astrophysics Data System (ADS)

    Johnson, Rob; Munsky, Brian

    2017-06-01

    Population modeling aims to capture and predict the dynamics of cell populations in constant or fluctuating environments. At the elementary level, population growth proceeds through sequential divisions of individual cells. Due to stochastic effects, populations of cells are inherently heterogeneous in phenotype, and some phenotypic variables have an effect on division or survival rates, as can be seen in partial drug resistance. Therefore, when modeling population dynamics where the control of growth and division is phenotype dependent, the corresponding model must take account of the underlying cellular heterogeneity. The finite state projection (FSP) approach has often been used to analyze the statistics of independent cells. Here, we extend the FSP analysis to explore the coupling of cell dynamics and biomolecule dynamics within a population. This extension allows a general framework with which to model the state occupations of a heterogeneous, isogenic population of dividing and expiring cells. The method is demonstrated with a simple model of cell-cycle progression, which we use to explore possible dynamics of drug resistance phenotypes in dividing cells. We use this method to show how stochastic single-cell behaviors affect population level efficacy of drug treatments, and we illustrate how slight modifications to treatment regimens may have dramatic effects on drug efficacy.

  13. Population dynamics of HIV-1 inferred from gene sequences.

    PubMed Central

    Grassly, N C; Harvey, P H; Holmes, E C

    1999-01-01

    A method for the estimation of population dynamic history from sequence data is described and used to investigate the past population dynamics of HIV-1 subtypes A and B. Using both gag and env gene alignments the effective population size of each subtype is estimated and found to be surprisingly small. This may be a result of the selective sweep of mutations through the population, or may indicate an important role of genetic drift in the fixation of mutations. The implications of these results for the spread of drug-resistant mutations and transmission dynamics, and also the roles of selection and recombination in shaping HIV-1 genetic diversity, are discussed. A larger estimated effective population size for subtype A may be the result of differences in time of origin, transmission dynamics, and/or population structure. To investigate the importance of population structure a model of population subdivision was fitted to each subtype, although the improvement in likelihood was found to be nonsignificant. PMID:9927440

  14. Population ecology of insect invasions and their management

    Treesearch

    Andrew M. Liebhold; Patrick C. Tobin

    2008-01-01

    During the establishment phase of a biological invasion, population dynamics are strongly influenced by Allee effects and stochastic dynamics, both of which may lead to extinction of low-density populations. Allee effects refer to a decline in population growth rate with a decline in abundance and can arise from various mechanisms. Strategies to eradicate newly...

  15. Comparing models of Red Knot population dynamics

    USGS Publications Warehouse

    McGowan, Conor P.

    2015-01-01

    Predictive population modeling contributes to our basic scientific understanding of population dynamics, but can also inform management decisions by evaluating alternative actions in virtual environments. Quantitative models mathematically reflect scientific hypotheses about how a system functions. In Delaware Bay, mid-Atlantic Coast, USA, to more effectively manage horseshoe crab (Limulus polyphemus) harvests and protect Red Knot (Calidris canutus rufa) populations, models are used to compare harvest actions and predict the impacts on crab and knot populations. Management has been chiefly driven by the core hypothesis that horseshoe crab egg abundance governs the survival and reproduction of migrating Red Knots that stopover in the Bay during spring migration. However, recently, hypotheses proposing that knot dynamics are governed by cyclical lemming dynamics garnered some support in data analyses. In this paper, I present alternative models of Red Knot population dynamics to reflect alternative hypotheses. Using 2 models with different lemming population cycle lengths and 2 models with different horseshoe crab effects, I project the knot population into the future under environmental stochasticity and parametric uncertainty with each model. I then compare each model's predictions to 10 yr of population monitoring from Delaware Bay. Using Bayes' theorem and model weight updating, models can accrue weight or support for one or another hypothesis of population dynamics. With 4 models of Red Knot population dynamics and only 10 yr of data, no hypothesis clearly predicted population count data better than another. The collapsed lemming cycle model performed best, accruing ~35% of the model weight, followed closely by the horseshoe crab egg abundance model, which accrued ~30% of the weight. The models that predicted no decline or stable populations (i.e. the 4-yr lemming cycle model and the weak horseshoe crab effect model) were the most weakly supported.

  16. Simultaneous effects of food limitation and inducible resistance on herbivore population dynamics.

    PubMed

    Abbott, Karen C; Morris, William F; Gross, Kevin

    2008-02-01

    Many herbivore populations fluctuate temporally, but the causes of those fluctuations remain unclear. Plant inducible resistance can theoretically cause herbivore population fluctuations, because herbivory may induce plant changes that reduce the survival or reproduction of later-feeding herbivores. Herbivory can also simply reduce the quantity of food available for later feeders and this, too, can cause population fluctuations. Inducible resistance and food limitation often occur simultaneously, yet whether they jointly facilitate or suppress herbivore fluctuations remains largely unexplored. We present models that suggest that food limitation and inducible resistance may have synergistic effects on herbivore population dynamics. The population-level response of the food plant to herbivory and the details of how inducible resistance affects herbivore performance both influence the resulting herbivore dynamics. Our results identify some biological properties of plant-herbivore systems that might determine whether or not cycles occur, and suggest that future empirical and theoretical population dynamics studies should account for the effects of both food limitation and inducible resistance.

  17. Understanding Past Population Dynamics: Bayesian Coalescent-Based Modeling with Covariates

    PubMed Central

    Gill, Mandev S.; Lemey, Philippe; Bennett, Shannon N.; Biek, Roman; Suchard, Marc A.

    2016-01-01

    Effective population size characterizes the genetic variability in a population and is a parameter of paramount importance in population genetics and evolutionary biology. Kingman’s coalescent process enables inference of past population dynamics directly from molecular sequence data, and researchers have developed a number of flexible coalescent-based models for Bayesian nonparametric estimation of the effective population size as a function of time. Major goals of demographic reconstruction include identifying driving factors of effective population size, and understanding the association between the effective population size and such factors. Building upon Bayesian nonparametric coalescent-based approaches, we introduce a flexible framework that incorporates time-varying covariates that exploit Gaussian Markov random fields to achieve temporal smoothing of effective population size trajectories. To approximate the posterior distribution, we adapt efficient Markov chain Monte Carlo algorithms designed for highly structured Gaussian models. Incorporating covariates into the demographic inference framework enables the modeling of associations between the effective population size and covariates while accounting for uncertainty in population histories. Furthermore, it can lead to more precise estimates of population dynamics. We apply our model to four examples. We reconstruct the demographic history of raccoon rabies in North America and find a significant association with the spatiotemporal spread of the outbreak. Next, we examine the effective population size trajectory of the DENV-4 virus in Puerto Rico along with viral isolate count data and find similar cyclic patterns. We compare the population history of the HIV-1 CRF02_AG clade in Cameroon with HIV incidence and prevalence data and find that the effective population size is more reflective of incidence rate. Finally, we explore the hypothesis that the population dynamics of musk ox during the Late Quaternary period were related to climate change. [Coalescent; effective population size; Gaussian Markov random fields; phylodynamics; phylogenetics; population genetics. PMID:27368344

  18. Linking extinction-colonization dynamics to genetic structure in a salamander metapopulation.

    PubMed

    Cosentino, Bradley J; Phillips, Christopher A; Schooley, Robert L; Lowe, Winsor H; Douglas, Marlis R

    2012-04-22

    Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.

  19. FITPOP, a heuristic simulation model of population dynamics and genetics with special reference to fisheries

    USGS Publications Warehouse

    McKenna, James E.

    2000-01-01

    Although, perceiving genetic differences and their effects on fish population dynamics is difficult, simulation models offer a means to explore and illustrate these effects. I partitioned the intrinsic rate of increase parameter of a simple logistic-competition model into three components, allowing specification of effects of relative differences in fitness and mortality, as well as finite rate of increase. This model was placed into an interactive, stochastic environment to allow easy manipulation of model parameters (FITPOP). Simulation results illustrated the effects of subtle differences in genetic and population parameters on total population size, overall fitness, and sensitivity of the system to variability. Several consequences of mixing genetically distinct populations were illustrated. For example, behaviors such as depression of population size after initial introgression and extirpation of native stocks due to continuous stocking of genetically inferior fish were reproduced. It also was shown that carrying capacity relative to the amount of stocking had an important influence on population dynamics. Uncertainty associated with parameter estimates reduced confidence in model projections. The FITPOP model provided a simple tool to explore population dynamics, which may assist in formulating management strategies and identifying research needs.

  20. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    PubMed

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  1. Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    PubMed Central

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements. PMID:22272362

  2. Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data.

    PubMed

    Farrer, Emily C; Ashton, Isabel W; Knape, Jonas; Suding, Katharine N

    2014-04-01

    Two sources of complexity make predicting plant community response to global change particularly challenging. First, realistic global change scenarios involve multiple drivers of environmental change that can interact with one another to produce non-additive effects. Second, in addition to these direct effects, global change drivers can indirectly affect plants by modifying species interactions. In order to tackle both of these challenges, we propose a novel population modeling approach, requiring only measurements of abundance and climate over time. To demonstrate the applicability of this approach, we model population dynamics of eight abundant plant species in a multifactorial global change experiment in alpine tundra where we manipulated nitrogen, precipitation, and temperature over 7 years. We test whether indirect and interactive effects are important to population dynamics and whether explicitly incorporating species interactions can change predictions when models are forecast under future climate change scenarios. For three of the eight species, population dynamics were best explained by direct effect models, for one species neither direct nor indirect effects were important, and for the other four species indirect effects mattered. Overall, global change had negative effects on species population growth, although species responded to different global change drivers, and single-factor effects were slightly more common than interactive direct effects. When the fitted population dynamic models were extrapolated under changing climatic conditions to the end of the century, forecasts of community dynamics and diversity loss were largely similar using direct effect models that do not explicitly incorporate species interactions or best-fit models; however, inclusion of species interactions was important in refining the predictions for two of the species. The modeling approach proposed here is a powerful way of analyzing readily available datasets which should be added to our toolbox to tease apart complex drivers of global change. © 2013 John Wiley & Sons Ltd.

  3. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories

    USGS Publications Warehouse

    Miller, David A.; Clark, W.R.; Arnold, S.J.; Bronikowski, A.M.

    2011-01-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (??s) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on ?? s. The magnitude of variation in the proportion of gravid females and its effect on ??s was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on ??s was 4- 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution. ?? 2011 by the Ecological Society of America.

  4. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories.

    PubMed

    Miller, David A; Clark, William R; Arnold, Stevan J; Bronikowski, Anne M

    2011-08-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of divergent life-history traits in the two ecotypes, which, in turn, affect population dynamics. M-slow populations have evolved life-history traits that buffer fitness against direct effects of variation in reproduction and that spread lifetime reproduction across a greater number of reproductive bouts. These results highlight the importance of long-term demographic and environmental monitoring and of incorporating temporal dynamics into empirical studies of life-history evolution.

  5. Metapopulation dynamics and the evolution of dispersal

    NASA Astrophysics Data System (ADS)

    Parvinen, Kalle

    A metapopulation consists of local populations living in habitat patches. In this chapter metapopulation dynamics and the evolution of dispersal is studied in two metapopulation models defined in discrete time. In the first model there are finitely many patches, and in the other one there are infinitely many patches, which allows to incorporate catastrophes into the model. In the first model, cyclic local population dynamics can be either synchronized or not, and increasing dispersal both synchronizes and stabilizes metapopulation dynamics. On the other hand, the type of dynamics has a strong effect on the evolution of dispersal. In case of non-synchronized metapopulation dynamics, dispersal is much more beneficial than in the case of synchronized metapopulation dynamics. Local dynamics has a substantial effect also on the possibility of evolutionary branching in both models. Furthermore, with an Allee effect in the local dynamics of the second model, even evolutionary suicide can occur. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist.

  6. Harvest and dynamics of duck populations

    USGS Publications Warehouse

    Sedinger, James S.; Herzog, Mark P.

    2012-01-01

    The role of harvest in the dynamics of waterfowl populations continues to be debated among scientists and managers. Our perception is that interested members of the public and some managers believe that harvest influences North American duck populations based on calls for more conservative harvest regulations. A recent review of harvest and population dynamics of North American mallard (Anas platyrhynchos) populations (Pöysä et al. 2004) reached similar conclusions. Because of the importance of this issue, we reviewed the evidence for an impact of harvest on duck populations. Our understanding of the effects of harvest is limited because harvest effects are typically confounded with those of population density; regulations are typically most liberal when populations are greatest. This problem also exists in the current Adaptive Harvest Management Program (Conn and Kendall 2004). Consequently, even where harvest appears additive to other mortality, this may be an artifact of ignoring effects of population density. Overall, we found no compelling evidence for strong additive effects of harvest on survival in duck populations that could not be explained by other factors.

  7. Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro

    2018-03-01

    We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.

  8. Increased natural mortality at low abundance can generate an Allee effect in a marine fish.

    PubMed

    Kuparinen, Anna; Hutchings, Jeffrey A

    2014-10-01

    Negative density-dependent regulation of population dynamics promotes population growth at low abundance and is therefore vital for recovery following depletion. Inversely, any process that reduces the compensatory density-dependence of population growth can negatively affect recovery. Here, we show that increased adult mortality at low abundance can reverse compensatory population dynamics into its opposite-a demographic Allee effect. Northwest Atlantic cod (Gadus morhua) stocks collapsed dramatically in the early 1990s and have since shown little sign of recovery. Many experienced dramatic increases in natural mortality, ostensibly attributable in some populations to increased predation by seals. Our findings show that increased natural mortality of a magnitude observed for overfished cod stocks has been more than sufficient to fundamentally alter the dynamics of density-dependent population regulation. The demographic Allee effect generated by these changes can slow down or even impede the recovery of depleted populations even in the absence of fishing.

  9. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{submore » t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.« less

  10. Temperature-driven regime shifts in the dynamics of size-structured populations.

    PubMed

    Ohlberger, Jan; Edeline, Eric; Vøllestad, Leif Asbjørn; Stenseth, Nils C; Claessen, David

    2011-02-01

    Global warming impacts virtually all biota and ecosystems. Many of these impacts are mediated through direct effects of temperature on individual vital rates. Yet how this translates from the individual to the population level is still poorly understood, hampering the assessment of global warming impacts on population structure and dynamics. Here, we study the effects of temperature on intraspecific competition and cannibalism and the population dynamical consequences in a size-structured fish population. We use a physiologically structured consumer-resource model in which we explicitly model the temperature dependencies of the consumer vital rates and the resource population growth rate. Our model predicts that increased temperature decreases resource density despite higher resource growth rates, reflecting stronger intraspecific competition among consumers. At a critical temperature, the consumer population dynamics destabilize and shift from a stable equilibrium to competition-driven generation cycles that are dominated by recruits. As a consequence, maximum age decreases and the proportion of younger and smaller-sized fish increases. These model predictions support the hypothesis of decreasing mean body sizes due to increased temperatures. We conclude that in size-structured fish populations, global warming may increase competition, favor smaller size classes, and induce regime shifts that destabilize population and community dynamics.

  11. The Allee effect, stochastic dynamics and the eradication of alien species

    Treesearch

    Andrew Liebhold; Jordi Bascompte; Jordi Bascompte

    2003-01-01

    Previous treatments of the population biology of eradication have assumed that eradication can only be achieved via 100% removal of the alien population. However, this assumption appears to be incorrect because stochastic dynamics and the Allee effect typically contribute to the extinction of very low-density populations. We explore a model that incorporates Allee...

  12. The effect of seasonal harvesting on stage-structured population models.

    PubMed

    Tang, Sanyi; Chen, Lansun

    2004-04-01

    In most models of population dynamics, increases in population due to birth are assumed to be time-independent, but many species reproduce only during a single period of the year. We propose an exploited single-species model with stage structure for the dynamics in a fish population for which births occur in a single pulse once per time period. Since birth pulse populations are often characterized with a discrete time dynamical system determined by its Poincaré map, we explore the consequences of harvest timing to equilibrium population sizes under seasonal dependence and obtain threshold conditions for their stability, and show that the timing of harvesting has a strong impact on the persistence of the fish population, on the volume of mature fish stock and on the maximum annual-sustainable yield. Moreover, our results imply that the population can sustain much higher harvest rates if the mature fish is removed as early in the season (after the birth pulse) as possible. Further, the effects of harvesting effort and harvest timing on the dynamical complexity are also investigated. Bifurcation diagrams are constructed with the birth rate (or harvesting effort or harvest timing) as the bifurcation parameter, and these are observed to display rich structure, including chaotic bands with periodic windows, pitch-fork and tangent bifurcations, non-unique dynamics (meaning that several attractors coexist) and attractor crisis. This suggests that birth pulse, in effect, provides a natural period or cyclicity that makes the dynamical behavior more complex.

  13. Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle

    Treesearch

    Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres

    2005-01-01

    Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...

  14. Population dynamics of minimally cognitive individuals. Part I: Introducing knowledge into the dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmieder, R.W.

    The author presents a new approach for modeling the dynamics of collections of objects with internal structure. Based on the fact that the behavior of an individual in a population is modified by its knowledge of other individuals, a procedure for accounting for knowledge in a population of interacting objects is presented. It is assumed that each object has partial (or complete) knowledge of some (or all) other objects in the population. The dynamical equations for the objects are then modified to include the effects of this pairwise knowledge. This procedure has the effect of projecting out what the populationmore » will do from the much larger space of what it could do, i.e., filtering or smoothing the dynamics by replacing the complex detailed physical model with an effective model that produces the behavior of interest. The procedure therefore provides a minimalist approach for obtaining emergent collective behavior. The use of knowledge as a dynamical quantity, and its relationship to statistical mechanics, thermodynamics, information theory, and cognition microstructure are discussed.« less

  15. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  16. The role of weak selection and high mutation rates in nearly neutral evolution.

    PubMed

    Lawson, Daniel John; Jensen, Henrik Jeldtoft

    2009-04-21

    Neutral dynamics occur in evolution if all types are 'effectively equal' in their reproductive success, where the definition of 'effectively equal' depends on the population size and the details of mutations. Empirically observed neutral genetic evolution in extremely large clonal populations can only be explained under current models if selection is completely absent. Such models typically consider the case where population dynamics occurs on a different timescale to evolution. However, this assumption is invalid when mutations are not rare in a whole population. We show that this has important consequences for the occurrence of neutral evolution in clonal populations. In highly connected type spaces, neutral dynamics can occur for all population sizes despite significant selective differences, via the forming of effectively neutral networks connecting rare neutral types. Biological implications include an explanation for the high diversity of rare types that survive in large clonal populations, and a theoretical justification for the use of neutral null models.

  17. [Dynamic model of seasonal breeding rodent pest population controlled with short-acting sterilant].

    PubMed

    Liu, Han-wu; Jin, Zhen; Zhang, Feng-qin; Li, Qiu-ying

    2013-04-01

    Rodent pests bring great damage to human beings, while rodenticide and sterilant can be used to control the pests. After ingesting sterilant, rodent pests lose their fertility, but in some cases, the sterile individuals may gain their fertility again, produce offspring, and enlarge population size. In this paper, the dynamic models of rodent pest population under lethal control and shortacting contraception control were formulated, and, with the prerequisite of the seasonal breeding of rodent pest population, the models were used to regularly analyze their behaviors and the effects of the contraception rate, lethal rate, control interval, and sterilant valid period on the dynamics of the pest population. The results showed that larger contraception rate and lethal rate and shorter control interval could have better control effect, making the controlled population become smaller and even died out. Short-acting sterilant limited the control effect. At the later period of breeding season, the rodent pest population controlled with short-acting sterilant would have a weak recovery.

  18. A juvenile-adult population model: climate change, cannibalism, reproductive synchrony, and strong Allee effects.

    PubMed

    Veprauskas, Amy; Cushing, J M

    2017-03-01

    We study a discrete time, structured population dynamic model that is motivated by recent field observations concerning certain life history strategies of colonial-nesting gulls, specifically the glaucous-winged gull (Larus glaucescens). The model focuses on mechanisms hypothesized to play key roles in a population's response to degraded environment resources, namely, increased cannibalism and adjustments in reproductive timing. We explore the dynamic consequences of these mechanics using a juvenile-adult structure model. Mathematically, the model is unusual in that it involves a high co-dimension bifurcation at [Formula: see text] which, in turn, leads to a dynamic dichotomy between equilibrium states and synchronized oscillatory states. We give diagnostic criteria that determine which dynamic is stable. We also explore strong Allee effects caused by positive feedback mechanisms in the model and the possible consequence that a cannibalistic population can survive when a non-cannibalistic population cannot.

  19. Leading edge gypsy moth population dynamics

    Treesearch

    M. R. Carter; F. W. Ravlin; M. L. McManus

    1991-01-01

    Leading edge gypsy moth populations have been the focus of several intervention programs (MDIPM, AIPM). Knowledge of gypsy moth population dynamics in leading edge area is crucial for effective management. Populations in these areas tend to reach outbreak levels (noticeable defoliation) within three to four years after egg masses are first detected. Pheromone traps...

  20. Environmental variability and population dynamics: Do European and North American ducks play by the same rules?

    USGS Publications Warehouse

    Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti

    2016-01-01

    Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.

  1. Environmental variability and population dynamics: do European and North American ducks play by the same rules?

    PubMed

    Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D; Väänänen, Veli-Matti

    2016-10-01

    Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.

  2. Evolution of the stellar mass function in multiple-population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; Hong, Jongsuk; Webb, Jeremy J.; D'Antona, Franca; D'Ercole, Annibale

    2018-05-01

    We present the results of a survey of N-body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar populations in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected similarly by dynamical evolution and no significant differences between the 1G and 2G MFs arise during the cluster's evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MFs, these would reveal the fingerprints of differences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters.

  3. A new ODE tumor growth modeling based on tumor population dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  4. Evaluating Effects of Localized Habitat Manipulations on Landscape-level Dynamics of White-footed Mouse Populations

    EPA Science Inventory

    Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecological...

  5. Linking body mass and group dynamics in an obligate cooperative breeder.

    PubMed

    Ozgul, Arpat; Bateman, Andrew W; English, Sinead; Coulson, Tim; Clutton-Brock, Tim H

    2014-11-01

    Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  6. Breeding site heterogeneity reduces variability in frog recruitment and population dynamics

    USGS Publications Warehouse

    McCaffery, Rebecca M.; Eby, Lisa A.; Maxell, Bryce A.; Corn, Paul Stephen

    2013-01-01

    Environmental stochasticity can have profound effects on the dynamics and viability of wild populations, and habitat heterogeneity provides one mechanism by which populations may be buffered against the negative effects of environmental fluctuations. Heterogeneity in breeding pond hydroperiod across the landscape may allow amphibian populations to persist despite variable interannual precipitation. We examined recruitment dynamics over 10 yr in a high-elevation Columbia spotted frog (Rana luteiventris) population that breeds in ponds with a variety of hydroperiods. We combined these data with matrix population models to quantify the consequences of heterogeneity in pond hydroperiod on net recruitment (i.e. number of metamorphs produced) and population growth rates. We compared our heterogeneous system to hypothetical homogeneous environments with only ephemeral ponds, only semi-permanent ponds, and only permanent ponds. We also examined the effects of breeding pond habitat loss on population growth rates. Most eggs were laid in permanent ponds each year, but survival to metamorphosis was highest in the semi-permanent ponds. Recruitment success varied by both year and pond type. Net recruitment and stochastic population growth rate were highest under a scenario with homogeneous semi-permanent ponds, but variability in recruitment was lowest in the scenario with the observed heterogeneity in hydroperiods. Loss of pond habitat decreased population growth rate, with greater decreases associated with loss of permanent and semi-permanent habitat. The presence of a diversity of pond hydroperiods on the landscape will influence population dynamics, including reducing variability in recruitment in an uncertain climatic future.

  7. Population dynamics and mutualism: Functional responses of benefits and costs

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Bronstein, Judith L.

    2002-01-01

    We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density‐dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed‐eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

  8. Social Information Links Individual Behavior to Population and Community Dynamics.

    PubMed

    Gil, Michael A; Hein, Andrew M; Spiegel, Orr; Baskett, Marissa L; Sih, Andrew

    2018-05-07

    When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Ruffed grouse population dynamics in the central and southern Appalachians

    Treesearch

    John M. Giuliano Tirpak; C. Allan Miller; Thomas J. Allen; Steve Bittner; David A. Buehler; John W. Edwards; Craig A. Harper; William K. Igo; Gary W. Norman; M. Seamster; Dean F. Stauffer

    2006-01-01

    Ruffed grouse (Bonasa urnbellus; hereafter grouse) populations in the central and southern Appalachians are in decline. However, limited information on the dynamics of these populations prevents the development of effective management strategies to reverse these trends. We used radiotelemetry data collected on grouse to parameterize 6 models of...

  10. The influence of historical climate on the population dynamics of three dominant sagebrush steppe plants.

    USDA-ARS?s Scientific Manuscript database

    Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact...

  11. Evolution of specialization under non-equilibrium population dynamics.

    PubMed

    Nurmi, Tuomas; Parvinen, Kalle

    2013-03-21

    We analyze the evolution of specialization in resource utilization in a mechanistically underpinned discrete-time model using the adaptive dynamics approach. We assume two nutritionally equivalent resources that in the absence of consumers grow sigmoidally towards a resource-specific carrying capacity. The consumers use resources according to the law of mass-action with rates involving trade-off. The resulting discrete-time model for the consumer population has over-compensatory dynamics. We illuminate the way non-equilibrium population dynamics affect the evolutionary dynamics of the resource consumption rates, and show that evolution to the trimorphic coexistence of a generalist and two specialists is possible due to asynchronous non-equilibrium population dynamics of the specialists. In addition, various forms of cyclic evolutionary dynamics are possible. Furthermore, evolutionary suicide may occur even without Allee effects and demographic stochasticity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Pyramiding different aphid-resistance genes in elite soybean germplasm to combat dynamic aphid populations

    USDA-ARS?s Scientific Manuscript database

    The soybean aphid, an invasive species, has posed a significant threat to soybean production in North America since 2001. Use of resistant cultivars is an effective tactic to protect soybean yield. However, the variability and dynamics of aphid populations could limit the effectiveness of host-resis...

  13. Dynamics of a small re-introduced population of wild dogs over 25 years: Allee effects and the implications of sociality for endangered species' recovery.

    PubMed

    Somers, Michael J; Graf, Jan A; Szykman, Micaela; Slotow, Rob; Gusset, Markus

    2008-11-01

    We analysed 25 years (1980-2004) of demographic data on a small re-introduced population of endangered African wild dogs (Lycaon pictus) in Hluhluwe-iMfolozi Park (HiP), South Africa, to describe population and pack dynamics. As small populations of cooperative breeders may be particularly prone to Allee effects, this extensive data set was used to test the prediction that, if Allee effects occur, aspects of reproductive success, individual survival and population growth should increase with pack and population size. The results suggest that behavioural aspects of wild dogs rather than ecological factors (i.e. competitors, prey and rainfall) primarily have been limiting the HiP wild dog population, particularly a low probability of finding suitable mates upon dispersal at low pack number (i.e. a mate-finding Allee effect). Wild dogs in HiP were not subject to component Allee effects at the pack level, most likely due to low interspecific competition and high prey availability. This suggests that aspects of the environment can mediate the strength of Allee effects. There was also no demographic Allee effect in the HiP wild dog population, as the population growth rate was significantly negatively related to population size, despite no apparent ecological resource limitation. Such negative density dependence at low numbers indicates that behavioural studies of the causal mechanisms potentially generating Allee effects in small populations can provide a key to understanding their dynamics. This study demonstrates how aspects of a species' social behaviour can influence the vulnerability of small populations to extinction and illustrates the profound implications of sociality for endangered species' recovery.

  14. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer

    PubMed Central

    Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C.; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region’s most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species’ total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi-faceted role that reindeer exert in Arctic ecosystems. PMID:27362499

  15. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer.

    PubMed

    Uboni, Alessia; Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi-faceted role that reindeer exert in Arctic ecosystems.

  16. Integrating host, natural enemy, and other processes in population models of the pine sawfly

    Treesearch

    A. A. Sharov

    1991-01-01

    Explanation of population dynamics is one of the main problems in population ecology. There are two main approaches to the explanation: the factor approach and the dynamic approach. According to the first, an explanation is obtained when the effect of various environmental factors on population density is revealed. Such analysis is performed using well developed...

  17. Evolution of Fitness in Experimental Populations of Vesicular Stomatitis Virus

    PubMed Central

    Elena, S. F.; Gonzalez-Candelas, F.; Novella, I. S.; Duarte, E. A.; Clarke, D. K.; Domingo, E.; Holland, J. J.; Moya, A.

    1996-01-01

    The evolution of fitness in experimental clonal populations of vesicular stomatitis virus (VSV) has been compared under different genetic (fitness of initial clone) and demographic (population dynamics) regimes. In spite of the high genetic heterogeneity among replicates within experiments, there is a clear effect of population dynamics on the evolution of fitness. Those populations that went through strong periodic bottlenecks showed a decreased fitness in competition experiments with wild type. Conversely, mutant populations that were transferred under the dynamics of continuous population expansions increased their fitness when compared with the same wild type. The magnitude of the observed effect depended on the fitness of the original viral clone. Thus, high fitness clones showed a larger reduction in fitness than low fitness clones under dynamics with included periodic bottleneck. In contrast, the gain in fitness was larger the lower the initial fitness of the viral clone. The quantitative genetic analysis of the trait ``fitness'' in the resulting populations shows that genetic variation for the trait is positively correlated with the magnitude of the change in the same trait. The results are interpreted in terms of the operation of MULLER's ratchet and genetic drift as opposed to the appearance of beneficial mutations. PMID:8849878

  18. Sexual reproduction and population dynamics: the role of polygyny and demographic sex differences.

    PubMed Central

    Lindström, J; Kokko, H

    1998-01-01

    Most models of population dynamics do not take sexual reproduction into account (i.e., they do not consider the role of males). However, assumptions behind this practice--that no demographic sex differences exist and males are always abundant enough to fertilize all the females--are usually not justified in natural populations. On the contrary, demographic sex differences are common, especially in polygynous species. Previous models that consider sexual reproduction report a stabilizing effect through mixing of different genotypes, thus suggesting a decrease in the propensity for complex of dynamics in sexually reproducing populations. Here we show that considering the direct role of males in reproduction and density dependence leads to the conclusion that a two-sex model is not necessarily more stable compared with the corresponding one-sex model. Although solutions exist where sexual reproduction has a stabilizing effect even when no genotypic variability is included (primarily when associated with monogamy), factors like polygyny, sex differences in survival or density dependence, and possible alterations of the primary sex ratio (the Trivers-Willard mechanism), may enlarge the parametric region of complex dynamics. Sexual reproduction therefore does not necessarily increase the stability of population dynamics and can have destabilizing effects, at least in species with complicated mating systems and sexual dimorphism. PMID:9606132

  19. Allee effects and the spatial dynamics of a locally endangered butterfly, the high brown fritillary (Argynnis adippe).

    PubMed

    Bonsall, Michael B; Dooley, Claire A; Kasparson, Anna; Brereton, Tom; Roy, David B; Thomas, Jeremy A

    2014-01-01

    Conservation of endangered species necessitates a full appreciation of the ecological processes affecting the regulation, limitation, and persistence of populations. These processes are influenced by birth, death, and dispersal events, and characterizing them requires careful accounting of both the deterministic and stochastic processes operating at both local and regional population levels. We combined ecological theory and observations on Allee effects by linking mathematical analysis and the spatial and temporal population dynamics patterns of a highly endangered butterfly, the high brown fritillary, Argynnis adippe. Our theoretical analysis showed that the role of density-dependent feedbacks in the presence of local immigration can influence the strength of Allee effects. Linking this theory to the analysis of the population data revealed strong evidence for both negative density dependence and Allee effects at the landscape or regional scale. These regional dynamics are predicted to be highly influenced by immigration. Using a Bayesian state-space approach, we characterized the local-scale births, deaths, and dispersal effects together with measurement and process uncertainty in the metapopulation. Some form of an Allee effect influenced almost three-quarters of these local populations. Our joint analysis of the deterministic and stochastic dynamics suggests that a conservation priority for this species would be to increase resource availability in currently occupied and, more importantly, in unoccupied sites.

  20. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    NASA Astrophysics Data System (ADS)

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A.

    2016-07-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.

  1. Mussel dynamics model: A hydroinformatics tool for analyzing the effects of different stressors on the dynamics of freshwater mussel communities

    USGS Publications Warehouse

    Morales, Y.; Weber, L.J.; Mynett, A.E.; Newton, T.J.

    2006-01-01

    A model for simulating freshwater mussel population dynamics is presented. The model is a hydroinformatics tool that integrates principles from ecology, river hydraulics, fluid mechanics and sediment transport, and applies the individual-based modelling approach for simulating population dynamics. The general model layout, data requirements, and steps of the simulation process are discussed. As an illustration, simulation results from an application in a 10 km reach of the Upper Mississippi River are presented. The model was used to investigate the spatial distribution of mussels and the effects of food competition in native unionid mussel communities, and communities infested by Dreissena polymorpha, the zebra mussel. Simulation results were found to be realistic and coincided with data obtained from the literature. These results indicate that the model can be a useful tool for assessing the potential effects of different stressors on long-term population dynamics, and consequently, may improve the current understanding of cause and effect relationships in freshwater mussel communities. ?? 2006 Elsevier B.V. All rights reserved.

  2. Do differences in inducible resistance explain the population dynamics of birch and pine defoliators?

    Treesearch

    Seppo Neuvonen; Pekka Niemela

    1991-01-01

    Damage inflicted by insects may trigger responses in their host plants resulting either in immediate effects on herbivores either rapidly or in effects upon subsequent herbivore generations. Differentiation between rapid and delayed inducible resistance is essential since the two responses affect the population dynamics of herbivores in fundamentally different ways (...

  3. Olive Fruit Fly (Bactrocera oleae) Population Dynamics in the Eastern Mediterranean: Influence of Exogenous Uncertainty on a Monophagous Frugivorous Insect

    PubMed Central

    Ordano, Mariano; Engelhard, Izhar; Rempoulakis, Polychronis; Nemny-Lavy, Esther; Blum, Moshe; Yasin, Sami; Lensky, Itamar M.; Papadopoulos, Nikos T.; Nestel, David

    2015-01-01

    Despite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback). The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics. PMID:26010332

  4. Critical patch size generated by Allee effect in gypsy moth, Lymantria dispar (L.)

    Treesearch

    E. Vercken; A.M. Kramer; P.C. Tobin; J.M. Drake

    2011-01-01

    Allee effects are important dynamical mechanisms in small-density populations in which per capita population growth rate increases with density. When positive density dependence is sufficiently severe (a 'strong' Allee effect), a critical density arises below which populations do not persist. For spatially distributed populations subject to dispersal, theory...

  5. Local interactions lead to pathogen-driven change to host population dynamics.

    PubMed

    Boots, Michael; Childs, Dylan; Reuman, Daniel C; Mealor, Michael

    2009-10-13

    Individuals tend to interact more strongly with nearby individuals or within particular social groups. Recent theoretical advances have demonstrated that these within-population relationships can have fundamental implications for ecological and evolutionary dynamics. In particular, contact networks are crucial to the spread and evolution of disease. However, the theory remains largely untested experimentally. Here, we manipulate habitat viscosity and thereby the frequency of local interactions in an insect-pathogen model system in which the virus had previously been shown to have little effect on host population dynamics. At high viscosity, the pathogen caused the collapse of dominant and otherwise stable host generation cycles. Modeling shows that this collapse can be explained by an increase in the frequency of intracohort interactions relative to intercohort interactions, leading to more disease transmission. Our work emphasizes that spatial structure can subtly mediate intraspecific competition and the effects of natural enemies. A decrease in dispersal in a population may actually (sometimes rather counterintuitively) intensify the effects of parasites. Broadly, because anthropological and environmental change often cause changes in population mixing, our work highlights the potential for dramatic changes in the effects of parasites on host populations.

  6. Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culcidae), along an elevational gradient in Hawaii

    USGS Publications Warehouse

    Ahumada, Jorge A.; LaPointe, Dennis; Samuel, Michael D.

    2004-01-01

    We present a population model to understand the effects of temperature and rainfall on the population dynamics of the southern house mosquito, Culex quinquefasciatus Say, along an elevational gradient in Hawaii. We use a novel approach to model the effects of temperature on population growth by dynamically incorporating developmental rate into the transition matrix, by using physiological ages of immatures instead of chronological age or stages. We also model the effects of rainfall on survival of immatures as the cumulative number of days below a certain rain threshold. Finally, we incorporate density dependence into the model as competition between immatures within breeding sites. Our model predicts the upper altitudinal distributions of Cx. quinquefasciatus on the Big Island of Hawaii for self-sustaining mosquito and migrating summer sink populations at 1,475 and 1,715 m above sea level, respectively. Our model predicts that mosquitoes at lower elevations can grow under a broader range of rainfall parameters than middle and high elevation populations. Density dependence in conjunction with the seasonal forcing imposed by temperature and rain creates cycles in the dynamics of the population that peak in the summer and early fall. The model provides a reasonable fit to the available data on mosquito abundance for the east side of Mauna Loa, Hawaii. The predictions of our model indicate the importance of abiotic conditions on mosquito dynamics and have important implications for the management of diseases transmitted by Cx. quinquefasciatus in Hawaii and elsewhere.

  7. A Markov chain model for studying suicide dynamics: an illustration of the Rose theorem

    PubMed Central

    2014-01-01

    Background High-risk strategies would only have a modest effect on suicide prevention within a population. It is best to incorporate both high-risk and population-based strategies to prevent suicide. This study aims to compare the effectiveness of suicide prevention between high-risk and population-based strategies. Methods A Markov chain illness and death model is proposed to determine suicide dynamic in a population and examine its effectiveness for reducing the number of suicides by modifying certain parameters of the model. Assuming a population with replacement, the suicide risk of the population was estimated by determining the final state of the Markov model. Results The model shows that targeting the whole population for suicide prevention is more effective than reducing risk in the high-risk tail of the distribution of psychological distress (i.e. the mentally ill). Conclusions The results of this model reinforce the essence of the Rose theorem that lowering the suicidal risk in the population at large may be more effective than reducing the high risk in a small population. PMID:24948330

  8. Estimating Allee dynamics before they can be observed: polar bears as a case study.

    PubMed

    Molnár, Péter K; Lewis, Mark A; Derocher, Andrew E

    2014-01-01

    Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species.

  9. Estimating Allee Dynamics before They Can Be Observed: Polar Bears as a Case Study

    PubMed Central

    Molnár, Péter K.; Lewis, Mark A.; Derocher, Andrew E.

    2014-01-01

    Allee effects are an important component in the population dynamics of numerous species. Accounting for these Allee effects in population viability analyses generally requires estimates of low-density population growth rates, but such data are unavailable for most species and particularly difficult to obtain for large mammals. Here, we present a mechanistic modeling framework that allows estimating the expected low-density growth rates under a mate-finding Allee effect before the Allee effect occurs or can be observed. The approach relies on representing the mechanisms causing the Allee effect in a process-based model, which can be parameterized and validated from data on the mechanisms rather than data on population growth. We illustrate the approach using polar bears (Ursus maritimus), and estimate their expected low-density growth by linking a mating dynamics model to a matrix projection model. The Allee threshold, defined as the population density below which growth becomes negative, is shown to depend on age-structure, sex ratio, and the life history parameters determining reproduction and survival. The Allee threshold is thus both density- and frequency-dependent. Sensitivity analyses of the Allee threshold show that different combinations of the parameters determining reproduction and survival can lead to differing Allee thresholds, even if these differing combinations imply the same stable-stage population growth rate. The approach further shows how mate-limitation can induce long transient dynamics, even in populations that eventually grow to carrying capacity. Applying the models to the overharvested low-density polar bear population of Viscount Melville Sound, Canada, shows that a mate-finding Allee effect is a plausible mechanism for slow recovery of this population. Our approach is generalizable to any mating system and life cycle, and could aid proactive management and conservation strategies, for example, by providing a priori estimates of minimum conservation targets for rare species or minimum eradication targets for pests and invasive species. PMID:24427306

  10. Potential impact of harvesting on the population dynamics of two epiphytic bromeliads

    NASA Astrophysics Data System (ADS)

    Toledo-Aceves, Tarin; Hernández-Apolinar, Mariana; Valverde, Teresa

    2014-08-01

    Large numbers of epiphytes are extracted from cloud forests for ornamental use and illegal trade in Latin America. We examined the potential effects of different harvesting regimes on the population dynamics of the epiphytic bromeliads Tillandsia multicaulis and Tillandsia punctulata. The population dynamics of these species were studied over a 2-year period in a tropical montane cloud forest in Veracruz, Mexico. Prospective and retrospective analyses were used to identify which demographic processes and life-cycle stages make the largest relative contribution to variation in population growth rate (λ). The effect of simulated harvesting levels on population growth rates was analysed for both species. λ of both populations was highly influenced by survival (stasis), to a lesser extent by growth, and only slightly by fecundity. Vegetative growth played a central role in the population dynamics of these organisms. The λ value of the studied populations did not differ significantly from unity: T. multicaulis λ (95% confidence interval) = 0.982 (0.897-1.060) and T. punctulata λ = 0.967 (0.815-1.051), suggesting population stability. However, numerical simulation of different levels of extraction showed that λ would drop substantially even under very low (2%) harvesting levels. Matrix analysis revealed that T. multicaulis and T. punctulata populations are likely to decline and therefore commercial harvesting would be unsustainable. Based on these findings, management recommendations are outlined.

  11. Spatial variation in population growth rate and community structure affects local and regional dynamics.

    PubMed

    Trzcinski, M Kurtis; Walde, Sandra J; Taylor, Philip D

    2008-11-01

    1. Theory predicting that populations with high maximum rates of increase (r(max)) will be less stable, and that metapopulations with high average r(max) will be less synchronous, was tested using a small protist, Bodo, that inhabits pitcher plant leaves (Sarracenia purpurea L.). The effects of predators and resources on these relationships were also determined. 2. Abundance data collected for a total of 60 populations of Bodo, over a period of 3 months, at six sites in three bogs in eastern Canada, were used to test these predictions. Mosquitoes were manipulated in half the leaves partway through the season to increase the range of predation rates. 3. Dynamics differed greatly among leaves and sites, but most populations exhibited one or more episodes of rapid increase followed by a population crash. Estimates of r(max) obtained using a linear mixed-effects model, ranged from 1 x 5 to 2 x 7 per day. Resource levels (captured insect) and midge abundances affected r(max). 4. Higher r(max) was associated with greater temporal variability and lower synchrony as predicted. However, in contrast to expectations, populations with higher r(max) also had lower mean abundance and were more suppressed by predators. 5. This study demonstrates that the link between r(max) and temporal variability is key to understanding the dynamics of populations that spend little time near equilibrium, and to predicting and interpreting the effects of community structure on the dynamics of such populations.

  12. Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network.

    PubMed

    Kim, Sang-Yoon; Lim, Woochang

    2017-10-01

    For studying how dynamical responses to external stimuli depend on the synaptic-coupling type, we consider two types of excitatory and inhibitory synchronization (i.e., synchronization via synaptic excitation and inhibition) in complex small-world networks of excitatory regular spiking (RS) pyramidal neurons and inhibitory fast spiking (FS) interneurons. For both cases of excitatory and inhibitory synchronization, effects of synaptic couplings on dynamical responses to external time-periodic stimuli S ( t ) (applied to a fraction of neurons) are investigated by varying the driving amplitude A of S ( t ). Stimulated neurons are phase-locked to external stimuli for both cases of excitatory and inhibitory couplings. On the other hand, the stimulation effect on non-stimulated neurons depends on the type of synaptic coupling. The external stimulus S ( t ) makes a constructive effect on excitatory non-stimulated RS neurons (i.e., it causes external phase lockings in the non-stimulated sub-population), while S ( t ) makes a destructive effect on inhibitory non-stimulated FS interneurons (i.e., it breaks up original inhibitory synchronization in the non-stimulated sub-population). As results of these different effects of S ( t ), the type and degree of dynamical response (e.g., synchronization enhancement or suppression), characterized by the dynamical response factor [Formula: see text] (given by the ratio of synchronization degree in the presence and absence of stimulus), are found to vary in a distinctly different way, depending on the synaptic-coupling type. Furthermore, we also measure the matching degree between the dynamics of the two sub-populations of stimulated and non-stimulated neurons in terms of a "cross-correlation" measure [Formula: see text]. With increasing A , based on [Formula: see text], we discuss the cross-correlations between the two sub-populations, affecting the dynamical responses to S ( t ).

  13. Dynamics of climate-based malaria transmission model with age-structured human population

    NASA Astrophysics Data System (ADS)

    Addawe, Joel; Pajimola, Aprimelle Kris

    2016-10-01

    In this paper, we proposed to study the dynamics of malaria transmission with periodic birth rate of the vector and an age-structure for the human population. The human population is divided into two compartments: pre-school (0-5 years) and the rest of the human population. We showed the existence of a disease-free equilibrium point. Using published epidemiological parameters, we use numerical simulations to show potential effect of climate change in the dynamics of age-structured malaria transmission. Numerical simulations suggest that there exists an asymptotically attractive solution that is positive and periodic.

  14. Effect of global climate on termites population. Effect of termites population on global climate

    NASA Astrophysics Data System (ADS)

    Sapunov, Valentin

    2010-05-01

    The global climate is under control of factors having both earth and space origin. Global warming took place from XVII century till 1997. Then global cold snap began. This dynamics had effect on global distribution of some animals including termites. Direct human effect on climate is not significant. At the same time man plays role of trigger switching on significant biosphere processes controlling climate. The transformation of marginal lands, development of industry and building, stimulated increase of termite niche and population. Termite role in green house gases production increases too. It may have regular effect on world climate. The dry wood is substrate for metabolism of termites living under symbiosis with bacteria Hypermastigina (Flagellata). The use of dry wood by humanity increased from 18 *108 ton in XVIII to 9*109 to the middle of XX century. Then use of wood decreased because of a new technology development. Hence termite population is controlled by microevolution depending on dry wood and climate dynamics. Producing by them green house gases had reciprocal effect on world climate. It is possible to describe and predict dynamic of termite population using methods of mathematical ecology and analogs with other well studied insects (Colorado potatoes beetle, Chrisomelid beetle Zygogramma and so on). Reclamation of new ecological niche for such insects as termites needs 70 - 75 years. That is delay of population dynamics in relation to dynamics of dry wood production. General principles of population growth were described by G.Gause (1934) and some authors of the end of XX century. This works and analogs with other insects suggest model of termite distribution during XXI century. The extremum of population and its green house gases production would be gotten during 8 - 10 years. Then the number of specimens and sum biological mass would be stabilized and decreased. Termite gas production is not priority for climate regulation, but it has importance as fine regulator of global temperature and climate stability. Key words: termites, green house gases, mathematical modeling. Union symposia Biogeoscience BG2.1

  15. Eco-evolutionary effects on population recovery following catastrophic disturbance

    PubMed Central

    Weese, Dylan J; Schwartz, Amy K; Bentzen, Paul; Hendry, Andrew P; Kinnison, Michael T

    2011-01-01

    Fine-scale genetic diversity and contemporary evolution can theoretically influence ecological dynamics in the wild. Such eco-evolutionary effects might be particularly relevant to the persistence of populations facing acute or chronic environmental change. However, experimental data on wild populations is currently lacking to support this notion. One way that ongoing evolution might influence the dynamics of threatened populations is through the role that selection plays in mediating the ‘rescue effect’, the ability of migrants to contribute to the recovery of populations facing local disturbance and decline. Here, we combine experiments with natural catastrophic events to show that ongoing evolution is a major determinant of migrant contributions to population recovery in Trinidadian guppies (Poecilia reticulata). These eco-evolutionary limits on migrant contributions appear to be mediated by the reinforcing effects of natural and sexual selection against migrants, despite the close geographic proximity of migrant sources. These findings show that ongoing adaptive evolution can be a double-edged sword for population persistence, maintaining local fitness at a cost to demographic risk. Our study further serves as a potent reminder that significant evolutionary and eco-evolutionary dynamics might be at play even where the phenotypic status quo is largely maintained generation to generation. PMID:25567978

  16. Stochastic population dynamics of a montane ground-dwelling squirrel.

    PubMed

    Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λ(s) was 0.92, suggesting a declining population; however, the 95% CI on λ(s) included 1.0 (0.52-1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  17. Stochastic Population Dynamics of a Montane Ground-Dwelling Squirrel

    PubMed Central

    Hostetler, Jeffrey A.; Kneip, Eva; Van Vuren, Dirk H.; Oli, Madan K.

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990–2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1) for 9 out of 18 years. The stochastic population growth rate λs was 0.92, suggesting a declining population; however, the 95% CI on λs included 1.0 (0.52–1.60). Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years) probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration. PMID:22479616

  18. Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population.

    PubMed

    Cushing, J M; Henson, Shandelle M

    2018-02-03

    For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.

  19. A framework for studying transient dynamics of population projection matrix models.

    PubMed

    Stott, Iain; Townley, Stuart; Hodgson, David James

    2011-09-01

    Empirical models are central to effective conservation and population management, and should be predictive of real-world dynamics. Available modelling methods are diverse, but analysis usually focuses on long-term dynamics that are unable to describe the complicated short-term time series that can arise even from simple models following ecological disturbances or perturbations. Recent interest in such transient dynamics has led to diverse methodologies for their quantification in density-independent, time-invariant population projection matrix (PPM) models, but the fragmented nature of this literature has stifled the widespread analysis of transients. We review the literature on transient analyses of linear PPM models and synthesise a coherent framework. We promote the use of standardised indices, and categorise indices according to their focus on either convergence times or transient population density, and on either transient bounds or case-specific transient dynamics. We use a large database of empirical PPM models to explore relationships between indices of transient dynamics. This analysis promotes the use of population inertia as a simple, versatile and informative predictor of transient population density, but criticises the utility of established indices of convergence times. Our findings should guide further development of analyses of transient population dynamics using PPMs or other empirical modelling techniques. © 2011 Blackwell Publishing Ltd/CNRS.

  20. Influence of body condition on the population dynamics of Atlantic salmon with consideration of the potential impact of sea lice.

    PubMed

    Susdorf, R; Salama, N K G; Lusseau, D

    2017-11-21

    Atlantic salmon Salmo salar is an iconic species of high conservation and economic importance. At sea, individuals typically are subject to sea lice infestation, which can have detrimental effects on their host. Over recent decades, the body condition and marine survival in NE Atlantic stocks have generally decreased, reflected in fewer adults returning to rivers, which is partly attributable to sea lice. We developed a deterministic stage-structured population model to assess condition-mediated population dynamics resulting in changing fecundity, age at sexual maturation and marine survival rate. The model is parameterized using data from the North Esk system, north-east Scotland. Both constant and density-dependent juvenile survival rates are considered. We show that even small sea lice-mediated changes in mean body condition of MSW can cause substantial population declines, whereas 1SW condition is less influential. Density dependence alleviates the condition-mediated population effect. The resilience of the population to demographic perturbations declines as adult condition is reduced. Indirect demographic changes in salmonid life-history traits (e.g., body condition) are often considered unimportant for population trajectory. The model shows that Atlantic salmon population dynamics can be highly responsive to sea lice-mediated effects on adult body condition, thus highlighting the importance of non-lethal parasitic long-term effects. © 2017 The Authors Journal of Fish Diseases Published by John Wiley & Sons Ltd.

  1. Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer.

    PubMed

    Tyler, Nicholas J C; Forchhammer, Mads C; Øritsland, Nils Are

    2008-06-01

    Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.

  2. Population-level consequences of herbivory, changing climate, and source-sink dynamics on a long-lived invasive shrub.

    PubMed

    van Klinken, R D; Pichancourt, J B

    2015-12-01

    Long-lived plant species are highly valued environmentally, economically, and socially, but can also cause substantial harm as invaders. Realistic demographic predictions can guide management decisions, and are particularly valuable for long-lived species where population response times can be long. Long-lived species are also challenging, given population dynamics can be affected by factors as diverse as herbivory, climate, and dispersal. We developed a matrix model to evaluate the effects of herbivory by a leaf-feeding biological control agent released in Australia against a long-lived invasive shrub (mesquite, Leguminoseae: Prosopis spp.). The stage-structured, density-dependent model used an annual time step and 10 climatically diverse years of field data. Mesquite population demography is sensitive to source-sink dynamics as most seeds are consumed and redistributed spatially by livestock. In addition, individual mesquite plants, because they are long lived, experience natural climate variation that cycles over decadal scales, as well as anthropogenic climate change. The model therefore explicitly considered the effects of both net dispersal and climate variation. Herbivory strongly regulated mesquite populations through reduced growth and fertility, but additional mortality of older plants will be required to reach management goals within a reasonable time frame. Growth and survival of seeds and seedlings were correlated with daily soil moisture. As a result, population dynamics were sensitive to rainfall scenario, but population response times were typically slow (20-800 years to reach equilibrium or extinction) due to adult longevity. Equilibrium population densities were expected to remain 5% higher, and be more dynamic, if historical multi-decadal climate patterns persist, the effect being dampened by herbivory suppressing seed production irrespective of preceding rainfall. Dense infestations were unlikely to form under a drier climate, and required net dispersal under the current climate. Seed input wasn't required to form dense infestations under a wetter climate. Each factor we considered (ongoing herbivory, changing climate, and source-sink dynamics) has a strong bearing on how this invasive species should be managed, highlighting the need for considering both ecological context (in this case, source-sink dynamics) and the effect of climate variability at relevant temporal scales (daily, multi-decadal, and anthropogenic) when deriving management recommendations for long-lived species.

  3. Influences of hunting on the behavior of white-tailed deer: implications for conservation of the Florida panther

    Treesearch

    John C. Kilgo; Ronald F. Labisky; Duane E. Fritzen

    1998-01-01

    The effects of deer hunting by humans on deer population dynamics and behavior may indirectly affect the population dynamics and behavior of deer predators. The authors present data on the effects of hunting on the behavior of white-tailed deer (Odocoileus virginianus) on the Osceola National Forest, a potential reintroduction site for the endangered Florida panther (...

  4. Diffusion, Absorbing States, and Nonequilibrium Phase Transitions in Range Expansions and Evolution

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim Olegovich

    The spatial organization of a population plays a key role in its evolutionary dynamics and growth. In this thesis, we study the dynamics of range expansions, in which populations expand into new territory. Focussing on microbes, we first consider how nutrients diffuse and are absorbed in a population, allowing it to grow. These nutrients may be absorbed before reaching the population interior, and this "nutrient shielding'' can confine the growth to a thin region on the population periphery. A thin population front implies a small local effective population size and enhanced number fluctuations (or genetic drift). We then study evolutionary dynamics under these growth conditions. In particular, we calculate the survival probability of mutations with a selective advantage occurring at the population front for two-dimensional expansions (e.g., along the surface of an agar plate), and three-dimensional expansions (e.g., an avascular tumor). We also consider the effects of irreversible, deleterious mutations which can lead to the loss of the advantageous mutation in the population via a "mutational meltdown,'' or non-equilibrium phase transition. We examine the effects of an inflating population frontier on the phase transition. Finally, we discuss how spatial dimension and frontier roughness influence range expansions of mutualistic, cross-feeding variants. We find here universal features of the phase diagram describing the onset of a mutualistic phase in which the variants remain mixed at long times.

