NASA Technical Reports Server (NTRS)
Miller, Eric L.; Dudenhoefer, James E.
1989-01-01
In free piston Stirling engine research the integrity of both amplitude and phase of the dynamic pressure measurements is critical to the characterization of cycle dynamics and thermodynamics. It is therefore necessary to appreciate all possible sources of signal distortion when designing pressure measurement systems for this type of research. The signal distortion inherent to pressure transmission lines is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving helium-charged free piston Stirling engines. The scope and limitations of the dynamic response analysis are considered.
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2015-01-01
Conical shell theory and a supersonic potential flow aerodynamic theory are used to study the nonlinear pressure buckling and aeroelastic limit cycle behavior of the thermal protection system for NASA's Hypersonic Inflatable Aerodynamic Decelerator. The structural model of the thermal protection system consists of an orthotropic conical shell of the Donnell type, resting on several circumferential elastic supports. Classical Piston Theory is used initially for the aerodynamic pressure, but was found to be insufficient at low supersonic Mach numbers. Transform methods are applied to the convected wave equation for potential flow, and a time-dependent aerodynamic pressure correction factor is obtained. The Lagrangian of the shell system is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the governing differential-algebraic equations of motion. Aeroelastic limit cycle oscillations and buckling deformations are calculated in the time domain using a Runge-Kutta method in MATLAB. Three conical shell geometries were considered in the present analysis: a 3-meter diameter 70 deg. cone, a 3.7-meter 70 deg. cone, and a 6-meter diameter 70 deg. cone. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD. Though agreement between theoretical and experimental strains was poor, the circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With Piston Theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. The effect of axial tension was studied for this configuration, and increasing tension was found to decrease the limit cycle amplitudes when the circumferential elastic supports were neglected, but resulted in more complex behavior when the supports were included. The nominal flutter dynamic pressure of the 3.7-meter configuration was significantly lower than that of the 3-meter, and it was found that two sets of natural modes coalesce to flutter modes near the same dynamic pressure. This resulted in a significant drop in the limit cycle frequencies at higher dynamic pressures, where the flutter mode with the lower frequency becomes more critical. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with Piston Theory alone. The maximum dynamic pressure predicted by aerodynamic simulations of a proposed 3.7-meter HIAD vehicle was still lower than any of the calculated flutter dynamic pressures, suggesting that aeroelastic effects for this vehicle are of little concern.
Dynamics of High Pressure Reacting Shear Flows
2015-10-02
liquid rockets, future gas turbines • When the combustion systems are for propulsion, limited tankage dictates that on-board propellants be stored in...system dynamics • Combustion dynamics always includes acoustic waves, which in enclosed systems can sometimes reach detrimental amplitudes – eg...a high pressure, chemically reacting, multiphase, acoustically driven, shear flow in the form of a coaxial jet flame • Explore how the presence of
NASA Astrophysics Data System (ADS)
Bright, Ido; Lin, Guang; Kutz, J. Nathan
2013-12-01
Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.
NASA Technical Reports Server (NTRS)
Miller, Eric L.; Dudenhoefer, James E.
1989-01-01
The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.
Rocket ascent G-limited moment-balanced optimization program (RAGMOP)
NASA Technical Reports Server (NTRS)
Lyons, J. T.; Woltosz, W. S.; Abercrombie, G. E.; Gottlieb, R. G.
1972-01-01
This document describes the RAGMOP (Rocket Ascent G-limited Momentbalanced Optimization Program) computer program for parametric ascent trajectory optimization. RAGMOP computes optimum polynomial-form attitude control histories, launch azimuth, engine burn-time, and gross liftoff weight for space shuttle type vehicles using a search-accelerated, gradient projection parameter optimization technique. The trajectory model available in RAGMOP includes a rotating oblate earth model, the option of input wind tables, discrete and/or continuous throttling for the purposes of limiting the thrust acceleration and/or the maximum dynamic pressure, limitation of the structural load indicators (the product of dynamic pressure with angle-of-attack and sideslip angle), and a wide selection of intermediate and terminal equality constraints.
Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry
NASA Astrophysics Data System (ADS)
Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek
Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.
Okuyama, M; Kato, S; Sato, S; Okazaki, J; Kitamura, Y; Ishikawa, T; Sato, Y; Isono, S
2018-01-01
Difficult mask ventilation is common and is known to be associated with sleep-disordered breathing (SDB). It is our hypothesis that the incidence of expiratory retropalatal (RP) airway closure (primary outcome) during nasal positive pressure ventilation (PPV) is more frequent in patients with SDB (apnea hypopnea index ≥5 h -1 ) than non-SDB subjects. The severity of SDB was assessed before surgery using a portable sleep monitor. In anaesthetized and paralysed patients with (n=11) and without SDB (n=9), we observed the behaviour of the RP airway endoscopically during nasal PPV with the mouth closed and determined the dynamic RP closing pressure, which was defined as the highest airway pressure above which the RP airway closure was reversed. The static RP closing pressure was obtained during cessation of mechanical ventilation in patients with dynamic RP closure during nasal PPV. The expiratory RP airway closure accompanied by expiratory flow limitation occurred more frequently in SDB patients (9/11, 82%) than in non-SDB subjects (2/9, 22%; exact logistic regression analysis: P=0.022, odds ratio 3.6, 95% confidence interval 1.1-15.4). Receiver operating characteristic curve analyses indicated AHI >10h -1 and presence of habitual snoring as clinically useful predictors for the occurrence of RP closure during PPV. Dynamic RP closing pressure was greater than the static RP closing pressure by approximately 4-5 cm H 2 O. Valve-like dynamic RP closure that limits expiratory flow during nasal PPV occurs more frequently in SDB patients. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Mbagwu, Chukwuka Chijindu
High speed, air-breathing hypersonic vehicles encounter a varied range of engine and operating conditions traveling along cruise/ascent missions at high altitudes and dynamic pressures. Variations of ambient pressure, temperature, Mach number, and dynamic pressure can affect the combustion conditions in conflicting ways. Computations were performed to understand propulsion tradeoffs that occur when a hypersonic vehicle travels along an ascent trajectory. Proper Orthogonal Decomposition methods were applied for the reduction of flamelet chemistry data in an improved combustor model. Two operability limits are set by requirements that combustion efficiency exceed selected minima and flameout be avoided. A method for flameout prediction based on empirical Damkohler number measurements is presented. Operability limits are plotted that define allowable flight corridors on an altitude versus flight Mach number performance map; fixed-acceleration ascent trajectories were considered for this study. Several design rules are also presented for a hypersonic waverider with a dual-mode scramjet engine. Focus is placed on ''vehicle integration" design, differing from previous ''propulsion-oriented" design optimization. The well-designed waverider falls between that of an aircraft (high lift-to-drag ratio) and a rocket (high thrust-to-drag ratio). 84 variations of an X-43-like vehicle were run using the MASIV scramjet reduced order model to examine performance tradeoffs. Informed by the vehicle design study, variable-acceleration trajectory optimization was performed for three constant dynamic pressures ascents. Computed flameout operability limits were implemented as additional constraints to the optimization problem. The Michigan-AFRL Scramjet In-Vehicle (MASIV) waverider model includes finite-rate chemistry, applied scaling laws for 3-D turbulent mixing, ram-scram transition and an empirical value of the flameout Damkohler number. A reduced-order modeling approach is justified (in lieu of higher-fidelity computational simulations) because all vehicle forces are computed multiple thousands of times to generate multi-dimensional performance maps. The findings of this thesis work present a number of compelling conclusions. It is found that the ideal operating conditions of a scramjet engine are heavily dependent on the ambient and combustor pressure (and less strongly on temperature). Combustor pressures of approximately 1.0 bar or greater achieve the highest combustion efficiency, in line with industry standards of more than 0.5 bar. Ascent trajectory analysis of combustion efficiency and lean-limit flameout dictate best operation at higher dynamic pressures and lower altitudes, but these goals are traded off by current structural limitations whereby dynamic pressures must remain below 100 kPa. Hypersonic waverider designs varied between an "airplane" and a "rocket" are found to have better performance with the latter design, with controllability and minimum elevon/rudder surface area as a stability constraint for the vehicle trim. Ultimately, these findings are beneficial and contribute to the overall understanding of dynamically stable waverider vehicles at hypersonic speeds. These types of vehicles have a range of applications from technology demonstration, to earth-to-low orbit payload transit, to most compellingly another step in the development and realization of viable supersonic commercial transport.
Intracellular Pressure Dynamics in Blebbing Cells
Strychalski, Wanda; Guy, Robert D.
2016-01-01
Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. PMID:26958893
Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock
NASA Technical Reports Server (NTRS)
Arena, Andrew S., Jr.; Nelson, Robert C.
1991-01-01
An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.
A Proposed Dynamic Pressure and Temperature Primary Standard
Rosasco, Gregory J.; Bean, Vern E.; Hurst, Wilbur S.
1990-01-01
Diatomic gas molecules have a fundamental vibrational motion whose frequency is affected by pressure in a simple way. In addition, these molecules have well defined rotational energy levels whose populations provide a reliable measure of the thermodynamic temperature. Since information concerning the frequency of vibration and the relative populations can be determined by laser spectroscopy, the gas molecules themselves can serve as sensors of pressure and temperature. Through measurements under static conditions, the pressure and temperature dependence of the spectra of selected molecules is now understood. As the time required for the spectroscopic measurement can be reduced to nanoseconds, the diatomic gas molecule is an excellent candidate for a dynamic pressure/temperature primary standard. The temporal response in this case will be limited by the equilibration time for the molecules to respond to changes in local thermodynamic variables. Preliminary feasibility studies suggest that by using coherent anti-Stokes Raman spectroscopy we will be able to measure dynamic pressure up to 108 Pa and dynamic temperature up to 1500 K with an uncertainty of 5%. PMID:28179756
Six-degree-of-freedom guidance and control-entry analysis of the HL-20
NASA Technical Reports Server (NTRS)
Powell, Richard W.
1993-01-01
The ability of the HL-20 lifting body to fly has been evaluated for an automated entry from atmospheric interface to landing. This evaluation was required to demonstrate that not only successful touchdown conditions would be possible for this low lift-to-drag-ratio vehicle, but also the vehicle would not exceed its design dynamic pressure limit of 400 psf during entry. This dynamic pressure constraint limit, coupled with limited available pitch-control authority at low supersonic speeds, restricts the available maneuvering capability for the HL-20 to acquire the runway. One result of this analysis was that this restrictive maneuvering capability does not allow the use of a model-following atmospheric entry-guidance algorithm, such as that used by the Space Shuttle, but instead requires a more adaptable guidance algorithm. Therefore, for this analysis, a predictor-corrector guidance algorithm was developed that would provide successful touchdown conditions while not violating the dynamic pressure constraint. A flight-control system was designed and incorporated, along with the predictor-corrector guidance algorithm, into a six-DOF simulation. which showed that the HL-20 remained controllable and could reach the landing site and execute a successful landing under all off-nominal conditions simulated.
Asymmetric Fuzzy Control of a Positive and Negative Pneumatic Pressure Servo System
NASA Astrophysics Data System (ADS)
Yang, Gang; Du, Jing-Min; Fu, Xiao-Yun; Li, Bao-Ren
2017-11-01
The pneumatic pressure control systems have been used in some fields. However, the researches on pneumatic pressure control mainly focus on constant pressure regulation. Poor dynamic characteristics and strong nonlinearity of such systems limit its application in the field of pressure tracking control. In order to meet the demand of generating dynamic pressure signal in the application of the hardware-in-the-loop simulation of aerospace engineering, a positive and negative pneumatic pressure servo system is provided to implement dynamic adjustment of sealed chamber pressure. A mathematical model is established with simulation and experiment being implemented afterwards to discuss the characteristics of the system, which shows serious asymmetry in the process of charging and discharging. Based on the analysis of the system dynamics, a fuzzy proportional integral derivative (PID) controller with asymmetric fuzzy compensator is proposed. Different from conventional adjusting mechanisms employing the error and change in error of the controlled variable as input parameters, the current chamber pressure and charging or discharging state are chosen as inputs of the compensator, which improves adaptability. To verify the effectiveness and performance of the proposed controller, the comparison experiments tracking sinusoidal and square wave commands are conducted. Experimental results show that the proposed controller can obtain better dynamic performance and relatively consistent control performance across the scope of work (2-140 kPa). The research proposes a fuzzy control method to overcome asymmetry and enhance adaptability for the positive and negative pneumatic pressure servo system.
Development and evaluation of a self-regulating alternating pressure air cushion.
Nakagami, Gojiro; Sanada, Hiromi; Sugama, Junko
2015-03-01
To investigate the effect of alternating air cells of a newly developed dynamic cushion on interface pressure and tissue oxygenation levels. This cross-over experimental study included 19 healthy volunteers. The dynamic cushion used has an automatic self-regulating alternating pressure air-cell system with 35 small and four large air cells for maintaining posture while seated. This cushion also has 17 bottoming-out detectors that automatically inflate the air cells to release a high interface pressure. To assess the effect of this alternating system, participants sat on the new cushion with an alternating system or static system for 30 min and then performed push-ups. The interface pressure was monitored by pressure-sensitive and conductive ink film sensors and tissue oxygenation levels were monitored by near-infrared spectroscopy. A reactive hyperaemia indicator was calculated using tissue oxygenation levels as an outcome measure. The peak interface pressure was not significantly different between the groups. The reactive hyperaemia indicator was significantly higher in the static group than in the alternating group. An alternating system has beneficial effects on blood oxygenation levels without increasing interface pressure. Therefore, our new cushion is promising for preventing pressure ulcers with patients with limited ability to perform push-ups. Implications for Rehabilitation A dynamic cushion was developed, which consists of a uniquely-designed air-cell layout, detectors for bottoming out, and an alternating system with multiple air-cell lines. The alternating system did not increase interface pressure and it significantly reduced reactive hyperaemia after 30 min of sitting in healthy volunteers. This cushion is a new option for individuals who require stable posture but have limitations in performing scheduled push-ups for prevention of pressure ulcers.
Pressure vessel and method therefor
Saunders, Timothy
2017-09-05
A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Dennon, S. R.
1986-01-01
A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.
Davis, P.; Döppner, T.; Rygg, J. R.; ...
2016-04-18
Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us tomore » extract ionization state as a function of compression. Furthermore, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.« less
NASA Technical Reports Server (NTRS)
Matthew, J. R.
1980-01-01
A digital flutter suppression system was developed and mechanized for a significantly modified version of the 1/30-scale B-52E aeroelastic wind tunnel model. A model configuration was identified that produced symmetric and antisymmetric flutter modes that occur at 2873N/sq m (60 psf) dynamic pressure with violent onset. The flutter suppression system, using one trailing edge control surface and the accelerometers on each wing, extended the flutter dynamic pressure of the model beyond the design limit of 4788N/sq m (100 psf). The hardware and software required to implement the flutter suppression system were designed and mechanized using digital computers in a fail-operate configuration. The model equipped with the system was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center and results showed the flutter dynamic pressure of the model was extended beyond 4884N/sq m (102 psf).
NASA Astrophysics Data System (ADS)
Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.
2018-07-01
The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically thick limit relevant to the densest ultraluminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called `single-scattering' limit, where the system is optically thick to the incident starlight, but optically thin to the reradiated infrared. In this paper, we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01-0.1 of the mid-plane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5-2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming discs, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.
NASA Astrophysics Data System (ADS)
Wibking, Benjamin D.; Thompson, Todd A.; Krumholz, Mark R.
2018-04-01
The radiation force on dust grains may be dynamically important in driving turbulence and outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically-thick limit relevant to the densest ultra-luminous galaxies and super star clusters, where reprocessed infrared photons provide the dominant source of electromagnetic momentum. However, even among starburst galaxies, the great majority instead lie in the so-called "single-scattering" limit, where the system is optically-thick to the incident starlight, but optically-thin to the re-radiated infrared. In this paper we present a stability analysis and multidimensional radiation-hydrodynamic simulations exploring the stability and dynamics of isothermal dusty gas columns in this regime. We describe our algorithm for full angle-dependent radiation transport based on the discontinuous Galerkin finite element method. For a range of near-Eddington fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent atmosphere with a scale height significantly inflated compared to the gas pressure scale height and mass-weighted turbulent energy densities of ˜0.01 - 0.1 of the midplane radiation energy density, corresponding to mass-weighted velocity dispersions of Mach number ˜0.5 - 2. Extrapolation of our results to optical depths of 103 implies maximum turbulent Mach numbers of ˜20. Comparing our results to galaxy-averaged observations, and subject to the approximations of our calculations, we find that radiation pressure does not contribute significantly to the effective supersonic pressure support in star-forming disks, which in general are substantially sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical equilibrium and comment on implications for radiation-pressure-driven galactic winds.
NASA Technical Reports Server (NTRS)
Chen, Shu-Cheng S.
2017-01-01
A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.
Rapid freezing of water under dynamic compression
NASA Astrophysics Data System (ADS)
Myint, Philip C.; Belof, Jonathan L.
2018-06-01
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
Rapid freezing of water under dynamic compression.
Myint, Philip C; Belof, Jonathan L
2018-06-13
Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid-ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.
Why have hydrostatic bearings been avoided as a stabilizing element for rotating machines
NASA Technical Reports Server (NTRS)
Bently, D. E.; Muszynska, A.
1985-01-01
The advantages are discussed of hydrostatic, high pressure bearings as providers of higher margin of stability to the rotor/bearing systems. It is apparent that deliberate use of hydrostatic bearing high pressure lubricated (any gas or liquid) can easily be used to build higher stability margin into rotating machinery, in spite of the thirty years bias against high pressure lubrication. Since this supply pressure is controllable (the Direct Dynamic Stiffness at lower eccentricity is also controllable) so that within some rotor system limits, the stability margin and dynamic response of the rotor system is more readily controllable. It may be possible to take advantage of this effect in the various seals, as well as the bearings, to assist with stability margin and dynamic response of rotating machinery. The stability of the bearing can be additionally improved by taking advantage of the anti-swirling concept. The high pressure fluid supply inlets should be located tangentially at the bearing circumference and directed against rotation. The incoming fluid flow creates stability by reducing the swirling rate.
Solar wind dynamic pressure and electric field as the main factors controlling Saturn's aurorae.
Crary, F J; Clarke, J T; Dougherty, M K; Hanlon, P G; Hansen, K C; Steinberg, J T; Barraclough, B L; Coates, A J; Gérard, J-C; Grodent, D; Kurth, W S; Mitchell, D G; Rymer, A M; Young, D T
2005-02-17
The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.
A gas-dynamical approach to radiation pressure acceleration
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Boine-Frankenheim, Oliver
2016-06-01
The study of high intensity ion beams driven by high power pulsed lasers is an active field of research. Of particular interest is the radiation pressure acceleration, for which simulations predict narrow band ion energies up to GeV. We derive a laser-piston model by applying techniques for non-relativistic gas-dynamics. The model reveals a laser intensity limit, below which sufficient laser-piston acceleration is impossible. The relation between target thickness and piston velocity as a function of the laser pulse length yields an approximation for the permissible target thickness. We performed one-dimensional Particle-In-Cell simulations to confirm the predictions of the analytical model. These simulations also reveal the importance of electromagnetic energy transport. We find that this energy transport limits the achievable compression and rarefies the plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunziker, R.; Gyarmathy, G.
1994-04-01
A centrifugal compressor was tested with three different diffusers with circular-arc vanes. The vane inlet angle was varied from 15 to 30 deg. Detailed static wall pressure measurements show that the pressure field in the diffuser inlet is very sensitive to flow rate. The stability limit regularly occurred at the flow rate giving the maximum pressure rise for the overall stage. Mild surge arises as a dynamic instability of the compression system. The analysis of the pressure rise characteristic of each individual subcomponent (impeller, diffuser inlet, diffuser channel,...) reveals their contribution to the overall pressure rise. The diffuser channels playmore » an inherently destabilizing role while the impeller and the diffuser inlet are typically stabilizing. The stability limit was mainly determined by a change in the characteristic of the diffuser inlet. Further, the stability limit was found to be independent of the development of inducer-tip recirculation.« less
Stability limits of unsteady open capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Haake, Dennis; Rosendahl, Uwe; Klatte, J.?Rg; Dreyer, Michael E.
This paper is concerned with steady and unsteady flow rate limitations in open capillary channels under low-gravity conditions. Capillary channels are widely used in Space technology for liquid transportation and positioning, e.g. in fuel tanks and life support systems. The channel observed in this work consists of two parallel plates bounded by free liquid surfaces along the open sides. The capillary forces of the free surfaces prevent leaking of the liquid and gas ingestion into the flow.In the case of steady stable flow the capillary pressure balances the differential pressure between the liquid and the surrounding constant-pressure gas phase. Increasing the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse of the free surfaces due to the choking effect. In the case of unsteady flow additional dynamic effects take place due to flow rate transition and liquid acceleration. The maximum flow rate is smaller than in the case of steady flow. On the other hand, the choking effect does not necessarily cause surface collapse and stable temporarily choked flow is possible under certain circumstances.To determine the limiting volumetric flow rate and stable flow dynamic properties, a new stability theory for both steady and unsteady flow is introduced. Subcritical and supercritical (choked) flow regimes are defined. Stability criteria are formulated for each flow type. The steady (subcritical) criterion corresponds to the speed index defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach number. The unsteady (supercritical) criterion for choked flow is defined by a new characteristic number, the dynamic index. It is based on pressure balances and reaches unity at the stability limit.The unsteady model based on the Bernoulli equation and the mass balance equation is solved numerically for perfectly wetting incompressible liquids. The unsteady model and the stability theory are verified by comparison to results of a sounding rocket experiment (TEXUS 41) on capillary channel flows launched in December 2005 from ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and unstable flow, parametric studies and stability diagrams are shown and compared to experimental observations.
Case study - Dynamic pressure-limited capacity and costs of CO2 storage in the Mount Simon sandstone
Anderson, Steven T.; Jahediesfanjani, Hossein
2017-01-01
Widespread deployment of carbon capture and storage (CCS) is likely necessary to be able to satisfy baseload electricity demand, to maintain diversity in the energy mix, and to achieve climate and other objectives at the lowest cost. If all of the carbon dioxide (CO2) emissions from stationary sources (such as fossil-fuel burning power plants, and other industrial plants) in the United States needed to be captured and stored, it could be possible to store only a small fraction of this CO2 in oil and natural gas reservoirs, including as a result of CO2 utilization for enhanced oil recovery. The vast majority would have to be stored in saline-filled reservoirs (Dahowski et al., 2005). Given a lack of long-term commercial-scale CCS projects, there is considerable uncertainty in the risks, dynamic capacity, and their cost implications for geologic storage of CO2. Pressure buildup in the storage reservoir is expected to be a primary source of risk associated with CO2 storage, and could severely limit CO2 injection rates (dynamic storage capacities). Most cost estimates for commercial-scale deployment of CCS estimate CO2 storage costs under assumed availability of a theoretical capacity to store tens, hundreds, or even thousands of gigatons of CO2, without considering geologic heterogeneities, pressure limitations, or the time dimension. This could lead to underestimation of the costs of CO2 storage (Anderson, 2017). This paper considers the impacts of pressure limitations and geologic heterogeneity on the dynamic CO2 storage capacity and storage (injection) costs. In the U.S. Geological Survey (USGS)’s National Assessment of Geologic CO2 Storage Resources (USGS, 2013), the mean estimate of the theoretical storage capacity in the Mount Simon Sandstone was about 94 billion metric tons of CO2. However, our results suggest that the pressure-limited capacity after 50 years of injection could be only about 4% of the theoretical geologic storage capacity in this formation. Because this is far less than emissions of CO2 from stationary sources in the region around the Mount Simon Sandstone, the costs to accommodate the potential annual demand for CO2 storage in this formation could be significantly greater than current estimates. Our results could have implications for how long and to what extent decision makers can expect to be able to deploy CCS before transitioning to other low- or zero-carbon energy technologies.
Bialosky, Joel E.; Robinson, Michael E.
2014-01-01
Background Cluster analysis can be used to identify individuals similar in profile based on response to multiple pain sensitivity measures. There are limited investigations into how empirically derived pain sensitivity subgroups influence clinical outcomes for individuals with spine pain. Objective The purposes of this study were: (1) to investigate empirically derived subgroups based on pressure and thermal pain sensitivity in individuals with spine pain and (2) to examine subgroup influence on 2-week clinical pain intensity and disability outcomes. Design A secondary analysis of data from 2 randomized trials was conducted. Methods Baseline and 2-week outcome data from 157 participants with low back pain (n=110) and neck pain (n=47) were examined. Participants completed demographic, psychological, and clinical information and were assessed using pain sensitivity protocols, including pressure (suprathreshold pressure pain) and thermal pain sensitivity (thermal heat threshold and tolerance, suprathreshold heat pain, temporal summation). A hierarchical agglomerative cluster analysis was used to create subgroups based on pain sensitivity responses. Differences in data for baseline variables, clinical pain intensity, and disability were examined. Results Three pain sensitivity cluster groups were derived: low pain sensitivity, high thermal static sensitivity, and high pressure and thermal dynamic sensitivity. There were differences in the proportion of individuals meeting a 30% change in pain intensity, where fewer individuals within the high pressure and thermal dynamic sensitivity group (adjusted odds ratio=0.3; 95% confidence interval=0.1, 0.8) achieved successful outcomes. Limitations Only 2-week outcomes are reported. Conclusions Distinct pain sensitivity cluster groups for individuals with spine pain were identified, with the high pressure and thermal dynamic sensitivity group showing worse clinical outcome for pain intensity. Future studies should aim to confirm these findings. PMID:24764070
Tube Law of the Pharyngeal Airway in Sleeping Patients with Obstructive Sleep Apnea.
Genta, Pedro R; Edwards, Bradley A; Sands, Scott A; Owens, Robert L; Butler, James P; Loring, Stephen H; White, David P; Wellman, Andrew
2016-02-01
Obstructive sleep apnea (OSA) is characterized by repetitive pharyngeal collapse during sleep. However, the dynamics of pharyngeal narrowing and re-expansion during flow-limited breathing are not well described. The static pharyngeal tube law (end-expiratory area versus luminal pressure) has demonstrated increasing pharyngeal compliance as luminal pressure decreases, indicating that the airway would be sucked closed with sufficient inspiratory effort. On the contrary, the airway is rarely sucked closed during inspiratory flow limitation, suggesting that the airway is getting stiffer. Therefore, we hypothesized that during inspiratory flow limitation, as opposed to static conditions, the pharynx becomes stiffer as luminal pressure decreases. Upper airway endoscopy and simultaneous measurements of airflow and epiglottic pressure were performed during natural nonrapid eye movement sleep. Continuous positive (or negative) airway pressure was used to induce flow limitation. Flow-limited breaths were selected for airway cross-sectional area measurements. Relative airway area was quantified as a percentage of end-expiratory area. Inspiratory airway radial compliance was calculated at each quintile of epiglottic pressure versus airway area plot (tube law). Eighteen subjects (14 males) with OSA (apnea-hypopnea index = 57 ± 27 events/h), aged 49 ± 8 y, with a body mass index of 35 ± 6 kg/m(2) were studied. A total of 163 flow limited breaths were analyzed (9 ± 3 breaths per subject). Compliances at the fourth (2.0 ± 4.7 % area/cmH2O) and fifth (0.0 ± 1.7 % area/cmH2O) quintiles were significantly lower than the first (12.2 ± 5.5 % area/cmH2O) pressure quintile (P < 0.05). The pharyngeal tube law is concave (airway gets stiffer as luminal pressure decreases) during respiratory cycles under inspiratory flow limitation. © 2016 Associated Professional Sleep Societies, LLC.
Bus Vent Design Evolution for the Solar Dynamics Observatory
NASA Technical Reports Server (NTRS)
Woronowicz, Michael
2010-01-01
As a spacecraft undergoes ascent in a launch vehicle, its pressure environment transitions from one atmosphere to high vacuum in a matter of minutes. Venting of internal cavities is necessary to prevent the buildup of pressure differentials across cavity walls. Opposing the need to vent these volumes freely into space are thermal, optical, and electrostatic requirements for limiting or prohibiting the intrusion of unwanted energy into the same cavities. Bus vent design evolution is discussed for the Solar Dynamics Observatory. Design changes were influenced by a number of factors and concerns, such as contamination control, electrostatic discharge, changes in bus material, and driving fairing ascent pressure for a launch vehicle that was just entering service as this satellite project had gotten underway.
Optimal Control Problems with Switching Points. Ph.D. Thesis, 1990 Final Report
NASA Technical Reports Server (NTRS)
Seywald, Hans
1991-01-01
The main idea of this report is to give an overview of the problems and difficulties that arise in solving optimal control problems with switching points. A brief discussion of existing optimality conditions is given and a numerical approach for solving the multipoint boundary value problems associated with the first-order necessary conditions of optimal control is presented. Two real-life aerospace optimization problems are treated explicitly. These are altitude maximization for a sounding rocket (Goddard Problem) in the presence of a dynamic pressure limit, and range maximization for a supersonic aircraft flying in the vertical, also in the presence of a dynamic pressure limit. In the second problem singular control appears along arcs with active dynamic pressure limit, which in the context of optimal control, represents a first-order state inequality constraint. An extension of the Generalized Legendre-Clebsch Condition to the case of singular control along state/control constrained arcs is presented and is applied to the aircraft range maximization problem stated above. A contribution to the field of Jacobi Necessary Conditions is made by giving a new proof for the non-optimality of conjugate paths in the Accessory Minimum Problem. Because of its simple and explicit character, the new proof may provide the basis for an extension of Jacobi's Necessary Condition to the case of the trajectories with interior point constraints. Finally, the result that touch points cannot occur for first-order state inequality constraints is extended to the case of vector valued control functions.
Guidance, steering, load relief and control of an asymmetric launch vehicle. M.S. Thesis - MIT
NASA Technical Reports Server (NTRS)
Boelitz, Frederick W.
1989-01-01
A new guidance, steering, and control concept is described and evaluated for the Third Phase of an asymmetrical configuration of the Advanced Launch System (ALS). The study also includes the consideration of trajectory shaping issues and trajectory design as well as the development of angular rate, angular acceleration, angle of attack, and dynamic pressure estimators. The Third Phase guidance, steering and control system is based on controlling the acceleration-direction of the vehicle after an initial launch maneuver. Unlike traditional concepts, the alignment of the estimated and commanded acceleration-directions is unimpaired by an add-on load relief. Instead, the acceleration-direction steering-control system features a control override that limits the product of estimated dynamic pressure and estimated angle of attack. When this product is not being limited, control is based exclusively on the commanded acceleration-direction without load relief. During limiting, control is based on nulling the error between the limited angle of attack and the estimated angle of attack. This limiting feature provides full freedom to the acceleration-direction steering and control to shape the trajectory within the limit, and also gives full priority to the limiting of angle of attack when necessary. The flight software concepts were analyzed on the basis of their effects on pitch plane motion.