  5. Environmental fluctuations restrict eco-evolutionary dynamics in predator-prey system.

    PubMed

    Hiltunen, Teppo; Ayan, Gökçe B; Becks, Lutz

    2015-06-07

    Environmental fluctuations, species interactions and rapid evolution are all predicted to affect community structure and their temporal dynamics. Although the effects of the abiotic environment and prey evolution on ecological community dynamics have been studied separately, these factors can also have interactive effects. Here we used bacteria-ciliate microcosm experiments to test for eco-evolutionary dynamics in fluctuating environments. Specifically, we followed population dynamics and a prey defence trait over time when populations were exposed to regular changes of bottom-up or top-down stressors, or combinations of these. We found that the rate of evolution of a defence trait was significantly lower in fluctuating compared with stable environments, and that the defence trait evolved to lower levels when two environmental stressors changed recurrently. The latter suggests that top-down and bottom-up changes can have additive effects constraining evolutionary response within populations. The differences in evolutionary trajectories are explained by fluctuations in population sizes of the prey and the predator, which continuously alter the supply of mutations in the prey and strength of selection through predation. Thus, it may be necessary to adopt an eco-evolutionary perspective on studies concerning the evolution of traits mediating species interactions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Bayesian Inference on the Effect of Density Dependence and Weather on a Guanaco Population from Chile

    PubMed Central

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E.; Colchero, Fernando

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation. PMID:25514510

  7. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile.

    PubMed

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E; Colchero, Fernando

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based on a time series of 36 years of population sampling of guanacos in Tierra del Fuego, Chile. The population density varied between 2.7 and 30.7 guanaco/km2, with an apparent monotonic growth during the first 25 years; however, in the last 10 years the population has shown large fluctuations, suggesting that it might have reached its carrying capacity. We used a Bayesian state-space framework and model selection to determine the effect of density and environmental variables on guanaco population dynamics. Our results show that the population is under density dependent regulation and that it is currently fluctuating around an average carrying capacity of 45,000 guanacos. We also found a significant positive effect of previous winter temperature while sheep density has a strong negative effect on the guanaco population growth. We conclude that there are significant density dependent processes and that climate as well as competition with domestic species have important effects determining the population size of guanacos, with important implications for management and conservation.

  8. Allee effects may slow the spread of parasites in a coastal marine ecosystem.

    PubMed

    Krkošek, Martin; Connors, Brendan M; Lewis, Mark A; Poulin, Robert

    2012-03-01

    Allee effects are thought to mediate the dynamics of population colonization, particularly for invasive species. However, Allee effects acting on parasites have rarely been considered in the analogous process of infectious disease establishment and spread. We studied the colonization of uninfected wild juvenile Pacific salmon populations by ectoparasitic salmon lice (Lepeophtheirus salmonis) over a 4-year period. In a data set of 68,376 fish, we observed 85 occurrences of precopular pair formation among 1,259 preadult female and 613 adult male lice. The probability of pair formation was dependent on the local abundance of lice, but this mate limitation is likely offset somewhat by mate-searching dispersal of males among host fish. A mathematical model of macroparasite population dynamics that incorporates the empirical results suggests a high likelihood of a demographic Allee effect, which can cause the colonizing parasite populations to die out. These results may provide the first empirical evidence for Allee effects in a macroparasite. Furthermore, the data give a rare detailed view of Allee effects in colonization dynamics and suggest that Allee effects may dampen the spread of parasites in a coastal marine ecosystem.

  9. Human Population: Fundamentals of Growth and Change.

    ERIC Educational Resources Information Center

    Stauffer, Cheryl Lynn, Ed.

    This booklet focuses on eight elements of population dynamics: "Population Growth and Distribution"; "Natural Increase and Future Growth"; "Effect of Migration on Population Growth"; "Three Patterns of Population Change"; "Patterns of World Urbanization"; "The Status of Women";…

  10. Linking genetic and environmental factors in amphibian disease risk

    PubMed Central

    Savage, Anna E; Becker, Carlos G; Zamudio, Kelly R

    2015-01-01

    A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L. yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source–sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines. PMID:26136822

  11. Modelling the dynamics of feral alfalfa populations and its management implications.

    PubMed

    Bagavathiannan, Muthukumar V; Begg, Graham S; Gulden, Robert H; Van Acker, Rene C

    2012-01-01

    Feral populations of cultivated crops can pose challenges to novel trait confinement within agricultural landscapes. Simulation models can be helpful in investigating the underlying dynamics of feral populations and determining suitable management options. We developed a stage-structured matrix population model for roadside feral alfalfa populations occurring in southern Manitoba, Canada. The model accounted for the existence of density-dependence and recruitment subsidy in feral populations. We used the model to investigate the long-term dynamics of feral alfalfa populations, and to evaluate the effectiveness of simulated management strategies such as herbicide application and mowing in controlling feral alfalfa. Results suggest that alfalfa populations occurring in roadside habitats can be persistent and less likely to go extinct under current roadverge management scenarios. Management attempts focused on controlling adult plants alone can be counterproductive due to the presence of density-dependent effects. Targeted herbicide application, which can achieve complete control of seedlings, rosettes and established plants, will be an effective strategy, but the seedbank population may contribute to new recruits. In regions where roadside mowing is regularly practiced, devising a timely mowing strategy (early- to mid-August for southern Manitoba), one that can totally prevent seed production, will be a feasible option for managing feral alfalfa populations. Feral alfalfa populations can be persistent in roadside habitats. Timely mowing or regular targeted herbicide application will be effective in managing feral alfalfa populations and limit feral-population-mediated gene flow in alfalfa. However, in the context of novel trait confinement, the extent to which feral alfalfa populations need to be managed will be dictated by the tolerance levels established by specific production systems for specific traits. The modelling framework outlined in this paper could be applied to other perennial herbaceous plants with similar life-history characteristics.

  12. Ecosystem scale declines in elk recruitment and population growth with wolf colonization: a before-after-control-impact approach.

    PubMed

    Christianson, David; Creel, Scott

    2014-01-01

    The reintroduction of wolves (Canis lupus) to Yellowstone provided the unusual opportunity for a quasi-experimental test of the effects of wolf predation on their primary prey (elk--Cervus elaphus) in a system where top-down, bottom-up, and abiotic forces on prey population dynamics were closely and consistently monitored before and after reintroduction. Here, we examined data from 33 years for 12 elk population segments spread across southwestern Montana and northwestern Wyoming in a large scale before-after-control-impact analysis of the effects of wolves on elk recruitment and population dynamics. Recruitment, as measured by the midwinter juvenile∶female ratio, was a strong determinant of elk dynamics, and declined by 35% in elk herds colonized by wolves as annual population growth shifted from increasing to decreasing. Negative effects of population density and winter severity on recruitment, long recognized as important for elk dynamics, were detected in uncolonized elk herds and in wolf-colonized elk herds prior to wolf colonization, but not after wolf colonization. Growing season precipitation and harvest had no detectable effect on recruitment in either wolf treatment or colonization period, although harvest rates of juveniles∶females declined by 37% in wolf-colonized herds. Even if it is assumed that mortality due to predation is completely additive, liberal estimates of wolf predation rates on juvenile elk could explain no more than 52% of the total decline in juvenile∶female ratios in wolf-colonized herds, after accounting for the effects of other limiting factors. Collectively, these long-term, large-scale patterns align well with prior studies that have reported substantial decrease in elk numbers immediately after wolf recolonization, relatively weak additive effects of direct wolf predation on elk survival, and decreased reproduction and recruitment with exposure to predation risk from wolves.

  13. Effect of the Large Scale Environment on the Internal Dynamics of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Maubon, G.; Prugniel, Ph.

    We have studied the population-density relation in very sparse environments, from poor clusters to isolated galaxies, and we find that early-type galaxies with a young stellar population are preferably found in the lowest density environments. We show a marginal indication that this effect is due to an enhancement of the stellar formation independent of the morphological segregation, but we failed to find any effect from the internal dynamics.

  14. Uncoupling the Effects of Seed Predation and Seed Dispersal by Granivorous Ants on Plant Population Dynamics

    PubMed Central

    Arnan, Xavier; Molowny-Horas, Roberto; Rodrigo, Anselm; Retana, Javier

    2012-01-01

    Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation) and benefits (seed dispersal), the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength. PMID:22880125

  15. MODELING THE DYNAMICS OF WILDLIFE HABITAT AND POPULATIONS AT THE LANDSCAPE SCALE

    EPA Science Inventory

    A forest dynamics model (FORCLIM) was linked to a spatial wildlife population model (PATCH) to assess the effects of habitat change in a landscape on selected wildlife species. The habitat changes included forest responses to harvesting, development, and climate change on a west...

  16. The impact of natural transformation on adaptation in spatially structured bacterial populations.

    PubMed

    Moradigaravand, Danesh; Engelstädter, Jan

    2014-06-20

    Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.

  17. Response of an arctic predator guild to collapsing lemming cycles

    PubMed Central

    Schmidt, Niels M.; Ims, Rolf A.; Høye, Toke T.; Gilg, Olivier; Hansen, Lars H.; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C.; Sittler, Benoit

    2012-01-01

    Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988–2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state. PMID:22977153

  18. Response of an arctic predator guild to collapsing lemming cycles.

    PubMed

    Schmidt, Niels M; Ims, Rolf A; Høye, Toke T; Gilg, Olivier; Hansen, Lars H; Hansen, Jannik; Lund, Magnus; Fuglei, Eva; Forchhammer, Mads C; Sittler, Benoit

    2012-11-07

    Alpine and arctic lemming populations appear to be highly sensitive to climate change, and when faced with warmer and shorter winters, their well-known high-amplitude population cycles may collapse. Being keystone species in tundra ecosystems, changed lemming dynamics may convey significant knock-on effects on trophically linked species. Here, we analyse long-term (1988-2010), community-wide monitoring data from two sites in high-arctic Greenland and document how a collapse in collared lemming cyclicity affects the population dynamics of the predator guild. Dramatic changes were observed in two highly specialized lemming predators: snowy owl and stoat. Following the lemming cycle collapse, snowy owl fledgling production declined by 98 per cent, and there was indication of a severe population decline of stoats at one site. The less specialized long-tailed skua and the generalist arctic fox were more loosely coupled to the lemming dynamics. Still, the lemming collapse had noticeable effects on their reproductive performance. Predator responses differed somewhat between sites in all species and could arise from site-specific differences in lemming dynamics, intra-guild interactions or subsidies from other resources. Nevertheless, population extinctions and community restructuring of this arctic endemic predator guild are likely if the lemming dynamics are maintained at the current non-cyclic, low-density state.

  19. Potential effects of incorporating fertility control into typical culling regimes in wild pig populations

    PubMed Central

    Davis, Amy J.; Cunningham, Fred L.; VerCauteren, Kurt C.; Eckery, Doug C.

    2017-01-01

    Effective management of widespread invasive species such as wild pigs (Sus scrofa) is limited by resources available to devote to the effort. Better insight of the effectiveness of different management strategies on population dynamics is important for guiding decisions of resource allocation over space and time. Using a dynamic population model, we quantified effects of culling intensities and time between culling events on population dynamics of wild pigs in the USA using empirical culling patterns and data-based demographic parameters. In simulated populations closed to immigration, substantial population declines (50–100%) occurred within 4 years when 20–60% of the population was culled annually, but when immigration from surrounding areas occurred, there was a maximum of 50% reduction, even with the maximum culling intensity of 60%. Incorporating hypothetical levels of fertility control with realistic culling intensities was most effective in reducing populations when they were closed to immigration and when intrinsic population growth rate was too high (> = 1.78) to be controlled by culling alone. However, substantial benefits from fertility control used in conjunction with culling may only occur over a narrow range of net population growth rates (i.e., where net is the result of intrinsic growth rates and culling) that varies depending on intrinsic population growth rate. The management implications are that the decision to use fertility control in conjunction with culling should rely on concurrent consideration of achievable culling intensity, underlying demographic parameters, and costs of culling and fertility control. The addition of fertility control reduced abundance substantially more than culling alone, however the effects of fertility control were weaker than in populations without immigration. Because these populations were not being reduced substantially by culling alone, fertility control could be an especially helpful enhancement to culling for reducing abundance to target levels in areas where immigration can’t be prevented. PMID:28837610

  20. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces

    PubMed Central

    Kao, Jonathan C.; Nuyujukian, Paul; Ryu, Stephen I.; Churchland, Mark M.; Cunningham, John P.; Shenoy, Krishna V.

    2015-01-01

    Increasing evidence suggests that neural population responses have their own internal drive, or dynamics, that describe how the neural population evolves through time. An important prediction of neural dynamical models is that previously observed neural activity is informative of noisy yet-to-be-observed activity on single-trials, and may thus have a denoising effect. To investigate this prediction, we built and characterized dynamical models of single-trial motor cortical activity. We find these models capture salient dynamical features of the neural population and are informative of future neural activity on single trials. To assess how neural dynamics may beneficially denoise single-trial neural activity, we incorporate neural dynamics into a brain–machine interface (BMI). In online experiments, we find that a neural dynamical BMI achieves substantially higher performance than its non-dynamical counterpart. These results provide evidence that neural dynamics beneficially inform the temporal evolution of neural activity on single trials and may directly impact the performance of BMIs. PMID:26220660

  1. Effects of an invasive plant on population dynamics in toads.

    PubMed

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  2. The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions

    Treesearch

    Patrick C. Tobin; Christelle Robinet; Derek M. Johnson; Stefanie L. Whitmire; Ottar N. Bjornstad; Andrew M. Liebhold

    2009-01-01

    Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range...

  3. POPULATION DYNAMICS OF THE HOUSE DUST MITES, DERMATOPHAGOIDES FARINAE, D. PTERONYSSINUS, AND EUROGLYPHUS MAYNEI (ACARI: PYROGLYPHIDAE), AT SPECIFIC RELATIVE HUMIDITIES

    EPA Science Inventory

    Experiments were conducted to determine the effects of relative humidity (RH) on the population dynamics of single and mixed species of Dermatophagoides farinae (Hughes), D. pteronyssinus (Trouessart), and Euroglyphus maynei (Cooreman) at specific RHs, , and unlimited food. Sin...

  4. Effects of climate change and variability on population dynamics in a long-lived shorebird.

    PubMed

    van de Pol, Martijn; Vindenes, Yngvild; Saether, Bernt-Erik; Engen, Steinar; Ens, Bruno J; Oosterbeek, Kees; Tinbergen, Joost M

    2010-04-01

    Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the effect of changes in mean and variance of winter temperature on different vital rates across the life cycle. Subsequently, we quantify, using stochastic stage-structured models, how changes in the mean and variance of this environmental variable affect important characteristics of the future population dynamics, such as the time to extinction. Local mean winter temperature is predicted to strongly increase, and we show that this is likely to increase the population's persistence time via its positive effects on adult survival that outweigh the negative effects that higher temperatures have on fecundity. Interannual variation in winter temperature is predicted to decrease, which is also likely to increase persistence time via its positive effects on adult survival that outweigh the negative effects that lower temperature variability has on fecundity. Overall, a 0.1 degrees C change in mean temperature is predicted to alter median time to extinction by 1.5 times as many years as would a 0.1 degrees C change in the standard deviation in temperature, suggesting that the dynamics of oystercatchers are more sensitive to changes in the mean than in the interannual variability of this climatic variable. Moreover, as climate models predict larger changes in the mean than in the standard deviation of local winter temperature, the effects of future climatic variability on this population's time to extinction are expected to be overwhelmed by the effects of changes in climatic means. We discuss the mechanisms by which climatic variability can either increase or decrease population viability and how this might depend both on species' life histories and on the vital rates affected. This study illustrates that, for making reliable inferences about population consequences in species in which life history changes with age or stage, it is crucial to investigate the impact of climate change on vital rates across the entire life cycle. Disturbingly, such data are unavailable for most species of conservation concern.

  5. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  6. Understanding the demographic drivers of realized population growth rates.

    PubMed

    Koons, David N; Arnold, Todd W; Schaub, Michael

    2017-10-01

    Identifying the demographic parameters (e.g., reproduction, survival, dispersal) that most influence population dynamics can increase conservation effectiveness and enhance ecological understanding. Life table response experiments (LTRE) aim to decompose the effects of change in parameters on past demographic outcomes (e.g., population growth rates). But the vast majority of LTREs and other retrospective population analyses have focused on decomposing asymptotic population growth rates, which do not account for the dynamic interplay between population structure and vital rates that shape realized population growth rates (λt=Nt+1/Nt) in time-varying environments. We provide an empirical means to overcome these shortcomings by merging recently developed "transient life-table response experiments" with integrated population models (IPMs). IPMs allow for the estimation of latent population structure and other demographic parameters that are required for transient LTRE analysis, and Bayesian versions additionally allow for complete error propagation from the estimation of demographic parameters to derivations of realized population growth rates and perturbation analyses of growth rates. By integrating available monitoring data for Lesser Scaup over 60 yr, and conducting transient LTREs on IPM estimates, we found that the contribution of juvenile female survival to long-term variation in realized population growth rates was 1.6 and 3.7 times larger than that of adult female survival and fecundity, respectively. But a persistent long-term decline in fecundity explained 92% of the decline in abundance between 1983 and 2006. In contrast, an improvement in adult female survival drove the modest recovery in Lesser Scaup abundance since 2006, indicating that the most important demographic drivers of Lesser Scaup population dynamics are temporally dynamic. In addition to resolving uncertainty about Lesser Scaup population dynamics, the merger of IPMs with transient LTREs will strengthen our understanding of demography for many species as we aim to conserve biodiversity during an era of non-stationary global change. © 2017 by the Ecological Society of America.

  7. Approximate probabilistic cellular automata for the dynamics of single-species populations under discrete logisticlike growth with and without weak Allee effects.

    PubMed

    Mendonça, J Ricardo G; Gevorgyan, Yeva

    2017-05-01

    We investigate one-dimensional elementary probabilistic cellular automata (PCA) whose dynamics in first-order mean-field approximation yields discrete logisticlike growth models for a single-species unstructured population with nonoverlapping generations. Beginning with a general six-parameter model, we find constraints on the transition probabilities of the PCA that guarantee that the ensuing approximations make sense in terms of population dynamics and classify the valid combinations thereof. Several possible models display a negative cubic term that can be interpreted as a weak Allee factor. We also investigate the conditions under which a one-parameter PCA derived from the more general six-parameter model can generate valid population growth dynamics. Numerical simulations illustrate the behavior of some of the PCA found.

  8. Population dynamics in the presence of quasispecies effects and changing environments

    NASA Astrophysics Data System (ADS)

    Forster, Robert Burke

    2006-12-01

    This thesis explores how natural selection acts on organisms such as viruses that have either highly error-prone reproduction or face variable environmental conditions or both. By modeling population dynamics under these conditions, we gain a better understanding of the selective forces at work, both in our simulations and hopefully also in real organisms. With an understanding of the important factors in natural selection we can forecast not only the immediate fate of an existing population but also in what directions such a population might evolve in the future. We demonstrate that the concept of a quasispecies is relevant to evolution in a neutral fitness landscape. Motivated by RNA viruses such as HIV, we use RNA secondary structure as our model system and find that quasispecies effects arise both rapidly and in realistically small populations. We discover that the evolutionary effects of neutral drift, punctuated equilibrium and the selection for mutational robustness extend to the concept of a quasispecies. In our study of periodic environments, we consider the tradeoffs faced by quasispecies in adapting to environmental change. We develop an analytical model to predict whether evolution favors short-term or long-term adaptation and validate our model through simulation. Our results bear directly on the population dynamics of viruses such as West Nile that alternate between two host species. More generally, we discover that a selective pressure exists under these conditions to fuse or split genes with complementary environmental functions. Lastly, we study the general effects of frequency-dependent selection on two strains competing in a periodic environment. Under very general assumptions, we prove that stable coexistence rather than extinction is the likely outcome. The population dynamics of this system may be as simple as stable equilibrium or as complex as deterministic chaos.

  9. Climate, invasive species and land use drive population dynamics of a cold-water specialist

    USGS Publications Warehouse

    Kovach, Ryan P.; Al-Chokhachy, Robert K.; Whited, Diane C.; Schmetterling, David A.; Dux, Andrew M; Muhlfeld, Clint C.

    2017-01-01

    Climate change is an additional stressor in a complex suite of threats facing freshwater biodiversity, particularly for cold-water fishes. Research addressing the consequences of climate change on cold-water fish has generally focused on temperature limits defining spatial distributions, largely ignoring how climatic variation influences population dynamics in the context of other existing stressors.We used long-term data from 92 populations of bull trout Salvelinus confluentus – one of North America's most cold-adapted fishes – to quantify additive and interactive effects of climate, invasive species and land use on population dynamics (abundance, variability and growth rate).Populations were generally depressed, more variable and declining where spawning and rearing stream habitat was limited, invasive species and land use were prevalent and stream temperatures were highest. Increasing stream temperature acted additively and independently, whereas land use and invasive species had additive and interactive effects (i.e. the impact of one stressor depended on exposure to the other stressor).Most (58%–78%) of the explained variation in population dynamics was attributed to the presence of invasive species, differences in life history and management actions in foraging habitats in rivers, lakes and reservoirs. Although invasive fishes had strong negative effects on populations in foraging habitats, proactive control programmes appeared to effectively temper their negative impact.Synthesis and applications. Long-term demographic data emphasize that climate warming will exacerbate imperilment of cold-water specialists like bull trout, yet other stressors – especially invasive fishes – are immediate threats that can be addressed by proactive management actions. Therefore, climate-adaptation strategies for freshwater biodiversity should consider existing abiotic and biotic stressors, some of which provide potential and realized opportunity for conservation of freshwater biodiversity in a warming world.

  10. Chronic radiation exposure modifies temporal dynamics of cytogenetic but not reproductive indicators in Scots pine populations.

    PubMed

    Geras'kin, Stanislav; Oudalova, Alla; Kuzmenkov, Alexey; Vasiliyev, Denis

    2018-04-18

    Over a period of 13 years (2003-2015), reproductive and cytogenetic effects are investigated in Scots pine populations growing in the Bryansk region of Russia radioactively contaminated as a result of the Chernobyl accident. In reference populations, the frequencies of cytogenetic abnormalities are shown to change with time in a cyclic manner. In chronically exposed populations, the cyclic patterns in temporal dynamics of cytogenetic abnormalities appear to be disturbed. In addition, a tendency to decrease in the frequencies of cytogenetic abnormalities with time as well as an increase in their variability with dose rate is revealed. In contrast, no significant impact of chronic radiation exposure on the time dynamics of reproductive indexes is detected. Finally, long-term observations on chronically exposed Scots pine populations revealed qualitative differences in the temporal dynamics of reproductive and cytogenetic indicators. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Coupling population dynamics with earth system models: the POPEM model.

    PubMed

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  12. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics.

    PubMed

    Koons, David N; Colchero, Fernando; Hersey, Kent; Gimenez, Olivier

    2015-06-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semiarid environments experiencing climate change. To address these issues for bison in southern Utah, USA, we applied a Bayesian state-space model to a 72-yr time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited a strong potential to grow from low density (β0 = 0.26; Bayesian credible interval based on 95% of the highest posterior density [BCI] = 0.19-0.33), and weak but statistically significant density dependence (β1 = -0.02, BCI = -0.04 to -0.004). Early spring temperatures also had strong positive effects on population growth (Pfat1 = 0.09, BCI = 0.04-0.14), much more so than precipitation and other temperature-related variables (model weight > three times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early spring temperature could have a greater relative effect on equilibrium abundance than either harvest or. the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife management policies and planning.

  13. Effects of resource quality on the population dynamics of the Indian meal moth Plodia interpunctella and its granulovirus.

    PubMed

    McVean, Ross I; Sait, Steve M; Thompson, David J; Begon, Mike

    2002-03-01

    Although the Plodia interpunctella-granulovirus system is one of the most studied models for insect-pathogen interactions, there are relatively few precise data on the dynamics of the virus in coexisting populations of these two organisms. Previous work has suggested that resource quality, in terms of the diet supplied to P. interpunctella, has a strong effect on the population dynamics of host and pathogen. Here we investigate the impact of resource-dependent host patterns of abundance on pathogen dynamics and prevalence. In the laboratory, three populations of P. interpunctella feeding on a good quality food and infected with a granulovirus were compared with three populations also infected with a granulovirus but feeding on poor quality food. Populations feeding on good quality food produced larger adult moths, and had greater numbers of adult moths, healthy larvae, and virus-infected larvae. A higher proportion of larvae in these good quality populations were infected with virus, and adult moths exhibited cyclic fluctuations in abundance, unlike those on poor quality food. This cyclic behaviour was shown to be associated with cycles in the age structure of the larval population. Previous theoretical work suggests that these cycles may result from asymmetric competition between young and old larvae. Cyclic fluctuations in the proportion of infected larvae, that occurred on good, but not on poor quality food, were also shown to be related to cycles in the age structure of the larval population.

  14. Tropical warming and the dynamics of endangered primates.

    PubMed

    Wiederholt, Ruscena; Post, Eric

    2010-04-23

    Many primate species are severely threatened, but little is known about the effects of global warming and the associated intensification of El Niño events on primate populations. Here, we document the influences of the El Niño southern oscillation (ENSO) and hemispheric climatic variability on the population dynamics of four genera of ateline (neotropical, large-bodied) primates. All ateline genera experienced either an immediate or a lagged negative effect of El Niño events. ENSO events were also found to influence primate resource levels through neotropical arboreal phenology. Furthermore, frugivorous primates showed a high degree of interspecific population synchrony over large scales across Central and South America attributable to the recent trends in large-scale climate. These results highlight the role of large-scale climatic variation and trends in ateline primate population dynamics, and emphasize that global warming could pose additional threats to the persistence of multiple species of endangered primates.

  15. Experimental evidence for the effect of habitat loss on the dynamics of migratory networks.

    PubMed

    Betini, Gustavo S; Fitzpatrick, Mark J; Norris, D Ryan

    2015-06-01

    Migratory animals present a unique challenge for understanding the consequences of habitat loss on population dynamics because individuals are typically distributed over a series of interconnected breeding and non-breeding sites (termed migratory network). Using replicated breeding and non-breeding populations of Drosophila melanogaster and a mathematical model, we investigated three hypotheses to explain how habitat loss influenced the dynamics of populations in networks with different degrees of connectivity between breeding and non-breeding seasons. We found that habitat loss increased the degree of connectivity in the network and influenced population size at sites that were not directly connected to the site where habitat loss occurred. However, connected networks only buffered global population declines at high levels of habitat loss. Our results demonstrate why knowledge of the patterns of connectivity across a species range is critical for predicting the effects of environmental change and provide empirical evidence for why connected migratory networks are commonly found in nature. © 2015 John Wiley & Sons Ltd/CNRS.

  16. Mutator dynamics in sexual and asexual experimental populations of yeast.

    PubMed

    Raynes, Yevgeniy; Gazzara, Matthew R; Sniegowski, Paul D

    2011-06-07

    In asexual populations, mutators may be expected to hitchhike with associated beneficial mutations. In sexual populations, recombination is predicted to erode such associations, inhibiting mutator hitchhiking. To investigate the effect of recombination on mutators experimentally, we compared the frequency dynamics of a mutator allele (msh2Δ) in sexual and asexual populations of Saccharomyces cerevisiae. Mutator strains increased in frequency at the expense of wild-type strains in all asexual diploid populations, with some approaching fixation in 150 generations of propagation. Over the same period of time, mutators declined toward loss in all corresponding sexual diploid populations as well as in haploid populations propagated asexually. We report the first experimental investigation of mutator dynamics in sexual populations. We show that a strong mutator quickly declines in sexual populations while hitchhiking to high frequency in asexual diploid populations, as predicted by theory. We also show that the msh2Δ mutator has a high and immediate realized cost that is alone sufficient to explain its decline in sexual populations. We postulate that this cost is indirect; namely, that it is due to a very high rate of recessive lethal or strongly deleterious mutation. However, we cannot rule out the possibility that msh2Δ also has unknown directly deleterious effects on fitness, and that these effects may differ between haploid asexual and sexual populations. Despite these reservations, our results prompt us to speculate that the short-term cost of highly deleterious recessive mutations can be as important as recombination in preventing mutator hitchhiking in sexual populations.

  17. A Global Picture of the Gamma-Ricker Map: A Flexible Discrete-Time Model with Factors of Positive and Negative Density Dependence.

    PubMed

    Liz, Eduardo

    2018-02-01

    The gamma-Ricker model is one of the more flexible and general discrete-time population models. It is defined on the basis of the Ricker model, introducing an additional parameter [Formula: see text]. For some values of this parameter ([Formula: see text], population is overcompensatory, and the introduction of an additional parameter gives more flexibility to fit the stock-recruitment curve to field data. For other parameter values ([Formula: see text]), the gamma-Ricker model represents populations whose per-capita growth rate combines both negative density dependence and positive density dependence. The former can lead to overcompensation and dynamic instability, and the latter can lead to a strong Allee effect. We study the impact of the cooperation factor in the dynamics and provide rigorous conditions under which increasing the Allee effect strength stabilizes or destabilizes population dynamics, promotes or prevents population extinction, and increases or decreases population size. Our theoretical results also include new global stability criteria and a description of the possible bifurcations.

  18. Population dynamics in non-homogeneous environments

    NASA Astrophysics Data System (ADS)

    Alards, Kim M. J.; Tesser, Francesca; Toschi, Federico

    2014-11-01

    For organisms living in aquatic ecosystems the presence of fluid transport can have a strong influence on the dynamics of populations and on evolution of species. In particular, displacements due to self-propulsion, summed up with turbulent dispersion at larger scales, strongly influence the local densities and thus population and genetic dynamics. Real marine environments are furthermore characterized by a high degree of non-homogeneities. In the case of population fronts propagating in ``fast'' turbulence, with respect to the population duplication time, the flow effect can be studied by replacing the microscopic diffusivity with an effective turbulent diffusivity. In the opposite case of ``slow'' turbulence the advection by the flow has to be considered locally. Here we employ numerical simulations to study the influence of non-homogeneities in the diffusion coefficient of reacting individuals of different species expanding in a 2 dimensional space. Moreover, to explore the influence of advection, we consider a population expanding in the presence of simple velocity fields like cellular flows. The output is analyzed in terms of front roughness, front shape, propagation speed and, concerning the genetics, by means of heterozygosity and local and global extinction probabilities.

  19. Demographic variation across successional stages and their effects on the population dynamics of the neotropical palm Euterpe precatoria.

    PubMed

    Otárola, Mauricio Fernández; Avalos, Gerardo

    2014-06-01

    • Premise of the study: Environmental heterogeneity is a strong selective force shaping adaptation and population dynamics across temporal and spatial scales. Natural and anthropogenic gradients influence the variation of environmental and biotic factors, which determine population demography and dynamics. Successional gradients are expected to influence demographic parameters, but the relationship between these gradients and the species life history, habitat requirements, and degree of variation in demographic traits remains elusive.• Methods: We used the palm Euterpe precatoria to test the effect of successional stage on plant demography within a continuous population. We calculated demographic parameters for size stages and performed matrix analyses to investigate the demographic variation within primary and secondary forests of La Selva, Costa Rica.• Key results: We observed differences in mortality and recruitment of small juveniles between primary and secondary forests. Matrix models described satisfactorily the chronosequence of population changes, which were characterized by high population growth rate in disturbed areas, and decreased growth rate in old successional forests until reaching stability.• Conclusions: Different demographic parameters can be expressed in contiguous subpopulations along a gradient of successional stages with important consequences for population dynamics. Demographic variation superimposed on these gradients contributes to generate subpopulations with different demographic composition, density, and ecological properties. Therefore, the effects of spatial variation must be reconsidered in the design of demographic analyses of tropical palms, which are prime examples of subtle local adaptation. These considerations are crucial in the implementation of management plans for palm species within spatially complex and heterogeneous tropical landscapes. © 2014 Botanical Society of America, Inc.

  20. Long-term effective population size dynamics of an intensively monitored vertebrate population

    PubMed Central

    Mueller, A-K; Chakarov, N; Krüger, O; Hoffman, J I

    2016-01-01

    Long-term genetic data from intensively monitored natural populations are important for understanding how effective population sizes (Ne) can vary over time. We therefore genotyped 1622 common buzzard (Buteo buteo) chicks sampled over 12 consecutive years (2002–2013 inclusive) at 15 microsatellite loci. This data set allowed us to both compare single-sample with temporal approaches and explore temporal patterns in the effective number of parents that produced each cohort in relation to the observed population dynamics. We found reasonable consistency between linkage disequilibrium-based single-sample and temporal estimators, particularly during the latter half of the study, but no clear relationship between annual Ne estimates () and census sizes. We also documented a 14-fold increase in between 2008 and 2011, a period during which the census size doubled, probably reflecting a combination of higher adult survival and immigration from further afield. Our study thus reveals appreciable temporal heterogeneity in the effective population size of a natural vertebrate population, confirms the need for long-term studies and cautions against drawing conclusions from a single sample. PMID:27553455

  1. Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions

    NASA Astrophysics Data System (ADS)

    Leonel Rocha, J.; Taha, Abdel-Kaddous; Fournier-Prunaret, D.

    2018-03-01

    The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy’s population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee’s functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee’s effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee’s limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee’s dynamics. Moreover, the “foliated” structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.

  2. Circumpolar variation in periodicity and synchrony among gypsy moth populations

    Treesearch

    Derek M. Johnson; Andrew M. Liebhold; Ottar N. Bjornstad; Michael L. Mcmanus; Michael L. Mcmanus

    2005-01-01

    Previous studies or insect dynamics have detected spatial synchrony in intraspecific population dynamics up to, but not exceeding, 1000 km. Oddly, interspecific synchrony has recently been reported at distances well over 1000 km (at continental and circumpolar scales). While the authors implicated climatic effects as the cause for the apparent largescale interspecific...

  3. Interacting Effects of Newcastle Disease Transmission and Illegal Trade on a Wild Population of White-Winged Parakeets in Peru: A Modeling Approach

    PubMed Central

    Daut, Elizabeth F.; Lahodny, Glenn; Peterson, Markus J.; Ivanek, Renata

    2016-01-01

    Illegal wildlife-pet trade can threaten wildlife populations directly from overharvest, but also indirectly as a pathway for introduction of infectious diseases. This study evaluated consequences of a hypothetical introduction of Newcastle disease (ND) into a wild population of Peru’s most trafficked psittacine, the white-winged parakeet (Brotogeris versicolurus), through release of infected confiscated individuals. We developed two mathematical models that describe ND transmission and the influence of illegal harvest in a homogeneous (model 1) and age-structured population of parakeets (model 2). Infection transmission dynamics and harvest were consistent for all individuals in model 1, which rendered it mathematically more tractable compared to the more complex, age-structured model 2 that separated the host population into juveniles and adults. We evaluated the interaction of ND transmission and harvest through changes in the basic reproduction number (R0) and short-term host population dynamics. Our findings demonstrated that ND introduction would likely provoke considerable disease-related mortality, up to 24% population decline in two years, but high harvest rates would dampen the magnitude of the outbreak. Model 2 produced moderate differences in disease dynamics compared to model 1 (R0 = 3.63 and 2.66, respectively), but highlighted the importance of adult disease dynamics in diminishing the epidemic potential. Therefore, we suggest that future studies should use a more realistic, age-structured model. Finally, for the presumptive risk that illegal trade of white-winged parakeets could introduce ND into wild populations, our results suggest that while high harvest rates may have a protective effect on the population by reducing virus transmission, the combined effects of high harvest and disease-induced mortality may threaten population survival. These results capture the complexity and consequences of the interaction between ND transmission and harvest in a wild parrot population and highlight the importance of preventing illegal trade. PMID:26816214

  4. Dynamics of Predator-Prey Metapopulations with Allee Effects.

    PubMed

    Fan, Meng; Wu, Ping; Feng, Zhilan; Swihart, Robert K

    2016-08-01

    Allee effects increasingly are recognized as influential determinants of population dynamics, especially in disturbed landscapes. We developed a predator-prey metapopulation model to study the impact of an Allee effect on predator-prey. The model incorporates habitat destruction and predators with imperfect information about prey distribution. Criteria are established for the existence and stability of equilibria, and the possible existence of a limit cycle is discussed. Numerical bifurcation analysis of the model is carried out to examine the impact of Allee effects as well as other key processes on trophic dynamics. Inclusion of Allee effects produces a richer array of dynamics than earlier models in which it was absent. When prey interacts with generalist predators, Allee effects operate synergistically to depress prey populations. Allee effects are more likely to depress occupancy levels when destruction of habitat patches is moderate; at severe levels of destruction, Allee effects are swamped by demographic effects of habitat loss. Stronger Allee effects correspond to lower thresholds of predator colonization rates at which prey become extinct. We discuss implications of our model for conservation of rare species as well as pest management via biocontrol.

  5. Dynamic cell culture on porous biopolymer microcarriers in a spinner flask for bone tissue engineering: a feasibility study.

    PubMed

    Jin, Guang-Zhen; Park, Jeong-Hui; Seo, Seog-Jin; Kim, Hae-Won

    2014-07-01

    Porous microspherical carriers have great promise for cell culture and tissue engineering. Dynamic cultures enable more uniform cell population and effective differentiation than static cultures. Here we applied dynamic spinner flask culture for the loading and multiplication of cells onto porous biopolymer microcarriers. The abilities of the microcarriers to populate cells and to induce osteogenic differentiation were examined and the feasibility of in vivo delivery of the constructs was addressed. Over time, the porous microcarriers enabled cell adhesion and expansion under proper dynamic culture conditions. Osteogenic markers were substantially expressed by the dynamic cell cultures. The cell-cultured microcarriers implanted in the mouse subcutaneous tissue for 4 weeks showed excellent tissue compatibility, with minimal inflammatory signs and significant induction of bone tissues. This first report on dynamic culture of porous biopolymer microcarriers providing an effective tool for bone tissue engineering.

  6. Accidental release of chlorine in Chicago: Coupling of an exposure model with a Computational Fluid Dynamics model

    NASA Astrophysics Data System (ADS)

    Sanchez, E. Y.; Colman Lerner, J. E.; Porta, A.; Jacovkis, P. M.

    2013-01-01

    The adverse health effects of the release of hazardous substances into the atmosphere continue being a matter of concern, especially in densely populated urban regions. Emergency responders need to have estimates of these adverse health effects in the local population to aid planning, emergency response, and recovery efforts. For this purpose, models that predict the transport and dispersion of hazardous materials are as necessary as those that estimate the adverse health effects in the population. In this paper, we present the results obtained by coupling a Computational Fluid Dynamics model, FLACS (FLame ACceleration Simulator), with an exposure model, DDC (Damage Differential Coupling). This coupled model system is applied to a scenario of hypothetical release of chlorine with obstacles, such as buildings, and the results show how it is capable of predicting the atmospheric dispersion of hazardous chemicals, and the adverse health effects in the exposed population, to support decision makers both in charge of emergency planning and in charge of real-time response. The results obtained show how knowing the influence of obstacles in the trajectory of the toxic cloud and in the diffusion of the pollutants transported, and obtaining dynamic information of the potentially affected population and of associated symptoms, contribute to improve the planning of the protection and response measures.

  7. Population models for passerine birds: structure, parameterization, and analysis

    USGS Publications Warehouse

    Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.

  8. Multiple dynamics in a single predator-prey system: experimental effects of food quality.

    PubMed Central

    Nelson, W A; McCauley, E; Wrona, F J

    2001-01-01

    Recent work with the freshwater zooplankton Daphnia has suggested that the quality of its algal prey can have a significant effect on its demographic rates and life-history patterns. Predator-prey theory linking food quantity and food quality predicts that a single system should be able to display two distinct patterns of population dynamics. One pattern is predicted to have high herbivore and low algal biomass dynamics (high HBD), whereas the other is predicted to have low herbivore and high algal biomass dynamics (low HBD). Despite these predictions and the stoichiometric evidence that many phytoplankton communities may have poor access to food of quality, there have been few tests of whether a dynamic predator-prey system can display both of these distinct patterns. Here we report, to the authors' knowledge, the first evidence for two dynamical patterns, as predicted by theory, in a single predator-prey system. We show that the high HBD is a result of food quantity effects and that the low HBD is a result of food quality effects, which are maintained by phosphorus limitation in the predator. These results provide an important link between the known effects of nutrient limitation in herbivores and the significance of prey quality in predator-prey population dynamics in natural zooplankton communities. PMID:11410147

  9. Binary Populations and Stellar Dynamics in Young Clusters

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  10. Global dynamics of avian influenza epidemic models with psychological effect.

    PubMed

    Liu, Sanhong; Pang, Liuyong; Ruan, Shigui; Zhang, Xinan

    2015-01-01

    Cross-sectional surveys conducted in Thailand and China after the outbreaks of the avian influenza A H5N1 and H7N9 viruses show a high degree of awareness of human avian influenza in both urban and rural populations, a higher level of proper hygienic practice among urban residents, and in particular a dramatically reduced number of visits to live markets in urban population after the influenza A H7N9 outbreak in China in 2013. In this paper, taking into account the psychological effect toward avian influenza in the human population, a bird-to-human transmission model in which the avian population exhibits saturation effect is constructed. The dynamical behavior of the model is studied by using the basic reproduction number. The results demonstrate that the saturation effect within avian population and the psychological effect in human population cannot change the stability of equilibria but can affect the number of infected humans if the disease is prevalent. Numerical simulations are given to support the theoretical results and sensitivity analyses of the basic reproduction number in terms of model parameters that are performed to seek for effective control measures for avian influenza.

  11. Ecosystem Scale Declines in Elk Recruitment and Population Growth with Wolf Colonization: A Before-After-Control-Impact Approach

    PubMed Central

    Christianson, David; Creel, Scott

    2014-01-01

    The reintroduction of wolves (Canis lupus) to Yellowstone provided the unusual opportunity for a quasi-experimental test of the effects of wolf predation on their primary prey (elk – Cervus elaphus) in a system where top-down, bottom-up, and abiotic forces on prey population dynamics were closely and consistently monitored before and after reintroduction. Here, we examined data from 33 years for 12 elk population segments spread across southwestern Montana and northwestern Wyoming in a large scale before-after-control-impact analysis of the effects of wolves on elk recruitment and population dynamics. Recruitment, as measured by the midwinter juvenile∶female ratio, was a strong determinant of elk dynamics, and declined by 35% in elk herds colonized by wolves as annual population growth shifted from increasing to decreasing. Negative effects of population density and winter severity on recruitment, long recognized as important for elk dynamics, were detected in uncolonized elk herds and in wolf-colonized elk herds prior to wolf colonization, but not after wolf colonization. Growing season precipitation and harvest had no detectable effect on recruitment in either wolf treatment or colonization period, although harvest rates of juveniles∶females declined by 37% in wolf-colonized herds. Even if it is assumed that mortality due to predation is completely additive, liberal estimates of wolf predation rates on juvenile elk could explain no more than 52% of the total decline in juvenile∶female ratios in wolf-colonized herds, after accounting for the effects of other limiting factors. Collectively, these long-term, large-scale patterns align well with prior studies that have reported substantial decrease in elk numbers immediately after wolf recolonization, relatively weak additive effects of direct wolf predation on elk survival, and decreased reproduction and recruitment with exposure to predation risk from wolves. PMID:25028933

  12. Altered resource availability and the population dynamics of tree species in Amazonian secondary forests.

    PubMed

    Fortini, Lucas Berio; Bruna, Emilio M; Zarin, Daniel J; Vasconcelos, Steel S; Miranda, Izildinha S

    2010-04-01

    Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species-Lacistema pubescens and Myrcia sylvatica-in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability-factors considered critical to the ecology of tropical pioneer tree species-autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.

  13. Investigating the Genetic Diversity, Population Differentiation and Population Dynamics of Cycas segmentifida (Cycadaceae) Endemic to Southwest China by Multiple Molecular Markers

    PubMed Central

    Feng, Xiuyan; Liu, Jian; Chiang, Yu-Chung; Gong, Xun

    2017-01-01

    Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs), three nuclear genes (nDNAs) and 12 nuclear microsatellites (SSRs), we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD) in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida. PMID:28580005

  14. Spatially cascading effect of perturbations in experimental meta-ecosystems.

    PubMed

    Harvey, Eric; Gounand, Isabelle; Ganesanandamoorthy, Pravin; Altermatt, Florian

    2016-09-14

    Ecosystems are linked to neighbouring ecosystems not only by dispersal, but also by the movement of subsidy. Such subsidy couplings between ecosystems have important landscape-scale implications because perturbations in one ecosystem may affect community structure and functioning in neighbouring ecosystems via increased/decreased subsidies. Here, we combine a general theoretical approach based on harvesting theory and a two-patch protist meta-ecosystem experiment to test the effect of regional perturbations on local community dynamics. We first characterized the relationship between the perturbation regime and local population demography on detritus production using a mathematical model. We then experimentally simulated a perturbation gradient affecting connected ecosystems simultaneously, thus altering cross-ecosystem subsidy exchanges. We demonstrate that the perturbation regime can interact with local population dynamics to trigger unexpected temporal variations in subsidy pulses from one ecosystem to another. High perturbation intensity initially led to the highest level of subsidy flows; however, the level of perturbation interacted with population dynamics to generate a crash in subsidy exchange over time. Both theoretical and experimental results show that a perturbation regime interacting with local community dynamics can induce a collapse in population levels for recipient ecosystems. These results call for integrative management of human-altered landscapes that takes into account regional dynamics of both species and resource flows. © 2016 The Author(s).

  15. The Influence of Individual Variability on Zooplankton Population Dynamics under Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Bi, R.; Liu, H.

    2016-02-01

    Understanding how biological components respond to environmental changes could be insightful to predict ecosystem trajectories under different climate scenarios. Zooplankton are key components of marine ecosystems and changes in their dynamics could have major impact on ecosystem structure. We developed an individual-based model of a common coastal calanoid copepod Acartia tonsa to examine how environmental factors affect zooplankton population dynamics and explore the role of individual variability in sustaining population under various environmental conditions consisting of temperature, food concentration and salinity. Total abundance, egg production and proportion of survival were used to measure population success. Results suggested population benefits from high level of individual variability under extreme environmental conditions including unfavorable temperature, salinity, as well as low food concentration, and selection on fast-growers becomes stronger with increasing individual variability and increasing environmental stress. Multiple regression analysis showed that temperature, food concentration, salinity and individual variability have significant effects on survival of A. tonsa population. These results suggest that environmental factors have great influence on zooplankton population, and individual variability has important implications for population survivability under unfavorable conditions. Given that marine ecosystems are at risk from drastic environmental changes, understanding how individual variability sustains populations could increase our capability to predict population dynamics in a changing environment.

  16. Rapid contemporary evolution and clonal food web dynamics

    PubMed Central

    Jones, Laura E.; Becks, Lutz; Ellner, Stephen P.; Hairston, Nelson G.; Yoshida, Takehito; Fussmann, Gregor F.

    2009-01-01

    Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements. Multiple clonal lines can coexist within each species over extended periods, until either fixation occurs or a sexual phase reshuffles the genetic material. When clones differ in traits affecting interspecific interactions, within-species clonal dynamics can have major effects on the population dynamics. We first consider a simple predator–prey system with two prey genotypes, parametrized with data from a well-studied experimental system, and explore how the extent of differences in defence against predation within the prey population determine dynamic stability versus instability of the system. We then explore how increased potential for evolution affects the community dynamics in a more general community model with multiple predator and multiple prey genotypes. These examples illustrate how microevolutionary ‘details’ that enhance or limit the potential for heritable phenotypic change can have significant effects on contemporaneous community-level dynamics and the persistence and coexistence of species. PMID:19414472

  17. Turnover of Village Chickens Undermines Vaccine Coverage to Control HPAI H5N1.

    PubMed

    Villanueva-Cabezas, J P; Campbell, P T; McCaw, J M; Durr, P A; McVernon, J

    2017-02-01

    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains an enzootic disease of village chickens in Indonesia, posing ongoing risk at the animal-human interface. Previous modelling showed that the fast natural turnover of chicken populations might undermine herd immunity after vaccination, although actual details of how this effect applies to Indonesia's village chicken population have not been determined. We explored the turnover effect in Indonesia's scavenging and mixed populations of village chickens using an extended Leslie matrix model parameterized with data collected from village chicken flocks in Java region, Indonesia. Population dynamics were simulated for 208 weeks; the turnover effect was simulated for 16 weeks after vaccination in two 'best case' scenarios, where the whole population (scenario 1), or birds aged over 14 days (scenario 2), were vaccinated. We found that the scavenging and mixed populations have different productive traits. When steady-state dynamics are reached, both populations are dominated by females (54.5%), and 'growers' and 'chicks' represent the most abundant age stages with 39% and 38% in the scavenging, and 60% and 25% in the mixed population, respectively. Simulations showed that the population turnover might reduce the herd immunity below the critical threshold that prevents the re-emergence of HPAI H5N1 4-8 weeks (scavenging) and 6-9 weeks (mixed population) after vaccination in scenario 1, and 2-6 weeks (scavenging) and 4-7 weeks (mixed population) after vaccination in scenario 2. In conclusion, we found that Indonesia's village chicken population does not have a unique underlying population dynamic and therefore, different turnover effects on herd immunity may be expected after vaccination; nonetheless, our simulations carried out in best case scenarios highlight the limitations of current vaccine technologies to control HPAI H5N1. This suggests that the improvements and complementary strategies are necessary and must be explored. © 2016 Blackwell Verlag GmbH.

  18. A probabilistic cellular automata model for the dynamics of a population driven by logistic growth and weak Allee effect

    NASA Astrophysics Data System (ADS)

    Mendonça, J. R. G.

    2018-04-01

    We propose and investigate a one-parameter probabilistic mixture of one-dimensional elementary cellular automata under the guise of a model for the dynamics of a single-species unstructured population with nonoverlapping generations in which individuals have smaller probability of reproducing and surviving in a crowded neighbourhood but also suffer from isolation and dispersal. Remarkably, the first-order mean field approximation to the dynamics of the model yields a cubic map containing terms representing both logistic and weak Allee effects. The model has a single absorbing state devoid of individuals, but depending on the reproduction and survival probabilities can achieve a stable population. We determine the critical probability separating these two phases and find that the phase transition between them is in the directed percolation universality class of critical behaviour.

  19. Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics

    PubMed Central

    Wells, Konstans; Brook, Barry W.; Lacy, Robert C.; Mutze, Greg J.; Peacock, David E.; Sinclair, Ron G.; Schwensow, Nina; Cassey, Phillip; O'Hara, Robert B.; Fordham, Damien A.

    2015-01-01

    Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species. PMID:25566883

  20. Recent range expansion of a terrestrial orchid corresponds with climate-driven variation in its population dynamics.

    PubMed

    van der Meer, Sascha; Jacquemyn, Hans; Carey, Peter D; Jongejans, Eelke

    2016-06-01

    The population dynamics and distribution limits of plant species are predicted to change as the climate changes. However, it remains unclear to what extent climate variables affect population dynamics, which vital rates are most sensitive to climate change, and whether the same vital rates drive population dynamics in different populations. In this study, we used long-term demographic data from two populations of the terrestrial orchid Himantoglossum hircinum growing at the northern edge of their geographic range to quantify the influence of climate change on demographic vital rates. Integral projection models were constructed to study how climate conditions between 1991 and 2006 affected population dynamics and to assess how projected future climate change will affect the long-term viability of this species. Based on the parameterised vital rate functions and the observed climatic conditions, one of the studied populations had an average population growth rate above 1 (λ = 1.04), while the other was declining at ca. 3 % year(-1) (λ = 0.97). Variation in temperature and precipitation mainly affected population growth through their effect on survival and fecundity. Based on UK Climate Projection 2009 estimates of future climate conditions for three greenhouse gas emission scenarios, population growth rates are expected to increase in one of the studied populations. Overall, our results indicate that the observed changes in climatic conditions appeared to be beneficial to the long-term survival of the species in the UK and suggest that they may have been the driving force behind the current range expansion of H. hircinum in England.

  1. Evolution of increased phenotypic diversity enhances population performance by reducing sexual harassment in damselflies.

    PubMed

    Takahashi, Yuma; Kagawa, Kotaro; Svensson, Erik I; Kawata, Masakado

    2014-07-18

    The effect of evolutionary changes in traits and phenotypic/genetic diversity on ecological dynamics has received much theoretical attention; however, the mechanisms and ecological consequences are usually unknown. Female-limited colour polymorphism in damselflies is a counter-adaptation to male mating harassment, and thus, is expected to alter population dynamics through relaxing sexual conflict. Here we show the side effect of the evolution of female morph diversity on population performance (for example, population productivity and sustainability) in damselflies. Our theoretical model incorporating key features of the sexual interaction predicts that the evolution of increased phenotypic diversity will reduce overall fitness costs to females from sexual conflict, which in turn will increase productivity, density and stability of a population. Field data and mesocosm experiments support these model predictions. Our study suggests that increased phenotypic diversity can enhance population performance that can potentially reduce extinction rates and thereby influence macroevolutionary processes.

  2. Incorporating evolutionary processes into population viability models.

    PubMed

    Pierson, Jennifer C; Beissinger, Steven R; Bragg, Jason G; Coates, David J; Oostermeijer, J Gerard B; Sunnucks, Paul; Schumaker, Nathan H; Trotter, Meredith V; Young, Andrew G

    2015-06-01

    We examined how ecological and evolutionary (eco-evo) processes in population dynamics could be better integrated into population viability analysis (PVA). Complementary advances in computation and population genomics can be combined into an eco-evo PVA to offer powerful new approaches to understand the influence of evolutionary processes on population persistence. We developed the mechanistic basis of an eco-evo PVA using individual-based models with individual-level genotype tracking and dynamic genotype-phenotype mapping to model emergent population-level effects, such as local adaptation and genetic rescue. We then outline how genomics can allow or improve parameter estimation for PVA models by providing genotypic information at large numbers of loci for neutral and functional genome regions. As climate change and other threatening processes increase in rate and scale, eco-evo PVAs will become essential research tools to evaluate the effects of adaptive potential, evolutionary rescue, and locally adapted traits on persistence. © 2014 Society for Conservation Biology.

  3. Development of conceptual ecological models linking management of the Missouri River to pallid sturgeon population dynamics

    USGS Publications Warehouse

    Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.

    2015-01-01

    This report documents the process of developing and refining conceptual ecological models (CEMs) for linking river management to pallid sturgeon (Scaphirhynchus albus) population dynamics in the Missouri River. The refined CEMs are being used in the Missouri River Pallid Sturgeon Effects Analysis to organize, document, and formalize an understanding of pallid sturgeon population responses to past and future management alternatives. The general form of the CEMs, represented by a population-level model and component life-stage models, was determined in workshops held in the summer of 2013. Subsequently, the Missouri River Pallid Sturgeon Effects Analysis team designed a general hierarchical structure for the component models, refined the graphical structure, and reconciled variation among the components and between models developed for the upper river (Upper Missouri & Yellowstone Rivers) and the lower river (Missouri River downstream from Gavins Point Dam). Importance scores attributed to the relations between primary biotic characteristics and survival were used to define a candidate set of working dominant hypotheses about pallid sturgeon population dynamics. These CEMs are intended to guide research and adaptive-management actions to benefit pallid sturgeon populations in the Missouri River.

  4. Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai'i

    USGS Publications Warehouse

    Hansen, H.; Hess, S.C.; Cole, D.; Banko, P.C.

    2007-01-01

    Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai'i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools. ?? CSIRO 2007.

  5. Clustering Effect on the Dynamics in a Spatial Rock-Paper-Scissors System

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tsuyoshi; Sato, Kazunori; Ichinose, Genki; Miyazaki, Rinko; Tainaka, Kei-ichi

    2018-01-01

    The lattice dynamics for rock-paper-scissors games is related to population theories in ecology. In most cases, simulations are performed by local and global interactions. It is known in the former case that the dynamics is usually stable. We find two types of non-random distributions in the stationary state. One is a cluster formation of endangered species: when the density of a species approaches zero, its clumping degree diverges to infinity. The other is the strong aggregations of high-density species. Such spatial pattern formations play important roles in population dynamics.