Zhang, Junzhi; Lv, Chen; Yue, Xiaowei; Li, Yutong; Yuan, Ye
2014-01-01
On/off solenoid valves with PWM control are widely used in all types of vehicle electro-hydraulic control systems respecting to their desirable properties of reliable, low cost and fast acting. However, it can hardly achieve a linear hydraulic modulation by using on/off valves mainly due to the nonlinear behaviors of valve dynamics and fluid, which affects the control accuracy significantly. In this paper, a linear relationship between limited pressure difference and coil current of an on/off valve in its critical closed state is proposed and illustrated, which has a great potential to be applied to improve hydraulic control performance. The hydraulic braking system of case study is modeled. The linear correspondence between limited pressure difference and coil current of the inlet valve is simulated and further verified experimentally. Based on validated simulation models, the impacts of key parameters are researched. The limited pressure difference affected by environmental temperatures is experimentally studied, and the amended linear relation is given according to the test data. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Development of a theoretical framework for analyzing cerebrospinal fluid dynamics
Cohen, Benjamin; Voorhees, Abram; Vedel, Søren; Wei, Timothy
2009-01-01
Background To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Methods Control volume analysis is presented to introduce the reader to the theoretical background of this foundational fluid mechanics technique for application to general control volumes. This approach is able to directly incorporate the diverse measurements obtained by clinicians to better elucidate intracranial dynamics and progression to disorder. Results Several examples of meaningful intracranial control volumes and the particular measurement sets needed for the analysis are discussed. Conclusion Control volume analysis provides a framework to guide the type and location of measurements and also a way to interpret the resulting data within a fundamental fluid physics analysis. PMID:19772652
Pressure Distribution on Inner Wall of Parabolic Nozzle in Laser Propulsion with Single Pulse
NASA Astrophysics Data System (ADS)
Cui, Cunyan; Hong, Yanji; Wen, Ming; Song, Junling; Fang, Juan
2011-11-01
A system based of dynamic pressure sensors was established to study the time resolved pressure distribution on the inner wall of a parabolic nozzle in laser propulsion. Dynamic calibration and static calibration of the test system were made and the results showed that frequency response was up to 412 kHz and linear error was less than 10%. Experimental model was a parabolic nozzle and three test points were preset along one generating line. This study showed that experimental results agreed well with those obtained by numerical calculation way in pressure evolution tendency. The peak value of the calculation was higher than that of the experiment at each tested orifice because of the limitation of the numerical models. The results of this study were very useful for analyzing the energy deposition in laser propulsion and modifying numerical models.
Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W.
2015-01-01
Objectives Female stress urinary incontinence (SUI) is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under dynamic conditions. An 8-French high resolution manometry catheter (HRM) currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25ms response rate and circumferential pressure sensors along the length of the catheter (ManoScan® ESO, Given Imaging). We evaluated the concordance, repeatability, and tolerability of this catheter. Methods We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. Results The correlation coefficient for resting MUCPs measured by HRM vs. UPP was high (r = 0.79, p<0.001). Repeatability after catheter repositioning was high for rest, cough, and strain with HRM: r= 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, strain) were higher in continent than incontinent subjects (all p < 0.001) and decreased more in incontinent subjects than continent subjects during cough and strain maneuvers compared to rest. Conclusions This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women. PMID:25185595
Predicting the crystalline and porous equations of state for secondary explosives
NASA Astrophysics Data System (ADS)
Wixom, Ryan; Damm, David
2013-06-01
Accurate simulations of energetic material response necessitate accurate unreacted equations of state at pressures much higher than even the C-J state. Unfortunately, for reactive materials, experimental data at high pressures may be unattainable, and extrapolation from low-pressure data results in unacceptable uncertainty. In addition to being low-pressure, the available data is typically limited to the porous state. The fully-dense, or crystalline, equation of state is required for building mesoscale simulations of the dynamic response of energetic materials. We have used quantum molecular dynamics to predict the Hugoniots and 300 K isotherms of crystalline PETN, HNS, CL-20 and TATB up to pressures not attainable in experiments. The porous Hugoniots for these materials were then analytically obtained and are validated by comparison with available data. Our calculations for TATB confirm the presence of a kink in the Hugoniot, and the softening of the shock response is explained in terms of a change in molecular conformation and the loss of aromaticity.
Evaluation of a Quartz Bourdon Pressure Gage of Wind Tunnel Mach Number Control System Application
NASA Technical Reports Server (NTRS)
Chapin, W. G.
1986-01-01
A theoretical and experimental study was undertaken to determine the feasibility of using the National Transonic Facility's high accuracy Mach number measurement system as part of a closed loop Mach number control system. The theoretical and experimental procedures described are applicable to the engineering design of pressure control systems. The results show that the dynamic response characteristics of the NTF Mach number gage (a Ruska DDR-6000 quartz absolute pressure gage) coupled to a typical length of pressure tubing were only marginally acceptable within a limited range of the facility's total pressure envelope and could not be used in the Mach number control system.
The unsaturated flow in porous media with dynamic capillary pressure
NASA Astrophysics Data System (ADS)
Milišić, Josipa-Pina
2018-05-01
In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.
Wide-Field Imaging Using Nitrogen Vacancies
NASA Technical Reports Server (NTRS)
Englund, Dirk Robert (Inventor); Trusheim, Matthew Edwin (Inventor)
2017-01-01
Nitrogen vacancies in bulk diamonds and nanodiamonds can be used to sense temperature, pressure, electromagnetic fields, and pH. Unfortunately, conventional sensing techniques use gated detection and confocal imaging, limiting the measurement sensitivity and precluding wide-field imaging. Conversely, the present sensing techniques do not require gated detection or confocal imaging and can therefore be used to image temperature, pressure, electromagnetic fields, and pH over wide fields of view. In some cases, wide-field imaging supports spatial localization of the NVs to precisions at or below the diffraction limit. Moreover, the measurement range can extend over extremely wide dynamic range at very high sensitivity.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1975-01-01
The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.
Unsteady Newton-Busemann flow theory. I - Airfoils
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1981-01-01
Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.
NanoSail - D Orbital and Attitude Dynamics
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.
2013-01-01
NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.
Ocean Tidal Dynamics and Dissipation in the Thick Shell Worlds
NASA Astrophysics Data System (ADS)
Hay, H.; Matsuyama, I.
2017-12-01
Tidal dissipation in the subsurface oceans of icy satellites has so far only been explored in the limit of a free-surface ocean or under the assumption of a thin ice shell. Here we consider ocean tides in the opposite limit, under the assumption of an infinitely rigid, immovable, ice shell. This assumption forces the surface displacement of the ocean to remain zero, and requires the solution of a pressure correction to ensure that the ocean is mass conserving (divergence-free) at all times. This work investigates the effect of an infinitely rigid lid on ocean dynamics and dissipation, focusing on implications for the thick shell worlds Ganymede and Callisto. We perform simulations using a modified version of the numerical model Ocean Dissipation in Icy Satellites (ODIS), solving the momentum equations for incompressible shallow water flow under a degree-2 tidal forcing. The velocity solution to the momentum equations is updated iteratively at each time-step using a pressure correction to guarantee mass conservation everywhere, following a standard solution procedure originally used in solving the incompressible Navier-Stokes equations. We reason that any model that investigates ocean dynamics beneath a global ice layer should be tested in the limit of an immovable ice shell and must yield solutions that exhibit divergence-free flow at all times.
MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test
NASA Technical Reports Server (NTRS)
Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.
2001-01-01
The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including Limit Cycle Oscillation behavior.
Design and Dynamic Model of a Frog-inspired Swimming Robot Powered by Pneumatic Muscles
NASA Astrophysics Data System (ADS)
Fan, Ji-Zhuang; Zhang, Wei; Kong, Peng-Cheng; Cai, He-Gao; Liu, Gang-Feng
2017-09-01
Pneumatic muscles with similar characteristics to biological muscles have been widely used in robots, and thus are promising drivers for frog inspired robots. However, the application and nonlinearity of the pneumatic system limit the advance. On the basis of the swimming mechanism of the frog, a frog-inspired robot based on pneumatic muscles is developed. To realize the independent tasks by the robot, a pneumatic system with internal chambers, micro air pump, and valves is implemented. The micro pump is used to maintain the pressure difference between the source and exhaust chambers. The pneumatic muscles are controlled by high-speed switch valves which can reduce the robot cost, volume, and mass. A dynamic model of the pneumatic system is established for the simulation to estimate the system, including the chamber, muscle, and pneumatic circuit models. The robot design is verified by the robot swimming experiments and the dynamic model is verified through the experiments and simulations of the pneumatic system. The simulation results are compared to analyze the functions of the source pressure, internal volume of the muscle, and circuit flow rate which is proved the main factor that limits the response of muscle pressure. The proposed research provides the application of the pneumatic muscles in the frog inspired robot and the pneumatic model to study muscle controller.
Measurements of Ion and Neutral Fluctuation Changes with Pressure in a Large-Scale Helicon Plasma
NASA Astrophysics Data System (ADS)
Dwyer, R. H.; Fisher, D. M.; Kelly, R. F.; Hatch, M. W.; Gilmore, M.
2017-10-01
Neutral particle dynamics may play an important role both in laboratory plasmas and in the edge of magnetic fusion devices. However, studies of neutral dynamics in these plasmas have been limited to date. Here we report on a basic study of ion and neutral fluctuations as a function of background neutral gas pressure. These experiments have been conducted in helicon discharges in the HelCat (Helicon-Cathode) dual-source plasma device at the University of New Mexico. The goal is to measure changes in ion and neutral density fluctuations with pressure and to gain an improved understanding of plasma-neutral interactions. Langmuir probe, Ar-I LIF, and high-speed imaging measurements of the fluctuations will be presented. Supported by U.S. National Science Foundation Award 1500423 and The University of New Mexico School of Engineering.
NASA Astrophysics Data System (ADS)
Newcomb, Lucas B.; Alaghemandi, Mohammad; Green, Jason R.
2017-07-01
While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases—one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.
Development of a new dynamic gas flow-control system in the pressure range of 1 Pa-133 Pa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, S. S.; Chung, J. W.; Khan, Wakil
2011-12-15
A new flow-control system (FCS-705) has been developed at Korea Research Institute of Standards and Science. The system is intended for calibration of vacuum gauges in the pressure range of 1 Pa-133 Pa by comparison method. This paper describes some basic characteristics of the system including; (1) the design and construction of the system, (2) the generation of stable pressures in the chamber, (3) achieving high upstream pressure limit by installing a short duct in the by-pass pumping line, and (4) investigation of the gas flow regimes within the short duct.
Experimental Verification of Buffet Calculation Procedure Using Unsteady PSP
NASA Technical Reports Server (NTRS)
Panda, Jayanta
2016-01-01
Typically a limited number of dynamic pressure sensors are employed to determine the unsteady aerodynamic forces on large, slender aerospace structures. The estimated forces are known to be very sensitive to the number of the dynamic pressure sensors and the details of the integration scheme. This report describes a robust calculation procedure, based on frequency-specific correlation lengths, that is found to produce good estimation of fluctuating forces from a few dynamic pressure sensors. The validation test was conducted on a flat panel, placed on the floor of a wind tunnel, and was subjected to vortex shedding from a rectangular bluff-body. The panel was coated with fast response Pressure Sensitive Paint (PSP), which allowed time-resolved measurements of unsteady pressure fluctuations on a dense grid of spatial points. The first part of the report describes the detail procedure used to analyze the high-speed, PSP camera images. The procedure includes steps to reduce contamination by electronic shot noise, correction for spatial non-uniformities, and lamp brightness variation, and finally conversion of fluctuating light intensity to fluctuating pressure. The latter involved applying calibration constants from a few dynamic pressure sensors placed at selective points on the plate. Excellent comparison in the spectra, coherence and phase, calculated via PSP and dynamic pressure sensors validated the PSP processing steps. The second part of the report describes the buffet validation process, for which the first step was to use pressure histories from all PSP points to determine the "true" force fluctuations. In the next step only a selected number of pixels were chosen as "virtual sensors" and a correlation-length based buffet calculation procedure was applied to determine "modeled" force fluctuations. By progressively decreasing the number of virtual sensors it was observed that the present calculation procedure was able to make a close estimate of the "true" unsteady forces only from four sensors. It is believed that the present work provides the first validation of the buffet calculation procedure which has been used for the development of many space vehicles.
NASA Astrophysics Data System (ADS)
Ozturk, D. S.; Zou, S.; Slavin, J. A.; Ridley, A. J.
2017-12-01
When the solar wind dynamic pressure is enhanced, it could perturb the global magnetosphere-ionosphere-thermosphere (M-I-T) system. The most notable indicators of such disruptions are changes in Field-Aligned Currents (FACs), ionospheric convection patterns and magnetic perturbations observed by ground magnetometers. The link between dynamic pressure enhancements and FACs has been well established, but studies on how these FACs affect the ionosphere-thermosphere system are very limited. In order to understand the large-scale dynamic processes in the M-I-T system due to the solar wind dynamic pressure enhancement, we study the 17 March 2015 event in detail. This is one of the most geoeffective events of the solar cycle 24 with Dst minimum of -222 nT. The Wind spacecraft recorded a two-step increment in the solar wind dynamic pressure, from 2 nPa to 12 nPa within 3 minutes, while the IMF Bz stayed northward. We used the University of Michigan Block Adaptive Tree Solarwind Roe Upwind Scheme (BATS'R'US), global MHD code to study the generation and propagation of perturbations associated with the compression of the magnetosphere. To effectively represent the coupled magnetosphere-ionosphere system, we included the Global Magnetosphere (GM), Inner Magnetosphere (IM) and Ionospheric electrodynamic (IE) modules. 600 uniformly distributed virtual magnetometers are included in the simulation to identify the magnetic perturbations associated with the FAC pairs as well as their temporal and spatial variations. In addition, we used the IE module output to drive the University of Michigan Global Ionosphere Thermosphere Model (GITM) to study how the I-T system responds to dynamic pressure enhancement. We show that as a result of the solar wind dynamic pressure enhancement, two pair of perturbation FACs develop in addition to the NBZ current system. These FACs significantly alter the ionospheric convection profile and create elongated vortices that propagate from dayside to nightside. The ion temperature at the location of these vortices is significantly and immediately enhanced. We analyzed the altitude profiles of plasma temperature, electron density and joule heating to quantitatively understand energy deposition during this process, and compare them with observations from ground-based incoherent scatter radar.
Persak, Steven C; Sin, Sanghun; McDonough, Joseph M; Arens, Raanan; Wootton, David M
2011-12-01
Computational fluid dynamics (CFD) analysis was used to model the effect of collapsing airway geometry on internal pressure and velocity in the pharyngeal airway of three sedated children with obstructive sleep apnea syndrome (OSAS) and three control subjects. Model geometry was reconstructed from volume-gated magnetic resonance images during normal tidal breathing at 10 increments of tidal volume through the respiratory cycle. Each geometry was meshed with an unstructured grid and solved using a low-Reynolds number k-ω turbulence model driven by flow data averaged over 12 consecutive breathing cycles. Combining gated imaging with CFD modeling created a dynamic three-dimensional view of airway anatomy and mechanics, including the evolution of airway collapse and flow resistance and estimates of the local effective compliance. The upper airways of subjects with OSAS were generally much more compliant during tidal breathing. Compliance curves (pressure vs. cross-section area), derived for different locations along the airway, quantified local differences along the pharynx and between OSAS subjects. In one subject, the distal oropharynx was more compliant than the nasopharynx (1.028 vs. 0.450 mm(2)/Pa) and had a lower theoretical limiting flow rate, confirming the distal oropharynx as the flow-limiting segment of the airway in this subject. Another subject had a more compliant nasopharynx (0.053 mm(2)/Pa) during inspiration and apparent stiffening of the distal oropharynx (C = 0.0058 mm(2)/Pa), and the theoretical limiting flow rate indicated the nasopharynx as the flow-limiting segment. This new method may help to differentiate anatomical and functional factors in airway collapse.
Gaseous Viscous Peeling of Linearly Elastic Substrates
NASA Astrophysics Data System (ADS)
Elbaz, Shai; Jacob, Hila; Gat, Amir
2017-11-01
We study pressure-driven propagation of gas into a micron-scale gap between two linearly elastic substrates. Applying the lubrication approximation, the governing nonlinear evolution equation describes the interaction between elasticity and viscosity, as well as weak rarefaction and low-Mach-number compressibility, characteristic to gaseous microflows. Several physical limits allow simplification of the evolution equation and enable solution by self-similarity. During the peeling process the flow-field transitions between the different limits and the respective approximate solutions. The sequence of limits occurring during the propagation dynamics can be related to the thickness of the prewetting layer of the configuration at rest, yielding an approximate description of the entire peeling dynamics. The results are validated by numerical solutions of the evolution equation. Israel Science Foundation 818/13.
Skoblin, Michael G; Chudinov, Alexey V; Sulimenkov, Ilia V; Brusov, Vladimir S; Makarov, Alexander A; Wouters, Eloy R; Kozlovskiy, Viacheslav I
2017-08-01
A two-step approach was developed for the study of ion transport in an atmospheric pressure interface. In the first step, the flow in the interface was numerically simulated using the standard gas dynamic package ANSYS CFX 15.0. In the second step, the calculated fields of pressure, temperature, and velocity were imported into a custom-built software application for simulation of ion motion under the influence of both gas dynamic and electrostatic forces. To account for space charge effects in axially symmetric interfaces an analytical expression was used for the Coulomb force. For all other types of interfaces, an iterative approach for the Coulomb force computation was developed. The simulations show that the influence of the space charge is the main contributor to the loss of ion current in the heated capillary. In addition, the maximum ion current which can be transmitted through the heated capillary (0.58 mm inner diameter and 58.5 mm length) is limited to ∼6 nA for ions with m/z = 508 Da and with reduced ion mobility 1.05 cm 2 V -1 s -1 . This limit remains practically constant and independent of the ion current at the entrance of the capillary. For a particular ion type, this limit depends on its m/z ratio and ion mobility.
Optimization of reinforced concrete slabs
NASA Technical Reports Server (NTRS)
Ferritto, J. M.
1979-01-01
Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.
Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining
NASA Astrophysics Data System (ADS)
Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.
2017-03-01
Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.
Thermodynamic phase transitions for Pomeau-Manneville maps
NASA Astrophysics Data System (ADS)
Venegeroles, Roberto
2012-08-01
We study phase transitions in the thermodynamic description of Pomeau-Manneville intermittent maps from the point of view of infinite ergodic theory, which deals with diverging measure dynamical systems. For such systems, we use a distributional limit theorem to provide both a powerful tool for calculating thermodynamic potentials as also an understanding of the dynamic characteristics at each instability phase. In particular, topological pressure and Rényi entropy are calculated exactly for such systems. Finally, we show the connection of the distributional limit theorem with non-Gaussian fluctuations of the algorithmic complexity proposed by Gaspard and Wang [Proc. Natl. Acad. Sci. USA10.1073/pnas.85.13.4591 85, 4591 (1988)].
STS-1 operational flight profile. Volume 3: Ascent, cycle 3
NASA Technical Reports Server (NTRS)
1980-01-01
The ascent opeational flight profile for the space transportation system 1 flight is designed (1) to limit the maximum undispersed dynamic pressure to 580 lb/sq ft, (2) to follow the design load indicator profiles where q alpha is a specified profile and q beta is desired to be as close to zero as passible, and (3) to maximize nominal and abort performance. Significant trajectory parameters achieved are presented. A maximum dynamic pressure of 575 lb/sq ft was achieved, a minimum q alpha of -2187 lb-deg/sq ft was achieved, and q beta was limited to approximately + or - 100 lb-deg/sq ft in the high q region of the trajectory. The trajectory performance allows a press to main engine cutoff capability with one space shuttle main engine out at 262 seconds ground elapsed time. The orbital maneuvering system burns achieve a final orbit of 150.9 x 149.9 x 149.8 n. mi. and the desired inclination of 40.3 degrees.
ELECTRON CLOUD OBSERVATIONS AND CURES IN RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
FISCHER,W.; BLASKIEWICZ, M.; HUANG, H.
Since 2001 RHIC has experienced electron cloud effects, which have limited the beam intensity. These include dynamic pressure rises - including pressure instabilities, tune shifts, a reduction of the stability threshold for bunches crossing the transition energy, and possibly incoherent emittance growth. We summarize the main observations in operation and dedicated experiments, as well as countermeasures including baking, NEG coated warm beam pipes, solenoids, bunch patterns, anti-grazing rings, pre-pumped cold beam pipes, scrubbing, and operation with long bunches.
Jones, Cameron C; McDonough, James M; Capasso, Patrizio; Wang, Dongfang; Rosenstein, Kyle S; Zwischenberger, Joseph B
2013-10-01
Computational fluid dynamics (CFD) is a useful tool in characterizing artificial lung designs by providing predictions of device performance through analyses of pressure distribution, perfusion dynamics, and gas transport properties. Validation of numerical results in membrane oxygenators has been predominantly based on experimental pressure measurements with little emphasis placed on confirmation of the velocity fields due to opacity of the fiber membrane and limitations of optical velocimetric methods. Biplane X-ray digital subtraction angiography was used to visualize flow of a blood analogue through a commercial membrane oxygenator at 1-4.5 L/min. Permeability and inertial coefficients of the Ergun equation were experimentally determined to be 180 and 2.4, respectively. Numerical simulations treating the fiber bundle as a single momentum sink according to the Ergun equation accurately predicted pressure losses across the fiber membrane, but significantly underestimated velocity magnitudes in the fiber bundle. A scaling constant was incorporated into the numerical porosity and reduced the average difference between experimental and numerical values in the porous media regions from 44 ± 4% to 6 ± 5%.
NASA Astrophysics Data System (ADS)
Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.
2013-10-01
In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.
A Nonlinear Modal Aeroelastic Solver for FUN3D
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Bartels, Robert E.; Biedron, Robert T.; Scott, Robert C.
2016-01-01
A nonlinear structural solver has been implemented internally within the NASA FUN3D computational fluid dynamics code, allowing for some new aeroelastic capabilities. Using a modal representation of the structure, a set of differential or differential-algebraic equations are derived for general thin structures with geometric nonlinearities. ODEPACK and LAPACK routines are linked with FUN3D, and the nonlinear equations are solved at each CFD time step. The existing predictor-corrector method is retained, whereby the structural solution is updated after mesh deformation. The nonlinear solver is validated using a test case for a flexible aeroshell at transonic, supersonic, and hypersonic flow conditions. Agreement with linear theory is seen for the static aeroelastic solutions at relatively low dynamic pressures, but structural nonlinearities limit deformation amplitudes at high dynamic pressures. No flutter was found at any of the tested trajectory points, though LCO may be possible in the transonic regime.
Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W
2015-01-01
Female stress urinary incontinence is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under these conditions. An 8-French high-resolution manometry (HRM) catheter currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25-millisecond response rate and circumferential pressure sensors along the length of the catheter (ManoScan ESO; Given Imaging, Yoqneam, Israel). We evaluated the concordance, repeatability, and tolerability of this catheter. We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water-perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress-incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. The correlation coefficient for resting MUCPs measured by HRM versus UPP was high (r = 0.79, P < 0.001). Repeatability after catheter repositioning was high for rest, cough, and strain with HRM: r = 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, and strain) were higher in continent than in incontinent subjects (all P < 0.001) and decreased more in incontinent subjects than in continent subjects during cough and strain maneuvers compared to rest. This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women.
Zonnevijlle, Erik D H; Perez-Abadia, Gustavo; Stremel, Richard W; Maldonado, Claudio J; Kon, Moshe; Barker, John H
2003-11-01
Muscle tissue transplantation applied to regain or dynamically assist contractile functions is known as 'dynamic myoplasty'. Success rates of clinical applications are unpredictable, because of lack of endurance, ischemic lesions, abundant scar formation and inadequate performance of tasks due to lack of refined control. Electrical stimulation is used to control dynamic myoplasties and should be improved to reduce some of these drawbacks. Sequential segmental neuromuscular stimulation improves the endurance and closed-loop control offers refinement in rate of contraction of the muscle, while function-controlling stimulator algorithms present the possibility of performing more complex tasks. An acute feasibility study was performed in anaesthetised dogs combining these techniques. Electrically stimulated gracilis-based neo-sphincters were compared to native sphincters with regard to their ability to maintain continence. Measurements were made during fast bladder pressure changes, static high bladder pressure and slow filling of the bladder, mimicking among others posture changes, lifting heavy objects and diuresis. In general, neo-sphincter and native sphincter performance showed no significant difference during these measurements. However, during high bladder pressures reaching 40 cm H(2)O the neo-sphincters maintained positive pressure gradients, whereas most native sphincters relaxed. During slow filling of the bladder the neo-sphincters maintained a controlled positive pressure gradient for a prolonged time without any form of training. Furthermore, the accuracy of these maintained pressure gradients proved to be within the limits set up by the native sphincters. Refinements using more complicated self-learning function-controlling algorithms proved to be effective also and are briefly discussed. In conclusion, a combination of sequential stimulation, closed-loop control and function-controlling algorithms proved feasible in this dynamic graciloplasty-model. Neo-sphincters were created, which would probably provide an acceptable performance, when the stimulation system could be implanted and further tested. Sizing this technique down to implantable proportions seems to be justified and will enable exploration of the possible benefits.
Gas separation and bubble behavior at a woven screen
NASA Astrophysics Data System (ADS)
Conrath, Michael; Dreyer, Michael E.
Gas-liquid two phase flows are widespread and in many applications the separation of both phases is necessary. Chemical reactors, water treatment devices or gas-free delivery of liquids like propellant are only some of them. We study the performance of a woven metal screen in respect to its phase separation behavior under static and dynamic conditions. Beside hydraulic screen resistance and static bubble point, our study also comprises the bubble detachment from the screen upon gas breakthrough. Since a woven screen is essentially an array of identical pores, analogies to bubble detachment from a needle can be established. While the bubble point poses an upper limit for pressurized gas at a wetted screen to preclude gas breakthrough, the necessary pressure for growing bubbles to detach from the screen pores a lower limit when breakthrough is already in progress. Based on that inside, the dynamic bubble point effects were constituted that relate to a trapped bubble at such a screen in liquid flow. A trapped is caused to break through the screen by the flow-induced pressure drop across it. Our model includes axially symmetric bubble shapes, degree of coverage of the screen and bubble pressurization due to hydraulic losses in the rest of the circuit. We have built an experiment that consists of a Dutch Twilled woven screen made of stainless steel in a vertical acrylic glass tube. The liquid is silicon oil SF0.65. The screen is suspended perpendicular to the liquid flow which is forced through it at variable flow rate. Controlled injection of air from a needle allows us to examine the ability of the screen to separate gas and liquid along the former mentioned effects. We present experimental data on static bubble point and detachment pressure for breakthrough at different gas supply rates that suggest a useful criterion for reliable static bubble point measurements. Results for the dynamic bubble point are presented that include i) screen pressure drop for different trapped bubble volumes, liquid flow rates and flow-induced compression, ii) typical breakthrough of a trapped bubble at rising liquid flow rate and iii) steady gas supply in steady liquid flow. It shows that our model can explain the experimental observations. One of the interesting findings for the dynamic bubble point is that hydraulic losses in the rest of the circuit will shift the breakthrough of gas to higher liquid flow rates.
Payload vehicle aerodynamic reentry analysis
NASA Astrophysics Data System (ADS)
Tong, Donald
An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.
Ridier, Karl; Rat, Sylvain; Salmon, Lionel; Nicolazzi, William; Molnár, Gábor; Bousseksou, Azzedine
2018-04-04
Using optical microscopy we studied the vacuum pressure dependence (0.1-1000 mbar) of the nucleation and growth dynamics of the thermally induced first-order spin transition in a single crystal of the spin-crossover compound [Fe(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl). A crossover between a quasi-static hysteresis regime and a temperature-scan-rate-dependent kinetic regime is evidenced around 5 mbar due to the change of the heat exchange coupling between the crystal and its external environment. Remarkably, the absorption/dissipation rate of latent heat was identified as the key factor limiting the switching speed of the crystal.
NASA Astrophysics Data System (ADS)
Humeau, Anne; Koitka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre
2004-09-01
In the biomedical field, the laser Doppler flowmetry (LDF) technique is a non-invasive method to monitor skin perfusion. On the skin of healthy humans, LDF signals present a significant transient increase in response to a local and progressive pressure application. This vasodilatory reflex response may have important implications for cutaneous pathologies involved in various neurological diseases and in the pathophysiology of decubitus ulcers. The present work analyses the dynamic characteristics of these signals on young type 1 diabetic patients, and on healthy age-matched subjects. To obtain accurate dynamic characteristic values, a de-noising wavelet-based algorithm is first applied to LDF signals. All the de-noised signals are then normalised to the same value. The blood flow peak and the time to reach this peak are then calculated on each computed signal. The results show that a large vasodilation is present on signals of healthy subjects. The mean peak occurs at a pressure of 3.2 kPa approximately. However, a vasodilation of limited amplitude appears on type 1 diabetic patients. The maximum value is visualised, on the average, when the pressure is 1.1 kPa. The inability for diabetic patients to increase largely their cutaneous blood flow may bring explanations to foot ulcers.
A Broad Continuum of Aeolian Impact Ripple Sizes on Mars is Allowed by Low Dynamic Wind Pressures
NASA Astrophysics Data System (ADS)
Sullivan, R. J., Jr.; Kok, J. F.; Yizhaq, H.
2017-12-01
Aeolian impact ripples are generated by impacts of wind-blown sand grains, and are common in environments with loose sand on Earth and Mars. Previous work has shown that, within a fully developed saltation cloud, impact ripple height grows upward into the boundary layer until limited by the effects of increasing wind dynamic pressure at the crest (e.g., lengthening of splash trajectories, or direct entrainment of grains by the wind). On Earth, this process limits ripples of well-sorted 250 µm dune sands to heights of millimeters, and strong winds can impose sufficient lateral dynamic pressure to flatten and erase these ripples. Rover observations show much larger ripple-like bedforms on Mars, raising questions about their formative mechanism. Here, we hypothesize that two factors allow impact ripples to grow much higher on Mars than on Earth: (1) previous work predicts a much larger difference between impact threshold and fluid threshold wind speeds on Mars than on Earth; and (2) recent analysis has revealed how low saltation flux can be initiated and sustained well below fluid threshold on Mars, allowing impact ripples to migrate entirely under prevailing conditions of relatively low wind speeds in the thin martian atmosphere. Under these circumstances, martian ripples would need to grow much larger than on Earth before reaching their maximum height limited by wind dynamic pressure effects. Because the initial size of impact ripples is similar on Mars and Earth, this should generate a much broader continuum of impact ripple sizes on Mars. Compared with Earth, far more time should be needed on Mars for impact ripples to achieve their maximum possible size. Consequently, in cases where wind azimuths are mixed but one azimuth is more dominant than others, martian impact ripples of all sizes can exist together in the same setting, with the largest examples reflecting the most common/formative wind azimuths. In cases where wind azimuth is not dominated by a single azimuth over others, ripple height should vary with orientation and the maximum possible height might never have the chance to be achieved. Our hypothesis could explain the wide range of observed ripple sizes on Mars having wavelengths from cm to several m, and suggests that the largest martian ripples are in fact large impact ripples.
Andrews, D.J.; Ma, Shuo
2010-01-01
Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.
A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking
Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan
2013-01-01
The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500
A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.
Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan
2013-01-01
The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.
NASA Technical Reports Server (NTRS)
Yates, E. Carson, Jr.
1987-01-01
To promote the evaluation of existing and emerging unsteady aerodynamic codes and methods for applying them to aeroelastic problems, especially for the transonic range, a limited number of aerodynamic configurations and experimental dynamic response data sets are to be designated by the AGARD Structures and Materials Panel as standards for comparison. This set is a sequel to that established several years ago for comparisons of calculated and measured aerodynamic pressures and forces. This report presents the information needed to perform flutter calculations for the first candidate standard configuration for dynamic response along with the related experimental flutter data.
Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure
NASA Technical Reports Server (NTRS)
Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.
2014-01-01
Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.
High-pressure effect on the dynamics of solvated peptides.