  6. Memory and obesity affect the population dynamics of asexual freshwater planarians

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Talbot, Jared; Schötz, Eva-Maria

    2011-04-01

    Asexual reproduction in multicellular organisms is a complex biophysical process that is not yet well understood quantitatively. Here, we report a detailed population study for the asexual freshwater planarian Schmidtea mediterranea, which can reproduce via transverse fission due to a large stem cell contingent. Our long-term observations of isolated non-interacting planarian populations reveal that the characteristic fission waiting time distributions for head and tail fragments differ significantly from each other. The stochastic fission dynamics of tail fragments exhibits non-negligible memory effects, implying that an accurate mathematical description of future data should be based on non-Markovian tree models. By comparing the effective growth of non-interacting planarian populations with those of self-interacting populations, we are able to quantify the influence of interactions between flatworms and physical conditions on the population growth. A surprising result is the non-monotonic relationship between effective population growth rate and nutrient supply: planarians exhibit a tendency to become 'obese' if the feeding frequency exceeds a critical level, resulting in a decreased reproduction activity. This suggests that these flatworms, which possess many genes homologous to those of humans, could become a new model system for studying dietary effects on reproduction and regeneration in multicellular organisms.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaser, D.; Connolly, J.; Berghoffen, A.

    The resident bald eagles of the lower Columbia River have lower productivity and higher contaminant levels than other bald eagles of the Pacific Northwest. The primary population stressors are believed to be habitat loss, human disturbance, p,p{prime}DDE, PCBs, dioxins and furans. The primary effect of habitat loss is to reduce the carrying capacity of the region for nesting sites, and the primary effects of human disturbance and contamination by organic compounds are to reduce productivity. The purpose of this study was to quantitatively evaluate the effects of all of, these potential stressors on the bald eagle population dynamics. A modelmore » of the population dynamics was developed. The model structure includes a physiologically-based toxicokinetic (PBTK) submodel to estimate the degree of contamination, which is linked via a toxicology submodel to a population dynamics submodel. The PBTK submodel is time-variable, incorporating species-specific bioenergetics, as well as contaminant assimilation and excretion rates for each compound of interest. Calculated body burdens and egg concentrations for each compound account for spatial and temporal variations in feeding habits and prey contaminant levels. The population submodel includes fecundity and survival information, as well as a limit to the number of breeding pairs (carrying capacity) and a population of non-breeding subadults and adults (floaters). Model simulations are performed in a Monte Carlo framework. Results include estimates of the persistence, resistance and resilience of the population: the probability of extinction, the relationship between magnitude of stress and change in population size, and the time course of recovery of a population following a reduction in stress.« less

  8. The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy.

    PubMed

    Trauner, Andrej; Liu, Qingyun; Via, Laura E; Liu, Xin; Ruan, Xianglin; Liang, Lili; Shi, Huimin; Chen, Ying; Wang, Ziling; Liang, Ruixia; Zhang, Wei; Wei, Wang; Gao, Jingcai; Sun, Gang; Brites, Daniela; England, Kathleen; Zhang, Guolong; Gagneux, Sebastien; Barry, Clifton E; Gao, Qian

    2017-04-19

    Combination therapy is one of the most effective tools for limiting the emergence of drug resistance in pathogens. Despite the widespread adoption of combination therapy across diseases, drug resistance rates continue to rise, leading to failing treatment regimens. The mechanisms underlying treatment failure are well studied, but the processes governing successful combination therapy are poorly understood. We address this question by studying the population dynamics of Mycobacterium tuberculosis within tuberculosis patients undergoing treatment with different combinations of antibiotics. By combining very deep whole genome sequencing (~1000-fold genome-wide coverage) with sequential sputum sampling, we were able to detect transient genetic diversity driven by the apparently continuous turnover of minor alleles, which could serve as the source of drug-resistant bacteria. However, we report that treatment efficacy has a clear impact on the population dynamics: sufficient drug pressure bears a clear signature of purifying selection leading to apparent genetic stability. In contrast, M. tuberculosis populations subject to less drug pressure show markedly different dynamics, including cases of acquisition of additional drug resistance. Our findings show that for a pathogen like M. tuberculosis, which is well adapted to the human host, purifying selection constrains the evolutionary trajectory to resistance in effectively treated individuals. Nonetheless, we also report a continuous turnover of minor variants, which could give rise to the emergence of drug resistance in cases of drug pressure weakening. Monitoring bacterial population dynamics could therefore provide an informative metric for assessing the efficacy of novel drug combinations.

  9. The evidence for Allee effects

    Treesearch

    Andrew M. Kramer; Brian Dennis; Andrew M. Liebhold; John M. Drake

    2009-01-01

    Allee effects are an important dynamic phenomenon believed to be manifested in several population processes, notably extinction and invasion. Though widely cited in these contexts, the evidence for their strength and prevalence has not been critically evaluated. We review results from 91 studies on Allee effects in natural animal populations. We focus on empirical...

  10. A Compartmental Model for Zika Virus with Dynamic Human and Vector Populations

    PubMed Central

    Lee, Eva K; Liu, Yifan; Pietz, Ferdinand H

    2016-01-01

    The Zika virus (ZIKV) outbreak in South American countries and its potential association with microcephaly in newborns and Guillain-Barré Syndrome led the World Health Organization to declare a Public Health Emergency of International Concern. To understand the ZIKV disease dynamics and evaluate the effectiveness of different containment strategies, we propose a compartmental model with a vector-host structure for ZIKV. The model utilizes logistic growth in human population and dynamic growth in vector population. Using this model, we derive the basic reproduction number to gain insight on containment strategies. We contrast the impact and influence of different parameters on the virus trend and outbreak spread. We also evaluate different containment strategies and their combination effects to achieve early containment by minimizing total infections. This result can help decision makers select and invest in the strategies most effective to combat the infection spread. The decision-support tool demonstrates the importance of “digital disease surveillance” in response to waves of epidemics including ZIKV, Dengue, Ebola and cholera. PMID:28269870

  11. Temporal variation in temperature determines disease spread and maintenance in Paramecium microcosm populations

    PubMed Central

    Duncan, Alison B.; Fellous, Simon; Kaltz, Oliver

    2011-01-01

    The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host–parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range. PMID:21450730

  12. Structured population dynamics: continuous size and discontinuous stage structures.

    PubMed

    Buffoni, Giuseppe; Pasquali, Sara

    2007-04-01

    A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.

  13. A system dynamics modelling approach to assess the impact of launching a new nicotine product on population health outcomes.

    PubMed

    Hill, Andrew; Camacho, Oscar M

    2017-06-01

    In 2012 the US FDA suggested the use of mathematical models to assess the impact of releasing new nicotine or tobacco products on population health outcomes. A model based on system dynamics methodology was developed to project the potential effects of a new nicotine product at a population level. A model representing traditional smoking populations (never, current and former smokers) and calibrated using historical data was extended to a two-product model by including electronic cigarettes use statuses. Smoking mechanisms, such as product initiation, switching, transition to dual use, and cessation, were represented as flows between smoking statuses (stocks) and the potential effect of smoking renormalisation through a feedback system. Mortality over a 50-year period (2000-2050) was the health outcome of interest, and was compared between two scenarios, with and without e-cigarettes being introduced. The results suggest that by 2050, smoking prevalence in adults was 12.4% in the core model and 9.7% (including dual users) in the counterfactual. Smoking-related mortality was 8.4% and 8.1%, respectively. The results suggested an overall beneficial effect from launching e-cigarettes and that system dynamics could be a useful approach to assess the potential population health effects of nicotine products when epidemiological data are not available. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Fortune favours the brave: Movement responses shape demographic dynamics in strongly competing populations.

    PubMed

    Potts, Jonathan R; Petrovskii, Sergei V

    2017-05-07

    Animal movement is a key mechanism for shaping population dynamics. The effect of interactions between competing animals on a population's survival has been studied for many decades. However, interactions also affect an animal's subsequent movement decisions. Despite this, the indirect effect of these decisions on animal survival is much less well-understood. Here, we incorporate movement responses to foreign animals into a model of two competing populations, where inter-specific competition is greater than intra-specific competition. When movement is diffusive, the travelling wave moves from the stronger population to the weaker. However, by incorporating behaviourally induced directed movement towards the stronger population, the weaker one can slow the travelling wave down, even reversing its direction. Hence movement responses can switch the predictions of traditional mechanistic models. Furthermore, when environmental heterogeneity is combined with aggressive movement strategies, it is possible for spatially segregated co-existence to emerge. In this situation, the spatial patterns of the competing populations have the unusual feature that they are slightly out-of-phase with the environmental patterns. Finally, incorporating dynamic movement responses can also enable stable co-existence in a homogeneous environment, giving a new mechanism for spatially segregated co-existence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evolutionary Dynamics of Fearfulness and Boldness: A Stochastic Simulation Model

    PubMed Central

    Lu, Nan; Ji, Ting; Zhang, Jia-Hua; Sun, Yue-Hua; Tao, Yi

    2012-01-01

    A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced. PMID:22412859

  16. Evolutionary dynamics of fearfulness and boldness: a stochastic simulation model.

    PubMed

    Lu, Nan; Ji, Ting; Zhang, Jia-Hua; Sun, Yue-Hua; Tao, Yi

    2012-01-01

    A stochastic simulation model is investigated for the evolution of anti-predator behavior in birds. The main goal is to reveal the effects of population size, predation threats, and energy lost per escape on the evolutionary dynamics of fearfulness and boldness. Two pure strategies, fearfulness and boldness, are assumed to have different responses for the predator attacks and nonlethal disturbance. On the other hand, the co-existence mechanism of fearfulness and boldness is also considered. For the effects of total population size, predation threats, and energy lost per escape, our main results show that: (i) the fearful (bold) individuals will be favored in a small (large) population, i.e. in a small (large) population, the fearfulness (boldness) can be considered to be an ESS; (ii) in a population with moderate size, fearfulness would be favored under moderate predator attacks; and (iii) although the total population size is the most important factor for the evolutionary dynamics of both fearful and bold individuals, the small energy lost per escape enables the fearful individuals to have the ability to win the advantage even in a relatively large population. Finally, we show also that the co-existence of fearful and bold individuals is possible when the competitive interactions between individuals are introduced.

  17. Variability in primary productivity determines metapopulation dynamics

    PubMed Central

    2016-01-01

    Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity—a major outcome of ecosystem functions—on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments. PMID:27053739

  18. Variability in primary productivity determines metapopulation dynamics.

    PubMed

    Fernández, Néstor; Román, Jacinto; Delibes, Miguel

    2016-04-13

    Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity--a major outcome of ecosystem functions--on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments. © 2016 The Authors.

  19. Population dynamics and the ecological stability of obligate pollination mutualisms

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2001-01-01

    Mutualistic interactions almost always produce both costs and benefits for each of the interacting species. It is the difference between gross benefits and costs that determines the net benefit and the per-capita effect on each of the interacting populations. For example, the net benefit of obligate pollinators, such as yucca and senita moths, to plants is determined by the difference between the number of ovules fertilized from moth pollination and the number of ovules eaten by the pollinator's larvae. It is clear that if pollinator populations are large, then, because many eggs are laid, costs to plants are large, whereas, if pollinator populations are small, gross benefits are low due to lack of pollination. Even though the size and dynamics of the pollinator population are likely to be crucial, their importance has been neglected in the investigation of mechanisms, such as selective fruit abortion, that can limit costs and increase net benefits. Here, we suggest that both the population size and dynamics of pollinators are important in determining the net benefits to plants, and that fruit abortion can significantly affect these. We develop a model of mutualism between populations of plants and their pollinating seed-predators to explore the ecological consequences of fruit abortion on pollinator population dynamics and the net effect on plants. We demonstrate that the benefit to a plant population is unimodal as a function of pollinator abundance, relative to the abundance of flowers. Both selective abortion of fruit with eggs and random abortion of fruit, without reference to whether they have eggs or not, can limit pollinator population size. This can increase the net benefits to the plant population by limiting the number of eggs laid, if the pollination rate remains high. However, fruit abortion can possibly destabilize the pollinator population, with negative consequences for the plant population.

  20. Impact of transient climate change upon Grouse population dynamics in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Pirovano, Andrea; Bocchiola, Daniele

    2010-05-01

    Understanding the effect of short to medium term weather condition, and of transient global warming upon wildlife species life history is essential to predict the demographic consequences therein, and possibly develop adaptation strategies, especially in game species, where hunting mortality may play an important role in population dynamics. We carried out a preliminary investigation of observed impact of weather variables upon population dynamics indexes of three alpine Grouse species (i.e. Rock Ptarmigan, Lagopus Mutus, Black Grouse, Tetrao Tetrix, Rock Partridge, Alectoris Graeca), nested within central Italian Alps, based upon 15 years (1995-2009) of available censuses data, provided by the Sondrio Province authority. We used a set of climate variables already highlighted within recent literature for carrying considerable bearing on Grouse population dynamics, including e.g. temperature at hatching time and during winter, snow cover at nesting, and precipitation during nursing period. We then developed models of Grouses' population dynamics by explicitly driving population change according to their dependence upon the significant weather variables and population density and we evaluated objective indexes to assess the so obtained predictive power. Eventually, we develop projection of future local climate, based upon locally derived trends, and upon projections from GCMs (A2 IPCC storyline) already validated for the area, to project forward in time (until 2100 or so) the significant climatic variables, which we then use to force population dynamics models of the target species. The projected patterns obtained through this exercise are discussed and compared against those expected under stationary climate conditions at present, and preliminary conclusions are drawn.

  1. Cooperation guided by the coexistence of imitation dynamics and aspiration dynamics in structured populations

    NASA Astrophysics Data System (ADS)

    Xu, Kuangyi; Li, Kun; Cong, Rui; Wang, Long

    2017-02-01

    In the framework of the evolutionary game theory, two fundamentally different mechanisms, the imitation process and the aspiration-driven dynamics, can be adopted by players to update their strategies. In the former case, individuals imitate the strategy of a more successful peer, while in the latter case individuals change their strategies based on a comparison of payoffs they collect in the game to their own aspiration levels. Here we explore how cooperation evolves for the coexistence of these two dynamics. Intriguingly, cooperation reaches its lowest level when a certain moderate fraction of individuals pick aspiration-level-driven rule while the others choose pairwise comparison rule. Furthermore, when individuals can adjust their update rules besides their strategies, either imitation dynamics or aspiration-driven dynamics will finally take over the entire population, and the stationary cooperation level is determined by the outcome of competition between these two dynamics. We find that appropriate synergetic effects and moderate aspiration level boost the fixation probability of aspiration-driven dynamics most effectively. Our work may be helpful in understanding the cooperative behavior induced by the coexistence of imitation dynamics and aspiration dynamics in the society.

  2. Effect of dispersal at range edges on the structure of species ranges

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Range edges are of particular interest to ecology because they hold key insights into the limits of the realized niche and associated population dynamics. A recent feature of Oikos summarized the state of the art on range edge ecology. While the typical question is what causes range edges, another important question is how range edges influence the distribution of abundances across a species geographic range when dispersal is present. We used a single species population dynamics model on a coupled-lattice to determine the effects of dispersal on peripheral populations as compared to populations at the core of the range. In the absence of resource gradients, the reduced neighborhood and thus lower connectivity or higher isolation among populations at the range edge alone led to significantly lower population sizes in the periphery of the range than in the core. Lower population sizes mean higher extinction risks and lower adaptability at the range edge, which could inhibit or slow range expansions, and thus effectively stabilize range edges. The strength of this effect depended on the potential population growth rate and the maximum dispersal distance. Lower potential population growth rates led to a stronger effect of dispersal resulting in a higher difference in population sizes between the two areas. The differential effect of dispersal on population sizes at the core and periphery of the range in the absence of resource gradients implies that traditional, habitat-based distribution models could result in misleading conclusions about the habitat quality in the periphery. Lower population sizes at the periphery are also relevant to conservation, because habitat removal not only eliminates populations but also creates new edges. Populations bordering these new edges may experience declines, due to their increased isolation. ?? OIKOS.

  3. Recasting a model atomistic glassformer as a system of icosahedra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinney, Rhiannon; Bristol Centre for Complexity Science, University of Bristol, Bristol BS8 1TS; Liverpool, Tanniemola B.

    2015-12-28

    We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of icosahedral structures. Upon cooling, these icosahedra organize into mesoclusters. We recast this glassformer as an effective system of icosahedra which we describe with a population dynamics model. This model we parameterize with data from the temperature regime accessible to molecular dynamics simulations. We then use the model to determine the population of icosahedra in mesoclusters at arbitrary temperature. Using simulation data to incorporate dynamics into the model, we predict relaxation behavior at temperatures inaccessible to conventional approaches. Our model predicts super-Arrhenius dynamics whose relaxation timemore » remains finite for non-zero temperature.« less

  4. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition

    PubMed Central

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A.

    2016-01-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. PMID:26209846

  5. The population dynamics of bacteria, phage and RM Systems

    NASA Astrophysics Data System (ADS)

    Guet, Calin; Levin, Bruce; Pleska, Maros

    Viruses drive and mediate bacterial evolution as parasites and vectors of horizontal gene transfer, respectively. Temperate bacteriophages, defined by the ability to lysogenize a fraction of hosts and to transmit horizontally as well as vertically in the form of prophages, frequently carry genes that increase fitness or contribute to bacterial pathogenicity. Restriction-modification (RM) systems, which are widely diverse and ubiquitous among bacteria, can prevent infections leading to lysis, but their effect on lysogeny is not clear. We show that RM systems prevent lytic and lysogenic infections to the same extent and therefore represent a molecular barrier to prophage acquisition. Surprisingly, we find that this negative effect can be overcome and even reversed at the population level, as a consequence of dynamic interactions between viruses, hosts and RM systems. Thus the population dynamics of bacteria carrying RM systems impacts bacterial genome-wide evolution. .

  6. Population turnover and adaptation in heterogeneous environments

    NASA Astrophysics Data System (ADS)

    Campos, Paulo R. A.; de Oliveira, Viviane M.

    2012-02-01

    We study adaptive dynamics in a structured population model of asexual individuals which takes into account environmental heterogeneity among the subpopulations. The key purpose of the present work is to address how population turnovers, i.e. extinction events followed by recolonization, affect the rate of fixation of advantageous mutations. This model is a generalization of our previous model to address the interplay between environmental correlation and evolutionary forces on the adaptive process. The incorporation of population turnovers into the model enables us to make a direct correspondence between the model and host-parasite dynamics (epidemiological models). Strikingly, contrary to the intuitive and usual deleterious effect associated to extinction events, it is observed that population turnovers can in fact speed up adaptation as heterogeneity rises. On the other side, in nearly homogeneous population turnovers have a neutral effect on fixation rates, but a detrimental outcome is also achieved when extinction events become very common. In resume, population turnover outcomes on fixation rates of advantageous mutations are strongly influenced by the selective correlation among the subpopulations (demes).

  7. A generalized population dynamics model for reproductive interference with absolute density dependence.

    PubMed

    Kyogoku, Daisuke; Sota, Teiji

    2017-05-17

    Interspecific mating interactions, or reproductive interference, can affect population dynamics, species distribution and abundance. Previous population dynamics models have assumed that the impact of frequency-dependent reproductive interference depends on the relative abundances of species. However, this assumption could be an oversimplification inappropriate for making quantitative predictions. Therefore, a more general model to forecast population dynamics in the presence of reproductive interference is required. Here we developed a population dynamics model to describe the absolute density dependence of reproductive interference, which appears likely when encounter rate between individuals is important. Our model (i) can produce diverse shapes of isoclines depending on parameter values and (ii) predicts weaker reproductive interference when absolute density is low. These novel characteristics can create conditions where coexistence is stable and independent from the initial conditions. We assessed the utility of our model in an empirical study using an experimental pair of seed beetle species, Callosobruchus maculatus and Callosobruchus chinensis. Reproductive interference became stronger with increasing total beetle density even when the frequencies of the two species were kept constant. Our model described the effects of absolute density and showed a better fit to the empirical data than the existing model overall.

  8. Psychology and Population: An Overview.

    ERIC Educational Resources Information Center

    Fawcett, James T.

    Psychology and Population is defined as the study of individual dispositions and behavior that affect the size, structure and dispersion of the population, and the way in which acts of individuals enter into the dynamics of population change. Even this definition was viewed as inadequate, ignoring, as it does, the reciprocal effect of population…

  9. A BASIC Program for Use in Teaching Population Dynamics.

    ERIC Educational Resources Information Center

    Kidd, N. A. C.

    1984-01-01

    Describes an interactive simulation model which can be used to demonstrate population growth with discrete or overlapping populations and the effects of random, constant, or density-dependent mortality. The program listing (for Commodore PET 4032 microcomputer) is included. (Author/DH)

  10. The effect of social alliances on wolf population on their survival under hunting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cebrat, S.; Kakol, J.

    1997-04-01

    We have introduced the modified Verhulst factor to simulate the dynamics of wolves` population. The new factor enlarges the capacity of environment for organisms living in organized groups. Under this factor, social behavior allows the population to reach the larger size in the same ecological niche. The other effect of the introduced factor is that additional non-selective killing factors limit the population size not only directly but also by shrinking the effective ecological niche capacity.

  11. The Effect of Social Alliances on Wolf Population on Their Survival Under Hunting

    NASA Astrophysics Data System (ADS)

    Cebrat, Stanisław; Kakol, Jerzy

    We have introduced the modified Verhulst factor to simulate the dynamics of wolves' population. The new factor enlarges the capacity of environment for organisms living in organized groups. Under this factor, social behavior allows the population to reach the larger size in the same ecological niche. The other effect of the introduced factor is that additional non-selective killing factors limit the population size not only directly but also by shrinking the effective ecological niche capacity.

  12. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    USGS Publications Warehouse

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  13. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    PubMed

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  14. Small-scale fisheries, population dynamics, and resource use in Africa: the case of Moree, Ghana.

    PubMed

    Marquette, Catherine M; Koranteng, Kwame A; Overå, Ragnhild; Aryeetey, Ellen Bortei-Doku

    2002-06-01

    We consider population dynamics and sustainable use and development of fishery resources in Moree, a small-scale fishing and coastal community of 20,000 people in the Central Region of Ghana near Cape Coast. Moree suggests that relationships between population dynamics and fishery resources are more complex than the concept of Malthusian overfishing implies. Reasons include changing biophysical characteristics of the upwelling system along the coast of West Africa; qualitative as well as quantitative changes in fishing activity throughout the year; the market nature of fishing activity and nonlocal demands for fish; regular fishery migration; and institutions regulating fishery resource access at home and at migration destinations. Population and resource relationships in Moree may be the effects of fishery resource and economic changes on migration rather than population pressure on fishery resources. Fisheries management policies must take into account processes that lie beyond the influence of local fishermen.

  15. Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity.

    PubMed

    Frickel, Jens; Theodosiou, Loukas; Becks, Lutz

    2017-10-17

    Ecosystems are complex food webs in which multiple species interact and ecological and evolutionary processes continuously shape populations and communities. Previous studies on eco-evolutionary dynamics have shown that the presence of intraspecific diversity affects community structure and function, and that eco-evolutionary feedback dynamics can be an important driver for its maintenance. Within communities, feedbacks are, however, often indirect, and they can feed back over many generations. Here, we studied eco-evolutionary feedbacks in evolving communities over many generations and compared two-species systems (virus-host and prey-predator) with a more complex three-species system (virus-host-predator). Both indirect density- and trait-mediated effects drove the dynamics in the complex system, where host-virus coevolution facilitated coexistence of predator and virus, and where coexistence, in return, lowered intraspecific diversity of the host population. Furthermore, ecological and evolutionary dynamics were significantly altered in the three-species system compared with the two-species systems. We found that the predator slowed host-virus coevolution in the complex system and that the virus' effect on the overall population dynamics was negligible when the three species coexisted. Overall, we show that a detailed understanding of the mechanism driving eco-evolutionary feedback dynamics is necessary for explaining trait and species diversity in communities, even in communities with only three species.

  16. Prediction of population with Alzheimer's disease in the European Union using a system dynamics model.

    PubMed

    Tomaskova, Hana; Kuhnova, Jitka; Cimler, Richard; Dolezal, Ondrej; Kuca, Kamil

    2016-01-01

    Alzheimer's disease (AD) is a slowly progressing neurodegenerative brain disease with irreversible brain effects; it is the most common cause of dementia. With increasing age, the probability of suffering from AD increases. In this research, population growth of the European Union (EU) until the year 2080 and the number of patients with AD are modeled. The aim of this research is to predict the spread of AD in the EU population until year 2080 using a computer simulation. For the simulation of the EU population and the occurrence of AD in this population, a system dynamics modeling approach has been used. System dynamics is a useful and effective method for the investigation of complex social systems. Over the past decades, its applicability has been demonstrated in a wide variety of applications. In this research, this method has been used to investigate the growth of the EU population and predict the number of patients with AD. The model has been calibrated on the population prediction data created by Eurostat. Based on data from Eurostat, the EU population until year 2080 has been modeled. In 2013, the population of the EU was 508 million and the number of patients with AD was 7.5 million. Based on the prediction, in 2040, the population of the EU will be 524 million and the number of patients with AD will be 13.1 million. By the year 2080, the EU population will be 520 million and the number of patients with AD will be 13.7 million. System dynamics modeling approach has been used for the prediction of the number of patients with AD in the EU population till the year 2080. These results can be used to determine the economic burden of the treatment of these patients. With different input data, the simulation can be used also for the different regions as well as for different noncontagious disease predictions.

  17. Spatiotemporal dynamics of Puumala hantavirus associated with its rodent host, Myodes glareolus

    PubMed Central

    Weber de Melo, Vanessa; Sheikh Ali, Hanan; Freise, Jona; Kühnert, Denise; Essbauer, Sandra; Mertens, Marc; Wanka, Konrad M; Drewes, Stephan; Ulrich, Rainer G; Heckel, Gerald

    2015-01-01

    Many viruses significantly impact human and animal health. Understanding the population dynamics of these viruses and their hosts can provide important insights for epidemiology and virus evolution. Puumala virus (PUUV) is a European hantavirus that may cause regional outbreaks of hemorrhagic fever with renal syndrome in humans. Here, we analyzed the spatiotemporal dynamics of PUUV circulating in local populations of its rodent reservoir host, the bank vole (Myodes glareolus) during eight years. Phylogenetic and population genetic analyses of all three genome segments of PUUV showed strong geographical structuring at a very local scale. There was a high temporal turnover of virus strains in the local bank vole populations, but several virus strains persisted through multiple years. Phylodynamic analyses showed no significant changes in the local effective population sizes of PUUV, although vole numbers and virus prevalence fluctuated widely. Microsatellite data demonstrated also a temporally persisting subdivision between local vole populations, but these groups did not correspond to the subdivision in the virus strains. We conclude that restricted transmission between vole populations and genetic drift play important roles in shaping the genetic structure and temporal dynamics of PUUV in its natural host which has several implications for zoonotic risks of the human population. PMID:26136821

  18. The effects of landscape modifications on the long-term persistence of animal populations.

    PubMed

    Nabe-Nielsen, Jacob; Sibly, Richard M; Forchhammer, Mads C; Forbes, Valery E; Topping, Christopher J

    2010-01-28

    The effects of landscape modifications on the long-term persistence of wild animal populations is of crucial importance to wildlife managers and conservation biologists, but obtaining experimental evidence using real landscapes is usually impossible. To circumvent this problem we used individual-based models (IBMs) of interacting animals in experimental modifications of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of four species with contrasting life-history characteristics: skylark (Alauda arvensis), vole (Microtus agrestis), a ground beetle (Bembidion lampros) and a linyphiid spider (Erigone atra). This allows us to quantify the population implications of experimental modifications of landscape configuration and composition. Starting with a real agricultural landscape, we progressively reduced landscape complexity by (i) homogenizing habitat patch shapes, (ii) randomizing the locations of the patches, and (iii) randomizing the size of the patches. The first two steps increased landscape fragmentation. We assessed the effects of these manipulations on the long-term persistence of animal populations by measuring equilibrium population sizes and time to recovery after disturbance. Patch rearrangement and the presence of corridors had a large effect on the population dynamics of species whose local success depends on the surrounding terrain. Landscape modifications that reduced population sizes increased recovery times in the short-dispersing species, making small populations vulnerable to increasing disturbance. The species that were most strongly affected by large disturbances fluctuated little in population sizes in years when no perturbations took place. Traditional approaches to the management and conservation of populations use either classical methods of population analysis, which fail to adequately account for the spatial configurations of landscapes, or landscape ecology, which accounts for landscape structure but has difficulty predicting the dynamics of populations living in them. Here we show how realistic and replicable individual-based models can bridge the gap between non-spatial population theory and non-dynamic landscape ecology. A major strength of the approach is its ability to identify population vulnerabilities not detected by standard population viability analyses.

  19. Temporal analysis of genetic structure to assess population dynamics of reintroduced swift foxes.

    PubMed

    Cullingham, Catherine I; Moehrenschlager, Axel

    2013-12-01

    Reintroductions are increasingly used to reestablish species, but a paucity of long-term postrelease monitoring has limited understanding of whether and when viable populations subsequently persist. We conducted temporal genetic analyses of reintroduced populations of swift foxes (Vulpes velox) in Canada (Alberta and Saskatchewan) and the United States (Montana). We used samples collected 4 years apart, 17 years from the initiation of the reintroduction, and 3 years after the conclusion of releases. To assess program success, we genotyped 304 hair samples, subsampled from the known range in 2000 and 2001, and 2005 and 2006, at 7 microsatellite loci. We compared diversity, effective population size, and genetic connectivity over time in each population. Diversity remained stable over time and there was evidence of increasing effective population size. We determined population structure in both periods after correcting for differences in sample sizes. The geographic distribution of these populations roughly corresponded with the original release locations, which suggests the release sites had residual effects on the population structure. However, given that both reintroduction sites had similar source populations, habitat fragmentation, due to cropland, may be associated with the population structure we found. Although our results indicate growing, stable populations, future connectivity analyses are warranted to ensure both populations are not subject to negative small-population effects. Our results demonstrate the importance of multiple sampling years to fully capture population dynamics of reintroduced populations. Análisis Temporal de la Estructura Genética para Evaluar la Dinámica Poblacional de Zorros (Vulpes velox) Reintroducidos. © 2013 Society for Conservation Biology.

  20. Transience after disturbance: Obligate species recovery dynamics depend on disturbance duration.

    PubMed

    Singer, Alexander; Johst, Karin

    2017-06-01

    After a disturbance event, population recovery becomes an important species response that drives ecosystem dynamics. Yet, it is unclear how interspecific interactions impact species recovery from a disturbance and which role the disturbance duration (pulse or press) plays. Here, we analytically derive conditions that govern the transient recovery dynamics from disturbance of a host and its obligately dependent partner in a two-species metapopulation model. We find that, after disturbance, species recovery dynamics depend on the species' role (i.e. host or obligately dependent species) as well as the duration of disturbance. Host recovery starts immediately after the disturbance. In contrast, for obligate species, recovery depends on disturbance duration. After press disturbance, which allows dynamics to equilibrate during disturbance, obligate species immediately start to recover. Yet, after pulse disturbance, obligate species continue declining although their hosts have already begun to increase. Effectively, obligate species recovery is delayed until a necessary host threshold occupancy is reached. Obligates' delayed recovery arises solely from interspecific interactions independent of dispersal limitations, which contests previous explanations. Delayed recovery exerts a two-fold negative effect, because populations continue declining to even smaller population sizes and the phase of increased risk from demographic stochastic extinction in small populations is prolonged. We argue that delayed recovery and its determinants -species interactions and disturbance duration - have to be considered in biodiversity management. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Short-term effects of reduced-impact logging on Copaifera spp. (Fabaceae) regeneration in eastern Amazon

    Treesearch

    Carine Klauberg; Edson Vidal; Carlos Alberto Silva; Andrew Thomas Hudak; Manuela Oliveira; Pedro Higuchi

    2017-01-01

    Timber management directly influences the population dynamics of tree species, like Copaifera spp. (copaíba), which provide oil-resin with ecological and economic importance. The aim of this study was to evaluate the structure and population dynamics of Copaifera in unmanaged and managed stands by reduced-impact logging (RIL) in eastern Amazon in Pará state, Brazil....

  2. Mapping migratory flyways in Asia using dynamic Brownian bridge movement models

    USGS Publications Warehouse

    Palm, E.C.; Newman, S.H.; Prosser, Diann J.; Xiao, Xiangming; Luo, Ze; Batbayar, Nyambayar; Balachandran, Sivananinthaperumal; Takekawa, John Y.

    2015-01-01

    The dynamic Brownian bridge movement model improves our understanding of flyways by estimating relative use of regions in the flyway while providing detailed, quantitative information on migration timing and population connectivity including uncertainty between locations. This model effectively quantifies the relative importance of different migration corridors and stopover sites and may help prioritize specific areas in flyways for conservation of waterbird populations.

  3. Population dynamics of American horseshoe crabs-historic climatic events and recent anthropogenic pressures

    USGS Publications Warehouse

    Faurby, S.; King, T.L.; Obst, M.; Hallerman, E.M.; Pertoldi, C.; Funch, P.

    2010-01-01

    Populations of the American horseshoe crab, Limulus polyphemus, have declined, but neither the causes nor the magnitude are fully understood. In order to evaluate historic demography, variation at 12 microsatellite DNA loci surveyed in 1218 L. polyphemus sampled from 28 localities was analysed with Bayesian coalescent-based methods. The analysis showed strong declines in population sizes throughout the species' distribution except in the geographically isolated southern-most population in Mexico, where a strong increase in population size was inferred. Analyses suggested that demographic changes in the core of the distribution occurred in association with the recolonization after the Ice Age and also by anthropogenic effects, such as the past overharvest of the species for fertilizer or the current use of the animals as bait for American eel (Anguilla rostrata) and whelk (Busycon spp.) fisheries. This study highlights the importance of considering both climatic changes and anthropogenic effects in efforts to understand population dynamics-a topic which is highly relevant in the ongoing assessments of the effects of climate change and overharvest. ?? 2010 Blackwell Publishing Ltd.

  4. Population dynamics of American horseshoe crabs--historic climatic events and recent anthropogenic pressures.

    PubMed

    Faurby, Søren; King, Tim L; Obst, Matthias; Hallerman, Eric M; Pertoldi, Cino; Funch, Peter

    2010-08-01

    Populations of the American horseshoe crab, Limulus polyphemus, have declined, but neither the causes nor the magnitude are fully understood. In order to evaluate historic demography, variation at 12 microsatellite DNA loci surveyed in 1218 L. polyphemus sampled from 28 localities was analysed with Bayesian coalescent-based methods. The analysis showed strong declines in population sizes throughout the species' distribution except in the geographically isolated southern-most population in Mexico, where a strong increase in population size was inferred. Analyses suggested that demographic changes in the core of the distribution occurred in association with the recolonization after the Ice Age and also by anthropogenic effects, such as the past overharvest of the species for fertilizer or the current use of the animals as bait for American eel (Anguilla rostrata) and whelk (Busycon spp.) fisheries. This study highlights the importance of considering both climatic changes and anthropogenic effects in efforts to understand population dynamics--a topic which is highly relevant in the ongoing assessments of the effects of climate change and overharvest.

  5. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    PubMed

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events.

  6. INDIVIDUAL EFFECTS OF ESTROGENS ON A MARINE FISH, CUNNER (TAUTOGOLABRUS ADSPERSUS), EXTRAPOLATED TO POPULATION LEVEL

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) in the environment may alter the population dynamics of wildlife by affecting reproductive output. This study describes a matrix modeling approach to link laboratory studies on endocrine disruption with potential ecological effects. The exper...

  7. Population Dynamics of Excited Atoms in Dissipative Cavities

    NASA Astrophysics Data System (ADS)

    Zou, Hong-Mei; Liu, Yu; Fang, Mao-Fa

    2016-10-01

    Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state | e e> A B |00> a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state | g g> A B |11> a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.

  8. Complex Population Dynamics and the Coalescent Under Neutrality

    PubMed Central

    Volz, Erik M.

    2012-01-01

    Estimates of the coalescent effective population size Ne can be poorly correlated with the true population size. The relationship between Ne and the population size is sensitive to the way in which birth and death rates vary over time. The problem of inference is exacerbated when the mechanisms underlying population dynamics are complex and depend on many parameters. In instances where nonparametric estimators of Ne such as the skyline struggle to reproduce the correct demographic history, model-based estimators that can draw on prior information about population size and growth rates may be more efficient. A coalescent model is developed for a large class of populations such that the demographic history is described by a deterministic nonlinear dynamical system of arbitrary dimension. This class of demographic model differs from those typically used in population genetics. Birth and death rates are not fixed, and no assumptions are made regarding the fraction of the population sampled. Furthermore, the population may be structured in such a way that gene copies reproduce both within and across demes. For this large class of models, it is shown how to derive the rate of coalescence, as well as the likelihood of a gene genealogy with heterochronous sampling and labeled taxa, and how to simulate a coalescent tree conditional on a complex demographic history. This theoretical framework encapsulates many of the models used by ecologists and epidemiologists and should facilitate the integration of population genetics with the study of mathematical population dynamics. PMID:22042576

  9. Adaptive contact networks change effective disease infectiousness and dynamics.

    PubMed

    Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M

    2010-08-19

    Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).

  10. The role of fire-return interval and season of burn in snag dynamics in a south Florida slash pine forest

    USGS Publications Warehouse

    Lloyd, John D.; Slater, Gary L.; Snyder, James R.

    2012-01-01

    Standing dead trees, or snags, are an important habitat element for many animal species. In many ecosystems, fire is a primary driver of snag population dynamics because it can both create and consume snags. The objective of this study was to examine how variation in two key components of the fire regime—fire-return interval and season of burn—affected population dynamics of snags. Using a factorial design, we exposed 1 ha plots, located within larger burn units in a south Florida slash pine (Pinus elliottii var. densa Little and Dorman) forest, to prescribed fire applied at two intervals (approximately 3-year intervals vs. approximately 6-year intervals) and during two seasons (wet season vs. dry season) over a 12- to 13-year period. We found no consistent effect of fire season or frequency on the density of lightly to moderately decayed or heavily decayed snags, suggesting that variation in these elements of the fire regime at the scale we considered is relatively unimportant in the dynamics of snag populations. However, our confidence in these findings is limited by small sample sizes, potentially confounding effects of unmeasured variation in fire behavior and effects (e.g., intensity, severity, synergy with drought cycles) and wide variation in responses within a treatment level. The generalizing of our findings is also limited by the narrow range of treatment levels considered. Future experiments incorporating a wider range of fire regimes and directly quantifying fire intensity would prove useful in identifying more clearly the role of fire in shaping the dynamics of snag populations.

  11. Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics.

    PubMed

    Wells, Konstans; Brook, Barry W; Lacy, Robert C; Mutze, Greg J; Peacock, David E; Sinclair, Ron G; Schwensow, Nina; Cassey, Phillip; O'Hara, Robert B; Fordham, Damien A

    2015-02-06

    Infectious diseases can exert a strong influence on the dynamics of host populations, but it remains unclear why such disease-mediated control only occurs under particular environmental conditions. We used 16 years of detailed field data on invasive European rabbits (Oryctolagus cuniculus) in Australia, linked to individual-based stochastic models and Bayesian approximations, to test whether (i) mortality associated with rabbit haemorrhagic disease (RHD) is driven primarily by seasonal matches/mismatches between demographic rates and epidemiological dynamics and (ii) delayed infection (arising from insusceptibility and maternal antibodies in juveniles) are important factors in determining disease severity and local population persistence of rabbits. We found that both the timing of reproduction and exposure to viruses drove recurrent seasonal epidemics of RHD. Protection conferred by insusceptibility and maternal antibodies controlled seasonal disease outbreaks by delaying infection; this could have also allowed escape from disease. The persistence of local populations was a stochastic outcome of recovery rates from both RHD and myxomatosis. If susceptibility to RHD is delayed, myxomatosis will have a pronounced effect on population extirpation when the two viruses coexist. This has important implications for wildlife management, because it is likely that such seasonal interplay and disease dynamics has a strong effect on long-term population viability for many species. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Exploring the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus using dynamic energy budget modeling

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we conducted growth and bioaccumulation studies that contribute t...

  13. Population dynamics of Sesamia inferens on transgenic rice expressing Cry1Ac and CpTI in southern China.

    PubMed

    Han, Lanzhi; Liu, Peilei; Wu, Kongming; Peng, Yufa; Wang, Feng

    2008-10-01

    Genetically modified insect-resistant rice lines containing the cry1Ac gene from Bacillus thuringiensis (Bt) or the CpTI (cowpea trypsin inhibitor) gene developed for the management of lepidopterous pests are highly resistant to the major target pests, Chilo suppressalis (Walker), Cnaphalocrocis medinalis (Guenée), and Scirpophaga incertulas (Walker), in the main rice-growing areas of China. However, the effects of these transgenic lines on Sesamia inferens (Walker), an important lepidopterous rice pest, are currently unknown. Because different insect species have varying susceptibility to Bt insecticidal proteins that may affect population dynamics, research into the effects of these transgenic rice lines on the population dynamics of S. inferens was conducted in Fuzhou, southern China, in 2005 and 2006. The results of laboratory, field cage, and field plot experiments show that S. inferens has comparatively high susceptibility to the transgenic line during the early growing season, with significant differences observed in larval density and infestation levels between transgenic and control lines. Because of a decrease in Cry1Ac levels in the plant as it ages, the transgenic line provided only a low potential for population suppression late in the growing season. There is a correlation between the changing expression of Cry1Ac and the impact of transgenic rice on the population dynamics of S. inferens during the season. These results indicate that S. inferens may become a major pest in fields of prospective commercially released transgenic rice, and more attention should be paid to developing an effective alternative management strategy.

  14. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.

    PubMed

    Hanski, Ilkka A

    2011-08-30

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.

  15. Seasonal Population Dynamics of Megacopta cribraria (Hemiptera: Plataspidae) in Kudzu and Soybean, and Implication for Insecticidal Management in Soybean.

    PubMed

    Blount, J L; Roberts, P M; Toews, M D; Gardner, W A; Buntin, G D; Davis, J W; All, J N

    2017-02-01

    Megacopta cribraria (F.), an invasive species introduced from Asia in 2009, is now prolific in the southeastern United States. Megacopta cribraria develops primarily on kudzu and soybean completing two generations. It is not well understood how this economic pest is affected by changes in geographic distribution in the United States or how population levels have changed since its establishment. The effect of insecticide application timing on field populations of M. cribraria is not well documented. These studies seek to understand how population dynamics of M. cribraria vary with geographic regions in Georgia. Effect of application timing on populations throughout the growing season was also examined. Weekly from 2012 to 2013, all life stages were enumerated from kudzu and soybean environments at several locations throughout Georgia from sweeps samples and flight intercept captures. Coordinates were recorded for locations, and classified as belonging to the Piedmont or Coastal Plain region of the state. Single spray trials were conducted from 2011-2014, and applications were made to soybean at intervals throughout the season. From 2012 to 2015, two kudzu patches near Griffin, GA, were monitored to detect population changes. Differences in population dynamics from locations around the state were found, but no clear effect of latitude, longitude, or region was observed. Insecticide applications applied in July suppressed nymph populations significantly better than treatments made earlier or later. Megacopta cribraria populations declined in 2014 and 2015 compared with 2012 and 2013. These studies provide the critical information for M. cribraria management in soybean in the southeastern United States. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Spatial evolutionary epidemiology of spreading epidemics

    PubMed Central

    2016-01-01

    Most spatial models of host–parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. PMID:27798295

  17. Spatial evolutionary epidemiology of spreading epidemics.

    PubMed

    Lion, S; Gandon, S

    2016-10-26

    Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).

  18. Optogenetic stimulation of a meso-scale human cortical model

    NASA Astrophysics Data System (ADS)

    Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi

    2015-03-01

    Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.

  19. Current status and recent dynamics of the Black Brant Branta bernicla breeding population

    USGS Publications Warehouse

    Sedinger, James S.; Lensink, Calvin J.; Ward, David H.; Anthony, Michael W.; Wege, Michael L.; Byrd, G. Vernon

    1993-01-01

    We summarize current knowledge about the distribution of Pacific Black Brant and recent dynamics of colonies, particularly on the Yukon-Kuskokwim (Y-K) Delta, Alaska. About 20,000 nests are required to produce the number of young in the autumn flight using estimates of clutch size, hatching success and gosling survival based on colonies on the Y-K Delta. More than 80% of the nests in the population can be accounted for currently on the Y-K Delta. Most moulting individuals that did not breed, or were unsuccessful, are unaccounted for in late summer. Numbers of Black Brant nesting in major colonies on the Y-K Delta declined >60% in the early 1980s, most likely as a result of local subsistence harvest combined with predation by arctic foxes. Effective management of this population requires a better understanding of the distribution of breeding and moulting birds, the importance of breeding habitat to colony dynamics and the role of both sport and subsistence harvest in population dynamics.

  20. Abundance, survival, recruitment and effectiveness of sterilization of free-roaming dogs: A capture and recapture study in Brazil

    PubMed Central

    Struchiner, Claudio José; Werneck, Guilherme Loureiro; Teixeira Neto, Rafael Gonçalves; Tonelli, Gabriel Barbosa; de Carvalho Júnior, Clóvis Gomes; Ribeiro, Renata Aparecida Nascimento; da Silva, Eduardo Sérgio

    2017-01-01

    The existence of free-roaming dogs raises important issues in animal welfare and in public health. A proper understanding of these animals’ ecology is useful as a necessary input to plan strategies to control these populations. The present study addresses the population dynamics and the effectiveness of the sterilization of unrestricted dogs using capture and recapture procedures suitable for open animal populations. Every two months, over a period of 14 months, we captured, tagged, released and recaptured dogs in two regions in a city in the southeast region of Brazil. In one of these regions the animals were also sterilized. Both regions had similar social, environmental and demographic features. We estimated the presence of 148 females and 227 males during the period of study. The average dog:man ratio was 1 dog for each 42 and 51 human beings, in the areas without and with sterilization, respectively. The animal population size increased in both regions, due mainly to the abandonment of domestic dogs. Mortality rate decreased throughout the study period. Survival probabilities did not differ between genders, but males entered the population in higher numbers. There were no differences in abundance, survival and recruitment between the regions, indicating that sterilization did not affect the population dynamics. Our findings indicate that the observed animal dynamics were influenced by density-independent factors, and that sterilization might not be a viable and effective strategy in regions where availability of resources is low and animal abandonment rates are high. Furthermore, the high demographic turnover rates observed render the canine free-roaming population younger, thus more susceptible to diseases, especially to rabies and leishmaniasis. We conclude by stressing the importance of implementing educational programs to promote responsible animal ownership and effective strategies against abandonment practices. PMID:29091961

  1. Abundance, survival, recruitment and effectiveness of sterilization of free-roaming dogs: A capture and recapture study in Brazil.

    PubMed

    Belo, Vinícius Silva; Struchiner, Claudio José; Werneck, Guilherme Loureiro; Teixeira Neto, Rafael Gonçalves; Tonelli, Gabriel Barbosa; de Carvalho Júnior, Clóvis Gomes; Ribeiro, Renata Aparecida Nascimento; da Silva, Eduardo Sérgio

    2017-01-01

    The existence of free-roaming dogs raises important issues in animal welfare and in public health. A proper understanding of these animals' ecology is useful as a necessary input to plan strategies to control these populations. The present study addresses the population dynamics and the effectiveness of the sterilization of unrestricted dogs using capture and recapture procedures suitable for open animal populations. Every two months, over a period of 14 months, we captured, tagged, released and recaptured dogs in two regions in a city in the southeast region of Brazil. In one of these regions the animals were also sterilized. Both regions had similar social, environmental and demographic features. We estimated the presence of 148 females and 227 males during the period of study. The average dog:man ratio was 1 dog for each 42 and 51 human beings, in the areas without and with sterilization, respectively. The animal population size increased in both regions, due mainly to the abandonment of domestic dogs. Mortality rate decreased throughout the study period. Survival probabilities did not differ between genders, but males entered the population in higher numbers. There were no differences in abundance, survival and recruitment between the regions, indicating that sterilization did not affect the population dynamics. Our findings indicate that the observed animal dynamics were influenced by density-independent factors, and that sterilization might not be a viable and effective strategy in regions where availability of resources is low and animal abandonment rates are high. Furthermore, the high demographic turnover rates observed render the canine free-roaming population younger, thus more susceptible to diseases, especially to rabies and leishmaniasis. We conclude by stressing the importance of implementing educational programs to promote responsible animal ownership and effective strategies against abandonment practices.

  2. Population density and seasonality effects on Sin Nombre virus transmission in North American deermice (Peromyscus maniculatus) in outdoor enclosures.

    PubMed

    Bagamian, Karoun H; Douglass, Richard J; Alvarado, Arlene; Kuenzi, Amy J; Amman, Brian R; Waller, Lance A; Mills, James N

    2012-01-01

    Surveys of wildlife host-pathogen systems often document clear seasonal variation in transmission; conclusions concerning the relationship between host population density and transmission vary. In the field, effects of seasonality and population density on natural disease cycles are challenging to measure independently, but laboratory experiments may poorly reflect what happens in nature. Outdoor manipulative experiments are an alternative that controls for some variables in a relatively natural environment. Using outdoor enclosures, we tested effects of North American deermouse (Peromyscus maniculatus) population density and season on transmission dynamics of Sin Nombre hantavirus. In early summer, mid-summer, late summer, and fall 2007-2008, predetermined numbers of infected and uninfected adult wild deermice were released into enclosures and trapped weekly or bi-weekly. We documented 18 transmission events and observed significant seasonal effects on transmission, wounding frequency, and host breeding condition. Apparent differences in transmission incidence or wounding frequency between high- and low-density treatments were not statistically significant. However, high host density was associated with a lower proportion of males with scrotal testes. Seasonality may have a stronger influence on disease transmission dynamics than host population density, and density effects cannot be considered independent of seasonality.

  3. Joint  effects of habitat configuration and temporal stochasticity on population dynamics

    Treesearch

    Jennifer M. Fraterrigo; Scott M. Pearson; Monica G. Turner

    2009-01-01

    Habitat configuration and temporal stochasticity in the environment are recognized as important drivers of population structure, yet few studies have examined the combined influence of these factors....

  4. Effects of landscape and patch-level attributes on regional population persistence

    EPA Science Inventory

    Habitat patch size and isolation are often described as the key habitat variables influencing population dynamics. Yet habitat quality may also play an important role in influencing the regional persistence of spatially structured populations as the value or density of resources ...

  5. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  6. Predicting population survival under future climate change: density dependence, drought and extraction in an insular bighorn sheep.

    PubMed

    Colchero, Fernando; Medellin, Rodrigo A; Clark, James S; Lee, Raymond; Katul, Gabriel G

    2009-05-01

    1. Our understanding of the interplay between density dependence, climatic perturbations, and conservation practices on the dynamics of small populations is still limited. This can result in uninformed strategies that put endangered populations at risk. Moreover, the data available for a large number of populations in such circumstances are sparse and mined with missing data. Under the current climate change scenarios, it is essential to develop appropriate inferential methods that can make use of such data sets. 2. We studied a population of desert bighorn sheep introduced to Tiburon Island, Mexico in 1975 and subjected to irregular extractions for the last 10 years. The unique attributes of this population are absence of predation and disease, thereby permitting us to explore the combined effect of density dependence, environmental variability and extraction in a 'controlled setting.' Using a combination of nonlinear discrete models with long-term field data, we constructed three basic Bayesian state space models with increasing density dependence (DD), and the same three models with the addition of summer drought effects. 3. We subsequently used Monte Carlo simulations to evaluate the combined effect of drought, DD, and increasing extractions on the probability of population survival under two climate change scenarios (based on the Intergovernmental Panel on Climate Change predictions): (i) increase in drought variability; and (ii) increase in mean drought severity. 4. The population grew from 16 individuals introduced in 1975 to close to 700 by 1993. Our results show that the population's growth was dominated by DD, with drought having a secondary but still relevant effect on its dynamics. 5. Our predictions suggest that under climate change scenario (i), extraction dominates the fate of the population, while for scenario (ii), an increase in mean drought affects the population's probability of survival in an equivalent magnitude as extractions. Thus, for the long-term survival of the population, our results stress that a more variable environment is less threatening than one in which the mean conditions become harsher. Current climate change scenarios and their underlying uncertainty make studies such as this one crucial for understanding the dynamics of ungulate populations and their conservation.

  7. Preoutbreak dynamics of a recently established invasive herbivore: roles of natural enemies and habitat structure in stage-specific performance of gypsy moth (Lepidoptera: Lymantriidae) populations in northeastern Wisconsin

    Treesearch

    Rebecca Hoffman Gray; Craig G. Lorimer; Patrick C. Tobin; Kenneth F. Raffa

    2008-01-01

    A major challenge to addressing biological invasions is that the need for emergency responses often precludes opportunities to analyze the dynamics between initial establishment and population eruption. Thus, a broader understanding of underlying processes and management opportunities is often lacking. We examined the effects of habitat structure and natural enemies on...

  8. Population dynamics and climate change: what are the links?

    PubMed

    Stephenson, Judith; Newman, Karen; Mayhew, Susannah

    2010-06-01

    Climate change has been described as the biggest global health threat of the 21(st) century. World population is projected to reach 9.1 billion by 2050, with most of this growth in developing countries. While the principal cause of climate change is high consumption in the developed countries, its impact will be greatest on people in the developing world. Climate change and population can be linked through adaptation (reducing vulnerability to the adverse effects of climate change) and, more controversially, through mitigation (reducing the greenhouse gases that cause climate change). The contribution of low-income, high-fertility countries to global carbon emissions has been negligible to date, but is increasing with the economic development that they need to reduce poverty. Rapid population growth endangers human development, provision of basic services and poverty eradication and weakens the capacity of poor communities to adapt to climate change. Significant mass migration is likely to occur in response to climate change and should be regarded as a legitimate response to the effects of climate change. Linking population dynamics with climate change is a sensitive issue, but family planning programmes that respect and protect human rights can bring a remarkable range of benefits. Population dynamics have not been integrated systematically into climate change science. The contribution of population growth, migration, urbanization, ageing and household composition to mitigation and adaptation programmes needs urgent investigation.

  9. Disturbance frequency and vertical distribution of seeds affect long-term population dynamics: a mechanistic seed bank model.

    PubMed

    Eager, Eric Alan; Haridas, Chirakkal V; Pilson, Diana; Rebarber, Richard; Tenhumberg, Brigitte

    2013-08-01

    Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.

  10. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    NASA Astrophysics Data System (ADS)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  11. Complete Firing-Rate Response of Neurons with Complex Intrinsic Dynamics

    PubMed Central

    Puelma Touzel, Maximilian; Wolf, Fred

    2015-01-01

    The response of a neuronal population over a space of inputs depends on the intrinsic properties of its constituent neurons. Two main modes of single neuron dynamics–integration and resonance–have been distinguished. While resonator cell types exist in a variety of brain areas, few models incorporate this feature and fewer have investigated its effects. To understand better how a resonator’s frequency preference emerges from its intrinsic dynamics and contributes to its local area’s population firing rate dynamics, we analyze the dynamic gain of an analytically solvable two-degree of freedom neuron model. In the Fokker-Planck approach, the dynamic gain is intractable. The alternative Gauss-Rice approach lifts the resetting of the voltage after a spike. This allows us to derive a complete expression for the dynamic gain of a resonator neuron model in terms of a cascade of filters on the input. We find six distinct response types and use them to fully characterize the routes to resonance across all values of the relevant timescales. We find that resonance arises primarily due to slow adaptation with an intrinsic frequency acting to sharpen and adjust the location of the resonant peak. We determine the parameter regions for the existence of an intrinsic frequency and for subthreshold and spiking resonance, finding all possible intersections of the three. The expressions and analysis presented here provide an account of how intrinsic neuron dynamics shape dynamic population response properties and can facilitate the construction of an exact theory of correlations and stability of population activity in networks containing populations of resonator neurons. PMID:26720924

  12. The Rise and Fall of a Yeast Community, An Environmental Investigation into the Dynamics of Population Growth.

    ERIC Educational Resources Information Center

    Minnesota Environmental Sciences Foundation, Inc., Minneapolis.

    In this unit students study populations by observing some of the activities that go on in one particular population. Specifically, yeast plants are examined and some of the effects which various environmental factors have on yeast plant populations are investigated. A population curve is developed showing how easily it is affected by the…

  13. Bioeconomic synergy between tactics for insect eradication in the presence of Allee effects

    Treesearch

    Julie C. ​Blackwood; Ludek Berec; Takehiko Yamanaka; Rebecca S. Epanchin-Niell; Alan Hastings; Andrew M. Liebhold

    2012-01-01

    Preventing the establishment of invading pest species can be beneficial with respect to averting future environmental and economic impacts and also in preventing the accumulation of control costs. Allee effects play an important role in the dynamics of newly established, low-density populations by driving small populations into self-extinction, making Allee effects...

  14. Genetic diversity affects the strength of population regulation in a marine fish.

    PubMed

    Johnson, D W; Freiwald, J; Bernardi, G

    2016-03-01

    Variation is an essential feature of biological populations, yet much of ecological theory treats individuals as though they are identical. This simplifying assumption is often justified by the perception that variation among individuals does not have significant effects on the dynamics of whole populations. However, this perception may be skewed by a historic focus on studying single populations. A true evaluation of the extent to which among-individual variation affects the dynamics of populations requires the study of multiple populations. In this study, we examined variation in the dynamics of populations of a live-bearing, marine fish (black surfperch; Embiotoca jacksoni). In collaboration with an organization of citizen scientists (Reef Check California), we were able to examine the dynamics of eight populations that were distributed throughout approximately 700 km of coastline, a distance that encompasses much of this species' range. We hypothesized that genetic variation within a local population would be related to the intensity of competition and to the strength of population regulation. To test this hypothesis, we examined whether genetic diversity (measured by the diversity of mitochondrial DNA haplotypes) was related to the strength of population regulation. Low-diversity populations experienced strong density dependence in population growth rates and population sizes were regulated much more tightly than they were in high-diversity populations. Mechanisms that contributed to this pattern include links between genetic diversity, habitat use, and spatial crowding. On average, low-diversity populations used less of the available habitat and exhibited greater spatial clustering (and more intense competition) for a given level of density (measured at the scale of the reef). Although the populations we studied also varied with respect to exogenous characteristics (habitat complexity, densities of predators, and interspecific competitors), none of these characteristics was significantly related to the strength of population regulation. In contrast, an endogenous characteristic of the population (genetic diversity) explained 77% of the variation in the strength of population regulation (95% CI: 27-94%). Our results suggest that the genetic and phenotypic composition of populations can play a major role in their dynamics.

  15. Vigorous dynamics underlie a stable population of the endangered snow leopard Panthera uncia in Tost Mountains, South Gobi, Mongolia.

    PubMed

    Sharma, Koustubh; Bayrakcismith, Rana; Tumursukh, Lkhagvasumberel; Johansson, Orjan; Sevger, Purevsuren; McCarthy, Tom; Mishra, Charudutt

    2014-01-01

    Population monitoring programmes and estimation of vital rates are key to understanding the mechanisms of population growth, decline or stability, and are important for effective conservation action. We report, for the first time, the population trends and vital rates of the endangered snow leopard based on camera trapping over four years in the Tost Mountains, South Gobi, Mongolia. We used robust design multi-season mark-recapture analysis to estimate the trends in abundance, sex ratio, survival probability and the probability of temporary emigration and immigration for adult and young snow leopards. The snow leopard population remained constant over most of the study period, with no apparent growth (λ = 1.08+-0.25). Comparison of model results with the "known population" of radio-collared snow leopards suggested high accuracy in our estimates. Although seemingly stable, vigorous underlying dynamics were evident in this population, with the adult sex ratio shifting from being male-biased to female-biased (1.67 to 0.38 males per female) during the study. Adult survival probability was 0.82 (SE+-0.08) and that of young was 0.83 (SE+-0.15) and 0.77 (SE +-0.2) respectively, before and after the age of 2 years. Young snow leopards showed a high probability of temporary emigration and immigration (0.6, SE +-0.19 and 0.68, SE +-0.32 before and after the age of 2 years) though not the adults (0.02 SE+-0.07). While the current female-bias in the population and the number of cubs born each year seemingly render the study population safe, the vigorous dynamics suggests that the situation can change quickly. The reduction in the proportion of male snow leopards may be indicative of continuing anthropogenic pressures. Our work reiterates the importance of monitoring both the abundance and population dynamics of species for effective conservation.

  16. Estimation of mussel population response to hydrologic alteration in a southeastern U.S. stream

    USGS Publications Warehouse

    Peterson, J.T.; Wisniewski, J.M.; Shea, C.P.; Rhett, Jackson C.

    2011-01-01

    The southeastern United States has experienced severe, recurrent drought, rapid human population growth, and increasing agricultural irrigation during recent decades, resulting in greater demand for the water resources. During the same time period, freshwater mussels (Unioniformes) in the region have experienced substantial population declines. Consequently, there is growing interest in determining how mussel population declines are related to activities associated with water resource development. Determining the causes of mussel population declines requires, in part, an understanding of the factors influencing mussel population dynamics. We developed Pradel reverse-time, tag-recapture models to estimate survival, recruitment, and population growth rates for three federally endangered mussel species in the Apalachicola- Chattahoochee-Flint River Basin, Georgia. The models were parameterized using mussel tag-recapture data collected over five consecutive years from Sawhatchee Creek, located in southwestern Georgia. Model estimates indicated that mussel survival was strongly and negatively related to high flows during the summer, whereas recruitment was strongly and positively related to flows during the spring and summer. Using these models, we simulated mussel population dynamics under historic (1940-1969) and current (1980-2008) flow regimes and under increasing levels of water use to evaluate the relative effectiveness of alternative minimum flow regulations. The simulations indicated that the probability of simulated mussel population extinction was at least 8 times greater under current hydrologic regimes. In addition, simulations of mussel extinction under varying levels of water use indicated that the relative risk of extinction increased with increased water use across a range of minimum flow regulations. The simulation results also indicated that our estimates of the effects of water use on mussel extinction were influenced by the assumptions about the dynamics of the system, highlighting the need for further study of mussel population dynamics. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  17. Development of a Dynamic Energy Budget Modeling Approach to Investigate the Effects of Temperature and Resource Limitation on Mercury Bioaccumulation in Fundulus Heteroclitus

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population persistence and growth. To explore this approach, we are conducting growth and bioaccumulation studies that cont...

  18. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus-presentation

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are conducting growth and bioaccumulation studies that contrib...

  19. Development of a dynamic energy budget modeling approach to investigate the effects of temperature and resource limitation on mercury bioaccumulation in Fundulus heteroclitus.

    EPA Science Inventory

    Dynamic energy budget (DEB) theory provides a generalizable and broadly applicable framework to connect sublethal toxic effects on individuals to changes in population survival and growth. To explore this approach, we are developing growth and bioaccumulation studies that contrib...

  20. Ecological drivers of guanaco recruitment: variable carrying capacity and density dependence.

    PubMed

    Marino, Andrea; Pascual, Miguel; Baldi, Ricardo

    2014-08-01

    Ungulates living in predator-free reserves offer the opportunity to study the influence of food limitation on population dynamics without the potentially confounding effects of top-down regulation or livestock competition. We assessed the influence of relative forage availability and population density on guanaco recruitment in two predator-free reserves in eastern Patagonia, with contrasting scenarios of population density. We also explored the relative contribution of the observed recruitment to population growth using a deterministic linear model to test the assumption that the studied populations were closed units. The observed densities increased twice as fast as our theoretical populations, indicating that marked immigration has taken place during the recovery phase experienced by both populations, thus we rejected the closed-population assumption. Regarding the factors driving variation in recruitment, in the low- to medium-density setting, we found a positive linear relationship between recruitment and surrogates of annual primary production, whereas no density dependence was detected. In contrast, in the high-density scenario, both annual primary production and population density showed marked effects, indicating a positive relationship between recruitment and per capita food availability above a food-limitation threshold. Our results support the idea that environmental carrying capacity fluctuates in response to climatic variation, and that these fluctuations have relevant consequences for herbivore dynamics, such as amplifying density dependence in drier years. We conclude that including the coupling between environmental variability in resources and density dependence is crucial to model ungulate population dynamics; to overlook temporal changes in carrying capacity may even mask density dependence as well as other important processes.

  1. Forest bat population dynamics over 14 years at a climate refuge: Effects of timber harvesting and weather extremes.

    PubMed

    Law, Bradley S; Chidel, Mark; Law, Peter R

    2018-01-01

    Long-term data are needed to explore the interaction of weather extremes with habitat alteration; in particular, can 'refugia' buffer population dynamics against climate change and are they robust to disturbances such as timber harvesting. Because forest bats are good indicators of ecosystem health, we used 14 years (1999-2012) of mark-recapture data from a suite of small tree-hollow roosting bats to estimate survival, abundance and body condition in harvested and unharvested forest and over extreme El Niño and La Niña weather events in southeastern Australia. Trapping was replicated within an experimental forest, located in a climate refuge, with different timber harvesting treatments. We trapped foraging bats and banded 3043 with a 32% retrap rate. Mark-recapture analyses allowed for dependence of survival on time, species, sex, logging treatment and for transients. A large portion of the population remained resident, with a maximum time to recapture of nine years. The effect of logging history (unlogged vs 16-30 years post-logging regrowth) on apparent survival was minor and species specific, with no detectable effect for two species, a positive effect for one and negative for the other. There was no effect of logging history on abundance or body condition for any of these species. Apparent survival of residents was not strongly influenced by weather variation (except for the smallest species), unlike previous studies outside of refugia. Despite annual variation in abundance and body condition across the 14 years of the study, no relationship with extreme weather was evident. The location of our study area in a climate refuge potentially buffered bat population dynamics from extreme weather. These results support the value of climate refugia in mitigating climate change impacts, though the lack of an external control highlights the need for further studies on the functioning of climate refugia. Relatively stable population dynamics were not compromised by timber harvesting, suggesting ecologically sustainable harvesting may be compatible with climate refugia.

  2. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise.

    PubMed

    Che-Castaldo, Christian; Jenouvrier, Stephanie; Youngflesh, Casey; Shoemaker, Kevin T; Humphries, Grant; McDowall, Philip; Landrum, Laura; Holland, Marika M; Li, Yun; Ji, Rubao; Lynch, Heather J

    2017-10-10

    Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.

  3. Multi-event capture–recapture modeling of host–pathogen dynamics among European rabbit populations exposed to myxoma and Rabbit Hemorrhagic Disease Viruses: common and heterogeneous patterns

    PubMed Central

    2014-01-01

    Host–pathogen epidemiological processes are often unclear due both to their complexity and over-simplistic approaches used to quantify them. We applied a multi-event capture–recapture procedure on two years of data from three rabbit populations to test hypotheses about the effects on survival of, and the dynamics of host immunity to, both myxoma virus and Rabbit Hemorrhagic Disease Virus (MV and RHDV). Although the populations shared the same climatic and management conditions, MV and RHDV dynamics varied greatly among them; MV and RHDV seroprevalences were positively related to density in one population, but RHDV seroprevalence was negatively related to density in another. In addition, (i) juvenile survival was most often negatively related to seropositivity, (ii) RHDV seropositives never had considerably higher survival, and (iii) seroconversion to seropositivity was more likely than the reverse. We suggest seropositivity affects survival depending on trade-offs among antibody protection, immunosuppression and virus lethality. Negative effects of seropositivity might be greater on juveniles due to their immature immune system. Also, while RHDV directly affects survival through the hemorrhagic syndrome, MV lack of direct lethal effects means that interactions influencing survival are likely to be more complex. Multi-event modeling allowed us to quantify patterns of host–pathogen dynamics otherwise difficult to discern. Such an approach offers a promising tool to shed light on causative mechanisms. PMID:24708296

  4. Exploitation dynamics of small fish stocks like Arctic cisco

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2004-01-01

    Potential impacts to the Arctic cisco population fall into both demographic and behavioral categories. Possible demographic impacts include stock recruitment effects, limited escapement into marine habitats, and variable age-class reproductive success. Potential behavioral impacts involve migratory patterns, variable life histories, and strategies for seasonal feeding. Arctic cisco stocks are highly susceptible to over-exploitation due to our limited basic knowledge of the highly variable Arctic environment and the role they play in this dynamic ecosystem.Our knowledge of potential demographic changes is very limited, and it is necessary to determine the abundance and recruitment of the hypothesized Mackenzie River source population, the extent of the coastal migratory corridor, growth patterns, and coastal upwelling and mixing effects on population dynamics for this species. Information needed to answer some of the demographic questions includes basic evolutionary history and molecular genetics of Arctic cisco (for instance, are there contributions to the Arctic cisco stock from the Yukon?), what is the effective population size (i.e., breeding population size), and potential links to changes in climate. The basic behavioral questions include migratory and variable life history questions. For instance, the extent of movement back and forth between freshwater and the sea, age-specific differences in food web dynamics, and nearshore brackish and high salinity habitats are topics that should be studied. Life history data should be gathered to understand the variation in age at reproduction, salinity tolerance, scale and duration of the freshwater stage, survival, and adult migration. Both molecular and ecological tools should be integrated to manage the Arctic cisco stock(s), such as understanding global climate changes on patterns of harvest and recruitment, and the genetics of population structure and colonization. Perhaps other populations are contributing to the population within the Colville River other than only the Mackenzie River population. This needs further exploration. By examining otolith microchemistry, unique transitions from freshwater to sea can be identified for these stocks. This may shed light on why some fish arrive at the mouth of the Colville River, while others don’t.

  5. Population Dynamics of an Insect Herbivore over 32 Years are Driven by Precipitation and Host-Plant Effects: Testing Model Predictions.

    PubMed

    Price, Peter W; Hunter, Mark D

    2015-06-01

    The interaction between the arroyo willow, Salix lasiolepis Bentham, and its specialist herbivore, the arroyo willow stem-galling sawfly, Euura lasiolepis Smith (Hymenoptera: Tenthredinidae), was studied for 32 yr in Flagstaff, AZ, emphasizing a mechanistic understanding of insect population dynamics. Long-term weather records were evaluated to provide a climatic context for this study. Previously, predictive models of sawfly dynamics were developed from estimates of sawfly gall density made between 1981 and 2002; one model each for drier and wetter sites. Predictor variables in these models included winter precipitation and the Palmer Drought Severity Index, which impact the willow growth, with strong bottom-up effects on sawflies. We now evaluate original model predictions of sawfly population dynamics using new data (from 2003-2012). Additionally, willow resources were evaluated in 1986 and in 2012, using as criteria clone area, shoot density, and shoot length. The dry site model accounted for 40% of gall population density variation between 2003 and 2012 (69% over the 32 yr), providing strong support for the bottom-up, mechanistic hypothesis that water supply to willow hosts impacts sawfly populations. The current drying trend stressed willow clones: in drier sites, willow resources declined and gall density decreased by 98%. The wet site model accounted for 23% of variation in gall population density between 2003 and 2012 (48% over 30 yr), consistent with less water limitation. Nonetheless, gall populations were reduced by 72%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Quantitative Investigation of the Role of Intra-/Intercellular Dynamics in Bacterial Quorum Sensing.

    PubMed

    Leaman, Eric J; Geuther, Brian Q; Behkam, Bahareh

    2018-04-20

    Bacteria utilize diffusible signals to regulate population density-dependent coordinated gene expression in a process called quorum sensing (QS). While the intracellular regulatory mechanisms of QS are well-understood, the effect of spatiotemporal changes in the population configuration on the sensitivity and robustness of the QS response remains largely unexplored. Using a microfluidic device, we quantitatively characterized the emergent behavior of a population of swimming E. coli bacteria engineered with the lux QS system and a GFP reporter. We show that the QS activation time follows a power law with respect to bacterial population density, but this trend is disrupted significantly by microscale variations in population configuration and genetic circuit noise. We then developed a computational model that integrates population dynamics with genetic circuit dynamics to enable accurate (less than 7% error) quantitation of the bacterial QS activation time. Through modeling and experimental analyses, we show that changes in spatial configuration of swimming bacteria can drastically alter the QS activation time, by up to 22%. The integrative model developed herein also enables examination of the performance robustness of synthetic circuits with respect to growth rate, circuit sensitivity, and the population's initial size and spatial structure. Our framework facilitates quantitative tuning of microbial systems performance through rational engineering of synthetic ribosomal binding sites. We have demonstrated this through modulation of QS activation time over an order of magnitude. Altogether, we conclude that predictive engineering of QS-based bacterial systems requires not only the precise temporal modulation of gene expression (intracellular dynamics) but also accounting for the spatiotemporal changes in population configuration (intercellular dynamics).

  7. Rapid evolution of hosts begets species diversity at the cost of intraspecific diversity

    PubMed Central

    Frickel, Jens; Theodosiou, Loukas

    2017-01-01

    Ecosystems are complex food webs in which multiple species interact and ecological and evolutionary processes continuously shape populations and communities. Previous studies on eco-evolutionary dynamics have shown that the presence of intraspecific diversity affects community structure and function, and that eco-evolutionary feedback dynamics can be an important driver for its maintenance. Within communities, feedbacks are, however, often indirect, and they can feed back over many generations. Here, we studied eco-evolutionary feedbacks in evolving communities over many generations and compared two-species systems (virus–host and prey–predator) with a more complex three-species system (virus–host–predator). Both indirect density- and trait-mediated effects drove the dynamics in the complex system, where host–virus coevolution facilitated coexistence of predator and virus, and where coexistence, in return, lowered intraspecific diversity of the host population. Furthermore, ecological and evolutionary dynamics were significantly altered in the three-species system compared with the two-species systems. We found that the predator slowed host–virus coevolution in the complex system and that the virus’ effect on the overall population dynamics was negligible when the three species coexisted. Overall, we show that a detailed understanding of the mechanism driving eco-evolutionary feedback dynamics is necessary for explaining trait and species diversity in communities, even in communities with only three species. PMID:28973943

  8. Social inequality in dynamic balance performance in an early old age Spanish population: the role of health and lifestyle associated factors.

    PubMed

    Rodríguez López, Santiago; Nilsson, Charlotte; Lund, Rikke; Montero, Pilar; Fernández-Ballesteros, Rocío; Avlund, Kirsten

    2012-01-01

    This study investigates the association between socioeconomic status (SES) and dynamic balance performance and whether lifestyle factors explained any possible associations. A total of 448 nondisabled individuals, age-range 54-75 years and enrolled in the Active Aging Longitudinal Study of Spain in 2006, constituted the study population. Baseline data of this cross-sectional study were obtained by personal interviews and objective measures of balance performance. The present study shows an educational gradient in poor dynamic balance, where individuals with no formal education had higher risk of poor balance, also after adjustment for age, gender, obesity and physical activity. In addition, obesity and sedentary physical activity were related to poor dynamic balance. The findings suggest an independent effect of both SES and behavioral factors on poor balance performance in the older Spanish population. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.

    PubMed

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A

    2016-08-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    USGS Publications Warehouse

    Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.

    1997-01-01

    Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.

  11. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen.

    PubMed

    Edwards, Joan E; Kingston-Smith, Alison H; Jimenez, Hugo R; Huws, Sharon A; Skøt, Kirsten P; Griffith, Gareth W; McEwan, Neil R; Theodorou, Michael K

    2008-12-01

    Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.

  12. Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly

    PubMed Central

    Hanski, Ilkka A.

    2011-01-01

    Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506

  13. Hydration dynamics promote bacterial coexistence on rough surfaces

    PubMed Central

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  14. Increasing frequency of low summer precipitation synchronizes dynamics and compromises metapopulation stability in the Glanville fritillary butterfly

    PubMed Central

    Tack, Ayco J. M.; Mononen, Tommi; Hanski, Ilkka

    2015-01-01

    Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics. PMID:25854888

  15. Population dynamics and the economics of invasive species management: the greenhouse whitefly in California-grown strawberries.

    PubMed

    McKee, Gregory J; Goodhue, Rachael E; Zalom, Frank G; Carter, Colin A; Chalfant, James A

    2009-01-01

    In agriculture, relatively few efficacious control measures may be available for an invasive pest. In the case of a new insect pest, insecticide use decisions are affected by regulations associated with its registration, insect population dynamics, and seasonal market price cycles. We assess the costs and benefits of environmental regulations designed to regulate insecticide applications on an invasive species. We construct a bioeconomic model, based on detailed scientific data, of management decisions for a specific invasion: greenhouse whiteflies in California-grown strawberries. The empirical model integrates whitefly population dynamics, the effect of whitefly feeding on strawberry yields, and weekly strawberry price. We use the model to assess the optimality of alternative treatment programs on a simulated greenhouse whitefly population. Our results show that regulations may lead growers to "under-spray" when placed in an economic context, and provide some general lessons about the design of optimal invasive species control policies.

  16. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  17. Extinction rates in tumour public goods games.

    PubMed

    Gerlee, Philip; Altrock, Philipp M

    2017-09-01

    Cancer evolution and progression are shaped by cellular interactions and Darwinian selection. Evolutionary game theory incorporates both of these principles, and has been proposed as a framework to understand tumour cell population dynamics. A cornerstone of evolutionary dynamics is the replicator equation, which describes changes in the relative abundance of different cell types, and is able to predict evolutionary equilibria. Typically, the replicator equation focuses on differences in relative fitness. We here show that this framework might not be sufficient under all circumstances, as it neglects important aspects of population growth. Standard replicator dynamics might miss critical differences in the time it takes to reach an equilibrium, as this time also depends on cellular turnover in growing but bounded populations. As the system reaches a stable manifold, the time to reach equilibrium depends on cellular death and birth rates. These rates shape the time scales, in particular, in coevolutionary dynamics of growth factor producers and free-riders. Replicator dynamics might be an appropriate framework only when birth and death rates are of similar magnitude. Otherwise, population growth effects cannot be neglected when predicting the time to reach an equilibrium, and cell-type-specific rates have to be accounted for explicitly. © 2017 The Authors.

  18. Spectral analysis of a two-species competition model: Determining the effects of extreme conditions on the color of noise generated from simulated time series

    NASA Astrophysics Data System (ADS)

    Golinski, M. R.

    2006-07-01

    Ecologists have observed that environmental noise affects population variance in the logistic equation for one-species growth. Interactions between deterministic and stochastic dynamics in a one-dimensional system result in increased variance in species population density over time. Since natural populations do not live in isolation, the present paper simulates a discrete-time two-species competition model with environmental noise to determine the type of colored population noise generated by extreme conditions in the long-term population dynamics of competing populations. Discrete Fourier analysis is applied to the simulation results and the calculated Hurst exponent ( H) is used to determine how the color of population noise for the two species corresponds to extreme conditions in population dynamics. To interpret the biological meaning of the color of noise generated by the two-species model, the paper determines the color of noise generated by three reference models: (1) A two-dimensional discrete-time white noise model (0⩽ H<1/2); (2) A two-dimensional fractional Brownian motion model (H=1/2); and (3) A two-dimensional discrete-time model with noise for unbounded growth of two uncoupled species (1/2< H⩽1).

  19. The evolution of recombination rates in finite populations during ecological speciation.

    PubMed

    Reeve, James; Ortiz-Barrientos, Daniel; Engelstädter, Jan

    2016-10-26

    Recombination can impede ecological speciation with gene flow by mixing locally adapted genotypes with maladapted migrant genotypes from a divergent population. In such a scenario, suppression of recombination can be selectively favoured. However, in finite populations evolving under the influence of random genetic drift, recombination can also facilitate adaptation by reducing Hill-Robertson interference between loci under selection. In this case, increased recombination rates can be favoured. Although these two major effects on recombination have been studied individually, their joint effect on ecological speciation with gene flow remains unexplored. Using a mathematical model, we investigated the evolution of recombination rates in two finite populations that exchange migrants while adapting to contrasting environments. Our results indicate a two-step dynamic where increased recombination is first favoured (in response to the Hill-Robertson effect), and then disfavoured, as the cost of recombining locally with maladapted migrant genotypes increases over time (the maladaptive gene flow effect). In larger populations, a stronger initial benefit for recombination was observed, whereas high migration rates intensify the long-term cost of recombination. These dynamics may have important implications for our understanding of the conditions that facilitate incipient speciation with gene flow and the evolution of recombination in finite populations. © 2016 The Author(s).

  20. Individuality and stability in male songs of cao vit gibbons (Nomascus nasutus) with potential to monitor population dynamics.

    PubMed

    Feng, Jun-Juan; Cui, Liang-Wei; Ma, Chang-Yong; Fei, Han-Lan; Fan, Peng-Fei

    2014-01-01

    Vocal individuality and stability has been used to conduct population surveys, monitor population dynamics, and detect dispersal patterns in avian studies. To our knowledge, it has never been used in these kinds of studies among primates. The cao vit gibbon is a critically endangered species with only one small population living in a karst forest along China-Vietnam border. Due to the difficult karst terrain, an international border, long life history, and similarity in male morphology, detailed monitoring of population dynamics and dispersal patterns are not possible using traditional observation methods. In this paper, we test individuality and stability in male songs of cao vit gibbons. We then discuss the possibility of using vocal individuality for population surveys and monitoring population dynamics and dispersal patterns. Significant individuality of vocalization was detected in all 9 males, and the correct rate of individual identification yielded by discriminant function analysis using a subset of variables was satisfactory (>90%). Vocal stability over 2-6 years was also documented in 4 males. Several characters of cao vit gibbons allowed long-term population monitoring using vocal recordings in both China and Vietnam: 1) regular loud calls, 2) strong individuality and stability in male songs, 3) stable territories, and 4) long male tenure. During the course of this research, we also observed one male replacement (confirmed by vocal analysis). This time- and labor-saving method might be the most effective way to detect dispersal patterns in this transboundary population.

  1. Vigorous Dynamics Underlie a Stable Population of the Endangered Snow Leopard Panthera uncia in Tost Mountains, South Gobi, Mongolia

    PubMed Central

    Sharma, Koustubh; Bayrakcismith, Rana; Tumursukh, Lkhagvasumberel; Johansson, Orjan; Sevger, Purevsuren; McCarthy, Tom; Mishra, Charudutt

    2014-01-01

    Population monitoring programmes and estimation of vital rates are key to understanding the mechanisms of population growth, decline or stability, and are important for effective conservation action. We report, for the first time, the population trends and vital rates of the endangered snow leopard based on camera trapping over four years in the Tost Mountains, South Gobi, Mongolia. We used robust design multi-season mark-recapture analysis to estimate the trends in abundance, sex ratio, survival probability and the probability of temporary emigration and immigration for adult and young snow leopards. The snow leopard population remained constant over most of the study period, with no apparent growth (λ = 1.08+−0.25). Comparison of model results with the “known population” of radio-collared snow leopards suggested high accuracy in our estimates. Although seemingly stable, vigorous underlying dynamics were evident in this population, with the adult sex ratio shifting from being male-biased to female-biased (1.67 to 0.38 males per female) during the study. Adult survival probability was 0.82 (SE+−0.08) and that of young was 0.83 (SE+−0.15) and 0.77 (SE +−0.2) respectively, before and after the age of 2 years. Young snow leopards showed a high probability of temporary emigration and immigration (0.6, SE +−0.19 and 0.68, SE +−0.32 before and after the age of 2 years) though not the adults (0.02 SE+−0.07). While the current female-bias in the population and the number of cubs born each year seemingly render the study population safe, the vigorous dynamics suggests that the situation can change quickly. The reduction in the proportion of male snow leopards may be indicative of continuing anthropogenic pressures. Our work reiterates the importance of monitoring both the abundance and population dynamics of species for effective conservation. PMID:25006879

  2. Effects of plant tannins supplementation on animal response and in vivo ruminal bacterial populations associated with bloat in heifers grazing wheat forage

    USDA-ARS?s Scientific Manuscript database

    Research was conducted to determine the effects of sources of tannins on in vitro ruminal gas and foam production, in vivo ruminal bacterial populations, bloat dynamics and ADG of heifers grazing wheat forage. Two experiments were conducted to 1) enumerate the effect of tannins supplementation on bi...

  3. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms

    PubMed Central

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-01-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities. PMID:25535553

  4. Weakening density dependence from climate change and agricultural intensification triggers pest outbreaks: a 37-year observation of cotton bollworms.

    PubMed

    Ouyang, Fang; Hui, Cang; Ge, Saiying; Men, Xin-Yuan; Zhao, Zi-Hua; Shi, Pei-Jian; Zhang, Yong-Sheng; Li, Bai-Lian

    2014-09-01

    Understanding drivers of population fluctuation, especially for agricultural pests, is central to the provision of agro-ecosystem services. Here, we examine the role of endogenous density dependence and exogenous factors of climate and human activity in regulating the 37-year population dynamics of an important agricultural insect pest, the cotton bollworm (Helicoverpa armigera), in North China from 1975 to 2011. Quantitative time-series analysis provided strong evidence explaining long-term population dynamics of the cotton bollworm and its driving factors. Rising temperature and declining rainfall exacerbated the effect of agricultural intensification on continuously weakening the negative density dependence in regulating the population dynamics of cotton bollworms. Consequently, ongoing climate change and agricultural intensification unleashed the tightly regulated pest population and triggered the regional outbreak of H. armigera in 1992. Although the negative density dependence can effectively regulate the population change rate to fluctuate around zero at stable equilibrium levels before and after outbreak in the 1992, the population equilibrium jumped to a higher density level with apparently larger amplitudes after the outbreak. The results highlight the possibility for exogenous factors to induce pest outbreaks and alter the population regulating mechanism of negative density dependence and, thus, the stable equilibrium of the pest population, often to a higher level, posing considerable risks to the provision of agro-ecosystem services and regional food security. Efficient and timely measures of pest management in the era of Anthropocene should target the strengthening and revival of weakening density dependence caused by climate change and human activities.

  5. Density-Dependent Regulation of Brook Trout Population Dynamics along a Core-Periphery Distribution Gradient in a Central Appalachian Watershed

    PubMed Central

    Huntsman, Brock M.; Petty, J. Todd

    2014-01-01

    Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602

  6. POPULATION DYNAMICS OF SMALL MAMMALS ACROSS A NITROGEN AMENDED LANDSCAPE

    EPA Science Inventory

    Biogeochemical alterations of the nitrogen cycle from anthropogenic activities could have significant effects on ecological processes at the population, community and ecosystem levels. Nitrogen additions in grasslands have produced qualitative and quantitative changes in vegetat...

  7. How Life History Can Sway the Fixation Probability of Mutants

    PubMed Central

    Li, Xiang-Yi; Kurokawa, Shun; Giaimo, Stefano; Traulsen, Arne

    2016-01-01

    In this work, we study the effects of demographic structure on evolutionary dynamics when selection acts on reproduction, survival, or both. In contrast to the previously discovered pattern that the fixation probability of a neutral mutant decreases while the population becomes younger, we show that a mutant with a constant selective advantage may have a maximum or a minimum of the fixation probability in populations with an intermediate fraction of young individuals. This highlights the importance of life history and demographic structure in studying evolutionary dynamics. We also illustrate the fundamental differences between selection on reproduction and selection on survival when age structure is present. In addition, we evaluate the relative importance of size and structure of the population in determining the fixation probability of the mutant. Our work lays the foundation for also studying density- and frequency-dependent effects in populations when demographic structures cannot be neglected. PMID:27129737

  8. Climate variability, rice production and groundwater depletion in India

    NASA Astrophysics Data System (ADS)

    Bhargava, Alok

    2018-03-01

    This paper modeled the proximate determinants of rice outputs and groundwater depths in 27 Indian states during 1980-2010. Dynamic random effects models were estimated by maximum likelihood at state and well levels. The main findings from models for rice outputs were that temperatures and rainfall levels were significant predictors, and the relationships were quadratic with respect to rainfall. Moreover, nonlinearities with respect to population changes indicated greater rice production with population increases. Second, groundwater depths were positively associated with temperatures and negatively with rainfall levels and there were nonlinear effects of population changes. Third, dynamic models for in situ groundwater depths in 11 795 wells in mainly unconfined aquifers, accounting for latitudes, longitudes and altitudes, showed steady depletion. Overall, the results indicated that population pressures on food production and environment need to be tackled via long-term healthcare, agricultural, and groundwater recharge policies in India.

  9. Visualizing diurnal population change in urban areas for emergency management.

    PubMed

    Kobayashi, Tetsuo; Medina, Richard M; Cova, Thomas J

    2011-01-01

    There is an increasing need for a quick, simple method to represent diurnal population change in metropolitan areas for effective emergency management and risk analysis. Many geographic studies rely on decennial U.S. Census data that assume that urban populations are static in space and time. This has obvious limitations in the context of dynamic geographic problems. The U.S. Department of Transportation publishes population data at the transportation analysis zone level in fifteen-minute increments. This level of spatial and temporal detail allows for improved dynamic population modeling. This article presents a methodology for visualizing and analyzing diurnal population change for metropolitan areas based on this readily available data. Areal interpolation within a geographic information system is used to create twenty-four (one per hour) population surfaces for the larger metropolitan area of Salt Lake County, Utah. The resulting surfaces represent diurnal population change for an average workday and are easily combined to produce an animation that illustrates population dynamics throughout the day. A case study of using the method to visualize population distributions in an emergency management context is provided using two scenarios: a chemical release and a dirty bomb in Salt Lake County. This methodology can be used to address a wide variety of problems in emergency management.

  10. The effect of EIF dynamics on the cryopreservation process of a size distributed cell population.

    PubMed

    Fadda, S; Briesen, H; Cincotti, A

    2011-06-01

    Typical mathematical modeling of cryopreservation of cell suspensions assumes a thermodynamic equilibrium between the ice and liquid water in the extracellular solution. This work investigates the validity of this assumption by introducing a population balance approach for dynamic extracellular ice formation (EIF) in the absence of any cryo-protectant agent (CPA). The population balance model reflects nucleation and diffusion-limited growth in the suspending solution whose driving forces are evaluated in the relevant phase diagram. This population balance description of the extracellular compartment has been coupled to a model recently proposed in the literature [Fadda et al., AIChE Journal, 56, 2173-2185, (2010)], which is capable of quantitatively describing and predicting internal ice formation (IIF) inside the cells. The cells are characterized by a size distribution (i.e. through another population balance), thus overcoming the classic view of a population of identically sized cells. From the comparison of the system behavior in terms of the dynamics of the cell size distribution it can be concluded that the assumption of a thermodynamic equilibrium in the extracellular compartment is not always justified. Depending on the cooling rate, the dynamics of EIF needs to be considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. A mechanism for pattern formation in dynamic populations by the effect of gregarious instinct

    NASA Astrophysics Data System (ADS)

    Mangioni, Sergio E.

    2012-01-01

    We introduced the gregarious instinct by means of a novel strategy that considers the average effect of the attractive forces between individuals within a given population. We watched how pattern formation can be explained by the effect of aggregation depending on conditions on food and / or mortality. We propose a model that describes the corresponding dynamic and by a linear stability analysis of homogeneous solutions and can identify and interpret the region of parameters where these patterns are stable. Then we test numerically these preliminary results and find stable patterns as solutions. Finally, we developed a simplified model allowing us to understand in greater detail the processes involved.

  12. Dynamic Pedagogy for Effective Training of Youths in Cell Phone Maintenance

    ERIC Educational Resources Information Center

    Ogbuanya, T. C.; Jimoh, Bakare

    2015-01-01

    The study determined dynamic pedagogies for effective training of youths in cell phone maintenance. The study was conducted in Enugu State of Nigeria. Four research questions were developed while four null hypotheses formulated were tested at 0.05 level of significance. A survey research design was adopted for the study. The population for the…

  13. The dynamics of fish populations in the Palancar stream,a small tributary of the river Guadalquivir, Spain

    NASA Astrophysics Data System (ADS)

    Bravo, Ramón; Soriguer, Mila C.; Villar, Noelia; Hernando, José A.

    2001-02-01

    The relationship between flooding and changes in the size distribution of fish populations in the Palancar stream confirms observations in other rivers. On average, density decreased by 36.2 % and biomass increased by 14.5 %, passing from a period of severe drought to one of heavier than normal rains. Precipitation is the most important of the many factors affecting the populations of the Palancar stream; the most evident changes all occurred after the drought. During the drought period, the marked seasonal fluctuation in flow was the most important factor regulating the population dynamics. Fish density and biomass varied in proportion to the water volume. During the rainy period, the studied section of the river was found to be an important reproduction and nursery area, with juveniles and individuals of reproduction age dominating. The presence of Micropterus salmoides, an introduced piscivorous species, is another factor affecting the population dynamics in the Palancar stream. The observed absence of age 0+ individuals of the dominant populations is considered a direct effect of predation.

  14. Effect of Inherited Genetic Information on Stochastic Predator-Prey Model

    NASA Astrophysics Data System (ADS)

    Duda, Artur; Dyś, Paweł; Nowicka, Alekandra; Dudek, Mirosław R.

    We discuss the Lotka-Volterra dynamics of two populations, preys and predators, in the case when the predators posses a genetic information. The genetic information is inherited according to the rules of the Penna model of genetic evolution. Each individual of the predator population is uniquely determined by sex, genotype and phenotype. In our case, the genes are represented by 8-bit integers and the phenotypes are defined with the help of the 8-state Potts model Hamiltonian. We showed that during time evolution, the population of the predators can experience a series of dynamical phase transitions which are connected with the different types of the dominant phenotypes present in the population.

  15. Population Density and Seasonality Effects on Sin Nombre Virus Transmission in North American Deermice (Peromyscus maniculatus) in Outdoor Enclosures

    PubMed Central

    Bagamian, Karoun H.; Douglass, Richard J.; Alvarado, Arlene; Kuenzi, Amy J.; Amman, Brian R.; Waller, Lance A.; Mills, James N.

    2012-01-01

    Surveys of wildlife host-pathogen systems often document clear seasonal variation in transmission; conclusions concerning the relationship between host population density and transmission vary. In the field, effects of seasonality and population density on natural disease cycles are challenging to measure independently, but laboratory experiments may poorly reflect what happens in nature. Outdoor manipulative experiments are an alternative that controls for some variables in a relatively natural environment. Using outdoor enclosures, we tested effects of North American deermouse (Peromyscus maniculatus) population density and season on transmission dynamics of Sin Nombre hantavirus. In early summer, mid-summer, late summer, and fall 2007–2008, predetermined numbers of infected and uninfected adult wild deermice were released into enclosures and trapped weekly or bi-weekly. We documented 18 transmission events and observed significant seasonal effects on transmission, wounding frequency, and host breeding condition. Apparent differences in transmission incidence or wounding frequency between high- and low-density treatments were not statistically significant. However, high host density was associated with a lower proportion of males with scrotal testes. Seasonality may have a stronger influence on disease transmission dynamics than host population density, and density effects cannot be considered independent of seasonality. PMID:22768034

  16. Discrete and Continuum Approximations for Collective Cell Migration in a Scratch Assay with Cell Size Dynamics.

    PubMed

    Matsiaka, Oleksii M; Penington, Catherine J; Baker, Ruth E; Simpson, Matthew J

    2018-04-01

    Scratch assays are routinely used to study the collective spreading of cell populations. In general, the rate at which a population of cells spreads is driven by the combined effects of cell migration and proliferation. To examine the effects of cell migration separately from the effects of cell proliferation, scratch assays are often performed after treating the cells with a drug that inhibits proliferation. Mitomycin-C is a drug that is commonly used to suppress cell proliferation in this context. However, in addition to suppressing cell proliferation, mitomycin-C also causes cells to change size during the experiment, as each cell in the population approximately doubles in size as a result of treatment. Therefore, to describe a scratch assay that incorporates the effects of cell-to-cell crowding, cell-to-cell adhesion, and dynamic changes in cell size, we present a new stochastic model that incorporates these mechanisms. Our agent-based stochastic model takes the form of a system of Langevin equations that is the system of stochastic differential equations governing the evolution of the population of agents. We incorporate a time-dependent interaction force that is used to mimic the dynamic increase in size of the agents. To provide a mathematical description of the average behaviour of the stochastic model we present continuum limit descriptions using both a standard mean-field approximation and a more sophisticated moment dynamics approximation that accounts for the density of agents and density of pairs of agents in the stochastic model. Comparing the accuracy of the two continuum descriptions for a typical scratch assay geometry shows that the incorporation of agent growth in the system is associated with a decrease in accuracy of the standard mean-field description. In contrast, the moment dynamics description provides a more accurate prediction of the evolution of the scratch assay when the increase in size of individual agents is included in the model.

  17. Modeling tradeoffs in avian life history traits and consequences for population growth

    USGS Publications Warehouse

    Clark, M.E.; Martin, T.E.

    2007-01-01

    Variation in population dynamics is inherently related to life history characteristics of species, which vary markedly even within phylogenetic groups such as passerine birds. We computed the finite rate of population change (??) from a matrix projection model and from mark-recapture observations for 23 bird species breeding in northern Arizona. We used sensitivity analyses and a simulation model to separate contributions of different life history traits to population growth rate. In particular we focused on contrasting effects of components of reproduction (nest success, clutch size, number of clutches, and juvenile survival) versus adult survival on ??. We explored how changes in nest success or adult survival coupled to costs in other life history parameters affected ?? over a life history gradient provided by our 23 Arizona species, as well as a broader sample of 121 North American passerine species. We further examined these effects for more than 200 passeriform and piciform populations breeding across North America. Model simulations indicate nest success and juvenile survival exert the largest effects on population growth in species with moderate to high reproductive output, whereas adult survival contributed more to population growth in long-lived species. Our simulations suggest that monitoring breeding success in populations across a broad geographic area provides an important index for identifying neotropical migratory populations at risk of serious population declines and a potential method for identifying large-scale mechanisms regulating population dynamics. ?? 2007 Elsevier B.V. All rights reserved.

  18. The theory of reasoned action as parallel constraint satisfaction: towards a dynamic computational model of health behavior.

    PubMed

    Orr, Mark G; Thrush, Roxanne; Plaut, David C

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.

  19. The Theory of Reasoned Action as Parallel Constraint Satisfaction: Towards a Dynamic Computational Model of Health Behavior

    PubMed Central

    Orr, Mark G.; Thrush, Roxanne; Plaut, David C.

    2013-01-01

    The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual’s pre-existing belief structure and the beliefs of others in the individual’s social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics. PMID:23671603

  20. Effect of the alien invasive bivalve Corbicula fluminea on the nutrient dynamics under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Coelho, J. P.; Lillebø, A. I.; Crespo, D.; Leston, S.; Dolbeth, M.

    2018-05-01

    The main aim of this study was to evaluate the impact of the alien invasive bivalve Corbicula fluminea (Müller, 1774) in the nutrient dynamics of temperate estuarine systems (oligohaline areas) under climate change scenarios. The scenarios simulated shifts in climatic conditions, following salinity (0 or 5) and temperature (24 or 30 °C) changes, usual during drought and heat wave events. The effect of the individual size/age (different size classes with fixed biomass) and density (various densities of <1 cm clams) on the bioturbation-associated nutrient dynamics were also evaluated under an 18-day laboratory experimental setup. Results highlight the significant effect of C. fluminea on the ecosystem nutrient dynamics, enhancing the efflux of both phosphate and dissolved inorganic nitrogen (DIN) from the sediments to the water column. Both drought and heat wave events will have an impact on the DIN dynamics within C. fluminea colonized systems, favouring a higher NH4-N efflux. The population structure of C. fluminea will have a decisive role on the impact of the species, with stronger nutrient effluxes associated with a predominantly juvenile population structure.

  1. Outcrossed sex allows a selfish gene to invade yeast populations.

    PubMed

    Goddard, M R; Greig, D; Burt, A

    2001-12-22

    Homing endonuclease genes (HEGs) in eukaryotes are optional genes that have no obvious effect on host phenotype except for causing chromosomes not containing a copy of the gene to be cut, thus causing them to be inherited at a greater than Mendelian rate via gene conversion. These genes are therefore expected to increase in frequency in outcrossed populations, but not in obligately selfed populations. In order to test this idea, we compared the dynamics of the VDE HEG in six replicate outcrossed and inbred populations of yeast (Saccharomyces cerevisiae). VDE increased in frequency from 0.21 to 0.55 in four outcrossed generations, but showed no change in frequency in the inbred populations. The absence of change in the inbred populations indicates that any effect of VDE on mitotic replication rates is less than 1%. The data from the outcrossed populations best fit a model in which 82% of individuals are derived from outcrossing and VDE is inherited by 74% of the meiotic products from heterozygotes (as compared with 50% for Mendelian genes). These results empirically demonstrate how a host mating system plays a key role in determining the population dynamics of a selfish gene.

  2. Outcrossed sex allows a selfish gene to invade yeast populations.

    PubMed Central

    Goddard, M. R.; Greig, D.; Burt, A.

    2001-01-01

    Homing endonuclease genes (HEGs) in eukaryotes are optional genes that have no obvious effect on host phenotype except for causing chromosomes not containing a copy of the gene to be cut, thus causing them to be inherited at a greater than Mendelian rate via gene conversion. These genes are therefore expected to increase in frequency in outcrossed populations, but not in obligately selfed populations. In order to test this idea, we compared the dynamics of the VDE HEG in six replicate outcrossed and inbred populations of yeast (Saccharomyces cerevisiae). VDE increased in frequency from 0.21 to 0.55 in four outcrossed generations, but showed no change in frequency in the inbred populations. The absence of change in the inbred populations indicates that any effect of VDE on mitotic replication rates is less than 1%. The data from the outcrossed populations best fit a model in which 82% of individuals are derived from outcrossing and VDE is inherited by 74% of the meiotic products from heterozygotes (as compared with 50% for Mendelian genes). These results empirically demonstrate how a host mating system plays a key role in determining the population dynamics of a selfish gene. PMID:11749707

  3. Ecological correlates of population genetic structure: a comparative approach using a vertebrate metacommunity.

    PubMed

    Manier, Mollie K; Arnold, Stevan J

    2006-12-07

    Identifying ecological factors associated with population genetic differentiation is important for understanding microevolutionary processes and guiding the management of threatened populations. We identified ecological correlates of several population genetic parameters for three interacting species (two garter snakes and an anuran) that occupy a common landscape. Using multiple regression analysis, we found that species interactions were more important in explaining variation in population genetic parameters than habitat and nearest-neighbour characteristics. Effective population size was best explained by census size, while migration was associated with differences in species abundance. In contrast, genetic distance was poorly explained by the ecological correlates that we tested, but geographical distance was prominent in models for all species. We found substantially different population dynamics for the prey species relative to the two predators, characterized by larger effective sizes, lower gene flow and a state of migration-drift equilibrium. We also identified an escarpment formed by a series of block faults that serves as a barrier to dispersal for the predators. Our results suggest that successful landscape-level management should incorporate genetic and ecological data for all relevant species, because even closely associated species can exhibit very different population genetic dynamics on the same landscape.

  4. Emergent patterns in interacting neuronal sub-populations

    NASA Astrophysics Data System (ADS)

    Kamal, Neeraj Kumar; Sinha, Sudeshna

    2015-05-01

    We investigate an ensemble of coupled model neurons, consisting of groups of varying sizes and intrinsic dynamics, ranging from periodic to chaotic, where the inter-group coupling interaction is effectively like a dynamic signal from a different sub-population. We observe that the minority group can significantly influence the majority group. For instance, when a small chaotic group is coupled to a large periodic group, the chaotic group de-synchronizes. However, counter-intuitively, when a small periodic group couples strongly to a large chaotic group, it leads to complete synchronization in the majority chaotic population, which also spikes at the frequency of the small periodic group. It then appears that the small group of periodic neurons can act like a pacemaker for the whole network. Further, we report the existence of varied clustering patterns, ranging from sets of synchronized clusters to anti-phase clusters, governed by the interplay of the relative sizes and dynamics of the sub-populations. So these results have relevance in understanding how a group can influence the synchrony of another group of dynamically different elements, reminiscent of event-related synchronization/de-synchronization in complex networks.

  5. Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise

    USGS Publications Warehouse

    Hatfield, Jeff S.; Reynolds, Michelle H.; Seavy, Nathaniel E.; Krause, Crystal M.

    2012-01-01

    Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova, T; Carlsen, T

    We present a study, based on simulations with SERDYCA, a spatially-explicit individual based model of rodent dynamics, on the connection between population persistence and the presence of inhomogeneities in the habitat. We are specifically interested on the effect that inhomogeneities that do not fragment the environment, have on population persistence. Our results suggest that a certain percentage of inhomogeneities can increase the average time to extinction of the population. Inhomogeneities decrease the population density and can increase the ratio of juveniles in the population thus providing a better chance for the population to restore itself after a severe period withmore » critically low population density. We call this the ''inhomogeneity localization effect''.« less

  7. Relative host body condition and food availability influence epidemic dynamics: a Poecilia reticulata-Gyrodactylus turnbulli host-parasite model.

    PubMed

    Tadiri, Christina P; Dargent, Felipe; Scott, Marilyn E

    2013-03-01

    Understanding disease transmission is important to species management and human health. Host body condition, nutrition and disease susceptibility interact in a complex manner, and while the individual effects of these variables are well known, our understanding of how they interact and translate to population dynamics is limited. Our objective was to determine whether host relative body condition influences epidemic dynamics, and how this relationship is affected by food availability. Poecilia reticulata (guppies) of roughly similar size were selected and assembled randomly into populations of 10 guppies assigned to 3 different food availability treatments, and the relative condition index (Kn) of each fish was calculated. We infected 1 individual per group ('source' fish) with Gyrodactyus turnbulli and counted parasites on each fish every other day for 10 days. Epidemic parameters for each population were analysed using generalized linear models. High host Kn-particularly that of the 'source' fish-exerted a positive effect on incidence, peak parasite burden, and the degree of parasite aggregation. Low food availability increased the strength of the associations with peak burden and aggregation. Our findings suggest that host Kn and food availability interact to influence epidemic dynamics, and that the condition of the individual that brings the parasite into the host population has a profound impact on the spread of infection.

  8. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events

    PubMed Central

    Vincenzi, Simone

    2014-01-01

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an ‘extinction window’ of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the ‘extinction window’, although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. PMID:24920116

  9. Dynamics and life histories of northern ungulates in changing environments

    NASA Astrophysics Data System (ADS)

    Hendrichsen, D. K.

    2011-12-01

    Regional climate and local weather conditions can profoundly influence life history parameters (growth, survival, fecundity) and population dynamics in northern ungulates (Post and Stenseth 1999, Coulson et al. 2001). The influence is both direct, for example through reduced growth or survival (Aanes et al. 2000, Tyler et al. 2008), and indirect, for example through changes in resource distribution, phenology and quality, changes which subsequently influence consumer dynamics (Post et al. 2008). By comparing and contrasting data from three spatially independent populations of ungulates, I discuss how variation in local weather parameters and vegetation growth influence spatial and temporal dynamics through changes in life history parameters and/or behavioural dynamics. The data originate from long term (11-15 years) monitoring data from three populations of ungulates in one subarctic and two high Arctic sites; semi-domesticated reindeer (Rangifer tarandus tarandus) in northern Norway, Svalbard reindeer (R. t. platyrhynchus) on Spitsbergen and muskoxen (Ovibos moschatus) in Northeast Greenland. The results show that juvenile animals can be particularly vulnerable to changes in their environment, and that this is mirrored to different degrees in the spatio-temporal dynamics of the three populations. Adverse weather conditions, acting either directly or mediated through access to and quality of vegetation, experienced by young early in life, or even by their dams during pregnancy, can lead to reduced growth, lower survival and reduced reproductive performance later in life. The influence of current climatic variation, and the predictions of how local weather conditions may change over time, differs between the three sites, resulting in potentially different responses in the three populations. Aanes R, Saether BE and Øritsland NA. 2000. Fluctuations of an introduced population of Svalbard reindeer: the effects of density dependence and climatic variation. Ecography, 23: 437-443 Coulson T, Catchpole EA, Albon SD, Morgan BJT, Pemberton JM, Clutton-Brock TH, Crawley MJ and Grenfell BT. 2001. Age, sex, density, winter weather, and population crashes in Soay sheep. Science, 292: 1528-1531 Post, E and Stenseth NC. 1999. Climatic variability, plant phenology, and northern ungulates. Ecology, 80: 1322-1339 Post E, Pedersen C, Wilmers CC and Forchhammer MC. 2008. Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc. Roy Soc. B., 275: 2005-2013 Tyler NJC, Forchhammer MC and Øritsland NA. 2008. Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer. Ecology, 89: 1675-1686

  10. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    PubMed

    Karslake, Jason; Maltas, Jeff; Brumm, Peter; Wood, Kevin B

    2016-10-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  11. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections

    PubMed Central

    Maltas, Jeff; Brumm, Peter; Wood, Kevin B.

    2016-01-01

    The inoculum effect (IE) is an increase in the minimum inhibitory concentration (MIC) of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments. PMID:27764095

  12. Discrete two-sex models of population dynamics: On modelling the mating function

    NASA Astrophysics Data System (ADS)

    Bessa-Gomes, Carmen; Legendre, Stéphane; Clobert, Jean

    2010-09-01

    Although sexual reproduction has long been a central subject of theoretical ecology, until recently its consequences for population dynamics were largely overlooked. This is now changing, and many studies have addressed this issue, showing that when the mating system is taken into account, the population dynamics depends on the relative abundance of males and females, and is non-linear. Moreover, sexual reproduction increases the extinction risk, namely due to the Allee effect. Nevertheless, different studies have identified diverse potential consequences, depending on the choice of mating function. In this study, we investigate the consequences of three alternative mating functions that are frequently used in discrete population models: the minimum; the harmonic mean; and the modified harmonic mean. We consider their consequences at three levels: on the probability that females will breed; on the presence and intensity of the Allee effect; and on the extinction risk. When we consider the harmonic mean, the number of times the individuals of the least abundant sex mate exceeds their mating potential, which implies that with variable sex-ratios the potential reproductive rate is no longer under the modeller's control. Consequently, the female breeding probability exceeds 1 whenever the sex-ratio is male-biased, which constitutes an obvious problem. The use of the harmonic mean is thus only justified if we think that this parameter should be re-defined in order to represent the females' breeding rate and the fact that females may reproduce more than once per breeding season. This phenomenon buffers the Allee effect, and reduces the extinction risk. However, when we consider birth-pulse populations, such a phenomenon is implausible because the number of times females can reproduce per birth season is limited. In general, the minimum or modified harmonic mean mating functions seem to be more suitable for assessing the impact of mating systems on population dynamics.