Nellas, Ricky B; Glover, Mary M; Hamelberg, Donald; Shen, Tongye
2012-04-14
The dynamics of peptides has a direct connection to how quickly proteins can alter their conformations. The speed of exploring the free energy landscape depend on many factors, including the physical parameters of the environment, such as pressure and temperature. We performed a series of molecular dynamics simulations to investigate the pressure-temperature effects on peptide dynamics, especially on the torsional angle and peptide-water hydrogen bonding (H-bonding) dynamics. Here, we show that the dynamics of the omega angle and the H-bonding dynamics between water and the peptide are affected by pressure. At high temperature (500 K), both the dynamics of the torsional angle ω and H-bonding slow down significantly with increasing pressure, interestingly, at approximately the same rate. However, at a lower temperature of 300 K, the observed trend on H-bonding dynamics as a function of pressure reverses, i.e., higher pressure speeds up H-bonding dynamics.
Volume-controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort.
Yoshida, Takeshi; Nakahashi, Susumu; Nakamura, Maria Aparecida Miyuki; Koyama, Yukiko; Roldan, Rollin; Torsani, Vinicius; De Santis, Roberta R; Gomes, Susimeire; Uchiyama, Akinori; Amato, Marcelo B P; Kavanagh, Brian P; Fujino, Yuji
2017-09-01
Spontaneous breathing during mechanical ventilation increases transpulmonary pressure and Vt, and worsens lung injury. Intuitively, controlling Vt and transpulmonary pressure might limit injury caused by added spontaneous effort. To test the hypothesis that, during spontaneous effort in injured lungs, limitation of Vt and transpulmonary pressure by volume-controlled ventilation results in less injurious patterns of inflation. Dynamic computed tomography was used to determine patterns of regional inflation in rabbits with injured lungs during volume-controlled or pressure-controlled ventilation. Transpulmonary pressure was estimated by using esophageal balloon manometry [Pl(es)] with and without spontaneous effort. Local dependent lung stress was estimated as the swing (inspiratory change) in transpulmonary pressure measured by intrapleural manometry in dependent lung and was compared with the swing in Pl(es). Electrical impedance tomography was performed to evaluate the inflation pattern in a larger animal (pig) and in a patient with acute respiratory distress syndrome. Spontaneous breathing in injured lungs increased Pl(es) during pressure-controlled (but not volume-controlled) ventilation, but the pattern of dependent lung inflation was the same in both modes. In volume-controlled ventilation, spontaneous effort caused greater inflation and tidal recruitment of dorsal regions (greater than twofold) compared with during muscle paralysis, despite the same Vt and Pl(es). This was caused by higher local dependent lung stress (measured by intrapleural manometry). In injured lungs, esophageal manometry underestimated local dependent pleural pressure changes during spontaneous effort. Limitation of Vt and Pl(es) by volume-controlled ventilation could not eliminate harm caused by spontaneous breathing unless the level of spontaneous effort was lowered and local dependent lung stress was reduced.
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Hopkins, Patrick E.
2017-12-01
Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.
Modeling frictional melt injection to constrain coseismic physical conditions
NASA Astrophysics Data System (ADS)
Sawyer, William J.; Resor, Phillip G.
2017-07-01
Pseudotachylyte, a fault rock formed through coseismic frictional melting, provides an important record of coseismic mechanics. In particular, injection veins formed at a high angle to the fault surface have been used to estimate rupture directivity, velocity, pulse length, stress drop, as well as slip weakening distance and wall rock stiffness. These studies have generally treated injection vein formation as a purely elastic process and have assumed that processes of melt generation, transport, and solidification have little influence on the final vein geometry. Using a pressurized crack model, an analytical approximation of injection vein formation based on dike intrusion, we find that the timescales of quenching and flow propagation may be similar for a subset of injection veins compiled from the Asbestos Mountain Fault, USA, Gole Larghe Fault Zone, Italy, and the Fort Foster Brittle Zone, USA under minimum melt temperature conditions. 34% of the veins are found to be flow limited, with a final geometry that may reflect cooling of the vein before it reaches an elastic equilibrium with the wall rock. Formation of these veins is a dynamic process whose behavior is not fully captured by the analytical approach. To assess the applicability of simplifying assumptions of the pressurized crack we employ a time-dependent finite-element model of injection vein formation that couples elastic deformation of the wall rock with the fluid dynamics and heat transfer of the frictional melt. This finite element model reveals that two basic assumptions of the pressurized crack model, self-similar growth and a uniform pressure gradient, are false. The pressurized crack model thus underestimates flow propagation time by 2-3 orders of magnitude. Flow limiting may therefore occur under a wider range of conditions than previously thought. Flow-limited veins may be recognizable in the field where veins have tapered profiles or smaller aspect ratios than expected. The occurrence and shape of injection veins can be coupled with modeling to provide an independent estimate of minimum melt temperature. Finally, the large aspect ratio observed for all three populations of injection veins may be best explained by a large reduction in stiffness associated with coseismic damage, as injection vein growth is likely to far exceed the lifetime of dynamic stresses at any location along a fault.
Landward vergence in accretionary prism, evidence for frontal propagation of earthquakes?
NASA Astrophysics Data System (ADS)
cubas, Nadaya; Souloumiac, Pauline
2016-04-01
Landward vergence in accretionary wedges is rare and have been described at very few places: along the Cascadia subduction zone and more recently along Sumatra where the 2004 Mw 9.1 Sumatra-Andaman event and the 2011 tsunami earthquake occurred. Recent studies have suggested a relation between landward thrust faults and frontal propagation of earthquakes for the Sumatra subduction zone. The Cascadia subduction zone is also known to have produced in 1700 a Mw9 earthquake with a large tsunami across the Pacific. Based on mechanical analysis, we propose to investigate if specific frictional properties could lead to a landward sequence of thrusting. We show that landward thrust requires very low effective friction along the megathrust with a rather high internal effective friction. We also show that landward thrust appears close to the extensional critical limit. Along Cascadia and Sumatra, we show that to get landward vergence, the effective basal friction has to be lower than 0.08. This very low effective friction is most likely due to high pore pressure. This high pore pressure could either be a long-term property or due to dynamic effects such as thermal pressurization. The fact that landward vergence appears far from the compressional critical limit favors a dynamic effect. Landward vergence would then highlight thermal pressurization due to occasional or systematic propagation of earthquakes to the trench. As a consequence, the vergence of thrusts in accretionary prism could be used to improve seismic and tsunamigenic risk assessment.
Compression Limit of Two-Dimensional Water Constrained in Graphene Nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2015-12-22
Evaluation of the tensile/compression limit of a solid under conditions of tension or compression is often performed to provide mechanical properties that are critical for structure design and assessment. Algara-Siller et al. recently demonstrated that when water is constrained between two sheets of graphene, it becomes a two-dimensional (2D) liquid and then is turned into an intriguing monolayer solid with a square pattern under high lateral pressure [ Nature , 2015 , 519 , 443 - 445 ]. From a mechanics point of view, this liquid-to-solid transformation characterizes the compression limit (or metastability limit) of the 2D monolayer water. Here, we perform a simulation study of the compression limit of 2D monolayer, bilayer, and trilayer water constrained in graphene nanocapillaries. At 300 K, a myriad of 2D ice polymorphs (both crystalline-like and amorphous) are formed from the liquid water at different widths of the nanocapillaries, ranging from 6.0 to11.6 Å. For monolayer water, the compression limit is typically a few hundred MPa, while for the bilayer and trilayer water, the compression limit is 1.5 GPa or higher, reflecting the ultrahigh van der Waals pressure within the graphene nanocapillaries. The compression-limit (phase) diagram is obtained at the nanocapillary width versus pressure (h-P) plane, based on the comprehensive molecular dynamics simulations at numerous thermodynamic states as well as on the Clapeyron equation. Interestingly, the compression-limit curves exhibit multiple local minima.
NASA Astrophysics Data System (ADS)
Sane, Sandeep Bhalchandra
This thesis contains three chapters, which describe different aspects of an investigation of the bulk response of Poly(Methyl Methacrylate) (PMMA). The first chapter describes the physical measurements by means of a Belcher/McKinney-type apparatus. Used earlier for the measurement of the bulk response of Poly(Vinyl Acetate), it was now adapted for making measurements at higher temperatures commensurate with the glass transition temperature of PMMA. The dynamic bulk compliance of PMMA was measured at atmospheric pressure over a wide range of temperatures and frequencies, from which the master curves for the bulk compliance were generated by means of the time-temperature superposition principle. It was found that the extent of the transition ranges for the bulk and shear response were comparable. Comparison of the shift factors for bulk and shear responses supports the idea that different molecular mechanisms contribute to shear and bulk deformations. The second chapter delineates molecular dynamics computations for the bulk response for a range of pressures and temperatures. The model(s) consisted of 2256 atoms formed into three polymer chains with fifty monomer units per chain per unit cell. The time scales accessed were limited to tens of pico seconds. It was found that, in addition to the typical energy minimization and temperature annealing cycles for establishing equilibrium models, it is advantageous to subject the model samples to a cycle of relatively large pressures (GPa-range) for improving the equilibrium state. On comparing the computations with the experimentally determined "glassy" behavior, one finds that, although the computations were limited to small samples in a physical sense, the primary limitation rests in the very short times (pico seconds). The molecular dynamics computations do not model the physically observed temperature sensitivity of PMMA, even if one employs a hypothetical time-temperature shift to account for the large difference in time scales between experiment and computation. The values computed by the molecular dynamics method do agree with the values measured at the coldest temperature and at the highest frequency of one kiloHertz. The third chapter draws on measurements of uniaxial, shear and Poisson response conducted previously in our laboratory. With the availability of four time or frequency-dependent material functions for the same material, the process of interconversion between different material functions was investigated. Computed material functions were evaluated against the direct experimental measurements and the limitations imposed on successful interconversion due to the experimental errors in the underlying physical data were explored. Differences were observed that are larger than the experimental errors would suggest.
Frequency analysis of a step dynamic pressure calibrator.
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
Frequency analysis of a step dynamic pressure calibrator
NASA Astrophysics Data System (ADS)
Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon
2012-09-01
A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.
NASA Technical Reports Server (NTRS)
Panda, J.; Roozeboom, N. H.; Ross, J. C.
2016-01-01
The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.
Effect of renal denervation on dynamic autoregulation of renal blood flow.
DiBona, Gerald F; Sawin, Linda L
2004-06-01
Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.
MAVRIC Flutter Model Transonic Limit Cycle Oscillation Test
NASA Technical Reports Server (NTRS)
Edwards, John W.; Schuster, David M.; Spain, Charles V.; Keller, Donald F.; Moses, Robert W.
2001-01-01
The Models for Aeroelastic Validation Research Involving Computation semi-span wind-tunnel model (MAVRIC-I), a business jet wing-fuselage flutter model, was tested in NASA Langley's Transonic Dynamics Tunnel with the goal of obtaining experimental data suitable for Computational Aeroelasticity code validation at transonic separation onset conditions. This research model is notable for its inexpensive construction and instrumentation installation procedures. Unsteady pressures and wing responses were obtained for three wingtip configurations of clean, tipstore, and winglet. Traditional flutter boundaries were measured over the range of M = 0.6 to 0.9 and maps of Limit Cycle Oscillation (LCO) behavior were made in the range of M = 0.85 to 0.95. Effects of dynamic pressure and angle-of-attack were measured. Testing in both R134a heavy gas and air provided unique data on Reynolds number, transition effects, and the effect of speed of sound on LCO behavior. The data set provides excellent code validation test cases for the important class of flow conditions involving shock-induced transonic flow separation onset at low wing angles, including LCO behavior.
Globular cluster formation - The fossil record
NASA Technical Reports Server (NTRS)
Murray, Stephen D.; Lin, Douglas N. C.
1992-01-01
Properties of globular clusters which have remained unchanged since their formation are used to infer the internal pressures, cooling times, and dynamical times of the protocluster clouds immediately prior to the onset of star formation. For all globular clusters examined, it is found that the cooling times are much less than the dynamical times, implying that the protoclusters must have been maintained in thermal equilibrium by external heat sources, with fluxes consistent with those found in previous work, and giving the observed rho-T relation. Self-gravitating clouds cannot be stably heated, so that the Jeans mass forms an upper limit to the cluster masses. The observed dependence of protocluster pressure upon galactocentric position implies that the protocluster clouds were in hydrostatic equilibrium after their formation. The pressure dependence is well fitted by that expected for a quasi-statically evolving background hot gas, shock heated to its virial temperature. The observations and inferences are combined with previous theoretical work to construct a picture of globular cluster formation.
NASA Astrophysics Data System (ADS)
Gardner, J. E.; Andrews, B. J.
2016-12-01
Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.
The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy.
Trauner, Andrej; Liu, Qingyun; Via, Laura E; Liu, Xin; Ruan, Xianglin; Liang, Lili; Shi, Huimin; Chen, Ying; Wang, Ziling; Liang, Ruixia; Zhang, Wei; Wei, Wang; Gao, Jingcai; Sun, Gang; Brites, Daniela; England, Kathleen; Zhang, Guolong; Gagneux, Sebastien; Barry, Clifton E; Gao, Qian
2017-04-19
Combination therapy is one of the most effective tools for limiting the emergence of drug resistance in pathogens. Despite the widespread adoption of combination therapy across diseases, drug resistance rates continue to rise, leading to failing treatment regimens. The mechanisms underlying treatment failure are well studied, but the processes governing successful combination therapy are poorly understood. We address this question by studying the population dynamics of Mycobacterium tuberculosis within tuberculosis patients undergoing treatment with different combinations of antibiotics. By combining very deep whole genome sequencing (~1000-fold genome-wide coverage) with sequential sputum sampling, we were able to detect transient genetic diversity driven by the apparently continuous turnover of minor alleles, which could serve as the source of drug-resistant bacteria. However, we report that treatment efficacy has a clear impact on the population dynamics: sufficient drug pressure bears a clear signature of purifying selection leading to apparent genetic stability. In contrast, M. tuberculosis populations subject to less drug pressure show markedly different dynamics, including cases of acquisition of additional drug resistance. Our findings show that for a pathogen like M. tuberculosis, which is well adapted to the human host, purifying selection constrains the evolutionary trajectory to resistance in effectively treated individuals. Nonetheless, we also report a continuous turnover of minor variants, which could give rise to the emergence of drug resistance in cases of drug pressure weakening. Monitoring bacterial population dynamics could therefore provide an informative metric for assessing the efficacy of novel drug combinations.
NASA Technical Reports Server (NTRS)
Pool, Kirby V.
1989-01-01
This volume summarizes the analysis used to assess the structural life of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbo-Pump (HPFTP) Third Stage Impeller. This analysis was performed in three phases, all using the DIAL finite element code. The first phase was a static stress analysis to determine the mean (non-varying) stress and static margin of safety for the part. The loads involved were steady state pressure and centrifugal force due to spinning. The second phase of the analysis was a modal survey to determine the vibrational modes and natural frequencies of the impeller. The third phase was a dynamic response analysis to determine the alternating component of the stress due to time varying pressure impulses at the outlet (diffuser) side of the impeller. The results of the three phases of the analysis show that the Third Stage Impeller operates very near the upper limits of its capability at full power level (FPL) loading. The static loading alone creates stresses in some areas of the shroud which exceed the yield point of the material. Additional cyclic loading due to the dynamic force could lead to a significant reduction in the life of this part. The cyclic stresses determined in the dynamic response phase of this study are based on an assumption regarding the magnitude of the forcing function.
Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.
A Mitrou, Nicholas G; Cupples, William A
2014-01-01
Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.
Dynamic Modulation of Radiative Heat Transfer beyond the Blackbody Limit.
Ito, Kota; Nishikawa, Kazutaka; Miura, Atsushi; Toshiyoshi, Hiroshi; Iizuka, Hideo
2017-07-12
Dynamic control of electromagnetic heat transfer without changing mechanical configuration opens possibilities in intelligent thermal management in nanoscale systems. We confirmed by experiment that the radiative heat transfer is dynamically modulated beyond the blackbody limit. The near-field electromagnetic heat exchange mediated by phonon-polariton is controlled by the metal-insulator transition of tungsten-doped vanadium dioxide. The functionalized heat flux is transferred over an area of 1.6 cm 2 across a 370 nm gap, which is maintained by the microfabricated spacers and applied pressure. The uniformity of the gap is validated by optical interferometry, and the measured heat transfer is well modeled as the sum of the radiative and the parasitic conductive components. The presented methodology to form a nanometric gap with functional heat flux paves the way to the smart thermal management in various scenes ranging from highly integrated systems to macroscopic apparatus.
Simulative research on the anode plasma dynamics in the high-power electron beam diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Dan; Liu, Lie; Ju, Jin-Chuan
2015-07-15
Anode plasma generated by electron beams could limit the electrical pulse-length, modify the impedance and stability of diode, and affect the generator to diode power coupling. In this paper, a particle-in-cell code is used to study the dynamics of anode plasma in the high-power electron beam diode. The effect of gas type, dynamic characteristic of ions on the diode operation with bipolar flow model are presented. With anode plasma appearing, the amplitude of diode current is increased due to charge neutralizations of electron flow. The lever of neutralization can be expressed using saturation factor. At same pressure of the anodemore » gas layer, the saturation factor of CO{sub 2} is bigger than the H{sub 2}O vapor, namely, the generation rate of C{sup +} ions is larger than the H{sup +} ions at the same pressure. The transition time of ions in the anode-cathode gap could be used to estimate the time of diode current maximum.« less
NASA Astrophysics Data System (ADS)
Poon, Eric; Thondapu, Vikas; Barlis, Peter; Ooi, Andrew
2017-11-01
Coronary artery disease remains a major cause of mortality in developed countries, and is most often due to a localized flow-limiting stenosis, or narrowing, of coronary arteries. Patients often undergo invasive procedures such as X-ray angiography and fractional flow reserve to diagnose flow-limiting lesions. Even though such diagnostic techniques are well-developed, the effects of diseased coronary segments on local flow are still poorly understood. Therefore, this study investigated the effect of irregular geometries of diseased coronary segments on the macro-recirculation and local pressure minimum regions. We employed an idealized coronary artery model with a diameter of stenosis of 75%. By systematically adjusting the eccentricity and the asymmetry of the coronary stenosis, we uncovered an increase in macro-recirculation size. Most importantly, the presence of this macro-recirculation signifies a local pressure minimum (identified by λ2 vortex identification method). This local pressure minimum has a profound effect on the pressure drops in both longitudinal and planar directions, which has implications for diagnosis and treatment of coronary artery disease. Supported by Australian Research Council LP150100233 and National Computational Infrastructure m45.
McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.
2010-01-01
Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.
Dynamical instability of a charged gaseous cylinder
NASA Astrophysics Data System (ADS)
Sharif, M.; Mumtaz, Saadia
2017-10-01
In this paper, we discuss dynamical instability of a charged dissipative cylinder under radial oscillations. For this purpose, we follow the Eulerian and Lagrangian approaches to evaluate linearized perturbed equation of motion. We formulate perturbed pressure in terms of adiabatic index by applying the conservation of baryon numbers. A variational principle is established to determine characteristic frequencies of oscillation which define stability criteria for a gaseous cylinder. We compute the ranges of radii as well as adiabatic index for both charged and uncharged cases in Newtonian and post-Newtonian limits. We conclude that dynamical instability occurs in the presence of charge if the gaseous cylinder contracts to the radius R*.
Cardiovascular dynamics associated with tolerance to lower body negative pressure
NASA Technical Reports Server (NTRS)
Sather, T. M.; Goldwater, D. J.; Montgomery, L. D.; Convertino, V. A.
1986-01-01
The purpose of this investigation was to identify cardiovascular responses associated with tolerance to lower body negative pressure (LBNP). Eighteen men, ages 29-51 years, were categorized as high (HT) or low (LT) LBNP-tolerant based on a graded presyncopal-limited LBNP exposure criterion of -60 mm Hg relative to ambient pressure. Groups were matched for physical characteristics and pre-LBNP cardiovascular measurements, with the exceptions of greater (p less than 0.05) end-diastolic volume and cardiac output in the HT group. During peak LBNP, cardiac output was similar in both groups, although the HT group displayed a greater heart rate (p less than 0.05). In both groups, venous return appeared to limit cardiac output resulting in decreased arterial pressure. Tolerance to LBNP did not appear solely dependent on the absolute amount of blood pooled in the legs since the HT group demonstrated a greater (p less than 0.05) peak LBNP-induced increase in midthigh-leg volume. Greater tolerance to LBNP was associated with a larger pre-LBNP cardiac output reserve and higher compensatory increases in heart rate and peripheral resistance.
Understand rotating isothermal collapses yet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tohline, J.E.
1985-01-01
A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, andmore » a realistic starting model for cloud collapse is proposed. 18 references.« less
Basic principles for measurement of intramuscular pressure
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Ballard, R. E.
1995-01-01
We review historical and methodological approaches to measurements of intramuscular pressure (IMP) in humans. These techniques provide valuable measures of muscle tone and activity as well as diagnostic criteria for evaluation of exertional compartment syndrome. Although the wick and catheter techniques provide accurate measurements of IMP at rest, their value for exercise studies and diagnosis of exertional compartment syndrome is limited because of low frequency response and hydrostatic (static and inertial) pressure artifacts. Presently, most information on diagnosis of exertional compartment syndromes during dynamic exercise is available using the Myopress catheter. However, future research and clinical diagnosis using IMP can be optimized by the use of a miniature transducer-tipped catheter such as the Millar Mikro-tip.
A study of nonlinear dynamics of single- and two-phase flow oscillations
NASA Astrophysics Data System (ADS)
Mawasha, Phetolo Ruby
The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.
Path-integral simulation of ice Ih: The effect of pressure
NASA Astrophysics Data System (ADS)
Herrero, Carlos P.; Ramírez, Rafael
2011-12-01
The effect of pressure on structural and thermodynamic properties of ice Ih has been studied by means of path-integral molecular dynamics simulations at temperatures between 50 and 300 K. Interatomic interactions were modeled by using the effective q-TIP4P/F potential for flexible water. Positive (compression) and negative (tension) pressures have been considered, which allowed us to approach the limits for the mechanical stability of this solid water phase. We have studied the pressure dependence of the crystal volume, bulk modulus, interatomic distances, atomic delocalization, and kinetic energy. The spinodal point at both negative and positive pressures is derived from the vanishing of the bulk modulus. For P<0, the spinodal pressure changes from -1.38 to - 0.73 GPa in the range from 50 to 300 K. At positive pressure the spinodal is associated with ice amorphization, and at low temperatures it is found to be between 1.1 and 1.3 GPa. Quantum nuclear effects cause a reduction of the metastability region of ice Ih.
Bardoel, J W; Stadelmann, W K; Perez-Abadia, G A; Galandiuk, S; Zonnevijlle, E D; Maldonado, C; Stremel, R W; Tobin, G R; Kon, M; Barker, J H
2001-02-01
Fecal stomal incontinence is a problem that continues to defy surgical treatment. Previous attempts to create continent stomas using dynamic myoplasty have had limited success due to denervation atrophy of the muscle flap used in the creation of the sphincter and because of muscle fatigue resulting from continuous electrical stimulation. To address the problem of denervation atrophy, a stomal sphincter was designed using the most caudal segment of the rectus abdominis muscle, preserving its intercostal innervation as well as its vascular supply. The purpose of the present study was to determine whether this rectus abdominis muscle island flap sphincter design could maintain stomal continence acutely. In this experiment, six dogs were used to create eight rectus abdominis island flap stoma sphincters around a segment of distal ileum. Initially, the intraluminal stomal pressures generated by the sphincter using different stimulation frequencies were determined. The ability of this stomal sphincter to generate continence at different intraluminal bowel pressures was then assessed. In all cases, the rectus abdominis muscle sphincter generated peak pressures well above those needed to maintain stomal continence (60 mmHg). In addition, each sphincter was able to maintain stomal continence at all intraluminal bowel pressures tested.
Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring
NASA Astrophysics Data System (ADS)
Chen, Zhao; Xie, Zhipeng; Zhang, Jian
2018-05-01
The Vehicle-Bridge-Interaction (VBI) force, i.e., the normal contact force of a tire, is a key component in the VBI mechanism. The VBI force measurement can facilitate experimental studies of the VBI as well as input-output bridge structural identification. This paper introduces an innovative method for calculating the interaction force by using dynamic tire pressure monitoring. The core idea of the proposed method combines the ideal gas law and a basic force model to build a relationship between the tire pressure and the VBI force. Then, unknown model parameters are identified by the Extended Kalman Filter using calibration data. A signal filter based on the wavelet analysis is applied to preprocess the effect that the tire rotation has on the pressure data. Two laboratory tests were conducted to check the proposed method's validity. The effects of different road irregularities, loads and forward velocities were studied. Under the current experiment setting, the proposed method was robust to different road irregularities, and the increase in load and velocity benefited the performance of the proposed method. A high-speed test further supported the use of this method in rapid bridge tests. Limitations of the derived theories and experiment were also discussed.
Dynamic combination of sensory and reward information under time pressure
Farashahi, Shiva; Kao, Chang-Hao
2018-01-01
When making choices, collecting more information is beneficial but comes at the cost of sacrificing time that could be allocated to making other potentially rewarding decisions. To investigate how the brain balances these costs and benefits, we conducted a series of novel experiments in humans and simulated various computational models. Under six levels of time pressure, subjects made decisions either by integrating sensory information over time or by dynamically combining sensory and reward information over time. We found that during sensory integration, time pressure reduced performance as the deadline approached, and choice was more strongly influenced by the most recent sensory evidence. By fitting performance and reaction time with various models we found that our experimental results are more compatible with leaky integration of sensory information with an urgency signal or a decision process based on stochastic transitions between discrete states modulated by an urgency signal. When combining sensory and reward information, subjects spent less time on integration than optimally prescribed when reward decreased slowly over time, and the most recent evidence did not have the maximal influence on choice. The suboptimal pattern of reaction time was partially mitigated in an equivalent control experiment in which sensory integration over time was not required, indicating that the suboptimal response time was influenced by the perception of imperfect sensory integration. Meanwhile, during combination of sensory and reward information, performance did not drop as the deadline approached, and response time was not different between correct and incorrect trials. These results indicate a decision process different from what is involved in the integration of sensory information over time. Together, our results not only reveal limitations in sensory integration over time but also illustrate how these limitations influence dynamic combination of sensory and reward information. PMID:29584717
AB-stacked square-like bilayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2016-08-10
Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.
NASA Technical Reports Server (NTRS)
Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.;
2016-01-01
This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production test environment for future launch vehicles. The results show that modifications to the current technique can improve the accuracy of buffet estimates. More importantly, the uPSP worked remarkably well and, with improvements to the frequency response, sensitivity, and productivity, will provide an enhanced method for measuring wind tunnel buffet forcing functions (BFFs).
NASA Astrophysics Data System (ADS)
Willis, M. J.; Ahrens, T. J.; Bertani, L. E.; Nash, C. Z.
2004-12-01
Shock recovery experiments on suspensions of 106 mm-3 E. coli bacteria contained in water-based medium, within stainless steel containers, are used to simulate the impact environment of bacteria residing in water-filled cracks in rocks. Early Earth life is likely to have existed in such environments. Some 10-2 to 10-4 of the bacteria population survived initial (800 ns duration) shock pressures in water of 219 and 260 MPa. TEM images of shock recovered bacteria indicate cell wall indentations and rupture, possibly induced by inward invasion of medium into the cell wall. Notably cell wall rupture occurs dynamically at ˜0.1 times the static pressures E.coli have been demonstrated (Sharma et al., 2002) to survive and may be caused by Rayleigh-Taylor instabilities. We infer the invading fluid pressure may exceed the tensile strength of the cell wall. We assume the overpressures are limited to the initial shock pressure in water. Parameters for the Grady & Lipkin (1980) model of tensile failure versus time-scale (strain rate) are fit to present data, assuming that at low strain rates, overpressures exceeding cell Turgor pressure require ˜103 sec. This model, if validated by experiments at other timescales, may permit using short loading duration laboratory data to infer response of organisms to lower shock overpressures for the longer times (100 to 103 s) of planetary impacts. An Ahrens & O'Keefe (1987) shock attenuation model is then applied for Earth impactors. This model suggests that Earth impactors of radius 1.5 km induce shocks within water-filled cracks in rock to dynamic pressure such that stresses exceeding the survivability threshold of E. coli bacteria, to radii of 1.7-2.6×102 km. In contrast, a giant (1500 km radius) impactor produces a non survival zone for E. coli that encompasses the entire Earth.
He, Zhongfu; Chen, Wenjun; Liang, Binghao; Liu, Changyong; Yang, Leilei; Lu, Dongwei; Mo, Zichao; Zhu, Hai; Tang, Zikang; Gui, Xuchun
2018-04-18
Flexible pressure sensors are of great importance to be applied in artificial intelligence and wearable electronics. However, assembling a simple structure, high-performance capacitive pressure sensor, especially for monitoring the flow of liquids, is still a big challenge. Here, on the basis of a sandwich-like structure, we propose a facile capacitive pressure sensor optimized by a flexible, low-cost nylon netting, showing many merits including a high response sensitivity (0.33 kPa -1 ) in a low-pressure regime (<1 kPa), an ultralow detection limit as 3.3 Pa, excellent working stability after more than 1000 cycles, and synchronous monitoring for human pulses and clicks. More important, this sensor exhibits an ultrafast response speed (<20 ms), which enables its detection for the fast variations of a small applied pressure from the morphological changing processes of a droplet falling onto the sensor. Furthermore, a capacitive pressure sensor array is fabricated for demonstrating the ability to spatial pressure distribution. Our developed pressure sensors show great prospects in practical applications such as health monitoring, flexible tactile devices, and motion detection.
The trade-off characteristics of acoustic and pressure sensors for the NASP
NASA Technical Reports Server (NTRS)
Winkler, Martin; Bush, Chuck
1992-01-01
Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.
2016-01-01
For 200 years, the ‘closed box’ analogy of intracranial pressure (ICP) has underpinned neurosurgery and neuro-critical care. Cushing conceptualised the Monro-Kellie doctrine stating that a change in blood, brain or CSF volume resulted in reciprocal changes in one or both of the other two. When not possible, attempts to increase a volume further increase ICP. On this doctrine’s “truth or relative untruth” depends many of the critical procedures in the surgery of the central nervous system. However, each volume component may not deserve the equal weighting this static concept implies. The slow production of CSF (0.35 ml/min) is dwarfed by the dynamic blood in and outflow (∼700 ml/min). Neuro-critical care practice focusing on arterial and ICP regulation has been questioned. Failure of venous efferent flow to precisely match arterial afferent flow will yield immediate and dramatic changes in intracranial blood volume and pressure. Interpreting ICP without interrogating its core drivers may be misleading. Multiple clinical conditions and the cerebral effects of altitude and microgravity relate to imbalances in this dynamic rather than ICP per se. This article reviews the Monro-Kellie doctrine, categorises venous outflow limitation conditions, relates physiological mechanisms to clinical conditions and suggests specific management options. PMID:27174995
Wilson, Mark H
2016-08-01
For 200 years, the 'closed box' analogy of intracranial pressure (ICP) has underpinned neurosurgery and neuro-critical care. Cushing conceptualised the Monro-Kellie doctrine stating that a change in blood, brain or CSF volume resulted in reciprocal changes in one or both of the other two. When not possible, attempts to increase a volume further increase ICP. On this doctrine's "truth or relative untruth" depends many of the critical procedures in the surgery of the central nervous system. However, each volume component may not deserve the equal weighting this static concept implies. The slow production of CSF (0.35 ml/min) is dwarfed by the dynamic blood in and outflow (∼700 ml/min). Neuro-critical care practice focusing on arterial and ICP regulation has been questioned. Failure of venous efferent flow to precisely match arterial afferent flow will yield immediate and dramatic changes in intracranial blood volume and pressure. Interpreting ICP without interrogating its core drivers may be misleading. Multiple clinical conditions and the cerebral effects of altitude and microgravity relate to imbalances in this dynamic rather than ICP per se. This article reviews the Monro-Kellie doctrine, categorises venous outflow limitation conditions, relates physiological mechanisms to clinical conditions and suggests specific management options. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Tacina, K. M.; Chang, C. T.; Lee, P.; Mongia, H.; Podboy, D. P.; Dam, B.