  13. Projecting pest population dynamics under global warming: the combined effect of inter- and intra-annual variations.

    PubMed

    Zidon, Royi; Tsueda, Hirotsugu; Morin, Efrat; Morin, Shai

    2016-06-01

    The typical short generation length of insects makes their population dynamics highly sensitive not only to mean annual temperatures but also to their intra-annual variations. To consider the combined effect of both thermal factors under global warming, we propose a modeling framework that links general circulation models (GCMs) with a stochastic weather generator and population dynamics models to predict species population responses to inter- and intra-annual temperature changes. This framework was utilized to explore future changes in populations of Bemisia tabaci, an invasive insect pest-species that affects multiple agricultural systems in the Mediterranean region. We considered three locations representing different pest status and climatic conditions: Montpellier (France), Seville (Spain), and Beit-Jamal (Israel). We produced ensembles of local daily temperature realizations representing current and future (mid-21st century) climatic conditions under two emission scenarios for the three locations. Our simulations predicted a significant increase in the average number of annual generations and in population size, and a significant lengthening of the growing season in all three locations. A negative effect was found only in Seville for the summer season, where future temperatures lead to a reduction in population size. High variability in population size was observed between years with similar annual mean temperatures, suggesting a strong effect of intra-annual temperature variation. Critical periods were from late spring to late summer in Montpellier and from late winter to early summer in Seville and Beit-Jamal. Although our analysis suggested that earlier seasonal activity does not necessarily lead to increased populations load unless an additional generation is produced, it is highly likely that the insect will become a significant pest of open-fields at Mediterranean latitudes above 40° during the next 50 years. Our simulations also implied that current predictions based on mean temperature anomalies are relatively conservative and it is better to apply stochastic tools to resolve complex responses to climate change while taking natural variability into account. In summary, we propose a modeling framework capable of determining distinct intra-annual temperature patterns leading to large or small population sizes, for pest risk assessment and management planning of both natural and agricultural ecosystems.

  14. Change in the structures, dynamics and disease-related mortality rates of the population of Qatari nationals: 2007-2011.

    PubMed

    Al-Thani, Mohamed H; Sadoun, Eman; Al-Thani, Al-Anoud; Khalifa, Shamseldin A; Sayegh, Suzan; Badawi, Alaa

    2014-12-01

    Developing effective public health policies and strategies for interventions necessitates an assessment of the structure, dynamics, disease rates and causes of death in a population. Lately, Qatar has undertaken development resurgence in health and economy that resulted in improving the standard of health services and health status of the entire Qatari population (i.e., Qatari nationals and non-Qatari residents). No study has attempted to evaluate the population structure/dynamics and recent changes in disease-related mortality rates among Qatari nationals. The present study examines the population structure/dynamics and the related changes in the cause-specific mortality rates and disease prevalence in the Qatari nationals. This is a retrospective, analytic descriptive analysis covering a period of 5years (2007-2011) and utilizes a range of data sources from the State of Qatar including the population structure, disease-related mortality rates, and the prevalence of a range of chronic and infectious diseases. Factors reflecting population dynamics such as crude death (CDR), crude birth (CBR), total fertility (TFR) and infant mortality (IMR) rates were also calculated. The Qatari nationals is an expansive population with an annual growth rate of ∼4% and a stable male:female ratio. The CDR declined by 15% within the study period, whereas the CBR was almost stable. The total disease-specific death rate, however, was decreased among the Qatari nationals by 23% due to the decline in mortality rates attributed to diseases of the blood and immune system (43%), nervous system (44%) and cardiovascular system (41%). There was a high prevalence of a range of chronic diseases, whereas very low frequencies of the infectious diseases within the study population. Public health strategies, approaches and programs developed to reduce disease burden and the related death, should be tailored to target the population of Qatari nationals which exhibits characteristics that vary from the entire Qatari population. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  15. Sampling methods to detect and estimate populations of Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae) infesting dry-cured hams

    USDA-ARS?s Scientific Manuscript database

    Spatial and temporal dynamics of pest populations is an important aspect of effective pest management. However, absolute sampling of some pest populations such as the ham mite, Tyrophagus putrescentiae (Schrank) (Sarcoptiformes: Acaridae), a serious pest of dry-cured ham, can be difficult. Sampling ...

  16. Simulation of Population Processes with a Programmable Pocket Calculator.

    ERIC Educational Resources Information Center

    Kidd, N. A. C.

    1979-01-01

    Presents a set of simulation models for use in teaching population dynamics. These models are designed specifically for use with a programmable pocket calculator, and can be used to demonstrate growth of populations with discrete or overlapping generations and also to explore effects of density-dependent and -independent mortality. (Author/CS)

  17. Population dynamics in an intermittent refuge

    NASA Astrophysics Data System (ADS)

    Colombo, E. H.; Anteneodo, C.

    2016-10-01

    Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.

  18. The dynamics of health in wild field vole populations: a haematological perspective

    PubMed Central

    Beldomenico, Pablo M.; Telfer, Sandra; Gebert, Stephanie; Lukomski, Lukasz; Bennett, Malcolm; Begon, Michael

    2010-01-01

    Summary Pathogens have been proposed as potentially important drivers of population dynamics, but while a few studies have investigated the impact of specific pathogens, the wealth of information provided by general indices of health has hardly been exploited. By evaluating haematological parameters in wild populations, our knowledge of the dynamics of health and infection may be better understood. Here, haematological dynamics in natural populations of field voles are investigated to determine environmental and host factors associated with indicators of inflammatory response (counts of monocytes and neutrophils) and of condition: measures of immunological investment (lymphocyte counts) and aerobic capacity (red blood cell counts). Individuals from three field vole populations were sampled monthly for 2 years. Comparisons with individuals kept under controlled conditions facilitated interpretation of field data. Mixed effects models were developed for each cell type to evaluate separately the effects of various factors on post-juvenile voles and mature breeding females. There were three well-characterized ‘physiological’ seasons. The immunological investment appeared lowest in winter (lowest lymphocyte counts), but red blood cells were at their highest levels and indices of inflammatory response at their lowest. Spring was characterized by a fall in red blood cell counts and peaks in indicators of inflammatory response. During the course of summer—autumn, red blood cell counts recovered, the immunological investment increased and the indicators of inflammatory response decreased. Poor body condition appeared to affect the inflammatory response (lower neutrophil and monocyte peaks) and the immunological investment (lower lymphocyte counts), providing evidence that the capacity to fight infection is dependent upon host condition. Breeding early in the year was most likely in females in better condition (high lymphocyte and red blood cell counts). All the haematological parameters were affected adversely by high population densities. PMID:18564292

  19. Controlling range expansion in habitat networks by adaptively targeting source populations.

    PubMed

    Hock, Karlo; Wolff, Nicholas H; Beeden, Roger; Hoey, Jessica; Condie, Scott A; Anthony, Kenneth R N; Possingham, Hugh P; Mumby, Peter J

    2016-08-01

    Controlling the spread of invasive species, pests, and pathogens is often logistically limited to interventions that target specific locations at specific periods. However, in complex, highly connected systems, such as marine environments connected by ocean currents, populations spread dynamically in both space and time via transient connectivity links. This results in nondeterministic future distributions of species in which local populations emerge dynamically and concurrently over a large area. The challenge, therefore, is to choose intervention locations that will maximize the effectiveness of the control efforts. We propose a novel method to manage dynamic species invasions and outbreaks that identifies the intervention locations most likely to curtail population expansion by selectively targeting local populations most likely to expand their future range. Critically, at any point during the development of the invasion or outbreak, the method identifies the local intervention that maximizes the long-term benefit across the ecosystem by restricting species' potential to spread. In so doing, the method adaptively selects the intervention targets under dynamically changing circumstances. To illustrate the effectiveness of the method we applied it to controlling the spread of crown-of-thorns starfish (Acanthaster sp.) outbreaks across Australia's Great Barrier Reef. Application of our method resulted in an 18-fold relative improvement in management outcomes compared with a random targeting of reefs in putative starfish control scenarios. Although we focused on applying the method to reducing the spread of an unwanted species, it can also be used to facilitate the spread of desirable species through connectivity networks. For example, the method could be used to select those fragments of habitat most likely to rebuild a population if they were sufficiently well protected. © 2016 Society for Conservation Biology.

  20. The impact of demographic change on the estimated future burden of infectious diseases: examples from hepatitis B and seasonal influenza in the Netherlands

    PubMed Central

    2012-01-01

    Background For accurate estimation of the future burden of communicable diseases, the dynamics of the population at risk – namely population growth and population ageing – need to be taken into account. Accurate burden estimates are necessary for informing policy-makers regarding the planning of vaccination and other control, intervention, and prevention measures. Our aim was to qualitatively explore the impact of population ageing on the estimated future burden of seasonal influenza and hepatitis B virus (HBV) infection in the Netherlands, in the period 2000–2030. Methods Population-level disease burden was quantified using the disability-adjusted life years (DALY) measure applied to all health outcomes following acute infection. We used national notification data, pre-defined disease progression models, and a simple model of demographic dynamics to investigate the impact of population ageing on the burden of seasonal influenza and HBV. Scenario analyses were conducted to explore the potential impact of intervention-associated changes in incidence rates. Results Including population dynamics resulted in increasing burden over the study period for influenza, whereas a relatively stable future burden was predicted for HBV. For influenza, the increase in DALYs was localised within YLL for the oldest age-groups (55 and older), and for HBV the effect of longer life expectancy in the future was offset by a reduction in incidence in the age-groups most at risk of infection. For both infections, the predicted disease burden was greater than if a static demography was assumed: 1.0 (in 2000) to 2.3-fold (in 2030) higher DALYs for influenza; 1.3 (in 2000) to 1.5-fold (in 2030) higher for HBV. Conclusions There are clear, but diverging effects of an ageing population on the estimated disease burden of influenza and HBV in the Netherlands. Replacing static assumptions with a dynamic demographic approach appears essential for deriving realistic burden estimates for informing health policy. PMID:23217094

  1. Local variability mediates vulnerability of trout populations to land use and climate change

    Treesearch

    Brooke E. Penaluna; Jason B. Dunham; Steve F. Railsback; Ivan Arismendi; Sherri L. Johnson; Robert E. Bilby; Mohammad Safeeq; Arne E. Skaugset; James P. Meador

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of...

  2. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview.

    PubMed

    Holyoak, Marcel; Heath, Sacha K

    2016-01-01

    A growing number of studies have looked at how climate change alters the effects of habitat fragmentation and degradation on both single and multiple species; some raise concern that biodiversity loss and its effects will be exacerbated. The published literature on spatial dynamics (such as dispersal and metapopulation dynamics), habitat fragmentation and climate change requires synthesis and a conceptual framework to simplify thinking. We propose a framework that integrates how climate change affects spatial population dynamics and the effects of habitat fragmentation in terms of: (i) habitat quality, quantity and distribution; (ii) habitat connectivity; and (iii) the dynamics of habitat itself. We use the framework to categorize existing autecological studies and investigate how each is affected by anthropogenic climate change. It is clear that a changing climate produces changes in the geographic distribution of climatic conditions, and the amount and quality of habitat. The most thorough published studies show how such changes impact metapopulation persistence, source-sink dynamics, changes in species' geographic range and community composition. Climate-related changes in movement behavior and quantity, quality and distribution of habitat have also produced empirical changes in habitat connectivity for some species. An underexplored area is how habitat dynamics that are driven by climatic processes will affect species that live in dynamic habitats. We end our discussion by suggesting ways to improve current attempts to integrate climate change, spatial population dynamics and habitat fragmentation effects, and suggest distinct areas of study that might provide opportunities for more fully integrative work. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. How to analytically characterize the epidemic threshold within the coupled disease-behavior systems?. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Xia, Cheng-Yi; Ding, Shuai; Sun, Shi-Wen; Wang, Li; Gao, Zhong-Ke; Wang, Juan

    2015-12-01

    As is well known, outbreak of epidemics may drive the human population to take some necessary measures to protect themselves from not being infected by infective ones, these precautions in turn will also keep from the further spreading of infectious diseases among the population. Thus, to fully comprehend the epidemic spreading behavior within real-world systems, the interplay between disease dynamics and human behavioral and social dynamics needs to be considered simultaneously, such that some effective containment-measures can be successfully developed [1-3].

  4. Climate change and functional traits affect population dynamics of a long-lived seabird.

    PubMed

    Jenouvrier, Stéphanie; Desprez, Marine; Fay, Remi; Barbraud, Christophe; Weimerskirch, Henri; Delord, Karine; Caswell, Hal

    2018-07-01

    Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-lived migratory seabird breeding in the southern ocean: the black-browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: "Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?" We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry-over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at-sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre-breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry-over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd oxn behalf of British Ecological Society.

  5. The temporal spectrum of adult mosquito population fluctuations: conceptual and modeling implications.

    PubMed

    Jian, Yun; Silvestri, Sonia; Brown, Jeff; Hickman, Rick; Marani, Marco

    2014-01-01

    An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population.

  6. Modelling and observing the role of wind in Anopheles population dynamics around a reservoir.

    PubMed

    Endo, Noriko; Eltahir, Elfatih A B

    2018-01-25

    Wind conditions, as well as other environmental conditions, are likely to influence malaria transmission through the behaviours of Anopheles mosquitoes, especially around water-resource reservoirs. Wind-induced waves in a reservoir impose mortality on aquatic-stage mosquitoes. Mosquitoes' host-seeking activity is also influenced by wind through dispersion of [Formula: see text]. However, no malaria transmission model exists to date that simulated those impacts of wind mechanistically. A modelling framework for simulating the three important effects of wind on the behaviours of mosquito is developed: attraction of adult mosquitoes through dispersion of [Formula: see text] ([Formula: see text] attraction), advection of adult mosquitoes (advection), and aquatic-stage mortality due to wind-induced surface waves (waves). The framework was incorporated in a mechanistic malaria transmission simulator, HYDREMATS. The performance of the extended simulator was compared with the observed population dynamics of the Anopheles mosquitoes at a village adjacent to the Koka Reservoir in Ethiopia. The observed population dynamics of the Anopheles mosquitoes were reproduced with some reasonable accuracy in HYDREMATS that includes the representation of the wind effects. HYDREMATS without the wind model failed to do so. Offshore wind explained the increase in Anopheles population that cannot be expected from other environmental conditions alone. Around large water bodies such as reservoirs, the role of wind in the dynamics of Anopheles population, hence in malaria transmission, can be significant. Modelling the impacts of wind on the behaviours of Anopheles mosquitoes aids in reproducing the seasonality of malaria transmission and in estimation of the risk of malaria around reservoirs.

  7. Effects of model complexity and priors on estimation using sequential importance sampling/resampling for species conservation

    USGS Publications Warehouse

    Dunham, Kylee; Grand, James B.

    2016-01-01

    We examined the effects of complexity and priors on the accuracy of models used to estimate ecological and observational processes, and to make predictions regarding population size and structure. State-space models are useful for estimating complex, unobservable population processes and making predictions about future populations based on limited data. To better understand the utility of state space models in evaluating population dynamics, we used them in a Bayesian framework and compared the accuracy of models with differing complexity, with and without informative priors using sequential importance sampling/resampling (SISR). Count data were simulated for 25 years using known parameters and observation process for each model. We used kernel smoothing to reduce the effect of particle depletion, which is common when estimating both states and parameters with SISR. Models using informative priors estimated parameter values and population size with greater accuracy than their non-informative counterparts. While the estimates of population size and trend did not suffer greatly in models using non-informative priors, the algorithm was unable to accurately estimate demographic parameters. This model framework provides reasonable estimates of population size when little to no information is available; however, when information on some vital rates is available, SISR can be used to obtain more precise estimates of population size and process. Incorporating model complexity such as that required by structured populations with stage-specific vital rates affects precision and accuracy when estimating latent population variables and predicting population dynamics. These results are important to consider when designing monitoring programs and conservation efforts requiring management of specific population segments.

  8. North American Brant: Effects of changes in habitat and climate on population dynamics

    USGS Publications Warehouse

    Ward, David H.; Reed, Austin; Sedinger, James S.; Black, Jeffrey M.; Derksen, Dirk V.; Castelli, Paul M.

    2005-01-01

    We describe the importance of key habitats used by four nesting populations of nearctic brant (Branta bernicla) and discuss the potential relationship between changes in these habitats and population dynamics of brant. Nearctic brant, in contrast to most geese, rely on marine habitats and native intertidal plants during the non-breeding season, particularly the seagrass, Zostera, and the macroalgae, Ulva. Atlantic and Eastern High Arctic brant have experienced the greatest degradation of their winter habitats (northeastern United States and Ireland, respectively) and have also shown the most plasticity in feeding behavior. Black and Western High Arctic brant of the Pacific Flyway are the most dependent on Zostera, and are undergoing a shift in winter distribution that is likely related to climate change and its associated effects on Zostera dynamics. Variation in breeding propensity of Black Brant associated with winter location and climate strongly suggests that food abundance on the wintering grounds directly affects reproductive performance in these geese. In summer, salt marshes, especially those containing Carex and Puccinellia, are key habitats for raising young, while lake shorelines with fine freshwater grasses and sedges are important for molting birds. Availability and abundance of salt marshes has a direct effect on growth and recruitment of goslings and ultimately, plays an important role in regulating size of local brant populations. ?? 2005 Blackwell Publishing Ltd.

  9. Long-term trends of bloater (Coregonus hoyi) recruitment in Lake Michigan: evidence for the effect of sex ratio

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Croley, Thomas E.

    2006-01-01

    Long-term population trends are generally explained by factors extrinsic (e.g., climate, predation) rather than intrinsic (e.g., genetics, maternal effects) to the population. We sought to understand the long-term population dynamics of an important native Lake Michigan prey fish, the bloaterCoregonus hoyi. Over a 38-year time series, three 10- to 15-year phases occurred (poor, excellent, and then poor recruitment) without high interannual variability within a particular phase. We used dynamic linear models to determine whether extrinsic (winter and spring temperature, alewife predator densities) or intrinsic factors (population egg production, adult condition, adult sex ratio) explained variation in recruitment. Models that included population egg production, sex ratio, winter and spring temperature, and adult bloater condition explained the most variation. Of these variables, sex ratio, which ranged from 47% to 97% female across the time series, consistently had the greatest effect: recruitment declined with female predominance. Including biomass of adult alewife predators in the models did not explain additional variation. Overall our results indicated that bloater recruitment is linked to its sex ratio, but understanding the underlying mechanisms will require additional efforts.

  10. FREQ-Seq: A Rapid, Cost-Effective, Sequencing-Based Method to Determine Allele Frequencies Directly from Mixed Populations

    PubMed Central

    Delaney, Nigel F.; Marx, Christopher J.

    2012-01-01

    Understanding evolutionary dynamics within microbial populations requires the ability to accurately follow allele frequencies through time. Here we present a rapid, cost-effective method (FREQ-Seq) that leverages Illumina next-generation sequencing for localized, quantitative allele frequency detection. Analogous to RNA-Seq, FREQ-Seq relies upon counts from the >105 reads generated per locus per time-point to determine allele frequencies. Loci of interest are directly amplified from a mixed population via two rounds of PCR using inexpensive, user-designed oligonucleotides and a bar-coded bridging primer system that can be regenerated in-house. The resulting bar-coded PCR products contain the adapters needed for Illumina sequencing, eliminating further library preparation. We demonstrate the utility of FREQ-Seq by determining the order and dynamics of beneficial alleles that arose as a microbial population, founded with an engineered strain of Methylobacterium, evolved to grow on methanol. Quantifying allele frequencies with minimal bias down to 1% abundance allowed effective analysis of SNPs, small in-dels and insertions of transposable elements. Our data reveal large-scale clonal interference during the early stages of adaptation and illustrate the utility of FREQ-Seq as a cost-effective tool for tracking allele frequencies in populations. PMID:23118913

  11. Combining Computational Fluid Dynamics and Agent-Based Modeling: A New Approach to Evacuation Planning

    PubMed Central

    Epstein, Joshua M.; Pankajakshan, Ramesh; Hammond, Ross A.

    2011-01-01

    We introduce a novel hybrid of two fields—Computational Fluid Dynamics (CFD) and Agent-Based Modeling (ABM)—as a powerful new technique for urban evacuation planning. CFD is a predominant technique for modeling airborne transport of contaminants, while ABM is a powerful approach for modeling social dynamics in populations of adaptive individuals. The hybrid CFD-ABM method is capable of simulating how large, spatially-distributed populations might respond to a physically realistic contaminant plume. We demonstrate the overall feasibility of CFD-ABM evacuation design, using the case of a hypothetical aerosol release in Los Angeles to explore potential effectiveness of various policy regimes. We conclude by arguing that this new approach can be powerfully applied to arbitrary population centers, offering an unprecedented preparedness and catastrophic event response tool. PMID:21687788

  12. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

    PubMed

    Schwalger, Tilo; Deger, Moritz; Gerstner, Wulfram

    2017-04-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50-2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.

  13. Dynamic Patterns of Modern Epidemics

    NASA Astrophysics Data System (ADS)

    Brockmann, Dirk; Hufnagel, Lars; Geisel, Theo

    2004-03-01

    We investigate the effects of scale-free travelling of humans and their inhomogeneous geographic distribution on the dynamic patterns of spreading epidemics. Our approach combines the susceptible/infected/recovered paradigm for the infection dynamics with superdiffusive dispersion of individuals and their inhomogeneous spatial distribution. We show that scale-free motion of individuals and their variable spatial distribution leads to the absence of wavefronts in dynamic epidemic patterns which are typical for the limiting cases of ordinary diffusion and spatially homogeneous populations. Instead, patterns emerge with isolated hotspots on highly populated areas from which regional epidemic outbursts are triggered. Hotspot sizes are independent of the correlation length in the spatial distribution of individuals and occur on all scales. Our theory predicts that highly populated areas are reached by an epidemic in advance and must receive special attention in control measure strategies. Furthermore, our analysis predicts strong fluctuations in the time course of the total infection which cannot be accounted for by ordinary reaction-diffusion models for epidemics.

  14. Model reduction for agent-based social simulation: coarse-graining a civil violence model.

    PubMed

    Zou, Yu; Fonoberov, Vladimir A; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  15. Model reduction for agent-based social simulation: Coarse-graining a civil violence model

    NASA Astrophysics Data System (ADS)

    Zou, Yu; Fonoberov, Vladimir A.; Fonoberova, Maria; Mezic, Igor; Kevrekidis, Ioannis G.

    2012-06-01

    Agent-based modeling (ABM) constitutes a powerful computational tool for the exploration of phenomena involving emergent dynamic behavior in the social sciences. This paper demonstrates a computer-assisted approach that bridges the significant gap between the single-agent microscopic level and the macroscopic (coarse-grained population) level, where fundamental questions must be rationally answered and policies guiding the emergent dynamics devised. Our approach will be illustrated through an agent-based model of civil violence. This spatiotemporally varying ABM incorporates interactions between a heterogeneous population of citizens [active (insurgent), inactive, or jailed] and a population of police officers. Detailed simulations exhibit an equilibrium punctuated by periods of social upheavals. We show how to effectively reduce the agent-based dynamics to a stochastic model with only two coarse-grained degrees of freedom: the number of jailed citizens and the number of active ones. The coarse-grained model captures the ABM dynamics while drastically reducing the computation time (by a factor of approximately 20).

  16. Dynamic range adaptation in primary motor cortical populations

    PubMed Central

    Rasmussen, Robert G; Schwartz, Andrew; Chase, Steven M

    2017-01-01

    Neural populations from various sensory regions demonstrate dynamic range adaptation in response to changes in the statistical distribution of their input stimuli. These adaptations help optimize the transmission of information about sensory inputs. Here, we show a similar effect in the firing rates of primary motor cortical cells. We trained monkeys to operate a brain-computer interface in both two- and three-dimensional virtual environments. We found that neurons in primary motor cortex exhibited a change in the amplitude of their directional tuning curves between the two tasks. We then leveraged the simultaneous nature of the recordings to test several hypotheses about the population-based mechanisms driving these changes and found that the results are most consistent with dynamic range adaptation. Our results demonstrate that dynamic range adaptation is neither limited to sensory regions nor to rescaling of monotonic stimulus intensity tuning curves, but may rather represent a canonical feature of neural encoding. DOI: http://dx.doi.org/10.7554/eLife.21409.001 PMID:28417848

  17. Productivity responses of a widespread marine piscivore, Gadus morhua, to oceanic thermal extremes and trends.

    PubMed

    Mantzouni, Irene; MacKenzie, Brian R

    2010-06-22

    Climate change will have major consequences for population dynamics and life histories of marine biota as it progresses in the twenty-first century. These impacts will differ in magnitude and direction for populations within individual marine species whose geographical ranges span large gradients in latitude and temperature. Here we use meta-analytical methods to investigate how recruitment (i.e. the number of new fish produced by spawners in a given year which subsequently grow and survive to become vulnerable to fishing gear) has reacted to temperature fluctuations, and in particular to extremes of temperature, in cod populations throughout the north Atlantic. Temperature has geographically explicit effects on cod recruitment. Impacts differ depending on whether populations are located in the upper (negative effects) or in the lower (positive effects) thermal range. The probabilities of successful year-classes in populations living in warm areas is on average 34 per cent higher in cold compared with warm seasons, whereas opposite patterns exist for populations living in cold areas. These results have implications for cod dynamics, distributions and phenologies under the influence of ocean warming, particularly related to not only changes in the mean temperature, but also its variability (e.g. frequency of exceptionally cold or warm seasons).

  18. Bacterial finite-size effects for population expansion under flow

    NASA Astrophysics Data System (ADS)

    Toschi, Federico; Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Brunsveld, Luc

    2016-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients have a dual role as they transport nutrient while, at the same time, dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction-diffusion equation. The effect of fluid flow is not yet well understood and the interplay between transport of individuals and growth opens a wide scenario of possible behaviors. In this work, we study experimentally the dynamics of non-motile E. coli bacteria colonies spreading inside rectangular channels, in PDMS microfluidic devices. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates. A simple model incorporating growth, dispersion and drift of finite size beads is able to explain the experimental findings. This indicates that models based on the Fisher-Kolmogorov-Petrovsky-Piscounov equation (FKPP) may have to be supplemented with bacterial finite-size effects in order to be able to accurately reproduce experimental results for population spatial growth.

  19. A theoretical analysis of the Allee effect in wind-pollinated cordgrass plant invasions.

    PubMed

    Murphy, James T; Johnson, Mark P

    2015-12-01

    A new individual-based model is presented for investigating an important group of invasive plant species, from the genus Spartina, that threaten biodiversity in coastal and intertidal habitats around the world. The role of pollen limitation in influencing the early development of an invasion is explored in order to gain a greater understanding of the mechanistic basis for an apparent Allee effect (causal relationship between population size/density and mean individual fitness) observed in populations of invasive Spartina species. The model is used to explore how various factors such as atmospheric stability, wind direction/speed, pollen characteristics and spatial structure of the population affect the overall invasion dynamics and reproductive success. Comparisons were also made between invasive species of Spartina (S. alterniflora, S. anglica) and a non-invasive species (S. foliosa), showing a reduced Allee effect was associated with invasion success. Furthermore, the conclusions drawn here may give insights into some of the fundamental processes affecting the growth and population dynamics of other invasive wind-pollinated plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    PubMed

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  1. Modeling the impact of the indigenous microbial population on the maximum population density of Salmonella on alfalfa.

    PubMed

    Rijgersberg, Hajo; Franz, Eelco; Nierop Groot, Masja; Tromp, Seth-Oscar

    2013-07-01

    Within a microbial risk assessment framework, modeling the maximum population density (MPD) of a pathogenic microorganism is important but often not considered. This paper describes a model predicting the MPD of Salmonella on alfalfa as a function of the initial contamination level, the total count of the indigenous microbial population, the maximum pathogen growth rate and the maximum population density of the indigenous microbial population. The model is parameterized by experimental data describing growth of Salmonella on sprouting alfalfa seeds at inoculum size, native microbial load and Pseudomonas fluorescens 2-79. The obtained model fits well to the experimental data, with standard errors less than ten percent of the fitted average values. The results show that the MPD of Salmonella is not only dictated by performance characteristics of Salmonella but depends on the characteristics of the indigenous microbial population like total number of cells and its growth rate. The model can improve the predictions of microbiological growth in quantitative microbial risk assessments. Using this model, the effects of preventive measures to reduce pathogenic load and a concurrent effect on the background population can be better evaluated. If competing microorganisms are more sensitive to a particular decontamination method, a pathogenic microorganism may grow faster and reach a higher level. More knowledge regarding the effect of the indigenous microbial population (size, diversity, composition) of food products on pathogen dynamics is needed in order to make adequate predictions of pathogen dynamics on various food products.

  2. SPATIAL AGGREGATION IN A FOREST FLOOR INSECT DEPENDS ON SEASONAL CONGREGATION AND SCATTERING EFFECTS OF PREDATORS

    EPA Science Inventory

    Spatial aggregations arising from gregarious behavior are common in nature and have important implications for population dynamics, community stability, and conservation. However, the translation of aggregation behaviors into emergent properties of populations and communities de...

  3. Statistical Physics of Population Genetics in the Low Population Size Limit

    NASA Astrophysics Data System (ADS)

    Atwal, Gurinder

    The understanding of evolutionary processes lends itself naturally to theory and computation, and the entire field of population genetics has benefited greatly from the influx of methods from applied mathematics for decades. However, in spite of all this effort, there are a number of key dynamical models of evolution that have resisted analytical treatment. In addition, modern DNA sequencing technologies have magnified the amount of genetic data available, revealing an excess of rare genetic variants in human genomes, challenging the predictions of conventional theory. Here I will show that methods from statistical physics can be used to model the distribution of genetic variants, incorporating selection and spatial degrees of freedom. In particular, a functional path-integral formulation of the Wright-Fisher process maps exactly to the dynamics of a particle in an effective potential, beyond the mean field approximation. In the small population size limit, the dynamics are dominated by instanton-like solutions which determine the probability of fixation in short timescales. These results are directly relevant for understanding the unusual genetic variant distribution at moving frontiers of populations.

  4. Antibiotic-induced population fluctuations and stochastic clearance of bacteria

    PubMed Central

    Le, Dai; Şimşek, Emrah; Chaudhry, Waqas

    2018-01-01

    Effective antibiotic use that minimizes treatment failures remains a challenge. A better understanding of how bacterial populations respond to antibiotics is necessary. Previous studies of large bacterial populations established the deterministic framework of pharmacodynamics. Here, characterizing the dynamics of population extinction, we demonstrated the stochastic nature of eradicating bacteria with antibiotics. Antibiotics known to kill bacteria (bactericidal) induced population fluctuations. Thus, at high antibiotic concentrations, the dynamics of bacterial clearance were heterogeneous. At low concentrations, clearance still occurred with a non-zero probability. These striking outcomes of population fluctuations were well captured by our probabilistic model. Our model further suggested a strategy to facilitate eradication by increasing extinction probability. We experimentally tested this prediction for antibiotic-susceptible and clinically-isolated resistant bacteria. This new knowledge exposes fundamental limits in our ability to predict bacterial eradication. Additionally, it demonstrates the potential of using antibiotic concentrations that were previously deemed inefficacious to eradicate bacteria. PMID:29508699

  5. The effect of wildfire on population dynamics for two native small mammal species in a coastal heathland in Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Liedloff, Adam C.; Wilson, John C.; Engeman, Richard M.

    2018-04-01

    The influences of wildfire through population dynamics and life history for two species of small mammals in a south-east Queensland heathland on Bribie Island are presented. Trapping results provided information on breeding, immigration and movement of Melomys burtoni (Grassland melomys) and Rattus lutreolus (Swamp rat). We first investigated and optimized the design of trapping methodology for producing mark-recapture population estimates to compare two adjacent populations, one of which was subjected to an extensive wildfire during the two year study. We consider how well rodents survive wildfire and whether the immediate impacts of fire or altered habitat have the greatest impact on each species. We found the R. lutreolus population was far more influenced by the fire than the M. burtoni population both immediately after the fire and over 18 months of vegetation recovery.

  6. Aphid Species and Population Dynamics Associated with Strawberry.

    PubMed

    Bernardi, D; Araujo, E S; Zawadneak, M A C; Botton, M; Mogor, A F; Garcia, M S

    2013-12-01

    Aphids are among the major pests associated with strawberries in Southern Brasil. In this study, we identified the main species that occur in strawberry fields in the states of Paraná and Rio Grande do Sul, Brasil. We also compared the effectiveness of different sampling methods and studied the population dynamics of aphid species during two strawberry crop cycles in the municipality of Pinhais, state of Paraná, Brasil. Chaetosiphon fragaefolii (Cockerell) and Aphis forbesi Weed were the main species associated with strawberry. The method of hit plant and the Möericke trap showed equal effectiveness to capture wingless and winged insects. The peak population of aphids in the state of Paraná occurred from September to November. This information can help producers to implement strategies to monitor and control the major aphid species that occur in strawberry culture.

  7. Detecting population-environmental interactions with mismatched time series data.

    PubMed

    Ferguson, Jake M; Reichert, Brian E; Fletcher, Robert J; Jager, Henriëtte I

    2017-11-01

    Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida's southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population-environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. © 2017 by the Ecological Society of America.

  8. Forest bat population dynamics over 14 years at a climate refuge: Effects of timber harvesting and weather extremes

    PubMed Central

    Chidel, Mark; Law, Peter R.

    2018-01-01

    Long-term data are needed to explore the interaction of weather extremes with habitat alteration; in particular, can ‘refugia’ buffer population dynamics against climate change and are they robust to disturbances such as timber harvesting. Because forest bats are good indicators of ecosystem health, we used 14 years (1999–2012) of mark-recapture data from a suite of small tree-hollow roosting bats to estimate survival, abundance and body condition in harvested and unharvested forest and over extreme El Niño and La Niña weather events in southeastern Australia. Trapping was replicated within an experimental forest, located in a climate refuge, with different timber harvesting treatments. We trapped foraging bats and banded 3043 with a 32% retrap rate. Mark-recapture analyses allowed for dependence of survival on time, species, sex, logging treatment and for transients. A large portion of the population remained resident, with a maximum time to recapture of nine years. The effect of logging history (unlogged vs 16–30 years post-logging regrowth) on apparent survival was minor and species specific, with no detectable effect for two species, a positive effect for one and negative for the other. There was no effect of logging history on abundance or body condition for any of these species. Apparent survival of residents was not strongly influenced by weather variation (except for the smallest species), unlike previous studies outside of refugia. Despite annual variation in abundance and body condition across the 14 years of the study, no relationship with extreme weather was evident. The location of our study area in a climate refuge potentially buffered bat population dynamics from extreme weather. These results support the value of climate refugia in mitigating climate change impacts, though the lack of an external control highlights the need for further studies on the functioning of climate refugia. Relatively stable population dynamics were not compromised by timber harvesting, suggesting ecologically sustainable harvesting may be compatible with climate refugia. PMID:29444115

  9. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  10. Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes

    PubMed Central

    Allen, Heather K.; Looft, Torey; Bayles, Darrell O.; Humphrey, Samuel; Levine, Uri Y.; Alt, David; Stanton, Thaddeus B.

    2011-01-01

    ABSTRACT Antibiotics are a cost-effective tool for improving feed efficiency and preventing disease in agricultural animals, but the full scope of their collateral effects is not understood. Antibiotics have been shown to mediate gene transfer by inducing prophages in certain bacterial strains; therefore, one collateral effect could be prophage induction in the gut microbiome at large. Here we used metagenomics to evaluate the effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on swine intestinal phage metagenomes (viromes). We also monitored the bacterial communities using 16S rRNA gene sequencing. ASP250, but not carbadox, caused significant population shifts in both the phage and bacterial communities. Antibiotic resistance genes, such as multidrug resistance efflux pumps, were identified in the viromes, but in-feed antibiotics caused no significant changes in their abundance. The abundance of phage integrase-encoding genes was significantly increased in the viromes of medicated swine over that in the viromes of nonmedicated swine, demonstrating the induction of prophages with antibiotic treatment. Phage-bacterium population dynamics were also examined. We observed a decrease in the relative abundance of Streptococcus bacteria (prey) when Streptococcus phages (predators) were abundant, supporting the “kill-the-winner” ecological model of population dynamics in the swine fecal microbiome. The data show that gut ecosystem dynamics are influenced by phages and that prophage induction is a collateral effect of in-feed antibiotics. PMID:22128350

  11. Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population

    PubMed Central

    Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara

    2017-01-01

    Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804

  12. Development of a model forecasting Dermanyssus gallinae's population dynamics for advancing Integrated Pest Management in laying hen facilities.

    PubMed

    Mul, Monique F; van Riel, Johan W; Roy, Lise; Zoons, Johan; André, Geert; George, David R; Meerburg, Bastiaan G; Dicke, Marcel; van Mourik, Simon; Groot Koerkamp, Peter W G

    2017-10-15

    The poultry red mite, Dermanyssus gallinae, is the most significant pest of egg laying hens in many parts of the world. Control of D. gallinae could be greatly improved with advanced Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. The development of a model forecasting the pests' population dynamics in laying hen facilities without and post-treatment will contribute to this advanced IPM and could consequently improve implementation of IPM by farmers. The current work describes the development and demonstration of a model which can follow and forecast the population dynamics of D. gallinae in laying hen facilities given the variation of the population growth of D. gallinae within and between flocks. This high variation could partly be explained by house temperature, flock age, treatment, and hen house. The total population growth variation within and between flocks, however, was in part explained by temporal variation. For a substantial part this variation was unexplained. A dynamic adaptive model (DAP) was consequently developed, as models of this type are able to handle such temporal variations. The developed DAP model can forecast the population dynamics of D. gallinae, requiring only current flock population monitoring data, temperature data and information of the dates of any D. gallinae treatment. Importantly, the DAP model forecasted treatment effects, while compensating for location and time specific interactions, handling the variability of these parameters. The characteristics of this DAP model, and its compatibility with different mite monitoring methods, represent progression from existing approaches for forecasting D. gallinae that could contribute to advancing improved Integrated Pest Management (IPM) for D. gallinae in laying hen facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    PubMed

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  14. Effects of household dynamics on resource consumption and biodiversity.

    PubMed

    Liu, Jianguo; Daily, Gretchen C; Ehrlich, Paul R; Luck, Gary W

    2003-01-30

    Human population size and growth rate are often considered important drivers of biodiversity loss, whereas household dynamics are usually neglected. Aggregate demographic statistics may mask substantial changes in the size and number of households, and their effects on biodiversity. Household dynamics influence per capita consumption and thus biodiversity through, for example, consumption of wood for fuel, habitat alteration for home building and associated activities, and greenhouse gas emissions. Here we report that growth in household numbers globally, and particularly in countries with biodiversity hotspots (areas rich in endemic species and threatened by human activities), was more rapid than aggregate population growth between 1985 and 2000. Even when population size declined, the number of households increased substantially. Had the average household size (that is, the number of occupants) remained static, there would have been 155 million fewer households in hotspot countries in 2000. Reduction in average household size alone will add a projected 233 million additional households to hotspot countries during the period 2000-15. Rapid increase in household numbers, often manifested as urban sprawl, and resultant higher per capita resource consumption in smaller households pose serious challenges to biodiversity conservation.

  15. Dynamic social networks based on movement

    USGS Publications Warehouse

    Scharf, Henry; Hooten, Mevin B.; Fosdick, Bailey K.; Johnson, Devin S.; London, Joshua M.; Durban, John W.

    2016-01-01

    Network modeling techniques provide a means for quantifying social structure in populations of individuals. Data used to define social connectivity are often expensive to collect and based on case-specific, ad hoc criteria. Moreover, in applications involving animal social networks, collection of these data is often opportunistic and can be invasive. Frequently, the social network of interest for a given population is closely related to the way individuals move. Thus, telemetry data, which are minimally invasive and relatively inexpensive to collect, present an alternative source of information. We develop a framework for using telemetry data to infer social relationships among animals. To achieve this, we propose a Bayesian hierarchical model with an underlying dynamic social network controlling movement of individuals via two mechanisms: an attractive effect and an aligning effect. We demonstrate the model and its ability to accurately identify complex social behavior in simulation, and apply our model to telemetry data arising from killer whales. Using auxiliary information about the study population, we investigate model validity and find the inferred dynamic social network is consistent with killer whale ecology and expert knowledge.

  16. Scale-dependent portfolio effects explain growth inflation and volatility reduction in landscape demography

    PubMed Central

    2017-01-01

    Population demography is central to fundamental ecology and for predicting range shifts, decline of threatened species, and spread of invasive organisms. There is a mismatch between most demographic work, carried out on few populations and at local scales, and the need to predict dynamics at landscape and regional scales. Inspired by concepts from landscape ecology and Markowitz’s portfolio theory, we develop a landscape portfolio platform to quantify and predict the behavior of multiple populations, scaling up the expectation and variance of the dynamics of an ensemble of populations. We illustrate this framework using a 35-y time series on gypsy moth populations. We demonstrate the demography accumulation curve in which the collective growth of the ensemble depends on the number of local populations included, highlighting a minimum but adequate number of populations for both regional-scale persistence and cross-scale inference. The attainable set of landscape portfolios further suggests tools for regional population management for both threatened and invasive species. PMID:29109261

  17. Cryptic herbivores mediate the strength and form of ungulate impacts on a long-lived savanna tree.

    PubMed

    Maclean, Janet E; Goheen, Jacob R; Doak, Daniel F; Palmer, Todd M; Young, Truman P

    2011-08-01

    Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.

  18. Interspecific competition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host.

    PubMed

    Alzate, A; Bisschop, K; Etienne, R S; Bonte, D

    2017-11-01

    Dispersal and competition have both been suggested to drive variation in adaptability to a new environment, either positively or negatively. A simultaneous experimental test of both mechanisms is however lacking. Here, we experimentally investigate how population dynamics and local adaptation to a new host plant in a model species, the two-spotted spider mite (Tetranychus urticae), are affected by dispersal from a stock population (no-adapted) and competition with an already adapted spider mite species (Tetranychus evansi). For the population dynamics, we find that competition generally reduces population size and increases the risk of population extinction. However, these negative effects are counteracted by dispersal. For local adaptation, the roles of competition and dispersal are reversed. Without competition, dispersal exerts a negative effect on adaptation (measured as fecundity) to a novel host and females receiving the highest number of immigrants performed similarly to the stock population females. By contrast, with competition, adding more immigrants did not result in a lower fecundity. Females from populations with competition receiving the highest number of immigrants had a significantly higher fecundity than females from populations without competition (same dispersal treatment) and than the stock population females. We suggest that by exerting a stronger selection on the adapting populations, competition can counteract the migration load effect of dispersal. Interestingly, adaptation to the new host does not significantly reduce performance on the ancestral host, regardless of dispersal rate or competition. Our results highlight that assessments of how species can adapt to changing conditions need to jointly consider connectivity and the community context. © 2017 The Authors. Journal of Evolutionary Biology Published by John Wiley & Sons ltd on Behalf of European Society for Evolutionary Biology.

  19. Comparison of reintroduction and enhancement effects on metapopulation viability

    USGS Publications Warehouse

    Halsey, Samniqueka J; Bell, Timothy J.; McEachern, A. Kathryn; Pavlovic, Noel B.

    2015-01-01

    Metapopulation viability depends upon a balance of extinction and colonization of local habitats by a species. Mechanisms that can affect this balance include physical characteristics related to natural processes (e.g. succession) as well as anthropogenic actions. Plant restorations can help to produce favorable metapopulation dynamics and consequently increase viability; however, to date no studies confirm this is true. Population viability analysis (PVA) allows for the use of empirical data to generate theoretical future projections in the form of median time to extinction and probability of extinction. In turn, PVAs can inform and aid the development of conservation, recovery, and management plans. Pitcher's thistle (Cirsium pitcheri) is a dune endemic that exhibited metapopulation dynamics. We projected viability of three natural and two restored populations with demographic data spanning 15–23 years to determine the degree the addition of reintroduced population affects metapopulation viability. The models were validated by comparing observed and projected abundances and adjusting parameters associated with demographic and environmental stochasticity to improve model performance. Our chosen model correctly predicted yearly population abundance for 60% of the population-years. Using that model, 50-year projections showed that the addition of reintroductions increases metapopulation viability. The reintroduction that simulated population performance in early-successional habitats had the maximum benefit. In situ enhancements of existing populations proved to be equally effective. This study shows that restorations can facilitate and improve metapopulation viability of species dependent on metapopulation dynamics for survival with long-term persistence of C. pitcheri in Indiana likely to depend on continued active management.

  20. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events.

    PubMed

    Vincenzi, Simone

    2014-08-06

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an 'extinction window' of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the 'extinction window', although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Adaptive evolution of body size subject to indirect effect in trophic cascade system.

    PubMed

    Wang, Xin; Fan, Meng; Hao, Lina

    2017-09-01

    Trophic cascades represent a classic example of indirect effect and are wide-spread in nature. Their ecological impact are well established, but the evolutionary consequences have received even less theoretical attention. We theoretically and numerically investigate the trait (i.e., body size of consumer) evolution in response to indirect effect in a trophic cascade system. By applying the quantitative trait evolutionary theory and the adaptive dynamic theory, we formulate and explore two different types of eco-evolutionary resource-consumer-predator trophic cascade model. First, an eco-evolutionary model incorporating the rapid evolution is formulated to investigate the effect of rapid evolution of the consumer's body size, and to explore the impact of density-mediate indirect effect on the population dynamics and trait dynamics. Next, by employing the adaptive dynamic theory, a long-term evolutionary model of consumer body size is formulated to evaluate the effect of long-term evolution on the population dynamics and the effect of trait-mediate indirect effect. Those models admit rich dynamics that has not been observed yet in empirical studies. It is found that, both in the trait-mediated and density-mediated system, the body size of consumer in predator-consumer-resource interaction (indirect effect) evolves smaller than that in consumer-resource and predator-consumer interaction (direct effect). Moreover, in the density-mediated system, we found that the evolution of consumer body size contributes to avoiding consumer extinction (i.e., evolutionary rescue). The trait-mediate and density-mediate effects may produce opposite evolutionary response. This study suggests that the trophic cascade indirect effect affects consumer evolution, highlights a more comprehensive mechanistic understanding of the intricate interplay between ecological and evolutionary force. The modeling approaches provide avenue for study on indirect effects from an evolutionary perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Relative Effectiveness of the Use of Static and Dynamic Mechanical Models in Teaching Elementary School Children the Theoretical Concept--The Particle Nature of Matter.

    ERIC Educational Resources Information Center

    Ziegler, Robert Edward

    This study is concerned with determining the relative effectiveness of a static and dynamic theoretical model in teaching elementary school students to use the particle idea of matter when explaining certain physical phenomena. A clinical method of personal individual interview-testing, teaching, and retesting of a random sample population from…

  3. How to control chaotic behaviour and population size with proportional feedback

    NASA Astrophysics Data System (ADS)

    Liz, Eduardo

    2010-01-01

    We study the control of chaos in one-dimensional discrete maps as they often occur in modelling population dynamics. For managing the population, we seek to suppress any possible chaotic behavior, leading the system to a stable equilibrium. In this Letter, we make a rigorous analysis of the proportional feedback method under certain conditions fulfilled by a wide family of maps. We show that it is possible to stabilize the chaotic dynamics towards a globally stable positive equilibrium, that can be chosen among a broad range of possible values. In particular, the size of the population can be enhanced by control in form of population reduction. This paradoxical phenomenon is known as the hydra effect, and it has important implications in the design of strategies in such areas as fishing, pest management, and conservation biology.

  4. Successional changes in trophic interactions support a mechanistic model of post-fire population dynamics.

    PubMed

    Smith, Annabel L

    2018-01-01

    Models based on functional traits have limited power in predicting how animal populations respond to disturbance because they do not capture the range of demographic and biological factors that drive population dynamics, including variation in trophic interactions. I tested the hypothesis that successional changes in vegetation structure, which affected invertebrate abundance, would influence growth rates and body condition in the early-successional, insectivorous gecko Nephrurus stellatus. I captured geckos at 17 woodland sites spanning a succession gradient from 2 to 48 years post-fire. Body condition and growth rates were analysed as a function of the best-fitting fire-related predictor (invertebrate abundance or time since fire) with different combinations of the co-variates age, sex and location. Body condition in the whole population was positively affected by increasing invertebrate abundance and, in the adult population, this effect was most pronounced for females. There was strong support for a decline in growth rates in weight with time since fire. The results suggest that increased early-successional invertebrate abundance has filtered through to a higher trophic level with physiological benefits for insectivorous geckos. I integrated the new findings about trophic interactions into a general conceptual model of mechanisms underlying post-fire population dynamics based on a long-term research programme. The model highlights how greater food availability during early succession could drive rapid population growth by contributing to previously reported enhanced reproduction and dispersal. This study provides a framework to understand links between ecological and physiological traits underlying post-fire population dynamics.

  5. Shape matters: Lifecycle of cooperative patches promotes cooperation in bulky populations

    PubMed Central

    Misevic, Dusan; Frénoy, Antoine; Lindner, Ariel B; Taddei, François

    2015-01-01

    Natural cooperative systems take many forms, ranging from one-dimensional cyanobacteria arrays to fractal-like biofilms. We use in silico experimental systems to study a previously overlooked factor in the evolution of cooperation, physical shape of the population. We compare the emergence and maintenance of cooperation in populations of digital organisms that inhabit bulky (100 × 100 cells) or slender (4 × 2500) toroidal grids. Although more isolated subpopulations of secretors in a slender population could be expected to favor cooperation, we find the opposite: secretion evolves to higher levels in bulky populations. We identify the mechanistic explanation for the shape effect by analyzing the lifecycle and dynamics of cooperator patches, from their emergence and growth, to invasion by noncooperators and extinction. Because they are constrained by the population shape, the cooperator patches expand less in slender than in bulky populations, leading to fewer cooperators, less public good secretion, and generally lower cooperation. The patch dynamics and mechanisms of shape effect are robust across several digital cooperation systems and independent of the underlying basis for cooperation (public good secretion or a cooperation game). Our results urge for a greater consideration of population shape in the study of the evolution of cooperation across experimental and modeling systems. PMID:25639379

  6. Dynamics of the double-crested cormorant population on Lake Ontario

    USGS Publications Warehouse

    Blackwell, Bradley F.; Stapanian, Martin A.; Weseloh, D.V. Chip

    2002-01-01

    After nearly 30 years of recolonization and expansion across North America, the double-crested cormorant (Phalacrocorax auritus) occupies the role of a perceived and, in some situations, realized threat to fish stocks and other resources. However, population data necessary to plan, defend, and implement management of this species are few. Our purpose was to gain insight into the relative contribution of various population parameters to the overall rate of population growth and identify data needs critical to improving our understanding of the dynamics of double-crested cormorant populations. We demonstrated the construction of a biologically reasonable representation of cormorant population growth on Lake Ontario (1979-2000) by referencing literature values for fertility, age at first breeding, and survival. These parameters were incorporated into a deterministic stage-classified matrix model. By calculating the elasticity of matrix elements (i.e., statgspecific fertility and survival), we found that cormorant population growth on Lake Ontario was most sensitive to survival of birds about to turn age 3 and older. Finally, we demonstrated how this information could be used to evaluate management scenarios and direct future research by simulating potential environmental effects on fertility and survival, as well as a 5-year egg-oiling program. We also demonstrated that survival of older birds exerts more effective population control than changes in fertility.

  7. Simulations for designing and interpreting intervention trials in infectious diseases.

    PubMed

    Halloran, M Elizabeth; Auranen, Kari; Baird, Sarah; Basta, Nicole E; Bellan, Steven E; Brookmeyer, Ron; Cooper, Ben S; DeGruttola, Victor; Hughes, James P; Lessler, Justin; Lofgren, Eric T; Longini, Ira M; Onnela, Jukka-Pekka; Özler, Berk; Seage, George R; Smith, Thomas A; Vespignani, Alessandro; Vynnycky, Emilia; Lipsitch, Marc

    2017-12-29

    Interventions in infectious diseases can have both direct effects on individuals who receive the intervention as well as indirect effects in the population. In addition, intervention combinations can have complex interactions at the population level, which are often difficult to adequately assess with standard study designs and analytical methods. Herein, we urge the adoption of a new paradigm for the design and interpretation of intervention trials in infectious diseases, particularly with regard to emerging infectious diseases, one that more accurately reflects the dynamics of the transmission process. In an increasingly complex world, simulations can explicitly represent transmission dynamics, which are critical for proper trial design and interpretation. Certain ethical aspects of a trial can also be quantified using simulations. Further, after a trial has been conducted, simulations can be used to explore the possible explanations for the observed effects. Much is to be gained through a multidisciplinary approach that builds collaborations among experts in infectious disease dynamics, epidemiology, statistical science, economics, simulation methods, and the conduct of clinical trials.

  8. Mathematical modelling of vector-borne diseases and insecticide resistance evolution.

    PubMed

    Gabriel Kuniyoshi, Maria Laura; Pio Dos Santos, Fernando Luiz

    2017-01-01

    Vector-borne diseases are important public health issues and, consequently, in silico models that simulate them can be useful. The susceptible-infected-recovered (SIR) model simulates the population dynamics of an epidemic and can be easily adapted to vector-borne diseases, whereas the Hardy-Weinberg model simulates allele frequencies and can be used to study insecticide resistance evolution. The aim of the present study is to develop a coupled system that unifies both models, therefore enabling the analysis of the effects of vector population genetics on the population dynamics of an epidemic. Our model consists of an ordinary differential equation system. We considered the populations of susceptible, infected and recovered humans, as well as susceptible and infected vectors. Concerning these vectors, we considered a pair of alleles, with complete dominance interaction that determined the rate of mortality induced by insecticides. Thus, we were able to separate the vectors according to the genotype. We performed three numerical simulations of the model. In simulation one, both alleles conferred the same mortality rate values, therefore there was no resistant strain. In simulations two and three, the recessive and dominant alleles, respectively, conferred a lower mortality. Our numerical results show that the genetic composition of the vector population affects the dynamics of human diseases. We found that the absolute number of vectors and the proportion of infected vectors are smaller when there is no resistant strain, whilst the ratio of infected people is larger in the presence of insecticide-resistant vectors. The dynamics observed for infected humans in all simulations has a very similar shape to real epidemiological data. The population genetics of vectors can affect epidemiological dynamics, and the presence of insecticide-resistant strains can increase the number of infected people. Based on the present results, the model is a basis for development of other models and for investigating population dynamics.

  9. Population and prehistory III: food-dependent demography in variable environments.

    PubMed

    Lee, Charlotte T; Puleston, Cedric O; Tuljapurkar, Shripad

    2009-11-01

    The population dynamics of preindustrial societies depend intimately on their surroundings, and food is a primary means through which environment influences population size and individual well-being. Food production requires labor; thus, dependence of survival and fertility on food involves dependence of a population's future on its current state. We use a perturbation approach to analyze the effects of random environmental variation on this nonlinear, age-structured system. We show that in expanding populations, direct environmental effects dominate induced population fluctuations, so environmental variability has little effect on mean hunger levels, although it does decrease population growth. The growth rate determines the time until population is limited by space. This limitation introduces a tradeoff between population density and well-being, so population effects become more important than the direct effects of the environment: environmental fluctuation increases mortality, releasing density dependence and raising average well-being for survivors. We discuss the social implications of these findings for the long-term fate of populations as they transition from expansion into limitation, given that conditions leading to high well-being during growth depress well-being during limitation.

  10. IN-STREAM AND WATERSHED PREDICTORS OF GENETIC DIVERSITY, EFFECTIVE POPULATION SIZE AND IMMIGRATION ACROSS RIVER-STREAM NETWORKS

    EPA Science Inventory

    The influence of spatial processes on population dynamics within river-stream networks is poorly understood. Utilizing spatially explicit analyses of temporal genetic variance, we examined whether persistence of Central Stonerollers (Campostoma anomalum) reflects differences in h...

  11. Modeling the effects of climate on date palm scale ( Parlatoria blanchardi) population dynamics during different phenological stages of life history under hot arid conditions

    NASA Astrophysics Data System (ADS)

    Idder-Ighili, Hakima; Idder, Mohamed Azzedine; Doumandji-Mitiche, Bahia; Chenchouni, Haroun

    2015-10-01

    The date palm scale (DPS) Parlatoria blanchardi is a serious pest due to the damage it inflicts on its host tree ( Phoenix dactylifera). To develop an effective control against DPS in arid regions, it is essential to know its bio-ecology including population dynamics and climatic factors influencing the duration and timing of life history and also the densities of different phenological stages (crawlers, first and second instars nymphs, adult males, and adult females). Monitoring of biological cycle and population dynamics of the pest were achieved through weekly counts of DPS densities on leaflets sampled at different position of date palm trees in an oasis of Ouargla region (Algerian Sahara Desert). Within this hyper-arid region, DPS established four generations per year, the most important was the spring generation. Two overlapping generations occurred in spring-early summer and two in autumn-early winter; these two pairs of generations were interspersed by two phases of high-mortality rates, the first corresponds to winter cold and the second refers to the extreme heat of summer. Statistical analysis of the effects of the studied climatic conditions (minimum, maximum and mean temperatures, precipitation, humidity, wind, rain days, and climatic indices) on the DPS densities at different phenological stages showed great variability from one stage to another. Among these, adult females were the most affected by climate factors. For the total DPS population, high values of minimum temperatures negatively affected population density, while high maximum temperatures, hygrometry, and De Martonne aridity index showed a positive influence.

  12. Modeling the effects of climate on date palm scale (Parlatoria blanchardi) population dynamics during different phenological stages of life history under hot arid conditions.

    PubMed

    Idder-Ighili, Hakima; Idder, Mohamed Azzedine; Doumandji-Mitiche, Bahia; Chenchouni, Haroun

    2015-10-01

    The date palm scale (DPS) Parlatoria blanchardi is a serious pest due to the damage it inflicts on its host tree (Phoenix dactylifera). To develop an effective control against DPS in arid regions, it is essential to know its bio-ecology including population dynamics and climatic factors influencing the duration and timing of life history and also the densities of different phenological stages (crawlers, first and second instars nymphs, adult males, and adult females). Monitoring of biological cycle and population dynamics of the pest were achieved through weekly counts of DPS densities on leaflets sampled at different position of date palm trees in an oasis of Ouargla region (Algerian Sahara Desert). Within this hyper-arid region, DPS established four generations per year, the most important was the spring generation. Two overlapping generations occurred in spring-early summer and two in autumn-early winter; these two pairs of generations were interspersed by two phases of high-mortality rates, the first corresponds to winter cold and the second refers to the extreme heat of summer. Statistical analysis of the effects of the studied climatic conditions (minimum, maximum and mean temperatures, precipitation, humidity, wind, rain days, and climatic indices) on the DPS densities at different phenological stages showed great variability from one stage to another. Among these, adult females were the most affected by climate factors. For the total DPS population, high values of minimum temperatures negatively affected population density, while high maximum temperatures, hygrometry, and De Martonne aridity index showed a positive influence.

  13. Coupled dynamics of body mass and population growth in response to environmental change.

    PubMed

    Ozgul, Arpat; Childs, Dylan Z; Oli, Madan K; Armitage, Kenneth B; Blumstein, Daniel T; Olson, Lucretia E; Tuljapurkar, Shripad; Coulson, Tim

    2010-07-22

    Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.

  14. Coupled dynamics of body mass and population growth in response to environmental change

    PubMed Central

    Ozgul, Arpat; Childs, Dylan Z.; Oli, Madan K.; Armitage, Kenneth B.; Blumstein, Daniel T.; Olson, Lucretia E.; Tuljapurkar, Shripad; Coulson, Tim

    2017-01-01

    Environmental change has altered the phenology, morphological traits and population dynamics of many species1,2. However, the links underlying these joint responses remain largely unknown due to a paucity of long-term data and the lack of an appropriate analytical framework3. Here, we investigate the link between phenotypic and demographic responses to environmental change using a novel methodology and an exceptional long-term (1976–2008) dataset from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses prior to hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change had comparable contributions to the observed dramatic increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments4,5. PMID:20651690

  15. Hierarchical spatiotemporal matrix models for characterizing invasions

    USGS Publications Warehouse

    Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J. Andrew

    2007-01-01

    The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing.

  16. Hierarchical spatiotemporal matrix models for characterizing invasions

    USGS Publications Warehouse

    Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J. Andrew

    2007-01-01

    The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing. ?? 2006, The International Biometric Society.

  17. Effects of Peanut-Tobacco Rotations on Population Dynamics of Meloidogyne arenaria in Mixed Race Populations.

    PubMed

    Hirunsalee, A; Barker, K R; Beute, M K

    1995-06-01

    A 3-year microplot study was initiated to characterize the population dynamics, reproduction potential, and survivorship of single or mixed populations of Meloidogyne arenaria race 1 (Ma1) and race 2 (Ma2), as affected by crop rotations of peanut 'Florigiant' and M. incognita races 1 and 3-resistant 'McNair 373' and susceptible 'Coker 371-Gold' tobacco. Infection, reproduction, and root damage by Ma2 on peanut and by Ma1 on resistant tobacco were limited in the first year. Infection, reproduction, and root-damage potentials on susceptible tobacco were similar for Ma1 and Ma2. In the mixed (1:1) population, Ma1 was dominant on peanut and Ma2 was dominant on both tobacco cultivars. Crop rotation affected the population dynamics of different nematode races. For years 2 and 3, the low numbers of Ma1 and Ma2 from a previous-year poor host increased rapidly on suitable hosts. Ma1 had greater reproduction factors ([RF] = population density at harvest/population density at preplandng) than did Ma2 and Ma1 + Ma2 in second-year peanut plots following first-year resistant tobacco, and in third-year peanut plots following second-year tobacco. In mixed infestations, Ma1 predominated over Ma2 in previous-year peanut plots, whereas Ma2 predominated over Ma1 in previous-year tobacco plots. Moderate damage on resistant tobacco was induced by Ma1 in the second year. In the third year, moderate damage on peanut was associated with 'Ma2' from previous-year peanut plots. The resistant tobacco supported sufficient reproduction of Ma1 over 2 years to effect moderate damage and yield suppression to peanut in year 3.

  18. Effects of Peanut-Tobacco Rotations on Population Dynamics of Meloidogyne arenaria in Mixed Race Populations

    PubMed Central

    Hirunsalee, Anan; Barker, K. R.; Beute, M. K.

    1995-01-01

    A 3-year microplot study was initiated to characterize the population dynamics, reproduction potential, and survivorship of single or mixed populations of Meloidogyne arenaria race 1 (Ma1) and race 2 (Ma2), as affected by crop rotations of peanut 'Florigiant' and M. incognita races 1 and 3-resistant 'McNair 373' and susceptible 'Coker 371-Gold' tobacco. Infection, reproduction, and root damage by Ma2 on peanut and by Ma1 on resistant tobacco were limited in the first year. Infection, reproduction, and root-damage potentials on susceptible tobacco were similar for Ma1 and Ma2. In the mixed (1:1) population, Ma1 was dominant on peanut and Ma2 was dominant on both tobacco cultivars. Crop rotation affected the population dynamics of different nematode races. For years 2 and 3, the low numbers of Ma1 and Ma2 from a previous-year poor host increased rapidly on suitable hosts. Ma1 had greater reproduction factors ([RF] = population density at harvest/population density at preplandng) than did Ma2 and Ma1 + Ma2 in second-year peanut plots following first-year resistant tobacco, and in third-year peanut plots following second-year tobacco. In mixed infestations, Ma1 predominated over Ma2 in previous-year peanut plots, whereas Ma2 predominated over Ma1 in previous-year tobacco plots. Moderate damage on resistant tobacco was induced by Ma1 in the second year. In the third year, moderate damage on peanut was associated with 'Ma2' from previous-year peanut plots. The resistant tobacco supported sufficient reproduction of Ma1 over 2 years to effect moderate damage and yield suppression to peanut in year 3. PMID:19277278

  19. Resource-driven changes to host population stability alter the evolution of virulence and transmission.

    PubMed

    Hite, Jessica L; Cressler, Clayton E

    2018-05-05

    What drives the evolution of parasite life-history traits? Recent studies suggest that linking within- and between-host processes can provide key insight into both disease dynamics and parasite evolution. Still, it remains difficult to understand how to pinpoint the critical factors connecting these cross-scale feedbacks, particularly under non-equilibrium conditions; many natural host populations inherently fluctuate and parasites themselves can strongly alter the stability of host populations. Here, we develop a general model framework that mechanistically links resources to parasite evolution across a gradient of stable and unstable conditions. First, we dynamically link resources and between-host processes (host density, stability, transmission) to virulence evolution, using a 'non-nested' model. Then, we consider a 'nested' model where population-level processes (transmission and virulence) depend on resource-driven changes to individual-level (within-host) processes (energetics, immune function, parasite production). Contrary to 'non-nested' model predictions, the 'nested' model reveals complex effects of host population dynamics on parasite evolution, including regions of evolutionary bistability; evolution can push parasites towards strongly or weakly stabilizing strategies. This bistability results from dynamic feedbacks between resource-driven changes to host density, host immune function and parasite production. Together, these results highlight how cross-scale feedbacks can provide key insights into the structuring role of parasites and parasite evolution.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'. © 2018 The Author(s).

  20. Using Dynamic Stochastic Modelling to Estimate Population Risk Factors in Infectious Disease: The Example of FIV in 15 Cat Populations

    PubMed Central

    Fouchet, David; Leblanc, Guillaume; Sauvage, Frank; Guiserix, Micheline; Poulet, Hervé; Pontier, Dominique

    2009-01-01

    Background In natural cat populations, Feline Immunodeficiency Virus (FIV) is transmitted through bites between individuals. Factors such as the density of cats within the population or the sex-ratio can have potentially strong effects on the frequency of fight between individuals and hence appear as important population risk factors for FIV. Methodology/Principal Findings To study such population risk factors, we present data on FIV prevalence in 15 cat populations in northeastern France. We investigate five key social factors of cat populations; the density of cats, the sex-ratio, the number of males and the mean age of males and females within the population. We overcome the problem of dependence in the infective status data using sexually-structured dynamic stochastic models. Only the age of males and females had an effect (p = 0.043 and p = 0.02, respectively) on the male-to-female transmission rate. Due to multiple tests, it is even likely that these effects are, in reality, not significant. Finally we show that, in our study area, the data can be explained by a very simple model that does not invoke any risk factor. Conclusion Our conclusion is that, in host-parasite systems in general, fluctuations due to stochasticity in the transmission process are naturally very large and may alone explain a larger part of the variability in observed disease prevalence between populations than previously expected. Finally, we determined confidence intervals for the simple model parameters that can be used to further aid in management of the disease. PMID:19888418

  1. Physiological condition of bank voles (Myodes glareolus) during the increase and decline phases of the population cycle.

    PubMed

    Nieminen, Petteri; Huitu, Otso; Henttonen, Heikki; Finnilä, Mikko A J; Voutilainen, Liina; Itämies, Juhani; Kärjä, Vesa; Saarela, Seppo; Halonen, Toivo; Aho, Jari; Mustonen, Anne-Mari

    2015-09-01

    The dynamics of animal populations are greatly influenced by interactions with their natural enemies and food resources. However, quantifying the relative effects of these factors on demographic rates remains a perpetual challenge for animal population ecology. Food scarcity is assumed to limit the growth and to initiate the decline of cyclic herbivore populations, but this has not been verified with physiological health indices. We hypothesized that individuals in declining populations would exhibit signs of malnutrition-induced deterioration of physiological condition. We evaluated the association of body condition with population cycle phase in bank voles (Myodes glareolus) during the increase and decline phases of a population cycle. The bank voles had lower body masses, condition indices and absolute masses of particular organs during the decline. Simultaneously, they had lower femoral masses, mineral contents and densities. Hemoglobin and hematocrit values and several parameters known to respond to food deprivation were unaffected by the population phase. There were no signs of lymphopenia, eosinophilia, granulocytosis or monocytosis. Erythrocyte counts were higher and plasma total protein levels and tissue proportions of essential polyunsaturated fatty acids lower in the population decline. Ectoparasite load was lower and adrenal gland masses or catecholamine concentrations did not suggest higher stress levels. Food availability seems to limit the size of voles during the decline but they can adapt to the prevailing conditions without clear deleterious health effects. This highlights the importance of quantifying individual health state when evaluating the effects of complex trophic interactions on the dynamics of wild animal populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Disease-emergence dynamics and control in a socially-structured wildlife species

    NASA Astrophysics Data System (ADS)

    Pepin, Kim M.; Vercauteren, Kurt C.

    2016-04-01

    Once a pathogen is introduced in a population, key factors governing rate of spread include contact structure, supply of susceptible individuals and pathogen life-history. We examined the interplay of these factors on emergence dynamics and efficacy of disease prevention and response. We contrasted transmission dynamics of livestock viruses with different life-histories in hypothetical populations of feral swine with different contact structures (homogenous, metapopulation, spatial and network). Persistence probability was near 0 for the FMDV-like case under a wide range of parameter values and contact structures, while persistence was probable for the CSFV-like case. There were no sets of conditions where the FMDV-like pathogen persisted in every stochastic simulation. Even when population growth rates were up to 300% annually, the FMDV-like pathogen persisted in <25% of simulations regardless of transmission probabilities and contact structure. For networks and spatial contact structure, persistence probability of the FMDV-like pathogen was always <10%. Because of its low persistence probability, even very early response to the FMDV-like pathogen in feral swine was unwarranted while response to the CSFV-like pathogen was generally effective. When pre-emergence culling of feral swine caused population declines, it was effective at decreasing outbreak size of both diseases by ≥80%.

  3. Computer simulation of the coffee leaf miner using sexual Penna aging model

    NASA Astrophysics Data System (ADS)

    de Oliveira, A. C. S.; Martins, S. G. F.; Zacarias, M. S.

    2008-01-01

    Forecast models based on climatic conditions are of great interest in Integrated Pest Management (IPM) programs. The success of these models depends, among other factors, on the knowledge of the temperature effect on the pests’ population dynamics. In this direction, a computer simulation was made for the population dynamics of the coffee leaf miner, L. coffeella, at different temperatures, considering experimental data relative to the pest. The age structure was inserted into the dynamics through sexual Penna Model. The results obtained, such as life expectancy, growth rate and annual generations’ number, in agreement to those in laboratory and field conditions, show that the simulation can be used as a forecast model for controlling L. coffeella.

  4. Effects of dynamical grouping on cooperation in N-person evolutionary snowdrift game

    NASA Astrophysics Data System (ADS)

    Ji, M.; Xu, C.; Hui, P. M.

    2011-09-01

    A population typically consists of agents that continually distribute themselves into different groups at different times. This dynamic grouping has recently been shown to be essential in explaining many features observed in human activities including social, economic, and military activities. We study the effects of dynamic grouping on the level of cooperation in a modified evolutionary N-person snowdrift game. Due to the formation of dynamical groups, the competition takes place in groups of different sizes at different times and players of different strategies are mixed by the grouping dynamics. It is found that the level of cooperation is greatly enhanced by the dynamic grouping of agents, when compared with a static population of the same size. As a parameter β, which characterizes the relative importance of the reward and cost, increases, the fraction of cooperative players fC increases and it is possible to achieve a fully cooperative state. Analytically, we present a dynamical equation that incorporates the effects of the competing game and group size distribution. The distribution of cooperators in different groups is assumed to be a binomial distribution, which is confirmed by simulations. Results from the analytic equation are in good agreement with numerical results from simulations. We also present detailed simulation results of fC over the parameter space spanned by the probabilities of group coalescence νm and group fragmentation νp in the grouping dynamics. A high νm and low νp promotes cooperation, and a favorable reward characterized by a high β would lead to a fully cooperative state.

  5. Opinion Dynamics with Disagreement and Modulated Information

    NASA Astrophysics Data System (ADS)

    Sîrbu, Alina; Loreto, Vittorio; Servedio, Vito D. P.; Tria, Francesca

    2013-04-01

    Opinion dynamics concerns social processes through which populations or groups of individuals agree or disagree on specific issues. As such, modelling opinion dynamics represents an important research area that has been progressively acquiring relevance in many different domains. Existing approaches have mostly represented opinions through discrete binary or continuous variables by exploring a whole panoply of cases: e.g. independence, noise, external effects, multiple issues. In most of these cases the crucial ingredient is an attractive dynamics through which similar or similar enough agents get closer. Only rarely the possibility of explicit disagreement has been taken into account (i.e., the possibility for a repulsive interaction among individuals' opinions), and mostly for discrete or 1-dimensional opinions, through the introduction of additional model parameters. Here we introduce a new model of opinion formation, which focuses on the interplay between the possibility of explicit disagreement, modulated in a self-consistent way by the existing opinions' overlaps between the interacting individuals, and the effect of external information on the system. Opinions are modelled as a vector of continuous variables related to multiple possible choices for an issue. Information can be modulated to account for promoting multiple possible choices. Numerical results show that extreme information results in segregation and has a limited effect on the population, while milder messages have better success and a cohesion effect. Additionally, the initial condition plays an important role, with the population forming one or multiple clusters based on the initial average similarity between individuals, with a transition point depending on the number of opinion choices.

  6. Plant toxicity, adaptive herbivory, and plant community dynamics

    Treesearch

    Zhilan Feng; Rongsong Liu; Donald L. DeAngelis; John P. Bryant; Knut Kielland; F. Stuart Chapin; Robert K. Swihart

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of...

  7. Livestock and elk grazing effects on stream morphology, brown trout population dynamics, movement, and growth rate, Valles Caldera National Preserve, New Mexico

    Treesearch

    Michael C. Anderson

    2009-01-01

    Ungulate grazing in riparian areas has been shown to detrimentally impact stream morphology and fish populations. Goals of this research were to assess changes in stream morphology and responses of a brown trout (Salmo trutta) population to exclusion of cattle (Bos taurus) and elk (Cervus elaphus) from riparian...

  8. Modeling the spatial and temporal dynamics of isolated emerald ash borer populations

    Treesearch

    Nathan W. Siegert; Andrew M. Liebhold; Deborah G. McCullough

    2008-01-01

    The ability to predict the distance and rate of emerald ash borer (EAB) spread in outlier populations is needed to continue development of effective management strategies for improved EAB control. We have developed a coupled map lattice model to estimate the spread and dispersal of isolated emerald ash borer populations. This model creates an artificial environment in...

  9. Effects of paternal phenotype and environmental variability on age and size at maturity in a male dimorphic mite

    NASA Astrophysics Data System (ADS)

    Smallegange, Isabel M.

    2011-04-01

    Investigating how the environment affects age and size at maturity of individuals is crucial to understanding how changes in the environment affect population dynamics through the biology of a species. Paternal phenotype, maternal, and offspring environment may crucially influence these traits, but to my knowledge, their combined effects have not yet been tested. Here, I found that in bulb mites ( Rhizoglyphus robini), maternal nutrition, offspring nutrition, and paternal phenotype (males are fighters, able to kill other mites, or benign scramblers) interactively affected offspring age and size at maturity. The largest effect occurred when both maternal and offspring nutrition was poor: in that case offspring from fighter sires required a significantly longer development time than offspring from scrambler sires. Investigating parental effects on the relationship between age and size at maturity revealed no paternal effects, and only for females was its shape influenced by maternal nutrition. Overall, this reaction norm was nonlinear. These non-genetic intergenerational effects may play a complex, yet unexplored role in influencing population fluctuations—possibly explaining why results from field studies often do not match theoretical predictions on maternal effects on population dynamics.

  10. Nutrition, fertility and steady-state population dynamics in a pre-industrial community in Penrith, northern England.

    PubMed

    Scott, S; Duncan, C J

    1999-10-01

    The effect of nutrition on fertility and its contribution thereby to population dynamics are assessed in three social groups (elite, tradesmen and subsistence) in a marginal, pre-industrial population in northern England. This community was particularly susceptible to fluctuations in the price of grains, which formed their basic foodstuff. The subsistence class, who formed the largest part of the population, had low levels of fertility and small family sizes, but women from all social groups had a characteristic and marked subfecundity in the early part of their reproductive lives. The health and nutrition of the mother during pregnancy was the most important factor in determining fertility and neonatal mortality. Inadequate nutrition had many subtle effects on reproduction which interacted to produce a complex web of events. A population boom occurred during the second half of the 18th century; fertility did not change but there was a marked improvement in infant mortality and it is suggested that the steadily improving nutritional standards of the population, particularly during crucial periods in pregnancy (i.e. the last trimester), probably made the biggest contribution to the improvement in infant mortality and so was probably the major factor in triggering the boom.

  11. Effects of Interaction Imbalance in a Strongly Repulsive One-Dimensional Bose Gas

    NASA Astrophysics Data System (ADS)

    Barfknecht, R. E.; Foerster, A.; Zinner, N. T.

    2018-05-01

    We calculate the spatial distributions and the dynamics of a few-body two-component strongly interacting Bose gas confined to an effectively one-dimensional trapping potential. We describe the densities for each component in the trap for different interaction and population imbalances. We calculate the time evolution of the system and show that, for a certain ratio of interactions, the minority population travels through the system as an effective wave packet.

  12. Anthropogenic habitat disturbance and the dynamics of hantavirus using remote sensing, GIS, and a spatially explicit agent-based model

    NASA Astrophysics Data System (ADS)

    Cao, Lina

    Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that population density was one of the most important parameters affecting the SNV dynamics. The results also indicated that habitat disturbance could increase hantavirus transmission likely by increasing the movement and consequently contact rates. However, the model suggested that habitat disturbance had a much stronger effect on prevalence by decreasing population density than by increasing mice movement. Therefore, overall habitat disturbance reduces SNV prevalence.

  13. Consumers limit the abundance and dynamics of a perennial shrub with a seed bank

    USGS Publications Warehouse

    Kauffman, M.J.; Maron, J.L.

    2006-01-01

    For nearly 30 years, ecologists have argued that predators of seeds and seedlings seldom have population-level effects on plants with persistent seed banks and density-dependent seedling survival. We parameterized stage-based population models that incorporated density dependence and seed dormancy with data from a 5.5-year experiment that quantified how granivorous mice and herbivorous voles influence bush lupine (Lupinus arboreus) demography. We asked how seed dormancy and density-dependent seedling survival mediate the impacts of these consumers in dune and grassland habitats. In dune habitat, mice reduced analytical ?? (the intrinsic rate of population growth) by 39%, the equilibrium number of above-ground plants by 90%, and the seed bank by 98%; voles had minimal effects. In adjacent grasslands, mice had minimal effects, but seedling herbivory by voles reduced analytical ?? by 15% and reduced both the equilibrium number of aboveground plants and dormant seeds by 63%. A bootstrap analysis demonstrated that these consumer effects were robust to parameter uncertainty. Our results demonstrate that the quantitative strengths of seed dormancy and density-dependent seedling survival-not their mere existence-critically mediate consumer effects. This study suggests that plant population dynamics and distribution may be more strongly influenced by consumers of seeds and seedlings than is currently recognized. ?? 2006 by The University of Chicago.

  14. Effects of Nano-Titanium Dioxide on Freshwater Algal Population Dynamics

    PubMed Central

    Kulacki, Konrad J.; Cardinale, Bradley J.

    2012-01-01

    To make predictions about the possible effects of nanomaterials across environments and taxa, toxicity testing must incorporate not only a variety of organisms and endpoints, but also an understanding of the mechanisms that underlie nanoparticle toxicity. Here, we report the results of a laboratory experiment in which we examined how titanium dioxide nanoparticles impact the population dynamics and production of biomass across a range of freshwater algae. We exposed 10 of the most common species of North American freshwater pelagic algae (phytoplankton) to five increasing concentrations of n-TiO2 (ranging from controls to 300 mg n-TiO2 L−1). We then examined the effects of n-TiO2 on the population growth rates and biomass production of each algal species over a period of 25 days. On average, increasing concentrations of n-TiO2 had no significant effects on algal growth rates (p = 0.376), even though there was considerable species-specific variation in responses. In contrast, exposure to n-TiO2 tended to increase maximum biomass achieved by species in culture (p = 0.06). Results suggest that titanium dioxide nanoparticles could influence certain aspects of population growth of freshwater phytoplankton, though effects are unlikely at environmentally relevant concentrations. PMID:23071735

  15. Modelling the Dynamics of Post-Vaccination Immunity Rate in a Population of Sahelian Sheep after a Vaccination Campaign against Peste des Petits Ruminants Virus

    PubMed Central

    Lancelot, Renaud; Lesnoff, Matthieu

    2016-01-01

    Background Peste des petits ruminants (PPR) is an acute infectious viral disease affecting domestic small ruminants (sheep and goats) and some wild ruminant species in Africa, the Middle East and Asia. A global PPR control strategy based on mass vaccination—in regions where PPR is endemic—was recently designed and launched by international organizations. Sahelian Africa is one of the most challenging endemic regions for PPR control. Indeed, strong seasonal and annual variations in mating, mortality and offtake rates result in a complex population dynamics which might in turn alter the population post-vaccination immunity rate (PIR), and thus be important to consider for the implementation of vaccination campaigns. Methods In a context of preventive vaccination in epidemiological units without PPR virus transmission, we developed a predictive, dynamic model based on a seasonal matrix population model to simulate PIR dynamics. This model was mostly calibrated with demographic and epidemiological parameters estimated from a long-term follow-up survey of small ruminant herds. We used it to simulate the PIR dynamics following a single PPR vaccination campaign in a Sahelian sheep population, and to assess the effects of (i) changes in offtake rate related to the Tabaski (a Muslim feast following the lunar calendar), and (ii) the date of implementation of the vaccination campaigns. Results The persistence of PIR was not influenced by the Tabaski date. Decreasing the vaccination coverage from 100 to 80% had limited effects on PIR. However, lower vaccination coverage did not provide sufficient immunity rates (PIR < 70%). As a trade-off between model predictions and other considerations like animal physiological status, and suitability for livestock farmers, we would suggest to implement vaccination campaigns in September-October. This model is a first step towards better decision support for animal health authorities. It might be adapted to other species, livestock farming systems or diseases. PMID:27603710

  16. An investigation of emotion dynamics in major depressive disorder patients and healthy persons using sparse longitudinal networks.

    PubMed

    de Vos, Stijn; Wardenaar, Klaas J; Bos, Elisabeth H; Wit, Ernst C; Bouwmans, Mara E J; de Jonge, Peter

    2017-01-01

    Differences in within-person emotion dynamics may be an important source of heterogeneity in depression. To investigate these dynamics, researchers have previously combined multilevel regression analyses with network representations. However, sparse network methods, specifically developed for longitudinal network analyses, have not been applied. Therefore, this study used this approach to investigate population-level and individual-level emotion dynamics in healthy and depressed persons and compared this method with the multilevel approach. Time-series data were collected in pair-matched healthy persons and major depressive disorder (MDD) patients (n = 54). Seven positive affect (PA) and seven negative affect (NA) items were administered electronically at 90 times (30 days; thrice per day). The population-level (healthy vs. MDD) and individual-level time series were analyzed using a sparse longitudinal network model based on vector autoregression. The population-level model was also estimated with a multilevel approach. Effects of different preprocessing steps were evaluated as well. The characteristics of the longitudinal networks were investigated to gain insight into the emotion dynamics. In the population-level networks, longitudinal network connectivity was strongest in the healthy group, with nodes showing more and stronger longitudinal associations with each other. Individually estimated networks varied strongly across individuals. Individual variations in network connectivity were unrelated to baseline characteristics (depression status, neuroticism, severity). A multilevel approach applied to the same data showed higher connectivity in the MDD group, which seemed partly related to the preprocessing approach. The sparse network approach can be useful for the estimation of networks with multiple nodes, where overparameterization is an issue, and for individual-level networks. However, its current inability to model random effects makes it less useful as a population-level approach in case of large heterogeneity. Different preprocessing strategies appeared to strongly influence the results, complicating inferences about network density.

  17. Von Bertalanffy's dynamics under a polynomial correction: Allee effect and big bang bifurcation

    NASA Astrophysics Data System (ADS)

    Leonel Rocha, J.; Taha, A. K.; Fournier-Prunaret, D.

    2016-02-01

    In this work we consider new one-dimensional populational discrete dynamical systems in which the growth of the population is described by a family of von Bertalanffy's functions, as a dynamical approach to von Bertalanffy's growth equation. The purpose of introducing Allee effect in those models is satisfied under a correction factor of polynomial type. We study classes of von Bertalanffy's functions with different types of Allee effect: strong and weak Allee's functions. Dependent on the variation of four parameters, von Bertalanffy's functions also includes another class of important functions: functions with no Allee effect. The complex bifurcation structures of these von Bertalanffy's functions is investigated in detail. We verified that this family of functions has particular bifurcation structures: the big bang bifurcation of the so-called “box-within-a-box” type. The big bang bifurcation is associated to the asymptotic weight or carrying capacity. This work is a contribution to the study of the big bang bifurcation analysis for continuous maps and their relationship with explosion birth and extinction phenomena.

  18. Biology as population dynamics: heuristics for transmission risk.

    PubMed

    Keebler, Daniel; Walwyn, David; Welte, Alex

    2013-02-01

    Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the biology of HIV infection and viral replication. A simple dynamic model can explore the effect of a vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which impact on the probability of infection. Variations on this model could capture the importance of the timing and duration of different key events in viral transmission, and hence be applied to questions of mucosal immunology. The dynamical insights and assumptions of such models are compatible with the continuum of between- and within-individual risks in sexual violence and may be helpful in making sense of the sparse data available on the association between HIV transmission and sexual violence. © 2012 John Wiley & Sons A/S.

  19. Disease effects on lobster fisheries, ecology, and culture: overview of DAO Special 6.

    PubMed

    Behringer, Donald C; Butler, Mark J; Stentiford, Grant D

    2012-08-27

    Lobsters are prized by commercial and recreational fishermen worldwide, and their populations are therefore buffeted by fishery practices. But lobsters also remain integral members of their benthic communities where predator-prey relationships, competitive interactions, and host-pathogen dynamics push and pull at their population dynamics. Although lobsters have few reported pathogens and parasites relative to other decapod crustaceans, the rise of diseases with consequences for lobster fisheries and aquaculture has spotlighted the importance of disease for lobster biology, population dynamics and ecology. Researchers, managers, and fishers thus increasingly recognize the need to understand lobster pathogens and parasites so they can be managed proactively and their impacts minimized where possible. At the 2011 International Conference and Workshop on Lobster Biology and Management a special session on lobster diseases was convened and this special issue of Diseases of Aquatic Organisms highlights those proceedings with a suite of articles focused on diseases discussed during that session.

  20. Numerical modeling of mosquito population dynamics of Aedes aegypti.

    PubMed

    Yamashita, William M S; Das, Shyam S; Chapiro, Grigori

    2018-04-16

    The global incidences of dengue virus have increased the interest in studying and understanding the mosquito population dynamics. It is predominantly spread by Aedes aegypti in the tropical and sub-tropical countries in the world. Understanding these dynamics is important for public health in countries where climatic and environmental conditions are favorable for the propagation of these diseases. For this reason, a new model has been proposed to investigate the population dynamics of mosquitoes in a city. The present paper discusses the numerical modeling of population dynamics of Ae. aegypti mosquitoes in an urban neighborhood of a city using the finite volume method. The model describes how populations spread through the city assisted by the wind. This model allows incorporating external factors (wind and chemical insecticides) and topography data (streets, building blocks, parks, forests and beach). The proposed model has been successfully tested in examples involving two Brazilian cities (City center, Juiz de Fora and Copacabana Beach, Rio de Janeiro). Invasion phenomena of Ae. aegypti mosquitoes have been observed in each of the simulations. It was observed that, inside the blocks, the growth of the population for both winged and aquatic phase causes an infestation of Ae. aegypti in a short time. Within the blocks the mosquito population was concentrated and diffused slowly. In the streets, there was a long-distance spread, which was influenced by wind and diffusion with a low concentration of mosquito population. The model was also tested taking into account chemical insecticides spread in two different configurations. It has been observed that the insecticides have a significant effect on the mosquito population for both winged and aquatic phases when the chemical insecticides spread more uniformly along all the streets in a neighborhood of a city. The presented methodology can be employed to evaluate and to understand the epidemic risks in a specific region of the city. Moreover the model allows an increase in efficiency of the existing mosquito population control techniques and to theoretically test new methods before involving the human population.

  1. Outward migration may alter population dynamics and income inequality

    NASA Astrophysics Data System (ADS)

    Shayegh, Soheil

    2017-11-01

    Climate change impacts may drive affected populations to migrate. However, migration decisions in response to climate change could have broader effects on population dynamics in affected regions. Here, I model the effect of climate change on fertility rates, income inequality, and human capital accumulation in developing countries, focusing on the instrumental role of migration as a key adaptation mechanism. In particular, I investigate how climate-induced migration in developing countries will affect those who do not migrate. I find that holding all else constant, climate change raises the return on acquiring skills, because skilled individuals have greater migration opportunities than unskilled individuals. In response to this change in incentives, parents may choose to invest more in education and have fewer children. This may ultimately reduce local income inequality, partially offsetting some of the damages of climate change for low-income individuals who do not migrate.

  2. Noise-induced effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  3. Addressing Institutional Amplifiers in the Dynamics and Control of Tuberculosis Epidemics

    PubMed Central

    Basu, Sanjay; Stuckler, David; McKee, Martin

    2011-01-01

    Tuberculosis outbreaks originating in prisons, mines, or hospital wards can spread to the larger community. Recent proposals have targeted these high-transmission institutional amplifiers by improving case detection, treatment, or reducing the size of the exposed population. However, what effects these alternative proposals may have is unclear. We mathematically modeled these control strategies and found case detection and treatment methods insufficient in addressing epidemics involving common types of institutional amplifiers. Movement of persons in and out of amplifiers fundamentally altered the transmission dynamics of tuberculosis in a manner not effectively mitigated by detection or treatment alone. Policies increasing the population size exposed to amplifiers or the per-person duration of exposure within amplifiers potentially worsened incidence, even in settings with high rates of detection and treatment success. However, reducing the total population size entering institutional amplifiers significantly lowered tuberculosis incidence and the risk of propagating new drug-resistant tuberculosis strains. PMID:21212197

  4. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    NASA Astrophysics Data System (ADS)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three categories of population dynamics models: deterministic modeling with Logistic chaos map as an example, stochastic modeling with spatial distribution patterns as an example, as well as survival analysis and extended evolutionary game theory (EEGT) modeling. Sample experiment results with Genetic algorithms (GA) are presented to demonstrate the applications of these models. The proposed EC population dynamics approach also makes survival selection largely unnecessary or much simplified since the individuals are naturally selected (controlled) by the mathematical models for EC population dynamics.

  5. Obesity trend in the United States and economic intervention options to change it: A simulation study linking ecological epidemiology and system dynamics modeling.

    PubMed

    Chen, H-J; Xue, H; Liu, S; Huang, T T K; Wang, Y C; Wang, Y

    2018-05-29

    To study the country-level dynamics and influences between population weight status and socio-economic distribution (employment status and family income) in the US and to project the potential impacts of socio-economic-based intervention options on obesity prevalence. Ecological study and simulation. Using the longitudinal data from the 2001-2011 Medical Expenditure Panel Survey (N = 88,453 adults), we built and calibrated a system dynamics model (SDM) capturing the feedback loops between body weight status and socio-economic status distribution and simulated the effects of employment- and income-based intervention options. The SDM-based simulation projected rising overweight/obesity prevalence in the US in the future. Improving people's income from lower to middle-income group would help control the rising prevalence, while only creating jobs for the unemployed did not show such effect. Improving people from low- to middle-income levels may be effective, instead of solely improving reemployment rate, in curbing the rising obesity trend in the US adult population. This study indicates the value of the SDM as a virtual laboratory to evaluate complex distributive phenomena of the interplay between population health and economy. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. Identification of metapopulation dynamics among Northern Goshawks of the Alexander Archipelago, Alaska, and Coastal British Columbia

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; McClaren, Erica L.; Doyle, Frank I.; Titus, K.; Sage, George K.; Wilson, Robert E.; Gust, Judy R.; Talbot, Sandra L.

    2012-01-01

    Northern Goshawks occupying the Alexander Archipelago, Alaska, and coastal British Columbia nest primarily in old-growth and mature forest, which results in spatial heterogeneity in the distribution of individuals across the landscape. We used microsatellite and mitochondrial data to infer genetic structure, gene flow, and fluctuations in population demography through evolutionary time. Patterns in the genetic signatures were used to assess predictions associated with the three population models: panmixia, metapopulation, and isolated populations. Population genetic structure was observed along with asymmetry in gene flow estimates that changed directionality at different temporal scales, consistent with metapopulation model predictions. Therefore, Northern Goshawk assemblages located in the Alexander Archipelago and coastal British Columbia interact through a metapopulation framework, though they may not fit the classic model of a metapopulation. Long-term population sources (coastal mainland British Columbia) and sinks (Revillagigedo and Vancouver islands) were identified. However, there was no trend through evolutionary time in the directionality of dispersal among the remaining assemblages, suggestive of a rescue-effect dynamic. Admiralty, Douglas, and Chichagof island complex appears to be an evolutionarily recent source population in the Alexander Archipelago. In addition, Kupreanof island complex and Kispiox Forest District populations have high dispersal rates to populations in close geographic proximity and potentially serve as local source populations. Metapopulation dynamics occurring in the Alexander Archipelago and coastal British Columbia by Northern Goshawks highlight the importance of both occupied and unoccupied habitats to long-term population persistence of goshawks in this region.

  7. Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size

    PubMed Central

    Gerstner, Wulfram

    2017-01-01

    Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50–2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics such as finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly integrate a model of a cortical microcircuit consisting of eight neuron types, which allows us to predict spontaneous population activities as well as evoked responses to thalamic input. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations. PMID:28422957

  8. Fine-scale population dynamics in a marine fish species inferred from dynamic state-space models.

    PubMed

    Rogers, Lauren A; Storvik, Geir O; Knutsen, Halvor; Olsen, Esben M; Stenseth, Nils C

    2017-07-01

    Identifying the spatial scale of population structuring is critical for the conservation of natural populations and for drawing accurate ecological inferences. However, population studies often use spatially aggregated data to draw inferences about population trends and drivers, potentially masking ecologically relevant population sub-structure and dynamics. The goals of this study were to investigate how population dynamics models with and without spatial structure affect inferences on population trends and the identification of intrinsic drivers of population dynamics (e.g. density dependence). Specifically, we developed dynamic, age-structured, state-space models to test different hypotheses regarding the spatial structure of a population complex of coastal Atlantic cod (Gadus morhua). Data were from a 93-year survey of juvenile (age 0 and 1) cod sampled along >200 km of the Norwegian Skagerrak coast. We compared two models: one which assumes all sampled cod belong to one larger population, and a second which assumes that each fjord contains a unique population with locally determined dynamics. Using the best supported model, we then reconstructed the historical spatial and temporal dynamics of Skagerrak coastal cod. Cross-validation showed that the spatially structured model with local dynamics had better predictive ability. Furthermore, posterior predictive checks showed that a model which assumes one homogeneous population failed to capture the spatial correlation pattern present in the survey data. The spatially structured model indicated that population trends differed markedly among fjords, as did estimates of population parameters including density-dependent survival. Recent biomass was estimated to be at a near-record low all along the coast, but the finer scale model indicated that the decline occurred at different times in different regions. Warm temperatures were associated with poor recruitment, but local changes in habitat and fishing pressure may have played a role in driving local dynamics. More generally, we demonstrated how state-space models can be used to test evidence for population spatial structure based on survey time-series data. Our study shows the importance of considering spatially structured dynamics, as the inferences from such an approach can lead to a different ecological understanding of the drivers of population declines, and fundamentally different management actions to restore populations. © 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

  9. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  10. Biophysical model for assessment of risk of acute exposures in combination with low level chronic irradiation

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.

    A biophysical model is developed which describes the mortality dynamics in mammalian populations unexposed and exposed to radiation The model relates statistical biometric functions mortality rate life span probability density and life span probability with statistical characteristics and dynamics of a critical body system in individuals composing the population The model describing the dynamics of thrombocytopoiesis in nonirradiated and irradiated mammals is also developed this hematopoietic line being considered as the critical body system under exposures in question The mortality model constructed in the framework of the proposed approach was identified to reproduce the irradiation effects on populations of mice The most parameters of the thrombocytopoiesis model were determined from the data available in the literature on hematology and radiobiology the rest parameters were evaluated by fitting some experimental data on the dynamics of this system in acutely irradiated mice The successful verification of the thrombocytopoiesis model was fulfilled by the quantitative juxtaposition of the modeling predictions and experimental data on the dynamics of this system in mice exposed to either acute or chronic irradiation at wide ranges of doses and dose rates It is important that only experimental data on the mortality rate in nonirradiated population and the relevant statistical characteristics of the thrombocytopoiesis system in mice which are also available in the literature on radiobiology are needed for the final identification of

  11. A stochastic-field description of finite-size spiking neural networks

    PubMed Central

    Longtin, André

    2017-01-01

    Neural network dynamics are governed by the interaction of spiking neurons. Stochastic aspects of single-neuron dynamics propagate up to the network level and shape the dynamical and informational properties of the population. Mean-field models of population activity disregard the finite-size stochastic fluctuations of network dynamics and thus offer a deterministic description of the system. Here, we derive a stochastic partial differential equation (SPDE) describing the temporal evolution of the finite-size refractory density, which represents the proportion of neurons in a given refractory state at any given time. The population activity—the density of active neurons per unit time—is easily extracted from this refractory density. The SPDE includes finite-size effects through a two-dimensional Gaussian white noise that acts both in time and along the refractory dimension. For an infinite number of neurons the standard mean-field theory is recovered. A discretization of the SPDE along its characteristic curves allows direct simulations of the activity of large but finite spiking networks; this constitutes the main advantage of our approach. Linearizing the SPDE with respect to the deterministic asynchronous state allows the theoretical investigation of finite-size activity fluctuations. In particular, analytical expressions for the power spectrum and autocorrelation of activity fluctuations are obtained. Moreover, our approach can be adapted to incorporate multiple interacting populations and quasi-renewal single-neuron dynamics. PMID:28787447

  12. A computational framework for testing arrhythmia marker sensitivities to model parameters in functionally calibrated populations of atrial cells

    NASA Astrophysics Data System (ADS)

    Vagos, Márcia R.; Arevalo, Hermenegild; de Oliveira, Bernardo Lino; Sundnes, Joakim; Maleckar, Mary M.

    2017-09-01

    Models of cardiac cell electrophysiology are complex non-linear systems which can be used to gain insight into mechanisms of cardiac dynamics in both healthy and pathological conditions. However, the complexity of cardiac models can make mechanistic insight difficult. Moreover, these are typically fitted to averaged experimental data which do not incorporate the variability in observations. Recently, building populations of models to incorporate inter- and intra-subject variability in simulations has been combined with sensitivity analysis (SA) to uncover novel ionic mechanisms and potentially clarify arrhythmogenic behaviors. We used the Koivumäki human atrial cell model to create two populations, representing normal Sinus Rhythm (nSR) and chronic Atrial Fibrillation (cAF), by varying 22 key model parameters. In each population, 14 biomarkers related to the action potential and dynamic restitution were extracted. Populations were calibrated based on distributions of biomarkers to obtain reasonable physiological behavior, and subjected to SA to quantify correlations between model parameters and pro-arrhythmia markers. The two populations showed distinct behaviors under steady state and dynamic pacing. The nSR population revealed greater variability, and more unstable dynamic restitution, as compared to the cAF population, suggesting that simulated cAF remodeling rendered cells more stable to parameter variation and rate adaptation. SA revealed that the biomarkers depended mainly on five ionic currents, with noted differences in sensitivities to these between nSR and cAF. Also, parameters could be selected to produce a model variant with no alternans and unaltered action potential morphology, highlighting that unstable dynamical behavior may be driven by specific cell parameter settings. These results ultimately suggest that arrhythmia maintenance in cAF may not be due to instability in cell membrane excitability, but rather due to tissue-level effects which promote initiation and maintenance of reentrant arrhythmia.

  13. Predicting responses to climate change requires all life-history stages.

    PubMed

    Zeigler, Sara

    2013-01-01

    In Focus: Radchuk, V., Turlure, C. & Schtickzelle, N. (2013) Each life stage matters: the importance of assessing response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology, 82, 275-285. Population-level responses to climate change depend on many factors, including unexpected interactions among life history attributes; however, few studies examine climate change impacts over complete life cycles of focal species. Radchuk, Turlure & Schtickzelle () used experimental and modelling approaches to predict population dynamics for the bog fritillary butterfly under warming scenarios. Although they found that warming improved fertility and survival of all stages with one exception, populations were predicted to decline because overwintering larvae, whose survival declined with warming, were disproportionately important contributors to population growth. This underscores the importance of considering all life history stages in analyses of climate change's effects on population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  14. Effects of developmental variability on the dynamics and self-organization of cell populations

    NASA Astrophysics Data System (ADS)

    Prabhakara, Kaumudi H.; Gholami, Azam; Zykov, Vladimir S.; Bodenschatz, Eberhard

    2017-11-01

    We report experimental and theoretical results for spatiotemporal pattern formation in cell populations, where the parameters vary in space and time due to mechanisms intrinsic to the system, namely Dictyostelium discoideum (D.d.) in the starvation phase. We find that different patterns are formed when the populations are initialized at different developmental stages, or when populations at different initial developmental stages are mixed. The experimentally observed patterns can be understood with a modified Kessler-Levine model that takes into account the initial spatial heterogeneity of the cell populations and a developmental path introduced by us, i.e. the time dependence of the various biochemical parameters. The dynamics of the parameters agree with known biochemical studies. Most importantly, the modified model reproduces not only our results, but also the observations of an independent experiment published earlier. This shows that pattern formation can be used to understand and quantify the temporal evolution of the system parameters.

  15. Exposing extinction risk analysis to pathogens: Is disease just another form of density dependence?

    USGS Publications Warehouse

    Gerber, L.R.; McCallum, H.; Lafferty, K.D.; Sabo, J.L.; Dobson, A.

    2005-01-01

    In the United States and several other countries, the development of population viability analyses (PVA) is a legal requirement of any species survival plan developed for threatened and endangered species. Despite the importance of pathogens in natural populations, little attention has been given to host-pathogen dynamics in PVA. To study the effect of infectious pathogens on extinction risk estimates generated from PVA, we review and synthesize the relevance of host-pathogen dynamics in analyses of extinction risk. We then develop a stochastic, density-dependent host-parasite model to investigate the effects of disease on the persistence of endangered populations. We show that this model converges on a Ricker model of density dependence under a suite of limiting assumptions, including a high probability that epidemics will arrive and occur. Using this modeling framework, we then quantify: (1) dynamic differences between time series generated by disease and Ricker processes with the same parameters; (2) observed probabilities of quasi-extinction for populations exposed to disease or self-limitation; and (3) bias in probabilities of quasi-extinction estimated by density-independent PVAs when populations experience either form of density dependence. Our results suggest two generalities about the relationships among disease, PVA, and the management of endangered species. First, disease more strongly increases variability in host abundance and, thus, the probability of quasi-extinction, than does self-limitation. This result stems from the fact that the effects and the probability of occurrence of disease are both density dependent. Second, estimates of quasi-extinction are more often overly optimistic for populations experiencing disease than for those subject to self-limitation. Thus, although the results of density-independent PVAs may be relatively robust to some particular assumptions about density dependence, they are less robust when endangered populations are known to be susceptible to disease. If potential management actions involve manipulating pathogens, then it may be useful to model disease explicitly. ?? 2005 by the Ecological Society of America.

  16. Population dynamics of Hawaiian seabird colonies vulnerable to sea-level rise.

    PubMed

    Hatfield, Jeff S; Reynolds, Michelle H; Seavy, Nathaniel E; Krause, Crystal M

    2012-08-01

    Globally, seabirds are vulnerable to anthropogenic threats both at sea and on land. Seabirds typically nest colonially and show strong fidelity to natal colonies, and such colonies on low-lying islands may be threatened by sea-level rise. We used French Frigate Shoals, the largest atoll in the Hawaiian Archipelago, as a case study to explore the population dynamics of seabird colonies and the potential effects sea-level rise may have on these rookeries. We compiled historic observations, a 30-year time series of seabird population abundance, lidar-derived elevations, and aerial imagery of all the islands of French Frigate Shoals. To estimate the population dynamics of 8 species of breeding seabirds on Tern Island from 1980 to 2009, we used a Gompertz model with a Bayesian approach to infer population growth rates, density dependence, process variation, and observation error. All species increased in abundance, in a pattern that provided evidence of density dependence. Great Frigatebirds (Fregata minor), Masked Boobies (Sula dactylatra), Red-tailed Tropicbirds (Phaethon rubricauda), Spectacled Terns (Onychoprion lunatus), and White Terns (Gygis alba) are likely at carrying capacity. Density dependence may exacerbate the effects of sea-level rise on seabirds because populations near carrying capacity on an island will be more negatively affected than populations with room for growth. We projected 12% of French Frigate Shoals will be inundated if sea level rises 1 m and 28% if sea level rises 2 m. Spectacled Terns and shrub-nesting species are especially vulnerable to sea-level rise, but seawalls and habitat restoration may mitigate the effects of sea-level rise. Losses of seabird nesting habitat may be substantial in the Hawaiian Islands by 2100 if sea levels rise 2 m. Restoration of higher-elevation seabird colonies represent a more enduring conservation solution for Pacific seabirds. Conservation Biology ©2012 Society for Conservation Biology. No claim to original US government works.

  17. Survival of the biological control agent Candida sake CPA-1 on grapes under the influence of abiotic factors.

    PubMed

    Calvo-Garrido, C; Viñas, I; Usall, J; Rodríguez-Romera, M; Ramos, M C; Teixidó, N

    2014-09-01

    As reliability of preharvest applications of biological control agents (BCAs) to control fruit pathogens is highly dependent on the survival of the selected organism, this study aimed to describe the population dynamics of the yeast-BCA Candida sake (Saito & Ota) CPA-1 on grape berries under the effect of abiotic factors such as temperature, relative humidity, sunlight and rainfall. Candida sake (5 × 10(7) CFU ml(-1)), combined with different concentrations of the food additive Fungicover(®), was applied on grape berry clusters. Treated clusters were then exposed to abiotic factors in field or laboratory conditions, recovering populations to describe C. sake population dynamics. The addition of Fungicover significantly increased C. sake multiplication under optimal growth conditions and improved survival under fluctuating abiotic factors. After field applications, significant differences in populations on grape bunches exposed or covered by fine foliage were detected. Simulated rainfall washed off C. sake populations by 0·6-0·9 log units after 20 mm of rain volume. Allowing populations to establish for 24 h or more, prior to a rain event, persistence on grape berries significantly increased and the effect of rain intensity was not observable. Candida sake demonstrated high survival ability under unfavourable environmental conditions and persistence under intense rain. The study evidenced the importance of the first period just after application for C. sake survival on grape tissues and also the protective effect of the additive Fungicover. This research provides new information on the survival of C. sake under field conditions and its practical implications for recommending timing of spray with this antagonist. Our results could be useful for other yeast antagonists applied before harvest. This work, for the first time, defines population dynamics of a yeast BCA using simulated rainfall. © 2014 The Society for Applied Microbiology.

  18. Missouri River Scaphirhynchus albus (pallid sturgeon) effects analysis—Integrative report 2016

    USGS Publications Warehouse

    Jacobson, Robert B.; Annis, Mandy L.; Colvin, Michael E.; James, Daniel A.; Welker, Timothy L.; Parsley, Michael J.

    2016-07-15

    The Missouri River Pallid Sturgeon Effects Analysis was designed to carry out three components of an assessment of how Missouri River management has affected, and will affect, population dynamics of endangered Scaphirhynchus albus (pallid sturgeon): (1) collection of reliable scientific information, (2) critical assessment and synthesis of available data and analyses, and (3) analysis of the effects of actions on listed species and their habitats. This report is a synthesis of the three components emphasizing development of lines of evidence relating potential future management actions to pallid sturgeon population dynamics. We address 21 working management hypotheses that emerged from an expert opinion-based filtering process.The ability to quantify linkages from abiotic changes to pallid sturgeon population dynamics is compromised by fundamental information gaps. Although a substantial foundation of pallid sturgeon science has been developed during the past 20 years, our efforts attempt to push beyond that understanding to provide predictions of how future management actions may affect pallid sturgeon responses. For some of the 21 hypotheses, lines of evidence are limited to theoretical deduction, inference from sparse empirical datasets, or expert opinion. Useful simulation models have been developed to predict the effects of management actions on survival of drifting pallid sturgeon free embryos in the Yellowstone and Upper Missouri River complex (hereafter referred to as the “upper river”), and to assess the effects of flow and channel reconfigurations on habitat availability in the Lower Missouri River, tributaries, and Mississippi River downstream of Gavins Point Dam (hereafter referred to as the “lower river”). A population model also has been developed that can be used to assess sensitivity of the population to survival of specific life stages, assess some hypotheses related to stocking decisions, and explore a limited number of management scenarios.Consideration of lines of evidence for each of the 21 hypotheses includes a discussion of how the degree of uncertainty and risk associated with each hypothesis may guide science and implementation strategies. Implementation strategies include full implementation in the field, limited implementations as field-scale experiments, or (in the case of greatest uncertainty) implementation as learning actions, including research and opportunistic experiments or field-based gradient studies. Given the substantive uncertainties associated with pallid sturgeon population dynamics and the need to continually assimilate and assess new information, we proposed that an Effects Analysis-like process should be considered an integral part of ongoing Missouri River adaptive management.

  19. Binaries, cluster dynamics and population studies of stars and stellar phenomena

    NASA Astrophysics Data System (ADS)

    Vanbeveren, Dany

    2005-10-01

    The effects of binaries on population studies of stars and stellar phenomena have been investigated over the past 3 decades by many research groups. Here we will focus mainly on the work that has been done recently in Brussels and we will consider the following topics: the effect of binaries on overall galactic chemical evolutionary models and on the rates of different types of supernova, the population of point-like X-ray sources where we distinguish the standard high mass X-ray binaries and the ULXs, a UFO-scenario for the formation of WR+OB binaries in dense star systems. Finally we critically discuss the possible effect of rotation on population studies.

  20. ECOLOGICAL ENDPOINT MODELING FOR TMDLS: EFFECTS OF SEDIMENT ON FISH POPULATIONS

    EPA Science Inventory

    Sediment is one of the primary stressors of concern for Total Maximum Daily Loads (TMDLs) for streams, and often it is a concern because of its impact on ecological endpoints. A modeling approach relating sediment to stream fish population dynamics is presented. Equations are d...

  1. Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention

    PubMed Central

    McVicker, Gareth; Prajsnar, Tomasz K.; Williams, Alexander; Wagner, Nelly L.; Boots, Michael; Renshaw, Stephen A.; Foster, Simon J.