2015-01-01
Dynamic pressure measurements were taken during flame-tube emissions testing of three second-generation swirl-venturi lean direct injection (SV-LDI) combustor configurations. These measurements show that combustion dynamics were typically small. However, a small number of points showed high combustion dynamics, with peak-to-peak dynamic pressure fluctuations above 0.5 psi. High combustion dynamics occurred at low inlet temperatures in all three SV-LDI configurations, so combustion dynamics were explored further at low temperature conditions. A point with greater than 1.5 psi peak-to-peak dynamic pressure fluctuations was identified at an inlet temperature of 450!F, a pressure of 100 psia, an air pressure drop of 3%, and an overall equivalence ratio of 0.35. This is an off design condition: the temperature and pressure are typical of 7% power conditions, but the equivalence ratio is high. At this condition, the combustion dynamics depended strongly on the fuel staging. Combustion dynamics could be reduced significantly without changing the overall equivalence ratio by shifting the fuel distribution between stages. Shifting the fuel distribution also decreased NOx emissions.
NASA Astrophysics Data System (ADS)
Xu, Y.; Karato, S.
2002-12-01
Well-controlled high-pressure deformation experiments are critical for understanding the dynamics of Earth's interior. Most of the previous works on ultrahigh-pressure (P>10 GPa) deformation experiments have two limitations. (1) The mode of deformation is "stress-relaxation", in which stress changes with time in a given experiment, and (2) the magnitude of stress is limited (<1). To overcome these limitations and to perform large-strain plastic deformation under the upper mantle and top of lower mantle conditions, we have constructed a new apparatus by modifying the Drickamer-type high-pressure press combined with a rotation actuator involving an ac servo-motor. After the desired pressure and temperature are reached, torsional stress can be applied to a sample with a constant rotation rate. The advantage of this design is that the direction of shear deformation is normal to that of compression and therefore compression and deformation can be separated. A sample (typically ~1.8 mm diameter and ~0.2 mm thickness) is sandwiched between two zirconia plates and two heater plates made of TiC + diamond. Thin foils of W3%Re and W25%Re are inserted between two halves of samples which act as a thermocouple as well as strain markers. We have conducted a preliminary test on MgO at ~12 GPa and ~1470 K to the strain up to ~3. Deformation experiments on wadsleyite are underway to investigate the fabric development and rheology in this mineral.
The Measurement of Unsteady Surface Pressure Using a Remote Microphone Probe.
Guan, Yaoyi; Berntsen, Carl R; Bilka, Michael J; Morris, Scott C
2016-12-03
Microphones are widely applied to measure pressure fluctuations at the walls of solid bodies immersed in turbulent flows. Turbulent motions with various characteristic length scales can result in pressure fluctuations over a wide frequency range. This property of turbulence requires sensing devices to have sufficient sensitivity over a wide range of frequencies. Furthermore, the small characteristic length scales of turbulent structures require small sensing areas and the ability to place the sensors in very close proximity to each other. The complex geometries of the solid bodies, often including large surface curvatures or discontinuities, require the probe to have the ability to be set up in very limited spaces. The development of a remote microphone probe, which is inexpensive, consistent, and repeatable, is described in the present communication. It allows for the measurement of pressure fluctuations with high spatial resolution and dynamic response over a wide range of frequencies. The probe is small enough to be placed within the interior of typical wind tunnel models. The remote microphone probe includes a small, rigid, and hollow tube that penetrates the model surface to form the sensing area. This tube is connected to a standard microphone, at some distance away from the surface, using a "T" junction. An experimental method is introduced to determine the dynamic response of the remote microphone probe. In addition, an analytical method for determining the dynamic response is described. The analytical method can be applied in the design stage to determine the dimensions and properties of the RMP components.
Development of a Linear Stirling Model with Varying Heat Inputs
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.
2007-01-01
The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC s non-linear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.
Development of a Linear Stirling System Model with Varying Heat Inputs
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.
2007-01-01
The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC's nonlinear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.
Selected topics from the structural acoustics program for the B-1 aircraft
NASA Technical Reports Server (NTRS)
Belcher, P. M.
1979-01-01
The major elements of the structural acoustics program for the B-1 aircraft are considered. Acoustic pressures measured at 280 sites on the surface of the vehicle were used to develop pressure models for a resizing of airframe components for aircraft No. 4 (A/C4). Acoustical fatigue design data for two dynamically complex structural configurations were acquired in laboratory programs, the conceptions for and executions of which detailed significant departures from the conventional. Design requirements for mechanical fasteners for configurations other than these two made use of analytical extensions of regrettably limited available information.
Inflight thermodynamic properties
NASA Technical Reports Server (NTRS)
Brown, S. C.; Daniels, G. E.; Johnson, D. L.; Smith, O. E.
1973-01-01
The inflight thermodynamic parameters (temperature, pressure, and density) of the atmosphere are presented. Mean and extreme values of the thermodynamic parameters given here can be used in application of many aerospace problems, such as: (1) research and planning and engineering design of remote earth sensing systems; (2) vehicle design and development; and (3) vehicle trajectory analysis, dealing with vehicle thrust, dynamic pressure, aerodynamic drag, aerodynamic heating, vibration, structural and guidance limitations, and reentry analysis. Atmospheric density plays a very important role in most of the above problems. A subsection on reentry is presented, giving atmospheric models to be used for reentry heating, trajectory, etc., analysis.
NASA Astrophysics Data System (ADS)
Said, M.
Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in service. In this work, a special emphasis will be given to the creep and dynamic characteristics of selected coextruded films and their dependence on the loading level and temperature. Preliminary testing has suggested t at the creep behavior of theh coextruded linear low density resin films is highly dependent on temperature and that the dynamic response depends on the make up of the composite film. In addition, the paper will, in general, highlight the process of qualify ing thin films for the pumpkin class of super pressure balloons.
Simulated Altitude Performance of Combustor of Westinghouse 19XB-1 Jet-Propulsion Engine
NASA Technical Reports Server (NTRS)
Childs, J. Howard; McCafferty, Richard J.
1948-01-01
A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.
Dynamic wetting failure in surfactant solutions
NASA Astrophysics Data System (ADS)
Liu, Chen-Yu; Vandre, Eric; Carvalho, Marcio; Kumar, Satish
2015-11-01
The influence of insoluble surfactants on dynamic wetting failure during displacement of Newtonian fluids in a rectangular channel is studied in this work. A hydrodynamic model for steady Stokes flows of dilute surfactant solutions is developed and evaluated using three approaches: (i) a one-dimensional (1D) lubrication-type approach, (ii) a novel hybrid of a 1D description of the receding phase and a 2D description of the advancing phase, and (iii) an asymptotic theory of Cox. Steady-state solution families in the form of macroscopic contact angles as a function of the capillary number are determined and limit points are identified. When air is the receding fluid, Marangoni stresses are found to increase the receding-phase pressure gradients near the contact line by thinning the air film without significantly changing the capillary-pressure gradients there. As consequence, the limit points shift to lower capillary numbers and the onset of wetting failure is promoted. The model predictions are then used to interpret decades-old experimental observations concerning the influence of surfactants on air entrainment. The hybrid modeling approach developed here can readily be extended to more complicated geometries where a thin air layer is present near a contact line.
NASA Technical Reports Server (NTRS)
Hwang, C.; Pi, W. S.
1978-01-01
A wind tunnel test of a 1/7 scale F-5A model is described. The pressure, force, and dynamic response measurements during buffet and wing rock are evaluated. Effects of Mach number, angle of attack, sideslip angle, and control surface settings were investigated. The mean and fluctuating static pressure data are presented and correlated with some corresponding flight test data of a F-5A aircraft. Details of the instrumentation and the specially designed support system which allowed the model to oscillate in roll to simulate wing rock are also described. A limit cycle mechanism causing wing rock was identified from this study, and this mechanism is presented.
Transient/structural analysis of a combustor under explosive loads
NASA Technical Reports Server (NTRS)
Gregory, Peyton B.; Holland, Anne D.
1992-01-01
The 8-Foot High Temperature Tunnel (HTT) at NASA Langley Research Center is a combustion-driven blow-down wind tunnel. A major potential failure mode that was considered during the combustor redesign was the possibility of a deflagration and/or detonation in the combustor. If a main burner flame-out were to occur, then unburned fuel gases could accumulate and, if reignited, an explosion could occur. An analysis has been performed to determine the safe operating limits of the combustor under transient explosive loads. The failure criteria was defined and the failure mechanisms were determined for both peak pressures and differential pressure loadings. An overview of the gas dynamics analysis was given. A finite element model was constructed to evaluate 13 transient load cases. The sensitivity of the structure to the frequency content of the transient loading was assessed. In addition, two closed form dynamic analyses were conducted to verify the finite element analysis. It was determined that the differential pressure load or thrust load was the critical load mechanism and that the nozzle is the weak link in the combustor system.
The plastic response of Tantalum in Quasi-Isentropic Compression Ramp and Release
NASA Astrophysics Data System (ADS)
Moore, Alexander; Brown, Justin; Lim, Hojun; Lane, J. Matthew D.
2017-06-01
The mechanical response of various forms of tantalum under extreme pressures and strain rates is studied using dynamic quasi-isentropic compression loading conditions in atomistic simulations. Ramp compression in bcc metals under these conditions tend to show a significant strengthening effect with increasing pressure; however, due to limitations of experimental methods in such regimes, the underlying physics for this phenomenon is not well understood. Molecular dynamics simulations provide important information about the plasticity mechanisms and can be used to investigate this strengthening. MD simulations are performed on nanocrystalline Ta and single crystal defective Ta with dislocations and point defects to uncover how the material responds and the underlying plasticity mechanisms. The different systems of solid Ta are seen to plastically deform through different mechanisms. Fundamental understanding of tantalum plasticity in these high pressure and strain rate regimes is needed to model and fully understand experimental results. Sandia National Labs is a multi program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points
NASA Astrophysics Data System (ADS)
Jia, Bing; Gu, Huaguang
2017-06-01
Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.
The Dynamics of Controlled Flow Separation within a Diverter Duct Diffuser
NASA Astrophysics Data System (ADS)
Peterson, C. J.; Vukasinovic, B.; Glezer, A.
2016-11-01
The evolution and receptivity to fluidic actuation of the flow separation within a rectangular, constant-width, diffuser that is branched off of a primary channel is investigated experimentally at speeds up to M = 0.4. The coupling between the diffuser's adverse pressure gradient and the internal separation that constricts nearly half of the flow passage through the duct is controlled using a spanwise array of fluidic actuators on the surface upstream of the diffuser's inlet plane. The dynamics of the separating surface vorticity layer in the absence and presence of actuation are investigated using high-speed particle image velocimetry combined with surface pressure measurements and total pressure distributions at the primary channel's exit plane. It is shown that the actuation significantly alters the incipient dynamics of the separating vorticity layer as the characteristic cross stream scales of the boundary layer upstream of separation and of the ensuing vorticity concentrations within the separated flow increase progressively with actuation level. It is argued that the dissipative (high frequency) actuation alters the balance between large- and small-scale motions near separation by intensifying the large-scale motions and limiting the small-scale dynamics. Controlling separation within the diffuser duct also has a profound effect on the global flow. In the presence of actuation, the mass flow rate in the primary duct increases 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45% at 0.7% actuation mass fraction. Supported by the Boeing Company.
The pressure control technology of the active stressed lap
NASA Astrophysics Data System (ADS)
Li, Ying; Wang, Daxing
2010-10-01
The active stressed lap polishing technology is a kind of new polishing technology that can actively deform the lap surface to become an off-axis asphere according to different lap position on mirror surface and different angle of lap. The pressure of the lap on the mirror is an important factor affecting the grinding efficiency of the optics mirror. The active stressed lap technology using dynamic pressure control solution in the process of polishing astronomical Aspheric Mirror with faster asphericity will provide the advantage like high polishing speed and natural smooth, etc. This article puts emphases on the pressure control technology of the active stressed lap technology. It requires that the active stressed lap keeps symmetrical vertical compression on the mirrors in the process of grinding mirrors. With a background of an active stressed lap 450mm in diameter, this article gives an outline of the pressure control organization, analyzes the principle of pressure control and proposes the limitations of the present pressure control organization and the relevant solutions, designs a digital pressure controller with C32-bit RISC embedded and gives the relevant experimental test result finally.
Radiation Pressure Cooling as a Quantum Dynamical Process
NASA Astrophysics Data System (ADS)
He, Bing; Yang, Liu; Lin, Qing; Xiao, Min
2017-06-01
One of the most fundamental problems in optomechanical cooling is how small the thermal phonon number of a mechanical oscillator can be achieved under the radiation pressure of a proper cavity field. Different from previous theoretical predictions, which were based on an optomechanical system's time-independent steady states, we treat such cooling as a dynamical process of driving the mechanical oscillator from its initial thermal state, due to its thermal equilibrium with the environment, to a stabilized quantum state of higher purity. We find that the stabilized thermal phonon number left in the end actually depends on how fast the cooling process could be. The cooling speed is decided by an effective optomechanical coupling intensity, which constitutes an essential parameter for cooling, in addition to the sideband resolution parameter that has been considered in other theoretical studies. The limiting thermal phonon number that any cooling process cannot surpass exhibits a discontinuous jump across a certain value of the parameter.
Advanced Booster Liquid Engine Combustion Stability
NASA Technical Reports Server (NTRS)
Tucker, Kevin; Gentz, Steve; Nettles, Mindy
2015-01-01
Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.
A New Forced Oscillation Capability for the Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Piatak, David J.; Cleckner, Craig S.
2002-01-01
A new forced oscillation system has been installed and tested at NASA Langley Research Center's Transonic Dynamics Tunnel (TDT). The system is known as the Oscillating Turntable (OTT) and has been designed for the purpose of oscillating, large semispan models in pitch at frequencies up to 40 Hz to acquire high-quality unsteady pressure and loads data. Precisely controlled motions of a wind-tunnel model on the OTT can yield unsteady aerodynamic phenomena associated with flutter, limit cycle oscillations, shock dynamics, and non-linear aerodynamic effects on many vehicle configurations. This paper will discuss general design and components of the OTT and will present test data from performance testing and from research tests on two rigid semispan wind-tunnel models. The research tests were designed to challenge the OTT over a wide range of operating conditions while acquiring unsteady pressure data on a small rectangular supercritical wing and a large supersonic transport wing. These results will be presented to illustrate the performance capabilities, consistency of oscillations, and usefulness of the OTT as a research tool.
Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining
NASA Astrophysics Data System (ADS)
Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.
2017-03-01
Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.
Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi
2016-01-01
Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319
NASA Astrophysics Data System (ADS)
Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi
2016-06-01
Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.
Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi
2016-06-15
Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.
Planetary Wind Determination by Doppler Tracking of a Small Entry Probe Network
NASA Astrophysics Data System (ADS)
Atkinson, D. H.; Asmar, S.; Lazio, J.; Preston, R. A.
2017-12-01
To understand the origin and chemical/dynamical evolution of planetary atmospheres, measurements of atmospheric chemistries and processes including dynamics are needed. In situ measurements of planetary winds have been demonstrated on multiple occasions, including the Pioneer multiprobe and Venera missions to Venus, and the Galileo/Jupiter and Huygens/Titan probes. However, with the exception of Pioneer Venus, the retrieval of the zonal (east-west) wind profile has been limited to a single atmospheric slice. significantly improved understanding of the global dynamics requires sampling of multiple latitudes, times of day, and seasons. Simultaneous tracking of a small network of probes would enable measurements of spatially distributed winds providing a substantially improved characterization of a planet's global atmospheric circulation. Careful selection of descent locations would provide wind measurements at latitudes receiving different solar insolations, longitudes reflecting different times of day, and different seasons if both hemispheres are targeted. Doppler wind retrievals are limited by the stability of the probe and carrier spacecraft clocks, and must be equipped with an ultrastable oscillator, accelerometers for reconstructing the probe entry trajectory, and pressure / temperature sensors for determination of descent speed. A probe were equipped with both absolute and dynamic pressure sensors can measure planet center-relative and atmosphere-relative descent speeds, enabling the measurement of vertical winds from convection or atmospheric waves. Possible ambiguities arising from the assumption of no north-south winds could be removed if the probe were simultaneously tracked from the carrier spacecraft as well as from the Earth or a second spacecraft. The global circulation of an atmosphere comprising waves and flows that vary with location and depth is inherently tied to the thermal, chemical, and energy structure of the atmosphere. Wind measurements along a single vertical atmospheric slice cannot adequately represent the overall dynamical properties of the atmosphere. To more completely characterize the dynamical structure of a planetary atmosphere, it is proposed that future in situ planetary missions include a network of small probes dedicated to wind measurements.
Reference values for CSF outflow resistance and intracranial pressure in healthy elderly.
Malm, Jan; Jacobsson, Johan; Birgander, Richard; Eklund, Anders
2011-03-08
The intracranial pressure (ICP) and CSF outflow resistance (R(out)) are essential to describe the dynamics of the CSF system. R(out) affects ICP, pulse amplitudes, CSF absorption, and the compliance of the system. The objective of this study was to determine the reference values in healthy elderly subjects. Elderly people (60-82 years), who considered themselves healthy, were recruited through an advertisement in the local newspaper. All were evaluated with a 3-T MRI. Subjects were eligible if they did not have any psychiatric or neurologic disorder or signs of advanced atherosclerotic disease. CSF resting pressure (ICP) and R(out) were determined by a constant pressure infusion method with the patient in the supine position. The study population consisted of 40 subjects (mean age 70 years; 23 women). The median ICP was 11.6 mm Hg (15.8 cmH(2)O) and the reference interval was ICP 7.8-14.3 mm Hg (10.6-19.4 cmH(2)O) (defined as 5th to 95th percentiles). The median R(out) was 8.6 mm Hg/mL/min. The variation in R(out) was large and not normally distributed. The 90th percentile of R(out) was 17.4 mm Hg/mL/min. This study reports reference values for ICP and R(out) and should be used for comparison when investigating disorders with suspected CSF dynamic disturbances in the elderly. ICP was in the same range as that reported in the young and middle-aged. The upper limit of R(out) was higher than previously believed to be the upper limit of normal for this age group.
Palacios-Ceña, M; Wang, K; Castaldo, M; Guerrero-Peral, Á; Caminero, A B; Fernández-de-Las-Peñas, C; Arendt-Nielsen, L
2017-09-01
To explore the validity of dynamic pressure algometry for evaluating deep dynamic mechanical sensitivity by assessing its association with headache features and widespread pressure sensitivity in tension-type headache (TTH). One hundred and eighty-eight subjects with TTH (70% women) participated. Deep dynamic sensitivity was assessed with a dynamic pressure algometry set (Aalborg University, Denmark © ) consisting of 11 different rollers including fixed levels from 500 g to 5300 g. Each roller was moved at a speed of 0.5 cm/s over a 60-mm horizontal line covering the temporalis muscle. Dynamic pain threshold (DPT-level of the first painful roller) was determined and pain intensity during DPT was rated on a numerical pain rate scale (NPRS, 0-10). Headache clinical features were collected on a headache diary. As gold standard, static pressure pain thresholds (PPT) were assessed over temporalis, C5/C6 joint, second metacarpal, and tibialis anterior muscle. Side-to-side consistency between DPT (r = 0.843, p < 0.001) and pain evoked (r = 0.712; p < 0.001) by dynamic algometer was observed. DPT was moderately associated with widespread PPTs (0.526 > r > 0.656, all p < 0.001). Furthermore, pain during DPT was negatively associated with widespread PPTs (-0.370 < r < -0.162, all p < 0.05). Dynamic pressure algometry was a valid tool for assessing deep dynamic mechanical sensitivity in TTH. DPT was associated with widespread pressure sensitivity independently of the frequency of headaches supporting that deep dynamic pressure sensitivity within the trigeminal area is consistent with widespread pressure sensitivity. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a new tool for assessing treatment effects. The current study found that dynamic pressure algometry in the temporalis muscle was associated with widespread pressure pain sensitivity in individuals with tension-type headache. The association was independent of the frequency of headaches. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a tool for assessing treatment effects. © 2017 European Pain Federation - EFIC®.
Walsh, Tom P; Butterworth, Paul A; Urquhart, Donna M; Cicuttini, Flavia M; Landorf, Karl B; Wluka, Anita E; Michael Shanahan, E; Menz, Hylton B
2017-01-01
There is a well-recognised relationship between body weight, plantar pressures and foot pain, but the temporal association between these factors is unknown. The aim of this study was to investigate the relationships between increasing weight, plantar pressures and foot pain over a two-year period. Fifty-one participants (33 women and 18 men) completed the two-year longitudinal cohort study. The sample had a mean (standard deviation (SD)) age of 52.6 (8.5) years. At baseline and follow-up, participants completed the Manchester Foot Pain and Disability Index questionnaire, and underwent anthropometric measures, including body weight, body mass index, and dynamic plantar pressures. Within-group analyses examined differences in body weight, foot pain and plantar pressures between baseline and follow up, and multivariate regression analysis examined associations between change in body weight, foot pain and plantar pressure. Path analysis assessed the total impact of both the direct and indirect effects of change in body weight on plantar pressure and pain variables. Mean (SD) body weight increased from 80.3 (19.3), to 82.3 (20.6) kg, p = 0.016 from baseline to follow up. The change in body weight ranged from -16.1 to 12.7 kg. The heel was the only site to exhibit increased peak plantar pressures between baseline and follow up. After adjustment for age, gender and change in contact time (where appropriate), there were significant associations between: (i) change in body weight and changes in midfoot plantar pressure ( B = 4.648, p = 0.038) and functional limitation ( B = 0.409, p = 0.010), (ii) plantar pressure change in the heel and both functional limitation ( B = 4.054, p = 0.013) and pain intensity ( B = 1.831, p = 0.006), (iii) plantar pressure change in the midfoot and both functional limitation ( B = 4.505 , p = 0.018) and pain intensity ( B = 1.913 , p = 0.015) . Path analysis indicated that the effect of increasing body weight on foot-related functional limitation and foot pain intensity may be mediated by increased plantar pressure in the midfoot. These findings suggest that as body weight and plantar pressure increase, foot pain increases, and that the midfoot may be the most vulnerable site for pressure-related pain.
NASA Astrophysics Data System (ADS)
Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui
2018-01-01
Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.
Transmission dynamics of parasitic sea lice from farm to wild salmon.
Krkosek, Martin; Lewis, Mark A; Volpe, John P
2005-04-07
Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation.
Transmission dynamics of parasitic sea lice from farm to wild salmon
Krkošek, Martin; Lewis, Mark A; Volpe, John P
2005-01-01
Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi ) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation. PMID:15870031
Iverson, R.M.; Denlinger, R.P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.; Denlinger, Roger P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.
2014-01-01
This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.
Prediction of fluctuating pressure environments associated with plume-induced separated flow fields
NASA Technical Reports Server (NTRS)
Plotkin, K. J.
1973-01-01
The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.
Stability analysis for capillary channel flow: 1d and 3d computations
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The subject of the presentation are numerical studies on capillary channel flow, based on results of the sounding rocket TEXUS experiments. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behavior, a dimensionless one-dimensional model and a corresponding three-dimensional model were developed. The one-dimensional model is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The experimental and evaluated contour data show good agreement for a sequence of transient flow rate perturbations. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies lead to a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate.
NASA Astrophysics Data System (ADS)
Cao, Liang; Downey, Austin; Laflamme, Simon; Taylor, Douglas; Ricles, James
2015-07-01
Supplemental damping can be used as a cost-effective method to reduce structural vibrations. In particular, passive systems are now widely accepted and have numerous applications in the field. However, they are typically tuned to specific excitations and their performances are bandwidth-limited. A solution is to use semi-active devices, which have shown to be capable of substantially enhanced mitigation performance. The authors have recently proposed a new type of semi-active device, which consists of a variable friction mechanism based on a vehicle duo-servo drum brake, a mechanically robust and reliable technology. The theoretical performance of the proposed device has been previously demonstrated via numerical simulations. In this paper, we further the understanding of the device, termed Modified Friction Device (MFD) by fabricating a small scale prototype and characterizing its dynamic behavior. While the dynamics of friction is well understood for automotive braking technology, we investigate for the first time the dynamic behavior of this friction mechanism at low displacements and velocities, in both forward and backward directions, under various hydraulic pressures. A modified 3-stage dynamic model is introduced. A LuGre friction model is used to characterize the friction zone (Stage 1), and two pure stiffness regions to characterize the dynamics of the MFD once the rotation is reversed and the braking shoes are sticking to the drum (Stage 2) and the rapid build up of forces once the shoes are held by the anchor pin (Stage 3). The proposed model is identified experimentally by subjecting the prototype to harmonic excitations. It is found that the proposed model can be used to characterize the dynamics of the MFD, and that the largest fitting error arises at low velocity under low pressure input. The model is then verified by subjecting the MFD to two different earthquake excitations under different pressure inputs. The model is capable of tracking the device's response, despite a lower fitting performance under low pressure and small force output, as it was found in the harmonic tests due to the possible nonlinearity in Stage 2 of the model.
Range dynamics of mountain plants decrease with elevation.
Rumpf, Sabine B; Hülber, Karl; Klonner, Günther; Moser, Dietmar; Schütz, Martin; Wessely, Johannes; Willner, Wolfgang; Zimmermann, Niklaus E; Dullinger, Stefan
2018-02-20
Many studies report that mountain plant species are shifting upward in elevation. However, the majority of these reports focus on shifts of upper limits. Here, we expand the focus and simultaneously analyze changes of both range limits, optima, and abundances of 183 mountain plant species. We therefore resurveyed 1,576 vegetation plots first recorded before 1970 in the European Alps. We found that both range limits and optima shifted upward in elevation, but the most pronounced trend was a mean increase in species abundance. Despite huge species-specific variation, range dynamics showed a consistent trend along the elevational gradient: Both range limits and optima shifted upslope faster the lower they were situated historically, and species' abundance increased more for species from lower elevations. Traits affecting the species' dispersal and persistence capacity were not related to their range dynamics. Using indicator values to stratify species by their thermal and nutrient demands revealed that elevational ranges of thermophilic species tended to expand, while those of cold-adapted species tended to contract. Abundance increases were strongest for nutriphilous species. These results suggest that recent climate warming interacted with airborne nitrogen deposition in driving the observed dynamics. So far, the majority of species appear as "winners" of recent changes, yet "losers" are overrepresented among high-elevation, cold-adapted species with low nutrient demands. In the decades to come, high-alpine species may hence face the double pressure of climatic changes and novel, superior competitors that move up faster than they themselves can escape to even higher elevations.
Jiménez-Fernández, J
2018-01-01
This paper investigates the dependence of the subharmonic response in a signal scattered by contrast agent microbubbles on ambient pressure to provide quantitative estimations of local blood pressure. The problem is formulated by assuming a gas bubble encapsulated by a shell of finite thickness with dynamic behavior modeled by a nonlinear viscoelastic constitutive equation. For ambient overpressure compatible with the clinical range, the acoustic pressure intervals where the subharmonic signal may be detected (above the threshold for the onset and below the limit value for the first chaotic transition) are determined. The analysis shows that as the overpressure is increased, all harmonic components are displaced to higher frequencies. This displacement is significant for the subharmonic of order 1/2 and explains the increase or decrease in the subharmonic amplitude with ambient pressure described in previous works. Thus, some questions related to the monotonic dependence of the subharmonic amplitude on ambient pressure are clarified. For different acoustic pressures, quantitative conditions for determining the intervals where the subharmonic amplitude is a monotonic or non-monotonic function of the ambient pressure are provided. Finally, the influence of the ambient pressure on the subharmonic resonance frequency is analyzed.
Effect of an entrained air bubble on the acoustics of an ink channel.
Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2008-05-01
Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.
Probing the limits of metal plasticity with molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.
2017-10-01
Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong and stiff metal.
Stabilizing detached Bridgman melt crystal growth: Proportional-integral feedback control
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.
2012-10-01
The dynamics, operability limits, and tuning of a proportional-integral feedback controller to stabilize detached vertical Bridgman crystal growth are analyzed using a capillary model of shape stability. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. Open and closed loop dynamics of step changes in these state variables are analyzed under both shape stable and shape unstable growth conditions. Effects of step changes in static contact angle and growth angle are also studied. Proportional and proportional-integral control can stabilize unstable growth, but only within tight operability limits imposed by the narrow range of allowed meniscus shapes. These limits are used to establish safe operating ranges of controller gain. Strong nonlinearity of the capillary model restricts the range of perturbations that can be stabilized, and under some circumstances, stabilizes a spurious operating state far from the set point. Stabilizing detachment at low growth angle proves difficult and becomes impossible at zero growth angle.
Population size effects in evolutionary dynamics on neutral networks and toy landscapes
NASA Astrophysics Data System (ADS)
Sumedha; Martin, Olivier C.; Peliti, Luca
2007-05-01
We study the dynamics of a population subject to selective pressures, evolving either on RNA neutral networks or on toy fitness landscapes. We discuss the spread and the neutrality of the population in the steady state. Different limits arise depending on whether selection or random drift is dominant. In the presence of strong drift we show that the observables depend mainly on Mμ, M being the population size and μ the mutation rate, while corrections to this scaling go as 1/M: such corrections can be quite large in the presence of selection if there are barriers in the fitness landscape. Also we find that the convergence to the large-Mμ limit is linear in 1/Mμ. Finally we introduce a protocol that minimizes drift; then observables scale like 1/M rather than 1/(Mμ), allowing one to determine the large-M limit more quickly when μ is small; furthermore the genotypic diversity increases from O(lnM) to O(M).
NASA Technical Reports Server (NTRS)
Bertelrud, Arild; Johnson, Sherylene; Anders, J. B. (Technical Monitor)
2002-01-01
A 2-D (two dimensional) high-lift system experiment was conducted in August of 1996 in the Low Turbulence Pressure Tunnel at NASA Langley Research Center, Hampton, VA. The purpose of the experiment was to obtain transition measurements on a three element high-lift system for CFD (computational fluid dynamics) code validation studies. A transition database has been created using the data from this experiment. The present report details how the hot-film data and the related pressure data are organized in the database. Data processing codes to access the data in an efficient and reliable manner are described and limited examples are given on how to access the database and store acquired information.
Melting of iron determined by X-ray absorption spectroscopy to 100 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol
2015-09-14
There is a long-standing controversy over the melting curve of Fe at high pressure as determined from static laser heated diamond anvil cell and dynamic compression studies. X-ray absorption spectroscopy measurements are used here as a criterion to detect melting under pressure. Confronted with a diversity of obtained melting curves, this technique, used at such pressure and temperature conditions, is eligible to be at the forefront to probe Earth's deep interior. Furthermore, the experiment reported here holds promise for addressing important issues related to the structure and phase diagram of compressed melts, such as the existence of structural complexity (polyamorphism)more » in the liquid phase or the extent of icosahedral ordering whose investigation has been limited until now to ambient conditions.« less
NASA Astrophysics Data System (ADS)
Belonoshko, A. B.; Saxena, S. K.
1992-10-01
A unified equation of state (EOS) is derived for 13 gases (including H2O, CO2, CH4, CO, O2, H2, Ar, N2, NH3, H2S, SO2, COS, and S2) in C-H-O-N-S-Ar system, on the basis of molecular dynamical simulated PVT data, assuming these species to be alpha-exponential-6 fluids at high temperature and pressure. The EOS equation is parameterized for these gases in the ranges of temperature and pressure 400-4000 K and 5-1000 kbar, respectively. It is shown that the equation reproduces most of the available experimental data in the limits of experimental accuracy of volume measurements.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.
NASA Technical Reports Server (NTRS)
Coffin, T.
1986-01-01
A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is presented. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level.
NASA Astrophysics Data System (ADS)
Gopal, Abishek; Yellapantula, Shashank; Larsson, Johan
2017-11-01
Methane is increasingly becoming viable as a rocket fuel in the latest generation of launch vehicles. In liquid rocket engines, fuel and oxidizer are injected under cryogenic conditions into the combustion chamber. At high pressures, typical of rocket combustion chambers, the propellants exist in supercritical states where the ideal gas thermodynamics are no longer valid. We investigate the effects of real-gas thermodynamics on transcritical laminar premixed methane-oxygen flames. The effect of the real-gas cubic equations of state and high-pressure transport properties on flame dynamics is presented. We also study real-gas effects on the extinction limits of the methane-oxygen flame.
Cheng, Yunzhang; Zhu, Lihua; Zhang, Weiguo; Wu, Wenquan
2011-12-01
The problem of noise in ventilator has always been an important topic to study in the development of the ventilator. A great number of data are showing that there are still large gaps of research and application levels in noise control of the ventilator between China and some more advanced foreign countries. In this study, with cooperation of the Shanghai Medical Equipment Limited Liability Company, we used the computational fluid dynamics (CFD), software FLUENT, adopted the standard k-epsilon turbulence model and the SIMPLE algorithm to simulate the inner flow field of the continuous positive airway pressure (CPAP) ventilator's pressure generator. After a detailed analysis, we figured out that there are several deficiencies in this ventilator, like local reflow in volute, uneven velocity distribution and local negative pressure in inlet of the impeller, which easily lead to noise and affect the ventilator's performances. So, it needs to be improved to a certain extent.
Instability and dynamics of volatile thin films
NASA Astrophysics Data System (ADS)
Ji, Hangjie; Witelski, Thomas P.
2018-02-01
Volatile viscous fluids on partially wetting solid substrates can exhibit interesting interfacial instabilities and pattern formation. We study the dynamics of vapor condensation and fluid evaporation governed by a one-sided model in a low-Reynolds-number lubrication approximation incorporating surface tension, intermolecular effects, and evaporative fluxes. Parameter ranges for evaporation-dominated and condensation-dominated regimes and a critical case are identified. Interfacial instabilities driven by the competition between the disjoining pressure and evaporative effects are studied via linear stability analysis. Transient pattern formation in nearly flat evolving films in the critical case is investigated. In the weak evaporation limit unstable modes of finite-amplitude nonuniform steady states lead to rich droplet dynamics, including flattening, symmetry breaking, and droplet merging. Numerical simulations show that long-time behaviors leading to evaporation or condensation are sensitive to transitions between filmwise and dropwise dynamics.
NASA Astrophysics Data System (ADS)
Shrestha, U. R.; Bhowmik, D.; Copley, J. R. D.; Tyagi, M.; Leao, J. B.; Chu, X.-Q.
Inorganic pyrophosphatase (IPPase) from Thermococcus thioreducens is a large oligomeric protein derived from hyperthermophilic microorganism that is found near hydrothermal vents deep under the sea, where the pressure is nearly 100 MPa. Here we study the effects of pressure on the conformational flexibility and relaxation dynamics of IPPase over a wide temperature range using quasielastic neutron scattering (QENS) technique. Two spectrometers were used to investigate the β-relaxation dynamics of proteins in time ranges from 2 to 25 ps, and from 100 ps to 2 ns. Our results reveal that, under the pressure of 100 MPa, IPPase displays much faster relaxation dynamics than a mesophilic model protein, hen egg white lysozyme (HEWL), opposite to what we observed previously under the ambient pressure. These contradictory observations imply that high pressure affects the dynamical properties of proteins by distorting their energy landscapes. Accordingly, we derived a general schematic denaturation phase diagram that can be used as a general picture to understand the effects of pressure on protein dynamics and activities Wayne State Univ Startup Fund.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nitheanandan, T.; Kyle, G.; O'Connor, R.
2006-07-01
A high-pressure melt ejection test using prototypical corium was conducted at Atomic Energy of Canada Limited Chalk River Laboratories. This test was planned by the CANDU Owners Group to study the potential for an energetic interaction between molten fuel and water under postulated single-channel flow-blockage events. The experiments were designed to address regulator concerns surrounding this very low probability postulated accident events in CANDU Pressurized Heavy Water Reactors. The objective of the experimental program is to determine whether a highly energetic 'steam explosion' and associated high-pressure pulse, is possible when molten material is finely fragmented as it is ejected frommore » a fuel channel into the heavy-water moderator. The finely fragmented melt particles would transfer energy to the moderator as it is dispersed, creating a modest pressure pulse in the calandria vessel. The high-pressure melt ejection test consisted of heating up a {approx} 5 kg thermite mixture of U, U{sub 3}O{sub 8}, Zr, and CrO{sub 3} inside a 1.14-m length of insulated pressure tube. When the molten material reached the desired temperature of {approx} 2400 deg C, the pressure inside the tube was raised to 11.6 MPa, failing the pressure tube at a pre-machined flaw, and releasing the molten material into the surrounding tank of 68 deg C water. The experiment investigated the dynamic pressure history, debris size, and the effects of the material interacting with tubes representing neighbouring fuel channels. The measured mean particle size was 0.686 mm and the peak dynamic pressures were between 2.54 and 4.36 MPa, indicating that an energetic interaction between the melt and the water did not occur in the test. (authors)« less
Critical capillary channel flow
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Klatte, Jörg; Dreyer, Michael E.
The main subject are numerical studies on capillary channel flow, based on results of the sounding rocket experiments TEXUS 41/42. The flow through a capillary channel is established by a gear pump at the outlet. The channel, consists of two parallel glass plates with a width of 25 mm, a gap of 10 mm and a length of 12 mm. The meniscus of a compensation tube maintains a constant system pressure. Steady and dynamic pressure effects in the system force the surfaces to bend inwards. A maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the channel geometry, the flow regime and the liquid properties. The aim of the experiments is the determination of the free surface shape and to find the maximum flow rate. In order to study the unsteady liquid loop behaviour, a dimensionless transient model was developed. It is based on the unsteady Bernoulli equation, the unsteady continuity equation and geometrical conditions for the surface curvature and the flow cross-section. The pressure is related to the curvature of the free liquid surface by the dimensionless Gauss-Laplace equation with two principal radii. The experimental and evaluated contour data shows good agreement for a sequence of transient flow rate perturbations. The surface oscillation frequencies and amplitudes can be predicted with quite high accuracy. The dynamic of the pump is defined by the increase of the flow rate in a time period. To study the unsteady system behavior in the "worst case", we use a perturbations related to the natural frequency of the oscillating liquid. In the case of steady flow at maximum flow rate, when the "choking" effect occurs, the surfaces collapse and cause gas ingestion into the channel. This effect is related to the Speed Index. At the critical flow rate the Speed Index reaches the value Sca = 1, in analogy to the Mach Number. Unsteady choking does not necessarily cause surface collapse. We show, that temporarily Speed Index values exceeding One may be achieved for a perfectly stable supercritical dynamic flow. As a supercritical criterion for the dynamic free surface stability we define a Dynamic Index D considering the local capillary pressure and the convective pressure, which is a function of the local velocity. The Dynamic Index is below One for stable flow while D = 1 indicates surface collapse. This studies result in a stability diagram, which defines the limits of flow dynamics and the maximum unsteady flow rate. It may serve as a road map for open capillary channel flow control.
NASA Astrophysics Data System (ADS)
Salminen, J.; Högström, R.; Saxholm, S.; Lakka, A.; Riski, K.; Heinonen, M.
2018-04-01
In this paper we present the development of a primary standard for dynamic pressures that is based on the drop weight method. At the moment dynamic pressure transducers are typically calibrated using reference transducers, which are calibrated against static pressure standards. Because dynamic and static characteristics of pressure transducers may significantly differ from each other, it is important that these transducers are calibrated against dynamic pressure standards. In a method developed in VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES, a pressure pulse is generated by impact between a dropping weight and a piston of a liquid-filled piston-cylinder assembly. The traceability to SI-units is realized through interferometric measurement of the acceleration of the dropping weight during impact, the effective area of the piston-cylinder assembly and the mass of the weight. Based on experimental validation and an uncertainty evaluation, the developed primary standard provides traceability for peak pressures in the range from 10 MPa to 400 MPa with a few millisecond pulse width and a typical relative expanded uncertainty (k = 2) of 1.5%. The performance of the primary standard is demonstrated by test calibrations of two dynamic pressure transducers.
NASA Astrophysics Data System (ADS)
Goldman, Benjamin D.
The purpose of this dissertation is to study the aeroelastic stability of a proposed flexible thermal protection system (FTPS) for the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A flat, square FTPS coupon exhibits violent oscillations during experimental aerothermal testing in NASA's 8 Foot High Temperature Tunnel, leading to catastrophic failure. The behavior of the structural response suggested that aeroelastic flutter may be the primary instability mechanism, prompting further experimental investigation and theoretical model development. Using Von Karman's plate theory for the panel-like structure and piston theory aerodynamics, a set of aeroelastic models were developed and limit cycle oscillations (LCOs) were calculated at the tunnel flow conditions. Similarities in frequency content of the theoretical and experimental responses indicated that the observed FTPS oscillations were likely aeroelastic in nature, specifically LCO/flutter. While the coupon models can be used for comparison with tunnel tests, they cannot predict accurately the aeroelastic behavior of the FTPS in atmospheric flight. This is because the geometry of the flight vehicle is no longer a flat plate, but rather (approximately) a conical shell. In the second phase of this work, linearized Donnell conical shell theory and piston theory aerodynamics are used to calculate natural modes of vibration and flutter dynamic pressures for various structural models composed of one or more conical shells resting on several circumferential elastic supports. When the flight vehicle is approximated as a single conical shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case, as "hump-mode" flutter is possible. Aeroelastic models that consider the individual FTPS layers as separate shells exhibit asymmetric flutter at high dynamic pressures relative to the single shell models. Parameter studies also examine the effects of tension, shear modulus reduction, and elastic support stiffness. Limitations of a linear structural model and piston theory aerodynamics prompted a more elaborate evaluation of the flight configuration. Using nonlinear Donnell conical shell theory for the FTPS structure, the pressure buckling and aeroelastic limit cycle oscillations were studied for a single elastically-supported conical shell. While piston theory was used initially, a time-dependent correction factor was derived using transform methods and potential flow theory to calculate more accurately the low Mach number supersonic flow. Three conical shell geometries were considered: a 3-meter diameter 70° shell, a 3.7-meter 70° shell, and a 6-meter diameter 70° shell. The 6-meter configuration was loaded statically and the results were compared with an experimental load test of a 6-meter HIAD vehicle. Though agreement between theoretical and experimental strains was poor, circumferential wrinkling phenomena observed during the experiments was captured by the theory and axial deformations were qualitatively similar in shape. With piston theory aerodynamics, the nonlinear flutter dynamic pressures of the 3-meter configuration were in agreement with the values calculated using linear theory, and the limit cycle amplitudes were generally on the order of the shell thickness. Pre-buckling pressure loads and the aerodynamic pressure correction factor were studied for all geometries, and these effects resulted in significantly lower flutter boundaries compared with piston theory alone. In the final phase of this work, the existing linear and nonlinear FTPS shell models were coupled with NASA's FUN3D Reynolds Averaged Navier Stokes CFD code, allowing for the most physically realistic flight predictions. For the linear shell structural model, the elastically-supported shell natural modes were mapped to a CFD grid of a 6-meter HIAD vehicle, and a linear structural dynamics solver internal to the CFD code was used to compute the aeroelastic response. Aerodynamic parameters for a proposed HIAD re-entry trajectory were obtained, and aeroelastic solutions were calculated at three points in the trajectory: Mach 1, Mach 2, and Mach 11 (peak dynamic pressure). No flutter was found at any of these conditions using the linear method, though oscillations (of uncertain origin) on the order of the shell thickness may be possible in the transonic regime. For the nonlinear shell structural model, a set of assumed sinusoidal modes were mapped to the CFD grid, and the linear structural dynamics equations were replaced by a nonlinear ODE solver for the conical shell equations. Successful calculation and restart of the nonlinear dynamic aeroelastic solutions was demonstrated. Preliminary results indicated that dynamic instabilities may be possible at Mach 1 and 2, with a completely stable solution at Mach 11, though further study is needed. A major benefit of this implementation is that the coefficients and mode shapes for the nonlinear conical shell may be replaced with those of other types of structures, greatly expanding the aeroelastic capabilities of FUN3D.
Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations
NASA Astrophysics Data System (ADS)
Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.
2018-02-01
We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.
Steam jacket dynamics in underground coal gasification
NASA Astrophysics Data System (ADS)
Otto, Christopher; Kempka, Thomas
2017-04-01
Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.
A new model-free index of dynamic cerebral blood flow autoregulation.
Chacón, Max; Jara, José Luis; Panerai, Ronney B
2014-01-01
The classic dynamic autoregulatory index (ARI), proposed by Aaslid and Tiecks, is one of the most widely used methods to assess the efficiency of dynamic cerebral autoregulation. Although this index is often used in clinical research and is also included in some commercial equipment, it exhibits considerable intra-subject variability, and has the tendency to produce false positive results in clinical applications. An alternative index of dynamic cerebral autoregulation is proposed, which overcomes most of the limitations of the classic method and also has the advantage of being model-free. This new index uses two parameters that are obtained directly from the response signal of the cerebral blood flow velocity to a transient decrease in arterial blood pressure provoked by the sudden release of bilateral thigh cuffs, and a third parameter measuring the difference in slope of this response and the change in arterial blood pressure achieved. With the values of these parameters, a corresponding classic autoregulatory index value could be calculated by using a linear regression model built from theoretical curves generated with the Aaslid-Tiecks model. In 16 healthy subjects who underwent repeated thigh-cuff manoeuvres, the model-free approach exhibited significantly lower intra-subject variability, as measured by the unbiased coefficient of variation, than the classic autoregulatory index (p = 0.032) and the Rate of Return (p<0.001), another measure of cerebral autoregulation used for this type of systemic pressure stimulus, from 39.23%±41.91% and 55.31%±31.27%, respectively, to 15.98%±7.75%.
A New Model-Free Index of Dynamic Cerebral Blood Flow Autoregulation
Chacón, Max; Jara, José Luis; Panerai, Ronney B.
2014-01-01
The classic dynamic autoregulatory index (ARI), proposed by Aaslid and Tiecks, is one of the most widely used methods to assess the efficiency of dynamic cerebral autoregulation. Although this index is often used in clinical research and is also included in some commercial equipment, it exhibits considerable intra-subject variability, and has the tendency to produce false positive results in clinical applications. An alternative index of dynamic cerebral autoregulation is proposed, which overcomes most of the limitations of the classic method and also has the advantage of being model-free. This new index uses two parameters that are obtained directly from the response signal of the cerebral blood flow velocity to a transient decrease in arterial blood pressure provoked by the sudden release of bilateral thigh cuffs, and a third parameter measuring the difference in slope of this response and the change in arterial blood pressure achieved. With the values of these parameters, a corresponding classic autoregulatory index value could be calculated by using a linear regression model built from theoretical curves generated with the Aaslid-Tiecks model. In 16 healthy subjects who underwent repeated thigh-cuff manoeuvres, the model-free approach exhibited significantly lower intra-subject variability, as measured by the unbiased coefficient of variation, than the classic autoregulatory index (p = 0.032) and the Rate of Return (p<0.001), another measure of cerebral autoregulation used for this type of systemic pressure stimulus, from 39.23%±41.91% and 55.31%±31.27%, respectively, to 15.98%±7.75%. PMID:25313519
Rood, Akkie; Hannink, Gerjon; Lenting, Anke; Groenen, Karlijn; Koëter, Sander; Verdonschot, Nico; van Kampen, Albert
2015-10-01
Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixation. Static MPFL reconstruction is most commonly used. However, dynamic reconstruction deforms more easily and presumably functions more like the native MPFL. The aim of the study was to evaluate the effect of the different MPFL fixation techniques on patellofemoral pressures compared with the native situation. The hypothesis was that dynamic reconstruction would result in patellofemoral pressures closer to those generated in an intact knee. Controlled laboratory study. Seven fresh-frozen knee specimens were tested in an in vitro knee joint loading apparatus. Tekscan pressure-sensitive films fixed to the retropatellar cartilage measured mean patellofemoral and peak pressures, contact area, and location of the center of force (COF) at fixed flexion angles from 0° to 110°. Four different conditions were tested: intact, dynamic, partial dynamic, and static MPFL reconstruction. Data were analyzed using linear mixed models. Static MPFL reconstruction resulted in higher peak and mean pressures from 60° to 110° of flexion (P < .001). There were no differences in pressure between the 2 different dynamic reconstructions and the intact situation (P > .05). The COF in the static reconstruction group moved more medially on the patella from 50° to 110° of flexion compared with the other conditions. The contact area showed no significant differences between the test conditions. After static MPFL reconstruction, the patellofemoral pressures in flexion angles from 60° to 110° were 3 to 5 times higher than those in the intact situation. The pressures after dynamic MPFL reconstruction were similar as compared with those in the intact situation, and therefore, dynamic MPFL reconstruction could be a safer option than static reconstruction for stabilizing the patella. This study showed that static MPFL reconstruction results in higher patellofemoral pressures and thus enhances the chance of osteoarthritis in the long term, while dynamic reconstruction results in more normal pressures. © 2015 The Author(s).
Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.
In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less
Detonation mode and frequency analysis under high loss conditions for stoichiometric propane-oxygen
Jackson, Scott I.; Lee, Bok Jik; Shepherd, Joseph E.
2016-03-24
In this paper, the propagation characteristics of galloping detonations were quantified with a high-time-resolution velocity diagnostic. Combustion waves were initiated in 30-m lengths of 4.1-mm inner diameter transparent tubing filled with stoichiometric propane–oxygen mixtures. Chemiluminescence from the resulting waves was imaged to determine the luminous wave front position and velocity every 83.3 μ. As the mixture initial pressure was decreased from 20 to 7 kPa, the wave was observed to become increasingly unsteady and transition from steady detonation to a galloping detonation. While wave velocities averaged over the full tube length smoothly decreased with initial pressure down to half ofmore » the Chapman–Jouguet detonation velocity (D CJ) at the quenching limit, the actual propagation mechanism was seen to be a galloping wave with a cycle period of approximately 1.0 ms, corresponding to a cycle length of 1.3–2.0 m or 317–488 tube diameters depending on the average wave speed. The long test section length of 7300 tube diameters allowed observation of up to 20 galloping cycles, allowing for statistical analysis of the wave dynamics. In the galloping regime, a bimodal velocity distribution was observed with peaks centered near 0.4 D CJ and 0.95 D CJ. Decreasing initial pressure increasingly favored the low velocity mode. Galloping frequencies ranged from 0.8 to 1.0 kHz and were insensitive to initial mixture pressure. Wave deflagration-to-detonation transition and detonation failure trajectories were found to be repeatable in a given test and also across different initial mixture pressures. The temporal duration of wave dwell at the low and high velocity modes during galloping was also quantified. It was found that the mean wave dwell duration in the low velocity mode was a weak function of initial mixture pressure, while the mean dwell time in the high velocity mode depended exponentially on initial mixture pressure. Analysis of the velocity histories using dynamical systems ideas demonstrated trajectories that varied from stable to limit cycles to aperiodic motion with decreasing initial pressure. Finally, the results indicate that galloping detonation is a persistent phenomenon at long tube lengths.« less
Winne, Christopher T; Willson, John D; Whitfield Gibbons, J
2010-04-01
The causes and consequences of body size and sexual size dimorphism (SSD) have been central questions in evolutionary ecology. Two, often opposing selective forces are suspected to act on body size in animals: survival selection and reproductive (fecundity and sexual) selection. We have recently identified a system where a small aquatic snake species (Seminatrix pygaea) is capable of surviving severe droughts by aestivating within dried, isolated wetlands. We tested the hypothesis that the lack of aquatic prey during severe droughts would impose significant survivorship pressures on S. pygaea, and that the largest individuals, particularly females, would be most adversely affected by resource limitation. Our findings suggest that both sexes experience selection against large body size during severe drought when prey resources are limited, as nearly all S. pygaea are absent from the largest size classes and maximum body size and SSD are dramatically reduced following drought. Conversely, strong positive correlations between maternal body size and reproductive success in S. pygaea suggest that females experience fecundity selection for large size during non-drought years. Collectively, our study emphasizes the dynamic interplay between selection pressures that act on body size and supports theoretical predictions about the relationship between body size and survivorship in ectotherms under conditions of resource limitation.
Phase velocity enhancement of linear explosive shock tubes
NASA Astrophysics Data System (ADS)
Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent
2011-06-01
Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.
Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd
2016-08-01
Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.
NASA Astrophysics Data System (ADS)
Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed
2017-04-01
Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary layer on top of the silicate mantle. Such a contrasted dynamics in the aqueous-ice VI-ice VII system would greatly influence the migration of nutrients towards the uppermost liquid ocean, thus controlling the habitability of moderate to large H2O-rich planetary bodies in our solar system (e.g., Ganymede, Titan, Calisto) and beyond.
Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites
NASA Astrophysics Data System (ADS)
Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.
2018-05-01
Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.
The energy density distribution of an ideal gas and Bernoulli’s equations
NASA Astrophysics Data System (ADS)
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.
One-dimensional hybrid model of plasma-solid interaction in argon plasma at higher pressures
NASA Astrophysics Data System (ADS)
Jelínek, P.; Hrach, R.
2007-04-01
One of problems important in the present plasma science is the surface treatment of materials at higher pressures, including the atmospheric pressure plasma. The theoretical analysis of processes in such plasmas is difficult, because the theories derived for collisionless or slightly collisional plasma lose their validity at medium and high pressures, therefore the methods of computational physics are being widely used. There are two basic ways, how to model the physical processes taking place during the interaction of plasma with immersed solids. The first technique is the particle approach, the second one is called the fluid modelling. Both these approaches have their limitations-small efficiency of particle modelling and limited accuracy of fluid models. In computer modelling is endeavoured to use advantages by combination of these two approaches, this combination is named hybrid modelling. In our work one-dimensional hybrid model of plasma-solid interaction has been developed for an electropositive plasma at higher pressures. We have used hybrid model for this problem only as the test for our next applications, e.g. pulsed discharge, RF discharge, etc. The hybrid model consists of a combined molecular dynamics-Monte Carlo model for fast electrons and fluid model for slow electrons and positive argon ions. The latter model also contains Poisson's equation, to obtain a self-consistent electric field distribution. The derived results include the spatial distributions of electric potential, concentrations and fluxes of individual charged species near the substrate for various pressures and for various probe voltage bias.
Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.
Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori
2015-01-01
We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.
Dynamic Temperature and Pressure Measurements in the Core of a Propulsion Engine
NASA Technical Reports Server (NTRS)
Schuster, Bill; Gordon, Grant; Hultgren, Lennart S.
2015-01-01
Dynamic temperature and pressure measurements were made in the core of a TECH977 propulsion engine as part of a NASA funded investigation into indirect combustion noise. Dynamic temperature measurements were made in the combustor, the inter-turbine duct, and the mixer using ten two-wire thermocouple probes. Internal dynamic pressure measurements were made at the same locations using piezoresistive transducers installed in semi-infinite coils. Measurements were acquired at four steady state operating conditions covering the range of aircraft approach power settings. Fluctuating gas temperature spectra were computed from the thermocouple probe voltage measurements using a compensation procedure that was developed under previous NASA test programs. A database of simultaneously acquired dynamic temperature and dynamic pressure measurements was produced. Spectral and cross-spectral analyses were conducted to explore the characteristics of the temperature and pressure fluctuations inside the engine, with a particular focus on attempting to identify the presence of indirect combustion noise.
Hydrogen-oxygen auxiliary propulsion for the space shuttle. Volume 1: High pressure thrusters
NASA Technical Reports Server (NTRS)
1973-01-01
Technology for long life, high performing, gaseous hydrogen-gaseous oxygen rocket engines suitable for auxiliary propulsion was provided by a combined analytical and experimental program. Propellant injectors, fast response valves, igniters, and regeneratively and film-cooled thrust chambers were tested over a wide range of operating conditions. Data generated include performance, combustion efficiency, thermal characteristics film cooling effectiveness, dynamic response in pulsing, and cycle life limitations.
Smart Adaptive Socket to Improve Fit and Relieve Pain in Wounded Warriors
2016-10-01
applications were developed for wireless interaction with the socket system firmware. A control algorithm was designed and tested. Clinical trial...interface, Dynamic segmental volume control, Wireless connection, Pressure control system. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...charging jack, and power button are included in the design. A Bluetooth 4 radio is also included to allow for advanced user control via smartphone. The
Simulated Heat-Pipe Vapor Dynamics
1987-05-01
results, estimated that at a radial Reynolds number of -4.626 the friction factor would be zero . This would correspond to an onset of flow reversal in...the flow to become turbulent at axial Reynolds numbers lower than 2000 which generally denotes the lower limit of the region of turbulent flow. They...thickness of the laminar sublayer. The same general trends were noted in all papers. They suggested that a favorable pressure gradient (accelerating
The pressure field of imploding lightbulbs
NASA Astrophysics Data System (ADS)
Czechanowski, M.; Ikeda, C.; Duncan, J. H.
2015-03-01
The implosion of A19 incandescent lightbulbs in a high-pressure water environment is studied in a 1.77-m-diameter steel tank. Underwater blast sensors are used to measure the dynamic pressure field near the lightbulbs and the implosions are photographed with a high-speed movie camera at a frame rate of 24,000 pps. The movie camera and the pressure signal recording system are synchronized to enable correlation of features in the movie frames with those in the pressure records. It is found that the gross dimensions and weight of the bulbs are very similar from one bulb to another, but the ambient water pressure at which a given bulb implodes (, called the implosion pressure) varies from 6.29 to 11.98 atmospheres, probably due to inconsistencies in the glass wall thickness and perhaps other detailed characteristics of the bulbs. The dynamic pressures (the local pressure minus , as measured by the sensors) first drop during the implosion and then reach a strong positive peak at about the time that the bulb reaches minimum volume. The peak dynamic pressure varies from 3.61 to 28.66 atmospheres. In order to explore the physics of the implosion process, the dynamic pressure signals are compared to calculations of the pressure field generated by the collapse of a spherical bubble in a weakly compressible liquid. The wide range of implosion pressures is used in combination with the calculations to explore the effect of the relative liquid compressibility and the bulb itself on the dynamic pressure field.
Space Shuttle Plume Simulation Effect on Aerodynamics
NASA Technical Reports Server (NTRS)
Hair, L. M.
1978-01-01
Technology for simulating plumes in wind tunnel tests was not adequate to provide the required confidence in test data where plume induced aerodynamic effects might be significant. A broad research program was undertaken to correct the deficiency. Four tasks within the program are reported. Three of these tasks involve conducting experiments, related to three different aspects of the plume simulation problem: (1) base pressures; (2) lateral jet pressures; and (3) plume parameters. The fourth task involves collecting all of the base pressure test data generated during the program. Base pressures were measured on a classic cone ogive cylinder body as affected by the coaxial, high temperature exhaust plumes of a variety of solid propellant rockets. Valid data were obtained at supersonic freestream conditions but not at transonic. Pressure data related to lateral (separation) jets at M infinity = 4.5, for multiple clustered nozzles canted to the freestream and operating at high dynamic pressure ratios. All program goals were met although the model hardware was found to be large relative to the wind tunnel size so that operation was limited for some nozzle configurations.
A high-pressure atomic force microscope for imaging in supercritical carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lea, Alan S.; Higgins, Steven R.; Knauss, Kevin G.
2011-04-26
A high-pressure atomic force microscope (AFM) that enables in-situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~ 350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations thatmore » change the fluid refractive index and hence the laser path. We demonstrate with our apparatus in-situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (10¯14) surface are presented. This new AFM provides unprecedented in-situ access to interfacial phenomena at solid-fluid interfaces under pressure.« less
Numerical simulation of magnetic nano drug targeting in patient-specific lower respiratory tract
NASA Astrophysics Data System (ADS)
Russo, Flavia; Boghi, Andrea; Gori, Fabio
2018-04-01
Magnetic nano drug targeting, with an external magnetic field, can potentially improve the drug absorption in specific locations of the body. However, the effectiveness of the procedure can be reduced due to the limitations of the magnetic field intensity. This work investigates this technique with the Computational Fluid Dynamics (CFD) approach. A single rectangular coil generates the external magnetic field. A patient-specific geometry of the Trachea, with its primary and secondary bronchi, is reconstructed from Digital Imaging and Communications in Medicine (DICOM) formatted images, throughout the Vascular Modelling Tool Kit (VMTK) software. A solver, coupling the Lagrangian dynamics of the magnetic nanoparticles with the Eulerian dynamics of the air, is used to perform the simulations. The resistive pressure, the pulsatile inlet velocity and the rectangular coil magnetic field are the boundary conditions. The dynamics of the injected particles is investigated without and with the magnetic probe. The flow field promotes particles adhesion to the tracheal wall. The particles volumetric flow rate in both cases has been calculated. The magnetic probe is shown to increase the particles flow in the target region, but at a limited extent. This behavior has been attributed to the small particle size and the probe configuration.
Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor
Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando
2003-09-02
An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor
Krauss, Alan R [Naperville, IL; Gruen, Dieter M [Downers Grove, IL; Pellin, Michael J [Naperville, IL; Auciello, Orlando [Bolingbrook, IL
2002-07-23
An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.
Nonlinear ballooning modes in tokamaks: stability and saturation
NASA Astrophysics Data System (ADS)
Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.
2018-07-01
The nonlinear dynamics of magneto-hydrodynamic ballooning mode perturbations is conjectured to be characterised by the motion of isolated elliptical flux tubes. The theory of stability, dynamics and saturation of such tubes in tokamaks is developed using a generalised Archimedes’ principle. The equation of motion for a tube moving against a drag force in a general axisymmetric equilibrium is derived and then applied to a simplified ‘s–α’ equilibrium. The perturbed nonlinear tube equilibrium (saturated) states are investigated in an ‘s–α’ equilibrium with specific pressure and magnetic shear profiles. The energy of these nonlinear (ballooning) saturated states is calculated. In some cases, particularly at low magnetic shear, these finitely displaced states can have a lower energy than the equilibrium state even if the profile is linearly stable to ballooning modes (infinitesimal tube displacements) at all radii. Thus nonlinear ballooning modes can be metastable. The amplitude of the saturated tube displacement in such cases can be as large as the pressure gradient scale length. We conjecture that triggering a transition into these filamentary states can lead to hard instability limits. A short survey of different pressure profiles is presented to illustrate the variety of behaviour of perturbed elliptical flux tubes.
NASA Astrophysics Data System (ADS)
Santos, J. T.; Holz, T.; Fernandes, A. J. S.; Costa, F. M.; Chu, V.; Conde, J. P.