    2014-01-01

    To slow the inexorable rise of antibiotic resistance we must understand how drugs impact on pathogenesis and influence the selection of resistant clones. Staphylococcus aureus is an important human pathogen with populations of antibiotic-resistant bacteria in hospitals and the community. Host phagocytes play a crucial role in controlling S. aureus infection, which can lead to a population “bottleneck” whereby clonal expansion of a small fraction of the initial inoculum founds a systemic infection. Such population dynamics may have important consequences on the effect of antibiotic intervention. Low doses of antibiotics have been shown to affect in vitro growth and the generation of resistant mutants over the long term, however whether this has any in vivo relevance is unknown. In this work, the population dynamics of S. aureus pathogenesis were studied in vivo using antibiotic-resistant strains constructed in an isogenic background, coupled with systemic models of infection in both the mouse and zebrafish embryo. Murine experiments revealed unexpected and complex bacterial population kinetics arising from clonal expansion during infection in particular organs. We subsequently elucidated the effect of antibiotic intervention within the host using mixed inocula of resistant and sensitive bacteria. Sub-curative tetracycline doses support the preferential expansion of resistant microorganisms, importantly unrelated to effects on growth rate or de novo resistance acquisition. This novel phenomenon is generic, occurring with methicillin-resistant S. aureus (MRSA) in the presence of β-lactams and with the unrelated human pathogen Pseudomonas aeruginosa. The selection of resistant clones at low antibiotic levels can result in a rapid increase in their prevalence under conditions that would previously not be thought to favor them. Our results have key implications for the design of effective treatment regimes to limit the spread of antimicrobial resistance, where inappropriate usage leading to resistance may reduce the efficacy of life-saving drugs. PMID:24586163

  2. Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria

    PubMed Central

    Bonhoeffer, Sebastian

    2018-01-01

    The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm. PMID:29750784

  3. Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria.

    PubMed

    Frenoy, Antoine; Bonhoeffer, Sebastian

    2018-05-01

    The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the numbers of cell divisions are crucial but neglected parameters in the evolvability of a population, and we provide experimental and computational tools and methods to study evolvability under stress, leading to a reassessment of the magnitude and significance of the stress-induced mutagenesis paradigm.

  4. Effects of glyphosate formulations on the population dynamics of two freshwater cladoceran species.

    PubMed

    Reno, U; Doyle, S R; Momo, F R; Regaldo, L; Gagneten, A M

    2018-02-05

    The general objective of this work is to experimentally assess the effects of acute glyphosate pollution on two freshwater cladoceran species (Daphnia magna and Ceriodaphnia dubia) and to use this information to predict the population dynamics and the potential for recovery of exposed organisms. Five to six concentrations of four formulations of glyphosate (4-Gly) (Eskoba ® , Panzer Gold ® , Roundup Ultramax ® and Sulfosato Touchdown ® ) were evaluated in both cladoceran species through acute tests and 15-day recovery tests in order to estimate the population dynamics of microcrustaceans. The endpoints of the recovery test were: survival, growth (number of molts), fecundity, and the intrinsic population growth rate (r). A matrix population model (MPM) was applied to r of the survivor individuals of the acute tests, followed by a Monte Carlo simulation study. Among the 4-Gly tested, Sulfosato Touchdown ® was the one that showed higher toxicity, and C. dubia was the most sensitive species. The Monte Carlo simulation study showed an average value of λ always <1 for D. magna, indicating that its populations would not be able to survive under natural environmental conditions after an acute Gly exposure between 0.25 and 35 a.e. mg L -1 . The average value of λ for C. dubia was also <1 after exposure to Roundup Ultramax ® : 1.30 and 1.20 for 1.21 and 2.5 mg a.e. L -1 ,respectively. The combined methodology-recovery tests and the later analysis through MPM with a Monte Carlo simulation study-is proposed to integrate key demographic parameters and predict the possible fate of microcrustacean populations after being exposed to acute 4-Gly contamination events.

  5. The big chill: quantifying the effect of the 2014 North American cold wave on hemlock woolly adelgid populations in the central Appalachian Mountains

    Treesearch

    Patrick C. Tobin; Richard M. Turcotte; Laura M. Blackburn; John A. Juracko; Brian T. Simpson

    2017-01-01

    The ability to survive winter temperatures is a key determinant of insect distributional ranges and population dynamics in temperate ecosystems. Although many insects overwinter in a state of diapause, the hemlock woolly adelgid [Adelges tsugae (Annand)] is an exception and instead develops during winter. We studied a low density population of

  6. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat

    USGS Publications Warehouse

    Erickson, Richard A.; Thogmartin, Wayne E.; Diffendorfer, James E.; Russell, Robin E.; Szymanski, Jennifer A.

    2016-01-01

    Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.

  7. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat.

    PubMed

    Erickson, Richard A; Thogmartin, Wayne E; Diffendorfer, Jay E; Russell, Robin E; Szymanski, Jennifer A

    2016-01-01

    Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat ( Myotis sodalis ), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans , disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.

  8. The effects of spatial and temporal heterogeneity on the population dynamics of four animal species in a Danish landscape

    PubMed Central

    Sibly, Richard M; Nabe-Nielsen, Jacob; Forchhammer, Mads C; Forbes, Valery E; Topping, Christopher J

    2009-01-01

    Background Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology. PMID:19549327

  9. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakib, Farnaz A.; Hanna, Gabriel, E-mail: gabriel.hanna@ualberta.ca

    In a previous study [F. A. Shakib and G. Hanna, J. Chem. Phys. 141, 044122 (2014)], we investigated a model proton-coupled electron transfer (PCET) reaction via the mixed quantum-classical Liouville (MQCL) approach and found that the trajectories spend the majority of their time on the mean of two coherently coupled adiabatic potential energy surfaces. This suggested a need for mean surface evolution to accurately simulate observables related to ultrafast PCET processes. In this study, we simulate the time-dependent populations of the three lowest adiabatic states in the ET-PT (i.e., electron transfer preceding proton transfer) version of the same PCET modelmore » via the MQCL approach and compare them to the exact quantum results and those obtained via the fewest switches surface hopping (FSSH) approach. We find that the MQCL population profiles are in good agreement with the exact quantum results and show a significant improvement over the FSSH results. All of the mean surfaces are shown to play a direct role in the dynamics of the state populations. Interestingly, our results indicate that the population transfer to the second-excited state can be mediated by dynamics on the mean of the ground and second-excited state surfaces, as part of a sequence of nonadiabatic transitions that bypasses the first-excited state surface altogether. This is made possible through nonadiabatic transitions between different mean surfaces, which is the manifestation of coherence transfer in MQCL dynamics. We also investigate the effect of the strength of the coupling between the proton/electron and the solvent coordinate on the state population dynamics. Drastic changes in the population dynamics are observed, which can be understood in terms of the changes in the potential energy surfaces and the nonadiabatic couplings. Finally, we investigate the state population dynamics in the PT-ET (i.e., proton transfer preceding electron transfer) and concerted versions of the model. The PT-ET results confirm the participation of all of the mean surfaces, albeit in different proportions compared to the ET-PT case, while the concerted results indicate that the mean of the ground- and first-excited state surfaces only plays a role, due to the large energy gaps between the ground- and second-excited state surfaces.« less

  10. Influence of demographic changes on the impact of vaccination against varicella and herpes zoster in Germany - a mathematical modelling study.

    PubMed

    Horn, Johannes; Damm, Oliver; Greiner, Wolfgang; Hengel, Hartmut; Kretzschmar, Mirjam E; Siedler, Anette; Ultsch, Bernhard; Weidemann, Felix; Wichmann, Ole; Karch, André; Mikolajczyk, Rafael T

    2018-01-09

    Epidemiological studies suggest that reduced exposure to varicella might lead to an increased risk for herpes zoster (HZ). Reduction of exposure to varicella is a consequence of varicella vaccination but also of demographic changes. We analyzed how the combination of vaccination programs and demographic dynamics will affect the epidemiology of varicella and HZ in Germany over the next 50 years. We used a deterministic dynamic compartmental model to assess the impact of different varicella and HZ vaccination strategies on varicella and HZ epidemiology in three demographic scenarios, namely the projected population for Germany, the projected population additionally accounting for increased immigration as observed in 2015/2016, and a stationary population. Projected demographic changes alone result in an increase of annual HZ cases by 18.3% and a decrease of varicella cases by 45.7% between 1990 and 2060. Independently of the demographic scenario, varicella vaccination reduces the cumulative number of varicella cases until 2060 by approximately 70%, but also increases HZ cases by 10%. Unlike the currently licensed live attenuated HZ vaccine, the new subunit vaccine candidate might completely counteract this effect. Relative vaccine effects were consistent across all demographic scenarios. Demographic dynamics will be a major determinant of HZ epidemiology in the next 50 years. While stationary population models are appropriate for assessing vaccination impact, models incorporating realistic population structures allow a direct comparison to surveillance data and can thus provide additional input for immunization decision-making and resource planning.

  11. Population dynamics in controlled unsteady-state systems: An application to the degradation of glyphosate in a sequencing batch reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarakonda, M.S.

    1988-01-01

    Control over population dynamics and organism selection in a biological waste treatment system provides an effective means of engineering process efficiency. Examples of applications of organism selection include control of filamentous organisms, biological nutrient removal, industrial waste treatment requiring the removal of specific substrates, and hazardous waste treatment. Inherently, full scale biological waste treatment systems are unsteady state systems due to the variations in the waste streams and mass flow rates of the substrates. Some systems, however, have the capacity to impose controlled selective pressures on the biological population by means of their operation. An example of such a systemmore » is the Sequencing Batch Reactor (SBR) which was the experimental system utilized in this research work. The concepts of organism selection were studied in detail for the biodegradation of a herbicide waste stream, with glyphosate as the target compound. The SBR provided a reactor configuration capable of exerting the necessary selective pressures to select and enrich for a glyphosate degrading population. Based on results for bench scale SBRs, a hypothesis was developed to explain population dynamics in glyphosate degrading systems.« less

  12. Modeling eating behaviors: The role of environment and positive food association learning via a Ratatouille effect.

    PubMed

    Murillo, Anarina L; Safan, Muntaser; Castillo-Chavez, Carlos; Phillips, Elizabeth D Capaldi; Wadhera, Devina

    2016-08-01

    Eating behaviors among a large population of children are studied as a dynamic process driven by nonlinear interactions in the sociocultural school environment. The impact of food association learning on diet dynamics, inspired by a pilot study conducted among Arizona children in Pre-Kindergarten to 8th grades, is used to build simple population-level learning models. Qualitatively, mathematical studies are used to highlight the possible ramifications of instruction, learning in nutrition, and health at the community level. Model results suggest that nutrition education programs at the population-level have minimal impact on improving eating behaviors, findings that agree with prior field studies. Hence, the incorporation of food association learning may be a better strategy for creating resilient communities of healthy and non-healthy eaters. A Ratatouille effect can be observed when food association learners become food preference learners, a potential sustainable behavioral change, which in turn, may impact the overall distribution of healthy eaters. In short, this work evaluates the effectiveness of population-level intervention strategies and the importance of institutionalizing nutrition programs that factor in economical, social, cultural, and environmental elements that mesh well with the norms and values in the community.

  13. Global attractors and extinction dynamics of cyclically competing species.

    PubMed

    Rulands, Steffen; Zielinski, Alejandro; Frey, Erwin

    2013-05-01

    Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.

  14. Structure in sheared supercooled liquids: Dynamical rearrangements of an effective system of icosahedra.

    PubMed

    Pinney, Rhiannon; Liverpool, Tanniemola B; Royall, C Patrick

    2016-12-21

    We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of particles organized into icosahedra under simple steady state shear. We recast this glassformer as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015)]. From the observed population of icosahedra in each steady state, we obtain an effective temperature which is linearly dependent on the shear rate in the range considered. Upon shear banding, the system separates into a region of high shear rate and a region of low shear rate. The effective temperatures obtained in each case show that the low shear regions correspond to a significantly lower temperature than the high shear regions. Taking a weighted average of the effective temperature of these regions (weight determined by region size) yields an estimate of the effective temperature which compares well with an effective temperature based on the global mesocluster population of the whole system.

  15. Dynamic denominators: the impact of seasonally varying population numbers on disease incidence estimates.

    PubMed

    Zu Erbach-Schoenberg, Elisabeth; Alegana, Victor A; Sorichetta, Alessandro; Linard, Catherine; Lourenço, Christoper; Ruktanonchai, Nick W; Graupe, Bonita; Bird, Tomas J; Pezzulo, Carla; Wesolowski, Amy; Tatem, Andrew J

    2016-01-01

    Reliable health metrics are crucial for accurately assessing disease burden and planning interventions. Many health indicators are measured through passive surveillance systems and are reliant on accurate estimates of denominators to transform case counts into incidence measures. These denominator estimates generally come from national censuses and use large area growth rates to estimate annual changes. Typically, they do not account for any seasonal fluctuations and thus assume a static denominator population. Many recent studies have highlighted the dynamic nature of human populations through quantitative analyses of mobile phone call data records and a range of other sources, emphasizing seasonal changes. In this study, we use mobile phone data to capture patterns of short-term human population movement and to map dynamism in population densities. We show how mobile phone data can be used to measure seasonal changes in health district population numbers, which are used as denominators for calculating district-level disease incidence. Using the example of malaria case reporting in Namibia we use 3.5 years of phone data to investigate the spatial and temporal effects of fluctuations in denominators caused by seasonal mobility on malaria incidence estimates. We show that even in a sparsely populated country with large distances between population centers, such as Namibia, populations are highly dynamic throughout the year. We highlight how seasonal mobility affects malaria incidence estimates, leading to differences of up to 30 % compared to estimates created using static population maps. These differences exhibit clear spatial patterns, with likely overestimation of incidence in the high-prevalence zones in the north of Namibia and underestimation in lower-risk areas when compared to using static populations. The results here highlight how health metrics that rely on static estimates of denominators from censuses may differ substantially once mobility and seasonal variations are taken into account. With respect to the setting of malaria in Namibia, the results indicate that Namibia may actually be closer to malaria elimination than previously thought. More broadly, the results highlight how dynamic populations are. In addition to affecting incidence estimates, these changes in population density will also have an impact on allocation of medical resources. Awareness of seasonal movements has the potential to improve the impact of interventions, such as vaccination campaigns or distributions of commodities like bed nets.

  16. Surprising migration and population size dynamics in ancient Iberian brown bears (Ursus arctos)

    PubMed Central

    Valdiosera, Cristina E.; García-Garitagoitia, José Luis; Garcia, Nuria; Doadrio, Ignacio; Thomas, Mark G.; Hänni, Catherine; Arsuaga, Juan-Luis; Barnes, Ian; Hofreiter, Michael; Orlando, Ludovic; Götherström, Anders

    2008-01-01

    The endangered brown bear populations (Ursus arctos) in Iberia have been suggested to be the last fragments of the brown bear population that served as recolonization stock for large parts of Europe during the Pleistocene. Conservation efforts are intense, and results are closely monitored. However, the efforts are based on the assumption that the Iberian bears are a unique unit that has evolved locally for an extended period. We have sequenced mitochondrial DNA (mtDNA) from ancient Iberian bear remains and analyzed them as a serial dataset, monitoring changes in diversity and occurrence of European haplogroups over time. Using these data, we show that the Iberian bear population has experienced a dynamic, recent evolutionary history. Not only has the population undergone mitochondrial gene flow from other European brown bears, but the effective population size also has fluctuated substantially. We conclude that the Iberian bear population has been a fluid evolutionary unit, developed by gene flow from other populations and population bottlenecks, far from being in genetic equilibrium or isolated from other brown bear populations. Thus, the current situation is highly unusual and the population may in fact be isolated for the first time in its history. PMID:18347332

  17. Surprising migration and population size dynamics in ancient Iberian brown bears (Ursus arctos).

    PubMed

    Valdiosera, Cristina E; García-Garitagoitia, José Luis; Garcia, Nuria; Doadrio, Ignacio; Thomas, Mark G; Hänni, Catherine; Arsuaga, Juan-Luis; Barnes, Ian; Hofreiter, Michael; Orlando, Ludovic; Götherström, Anders

    2008-04-01

    The endangered brown bear populations (Ursus arctos) in Iberia have been suggested to be the last fragments of the brown bear population that served as recolonization stock for large parts of Europe during the Pleistocene. Conservation efforts are intense, and results are closely monitored. However, the efforts are based on the assumption that the Iberian bears are a unique unit that has evolved locally for an extended period. We have sequenced mitochondrial DNA (mtDNA) from ancient Iberian bear remains and analyzed them as a serial dataset, monitoring changes in diversity and occurrence of European haplogroups over time. Using these data, we show that the Iberian bear population has experienced a dynamic, recent evolutionary history. Not only has the population undergone mitochondrial gene flow from other European brown bears, but the effective population size also has fluctuated substantially. We conclude that the Iberian bear population has been a fluid evolutionary unit, developed by gene flow from other populations and population bottlenecks, far from being in genetic equilibrium or isolated from other brown bear populations. Thus, the current situation is highly unusual and the population may in fact be isolated for the first time in its history.

  18. Modeling the Population Dynamics of Antibiotic-Resistant Bacteria:. AN Agent-Based Approach

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Walshe, Ray; Devocelle, Marc

    The response of bacterial populations to antibiotic treatment is often a function of a diverse range of interacting factors. In order to develop strategies to minimize the spread of antibiotic resistance in pathogenic bacteria, a sound theoretical understanding of the systems of interactions taking place within a colony must be developed. The agent-based approach to modeling bacterial populations is a useful tool for relating data obtained at the molecular and cellular level with the overall population dynamics. Here we demonstrate an agent-based model, called Micro-Gen, which has been developed to simulate the growth and development of bacterial colonies in culture. The model also incorporates biochemical rules and parameters describing the kinetic interactions of bacterial cells with antibiotic molecules. Simulations were carried out to replicate the development of methicillin-resistant S. aureus (MRSA) colonies growing in the presence of antibiotics. The model was explored to see how the properties of the system emerge from the interactions of the individual bacterial agents in order to achieve a better mechanistic understanding of the population dynamics taking place. Micro-Gen provides a good theoretical framework for investigating the effects of local environmental conditions and cellular properties on the response of bacterial populations to antibiotic exposure in the context of a simulated environment.

  19. A new insight into arable weed adaptive evolution: mutations endowing herbicide resistance also affect germination dynamics and seedling emergence.

    PubMed

    Délye, Christophe; Menchari, Yosra; Michel, Séverine; Cadet, Emilie; Le Corre, Valérie

    2013-04-01

    Selective pressures exerted by agriculture on populations of arable weeds foster the evolution of adaptive traits. Germination and emergence dynamics and herbicide resistance are key adaptive traits. Herbicide resistance alleles can have pleiotropic effects on a weed's life cycle. This study investigated the pleiotropic effects of three acetyl-coenzyme A carboxylase (ACCase) alleles endowing herbicide resistance on the seed-to-plant part of the life cycle of the grass weed Alopecurus myosuroides. In each of two series of experiments, A. myosuroides populations with homogenized genetic backgrounds and segregating for Leu1781, Asn2041 or Gly2078 ACCase mutations which arose independently were used to compare germination dynamics, survival in the soil and seedling pre-emergence growth among seeds containing wild-type, heterozygous and homozygous mutant ACCase embryos. Asn2041 ACCase caused no significant effects. Gly2078 ACCase major effects were a co-dominant acceleration in seed germination (1·25- and 1·10-fold decrease in the time to reach 50 % germination (T50) for homozygous and heterozygous mutant embryos, respectively). Segregation distortion against homozygous mutant embryos or a co-dominant increase in fatal germination was observed in one series of experiments. Leu1781 ACCase major effects were a co-dominant delay in seed germination (1·41- and 1·22-fold increase in T50 for homozygous and heterozygous mutant embryos, respectively) associated with a substantial co-dominant decrease in fatal germination. Under current agricultural systems, plants carrying Leu1781 or Gly2078 ACCase have a fitness advantage conferred by herbicide resistance that is enhanced or counterbalanced, respectively, by direct pleiotropic effects on the plant phenology. Pleiotropic effects associated with mutations endowing herbicide resistance undoubtedly play a significant role in the evolutionary dynamics of herbicide resistance in weed populations. Mutant ACCase alleles should also prove useful to investigate the role played by seed storage lipids in the control of seed dormancy and germination.

  20. Dispersal of Mycobacterium tuberculosis via the Canadian fur trade

    PubMed Central

    Pepperell, Caitlin S.; Granka, Julie M.; Alexander, David C.; Behr, Marcel A.; Chui, Linda; Gordon, Janet; Guthrie, Jennifer L.; Jamieson, Frances B.; Langlois-Klassen, Deanne; Long, Richard; Nguyen, Dao; Wobeser, Wendy; Feldman, Marcus W.

    2011-01-01

    Patterns of gene flow can have marked effects on the evolution of populations. To better understand the migration dynamics of Mycobacterium tuberculosis, we studied genetic data from European M. tuberculosis lineages currently circulating in Aboriginal and French Canadian communities. A single M. tuberculosis lineage, characterized by the DS6Quebec genomic deletion, is at highest frequency among Aboriginal populations in Ontario, Saskatchewan, and Alberta; this bacterial lineage is also dominant among tuberculosis (TB) cases in French Canadians resident in Quebec. Substantial contact between these human populations is limited to a specific historical era (1710–1870), during which individuals from these populations met to barter furs. Statistical analyses of extant M. tuberculosis minisatellite data are consistent with Quebec as a source population for M. tuberculosis gene flow into Aboriginal populations during the fur trade era. Historical and genetic analyses suggest that tiny M. tuberculosis populations persisted for ∼100 y among indigenous populations and subsequently expanded in the late 19th century after environmental changes favoring the pathogen. Our study suggests that spread of TB can occur by two asynchronous processes: (i) dispersal of M. tuberculosis by minimal numbers of human migrants, during which small pathogen populations are sustained by ongoing migration and slow disease dynamics, and (ii) expansion of the M. tuberculosis population facilitated by shifts in host ecology. If generalizable, these migration dynamics can help explain the low DNA sequence diversity observed among isolates of M. tuberculosis and the difficulties in global elimination of tuberculosis, as small, widely dispersed pathogen populations are difficult both to detect and to eradicate. PMID:21464295

  1. Environmental change disrupts communication and sexual selection in a stickleback population.

    PubMed

    Candolin, Ulrika; Tukiainen, Iina; Bertell, Elina

    2016-04-01

    Environmental change that disrupts communication during mate choice and alters sexual selection could influence population dynamics. Yet little is known about such long-term effects. We investigated experimentally the consequences that disrupted visual communication during mate choice has for the quantity and viability of offspring produced in a threespine stickleback population (Gasterosteus aculeatus). We further related the results to long-term monitoring of population dynamics in the field to determine if changes are apparent under natural conditions. The results show that impaired visual communication because of algal blooms reduces reliability of male visual signals as indicators of offspring survival during their first weeks of life. This relaxes sexual selection but has no effect on the number of offspring hatching, as most males have a high hatching success in turbid water. Despite eutrophication and high turbidity levels that interfere with communication during mate choice, the population has grown during recent decades. Large numbers of offspring hatching, combined with high variation in juvenile fitness, has probably shifted selection to later life history stages and maintained a viable population. Together with reduced cost of sexual selection and ongoing ecosystem changes caused by human activities, this could have promoted population growth. These results point to the complexity of ecosystems and the necessity to consider all influencing factors when attempting to understand impacts of human activities on populations.

  2. Wood thrush nest success and post-fledging survival across a temporal pulse of small mammal abundance in an oak forest.

    PubMed

    Schmidt, Kenneth A; Rush, Scott A; Ostfeld, Richard S

    2008-07-01

    1. Synchronized mass production of seed crops, such as acorns, produces a resource pulse that may have far-reaching consequences for songbird populations through its effects on avian predators. Seed production in these forests represents only the first of several pulsed events. Secondary pulses emerge as mast-consuming rodents numerically respond to seed production and tertiary pulses emerge as generalist predators, such as raptors, numerically respond to rodents. In turn, these two groups reduce nest productivity and juvenile survivorship 1 and 2 years, respectively, after the initial pulse in seed production. 2. At our study site in south-eastern New York, USA, autumn acorn abundance (primary pulse) largely determines rodent abundance (secondary pulse) the following spring. We tested the hypotheses that the population dynamics of a shrub-nesting passerine (wood thrush Hylocichla mustelina), is influenced by rodents through the: (a) direct effect of predation by rodents; (b) indirect effect of rodents on the abundance of raptors (tertiary pulse); and (c) indirect effect of rodent abundance on raptor diet. The latter specifically hypothesizes that a crash in the rodent population in the wake of region-wide failure of acorn production leads to an extreme diet shift in raptors that increases post-fledging mortality in birds. 3. We conducted a 3-year study to examine variation in wood thrush nest success and fledgling survival, using radio telemetry, across a pulse of rodent abundance (i.e. low, medium and high). We also updated and reanalysed regional wood thrush population growth rates as a function of the annual variation in rodent abundance. 4. Fledgling survivorship, but not nest success, varied in relation to annual rodent abundance. Raptors and eastern chipmunks Tamias striatus were the most commonly identified predators on fledglings. Fledgling survivorship was greatest at intermediate rodent abundance consistent with a shift in raptor diet. Regional rate of wood thrush population growth showed a unimodal relationship with rodent abundance, peaking during years with intermediate rodent abundance. This unimodal pattern was due to wood thrush population growth rates near or below zero during rodent population crashes. 5. The telemetry study, pattern of regional abundance and synchronized population dynamics of coexisting thrushes suggest a common mechanism of behavioural changes in raptors in response to declines in rodent prey, which in turn affects thrush population dynamics.

  3. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    PubMed

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  4. Biological Control of the Chagas Disease Vector Triatoma infestans with the Entomopathogenic Fungus Beauveria bassiana Combined with an Aggregation Cue: Field, Laboratory and Mathematical Modeling Assessment

    PubMed Central

    Forlani, Lucas; Pedrini, Nicolás; Girotti, Juan R.; Mijailovsky, Sergio J.; Cardozo, Rubén M.; Gentile, Alberto G.; Hernández-Suárez, Carlos M.; Rabinovich, Jorge E.; Juárez, M. Patricia

    2015-01-01

    Background Current Chagas disease vector control strategies, based on chemical insecticide spraying, are growingly threatened by the emergence of pyrethroid-resistant Triatoma infestans populations in the Gran Chaco region of South America. Methodology and findings We have already shown that the entomopathogenic fungus Beauveria bassiana has the ability to breach the insect cuticle and is effective both against pyrethroid-susceptible and pyrethroid-resistant T. infestans, in laboratory as well as field assays. It is also known that T. infestans cuticle lipids play a major role as contact aggregation pheromones. We estimated the effectiveness of pheromone-based infection boxes containing B. bassiana spores to kill indoor bugs, and its effect on the vector population dynamics. Laboratory assays were performed to estimate the effect of fungal infection on female reproductive parameters. The effect of insect exuviae as an aggregation signal in the performance of the infection boxes was estimated both in the laboratory and in the field. We developed a stage-specific matrix model of T. infestans to describe the fungal infection effects on insect population dynamics, and to analyze the performance of the biopesticide device in vector biological control. Conclusions The pheromone-containing infective box is a promising new tool against indoor populations of this Chagas disease vector, with the number of boxes per house being the main driver of the reduction of the total domestic bug population. This ecologically safe approach is the first proven alternative to chemical insecticides in the control of T. infestans. The advantageous reduction in vector population by delayed-action fungal biopesticides in a contained environment is here shown supported by mathematical modeling. PMID:25969989

  5. Heterogeneous population dynamics and scaling laws near epidemic outbreaks.

    PubMed

    Widder, Andreas; Kuehn, Christian

    2016-10-01

    In this paper, we focus on the influence of heterogeneity and stochasticity of the population on the dynamical structure of a basic susceptible-infected-susceptible (SIS) model. First we prove that, upon a suitable mathematical reformulation of the basic reproduction number, the homogeneous system and the heterogeneous system exhibit a completely analogous global behaviour. Then we consider noise terms to incorporate the fluctuation effects and the random import of the disease into the population and analyse the influence of heterogeneity on warning signs for critical transitions (or tipping points). This theory shows that one may be able to anticipate whether a bifurcation point is close before it happens. We use numerical simulations of a stochastic fast-slow heterogeneous population SIS model and show various aspects of heterogeneity have crucial influences on the scaling laws that are used as early-warning signs for the homogeneous system. Thus, although the basic structural qualitative dynamical properties are the same for both systems, the quantitative features for epidemic prediction are expected to change and care has to be taken to interpret potential warning signs for disease outbreaks correctly.

  6. The interplay between human population dynamics and flooding in Bangladesh: a spatial analysis

    NASA Astrophysics Data System (ADS)

    di Baldassarre, G.; Yan, K.; Ferdous, MD. R.; Brandimarte, L.

    2014-09-01

    In Bangladesh, socio-economic and hydrological processes are both extremely dynamic and inter-related. Human population patterns are often explained as a response, or adaptation strategy, to physical events, e.g. flooding, salt-water intrusion, and erosion. Meanwhile, these physical processes are exacerbated, or mitigated, by diverse human interventions, e.g. river diversion, levees and polders. In this context, this paper describes an attempt to explore the complex interplay between floods and societies in Bangladeshi floodplains. In particular, we performed a spatially-distributed analysis of the interactions between the dynamics of human settlements and flood inundation patterns. To this end, we used flooding simulation results from inundation modelling, LISFLOOD-FP, as well as global datasets of population distribution data, such as the Gridded Population of the World (20 years, from 1990 to 2010) and HYDE datasets (310 years, from 1700 to 2010). The outcomes of this work highlight the behaviour of Bangladeshi floodplains as complex human-water systems and indicate the need to go beyond the traditional narratives based on one-way cause-effects, e.g. climate change leading to migrations.

  7. Dynamics of Bacterial Gene Regulatory Networks.

    PubMed

    Shis, David L; Bennett, Matthew R; Igoshin, Oleg A

    2018-05-20

    The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.

  8. Dynamic occupancy modelling reveals a hierarchy of competition among fishers, grey foxes and ringtails.

    PubMed

    Green, David S; Matthews, Sean M; Swiers, Robert C; Callas, Richard L; Scott Yaeger, J; Farber, Stuart L; Schwartz, Michael K; Powell, Roger A

    2018-05-01

    Determining how species coexist is critical for understanding functional diversity, niche partitioning and interspecific interactions. Identifying the direct and indirect interactions among sympatric carnivores that enable their coexistence is particularly important to elucidate because they are integral for maintaining ecosystem function. We studied the effects of removing nine fishers (Pekania pennanti) on their population dynamics and used this perturbation to elucidate the interspecific interactions among fishers, grey foxes (Urocyon cinereoargenteus) and ringtails (Bassariscus astutus). Grey foxes (family: Canidae) are likely to compete with fishers due to their similar body sizes and dietary overlap, and ringtails (family: Procyonidae), like fishers, are semi-arboreal species of conservation concern. We used spatial capture-recapture to investigate fisher population numbers and dynamic occupancy models that incorporated interspecific interactions to investigate the effects members of these species had on the colonization and persistence of each other's site occupancy. The fisher population showed no change in density for up to 3 years following the removals of fishers for translocations. In contrast, fisher site occupancy decreased in the years immediately following the translocations. During this same time period, site occupancy by grey foxes increased and remained elevated through the end of the study. We found a complicated hierarchy among fishers, foxes and ringtails. Fishers affected grey fox site persistence negatively but had a positive effect on their colonization. Foxes had a positive effect on ringtail site colonization. Thus, fishers were the dominant small carnivore where present and negatively affected foxes directly and ringtails indirectly. Coexistence among the small carnivores we studied appears to reflect dynamic spatial partitioning. Conservation and management efforts should investigate how intraguild interactions may influence the recolonization of carnivores to previously occupied landscapes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  9. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird.

    PubMed

    Townsend, Andrea K; Cooch, Evan G; Sillett, T Scott; Rodenhouse, Nicholas L; Holmes, Richard T; Webster, Michael S

    2016-02-01

    Although long-distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black-throated blue warbler (Setophaga caerulescens), a double-brooded long-distance migrant, we used Pradel models to analyze 25 years of mark-recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late-season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black-throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species. © 2015 John Wiley & Sons Ltd.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova, T; Carlsen, T

    We present a study, based on simulations with SERDYCA, a spatially-explicit individual-based model of rodent dynamics, on the relation between population persistence and the presence of numerous isolated disturbances in the habitat. We are specifically interested in the effect of disturbances that do not fragment the environment on population persistence. Our results suggest that the presence of disturbances in the absence of fragmentation can actually increase the average time to extinction of the modeled population. The presence of disturbances decreases population density but can increase the chance for mating in monogamous species and consequently, the ratio of juveniles in themore » population. It thus provides a better chance for the population to restore itself after a severe period with critically low population density. We call this the ''disturbance-forced localization effect''.« less

  11. Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks.

    PubMed

    Bressloff, Paul C

    2015-01-01

    We consider applications of path-integral methods to the analysis of a stochastic hybrid model representing a network of synaptically coupled spiking neuronal populations. The state of each local population is described in terms of two stochastic variables, a continuous synaptic variable and a discrete activity variable. The synaptic variables evolve according to piecewise-deterministic dynamics describing, at the population level, synapses driven by spiking activity. The dynamical equations for the synaptic currents are only valid between jumps in spiking activity, and the latter are described by a jump Markov process whose transition rates depend on the synaptic variables. We assume a separation of time scales between fast spiking dynamics with time constant [Formula: see text] and slower synaptic dynamics with time constant τ. This naturally introduces a small positive parameter [Formula: see text], which can be used to develop various asymptotic expansions of the corresponding path-integral representation of the stochastic dynamics. First, we derive a variational principle for maximum-likelihood paths of escape from a metastable state (large deviations in the small noise limit [Formula: see text]). We then show how the path integral provides an efficient method for obtaining a diffusion approximation of the hybrid system for small ϵ. The resulting Langevin equation can be used to analyze the effects of fluctuations within the basin of attraction of a metastable state, that is, ignoring the effects of large deviations. We illustrate this by using the Langevin approximation to analyze the effects of intrinsic noise on pattern formation in a spatially structured hybrid network. In particular, we show how noise enlarges the parameter regime over which patterns occur, in an analogous fashion to PDEs. Finally, we carry out a [Formula: see text]-loop expansion of the path integral, and use this to derive corrections to voltage-based mean-field equations, analogous to the modified activity-based equations generated from a neural master equation.

  12. Diachronic investigations of mitochondrial and Y-chromosomal genetic markers in pre-Columbian Andean highlanders from South Peru.

    PubMed

    Fehren-Schmitz, Lars; Warnberg, Ole; Reindel, Markus; Seidenberg, Verena; Tomasto-Cagigao, Elsa; Isla-Cuadrado, Johny; Hummel, Susanne; Herrmann, Bernd

    2011-03-01

    This study examines the reciprocal effects of cultural evolution, and population dynamics in pre-Columbian southern Peru by the analysis of DNA from pre-Columbian populations that lived in the fringe area between the Andean highlands and the Pacific coast. The main objective is to reveal whether the transition from the Middle Horizon (MH: 650-1000 AD) to the Late Intermediate Period (LIP: 1000-1400 AD) was accompanied or influenced by population dynamic processes. Tooth samples from 90 individuals from several archaeological sites, dating to the MH and LIP, in the research area were collected to analyse mitochodrial, and Y-chromosomal genetic markers. Coding region polymorphisms were successfully analysed and replicated for 72 individuals, as were control region sequences for 65 individuals and Y-chromosomal single nucleotide polymorphisms (SNPs) for 19 individuals, and these were compared to a large set of ancient and modern indigenous South American populations. The diachronic comparison of the upper valley samples from both time periods reveals no genetic discontinuities accompanying the cultural dynamic processes. A high genetic affinity for other ancient and modern highland populations can be observed, suggesting genetic continuity in the Andean highlands at the latest from the MH. A significant matrilineal differentiation to ancient Peruvian coastal populations can be observed suggesting a differential population history. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.

  13. Ultrafast Coherent Dynamics of a Photonic Crystal All-Optical Switch.

    PubMed

    Colman, Pierre; Lunnemann, Per; Yu, Yi; Mørk, Jesper

    2016-12-02

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse and more than 10 dB parametric gain. The measurements are in good agreement with a theoretical model that ascribes the observation to oscillations of the free-carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.

  14. Population Dynamics of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  15. Native intra- and inter-specific reactions may cause the paradox of pest control with harvesting.

    PubMed

    Seno, Hiromi

    2010-05-01

    We analyse a general time-discrete mathematical model of host-parasite population dynamics with harvesting, in which the host can be regarded as a pest. We harvest a portion of the host population at a moment in each year. Our model involves the density effect on the host population. We investigate the condition in which the harvesting of the host results in a paradoxical increase of its equilibrium population size. Our results imply that for a family of pest-enemy systems, the paradox of pest control could be caused essentially by the interspecific relationship and the intraspecific density effect.

  16. Is brood parasitism related to host nestling diet and nutrition?

    Treesearch

    Zachary S. Ladin; Vincent D' Amico; Deb P. Jaisi; W. Gregory Shriver

    2015-01-01

    Food and nutrient limitation can have negative effects on survival, fecundity, and lifetime fitness of individuals, which can ultimately limit populations. Changes in trophic dynamics and diet patterns, affected by anthropogenic environmental and landscape change, are poorly understood yet may play an important role in population regulation. We determined diets of Wood...

  17. Stochastic Dynamics through Hierarchically Embedded Markov Chains.

    PubMed

    Vasconcelos, Vítor V; Santos, Fernando P; Santos, Francisco C; Pacheco, Jorge M

    2017-02-03

    Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects-such as mutations in evolutionary dynamics and a random exploration of choices in social systems-including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.

  18. Selective predation and rapid evolution can jointly dampen effects of virulent parasites on Daphnia populations.

    PubMed

    Duffy, Meghan A; Hall, Spencer R

    2008-04-01

    Parasites are ubiquitous and often highly virulent, yet clear examples of parasite-driven changes in host density in natural populations are surprisingly scarce. Here, we illustrate an example of this phenomenon and offer a theoretically reasonable resolution. We document the effects of two parasites, the bacterium Spirobacillus cienkowskii and the yeast Metschnikowia bicuspidata, on a common freshwater invertebrate, Daphnia dentifera. We show that while both parasites were quite virulent to individual hosts, only bacterial epidemics were associated with significant changes in host population dynamics and density. Our theoretical results may help explain why yeast epidemics did not significantly affect population dynamics. Using a model parameterized with data we collected, we argue that two prominent features of this system, rapid evolution of host resistance to the parasite and selective predation on infected hosts, both decrease peak infection prevalence and can minimize decline in host density during epidemics. Taken together, our results show that understanding the outcomes of host-parasite interactions in this Daphnia-microparasite system may require consideration of ecological context and evolutionary processes and their interaction.

  19. Evolution on neutral networks accelerates the ticking rate of the molecular clock.

    PubMed

    Manrubia, Susanna; Cuesta, José A

    2015-01-06

    Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive 'phenotypic entrapment' entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Evolution on neutral networks accelerates the ticking rate of the molecular clock

    PubMed Central

    Manrubia, Susanna; Cuesta, José A.

    2015-01-01

    Large sets of genotypes give rise to the same phenotype, because phenotypic expression is highly redundant. Accordingly, a population can accept mutations without altering its phenotype, as long as the genotype mutates into another one on the same set. By linking every pair of genotypes that are mutually accessible through mutation, genotypes organize themselves into neutral networks (NNs). These networks are known to be heterogeneous and assortative, and these properties affect the evolutionary dynamics of the population. By studying the dynamics of populations on NNs with arbitrary topology, we analyse the effect of assortativity, of NN (phenotype) fitness and of network size. We find that the probability that the population leaves the network is smaller the longer the time spent on it. This progressive ‘phenotypic entrapment’ entails a systematic increase in the overdispersion of the process with time and an acceleration in the fixation rate of neutral mutations. We also quantify the variation of these effects with the size of the phenotype and with its fitness relative to that of neighbouring alternatives. PMID:25392402

  1. Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II

    USGS Publications Warehouse

    DeJager, Nathan R.; Drohan, Patrick J.; Miranda, Brian M.; Sturtevant, Brian R.; Stout, Susan L.; Royo, Alejandro; Gustafson, Eric J.; Romanski, Mark C.

    2017-01-01

    Browsing ungulates alter forest productivity and vegetation succession through selective foraging on species that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit manner, we developed a Browse Extension that simulates the effects of browsing ungulates on the growth and survival of plant species cohorts within the LANDIS-II spatially dynamic forest landscape simulation model framework. We demonstrate the capabilities of the new extension and explore the spatial effects of ungulates on forest composition and dynamics using two case studies. The first case study examined the long-term effects of persistently high white-tailed deer browsing rates in the northern hardwood forests of the Allegheny National Forest, USA. In the second case study, we incorporated a dynamic ungulate population model to simulate interactions between the moose population and boreal forest landscape of Isle Royale National Park, USA. In both model applications, browsing reduced total aboveground live biomass and caused shifts in forest composition. Simulations that included effects of browsing resulted in successional patterns that were more similar to those observed in the study regions compared to simulations that did not incorporate browsing effects. Further, model estimates of moose population density and available forage biomass were similar to previously published field estimates at Isle Royale and in other moose-boreal forest systems. Our simulations suggest that neglecting effects of browsing when modeling forest succession in ecosystems known to be influenced by ungulates may result in flawed predictions of aboveground biomass and tree species composition.

  2. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models.

    PubMed

    Emerick, Brooks; Singh, Abhyudai

    2016-02-01

    Discrete-time models are the traditional approach for capturing population dynamics of a host-parasitoid system. Recent work has introduced a semi-discrete framework for obtaining model update functions that connect host-parasitoid population levels from year-to-year. In particular, this framework uses differential equations to describe the host-parasitoid interaction during the time of year when they come in contact, allowing specific behaviors to be mechanistically incorporated. We use the semi-discrete approach to study the effects of host-feeding, which occurs when a parasitoid consumes a potential host larva without ovipositing. We find that host-feeding by itself cannot stabilize the system, and both populations exhibit behavior similar to the Nicholson-Bailey model. However, when combined with stabilizing mechanisms such as density-dependent host mortality, host-feeding contracts the region of parameter space that allows for a stable host-parasitoid equilibrium. In contrast, when combined with a density-dependent parasitoid attack rate, host-feeding expands the non-zero equilibrium stability region. Our results show that host-feeding causes inefficiency in the parasitoid population, which yields a higher population of hosts per generation. This suggests that host-feeding may have limited long-term impact in terms of suppressing host levels for biological control applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Dispersal responses override density effects on genetic diversity during post-disturbance succession

    PubMed Central

    Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.

    2016-01-01

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225

  4. Collective Dynamics for Heterogeneous Networks of Theta Neurons

    NASA Astrophysics Data System (ADS)

    Luke, Tanushree

    Collective behavior in neural networks has often been used as an indicator of communication between different brain areas. These collective synchronization and desynchronization patterns are also considered an important feature in understanding normal and abnormal brain function. To understand the emergence of these collective patterns, I create an analytic model that identifies all such macroscopic steady-states attainable by a network of Type-I neurons. This network, whose basic unit is the model "theta'' neuron, contains a mixture of excitable and spiking neurons coupled via a smooth pulse-like synapse. Applying the Ott-Antonsen reduction method in the thermodynamic limit, I obtain a low-dimensional evolution equation that describes the asymptotic dynamics of the macroscopic mean field of the network. This model can be used as the basis in understanding more complicated neuronal networks when additional dynamical features are included. From this reduced dynamical equation for the mean field, I show that the network exhibits three collective attracting steady-states. The first two are equilibrium states that both reflect partial synchronization in the network, whereas the third is a limit cycle in which the degree of network synchronization oscillates in time. In addition to a comprehensive identification of all possible attracting macro-states, this analytic model permits a complete bifurcation analysis of the collective behavior of the network with respect to three key network features: the degree of excitability of the neurons, the heterogeneity of the population, and the overall coupling strength. The network typically tends towards the two macroscopic equilibrium states when the neuron's intrinsic dynamics and the network interactions reinforce each other. In contrast, the limit cycle state, bifurcations, and multistability tend to occur when there is competition between these network features. I also outline here an extension of the above model where the neurons' excitability now varies in time sinuosoidally, thus simulating a parabolic bursting network. This time-varying excitability can lead to the emergence of macroscopic chaos and multistability in the collective behavior of the network. Finally, I expand the single population model described above to examine a two-population neuronal network where each population has its own unique mixture of excitable and spiking neurons, as well as its own coupling strength (either excitatory or inhibitory in nature). Specifically, I consider the situation where the first population is only allowed to influence the second population without any feedback, thus effectively creating a feed-forward "driver-response" system. In this special arrangement, the driver's asymptotic macroscopic dynamics are fully explored in the comprehensive analysis of the single population. Then, in the presence of an influence from the driver, the modified dynamics of the second population, which now acts as a response population, can also be fully analyzed. As in the time-varying model, these modifications give rise to richer dynamics to the response population than those found from the single population formalism, including multi-periodicity and chaos.

  5. Using a full annual cycle model to evaluate long-term population viability of the conservation-reliant Kirtland's warbler after successful recovery

    USGS Publications Warehouse

    Brown, Donald J.; Ribic, Christine; Donner, Deahn M.; Nelson, Mark D.; Bocetti, Carol I.; Deloria-Sheffield, Christie M.

    2017-01-01

    Long-term management planning for conservation-reliant migratory songbirds is particularly challenging because habitat quality in different stages and geographic locations of the annual cycle can have direct and carry-over effects that influence the population dynamics. The Neotropical migratory songbird Kirtland's warbler Setophaga kirtlandii (Baird 1852) is listed as endangered under the U.S. Endangered Species Act and Near Threatened under the IUCN Red List. This conservation-reliant species is being considered for U.S. federal delisting because the species has surpassed the designated 1000 breeding pairs recovery threshold since 2001.To help inform the delisting decision and long-term management efforts, we developed a population simulation model for the Kirtland's warbler that incorporated both breeding and wintering grounds habitat dynamics, and projected population viability based on current environmental conditions and potential future management scenarios. Future management scenarios included the continuation of current management conditions, reduced productivity and carrying capacity due to the changes in habitat suitability from the creation of experimental jack pine Pinus banksiana (Lamb.) plantations, and reduced productivity from alteration of the brown-headed cowbird Molothrus ater (Boddaert 1783) removal programme.Linking wintering grounds precipitation to productivity improved the accuracy of the model for replicating past observed population dynamics. Our future simulations indicate that the Kirtland's warbler population is stable under two potential future management scenarios: (i) continuation of current management practices and (ii) spatially restricting cowbird removal to the core breeding area, assuming that cowbirds reduce productivity in the remaining patches by ≤41%. The additional future management scenarios we assessed resulted in population declines.Synthesis and applications. Our study indicates that the Kirtland's warbler population is stable under current management conditions and that the jack pine plantation and cowbird removal programmes continue to be necessary for the long-term persistence of the species. This study represents one of the first attempts to incorporate full annual cycle dynamics into a population viability analysis for a migratory bird, and our results indicate that incorporating wintering grounds dynamics improved the model performance.

  6. Ultrafast dynamics of photoactive yellow protein via the photoexcitation and emission processes.

    PubMed

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    Pump-dump fluorescence spectroscopy was performed for photoactive yellow protein (PYP) at room temperature. The effect of the dump pulse on the population of the potential energy surface of the electronic excited state was examined as depletion in the stationary fluorescence intensity. The dynamic behavior of the population in the electronic excited state was successfully probed in the various combinations of the pump-dump delay, the dump-pulse wavelength, the dump-pulse energy and the observation wavelength. The experimental results were compared with the results obtained by the femtosecond time-resolved fluorescence spectroscopy.

  7. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds.

    PubMed

    Moore, Jonathan W; Yeakel, Justin D; Peard, Dean; Lough, Jeff; Beere, Mark

    2014-09-01

    Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7·6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time - three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was > 20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2·5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. This study provides evidence that life-history diversity can dampen fluctuations in population abundances and biomass via portfolio effects. Conserving genetic integrity and habitat diversity in these and other large watersheds can enable a diversity of life histories that increases population and biomass stability in the face of environmental variability. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  8. Common factors drive disease and coarse woody debris dynamics in forests impacted by sudden oak death

    Treesearch

    Richard C. Cobb; Maggie N. Chan; Ross K. Meentemeyer; David M. Rizzo

    2011-01-01

    Disease ecology has made important steps in describing how epidemiological processes control the impact of pathogens on populations and communities but fewer field or theoretical studies address disease effects at the ecosystem level. We demonstrate that the same epidemiological mechanisms drive disease intensity and coarse woody debris (CWD) dynamics...

  9. Goldspotted oak borer effects on tree health and colonization patterns at six newly-established sites

    Treesearch

    Laurel J. Haavik; Mary L. Flint; Tom W. Coleman; Robert C. Venette; Steven J. Seybold

    2015-01-01

    Newly-established populations of invasive wood-inhabiting insects provide an opportunity for the study of invasion dynamics and for collecting information to improve management options for these cryptic species. From 2011 to 2013, we studied the dynamics of the goldspotted oak borer Agrilus auroguttatus Schaeffer (Coleoptera: Buprestidae), a new pest...

  10. Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition

    Treesearch

    S.M. Moore; C.A. Manore; V.A. Bokil; E.T. Borer; P.R. Hosseini

    2011-01-01

    Many generalist pathogens are influenced by the spatial distributions and relative abundances of susceptible host species. The spatial structure of host populations can influence patterns of infection incidence (or disease outbreaks), and the effects of a generalist pathogen on host community dynamics in a spatially heterogeneous community may differ from predictions...

  11. Counterintuitive effects of large-scale predator removal on a midlatitude rodent community

    Treesearch

    John L Maron; Dean E. Pearson; Robert J. Fletcher

    2010-01-01

    Historically, small mammals have been focal organisms for studying predator-prey dynamics, principally because of interest in explaining the drivers of the cyclical dynamics exhibited by northern vole, lemming, and hare populations. However, many small-mammal species occur at relatively low and fairly stable densities at temperate latitudes, and our understanding of...

  12. Temporal dynamics of linkage disequilibrium in two populations of bighorn sheep

    PubMed Central

    Miller, Joshua M; Poissant, Jocelyn; Malenfant, René M; Hogg, John T; Coltman, David W

    2015-01-01

    Linkage disequilibrium (LD) is the nonrandom association of alleles at two markers. Patterns of LD have biological implications as well as practical ones when designing association studies or conservation programs aimed at identifying the genetic basis of fitness differences within and among populations. However, the temporal dynamics of LD in wild populations has received little empirical attention. In this study, we examined the overall extent of LD, the effect of sample size on the accuracy and precision of LD estimates, and the temporal dynamics of LD in two populations of bighorn sheep (Ovis canadensis) with different demographic histories. Using over 200 microsatellite loci, we assessed two metrics of multi-allelic LD, D′, and χ′2. We found that both populations exhibited high levels of LD, although the extent was much shorter in a native population than one that was founded via translocation, experienced a prolonged bottleneck post founding, followed by recent admixture. In addition, we observed significant variation in LD in relation to the sample size used, with small sample sizes leading to depressed estimates of the extent of LD but inflated estimates of background levels of LD. In contrast, there was not much variation in LD among yearly cross-sections within either population once sample size was accounted for. Lack of pronounced interannual variability suggests that researchers may not have to worry about interannual variation when estimating LD in a population and can instead focus on obtaining the largest sample size possible. PMID:26380673

  13. Coevolutionary dynamics in large, but finite populations

    NASA Astrophysics Data System (ADS)

    Traulsen, Arne; Claussen, Jens Christian; Hauert, Christoph

    2006-07-01

    Coevolving and competing species or game-theoretic strategies exhibit rich and complex dynamics for which a general theoretical framework based on finite populations is still lacking. Recently, an explicit mean-field description in the form of a Fokker-Planck equation was derived for frequency-dependent selection with two strategies in finite populations based on microscopic processes [A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett. 95, 238701 (2005)]. Here we generalize this approach in a twofold way: First, we extend the framework to an arbitrary number of strategies and second, we allow for mutations in the evolutionary process. The deterministic limit of infinite population size of the frequency-dependent Moran process yields the adjusted replicator-mutator equation, which describes the combined effect of selection and mutation. For finite populations, we provide an extension taking random drift into account. In the limit of neutral selection, i.e., whenever the process is determined by random drift and mutations, the stationary strategy distribution is derived. This distribution forms the background for the coevolutionary process. In particular, a critical mutation rate uc is obtained separating two scenarios: above uc the population predominantly consists of a mixture of strategies whereas below uc the population tends to be in homogeneous states. For one of the fundamental problems in evolutionary biology, the evolution of cooperation under Darwinian selection, we demonstrate that the analytical framework provides excellent approximations to individual based simulations even for rather small population sizes. This approach complements simulation results and provides a deeper, systematic understanding of coevolutionary dynamics.

  14. Population dynamics and angler exploitation of the unique muskellunge population in Shoepack Lake, Voyageurs National Park, Minnesota

    USGS Publications Warehouse

    Frohnauer, N.K.; Pierce, C.L.; Kallemeyn, L.W.

    2007-01-01

    A unique population of muskellunge Esox masquinongy inhabits Shoepack Lake in Voyageurs National Park, Minnesota. Little is known about its status, dynamics, and angler exploitation, and there is concern for the long-term viability of this population. We used intensive sampling and mark-recapture methods to quantify abundance, survival, growth, condition, age at maturity and fecundity and angler surveys to quantify angler pressure, catch rates, and exploitation. During our study, heavy rain washed out a dam constructed by beavers Castor canadensis which regulates the water level at the lake outlet, resulting in a nearly 50% reduction in surface area. We estimated a population size of 1,120 adult fish at the beginning of the study. No immediate reduction in population size was detected in response to the loss of lake area, although there was a gradual, but significant, decline in population size over the 2-year study. Adults grew less than 50 mm per year, and relative weight (W r) averaged roughly 80. Anglers were successful in catching, on average, two fish during a full day of angling, but harvest was negligible. Shoepack Lake muskellunge exhibit much slower growth rates and lower condition, but much higher densities and angler catch per unit effort (CPUE), than other muskellunge populations. The unique nature, limited distribution, and location of this population in a national park require special consideration for management. The results of this study provide the basis for assessing the long-term viability of the Shoepack Lake muskellunge population through simulations of long-term population dynamics and genetically effective population size. ?? Copyright by the American Fisheries Society 2007.

  15. An individual-based model of zebrafish population dynamics accounting for energy dynamics.

    PubMed

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R R

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.

  16. An Individual-Based Model of Zebrafish Population Dynamics Accounting for Energy Dynamics

    PubMed Central

    Beaudouin, Rémy; Goussen, Benoit; Piccini, Benjamin; Augustine, Starrlight; Devillers, James; Brion, François; Péry, Alexandre R. R.

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level. PMID:25938409

  17. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    PubMed

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  18. Predictive Modeling of Rice Yellow Stem Borer Population Dynamics under Climate Change Scenarios in Indramayu

    NASA Astrophysics Data System (ADS)

    Nurhayati, E.; Koesmaryono, Y.; Impron

    2017-03-01

    Rice Yellow Stem Borer (YSB) is one of the major insect pests in rice plants that has high attack intensity in rice production center areas, especially in West Java. This pest is consider as holometabola insects that causes rice damage in the vegetative phase (deadheart) as well as generative phase (whitehead). Climatic factor is one of the environmental factors influence the pattern of dynamics population. The purpose of this study was to develop a predictive modeling of YSB pest dynamics population under climate change scenarios (2016-2035 period) using Dymex Model in Indramayu area, West Java. YSB modeling required two main components, namely climate parameters and YSB development lower threshold of temperature (To) to describe YSB life cycle in every phase. Calibration and validation test of models showed the coefficient of determination (R2) between the predicted results and observations of the study area were 0.74 and 0.88 respectively, which was able to illustrate the development, mortality, transfer of individuals from one stage to the next life also fecundity and YSB reproduction. On baseline climate condition, there was a tendency of population abundance peak (outbreak) occured when a change of rainfall intensity in the rainy season transition to dry season or the opposite conditions was happen. In both of application of climate change scenarios, the model outputs were generated well and able to predict the pattern of YSB population dynamics with a the increasing trend of specific population numbers, generation numbers per season and also shifting pattern of populations abundance peak in the future climatic conditions. These results can be adopted as a tool to predict outbreak and to give early warning to control YSB pest more effectively.