2015-02-01
Diamond-based microelectromechanical resonators have the potential of enhanced performance due to the chemical inertness of the diamond structural layer and its high Young’s modulus, high wear resistance, low thermal expansion coefficient, and very high thermal conductivity. In this work, the resonance frequency and quality factor of MEMS resonators based on nanocrystalline diamond films are characterized under different air pressures. The dynamic behavior of 50-300 μm long linear bridges and double ended tuning forks, with resonance frequencies between 0.5 and 15 MHz and quality factors as high as 50 000 are described as a function of measurement pressure from high vacuum(~10 mTorr) up to atmospheric conditions. The resonance frequencies and quality factors in vacuum show good agreement with the theoretical models including anchor and thermoelastic dissipation (TED). The Young’s moduli for nanocrystalline diamond films extrapolated from experimental data are between 840-920 GPa. The critical pressure values, at which the quality factor starts decreasing due to dissipation in air, are dependent on the resonator length. Longer structures, with quality factors limited by TED and lower resonance frequencies, have low critical pressures, of the order of 1-10 Torr and go from an intrinsic dissipation, to a molecular dissipation regime and finally to a region of viscous dissipation. Shorter resonators, with higher resonance frequencies and quality factors limited by anchor losses, have higher critical pressures, some higher than atmospheric pressure, and enter directly into the viscous dissipation regime from the intrinsic region.
NASA Astrophysics Data System (ADS)
Washizu, Hitoshi; Ohmori, Toshihide; Suzuki, Atsushi
2017-06-01
All-atom molecular dynamics simulations of an elastohydrodynamic lubrication oil film are performed to study the effect of pressure. Fluid molecules of n-hexane are confined between two solid plates under a constant normal force of 0.1-8.0 GPa. Traction simulations are performed by applying relative sliding motion to the solid plates. A transition in the traction behavior is observed around 0.5-2.0 GPa, which corresponds to the viscoelastic region to the plastic-elastic region, which are experimentally observed. This phase transition is related to the suppression of the fluctuation in molecular motion.
Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)
1996-01-01
Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other parameters on the dynamic stall process. When interferograms can be captured in real time, the potential for real-time mapping of a developing unsteady flow such as dynamic stall becomes a possibility. This has been achieved in the present case through the use of a high-speed drum camera combined with electronic circuitry which has resulted in a series of interferograms obtained during a single cycle of dynamic stall; images obtained at the rate of 20 KHz will be presented as a part of the formal presentation. Interferometry has been available for a long time; however, most of its use has been limited to visualization. The present research has focused on use of interferograms for quantitative mapping of the flow over oscillating airfoils. Instantaneous pressure distributions can now be obtained semi-automatically, making practical the analysis of the thousands of interferograms that are produced in this research. A review of the techniques that have been developed as part of this research effort will be presented in the final paper.
NASA Astrophysics Data System (ADS)
Rizvi, S. Tauqeer ul Islam; Linshu, He; ur Rehman, Tawfiq; Rafique, Amer Farhan
2012-11-01
A numerical optimization study of lifting body re-entry vehicles is presented for nominal as well as shallow entry conditions for Medium and Intermediate Range applications. Due to the stringent requirement of a high degree of accuracy for conventional vehicles, lifting re-entry can be used to attain the impact at the desired terminal flight path angle and speed and thus can potentially improve accuracy of the re-entry vehicle. The re-entry of a medium range and intermediate range vehicles is characterized by very high negative flight path angle and low re-entry speed as compared to a maneuverable re-entry vehicle or a common aero vehicle intended for an intercontinental range. Highly negative flight path angles at the re-entry impose high dynamic pressure as well as heat loads on the vehicle. The trajectory studies are carried out to maximize the cross range of the re-entry vehicle while imposing a maximum dynamic pressure constraint of 350 KPa with a 3 MW/m2 heat rate limit. The maximum normal acceleration and the total heat load experienced by the vehicle at the stagnation point during the maneuver have been computed for the vehicle for possible future conceptual design studies. It has been found that cross range capability of up to 35 km can be achieved with a lifting-body design within the heat rate and the dynamic pressure boundary at normal entry conditions. For shallow entry angle of -20 degree and intermediate ranges a cross range capability of up to 250 km can be attained for a lifting body design with less than 10 percent loss in overall range. The normal acceleration also remains within limits. The lifting-body results have also been compared with wing-body results at shallow entry condition. An hp-adaptive pseudo-spectral method has been used for constrained trajectory optimization.
DE Simone, Roberto; Ranieri, Angelo; Bonavita, Vincenzo
2017-03-01
Two critical functions for the control of intracranial fluids dynamics are carried on the venous side of the perfusion circuit: the first is the avoidance of cortical veins collapse during the physiological increases of cerebrospinal fluid (CSF) pressure in which they are immersed. The second, is the generation of an abrupt venous pressure drop at the confluence of the cortical veins with the dural sinuses that is required to allow a CSF outflow rate balanced with its production. There is evidence that both of these effects are ensured by a Starling resistor mechanism (a fluid dynamic construct that governs the flow in collapsible tubes exposed to variable external pressure) acting at the confluence of cortical veins in the dural sinus. This implies that, in normal circumstances of perfusion balance, a certain degree of venous collapse physiologically occurs at the distal end of the cortical vein. This is passively modulated by the transmural pressure of the venous wall (i.e. the difference between internal blood pressure and external CSF pressure). The mechanism provides that the blood pressure of the cortical vein upstream the collapsed segment is dynamically maintained a few mmHg higher than the CSF pressure, so as to prevent their collapse during the large physiological fluctuations of the intracranial pressure. Moreover, the partial collapse of the vein confluence also generates a sharp pressure drop of the blood entering into the sinus. The CSF is drained in dural sinus through arachnoid villi proportionally to its pressure gradient with the sinus blood. The venous pressure drop between cortical veins and dural sinus is therefore needed to ensure that the CSF can leave the cranio-spinal space with the same speed with which it is produced, without having to reach a too high pressure, which would compress the cortical veins. Notably, the mechanism requires that the walls of the dural sinuses are rigid enough to avoid the collapse under the external cerebrospinal fluid pressure, and predicts that in the presence of excessively flexible dural sinuses, the system admits a second point of balance between cerebral fluid pressure and dural sinus pressure, at higher values. The second balance state is due to the triggering of a self-limiting venous collapse feedback loop between the CSF pressure, that compresses the sinus, and the subsequent increase of the dural sinus pressure, that further raises the intracranial pressure. The loop may stabilize only when the maximum stretching allowed by the venous wall is reached. Then, a new relatively stable and self-sustaining balance state is achieved, at the price of a higher CSF and dural sinus pressure values. We propose that this model is crucially involved in Idiopatic Intracranial Hypertension pathogenesis with and without papilledema, a condition that could be described as a pathological new balance state, relatively stable, between intracranial and dural venous pressure, at higher absolute values.
Pulmonary capillary pressure in pulmonary hypertension.
Souza, Rogerio; Amato, Marcelo Britto Passos; Demarzo, Sergio Eduardo; Deheinzelin, Daniel; Barbas, Carmen Silvia Valente; Schettino, Guilherme Paula Pinto; Carvalho, Carlos Roberto Ribeiro
2005-04-01
Pulmonary capillary pressure (PCP), together with the time constants of the various vascular compartments, define the dynamics of the pulmonary vascular system. Our objective in the present study was to estimate PCPs and time constants of the vascular system in patients with idiopathic pulmonary arterial hypertension (IPAH), and compare them with these measures in patients with acute respiratory distress syndrome (ARDS). We conducted the study in two groups of patients with pulmonary hypertension: 12 patients with IPAH and 11 with ARDS. Four methods were used to estimate the PCP based on monoexponential and biexponential fitting of pulmonary artery pressure decay curves. PCPs in the IPAH group were considerably greater than those in the ARDS group. The PCPs measured using the four methods also differed significantly, suggesting that each method measures the pressure at a different site in the pulmonary circulation. The time constant for the slow component of the biexponential fit in the IPAH group was significantly longer than that in the ARDS group. The PCP in IPAH patients is greater than normal but methodological limitations related to the occlusion technique may limit interpretation of these data in isolation. Different disease processes may result in different times for arterial emptying, with resulting implications for the methods available for estimating PCP.
NASA Astrophysics Data System (ADS)
Shi, Aiming; Jiang, Li; Dowell, Earl H.; Qin, Zhixuan
2017-02-01
Solar sail is a high potential `sailing craft' for interstellar exploration. The area of the first flight solar sail demonstrator named "IKAROS" is 200 square meters. Future interplanetary missions will require solar sails at least on the order of 10000 square meters (or larger). Due to the limitation of ground facilities, the size of experimental sample should not be large. Furthermore the ground experiments have to be conducted in gravitational field, so the gravity effect must be considered in a ground test. To obtain insight into the solar sail membrane dynamics, a key membrane flutter (or limit cycle oscillations) experiment with light forces acting on it must be done. But one big challenge is calibrating such a tiny light force by as a function of the input power. In this paper, a gravity-based measuring method for light pressure acting on membrane is presented. To explain the experimental principle, an ideal example of a laser beam with expanders and a metal film is studied. Based on calculations, this experimental mechanics method for calibrating light pressure with an accuracy of 0.01 micro-Newton may be realized by making the light force balance the gravity force on the metal films. This gravity-based measuring method could not only be applied to study the dynamics characteristics of solar sail membrane structure with different light forces, but could also be used to determine more accurate light forces/loads acting on solar sail films and hence to enhance the determination of the mechanical properties of the solar sail membrane structure.
A dynamic pressure source for the calibration of pressure transducers
NASA Technical Reports Server (NTRS)
Vezzetti, C. F.; Hilten, J. S.; Mayo-Wells, J. F.; Lederer, P. S.
1976-01-01
A dynamic pressure source is described for producing sinusoidally varying pressures of up to 34 kPa zero to peak, over the frequency range of approximately 50 Hz to 2 kHz. The source is intended for the dynamic calibration of pressure transducers. The transducer to be calibrated is mounted near the base of the thick walled aluminum tube forming the vessel so that the pressure sensitive element is in contact with the liquid in the tube. A section of the tube is filled with small steel balls to damp the motion of the 10-St dimethyl siloxane working fluid in order to extend the useful frquency range to higher frequencies than would be provided by an undamped system. The dynamic response of six transducers provided by the sponsor was evaluated using the pressure sources; the results of these calibrations are given.
A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires.
Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente
2017-02-10
The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic.
Bao, Junwei Lucas; Zhang, Xin
2016-01-01
Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C2F4), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice–Ramsperger–Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements. PMID:27834727
Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G
2016-11-29
Bond dissociation is a fundamental chemical reaction, and the first principles modeling of the kinetics of dissociation reactions with a monotonically increasing potential energy along the dissociation coordinate presents a challenge not only for modern electronic structure methods but also for kinetics theory. In this work, we use multifaceted variable-reaction-coordinate variational transition-state theory (VRC-VTST) to compute the high-pressure limit dissociation rate constant of tetrafluoroethylene (C 2 F 4 ), in which the potential energies are computed by direct dynamics with the M08-HX exchange correlation functional. To treat the pressure dependence of the unimolecular rate constants, we use the recently developed system-specific quantum Rice-Ramsperger-Kassel theory. The calculations are carried out by direct dynamics using an exchange correlation functional validated against calculations that go beyond coupled-cluster theory with single, double, and triple excitations. Our computed dissociation rate constants agree well with the recent experimental measurements.
A Novel Strain-Based Method to Estimate Tire Conditions Using Fuzzy Logic for Intelligent Tires
Garcia-Pozuelo, Daniel; Olatunbosun, Oluremi; Yunta, Jorge; Yang, Xiaoguang; Diaz, Vicente
2017-01-01
The so-called intelligent tires are one of the most promising research fields for automotive engineers. These tires are equipped with sensors which provide information about vehicle dynamics. Up to now, the commercial intelligent tires only provide information about inflation pressure and their contribution to stability control systems is currently very limited. Nowadays one of the major problems for intelligent tire development is how to embed feasible and low cost sensors to obtain reliable information such as inflation pressure, vertical load or rolling speed. These parameters provide key information for vehicle dynamics characterization. In this paper, we propose a novel algorithm based on fuzzy logic to estimate the mentioned parameters by means of a single strain-based system. Experimental tests have been carried out in order to prove the suitability and durability of the proposed on-board strain sensor system, as well as its low cost advantages, and the accuracy of the obtained estimations by means of fuzzy logic. PMID:28208631
Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator
Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou
2014-01-01
Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318
Effect of temperature and pressure on the dynamics of nanoconfined propane
NASA Astrophysics Data System (ADS)
Gautam, Siddharth; Liu, Tingting; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene; Welch, Susan; Cole, David
2014-04-01
We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.
Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip.
Comtet, Jean; Jensen, Kaare H; Turgeon, Robert; Stroock, Abraham D; Hosoi, A E
2017-03-20
Vascular plants rely on differences in osmotic pressure to export sugars from regions of synthesis (mature leaves) to sugar sinks (roots, fruits). In this process, known as Münch pressure flow, the loading of sugars from photosynthetic cells to the export conduit (the phloem) is crucial, as it sets the pressure head necessary to power long-distance transport. Whereas most herbaceous plants use active mechanisms to increase phloem sugar concentration above that of the photosynthetic cells, in most tree species, for which transport distances are largest, loading seems, counterintuitively, to occur by means of passive symplastic diffusion from the mesophyll to the phloem. Here, we use a synthetic microfluidic model of a passive loader to explore the non-linear dynamics that arise during export and determine the ability of passive loading to drive long-distance transport. We first demonstrate that in our device, the phloem concentration is set by the balance between the resistances to diffusive loading from the source and convective export through the phloem. Convection-limited export corresponds to classical models of Münch transport, where the phloem concentration is close to that of the source; in contrast, diffusion-limited export leads to small phloem concentrations and weak scaling of flow rates with hydraulic resistance. We then show that the effective regime of convection-limited export is predominant in plants with large transport resistances and low xylem pressures. Moreover, hydrostatic pressures developed in our synthetic passive loader can reach botanically relevant values as high as 10 bars. We conclude that passive loading is sufficient to drive long-distance transport in large plants, and that trees are well suited to take full advantage of passive phloem loading strategies.
Stabilization of axisymmetric liquid bridges through vibration-induced pressure fields.
Haynes, M; Vega, E J; Herrada, M A; Benilov, E S; Montanero, J M
2018-03-01
Previous theoretical studies have indicated that liquid bridges close to the Plateau-Rayleigh instability limit can be stabilized when the upper supporting disk vibrates at a very high frequency and with a very small amplitude. The major effect of the vibration-induced pressure field is to straighten the liquid bridge free surface to compensate for the deformation caused by gravity. As a consequence, the apparent Bond number decreases and the maximum liquid bridge length increases. In this paper, we show experimentally that this procedure can be used to stabilize millimeter liquid bridges in air under normal gravity conditions. The breakup of vibrated liquid bridges is examined experimentally and compared with that produced in absence of vibration. In addition, we analyze numerically the dynamics of axisymmetric liquid bridges far from the Plateau-Rayleigh instability limit by solving the Navier-Stokes equations. We calculate the eigenfrequencies characterizing the linear oscillation modes of vibrated liquid bridges, and determine their stability limits. The breakup process of a vibrated liquid bridge at that stability limit is simulated too. We find qualitative agreement between the numerical predictions for both the stability limits and the breakup process and their experimental counterparts. Finally, we show the applicability of our technique to control the amount of liquid transferred between two solid surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.
Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change
NASA Astrophysics Data System (ADS)
Shi, Q.
2017-12-01
Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res., 122, doi:10.1002/2016JA023351.
An overview of the dynamic calibration of piezoelectric pressure transducers
NASA Astrophysics Data System (ADS)
Theodoro, F. R. F.; Reis, M. L. C. C.; d’ Souto, C.
2018-03-01
Dynamic calibration is a research area that is still under development and is of great interest to aerospace and automotive industries. This study discusses some concepts regarding dynamic measurements of pressure quantities and presents an overview of dynamic calibration of pressure transducers. Studies conducted by the Institute of Aeronautics and Space focusing on research regarding piezoelectric pressure transducer calibration in shock tube are presented. We employed the Guide to the Expression of Uncertainty and a Monte Carlo Method in the methodology. The results show that both device and methodology employed are adequate to calibrate the piezoelectric sensor.
Gas Bubble Dynamics under Mechanical Vibrations
NASA Astrophysics Data System (ADS)
Mohagheghian, Shahrouz; Elbing, Brian
2017-11-01
The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.
NASA Technical Reports Server (NTRS)
Kaldschmidt, G.; Syltebo, B. E.; Ting, C. T.
1973-01-01
The results from testing of a 0.3 scale model center duct inlet (S duct) for the Pratt and Whitney Aircraft JT8D-100 engines are presented. The objective of this test was to demonstrate that the required airflow of the JT8D-100 engine (480 lb/sec as compared to 334 lb/sec for JT8D-15) can be achieved with minimum modifications to the existing 727 airplane structure at acceptable levels of total pressure recovery and distortion. Steady-state pressure recovery, steady-state pressure distortion, and dynamic pressure measurements were taken at the engine face station. Surface static pressure measurements were taken along the duct. Test results indicated that the required airflow was achieved with acceptable pressure recovery (comparable to the current 727-200 S duct). Inlet inflow angle variation within the 727 airplane operating regime (minus 5 to 5 degrees) had no effect on the inlet performance. Pressure distortion at static and forward speed at takeoff airflow conditions are within P and WA limits for the Phase II duct when equipped with vortex generators. Static crosswind operation between 10 knots and 25 knots appears feasible at full takeoff power.
Assessment and monitoring of flow limitation and other parameters from flow/volume loops.
Dueck, R
2000-01-01
Flow/volume (F/V) spirometry is routinely used for assessing the type and severity of lung disease. Forced vital capacity (FVC) and timed vital capacity (FEV1) provide the best estimates of airflow obstruction in patients with asthma, chronic obstructive pulmonary disease (COPD) and emphysema. Computerized spirometers are now available for early home recognition of asthma exacerbation in high risk patients with severe persistent disease, and for recognition of either infection or rejection in lung transplant patients. Patients with severe COPD may exhibit expiratory flow limitation (EFL) on tidal volume (VT) expiratory F/V (VTF/V) curves, either with or without applying negative expiratory pressure (NEP). EFL results in dynamic hyperinflation and persistently raised alveolar pressure or intrinsic PEEP (PEEPi). Hyperinflation and raised PEEPi greatly enhance dyspnea with exertion through the added work of the threshold load needed to overcome raised pleural pressure. Esophageal (pleural) pressure monitoring may be added to VTF/V loops for assessing the severity of PEEPi: 1) to optimize assisted ventilation by mask or via endotracheal tube with high inspiratory flow rates to lower I:E ratio, and 2) to assess the efficacy of either pressure support ventilation (PSV) or low level extrinsic PEEP in reducing the threshold load of PEEPi. Intraoperative tidal volume F/V loops can also be used to document the efficacy of emphysema lung volume reduction surgery (LVRS) via disappearance of EFL. Finally, the mechanism of ventilatory constraint can be identified with the use of exercise tidal volume F/V loops referenced to maximum F/V loops and static lung volumes. Patients with severe COPD show inspiratory F/V loops approaching 95% of total lung capacity, and flow limitation over the entire expiratory F/V curve during light levels of exercise. Surprisingly, patients with a history of congestive heart failure may lower lung volume towards residual volume during exercise, thereby reducing airway diameter and inducing expiratory flow limitation.
NASA Astrophysics Data System (ADS)
Baldoli, Ilaria; Maselli, Martina; Cecchi, Francesca; Laschi, Cecilia
2017-10-01
Matrix textile sensors hold great potential for measuring pressure distribution in applications of modern daily lives, mainly regarding the biomedical field, but also robotics, automotive systems, and wearable and consumer electronics. However, an experimental analysis of their metrological properties is lacking in the literature, thus compromising their widespread acceptance. In the present work, we report the characterization of an 8 × 8 textile sensor assembled by sandwiching a piezoresistive fabric sheet between two outer fabric layers embedding conductive rows and columns. The location of the applied pressure can be identified by detecting the position where the change of resistances occurs between the external conductive paths. The sensor structure, its electrical circuit and characteristics are described in detail, after studying both the integration levels of the hierarchical structure and the composition of the piezoresistive fabric sheet. The pressure measurement range and the calibration curve were studied by tuning circuital parameters. Repeatability, time drift, temperature dependence, signal-to-noise ratio and dynamic response were analyzed. Novel tests were employed to consider the sensor sensitivity to stretch, shear force and surface curvature. A special analysis was taken over hysteresis and dynamic accuracy, focusing on a possible compensating solution. Results indicated that the system provides overall good quality performances with the main drawback of a limited dynamic accuracy, typical of piezoresistive sensing elements. Nevertheless, the use of textiles allows the realization of lightweight, wearable, washable, thin and stretchable sensors. In addition fabric sensors are robust, cheap, easy-to-use and employable to cover large area three dimensional surfaces. The wide characterization reported here could provide precious insights and guidelines to help researchers and users in taking advantages from all of these benefits, supporting them in choosing the best sensor design and application.
Time Evolution of Modeled Reynolds Stresses in Planar Homogeneous Flows
NASA Technical Reports Server (NTRS)
Jongen, T.; Gatski, T. B.
1997-01-01
The analytic expression of the time evolution of the Reynolds stress anisotropy tensor in all planar homogeneous flows is obtained by exact integration of the modeled differential Reynolds stress equations. The procedure is based on results of tensor representation theory, is applicable for general pressure-strain correlation tensors, and can account for any additional turbulence anisotropy effects included in the closure. An explicit solution of the resulting system of scalar ordinary differential equations is obtained for the case of a linear pressure-strain correlation tensor. The properties of this solution are discussed, and the dynamic behavior of the Reynolds stresses is studied, including limit cycles and sensitivity to initial anisotropies.
NASA Technical Reports Server (NTRS)
Stumpf, R.; Neumann, H. E.; Giamati, C. C.
1983-01-01
An experimental investigation of the time varying distortion at the diffuser exit of a subscale HiMAT forebody and inlet was conducted at Mach 0.9 in the Lewis 8 by 6 foot Supersonic Wind Tunnel. A transitory separation was detected within the subsonic diffuser. Vortex generators were installed to eliminate the flow separation. Results from a study of the instantaneous pressure variations at the diffuser exit are presented. The time unsteady total pressures at the diffuser exit are computer interpolated and presented in the form of a movie showing the transitory separation. Limited data showing the instantaneous distortion levels is also presented.
Huikko, K; Ostman, P; Sauber, C; Mandel, F; Grigoras, K; Franssila, S; Kotiaho, T; Kostiainen, R
2003-01-01
The feasibility of atmospheric pressure desorption/ionization on silicon mass spectrometry (AP-DIOS-MS) for drug analysis was investigated. It was observed that only compounds with relative high proton affinity are efficiently ionized under AP-DIOS conditions. The limits of detection (LODs) achieved in MS mode with midazolam, propranolol, and angiotensin II were 80 fmol, 20 pmol, and 1 pmol, respectively. In MS/MS mode the LODs for midazolam and propranolol were 10 fmol and 5 pmol, respectively. The good linearity (r(2) > 0.991), linear dynamic range of 3 orders of magnitude, and reasonable repeatability showed that the method is suitable for quantitative analysis. Copyright 2003 John Wiley & Sons, Ltd.
Generalized Helicopter Rotor Performance Predictions
1977-09-01
34- V : ~ ~ t V ~ ’ . - - - - - - -- behavior . In order to use this routine, the user must input a negative number for the variable XITLIM, item 73...the values provided in Section E. It is realized that available data on airfoil behavior at large angles of attack are very limited, but so is the...where dynamic pressure is low, little precision is lost in performance calculation by using one common representation for most airfoil behavior . As a
Boiling regimes of impacting drops on a heated substrate under reduced pressure
NASA Astrophysics Data System (ADS)
van Limbeek, Michiel A. J.; Hoefnagels, Paul B. J.; Shirota, Minori; Sun, Chao; Lohse, Detlef
2018-05-01
We experimentally investigate the boiling behavior of impacting ethanol drops on a heated smooth sapphire substrate at pressures ranging from P =0.13 bar to atmospheric pressure. We employ frustrated total internal reflection imaging to study the wetting dynamics of the contact between the drop and the substrate. The spreading drop can be in full contact (contact boiling), it can partially touch (transition boiling), or the drop can be fully levitated (Leidenfrost boiling). We show that the temperature of the boundary between contact and transition boiling shows at most a weak dependence on the impact velocity, but a significant decrease with decreasing ambient gas pressure. A striking correspondence is found between the temperature of this boundary and the static Leidenfrost temperature for all pressures. We therefore conclude that both phenomena share the same mechanism and are dominated by the dynamics taking place at the contact line. On the other hand, the boundary between transition boiling and Leidenfrost boiling, i.e., the dynamic Leidenfrost temperature, increases for increasing impact velocity for all ambient gas pressures. Moreover, the dynamic Leidenfrost temperature coincides for pressures between P =0.13 and 0.54 bar, whereas for atmospheric pressure the dynamic Leidenfrost temperature is slightly elevated. This indicates that the dynamic Leidenfrost temperature is at most weakly dependent on the enhanced evaporation by the lower saturation temperature of the liquid.
The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress
NASA Astrophysics Data System (ADS)
Schmitz, L.
2017-02-01
Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E × B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E × B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.
Experimental Study of High-Pressure Rotating Detonation Combustion in Rocket Environments
NASA Astrophysics Data System (ADS)
Stechmann, David Paul
Rotating Detonation Engines (RDEs) represent a promising pressure-gain combustion technology for improving the performance of existing rocket engines. While ample theoretical evidence exists for these benefits in ideal scenarios, additional research is needed to characterize the operational behavior of these devices at high pressure and validate the expected performance gains in practice. To this end, Purdue University developed a high-pressure experimental staged-combustion RDE with a supersonic plug expansion nozzle and conducted four test campaigns using this engine. The first two campaigns employed gaseous hydrogen fuel in conjunction with a liquid oxygen pre-burner. The final two campaigns employed methane and natural gas fuels. Propellant mass flows ranged from 0.47 lbm/s (0.21 Kg/s) to 8.41 lbm/s (3.8 kg/s) while mean chamber pressures ranged from 61 psia (4.1 atm) to 381 psia (25.9 atm). Results from tests conducted with hydrogen were mixed. Detonation briefly appeared at shutdown in some configurations, but the combustor behavior was generally dominated by flame holding instead of detonation. Injector erosion and instrumentation damage were also persistent challenges. Results from tests conducted with natural gas and methane were much more successful. Overall, several different types of detonation wave behavior were observed depending on test configuration and operating conditions. In all configurations, the engine thrust, chamber pressure, wave speed, and wave behavior were characterized for differences in injector orifice area, injection location, chamber width, pre-burner operating temperature, equivalence ratio, mass flow, and throat configuration. General aspects of the plume structure, startup behavior, and dynamic oxidizer manifold response were also characterized. Two configurations were also tested with a transparent combustor to characterize wave height and profile. These observations and measurements provided insight into the effects that high-pressures and rocket propellants have on RDE operating behavior. One of the more intriguing results from the experimental campaigns described above was the simple fact that natural gas and methane behaved so differently from hydrogen despite similar operating pressures, flow rates, and injector geometry. Simplified analysis and modeling of the injector dynamic response, mixing processes, and chemical kinetics provided insight into these differences and the scalability of these processes with pressure. In particular, the chemical kinetic analysis suggests that heat release during the injection and mixing phase can dominate the chamber behavior and prevent stable limit cycle detonation from occurring with certain propellant combinations above certain pressures. These results support the observed differences in engine operating behavior, and they provide insight into potential operability limits of gas-phase RDEs. In addition to the contrast between natural gas and hydrogen, several other important observations were made during the experimental RDE evaluation process. In particular, the installation of a convergent throat appeared to suppress detonation behavior. The number of waves was also invariant with respect to the mass flow and chamber pressure, and a natural transition into limit-cycle detonation modes (i.e. self-excited instabilities) appeared despite using a torch igniter with no initial detonation. Significant manifold interaction and an overall destabilizing effect in the limit-cycle detonation cycle tended to occur at low injector pressure ratios. The relationship between pressure, wave speed, and thrust did not follow the expected correlation and instead displayed a more complex configuration-dependent relationship. While the delivered thrust did not exceed theoretical values for a constant pressure cycle, thrust performance greater than 90% was achieved in configurations with simple injector geometries, simple expansion nozzle geometries and a chamber L* of only 2.75 inches. This suggests that further improvements are possible when heat loss into the wall is considered and improved injector designs are implemented. While heat flux was not measured during any experimental test cases, post-test analysis of the chamber environment using available data suggests that heat flux may be moderately higher in RDEs than in constant pressure combustors operating at the same mean flow conditions. Nevertheless, the computed heat flux was based on limited data and may have been affected by localized conditions near the injector face, so uncertainty remains in this area. Since appreciable uncertainty exists in the theoretical performance benefits relative to the measured experimental values, a detonation engine performance model was developed using modifications to existing zero-dimensional rocket performance relations. This approach made it possible to rapidly characterize the effects of different engine operating parameters on expected performance gains including propellant choice, equivalence ratio, initial propellant temperature, chamber pressure, nozzle configuration, nozzle expansion area, and ambient pressure. While the model was relatively simple, it captured the expected "DC shift" in mean chamber pressure between constant pressure combustors and combustors with steep-fronted non-linear instabilities. (Abstract shortened by ProQuest.).
Use of inert gas jets to measure the forces required for mechanical gene transfection
2012-01-01
Background Transferring genes and drugs into cells is central to how we now study, identify and treat diseases. Several non-viral gene therapy methods that rely on the mechanical disruption of the plasma membrane have been proposed, but the success of these methods has been limited due to a lack of understanding of the mechanical parameters that lead to cell membrane permeability. Methods We use a simple jet of inert gas to induce local transfection of plasmid DNA both in vitro (HeLa cells) and in vivo (chicken chorioallantoic membrane). Five different capillary tube inner diameters and three different gases were used to treat the cells to understand the dependency of transfection efficiency on the dynamic parameters. Results The simple setup has the advantage of allowing us to calculate the forces acting on cells during transfection. We found permeabilization efficiency was related to the dynamic pressure of the jet. The range of dynamic pressures that led to transfection in HeLa cells was small (200 ± 20 Pa) above which cell stripping occurred. We determined that the temporary pores allow the passage of dextran up to 40 kDa and reclose in less than 5 seconds after treatment. The optimized parameters were also successfully tested in vivo using the chorioallantoic membrane of the chick embryo. Conclusions The results show that the number of cells transfected with the plasmid scales with the dynamic pressure of the jet. Our results show that mechanical methods have a very small window in which cells are permeabilized without injury (200 to 290 Pa). This simple apparatus helps define the forces needed for physical cell transfection methods. PMID:22963645
NASA Astrophysics Data System (ADS)
Kim, Dong Hyeok; Lee, Ouk Sub; Kim, Hong Min; Choi, Hye Bin
2008-11-01
A modified Split Hopkinson Pressure Bar technique with aluminum pressure bars and a pulse shaper technique to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene). The more distinguishable experimental signals were obtained to evaluate the more accurate dynamic deformation behavior of materials under a high strain rate loading condition. A pulse shaping technique is introduced to reduce the non-equilibrium on the dynamic material response by modulation of the incident wave during a short period of test. This increases the rise time of the incident pulse in the SHPB experiment. For the dynamic stress strain curve obtained from SHPB experiment, the Johnson-Cook model is applied as a constitutive equation. The applicability of this constitutive equation is verified by using the probabilistic reliability estimation method. Two reliability methodologies such as the FORM and the SORM have been proposed. The limit state function(LSF) includes the Johnson-Cook model and applied stresses. The LSF in this study allows more statistical flexibility on the yield stress than a paper published before. It is found that the failure probability estimated by using the SORM is more reliable than those of the FORM/ It is also noted that the failure probability increases with increase of the applied stress. Moreover, it is also found that the parameters of Johnson-Cook model such as A and n, and the applied stress are found to affect the failure probability more severely than the other random variables according to the sensitivity analysis.
Application of the coplanar principle to dynamic epidural pressure measurements.
Beck, J; Schettini, A; Salton, R
1984-10-01
The application of the coplanar principle to dynamic epidural pressure measurements was investigated in vitro. The authors used a coplanar pressure-displacement transducer, commonly employed to measure the viscoelastic properties of brain tissue in vivo. The present studies were performed using canine dura and a specially constructed fluid-filled chamber. The accuracy of the technique was assessed by comparing the pressure in the chamber recorded by the coplanar transducer to the pressure measured by a transducer directly vented to the chamber. The results show that the coplanar principle remained valid for dynamic measurements with the transducer under a variety of conditions.
Ultra-fast vapor generation by a graphene nano-ratchet: a theoretical and simulation study.
Ding, Hongru; Peng, Guilong; Mo, Shenqiu; Ma, Dengke; Sharshir, Swellam Wafa; Yang, Nuo
2017-12-14
Vapor generation is of prime importance for a broad range of applications: domestic water heating, desalination and wastewater treatment, etc. However, slow and inefficient evaporation limits its development. In this study, a nano-ratchet, a multilayer graphene with cone-shaped nanopores (MGCN), to accelerate vapor generation has been proposed. By performing molecular dynamics simulation, we found that air molecules were spontaneously transported across MGCN and resulted in a remarkable pressure difference, 21 kPa, between the two sides of MGCN. We studied the dependence of the pressure difference on the ambient temperature and geometry of MGCN in detail. Through further analysis of the diffusive transport, we found that pressure difference depended on the competition between ratchet transport and Knudsen diffusion and it was further found that ratchet transport is dominant. The significant pressure difference could lead to a 15-fold or greater enhancement of vapor generation, which shows the wide applications of this nano-ratchet.
Prediction of Burst Pressure in Multistage Tube Hydroforming of Aerospace Alloys.
Saboori, M; Gholipour, J; Champliaud, H; Wanjara, P; Gakwaya, A; Savoie, J
2016-08-01
Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.
Characterisation of minimal-span plane Couette turbulence with pressure gradients
NASA Astrophysics Data System (ADS)
Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio
2018-04-01
The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.
Inferring Strength of Tantalum from Hydrodynamic Instability Recovery Experiments
NASA Astrophysics Data System (ADS)
Sternberger, Z.; Maddox, B.; Opachich, Y.; Wehrenberg, C.; Kraus, R.; Remington, B.; Randall, G.; Farrell, M.; Ravichandran, G.
2018-05-01
Hydrodynamic instability experiments allow access to material properties at extreme conditions, where strain rates exceed 105 s-1 and pressures reach 100 GPa. Current hydrodynamic instability experimental methods require in-flight radiography to image the instability growth at high pressure and high strain rate, limiting the facilities where these experiments can be performed. An alternate approach, recovering the sample after loading, allows measurement of the instability growth with profilometry. Tantalum samples were manufactured with different 2D and 3D initial perturbation patterns and dynamically compressed by a blast wave generated by laser ablation. The samples were recovered from peak pressures between 30 and 120 GPa and strain rates on the order of 107 s-1, providing a record of the growth of the perturbations due to hydrodynamic instability. These records are useful validation points for hydrocode simulations using models of material strength at high strain rate. Recovered tantalum samples were analyzed, providing an estimate of the strength of the material at high pressure and strain rate.
Dynamic pressure sensitivity determination with Mach number method
NASA Astrophysics Data System (ADS)
Sarraf, Christophe; Damion, Jean-Pierre
2018-05-01
Measurements of pressure in fast transient conditions are often performed even if the dynamic characteristic of the transducer are not traceable to international standards. Moreover, the question of a primary standard in dynamic pressure is still open, especially for gaseous applications. The question is to improve dynamic standards in order to respond to expressed industrial needs. In this paper, the method proposed in the EMRP IND09 ‘Dynamic’ project, which can be called the ‘ideal shock tube method’, is compared with the ‘collective standard method’ currently used in the Laboratoire de Métrologie Dynamique (LNE/ENSAM). The input is a step of pressure generated by a shock tube. The transducer is a piezoelectric pressure sensor. With the ‘ideal shock tube method’ the sensitivity of a pressure sensor is first determined dynamically. This method requires a shock tube implemented with piezoelectric shock wave detectors. The measurement of the Mach number in the tube allows an evaluation of the incident pressure amplitude of a step using a theoretical 1D model of the shock tube. Heat transfer, other actual effects and effects of the shock tube imperfections are not taken into account. The amplitude of the pressure step is then used to determine the sensitivity in dynamic conditions. The second method uses a frequency bandwidth comparison to determine pressure at frequencies from quasi-static conditions, traceable to static pressure standards, to higher frequencies (up to 10 kHz). The measurand is also a step of pressure generated by a supposed ideal shock tube or a fast-opening device. The results are provided as a transfer function with an uncertainty budget assigned to a frequency range, also deliverable frequency by frequency. The largest uncertainty in the bandwidth of comparison is used to trace the final pressure step level measured in dynamic conditions, owing that this pressure is not measurable in a steady state on a shock tube. A reference sensor thereby calibrated can be used in a comparison measurement process. At high frequencies the most important component of the uncertainty in this method is due to actual shock tube complex effects not already functionalized nowadays or thought not to be functionalized in this kind of direct method. After a brief review of both methods and a brief review of the determination of the transfer function of pressure transducers, and the budget of associated uncertainty for the dynamic calibration of a pressure transducer in gas, this paper presents a comparison of the results obtained with the ‘ideal shock tube’ and the ‘collective standard’ methods.
Dynamism or Disorder at High Pressures?
NASA Astrophysics Data System (ADS)
Angel, R. J.; Bismayer, U.; Marshall, W. G.
2002-12-01
Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.
NASA Astrophysics Data System (ADS)
Annamalai, Subramanian; Balachandar, S.; Sridharan, P.; Jackson, T. L.
2017-02-01
An analytical expression describing the unsteady pressure evolution of the dispersed phase driven by variations in the carrier phase is presented. In this article, the term "dispersed phase" represents rigid particles, droplets, or bubbles. Letting both the dispersed and continuous phases be inhomogeneous, unsteady, and compressible, the developed pressure equation describes the particle response and its eventual equilibration with that of the carrier fluid. The study involves impingement of a plane traveling wave of a given frequency and subsequent volume-averaged particle pressure calculation due to a single wave. The ambient or continuous fluid's pressure and density-weighted normal velocity are identified as the source terms governing the particle pressure. Analogous to the generalized Faxén theorem, which is applicable to the particle equation of motion, the pressure expression is also written in terms of the surface average of time-varying incoming flow properties. The surface average allows the current formulation to be generalized for any complex incident flow, including situations where the particle size is comparable to that of the incoming flow. Further, the particle pressure is also found to depend on the dispersed-to-continuous fluid density ratio and speed of sound ratio in addition to dynamic viscosities of both fluids. The model is applied to predict the unsteady pressure variation inside an aluminum particle subjected to normal shock waves. The results are compared against numerical simulations and found to be in good agreement. Furthermore, it is shown that, although the analysis is conducted in the limit of negligible flow Reynolds and Mach numbers, it can be used to compute the density and volume of the dispersed phase to reasonable accuracy. Finally, analogous to the pressure evolution expression, an equation describing the time-dependent particle radius is deduced and is shown to reduce to the Rayleigh-Plesset equation in the linear limit.
Juno observes the dynamics of Jupiter's atmosphere
NASA Astrophysics Data System (ADS)
Ingersoll, Andrew P.; Juno Science Team
2017-10-01
Jupiter is a photogenic planet, but our knowledge of the deep atmosphere is limited. Remote sensing observations have traditionally probed within and above the cloud tops, which are in the 0.5-1.0 bar pressure range. Dynamical models have focused on explaining this data set. Microwave observations from Earth probe down to the 5-10 bar range, which overlaps with the predicted base of the water cloud. The Galileo probe yielded data on winds, composition, temperature gradients, clouds, radiant flux, and lightning down to 22 bars, but only at one place on the planet. Further, the traditional observations are constrained to cover low and middle latitudes. In contrast, Juno's camera and infrared radiometer, JunoCam and JIRAM, have yielded images of the poles that show cyclonic vortices in polygonal arrangements. Juno's microwave radiometer yields latitude-altitude cross sections that show dynamical features of the ammonia distribution down to 50-100 bars. And Jupiter's gravity field yields information about the winds at thousands of km depth, where the pressures are tens of kbars. In this talk I will summarize the Juno observations that pertain to the dynamics of Jupiter's atmosphere and I will offer some of my own interpretations. The new data raise as many questions as answers, but that is as it should be. As Ed Stone said during a Voyager encounter, "If we knew all the answers before we got there, we wouldn't be learning anything."
Hall, Neal A; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F Levent
2008-06-01
In many micromachined sensors the thin (2-10 μm thick) air film between a compliant diaphragm and backplate electrode plays a dominant role in shaping both the dynamic and thermal noise characteristics of the device. Silicon microphone structures used in grating-based optical-interference microphones have recently been introduced that employ backplates with minimal area to achieve low damping and low thermal noise levels. Finite-element based modeling procedures based on 2-D discretization of the governing Reynolds equation are ideally suited for studying thin-film dynamics in such structures which utilize relatively complex backplate geometries. In this paper, the dynamic properties of both the diaphragm and thin air film are studied using a modal projection procedure in a commonly used finite element software and the results are used to simulate the dynamic frequency response of the coupled structure to internally generated electrostatic actuation pressure. The model is also extended to simulate thermal mechanical noise spectra of these advanced sensing structures. In all cases simulations are compared with measured data and show excellent agreement-demonstrating 0.8 pN/√Hz and 1.8 μPa/√Hz thermal force and thermal pressure noise levels, respectively, for the 1.5 mm diameter structures under study which have a fundamental diaphragm resonance-limited bandwidth near 20 kHz.
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Snell, M. A.; Barker, P. A.; Aftab, A.; Barber, N. J.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Quinn, P. F.; Surridge, B.
2016-12-01
Low order streams are spatially extensive, temporally dynamic, systems within the agricultural landscape. This dynamism extends to the aquatic communities within these streams, including the phytobentos, which demonstrates considerable resilience to diffuse anthropogenic nutrient pressures and changing climate dynamics. The phytobenthos community can substantially contribute to the food web, in particular diatoms, which dominate photo-autotrophic assemblages in low order streams. Diatoms are widely used in ecological monitoring because of their high sensitivity to environmental condition, but knowledge is limited on the ecological effects of winter disturbances and variance introduced by multiple and interacting pressures (N, P, sediment), introducing bias in understanding temporal dynamics in benthic diatom communities. Using the environmental time series data from long term monitoring within the River Eden Demonstration Test Catchment programme, we assess the impact of multiple hydro-chemical stressors on phytobenthic community resilience, and synthesize the impact of an extreme winter event. Monthly data from diatom communities collected in the Eden DTC from March 2011 to present show that river flow, strongly coupled to precipitation, is a key driver of these communities. Discharge has a direct effect on communities through scouring, but is also tightly correlated to nutrient delivery, such that 80% of the annual TP load arrives in 10% of the time. Trophic Diatom Index (TDI) values demonstrated considerable resilience by the stability of inter-monthly TDI scores over 5 seasonal cycles against the characterised highly variable hydrological regime. This research demonstrates that well characterised winter disturbances are critical to understanding drivers of aquatic dynamics. This has implications for catchment diffuse pollution policy, farm management and economics, given the climate projections of increases in frequency and intensity of extreme winter events, which may alter instream nutrient fluxes.
NASA Astrophysics Data System (ADS)
Lucking, Greg; Stark, Nina; Lippmann, Thomas; Smyth, Stephen
2017-10-01
Tidal estuaries feature spatially and temporally varying sediment dynamics and characteristics. Particularly, the variability of geotechnical sediment parameters is still poorly understood, limiting the prediction of long-term sediment stability and dynamics. This paper presents results from an in situ investigation of surficial sediments (≤50 cm) in a tidal estuary in New Hampshire (USA), using a portable free fall penetrometer. The aim is to investigate variations in sediment strength and pore pressure behavior with regard to sediment type and seabed morphology. The study also provides a detailed analysis of high velocity impact pore pressure data to derive information about sediment type and permeability. The penetrometer was deployed 227 times, and the findings are correlated to 78 sediment samples. Differences in sediment strength and type were found when transitioning from tidal flats to the deeper channels. Finer-grained sediments located predominantly on the tidal flats appeared well consolidated with noticeable and spatially consistent sediment strength (reflected in an estimate of quasi-static bearing capacity qsbcmax 10 kPa). Sediments with higher sand content (>75%) showed more variations in strength relating to differences in gradation, and likely represent loose and poorly consolidated sands (qsbcmax 10-55 kPa). The rate at which the recorded excess pore pressures approached equilibrium after penetration was classified and related to sediment type. The data indicate that the development of excess pore pressures upon impact and during penetration may provide additional insight into the nature and layering of bed material, such as identifying a desiccated or over-consolidated dilative surficial layer. In summary, with varying sediment grain size distributions, bulk densities and morphology, sediment strength and pore pressure behavior can vary significantly within a tidal estuary.
NASA Astrophysics Data System (ADS)
Cui, Rong Hua; Chao Dong, Zheng; Gui Zhong, Chong
2017-12-01
The effects of pressure on the structural, mechanical, dynamical and thermodynamic properties of AgMg have been investigated using first principles based on density functional theory. The optimized lattice constants agree well with previous experimental and theoretical results. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature under pressures were calculated. The calculated results of Cauchy pressure and B/G ratio indicate that AgMg shows ductile nature. Phonon dispersion curves suggest the dynamical stability of AgMg. The pressure dependent behavior of thermodynamic properties are calculated, the Helmholtz free energy and internal energy increase with increase of pressure, while entropy and heat capacity decrease.
NASA Astrophysics Data System (ADS)
Lv, Dongwei; Zhang, Jian; Yu, Xinhai
2018-05-01
In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.
Foot loading with an ankle-foot orthosis: the accuracy of an integrated physical strain trainer.
Pauser, Johannes; Jendrissek, Andreas; Brem, Matthias; Gelse, Kolja; Swoboda, Bernd; Carl, Hans-Dieter
2012-07-01
To investigate the value of a built-in physical strain trainer for the monitoring of partial weight bearing with an ankle-foot orthosis. 12 healthy volunteers were asked to perform three trials. Plantar peak pressure values from normal gait (trial one) were defined as 100% (baseline). The following trials were performed with the Vacoped® dynamic vacuum ankle orthosis worn in a neutral position with full weight bearing (trial two) and a restriction to 10% body weight (BW) (trial three), as monitored with an integrated physical strain trainer. Peak plantar pressure values were obtained using the pedar® X system. Peak pressure values were statistically significantly reduced wearing the Vacoped® shoe with full weight bearing for the hindfoot to 68% of the baseline (normal gait) and for the midfoot and forefoot to 83% and 60%, respectively. Limited weight bearing with 10% BW as controlled by physical strain trainer further reduced plantar peak pressure values for the hindfoot to 19%, for the midfoot to 43% of the baseline and the forefoot to 22% of the baseline. The Vacoped® vacuum ankle orthosis significantly reduces plantar peak pressure. The integrated physical strain trainer seems unsuitable to monitor a limitation to 10% BW adequately for the total foot. The concept of controlling partial weight bearing with the hindfoot-addressing device within the orthosis seems debatable but may be useful when the hindfoot in particular must be off-loaded.
The method of planes pressure tensor for a spherical subvolume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyes, D. M., E-mail: d.heyes@imperial.ac.uk; Smith, E. R., E-mail: edward.smith05@imperial.ac.uk; Dini, D., E-mail: d.dini@imperial.ac.uk
2014-02-07
Various formulas for the local pressure tensor based on a spherical subvolume of radius, R, are considered. An extension of the Method of Planes (MOP) formula of Todd et al. [Phys. Rev. E 52, 1627 (1995)] for a spherical geometry is derived using the recently proposed Control Volume formulation [E. R. Smith, D. M. Heyes, D. Dini, and T. A. Zaki, Phys. Rev. E 85, 056705 (2012)]. The MOP formula for the purely radial component of the pressure tensor is shown to be mathematically identical to the Radial Irving-Kirkwood formula. Novel offdiagonal elements which are important for momentum conservation emergemore » naturally from this treatment. The local pressure tensor formulas for a plane are shown to be the large radius limits of those for spherical surfaces. The radial-dependence of the pressure tensor computed by Molecular Dynamics simulation is reported for virtual spheres in a model bulk liquid where the sphere is positioned randomly or whose center is also that of a molecule in the liquid. The probability distributions of angles relating to pairs of atoms which cross the surface of the sphere, and the center of the sphere, are presented as a function of R. The variance in the shear stress calculated from the spherical Volume Averaging method is shown to converge slowly to the limiting values with increasing radius, and to be a strong function of the number of molecules in the simulation cell.« less
Cherin, Emmanuel; Melis, Johan M.; Bourdeau, Raymond W.; Yin, Melissa; Kochmann, Dennis M.; Foster, F. Stuart; Shapiro, Mikhail G.
2017-01-01
Gas vesicles are a new and unique class of biologically derived ultrasound contrast agents with sub-micron size whose acoustic properties have not been fully elucidated. In this study, we investigated the acoustic collapse pressure and behavior of Halobacterium salinarum gas vesicles at transmit center frequencies ranging from 12.5 to 27.5 MHz. The acoustic collapse pressure was found to be above 550 kPa at all frequencies, 9 fold higher than the critical pressure observed in hydrostatic conditions. We show that gas vesicles behave non-linearly when exposed to ultrasound at incident pressure ranging from 160 kPa to the collapse pressure, and generate second harmonic amplitudes of −2 to −6 dB below the fundamental in media with viscosities ranging from 0.89 to 8 mPa.s. Simulations performed using a Rayleigh-Plesset type model accounting for buckling, and a dynamic finite element analysis, suggest that buckling is the mechanism behind the generation of harmonics. We found good agreement between the level of second harmonic relative to the fundamental measured at 20 MHz and the Rayleigh-Plesset model predictions. Finite element simulations extended these findings to a non-spherical geometry, confirmed that the acoustic buckling pressure corresponds to the critical pressure in hydrostatic conditions, and support the hypothesis of limited gas flow across the GV shell during the compression phase in the frequency range investigated. From simulations, estimates of GV bandwidth-limited scattering indicate that a single GV has a scattering cross-section comparable to that of a red blood cell. These findings will inform the development of GV-based contrast agents and pulse sequences to optimize their detection with ultrasound. PMID:28258771
NASA Astrophysics Data System (ADS)
Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David
2017-12-01
Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.
Leach, Felix C P; Davy, Martin H; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David
2017-12-01
Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.
Dynamic Pressure Probes Developed for Supersonic Flow-Field Measurements
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2001-01-01
A series of dynamic flow-field pressure probes were developed for use in large-scale supersonic wind tunnels at the NASA Glenn Research Center. These flow-field probes include pitot and static pressure probes that can capture fast-acting flow-field pressure transients occurring on a millisecond timescale. The pitot and static probes can be used to determine local Mach number time histories during a transient event. The flow-field pressure probe contains four major components: 1) Static pressure aerodynamic tip; 2) Pressure-sensing cartridge assembly; 3) Pitot pressure aerodynamic tip; 4) Mounting stem. This modular design allows for a variety of probe tips to be used for a specific application. Here, the focus is on flow-field pressure measurements in supersonic flows, so we developed a cone-cylinder static pressure tip and a pitot pressure tip. Alternatively, probe tips optimized for subsonic and transonic flows could be used with this design. The pressure-sensing cartridge assembly allows the simultaneous measurement of steady-state and transient pressure which allows continuous calibration of the dynamic pressure transducer.
Restoration of the Potosi Dynamic Model 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adushita, Yasmin; Leetaru, Hannes
2014-09-30
In topical Report DOE/FE0002068-1 [2] technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In this Task the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this report) was re-run using a new injection scenario;more » 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. Also, it might have overestimated the injection capacity by enhancing too much the pressure relief due to the relatively close proximity between the injector and the infinite acting boundaries. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48 km by 48 km), while preserving all property modeling workflows and layering. This model was retained as the base case. Potosi Dynamic Model 2013.a gives an average CO2 injection rate of 1.4 MTPA and cumulative injection of 43 Mt in 30 years, which corresponds to 45% of the injection target. This implies that according to this preliminary model, a minimum of three (3) wells could be required to achieve the injection target. The injectivity evaluation of the Potosi formation will be revisited in topical Report 15 during which more data will be integrated in the modeling exercise. A vertical flow performance evaluation could be considered for the succeeding task to determine the appropriate tubing size, the required injection tubing head pressure (THP) and to investigate whether the corresponding well injection rate falls within the tubing erosional velocity limit. After 30 years, the plume extends 15 miles (24 km) in E-W and 14 miles (22 km) in N-S directions. After injection is completed, the plume continues to migrate laterally, mainly driven by the remaining pressure gradient. After 100 years post-injection, the plume extends 17 miles (27 km) in E-W and 15 miles (24 km) in N-S directions. The increase of reservoir pressure at the end of injection is approximately 370 psia around the injector and gradually decreases away from the well. The reservoir pressure increase is less than 30 psia beyond 14 miles (22 km) away from injector. The initial reservoir pressure is restored after approximately 20 years post-injection. This result, however, is associated with uncertainties on the boundary conditions, and a sensitivity analysis could be considered for the succeeding tasks. It is important to remember that the respective plume extent and areal pressure increase corresponds to an injection of 43 Mt CO2. Should the targeted cumulative injection of 96 Mt be achieved; a much larger plume extent and areal pressure increase could be expected. Re-evaluating the permeability modeling, vugs and heterogeneity distributions, and relative permeability input could be considered for the succeeding Potosi formation evaluations. A simulation using several injectors could also be considered to determine the required number of wells to achieve the injection target while taking into account the pressure interference.« less
Reynolds-Averaged Turbulence Model Assessment for a Highly Back-Pressured Isolator Flowfield
NASA Technical Reports Server (NTRS)
Baurle, Robert A.; Middleton, Troy F.; Wilson, L. G.
2012-01-01
The use of computational fluid dynamics in scramjet engine component development is widespread in the existing literature. Unfortunately, the quantification of model-form uncertainties is rarely addressed with anything other than sensitivity studies, requiring that the computational results be intimately tied to and calibrated against existing test data. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Due to ground test facility limitations, this expanded role is believed to be a requirement by some in the test and evaluation community if scramjet engines are to be given serious consideration as a viable propulsion device. An effort has been initiated at the NASA Langley Research Center to validate several turbulence closure models used for Reynolds-averaged simulations of scramjet isolator flows. The turbulence models considered were the Menter BSL, Menter SST, Wilcox 1998, Wilcox 2006, and the Gatski-Speziale explicit algebraic Reynolds stress models. The simulations were carried out using the VULCAN computational fluid dynamics package developed at the NASA Langley Research Center. A procedure to quantify the numerical errors was developed to account for discretization errors in the validation process. This procedure utilized the grid convergence index defined by Roache as a bounding estimate for the numerical error. The validation data was collected from a mechanically back-pressured constant area (1 2 inch) isolator model with an isolator entrance Mach number of 2.5. As expected, the model-form uncertainty was substantial for the shock-dominated, massively separated flowfield within the isolator as evidenced by a 6 duct height variation in shock train length depending on the turbulence model employed. Generally speaking, the turbulence models that did not include an explicit stress limiter more closely matched the measured surface pressures. This observation is somewhat surprising, given that stress-limiting models have generally been developed to better predict shock-separated flows. All of the models considered also failed to properly predict the shape and extent of the separated flow region caused by the shock boundary layer interactions. However, the best performing models were able to predict the isolator shock train length (an important metric for isolator operability margin) to within 1 isolator duct height.
High Pressure Oxidizer Turbopump (HPOTP) inducer dynamic design environment
NASA Technical Reports Server (NTRS)
Herda, D. A.; Gross, R. S.
1995-01-01
The dynamic environment must be known to evaluate high pressure oxidizer turbopump inducer fatigue life. This report sets the dynamic design loads for the alternate turbopump inducer as determined by water-flow rig testing. Also, guidelines are given for estimating the dynamic environment for other inducer and impeller applications.
Monitoring intracranial pressure based on F-P
NASA Astrophysics Data System (ADS)
Cai, Ting; Tong, Xinglin; Chen, Guangxi
2013-09-01
Intracranial pressure is an important monitoring indicator of neurosurgery. In this paper we adopt all-fiber FP fiber optic sensor, using a minimally invasive operation to realize real-time dynamic monitoring intracranial pressure of the hemorrhage rats, and observe their intracranial pressure regularity of dynamic changes. Preliminary results verify the effectiveness of applications and feasibility, providing some basis for human brain minimally invasive intracranial pressure measurement.
Measurement of the True Dynamic and Static Pressures in Flight
NASA Technical Reports Server (NTRS)
Kiel, Georg
1939-01-01
In this report, two reliable methods are presented, with the aid of which the undisturbed flight dynamic pressure and the true static pressure may be determined without error. These problems were solved chiefly through practical flight tests.
High degree-of-freedom dynamic manipulation
NASA Astrophysics Data System (ADS)
Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.
2012-06-01
The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.
A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source
NASA Astrophysics Data System (ADS)
Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de
2017-06-01
A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.
Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections. Appendix 3
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Riley, Pete
2001-01-01
Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for many years, beginning with the self-similar analytical models of Parker and Simon and Axford. The first numerical computer code (one-dimensional, gas dynamic) to study disturbance propagation in the solar wind was developed in the late 1960s, and a variety of other codes ranging from simple one-dimensional gas dynamic codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been developed in subsequent years. For the most part, these codes have been applied to the problem of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo provided an excellent summary of the level of understanding achieved from such simulation studies through about 1984, and other reviews have subsequently become available. More recently, some attention has been focused on disturbances generated by slow CMEs, on disturbances driven by CMEs having high internal pressures, and disturbance propagation effects associated with a structured ambient solar wind. Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The simulations begin outside the critical point where the solar wind becomes supersonic and thus do not address questions of how the CMEs themselves are initiated. Limited to one dimension (the radial direction), the simulation code predicts too strong an interaction between newly ejected solar material and the ambient wind because it neglects azimuthal and meridional motions of the plasma that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also underestimates the speed with which pressure disturbances propagate in the wind.
Structure and osmotic pressure of ionic microgel dispersions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedrick, Mary M.; Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050; Chung, Jun Kyung
We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute bothmore » macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, C.-Y.; Cai, Y.-Q.; Chung, S.-C.
The Taiwan Contract Beamline BL12XU at SPring-8 is designed for inelastic X-ray scattering (IXS) experiments. DCS is a powerful technique capable of probing the dynamic behavior and electronic structure of materials under high pressure. The state-of-the-arts technology to generate static high pressure up to mega-bar range uses diamond anvil cells (DAC). The allowed volume of the sample in DAC scales inversely with the pressure and is limited to the order of 1 x 10-3 mm3. In order to utilize such a device to explore the interesting phenomena under high pressure, we have designed a micro-focusing system using a set ofmore » KB mirrors, which is compatible with the existing optical system of BL12XU. Realistic ray-tracing results indicate that the system can achieve a focus of 10 {mu}m x 5.3 {mu}m(H x V) with a total efficiency of about 86%. The improved focus is expected to substantially enhance the experimental capability of BL12XU for high-pressure research.« less
Adaptation of a general circulation model to ocean dynamics
NASA Technical Reports Server (NTRS)
Turner, R. E.; Rees, T. H.; Woodbury, G. E.
1976-01-01
A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.
A HISTORICAL PERSPECTIVE OF NUCLEAR THERMAL HYDRAULICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Auria, F; Rohatgi, Upendra S.
The nuclear thermal-hydraulics discipline was developed following the needs for nuclear power plants (NPPs) and, to a more limited extent, research reactors (RR) design and safety. As in all other fields where analytical methods are involved, nuclear thermal-hydraulics took benefit of the development of computers. Thermodynamics, rather than fluid dynamics, is at the basis of the development of nuclear thermal-hydraulics together with the experiments in complex two-phase situations, namely, geometry, high thermal density, and pressure.
Welch, Tyler; Keller, Thomas; Maldonado, Ruben; Metzger, Melodie; Mohr, Karen; Kvitne, Ronald
2017-12-01
The natural history of posterior cruciate ligament (PCL) deficiency includes the development of arthrosis in the patellofemoral joint (PFJ). The purpose of this biomechanical study was to evaluate the hypothesis that dynamic bracing reduces PFJ pressures in PCL- and combined PCL/posterolateral corner (PLC)-deficient knees. Controlled Laboratory Study. Eight fresh frozen cadaveric knees with intact cruciate and collateral ligaments were included. PFJ pressures and force were measured using a pressure mapping system via a lateral arthrotomy at knee flexion angles of 30°, 60°, 90°, and 120° in intact, PCL-deficient, and PCL/PLC-deficient knees under a combined quadriceps/hamstrings load of 400 N/200 N. Testing was then repeated in PCL- and PCL/PLC-deficient knees after application of a dynamic PCL brace. Application of a dynamic PCL brace led to a reduction in peak PFJ pressures in PCL-deficient knees. In addition, the brace led to a significant reduction in peak pressures in PCL/PLC-deficient knees at 60°, 90°, and 120° of flexion. Application of the dynamic brace also led to a reduction in total PFJ force across all flexion angles for both PCL- and PCL/PLC-deficient knees. Dynamic bracing reduces PFJ pressures in PCL- and combined PCL/PLC-deficient knees, particularly at high degrees of knee flexion.
NASA Technical Reports Server (NTRS)
Acosta, Waldo A.; Chang, Clarence T.
2016-01-01
An experimental investigation of the combustion dynamic characteristics of a research multi-element lean direct injection (LDI) combustor under simulated gas turbine conditions was conducted. The objective was to gain a better understanding of the physical phenomena inside a pressurized flametube combustion chamber under acoustically isolated conditions. A nine-point swirl venturi lean direct injection (SV-LDI) geometry was evaluated at inlet pressures up to 2,413 kPa and non-vitiated air temperatures up to 867 K. The equivalence ratio was varied to obtain adiabatic flame temperatures between 1388 K and 1905 K. Dynamic pressure measurements were taken upstream of the SV-LDI, in the combustion zone and downstream of the exit nozzle. The measurements showed that combustion dynamics were fairly small when the fuel was distributed uniformly and mostly due to fluid dynamics effects. Dynamic pressure fluctuations larger than 40 kPa at low frequencies were measured at 653 K inlet temperature and 1117 kPa inlet pressure when fuel was shifted and the pilot fuel injector equivalence ratio was increased to 0.72.
NASA Astrophysics Data System (ADS)
Roy, M.; Rios, D.; Cosburn, K.
2017-12-01
Shear between the moving lithosphere and the underlying asthenospheric mantle can produce dynamic pressure gradients that control patterns of melt migration by percolative flow. Within continental interiors these pressure gradients may be large enough to focus melt migration into zones of low dynamic pressure and thus influence the surface distribution of magmatism. We build upon previous work to show that for a lithospheric keel that protrudes into the "mantle wind," spatially-variable melt migration can lead to spatially-variable thermal weakening of the lithosphere. Our models treat advective heat transfer in porous flow in the limit that heat transfer between the melt and surrounding matrix dominates over conductive heat transfer within either the melt or the solid alone. The models are parameterized by a heat transfer coefficient that we interpret to be related to the efficiency of heat transfer across the fluid-rock interface, related to the geometry and distribution of porosity. Our models quantitatively assess the viability of spatially variable thermal-weakening caused by melt-migration through continental regions that are characterized by variations in lithospheric thickness. We speculate upon the relevance of this process in producing surface patterns of Cenozoic magmatism and heatflow at the Colorado Plateau in the western US.