  19. Argentine stem weevil ( Listronotus bonariensis, Coleoptera: Curculionidae) population dynamics in Canterbury, New Zealand dryland pasture.

    PubMed

    Goldson, S L; Barron, M C; Kean, J M; van Koten, C

    2011-06-01

    The Argentine stem weevil (Listronotus bonariensis) was an economically important pest in New Zealand pastures until the release of the parasitoid Microctonus hyperodae. This contribution uses historical data to investigate the regulation of the pest populations prior to, and somewhat during, the establishment of this parasitoid in dryland Canterbury, New Zealand. Thus, a significant goal of this study is to provide an L. bonariensis population dynamics baseline for any future work that aims to analyse the full effects of M. hyperodae on the weevil, now that equilibrium with the weevil host has been reached.The population dynamics of L. bonariensis, based on a life-table approach, were investigated using data collected regularly for eight years from populations in Canterbury, New Zealand. The key factor affecting end-of-season L. bonariensis density was found to be variation in second generation fourth instar prepupal and pupal mortality. This may have been caused by arrested development and ongoing mortality resulting from the onset of cooler autumnal conditions.A compensatory response was found in recruitment to the second summer weevil generation, whereby the realised fecundity of the emergent first summer generation of weevils was found to be negatively related to the density of adult weevils per ryegrass tiller. This is the first time that this has been found via long-term population analysis of L. bonariensis, although indications of this have been found elsewhere in caging, pot and small plot experiments.In this study, the effect of the parasitoid biocontrol agent Microctonus hyperodae on L. bonariensis population dynamics was unclear, as the analysis covered a period when the parasitoid Microctonus hyperodae was introduced and still establishing. It does, however, raise important questions for future analysis in terms of the interaction between parasitism and unrealised fecundity.The results in this contribution also highlighted regional differences. Overwintering mortality of adult weevils in Canterbury was constant between years, whilst earlier studies in the North Island Waikato region indicated this mortality was density dependent. In addition, the availability of tillers in endophyte-free ryegrass pastures in Canterbury had no influence on egg and early-instar larval survival, which contrasts with the finding from endophytic Waikato pastures.

  20. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    PubMed

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  1. Exploiting the Adaptation Dynamics to Predict the Distribution of Beneficial Fitness Effects

    PubMed Central

    2016-01-01

    Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments. PMID:26990188

  2. Evaluating water conservation and reuse policies using a dynamic water balance model.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  3. Simulated population responses of common carp to commercial exploitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Michael J.; Hennen, Matthew J.; Brown, Michael L.

    2011-12-01

    Common carp Cyprinus carpio is a widespread invasive species that can become highly abundant and impose deleterious ecosystem effects. Thus, aquatic resource managers are interested in controlling common carp populations. Control of invasive common carp populations is difficult, due in part to the inherent uncertainty of how populations respond to exploitation. To understand how common carp populations respond to exploitation, we evaluated common carp population dynamics (recruitment, growth, and mortality) in three natural lakes in eastern South Dakota. Common carp exhibited similar population dynamics across these three systems that were characterized by consistent recruitment (ages 3 to 15 years present),more » fast growth (K = 0.37 to 0.59), and low mortality (A = 1 to 7%). We then modeled the effects of commercial exploitation on size structure, abundance, and egg production to determine its utility as a management tool to control populations. All three populations responded similarly to exploitation simulations with a 575-mm length restriction, representing commercial gear selectivity. Simulated common carp size structure modestly declined (9 to 37%) in all simulations. Abundance of common carp declined dramatically (28 to 56%) at low levels of exploitation (0 to 20%) but exploitation >40% had little additive effect and populations were only reduced by 49 to 79% despite high exploitation (>90%). Maximum lifetime egg production was reduced from 77 to 89% at a moderate level of exploitation (40%), indicating the potential for recruitment overfishing. Exploitation further reduced common carp size structure, abundance, and egg production when simulations were not size selective. Our results provide insights to how common carp populations may respond to exploitation. Although commercial exploitation may be able to partially control populations, an integrated removal approach that removes all sizes of common carp has a greater chance of controlling population abundance and reducing perturbations induced by this invasive species.« less

  4. Quench dynamics in superconducting nanojunctions: Metastability and dynamical Yang-Lee zeros

    NASA Astrophysics Data System (ADS)

    Souto, R. Seoane; Martín-Rodero, A.; Yeyati, A. Levy

    2017-10-01

    We study the charge transfer dynamics following the formation of a phase or voltage biased superconducting nanojunction using a full counting statistics analysis. We demonstrate that the evolution of the zeros of the generating function allows one to identify the population of different many body states much in the same way as the accumulation of Yang-Lee zeros of the partition function in equilibrium statistical mechanics is connected to phase transitions. We give an exact expression connecting the dynamical zeros to the charge transfer cumulants and discuss when an approximation based on "dominant" zeros is valid. We show that, for generic values of the parameters, the system gets trapped into a metastable state characterized by a nonequilibrium population of the many body states which is dependent on the initial conditions. We study in particular the effect of the switching rates in the dynamics showing that, in contrast to intuition, the deviation from thermal equilibrium increases for the slower rates. In the voltage biased case the steady state is reached independent of the initial conditions. Our method allows us to obtain accurate results for the steady state current and noise in quantitative agreement with steady state methods developed to describe the multiple Andreev reflections regime. Finally, we discuss the system dynamics after a sudden voltage drop showing the possibility of tuning the many body states population by an appropriate choice of the initial voltage, providing a feasible experimental way to access the quench dynamics and control the state of the system.

  5. The importance of accurately modelling human interactions. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Rosati, Dora P.; Molina, Chai; Earn, David J. D.

    2015-12-01

    Human behaviour and disease dynamics can greatly influence each other. In particular, people often engage in self-protective behaviours that affect epidemic patterns (e.g., vaccination, use of barrier precautions, isolation, etc.). Self-protective measures usually have a mitigating effect on an epidemic [16], but can in principle have negative impacts at the population level [12,15,18]. The structure of underlying social and biological contact networks can significantly influence the specific ways in which population-level effects are manifested. Using a different contact network in a disease dynamics model-keeping all else equal-can yield very different epidemic patterns. For example, it has been shown that when individuals imitate their neighbours' vaccination decisions with some probability, this can lead to herd immunity in some networks [9], yet for other networks it can preserve clusters of susceptible individuals that can drive further outbreaks of infectious disease [12].

  6. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  7. Effect of environment and fallow period on Cosmopolites sordidus population dynamics at the landscape scale.

    PubMed

    Duyck, P-F; Dortel, E; Vinatier, F; Gaujoux, E; Carval, D; Tixier, P

    2012-10-01

    Understanding how the population dynamics of insect pests are affected by environmental factors and agricultural practices is important for pest management. To investigate how the abundance of the banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae), is related to environmental factors and the length of the fallow period in Martinique, we developed an extensive data set (18,130 observations of weevil abundance obtained with pheromone traps plus associated environmental data) and analysed it with generalized mixed-effects models. At the island scale, C. sordidus abundance was positively related to mean temperature and negatively related to mean rainfall but was not related to soil type. The number of insects trapped was highest during the driest months of the year. Abundance of C. sordidus decreased as the duration of the preceding fallow period increased. The latter finding is inconsistent with the view that fallow-generated decomposing banana tissue is an important resource for larvae that leads to an increase in the pest population. The results are consistent with the view that fallows, in association with pheromone traps, are effective for the control of the banana weevil.

  8. Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors.

    PubMed

    Lorz, Alexander; Lorenzi, Tommaso; Clairambault, Jean; Escargueil, Alexandre; Perthame, Benoît

    2015-01-01

    Histopathological evidence supports the idea that the emergence of phenotypic heterogeneity and resistance to cytotoxic drugs can be considered as a process of selection in tumor cell populations. In this framework, can we explain intra-tumor heterogeneity in terms of selection driven by the local cell environment? Can we overcome the emergence of resistance and favor the eradication of cancer cells by using combination therapies? Bearing these questions in mind, we develop a model describing cell dynamics inside a tumor spheroid under the effects of cytotoxic and cytostatic drugs. Cancer cells are assumed to be structured as a population by two real variables standing for space position and the expression level of a phenotype of resistance to cytotoxic drugs. The model takes explicitly into account the dynamics of resources and anticancer drugs as well as their interactions with the cell population under treatment. We analyze the effects of space structure and combination therapies on phenotypic heterogeneity and chemotherapeutic resistance. Furthermore, we study the efficacy of combined therapy protocols based on constant infusion and bang-bang delivery of cytotoxic and cytostatic drugs.

  9. Effects of payoff functions and preference distributions in an adaptive population

    NASA Astrophysics Data System (ADS)

    Yang, H. M.; Ting, Y. S.; Wong, K. Y. Michael

    2008-03-01

    Adaptive populations such as those in financial markets and distributed control can be modeled by the Minority Game. We consider how their dynamics depends on the agents’ initial preferences of strategies, when the agents use linear or quadratic payoff functions to evaluate their strategies. We find that the fluctuations of the population making certain decisions (the volatility) depends on the diversity of the distribution of the initial preferences of strategies. When the diversity decreases, more agents tend to adapt their strategies together. In systems with linear payoffs, this results in dynamical transitions from vanishing volatility to a nonvanishing one. For low signal dimensions, the dynamical transitions for the different signals do not take place at the same critical diversity. Rather, a cascade of dynamical transitions takes place when the diversity is reduced. In contrast, no phase transitions are found in systems with the quadratic payoffs. Instead, a basin boundary of attraction separates two groups of samples in the space of the agents’ decisions. Initial states inside this boundary converge to small volatility, while those outside diverge to a large one. Furthermore, when the preference distribution becomes more polarized, the dynamics becomes more erratic. All the above results are supported by good agreement between simulations and theory.

  10. Salinity fluctuation influencing biological adaptation: growth dynamics and Na+ /K+ -ATPase activity in a euryhaline bacterium.

    PubMed

    Yang, Hao; Meng, Yang; Song, Youxin; Tan, Yalin; Warren, Alan; Li, Jiqiu; Lin, Xiaofeng

    2017-07-01

    Although salinity fluctuation is a prominent characteristic of many coastal ecosystems, its effects on biological adaptation have not yet been fully recognized. To test the salinity fluctuations on biological adaptation, population growth dynamics and Na + /K + -ATPase activity were investigated in the euryhaline bacterium Idiomarina sp. DYB, which was acclimated at different salinity exposure levels, exposure times, and shifts in direction of salinity. Results showed: (1) bacterial population growth dynamics and Na + /K + -ATPase activity changed significantly in response to salinity fluctuation; (2) patterns of variation in bacterial growth dynamics were related to exposure times, levels of salinity, and shifts in direction of salinity change; (3) significant tradeoffs were detected between growth rate (r) and carrying capacity (K) on the one hand, and Na + /K + -ATPase activity on the other; and (4) beneficial acclimation was confirmed in Idiomarina sp. DYB. In brief, this study demonstrated that salinity fluctuation can change the population growth dynamics, Na + /K + -ATPase activity, and tradeoffs between r, K, and Na + /K + -ATPase activity, thus facilitating bacterial adaption in a changing environment. These findings provide constructive information for determining biological response patterns to environmental change. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A test of the compensatory mortality hypothesis in mountain lions: a management experiment in West-Central Montana

    USGS Publications Warehouse

    Robinson, Hugh S.; Desimone, Richard; Hartway, Cynthia; Gude, Justin A.; Thompson, Michael J.; Mitchell, Michael S.; Hebblewhite, Mark

    2014-01-01

    Mountain lions (Puma concolor) are widely hunted for recreation, population control, and to reduce conflict with humans, but much is still unknown regarding the effects of harvest on mountain lion population dynamics. Whether human hunting mortality on mountain lions is additive or compensatory is debated. Our primary objective was to investigate population effects of harvest on mountain lions. We addressed this objective with a management experiment of 3 years of intensive harvest followed by a 6-year recovery period. In December 2000, after 3 years of hunting, approximately 66% of a single game management unit within the Blackfoot River watershed in Montana was closed to lion hunting, effectively creating a refuge representing approximately 12% (915 km2) of the total study area (7,908 km2). Hunting continued in the remainder of the study area, but harvest levels declined from approximately 9/1,000 km2 in 2001 to 2/1,000 km2 in 2006 as a result of the protected area and reduced quotas outside. We radiocollared 117 mountain lions from 1998 to 2006. We recorded known fates for 63 animals, and right-censored the remainder. Although hunting directly reduced survival, parameters such as litter size, birth interval, maternity, age at dispersal, and age of first reproduction were not significantly affected. Sensitivity analysis showed that female survival and maternity were most influential on population growth. Life-stage simulation analysis (LSA) demonstrated the effect of hunting on the population dynamics of mountain lions. In our non-hunted population, reproduction (kitten survival and maternity) accounted for approximately 62% of the variation in growth rate, whereas adult female survival accounted for 30%. Hunting reversed this, increasing the reliance of population growth on adult female survival (45% of the variation in population growth), and away from reproduction (12%). Our research showed that harvest at the levels implemented in this study did not affect population productivity (i.e., maternity), but had an additive effect on mountain lion mortality, and therefore population growth. Through harvest, wildlife managers have the ability to control mountain lion populations.

  12. Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population.

    PubMed

    Ortego, Joaquín; Yannic, Glenn; Shafer, Aaron B A; Mainguy, Julien; Festa-Bianchet, Marco; Coltman, David W; Côté, Steeve D

    2011-04-01

    The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms. © 2011 Blackwell Publishing Ltd.

  13. Detecting population–environmental interactions with mismatched time series data

    PubMed Central

    Ferguson, Jake M.; Reichert, Brian E.; Fletcher, Robert J.; Jager, Henriëtte I.

    2017-01-01

    Time series analysis is an essential method for decomposing the influences of density and exogenous factors such as weather and climate on population regulation. However, there has been little work focused on understanding how well commonly collected data can reconstruct the effects of environmental factors on population dynamics. We show that, analogous to similar scale issues in spatial data analysis, coarsely sampled temporal data can fail to detect covariate effects when interactions occur on timescales that are fast relative to the survey period. We propose a method for modeling mismatched time series data that couples high-resolution environmental data to low-resolution abundance data. We illustrate our approach with simulations and by applying it to Florida’s southern Snail kite population. Our simulation results show that our method can reliably detect linear environmental effects and that detecting nonlinear effects requires high-resolution covariate data even when the population turnover rate is slow. In the Snail kite analysis, our approach performed among the best in a suite of previously used environmental covariates explaining Snail kite dynamics and was able to detect a potential phenological shift in the environmental dependence of Snail kites. Our work provides a statistical framework for reliably detecting population–environment interactions from coarsely surveyed time series. An important implication of this work is that the low predictability of animal population growth by weather variables found in previous studies may be due, in part, to how these data are utilized as covariates. PMID:28759123

  14. An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellonzi, Nicole; Jain, Amber; Subotnik, Joseph E.

    2016-04-21

    We study several recent mean-field semiclassical dynamics methods, focusing on the ability to recover detailed balance for long time (equilibrium) populations. We focus especially on Miller and Cotton’s [J. Phys. Chem. A 117, 7190 (2013)] suggestion to include both zero point electronic energy and windowing on top of Ehrenfest dynamics. We investigate three regimes: harmonic surfaces with weak electronic coupling, harmonic surfaces with strong electronic coupling, and anharmonic surfaces with weak electronic coupling. In most cases, recent additions to Ehrenfest dynamics are a strong improvement upon mean-field theory. However, for methods that include zero point electronic energy, we show thatmore » anharmonic potential energy surfaces often lead to numerical instabilities, as caused by negative populations and forces. We also show that, though the effect of negative forces can appear hidden in harmonic systems, the resulting equilibrium limits do remain dependent on any windowing and zero point energy parameters.« less

  15. Role of Alternative Food in Controlling Chaotic Dynamics in a Predator-Prey Model with Disease in the Predator

    NASA Astrophysics Data System (ADS)

    Das, Krishna Pada; Bairagi, Nandadulal; Sen, Prabir

    It is generally, but not always, accepted that alternative food plays a stabilizing role in predator-prey interaction. Parasites, on the other hand, have the ability to change both the qualitative and quantitative dynamics of its host population. In recent times, researchers are showing growing interest in formulating models that integrate both the ecological and epidemiological aspects. The present paper deals with the effect of alternative food on a predator-prey system with disease in the predator population. We show that the system, in the absence of alternative food, exhibits different dynamics viz. stable coexistence, limit cycle oscillations, period-doubling bifurcation and chaos when infection rate is gradually increased. However, when predator consumes alternative food coupled with its focal prey, the system returns to regular oscillatory state from chaotic state through period-halving bifurcations. Our study shows that alternative food may have larger impact on the community structure and may increase population persistence.

  16. Adaptive modeling of viral diseases in bats with a focus on rabies.

    PubMed

    Dimitrov, Dobromir T; Hallam, Thomas G; Rupprecht, Charles E; McCracken, Gary F

    2008-11-07

    Many emerging and reemerging viruses, such as rabies, SARS, Marburg, and Ebola have bat populations as disease reservoirs. Understanding the spillover from bats to humans and other animals, and the associated health risks requires an analysis of the disease dynamics in bat populations. Traditional compartmental epizootic models, which are relatively easy to implement and analyze, usually impose unrealistic aggregation assumptions about disease-related structure and depend on parameters that frequently are not measurable in field conditions. We propose a novel combination of computational and adaptive modeling approaches that address the maintenance of emerging diseases in bat colonies through individual (intra-host) models of the response of the host to a viral challenge. The dynamics of the individual models are used to define survival, susceptibility and transmission conditions relevant to epizootics as well as to develop and parametrize models of the disease evolution into uniform and diverse populations. Applications of the proposed approach to modeling the effects of immunological heterogeneity on the dynamics of bat rabies are presented.

  17. Spread of a disease and its effect on population dynamics in an eco-epidemiological system

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Roy, Parimita

    2014-12-01

    In this paper, an eco-epidemiological model with simple law of mass action and modified Holling type II functional response has been proposed and analyzed to understand how a disease may spread among natural populations. The proposed model is a modification of the model presented by Upadhyay et al. (2008) [1]. Existence of the equilibria and their stability analysis (linear and nonlinear) has been studied. The dynamical transitions in the model have been studied by identifying the existence of backward Hopf-bifurcations and demonstrated the period-doubling route to chaos when the death rate of predator (μ1) and the growth rate of susceptible prey population (r) are treated as bifurcation parameters. Our studies show that the system exhibits deterministic chaos when some control parameters attain their critical values. Chaotic dynamics is depicted using the 2D parameter scans and bifurcation analysis. Possible implications of the results for disease eradication or its control are discussed.

  18. Effect of temperature on the population dynamics of Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  19. Extinction in neutrally stable stochastic Lotka-Volterra models

    NASA Astrophysics Data System (ADS)

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  20. Extinction in neutrally stable stochastic Lotka-Volterra models.

    PubMed

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  1. Temperature-dependent body size effects determine population responses to climate warming.

    PubMed

    Lindmark, Max; Huss, Magnus; Ohlberger, Jan; Gårdmark, Anna

    2018-02-01

    Current understanding of animal population responses to rising temperatures is based on the assumption that biological rates such as metabolism, which governs fundamental ecological processes, scale independently with body size and temperature, despite empirical evidence for interactive effects. Here, we investigate the consequences of interactive temperature- and size scaling of vital rates for the dynamics of populations experiencing warming using a stage-structured consumer-resource model. We show that interactive scaling alters population and stage-specific responses to rising temperatures, such that warming can induce shifts in population regulation and stage-structure, influence community structure and govern population responses to mortality. Analysing experimental data for 20 fish species, we found size-temperature interactions in intraspecific scaling of metabolic rate to be common. Given the evidence for size-temperature interactions and the ubiquity of size structure in animal populations, we argue that accounting for size-specific temperature effects is pivotal for understanding how warming affects animal populations and communities. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  2. Impact of environmental colored noise in single-species population dynamics

    NASA Astrophysics Data System (ADS)

    Spanio, Tommaso; Hidalgo, Jorge; Muñoz, Miguel A.

    2017-10-01

    Variability on external conditions has important consequences for the dynamics and the organization of biological systems. In many cases, the characteristic timescale of environmental changes as well as their correlations play a fundamental role in the way living systems adapt and respond to it. A proper mathematical approach to understand population dynamics, thus, requires approaches more refined than, e.g., simple white-noise approximations. To shed further light onto this problem, in this paper we propose a unifying framework based on different analytical and numerical tools available to deal with "colored" environmental noise. In particular, we employ a "unified colored noise approximation" to map the original problem into an effective one with white noise, and then we apply a standard path integral approach to gain analytical understanding. For the sake of specificity, we present our approach using as a guideline a variation of the contact process—which can also be seen as a birth-death process of the Malthus-Verhulst class—where the propagation or birth rate varies stochastically in time. Our approach allows us to tackle in a systematic manner some of the relevant questions concerning population dynamics under environmental variability, such as determining the stationary population density, establishing the conditions under which a population may become extinct, and estimating extinction times. We focus on the emerging phase diagram and its possible phase transitions, underlying how these are affected by the presence of environmental noise time-correlations.

  3. Relation between the Electromagnetic Processes in the Near-Earth Space and Dynamics of the Biological Resources in Russian Arctic

    NASA Astrophysics Data System (ADS)

    Makarova, L. N.; Shirochkov, A. V.

    It is a well-established fact that the electromagnetic processes of different kind occurring in the near- Earth space produce significant effects in the Earth's atmosphere at all altitudes including the ground surface. There are some indications that these processes could influence at least indirectly the human health conditions. In this study we explore relation between perturbations in the solar wind (dynamics of its density, velocity, intensity of the interplanetary magnetic field) and long- term changes in population of some species of Arctic fauna (lemmings, polar foxes, deers, wolves, elks etc.) It was found out that the best statistical coupling between various Space Weather parameters and the changes in populations of the Arctic fauna species appears when the solar wind dynamic pressure magnitude is taken as one of these parameters. It was shown that the secular variations of the solar UV radiation expressed as the Total Solar Irradiance appears to be a space parameter, showing the best correlation with the changes in population of the Arctic fauna species. Such high correlation coefficients as 0.8 are obtained. It is premature now to discuss exact physical mechanisms, which could explain the obtained relations. A possible mutual dependence of some climatic factors and fauna population in Arctic on the Space Weather parameters is discussed in this connection. Conclusion is made that the electromagnetic fields of space origin is an important factor determining dynamics of population of the Arctic fauna species.

  4. Boundary effects on population dynamics in stochastic lattice Lotka-Volterra models

    NASA Astrophysics Data System (ADS)

    Heiba, Bassel; Chen, Sheng; Täuber, Uwe C.

    2018-02-01

    We investigate spatially inhomogeneous versions of the stochastic Lotka-Volterra model for predator-prey competition and coexistence by means of Monte Carlo simulations on a two-dimensional lattice with periodic boundary conditions. To study boundary effects for this paradigmatic population dynamics system, we employ a simulation domain split into two patches: Upon setting the predation rates at two distinct values, one half of the system resides in an absorbing state where only the prey survives, while the other half attains a stable coexistence state wherein both species remain active. At the domain boundary, we observe a marked enhancement of the predator population density. The predator correlation length displays a minimum at the boundary, before reaching its asymptotic constant value deep in the active region. The frequency of the population oscillations appears only very weakly affected by the existence of two distinct domains, in contrast to their attenuation rate, which assumes its largest value there. We also observe that boundary effects become less prominent as the system is successively divided into subdomains in a checkerboard pattern, with two different reaction rates assigned to neighboring patches. When the domain size becomes reduced to the scale of the correlation length, the mean population densities attain values that are very similar to those in a disordered system with randomly assigned reaction rates drawn from a bimodal distribution.

  5. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  6. Allee effect and the uncertainty of population recovery.

    PubMed

    Kuparinen, Anna; Keith, David M; Hutchings, Jeffrey A

    2014-06-01

    Recovery of depleted populations is fundamentally important for conservation biology and sustainable resource harvesting. At low abundance, population growth rate, a primary determinant of population recovery, is generally assumed to be relatively fast because competition is low (i.e., negative density dependence). But population growth can be limited in small populations by an Allee effect. This is particularly relevant for collapsed populations or species that have not recovered despite large reductions in, or elimination of, threats. We investigated how an Allee effect can influence the dynamics of recovery. We used Atlantic cod (Gadus morhua) as the study organism and an empirically quantified Allee effect for the species to parameterize our simulations. We simulated recovery through an individual-based mechanistic simulation model and then compared recovery among scenarios incorporating an Allee effect, negative density dependence, and an intermediate scenario. Although an Allee effect significantly slowed recovery, such that population increase could be negligible even after 100 years or more, it also made the time required for biomass rebuilding much less predictable. Our finding that an Allee effect greatly increased the uncertainty in recovery time frames provides an empirically based explanation for why the removal of threat does not always result in the recovery of depleted populations or species. © 2014 Society for Conservation Biology.

  7. Effects of road mortality and mitigation measures on amphibian populations.

    PubMed

    Beebee, Trevor J C

    2013-08-01

    Road mortality is a widely recognized but rarely quantified threat to the viability of amphibian populations. The global extent of the problem is substantial and factors affecting the number of animals killed on highways include life-history traits and landscape features. Secondary effects include genetic isolation due to roads acting as barriers to migration. Long-term effects of roads on population dynamics are often severe and mitigation methods include volunteer rescues and under-road tunnels. Despite the development of methods that reduce road kill in specific locations, especially under-road tunnels and culverts, there is scant evidence that such measures will protect populations over the long term. There also seems little likelihood that funding will be forthcoming to ameliorate the problem at the scale necessary to prevent further population declines. © 2013 Society for Conservation Biology.

  8. Microbial Community Structures and Dynamics in the O3/BAC Drinking Water Treatment Process

    PubMed Central

    Tian, Jian; Lu, Jun; Zhang, Yu; Li, Jian-Cheng; Sun, Li-Chen; Hu, Zhang-Li

    2014-01-01

    Effectiveness of drinking water treatment, in particular pathogen control during the water treatment process, is always a major public health concern. In this investigation, the application of PCR-DGGE technology to the analysis of microbial community structures and dynamics in the drinking water treatment process revealed several dominant microbial populations including: α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Bacteroidetes, Actinobacteria Firmicutes and Cyanobacteria. α-Proteobacteria and β-Proteobacteria were the dominant bacteria during the whole process. Bacteroidetes and Firmicutes were the dominant bacteria before and after treatment, respectively. Firmicutes showed season-dependent changes in population dynamics. Importantly, γ-Proteobacteria, which is a class of medically important bacteria, was well controlled by the O3/biological activated carbon (BAC) treatment, resulting in improved effluent water bio-safety. PMID:24937529

  9. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    PubMed

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  10. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    NASA Astrophysics Data System (ADS)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  11. Preface of the "Symposium on Mathematical Models and Methods to investigate Heterogeneity in Cell and Cell Population Biology"

    NASA Astrophysics Data System (ADS)

    Clairambault, Jean

    2016-06-01

    This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.

  12. Vulnerability of a killer whale social network to disease outbreaks

    NASA Astrophysics Data System (ADS)

    Guimarães, Paulo R., Jr.; de Menezes, Márcio Argollo; Baird, Robin W.; Lusseau, David; Guimarães, Paulo; Dos Reis, Sérgio F.

    2007-10-01

    Emerging infectious diseases are among the main threats to conservation of biological diversity. A crucial task facing epidemiologists is to predict the vulnerability of populations of endangered animals to disease outbreaks. In this context, the network structure of social interactions within animal populations may affect disease spreading. However, endangered animal populations are often small and to investigate the dynamics of small networks is a difficult task. Using network theory, we show that the social structure of an endangered population of mammal-eating killer whales is vulnerable to disease outbreaks. This feature was found to be a consequence of the combined effects of the topology and strength of social links among individuals. Our results uncover a serious challenge for conservation of the species and its ecosystem. In addition, this study shows that the network approach can be useful to study dynamical processes in very small networks.

  13. Effects of prescribed fire, supplemental feeding, and mammalian predator exclusion on hispid cotton rat populations.

    PubMed

    Morris, Gail; Hostetler, Jeffrey A; Conner, L Mike; Oli, Madan K

    2011-12-01

    Predation and food resources can strongly affect small mammal population dynamics directly by altering vital rates or indirectly by influencing behaviors. Fire may also strongly influence population dynamics of species inhabiting fire-adapted habitats because fire can alter food and cover availability. We used capture-mark-recapture and radio-telemetry studies to experimentally examine how supplemental feeding, mammalian predator exclusion, and prescribed fire affected survival, abundance, and reproduction of hispid cotton rats (Sigmodon hispidus) in southwestern Georgia, USA. Prescribed fire reduced survival, abundance, and rates of transitions to reproductive states. Food supplementation increased survival, transitions to reproductive states, and abundance, but was not sufficient to prevent post-fire declines in any of these parameters. Mammalian predator exclusion did not strongly affect any of the considered parameters. Our results show that fire strongly influenced cotton rat populations in our study site, primarily by reducing cover and increasing predation risk from non-mammalian predators.

  14. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat

    PubMed Central

    Thogmartin, Wayne E.; Diffendorfer, Jay E.; Russell, Robin E.; Szymanski, Jennifer A.

    2016-01-01

    Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity. PMID:28028486

  15. Effects of enhanced UV-B radiation on secondary metabolites in forage plants and potential consequences for multiple trophic responses involving mammalian herbivores

    NASA Astrophysics Data System (ADS)

    Thines, Nicole J.; Bassman, John H.; Shipley, Lisa A.; Slusser, James R.

    2004-10-01

    Herbivores represent the interface between primary production and higher trophic levels. The effects of enhanced UV-B radiation on microbes, invertebrate herbivores, and detritivores has received limited study in both terrestrial and aquatic ecosystems. However, although direct effects (e.g. melanoma, cataracts) on mammals have been documented, indirect effects (e.g., resulting from changes in plant chemistry) of enhanced UV-B on mammalian herbivores have not been evaluated. Although the diet of mammalian herbivores has little effect on nutritional quality for their associated predators, to the extent changes in plant chemistry affect aspects of population dynamics (e.g., growth, fecundity, densities), higher trophic levels can be affected. In this study, different forage species of varying inherent levels of key secondary metabolites are being grown in the field under either ambient or ambient plus supplemental UV-B radiation simulating a 15% stratospheric ozone depletion for Pullman, Washington. At various time intervals, foliage is being sampled and analyzed for changes in secondary metabolites and other attributes. Using controlled feeding trials, changes in plant secondary metabolites are being related to preference and digestibility in specialist and generalist mammalian hindgut herbivores, digestion in ruminants and non-ruminants, and to selected aspects of population dynamics in mammalian herbivores. Results suggest how UV-B-induced changes in plant secondary chemistry affect animal nutrition, and thus animal productivity in a range of mammalian herbivores. Reductions in palatability and digestibility of plant material along with reductions in fecundity and other aspects of population dynamics could have significant economic ramifications for farmers, ranchers and wildlife biologists.

  16. The lawyer, legal education and population policies in Africa.

    PubMed

    Uche, U U

    1976-09-01

    This paper analyses the relationship of the lawyer and legal education to policies of population dynamics in Africa. Lawyers have been reluctant to enter effectively into population studies and consequently are peripheral in influencing the formulation and implementation of population policies in Africa. This "unfortunate" situation reflects the varying attitudes of the lawyer to some aspects of population dynamics. The concept of Human Rights is examined as offering a suitable avenue for increased participation of lawyers into the formulation of population policies. The paper examines the structure of laws affecting parameters of population dynamics in Kenya and the extent to which Kenya's legal structure, as in some other African countries, is pegged to the legal system of their colonial governments. This factor, reinforced by traditional practices and socioeconomic factors, frustrate lawyers' attitudes. These attitudes can be changed by making population law an integral part of legal educational curricula. Breakdowns are given of lawyer's attitudes to fertility and abortion under specified conditions and descriptions of various case studies in Kenya, Sweden, Prague, Czechoslovakia, and England involving abortion laws. Contraception laws in Africa and health codes are detailed in order to trace how people's attitudes tend to frustrate the law, especially concerning veneral diseases. Laws concerning drugs, and especially spatial distribution (urban and rural migration) are described to show how lawyers can become involved in population law. The author's recommended law curriculum is given which emphasizes introductory preparation in the sociological, economic, demographic, health and sex education dimensions of the subject of population law in addition to study of all statutory provisions, orders, regulations, by laws and judicial decisions that have any bearing on population matters. Categories to be studied should include fertility regulation, family law, children and child welfare, criminal offence and penology, public welfare, public health, education, property and economic factors.

  17. Using dynamic N-mixture models to test cavity limitation on northern flying squirrel demographic parameters using experimental nest box supplementation.

    PubMed

    Priol, Pauline; Mazerolle, Marc J; Imbeau, Louis; Drapeau, Pierre; Trudeau, Caroline; Ramière, Jessica

    2014-06-01

    Dynamic N-mixture models have been recently developed to estimate demographic parameters of unmarked individuals while accounting for imperfect detection. We propose an application of the Dail and Madsen (2011: Biometrics, 67, 577-587) dynamic N-mixture model in a manipulative experiment using a before-after control-impact design (BACI). Specifically, we tested the hypothesis of cavity limitation of a cavity specialist species, the northern flying squirrel, using nest box supplementation on half of 56 trapping sites. Our main purpose was to evaluate the impact of an increase in cavity availability on flying squirrel population dynamics in deciduous stands in northwestern Québec with the dynamic N-mixture model. We compared abundance estimates from this recent approach with those from classic capture-mark-recapture models and generalized linear models. We compared apparent survival estimates with those from Cormack-Jolly-Seber (CJS) models. Average recruitment rate was 6 individuals per site after 4 years. Nevertheless, we found no effect of cavity supplementation on apparent survival and recruitment rates of flying squirrels. Contrary to our expectations, initial abundance was not affected by conifer basal area (food availability) and was negatively affected by snag basal area (cavity availability). Northern flying squirrel population dynamics are not influenced by cavity availability at our deciduous sites. Consequently, we suggest that this species should not be considered an indicator of old forest attributes in our study area, especially in view of apparent wide population fluctuations across years. Abundance estimates from N-mixture models were similar to those from capture-mark-recapture models, although the latter had greater precision. Generalized linear mixed models produced lower abundance estimates, but revealed the same relationship between abundance and snag basal area. Apparent survival estimates from N-mixture models were higher and less precise than those from CJS models. However, N-mixture models can be particularly useful to evaluate management effects on animal populations, especially for species that are difficult to detect in situations where individuals cannot be uniquely identified. They also allow investigating the effects of covariates at the site level, when low recapture rates would require restricting classic CMR analyses to a subset of sites with the most captures.

  18. Population dynamics and potential of fisheries stock enhancement: practical theory for assessment and policy analysis.

    PubMed

    Lorenzen, Kai

    2005-01-29

    The population dynamics of fisheries stock enhancement, and its potential for generating benefits over and above those obtainable from optimal exploitation of wild stocks alone are poorly understood and highly controversial. I review pertinent knowledge of fish population biology, and extend the dynamic pool theory of fishing to stock enhancement by unpacking recruitment, incorporating regulation in the recruited stock, and accounting for biological differences between wild and hatchery fish. I then analyse the dynamics of stock enhancement and its potential role in fisheries management, using the candidate stock of North Sea sole as an example and considering economic as well as biological criteria. Enhancement through release of recruits or advanced juveniles is predicted to increase total yield and stock abundance, but reduce abundance of the naturally recruited stock component through compensatory responses or overfishing. Economic feasibility of enhancement is subject to strong constraints, including trade-offs between the costs of fishing and hatchery releases. Costs of hatchery fish strongly influence optimal policy, which may range from no enhancement at high cost to high levels of stocking and fishing effort at low cost. Release of genetically maladapted fish reduces the effectiveness of enhancement, and is most detrimental overall if fitness of hatchery fish is only moderately compromised. As a temporary measure for the rebuilding of depleted stocks, enhancement cannot substitute for effort limitation, and is advantageous as an auxiliary measure only if the population has been reduced to a very low proportion of its unexploited biomass. Quantitative analysis of population dynamics is central to the responsible use of stock enhancement in fisheries management, and the necessary tools are available.

  19. Effects of seven diets on the population dynamics of laboratory cultured Tisbe holothuriae Humes (Copepoda, Harpacticoida)

    NASA Astrophysics Data System (ADS)

    Miliou, H.; Moraïtou-Apostolopoulou, M.

    1991-09-01

    The harpacticoid copepod Tisbe holothuriae was collected from Saronicos Gulf (Greece) and reared under constant laboratory conditions. In order to study the effects of food on the population dynamics, seven diets were tested: the seaweed Ulva; five artificial compound feeds: the liquid Fryfood® (Waterlife), a powder of Mytilus, yeast, soya and Spirulina, respectively; and a mixed diet consisting of Ulva and Fryfood. The life cycle parameters (mortality, sex ratio, generation time, offspring production) were measured, and the demographic variables [mean generation time (T), net reproductive rate (Ro), and intrinsic rate of natural increase (rm)] were determined. As to their efficiency regarding population dynamics, the diets ranked as follows: (1) Ulva+Fryfood, (2), Ulva, (3) Fryfood, (4) Mytilus, (5) soya, (6) yeast, and (7) Spirulina. In this order they cause a progressive increase of both larval mortality and generation time, a progressive decrease of sex ratio, number of offspring per egg sac, number of egg sacs per female and, consequently, of Ro and rm. The observed differences between diets were most pronounced with respect to offspring production. Of the compound diets, those containing animal extracts were more efficient than those containing vegetable materials. Ulva plays an important role in the nutrition of T. holothuriae, favouring offspring production as well as larval survival, development and pigmentation. Ulva in combination with Fryfood led to a greater copepodid survival and offspring production. This mixed diet proved to be the most favourable for rearing the Greek population of t. holothuriae, resulting in an efficient intrinsic rate of natural increase (rm=0.304) of the population.

  20. Strategy selection in structured populations.

    PubMed

    Tarnita, Corina E; Ohtsuki, Hisashi; Antal, Tibor; Fu, Feng; Nowak, Martin A

    2009-08-07

    Evolutionary game theory studies frequency dependent selection. The fitness of a strategy is not constant, but depends on the relative frequencies of strategies in the population. This type of evolutionary dynamics occurs in many settings of ecology, infectious disease dynamics, animal behavior and social interactions of humans. Traditionally evolutionary game dynamics are studied in well-mixed populations, where the interaction between any two individuals is equally likely. There have also been several approaches to study evolutionary games in structured populations. In this paper we present a simple result that holds for a large variety of population structures. We consider the game between two strategies, A and B, described by the payoff matrix(abcd). We study a mutation and selection process. For weak selection strategy A is favored over B if and only if sigma a+b>c+sigma d. This means the effect of population structure on strategy selection can be described by a single parameter, sigma. We present the values of sigma for various examples including the well-mixed population, games on graphs, games in phenotype space and games on sets. We give a proof for the existence of such a sigma, which holds for all population structures and update rules that have certain (natural) properties. We assume weak selection, but allow any mutation rate. We discuss the relationship between sigma and the critical benefit to cost ratio for the evolution of cooperation. The single parameter, sigma, allows us to quantify the ability of a population structure to promote the evolution of cooperation or to choose efficient equilibria in coordination games.

  1. Predicting population dynamics from the properties of individuals: a cross-level test of dynamic energy budget theory.

    PubMed

    Martin, Benjamin T; Jager, Tjalling; Nisbet, Roger M; Preuss, Thomas G; Grimm, Volker

    2013-04-01

    Individual-based models (IBMs) are increasingly used to link the dynamics of individuals to higher levels of biological organization. Still, many IBMs are data hungry, species specific, and time-consuming to develop and analyze. Many of these issues would be resolved by using general theories of individual dynamics as the basis for IBMs. While such theories have frequently been examined at the individual level, few cross-level tests exist that also try to predict population dynamics. Here we performed a cross-level test of dynamic energy budget (DEB) theory by parameterizing an individual-based model using individual-level data of the water flea, Daphnia magna, and comparing the emerging population dynamics to independent data from population experiments. We found that DEB theory successfully predicted population growth rates and peak densities but failed to capture the decline phase. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detect gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology.

  2. Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size

    PubMed Central

    Ragsdale, Alexandria K.; McCoy, Earl D.; Mushinsky, Henry R.

    2016-01-01

    Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940

  3. Interacting particle systems on graphs

    NASA Astrophysics Data System (ADS)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations, while for small populations the dynamics are similar to the neutral case. The likelihood for the fitter mutants to drive the resident genotype to extinction is calculated.

  4. Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection.

    PubMed

    Frost, S D; McLean, A R

    1994-03-01

    To investigate the roles of mutation, competition and population dynamics in the emergence of drug resistant mutants during zidovudine therapy. A mathematical model of the population dynamics of the viral quasispecies during zidovudine therapy was investigated. The model was used to simulate changes in the numbers of uninfected and infected cells and the composition of the viral quasispecies in the years following initiation of therapy. Resulting scenarios in asymptomatic and AIDS patients were compared. The model was also used to investigate the efficacy of a treatment regimen involving alternating zidovudine and dideoxyinosine therapy. The behaviour of the model can be divided into three stages. Before therapy, mutation maintains a small pool of resistant mutants, outcompeted to very low levels by sensitive strains. When therapy begins there is a dramatic fall in the total viral load and resistant strains suddenly have the competitive advantage. Thus, it is resistant strains that infect the rising number of uninfected CD4+ cells. During this second stage the rapid effects of population dynamics swamp any effects of mutation between strains. When the populations of infected and uninfected cells approach their treatment equilibrium levels, mutation again becomes important in the slow generation of highly resistant strains. The short-term reduction in viral replication at the initiation of therapy generates a pool of uninfected cells which cause the eventual increase in viral burden. This increase is associated with (but not caused by) a rise in frequency of resistant strains which are at a competitive advantage in the presence of the drug. When therapy is ceased, reversion of resistance is slow as resistant strains are nearly as fit as sensitive strains in the absence of drug.

  5. What can we learn from resource pulses?

    PubMed

    Yang, Louie H; Bastow, Justin L; Spence, Kenneth O; Wright, Amber N

    2008-03-01

    An increasing number of studies in a wide range of natural systems have investigated how pulses of resource availability influence ecological processes at individual, population, and community levels. Taken together, these studies suggest that some common processes may underlie pulsed resource dynamics in a wide diversity of systems. Developing a common framework of terms and concepts for the study of resource pulses may facilitate greater synthesis among these apparently disparate systems. Here, we propose a general definition of the resource pulse concept, outline some common patterns in the causes and consequences of resource pulses, and suggest a few key questions for future investigations. We define resource pulses as episodes of increased resource availability in space and time that combine low frequency (rarity), large magnitude (intensity), and short duration (brevity), and emphasize the importance of considering resource pulses at spatial and temporal scales relevant to specific resource-onsumer interactions. Although resource pulses are uncommon events for consumers in specific systems, our review of the existing literature suggests that pulsed resource dynamics are actually widespread phenomena in nature. Resource pulses often result from climatic and environmental factors, processes of spatiotemporal accumulation and release, outbreak population dynamics, or a combination of these factors. These events can affect life history traits and behavior at the level of individual consumers, numerical responses at the population level, and indirect effects at the community level. Consumers show strategies for utilizing ephemeral resources opportunistically, reducing resource variability by averaging over larger spatial scales, and tolerating extended interpulse periods of reduced resource availability. Resource pulses can also create persistent effects in communities through several mechanisms. We suggest that the study of resource pulses provides opportunities to understand the dynamics of many specific systems, and may also contribute to broader ecological questions at individual, population, and community levels.

  6. Population dynamics of Aphis gossypii Glover and in sole and intercropping systems of cotton and cowpea.

    PubMed

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Garcia, Adriano G; Santos, Bárbara D B; Malaquias, José B

    2018-01-01

    Population dynamics of aphids have been studied in sole and intercropping systems. These studies have required the use of more precise analytical tools in order to better understand patterns in quantitative data. Mathematical models are among the most important tools to explain the dynamics of insect populations. This study investigated the population dynamics of aphids Aphis gossypii and Aphis craccivora over time, using mathematical models composed of a set of differential equations as a helpful analytical tool to understand the population dynamics of aphids in arrangements of cotton and cowpea. The treatments were sole cotton, sole cowpea, and three arrangements of cotton intercropped with cowpea (t1, t2 and t3). The plants were infested with two aphid species and were evaluated at 7, 14, 28, 35, 42, and 49 days after the infestations. Mathematical models were used to fit the population dynamics of two aphid species. There were good fits for aphid dynamics by mathematical model over time. The highest population peak of both species A. gossypii and A. craccivora was found in the sole crops, and the lowest population peak was found in crop system t2. These results are important for integrated management programs of aphids in cotton and cowpea.

  7. Synchronisation and stability in river metapopulation networks.

    PubMed

    Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M

    2014-03-01

    Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Survival and metamorphosis of low-density populations of larval sea lampreys (Petromyzon marinus) in streams following lampricide treatment

    USGS Publications Warehouse

    Johnson, Nicholas S.; Swink, William D.; Brenden, Travis O.; Slade, Jeffrey W.; Steeves, Todd B.; Fodale, Michael F.; Jones, Michael L.

    2014-01-01

    Sea lamprey Petromyzon marinus control in the Great Lakes primarily involves application of lampricides to streams where larval production occurs to kill larvae prior to their metamorphosing and entering the lakes as parasites (juveniles). Because lampricides are not 100% effective, larvae that survive treatment maymetamorphose before streams are again treated. Larvae that survive treatment have not beenwidely studied, so their dynamics are notwell understood.Wetagged and released larvae in six Great Lake tributaries following lampricide treatment and estimated vital demographic rates using multistate tag-recovery models. Model-averaged larval survivals ranged from 56.8 to 57.6%. Model-averaged adult recovery rates, which were the product of juvenile survivals and adult capture probabilities, ranged from 6.8 to 9.3%. Using stochastic simulations, we estimated production of juvenile sea lampreys from a hypothetical population of treatment survivors under different growth conditions based on parameter estimates from this research. For fast-growing populations, juvenile production peaked 2 years after treatment. For slow-growing populations, juvenile production was approximately one-third that of fast-growing populations,with production not peaking until 4 years after treatment. Our results suggest that dynamics (i.e., survival, metamorphosis) of residual larval populations are very similar to those of untreated larval populations. Consequently, residual populations do not necessarily warrant special consideration for the purpose of sea lamprey control and can be ranked for treatment along with other populations. Consecutive lampricide treatments, which are under evaluation by the sea lamprey control program, would bemost effective for reducing juvenile production in large, fast-growing populations.

  9. Rare events in stochastic populations under bursty reproduction

    NASA Astrophysics Data System (ADS)

    Be'er, Shay; Assaf, Michael

    2016-11-01

    Recently, a first step was made by the authors towards a systematic investigation of the effect of reaction-step-size noise—uncertainty in the step size of the reaction—on the dynamics of stochastic populations. This was done by investigating the effect of bursty influx on the switching dynamics of stochastic populations. Here we extend this formalism to account for bursty reproduction processes, and improve the accuracy of the formalism to include subleading-order corrections. Bursty reproduction appears in various contexts, where notable examples include bursty viral production from infected cells, and reproduction of mammals involving varying number of offspring. The main question we quantitatively address is how bursty reproduction affects the overall fate of the population. We consider two complementary scenarios: population extinction and population survival; in the former a population gets extinct after maintaining a long-lived metastable state, whereas in the latter a population proliferates despite undergoing a deterministic drift towards extinction. In both models reproduction occurs in bursts, sampled from an arbitrary distribution. Using the WKB approach, we show in the extinction problem that bursty reproduction broadens the quasi-stationary distribution of population sizes in the metastable state, which results in a drastic reduction of the mean time to extinction compared to the non-bursty case. In the survival problem, it is shown that bursty reproduction drastically increases the survival probability of the population. Close to the bifurcation limit our analytical results simplify considerably and are shown to depend solely on the mean and variance of the burst-size distribution. Our formalism is demonstrated on several realistic distributions which all compare well with numerical Monte-Carlo simulations.

  10. Dynamics of a plant-herbivore-predator system with plant-toxicity

    USGS Publications Warehouse

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L.

    2011-01-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense.

  11. Dynamics of a plant-herbivore-predator system with plant-toxicity.

    PubMed

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L

    2011-02-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense. Published by Elsevier Inc.

  12. Ecological communities with Lotka-Volterra dynamics

    NASA Astrophysics Data System (ADS)

    Bunin, Guy

    2017-04-01

    Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.

  13. Ecological communities with Lotka-Volterra dynamics.

    PubMed

    Bunin, Guy

    2017-04-01

    Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.

  14. How Ebola impacts social dynamics in gorillas: a multistate modelling approach.

    PubMed

    Genton, Céline; Pierre, Amandine; Cristescu, Romane; Lévréro, Florence; Gatti, Sylvain; Pierre, Jean-Sébastien; Ménard, Nelly; Le Gouar, Pascaline

    2015-01-01

    Emerging infectious diseases can induce rapid changes in population dynamics and threaten population persistence. In socially structured populations, the transfers of individuals between social units, for example, from breeding groups to non-breeding groups, shape population dynamics. We suggest that diseases may affect these crucial transfers. We aimed to determine how disturbance by an emerging disease affects demographic rates of gorillas, especially transfer rates within populations and immigration rates into populations. We compared social dynamics and key demographic parameters in a gorilla population affected by Ebola using a long-term observation data set including pre-, during and post-outbreak periods. We also studied a population of undetermined epidemiological status in order to assess whether this population was affected by the disease. We developed a multistate model that can handle transition between social units while optimizing the number of states. During the Ebola outbreak, social dynamics displayed increased transfers from a breeding to a non-breeding status for both males and females. Six years after the outbreak, demographic and most of social dynamics parameters had returned to their initial rates, suggesting a certain resilience in the response to disruption. The formation of breeding groups increased just after Ebola, indicating that environmental conditions were still attractive. However, population recovery was likely delayed because compensatory immigration was probably impeded by the potential impact of Ebola in the surrounding areas. The population of undetermined epidemiological status behaved similarly to the other population before Ebola. Our results highlight the need to integrate social dynamics in host-population demographic models to better understand the role of social structure in the sensitivity and the response to disease disturbances. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  15. Using a full annual cycle model to evaluate long-term population viability of the conservation-reliant Kirtland's warbler after successful recovery

    Treesearch

    Donald J. Brown; Christine A. Ribic; Deahn M. Donner; Mark D. Nelson; Carol I. Bocetti; Christie M. Deloria-Sheffield; Des Thompson

    2017-01-01

    Long-term management planning for conservation-reliant migratory songbirds is particularly challenging because habitat quality in different stages and geographic locations of the annual cycle can have direct and carry-over effects that influence the population dynamics. The Neotropical migratory songbird Kirtland's warbler Setophaga kirtlandii...

  16. Dynamical behaviour of a discrete selection-migration model with arbitrary dominance

    Treesearch

    James F. Selgrade; Jordan West Bostic; James H. Roberds

    2009-01-01

    To study the effects of immigration of genes (possibly transgenic) into a natural population, a one-island selection-migration model with density-dependent regulation is used to track allele frequency and population size. The existence and uniqueness of a polymorphic genetic equilibrium is proved under a general assumption about dominance in fitnesses. Also, conditions...

  17. Cassin's Sparrow (Aimophila cassinii) status assessment and conservation plan

    USGS Publications Warehouse

    Ruth, Janet M.

    2000-01-01

    The greatest needs are for determining of the causes of significant declines where they occur, determining of the effects of various management activities on Cassin’s Sparrow throughout its range, improved assessments of population and trends, and a better understanding of the annual population and distribution dynamics of this species, which shows such dramatic annual distributional fluctuations.

  18. Sea lice and salmon population dynamics: effects of exposure time for migratory fish.

    PubMed

    Krkosek, Martin; Morton, Alexandra; Volpe, John P; Lewis, Mark A

    2009-08-07

    The ecological impact of parasite transmission from fish farms is probably mediated by the migration of wild fishes, which determines the period of exposure to parasites. For Pacific salmon and the parasitic sea louse, Lepeophtheirus salmonis, analysis of the exposure period may resolve conflicting observations of epizootic mortality in field studies and parasite rejection in experiments. This is because exposure periods can differ by 2-3 orders of magnitude, ranging from months in the field to hours in experiments. We developed a mathematical model of salmon-louse population dynamics, parametrized by a study that monitored naturally infected juvenile salmon held in ocean enclosures. Analysis of replicated trials indicates that lice suffer high mortality, particularly during pre-adult stages. The model suggests louse populations rapidly decline following brief exposure of juvenile salmon, similar to laboratory study designs and data. However, when the exposure period lasts for several weeks, as occurs when juvenile salmon migrate past salmon farms, the model predicts that lice accumulate to abundances that can elevate salmon mortality and depress salmon populations. The duration of parasite exposure is probably critical to salmon-louse population dynamics, and should therefore be accommodated in coastal planning and management where fish farms are situated on wild fish migration routes.

  19. [Modelling of selection acting upon the pleioptropic locus in an asynchronous population].

    PubMed

    Zhdanov, O L; Frisman, E Ia

    2014-08-01

    We created and examined a mathematical model describing the size and genetic composition dynamics in a population with two age classes, where the survival of both zygotes and adult individuals is determined by one pleioptropic locus. Even under present limitations, as the outside effects of a complex multigenic system are reduced to the case of single locus, our model demonstrates a wide range of different evolutionary scenarios for possible changes in the population dynamics. An increase in the reproductive potential and survival is accompanied by a transition from stable to oscillating population numbers. However, the evolutionary growth of these parameters may be nonmonotonic and may fluctuate significantly. In the case of antagonistic pleioptropy, an increase in one of these parameters usually leads to a predictable decrease in the other. This, in turn, may even stabilize the numbers and genetic compositions of the age groups. We demonstrated that selection acting on later stages of the life cycle is accompanied by destabilization of the Hardy-Weinberg equilibriums that link allele and genotype frequencies. We obtained a balance ratio, which allowed us to compare the combined fitness of the genotypes and to demonstrate that selection leads to the exclusion of the least adapted genotypes. Initial conditionsmay in some cases determine the genetic composition and pattern of population size dynamics.

  20. The σ law of evolutionary dynamics in community-structured population.

    PubMed

    Tang, Changbing; Li, Xiang; Cao, Lang; Zhan, Jingyuan

    2012-08-07

    Evolutionary game dynamics in finite populations provide a new framework to understand the selection of traits with frequency-dependent fitness. Recently, a simple but fundamental law of evolutionary dynamics, which we call σ law, describes how to determine the selection between two competing strategies: in most evolutionary processes with two strategies, A and B, strategy A is favored over B in weak selection if and only if σR+S>T+σP. This relationship holds for a wide variety of structured populations with mutation rate and weak selection under certain assumptions. In this paper, we propose a model of games based on a community-structured population and revisit this law under the Moran process. By calculating the average payoffs of A and B individuals with the method of effective sojourn time, we find that σ features not only the structured population characteristics, but also the reaction rate between individuals. That is to say, an interaction between two individuals are not uniform, and we can take σ as a reaction rate between any two individuals with the same strategy. We verify this viewpoint by the modified replicator equation with non-uniform interaction rates in a simplified version of the prisoner's dilemma game (PDG). Copyright © 2012 Elsevier Ltd. All rights reserved.

Top