Fluid power network for centralized electricity generation in offshore wind farms
NASA Astrophysics Data System (ADS)
Jarquin-Laguna, A.
2014-06-01
An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network. Due to the stochastic nature of the wind and wake interaction effects between turbines, the operating parameters (i.e. pitch angle, rotor speed) of each turbine are different. Time domain simulations, including the main turbine dynamics and laminar transient flow in pipelines, are used to evaluate the efficiency and rotor speed stability of the hydraulic system. It is shown that a passive control of the rotor speed, as proposed in previous work for a single hydraulic turbine, has strong limitations in terms of performance for more than one turbine coupled to the same hydraulic network. It is concluded that in order to connect several turbines, a passive control strategy of the rotor speed is not sufficient and a hydraulic network with constant pressure is suggested. However, a constant pressure network requires the addition of active control at the hydraulic motors and spear valves, increasing the complexity of the initial concept. Further work needs to be done to incorporate an active control strategy and evaluate the feasibility of the constant pressure hydraulic network.
Detecting Pore Fluid Pressure Changes by Using the Vp/Vs Ratio
NASA Astrophysics Data System (ADS)
Vanorio, T.; Mavko, G.
2006-12-01
A central problem in studies aimed at predicting the dynamic behavior of faults is monitoring and quantifying fluid changes in areas prone to overpressure. Experimental and modeling studies show the Vp/Vs ratio to be a good determinant of the saturation state of a rock formation as well as of its inner pore pressure condition. Dectecting pore pressure changes depends, among other causes, on the reliability of laboratory data to calibrate the in-situ measured velocities. Ideally, laboratory experiments performed under controlled conditions would identify the fundamental mechanisms responsible for changes in the measured acoustic properties. However, technical limitations in the laboratory together with the assumptions driving the experimental and modeling approaches rise spouriuos mechanisms which hinder our present understanding of the actual role of high pore pressure on the elastic and poroelastic parameters. Critical issues unclude: a) the frequencies used in the laboratory are responsible for high-frequency fluid effects which induce velocity dispersion. As a result, both the effective stress parameter and velocities (and their pressure-dependence) estimated from high- frequency ultrasonic data are different from those applicable to crustal low frequency wave propagation; b) laboratory measurements made at dry, drained conditions are assumed to mimic those in gas pressured rocks. However, in dry, drained conditions, no pore pressure is exerted in the pore space, and the pore gas is infinitely compressible; c) when using room-dry, drained measurements as the baseline to model pressured rock formations, the unloading path (i.e. decreasing confining pressure) is supposed to mimic the inflationary path due to pore pressure increase. Doing so, it is assumed that the amount of crack opening due to pore pressure is equal to that of crack closure caused by the overburden stress and thus, the effective stress coefficient is implicitely assumed equal to 1. To minimize the assumptions and limitations described above, we designed a laboratory experiment which used gas as pore fluid medium. Experimental results show that in gas-pressured saturated rocks the Vp/Vs ratio, while remaining lower than values reported for liquid saturation conditions, increases with decreasing differential pressure, similarly to the trend observed in liquid saturated rocks.
Copper nanocluster growth at experimental conditions using temperature accelerated dynamics
NASA Astrophysics Data System (ADS)
Dias, C. S.; Cadilhe, A. C.; Voter, A. F.
2009-03-01
We study the dynamics of vapor phase cluster growth near experimental conditions of pressure at temperatures below 200K. To this end, we carried out temperature accelerated dynamics (TAD) simulations at different vapor pressures to characterize the morphology of the resulting nanoparticles, which leads to a range of values of the flux of impinging atoms at fixed vapor temperature. At typical experimental pressures of 10-3-10-4 bar TAD provides substantial boost over regular Molecular Dynamics (MD). TAD is also advantageous over MD, regarding the sampling of the network of visited states, which provides a deeper understanding of the evolution of the system. We characterize the growth of such clusters at different vapor pressures.
recorded simultaneously by auscultation of the brachial artery; and (2) to study the pattern of pressure and flow dynamics during bicycle work at moderate...strenuous and maximal intensities. In most instances systolic pressures measured by auscultation were in close agreement with the directly recorded
NASA Astrophysics Data System (ADS)
Vidal-Luengo, S.; Moldwin, M.
2017-12-01
During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed "cavity" and reacts to solar wind dynamic pressure pulses more simply than during southward IMF conditions. Effects of solar wind dynamic pressure have been observed as geomagnetic lobe compressions depending on the characteristics of the pressure pulse and the spacecraft location. One of the most important aspects of this study is the incorporation of simultaneous observations by different missions, such as WIND, CLUSTER, THEMIS, MMS, Van Allen Probes and GOES as well as magnetometer ground stations that allow us to map the magnetosphere response at different locations during the propagation of a pressure pulse. In this study we used the SYM-H as an indicator of dynamic pressure pulses occurrence from 2007 to 2016. The selection criteria for events are: (1) the increase in the index must be bigger than 10 [nT] and (2) the rise time must be in less than 5 minutes. Additionally, the events must occur under northward IMF and at the same time at least one spacecraft has to be located in the magnetosphere nightside. Using this methodology we found 66 pressure pulse events for analysis. Most of them can be classified as step function pressure pulses or as sudden impulses (increase followed immediately by a decrease of the dynamic pressure). Under these two categories the results show some systematic signatures depending of the location of the spacecraft. For both kind of pressure pulse signatures, compressions are observed on the dayside. However, on the nightside compressions and/or South-then-North magnetic signatures can be observed for step function like pressure pulses, meanwhile for the sudden impulse kind of pressure pulses the magnetospheric response seems to be less global and more dependent on the local conditions.
Dynamics of phenotypic switching of bacterial cells with temporal fluctuations in pressure
NASA Astrophysics Data System (ADS)
Nepal, Sudip; Kumar, Pradeep
2018-05-01
Phenotypic switching is one of the mechanisms by which bacteria thrive in ever changing environmental conditions around them. Earlier studies have shown that the application of steady high hydrostatic pressure leads to stochastic switching of mesophilic bacteria from a cellular phenotype having a normal cell cycle to another phenotype lacking cell division. Here, we have studied the dynamics of this phenotypic switching with fluctuating periodic pressure using a set of experiments and a theoretical model. Our results suggest that the phenotypic switching rate from high-pressure phenotype to low-pressure phenotype in the reversible regime is larger as compared to the switching rate from low-pressure phenotype to high-pressure phenotype. Furthermore, we find that even though the cell division and elongation are presumably regulated by a large number of genes the underlying physics of the dynamics of stochastic switching at high pressure is captured reasonably well by a simple two-state model.
Development of dynamic calibration methods for POGO pressure transducers. [for space shuttle
NASA Technical Reports Server (NTRS)
Hilten, J. S.; Lederer, P. S.; Vezzetti, C. F.; Mayo-Wells, J. F.
1976-01-01
Two dynamic pressure sources are described for the calibration of pogo pressure transducers used to measure oscillatory pressures generated in the propulsion system of the space shuttle. Rotation of a mercury-filled tube in a vertical plane at frequencies below 5 Hz generates sinusoidal pressures up to 48 kPa, peak-to-peak; vibrating the same mercury-filled tube sinusoidally in the vertical plane extends the frequency response from 5 Hz to 100 Hz at pressures up to 140 kPa, peak-to-peak. The sinusoidal pressure fluctuations can be generated by both methods in the presence of high pressures (bias) up to 55 MPa. Calibration procedures are given in detail for the use of both sources. The dynamic performance of selected transducers was evaluated using these procedures; the results of these calibrations are presented. Calibrations made with the two sources near 5 Hz agree to within 3% of each other.
Wave Shape and Impact Pressure Measurements at a Rock Coast Cliff
NASA Astrophysics Data System (ADS)
Varley, S. J.; Rosser, N. J.; Brain, M.; Vann Jones, E. C.
2016-02-01
Rock coast research focuses largely on wave behaviour across beaches and shore platforms but rarely considers direct wave interaction with cliffs. Hydraulic action is one of the most important drivers of erosion along rock coasts. The magnitude of wave impact pressure has been shown by numerical and laboratory studies to be related to the wave shape. In deep water, a structure is only subjected to the hydrostatic pressure due to the oscillating clapotis. Dynamic pressures, related to the wave celerity, are exerted in shallower water when the wave is breaking at the point of impact; very high magnitude, short duration shock pressures are theorised to occur when the approaching wavefront is vertical. As such, wave shape may directly influence the potential of the impact to weaken rock and cause erosion. Measurements of impact pressure at coastal cliffs are limited, and the occurrence and influence of this phenomenon is currently poorly constrained. To address this, we have undertaken a field monitoring study on the magnitude and vertical distribution of wave impact pressures at the rocky, macro-tidal coastline of Staithes, North Yorkshire, UK. A series of piezo-resistive pressure transducers and a camera were installed at the base of the cliff during low tide. Transducers were deployed vertically up the cliff face and aligned shore-normal to capture the variation in static and dynamic pressure with height during a full spring tidal cycle. Five minute bursts of 5 kHz pressure readings and 4 Hz wave imaging were sampled every 30 minutes for six hours during high tide. Pressure measurements were then compensated for temperature and combined with wave imaging to produce a pressure time series and qualitative wave shape category for each wave impact. Results indicate the presence of a non-linear relationship between pressure impact magnitude, the occurrence of shock pressures, wave shape and tidal stage, and suggest that breaker type on impact (and controls thereof) may be fundamental in dictating the effectiveness of hydraulic action in eroding rock coast cliffs. Our findings demonstrate the sensitivity of wave loading to changes in water depth and, hence, projected sea-level rise. This research leads directly into a wider project investigating the role of wave shape as a key control on marine forcing of erosion.
Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations
NASA Astrophysics Data System (ADS)
Cerino, Luca; Puglisi, Andrea; Vulpiani, Angelo
2016-04-01
We investigate a kinetic heat engine model composed of particles enclosed in a box where one side acts as a thermostat and the opposite side is a piston exerting a given pressure. Pressure and temperature are varied in a cyclical protocol of period τ : their relative excursions, δ and ɛ , respectively, constitute the thermodynamic forces dragging the system out of equilibrium. The analysis of the entropy production of the system allows us to define the conjugated fluxes, which are proportional to the extracted work and the consumed heat. In the limit of small δ and ɛ the fluxes are linear in the forces through a τ -dependent Onsager matrix whose off-diagonal elements satisfy a reciprocal relation. The dynamics of the piston can be approximated, through a coarse-graining procedure, by a Klein-Kramers equation which—in the linear regime—yields analytic expressions for the Onsager coefficients and the entropy production. A study of the efficiency at maximum power shows that the Curzon-Ahlborn formula is always an upper limit which is approached at increasing values of the thermodynamic forces, i.e., outside of the linear regime. In all our analysis the adiabatic limit τ →∞ and the the small-force limit δ ,ɛ →0 are not directly related.
Fundamentals and Advances in Tonometry.
Nuyen, Brenda; Mansouri, Kaweh
2015-01-01
According to the World Health Organization, glaucoma is the leading cause of irreversible blindness worldwide. Although intraocular pressure (IOP) is not considered any more to be a defining feature of the disease, its lowering remains the only treatment option for glaucoma. Therefore, accurate and precise measurement of IOP is the cornerstone of glaucoma. Intraocular pressure is a highly dynamic physiological parameter with individual circadian rhythms. The main limitation of current tonometry methods remains the static and mostly office-based nature of their measurements. This review provides a brief historical overview on tonometry and discusses current tonometry instruments. In recent years, approaches to 24-hour IOP monitoring have been introduced, and there is hope that they may become part of routine clinical management in the future.
Aerodynamic Heat-Power Engine Operating on a Closed Cycle
NASA Technical Reports Server (NTRS)
Ackeret, J.; Keller, D. C.
1942-01-01
Hot-air engines with dynamic compressors and turbines offer new prospects of success through utilization of units of high efficiencies and through the employment of modern materials of great strength at high temperature. Particular consideration is given to an aerodynamic prime mover operating on a closed circuit and heated externally. Increase of the pressure level of the circulating air permits a great increase of limit load of the unit. This also affords a possibility of regulation for which the internal efficiency of the unit changes but slightly. The effect of pressure and temperature losses is investigated. A general discussion is given of the experimental installation operating at the Escher Wyss plant in Zurich for a considerable time at high temperatures.
NASA Astrophysics Data System (ADS)
Montorfano, Davide; Gaetano, Antonio; Barbato, Maurizio C.; Ambrosetti, Gianluca; Pedretti, Andrea
2014-09-01
Concentrating photovoltaic (CPV) cells offer higher efficiencies with regard to the PV ones and allow to strongly reduce the overall solar cell area. However, to operate correctly and exploit their advantages, their temperature has to be kept low and as uniform as possible and the cooling circuit pressure drops need to be limited. In this work an impingement water jet cooling system specifically designed for an industrial HCPV receiver is studied. Through the literature and by means of accurate computational fluid dynamics (CFD) simulations, the nozzle to plate distance, the number of jets and the nozzle pitch, i.e. the distance between adjacent jets, were optimized. Afterwards, extensive experimental tests were performed to validate pressure drops and cooling power simulation results.
NASA Astrophysics Data System (ADS)
Cheng, Tai-min; Yu, Guo-Liang; Su, Yong; Ge, Chong-Yuan; Zhang, Xin-Xin; Zhu, Lin; Li, Lin
2018-05-01
The ordered crystalline Invar alloy Fe3Pt is in a special magnetic critical state, under which the lattice dynamic stability of the system is extremely sensitive to external pressures. We studied the pressure dependence of enthalpy and magnetism of Fe3Pt in different crystalline alloys by using the first-principles projector augmented-wave method based on the density functional theory. Results show that the P4/mbm structure is the ground state structure and is more stable relative to other structures at pressures below 18.54 GPa. The total magnetic moments of L12, I4/mmm and DO22 structures decrease rapidly with pressure and oscillate near the ferromagnetic collapse critical pressure. At the pressure of 43 GPa, the ferrimagnetic property in DO22 structure becomes apparently strengthened and its volume increases rapidly. The lattice dynamics calculation for L12 structures at high pressures shows that the spontaneous magnetization of the system in ferromagnetic states induces the softening of the transverse acoustic phonon TA1 (M), and there exists a strong spontaneous volume magnetostriction at pressures below 26.95 GPa. Especially, the lattice dynamics stability is sensitive to pressure, in the pressure range between the ferromagnetic collapse critical pressure (41.9 GPa) and the magnetism completely disappearing pressure (57.25 GPa), and near the pressure of phase transition from L12 to P4/mbm structure (27.27 GPa). Moreover, the instability of magnetic structure leads to a prominent elastic modulus oscillation, and the spin polarizability of electrons near the Fermi level is very sensitive to pressures in that the pressure range. The pressure induces the stability of the phonon spectra of the system at pressures above 57.25 GPa.
Diastolic viscous properties of the intact canine left ventricle.
Nikolic, S D; Tamura, K; Tamura, T; Dahm, M; Frater, R W; Yellin, E L
1990-08-01
The viscoelastic model of the ventricle predicts that the rate of change of volume (strain rate) is a determinant of the instantaneous pressure in the ventricle during diastole. Because relaxation is not complete before the onset of filling, one cannot distinguish the individual effects of relaxation and viscosity unless the passive and active components that determine the ventricular pressure are separated. To overcome this problem, we used the method of ventricular volume clamping to compare the pressures in the fully relaxed ventricle at a given volume at zero strain rate (static pressure) and high strain rate (dynamic pressure). Six open-chest, fentanyl-anesthetized dogs were instrumented with micromanometers and an electronically controlled mitral valve occluder in series with the electromagnetic flow probe. We reasoned as follows: If there were significant viscosity, then the dynamic pressure would be higher than the static pressure. The static pressure was measured when the ventricle was completely relaxed following a mitral valve occlusion after an arbitrary filling volume had been achieved. The dynamic pressure was determined by delaying the onset of filling until relaxation was complete and then measuring the pressure at the same volume that was achieved when the static pressure was measured. In 19 different hemodynamic situations, the dynamic and static pressures were identical (mean difference, 0.1 +/- 0.8 mm Hg), indicating that in the passive ventricle viscoelastic effects are insignificant and do not contribute to the left ventricular diastolic pressure under normal filling rates.
An empirical method to estimate shear wave velocity of soils in the New Madrid seismic zone
Wei, B.-Z.; Pezeshk, S.; Chang, T.-S.; Hall, K.H.; Liu, Huaibao P.
1996-01-01
In this study, a set of charts are developed to estimate shear wave velocity of soils in the New Madrid seismic zone (NMSZ), using the standard penetration test (SPT) N values and soil depths. Laboratory dynamic test results of soil samples collected from the NMSZ showed that the shear wave velocity of soils is related to the void ratio and the effective confining pressure applied to the soils. The void ratio of soils can be estimated from the SPT N values and the effective confining pressure depends on the depth of soils. Therefore, the shear wave velocity of soils can be estimated from the SPT N value and the soil depth. To make the methodology practical, two corrections should be made. One is that field SPT N values of soils must be adjusted to an unified SPT N??? value to account the effects of overburden pressure and equipment. The second is that the effect of water table to effective overburden pressure of soils must be considered. To verify the methodology, shear wave velocities of five sites in the NMSZ are estimated and compared with those obtained from field measurements. The comparison shows that our approach and the field tests are consistent with an error of less than of 15%. Thus, the method developed in this study is useful for dynamic study and practical designs in the NMSZ region. Copyright ?? 1996 Elsevier Science Limited.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2016-08-07
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.
Pearson, Stephen J; Whitaker, Alison F
2012-01-01
This study explores the relationship between dance shoe type and foot pressure characteristics. During adolescence, while the foot is still developing, limiting focal pressure on the feet may help reduce the risk of injury. In order to "condition" the feet for advanced dance, where pointe shoes are worn, it may be advisable to first utilize demi-pointe shoes. Eight female dancers were each tested in four footwear conditions (barefoot, soft, demi-pointe, and pointe shoes), and patterns of foot pressure were compared. A questionnaire was also distributed among sixty-five adolescent females currently training at vocational dance schools to examine shoe use and injury rate before and after the onset of pointe work. During ballet-specific dynamic movement, soft shoes and pointe shoes significantly vary in the plantar pressures they impose on the foot. Demi-pointe shoes provide an intermediate pressure condition, which may help the dancer adapt more gradually to the pressure demands of pointe shoes. Dancers who wore demi-pointe shoes prior to starting pointe were found to be less likely to sustain a ballet-related injury or a lower leg, ankle, or foot injury (22% compared to 30% in those who had not worn demi-pointe shoes). The dancers in this group were also older when they first reported an injury.
Gebhardt, Ronald; Takeda, Naohiro; Kulozik, Ulrich; Doster, Wolfgang
2011-03-17
Caseins form heterogeneous micelles composed of three types of disordered protein chains (α, β, κ), which include protein-bound calcium phosphate particles. We probe the stability limits of the micelle by applying hydrostatic pressure. The resulting changes of the size distribution and the average molecular weight are recorded in situ with static and dynamic light scattering. Pressure induces irreversible dissociation of the micelles into monomers above a critical value depending on their size. The critical pressure increases with temperature, pH, and calcium concentration due to the interplay of hydrophobic and electrostatic interactions. The pressure transition curves are biphasic, reflecting the equilibrium of two micelle states with different stability, average size, entropy, and calcium bound. The fast process of pressure dissociation is used to probe the slow equilibrium of the two micelle states under various conditions. Binding and release of β-casein from the micelle is suggested as the molecular mechanism of stabilization associated with the two states. In situ FTIR spectroscopy covering the P-O stretching region indicates that bound calcium phosphate particles are released from serine phosphate residues at pressures above 100 MPa. The resulting imbalance of charge triggers the complete decomposition of the micelle. © 2011 American Chemical Society
Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures
NASA Astrophysics Data System (ADS)
Davis, Jean-Paul; Knudson, Marcus D.; Shulenburger, Luke; Crockett, Scott D.
2016-10-01
An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performed using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ˜300 GPa, and confirming the nonlinear dependence of the refractive index on density. We present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.
NASA Astrophysics Data System (ADS)
Deem, Eric; Cattafesta, Louis; Zhang, Hao; Rowley, Clancy
2016-11-01
Closed-loop control of flow separation requires the spatio-temporal states of the flow to be fed back through the controller in real time. Previously, static and dynamic estimation methods have been employed that provide reduced-order model estimates of the POD-coefficients of the flow velocity using surface pressure measurements. However, this requires a "learning" dataset a priori. This approach is effective as long as the dynamics during control do not stray from the learning dataset. Since only a few dynamical features are required for feedback control of flow separation, many of the details provided by full-field snapshots are superfluous. This motivates a state-observation technique that extracts key dynamical features directly from surface pressure, without requiring PIV snapshots. The results of identifying DMD modes of separated flow through an array of surface pressure sensors in real-time are presented. This is accomplished by employing streaming DMD "on the fly" to surface pressure snapshots. These modal characteristics exhibit striking similarities to those extracted from PIV data and the pressure field obtained via solving Poisson's equation. Progress towards closed-loop separation control based on the dynamic modes of surface pressure will be discussed. Supported by AFOSR Grant FA9550-14-1-0289.
Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin
2015-03-24
A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.
2002-01-01
Prescribed by ANSI Std Z39-18 Research and Technology Department Dynamics and Diagnostics Division, Static High- Pressure Group Overall Research...Department Dynamics and Diagnostics Division, Static High- Pressure Group Impact of this Basic Research • This research generates phase and density...Static High- Pressure Group Experimental Methodology Use Diamond Anvil Cells (DAC) with coil Heaters (HDAC) to achieve • High pressures (P) to 10 GPa
Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars
DOT National Transportation Integrated Search
2009-11-13
This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...
Can Treeline Shift in Tropical Africa be Used As Proxy to Study Climate Change?
NASA Astrophysics Data System (ADS)
Jacob, M.; Frankl, A.; De Ridder, M.; Guyassa, E.; Beeckman, H.; Nyssen, J.
2014-12-01
The important ecosystem services of the vulnerable high altitude forests of the tropical African highlands are under increasing environmental and human pressure. The afro-alpine treeline forms an apparent and temperature-responsive vegetation boundary and is therefore potentially valuable as a proxy of climate change in the tropics. However, a review of the current literature about treeline dynamics in tropical Africa indicates that climate change did not cause rising treelines, due to high human pressure and growing human population densities. On average the treeline is depressed below its climatic limit by 400 ± 300 meter, but regional differences are high and there are still many uncertainties. A multidisciplinary study of treeline dynamics is conducted in the north Ethiopian highlands. The Erica arborea L. treeline is studied over a century, using satellite imagery, aerial photographs, repeat photography and dendroclimatology. Repeat photography is proven a unique tool for the identification of treeline dynamics on the long-term. Results in the Simen Mts. indicate a treeline rise of more than 100 meters since the early 20th century. In contrast, historical satellite and aerial imagery indicate that there has been strong deforestation since the last 30 years and a significant (p<0.05) but small rise of the treeline elevation of 11 ± 4 vertical meters in Lib Amba Mt. Dendroclimatological results indicate a weak but significant (p<0.05) correlation between tree ring width and interannual precipitation patterns. However, since treelines in the African tropical mountains are strongly disturbed by human and livestock pressure, they cannot directly be used as a proxy for climate change.
Radiation pressure driving of a dusty atmosphere
NASA Astrophysics Data System (ADS)
Tsang, Benny T.-H.; Milosavljević, Miloš
2015-10-01
Radiation pressure can be dynamically important in star-forming environments such as ultra-luminous infrared and submillimetre galaxies. Whether and how radiation drives turbulence and bulk outflows in star formation sites is still unclear. The uncertainty in part reflects the limitations of direct numerical schemes that are currently used to simulate radiation transfer and radiation-gas coupling. An idealized setup in which radiation is introduced at the base of a dusty atmosphere in a gravitational field has recently become the standard test for radiation-hydrodynamics methods in the context of star formation. To a series of treatments featuring the flux-limited diffusion approximation as well as a short-characteristics tracing and M1 closure for the variable Eddington tensor approximation, we here add another treatment that is based on the implicit Monte Carlo radiation transfer scheme. Consistent with all previous treatments, the atmosphere undergoes Rayleigh-Taylor instability and readjusts to a near-Eddington-limited state. We detect late-time net acceleration in which the turbulent velocity dispersion matches that reported previously with the short-characteristics-based radiation transport closure, the most accurate of the three preceding treatments. Our technical result demonstrates the importance of accurate radiation transfer in simulations of radiative feedback.
Jeong, Y J; Oh, T I; Woo, E J; Kim, K J
2017-07-01
Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.
Analysis of the cycle-to-cycle pressure distribution variations in dynamic stall
NASA Astrophysics Data System (ADS)
Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan
2017-11-01
Dynamic stall is an unsteady flow phenomenon observed on blades and wings that, despite decades of focused study, remains a challenging problem for rotorcraft and wind turbine applications. Traditionally, dynamic stall has been studied on pitch-oscillating airfoils by measuring the unsteady pressure distribution that is phase-averaged, by which the typical flow pattern may be observed and quantified. In cases where light to deep dynamic stall are observed, pressure distributions with high levels of variance are present in regions of separation. It was recently observed that, under certain conditions, this scatter may be the result of a two-state flow solution - as if there were a bifurcation in the unsteady pressure distribution behavior on the suction side of the airfoil. This is significant since phase-averaged dynamic stall data are often used to tune dynamic stall models and for validation of simulations of dynamic stall. In order to better understand this phenomenon, statistical analysis of the pressure data using probability density functions (PDFs) and other statistical approaches has been carried out for the SC 1094R8, DU97-W-300, and NACA 0015 airfoil geometries. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.
Osmosis-Based Pressure Generation: Dynamics and Application
Li, Suyi; Billeh, Yazan N.; Wang, K. W.; Mayer, Michael
2014-01-01
This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators. PMID:24614529
Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan
2017-11-29
Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.
Yang, Lei; Guo, Yanjie; Diao, Dongfeng
2017-05-31
Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.
Bianchi I cosmology in the presence of a causally regularized viscous fluid
NASA Astrophysics Data System (ADS)
Montani, Giovanni; Venanzi, Marta
2017-07-01
We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we address, the Universe is emerging from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual non-viscous power-law behaviour but in correspondence to an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that, in the limit of a strong non-thermodynamical equilibrium of the Universe mimicked by a dominant contribution of the effective viscous pressure, a power-law inflation behaviour of the Universe appears, the cosmological horizons are removed and a significant amount of entropy is produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Chong Shik; Shiltsev, Vladimir; Stancari, Giulio
The ability to transport a high current proton beam in a ring is ultimately limited by space charge effects. Two novel ways to overcome this limit in a proton ring are by adding low energy, externally matched electron beams (electron lens, e-lens), and by taking advantage of residual gas ionization induced neutralization to create an electron column (e-column). Theory predicts that an appropriately confined electrons can completely compensate the space charge through neutralization, both transversely and longitudinally. In this report, we will discuss the current status of the Fermilab’s e-lens experiment for the space charge compensation. In addition, we willmore » show how the IOTA e-column compensates space charge with theWARP simulations. The dynamics of proton beams inside of the e-column is understood by changing the magnetic field of a solenoid, the voltage on the electrodes, and the vacuum pressure, and by looking for electron accumulation, as well as by considering various beam dynamics in the IOTA ring.« less
Numerical simulation of magnetic nano drug targeting in a patient-specific coeliac trunk
NASA Astrophysics Data System (ADS)
Boghi, Andrea; Russo, Flavia; Gori, Fabio
2017-09-01
Magnetic nano drug targeting, through the use of an external magnetic field, is a new technique for the treatment of several diseases, which can potentially avoid the dispersion of drugs in undesired locations of the body. Nevertheless, due to the limitations on the intensity of the magnetic field applied, the hydrodynamic forces can reduce the effectiveness of the procedure. This technique is studied in this paper with the Computational Fluid Dynamics (CFD), focusing on the influence of the magnetic probe position, and the direction of the circulating electric current. A single rectangular coil is used to generate the external magnetic field. A patient-specific geometry of the coeliac trunk is reconstructed from DICOM images, with the use of VMTK. A new solver, coupling the Lagrangian dynamics of the nanoparticles with the Eulerian dynamics of the blood, is implemented in OpenFOAM to perform the simulations. The resistive pressure, the Womersley's profile for the inlet velocity and the magnetic field of a rectangular coil are implemented in the software as boundary conditions. The results show the influence of the position of the probe, as well as the limitations associated with the rectangular coil configuration.
Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J
2014-03-20
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.
Payen, Celia; Di Rienzi, Sara C.; Ong, Giang T.; Pogachar, Jamie L.; Sanchez, Joseph C.; Sunshine, Anna B.; Raghuraman, M. K.; Brewer, Bonita J.; Dunham, Maitreya J.
2014-01-01
Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another. PMID:24368781
NASA Astrophysics Data System (ADS)
Nakai, H.; Kamide, Y.
2003-04-01
An attempt is made to search for a critical condition in the lobe magnetic field to initiate large-scale magnetic field changes associated with substorm expansions. Using data from ISEE-1 for 1978, sudden decreases in the lobe magnetic field accompanied by magnetic field dipolarizations are identified. In this study, such events are designated as the magnetotail deflation. The magnetic field component parallel to the equatorial plane, BE , is normalized to a fixed geocentric distance, BEN , and is corrected for the compression effect of the solar wind dynamic pres-sure, BENC . It is shown that the BENC value just prior to a magnetotail deflation correlates well with the Dst index; BENC = 37.5 - 0.217 Dst0, where Dst0 denotes the Dst value corrected for the solar wind dynamic pressure. This regression function appears to delineate the upper limit of BENC values, when they are sorted by the Dst0 index. On the basis of this finding it is suggested that a prerequisite condition for magnetotail deflations must exist in the magnetosphere.
Prediction of HR/BP response to the spontaneous breathing trial by fluctuation dissipation theory
NASA Astrophysics Data System (ADS)
Chen, Man
2014-03-01
We applied the non-equilibrium fluctuation dissipation theorem to predict how critically-ill patients respond to treatment, based on both heart rate data and blood pressure data collected by standard hospital monitoring devices. The non-equilibrium fluctuation dissipation theorem relates the response of a system to a perturbation to the fluctuations in the stationary state of the system. It is shown that the response of patients to a standard procedure performed on patients, the spontaneous breathing trial (SBT), can be predicted by the non-equilibrium fluctuation dissipation approach. We classify patients into different groups according to the patients' characteristics. For each patient group, we extend the fluctuation dissipation theorem to predict interactions between blood pressure and beat-to-beat dynamics of heart rate in response to a perturbation (SBT), We also extract the form of the perturbation function directly from the physiological data, which may help to reduce the prediction error. We note this method is not limited to the analysis of the heart rate dynamics, but also can be applied to analyze the response of other physiological signals to other clinical interventions.
Morphometric Differences of Vocal Tract Articulators in Different Loudness Conditions in Singing.
Echternach, Matthias; Burk, Fabian; Burdumy, Michael; Traser, Louisa; Richter, Bernhard
2016-01-01
Dynamic MRI analysis of phonation has gathered interest in voice and speech physiology. However, there are limited data addressing the extent to which articulation is dependent on loudness. 12 professional singer subjects of different voice classifications were analysed concerning the vocal tract profiles recorded with dynamic real-time MRI with 25fps in different pitch and loudness conditions. The subjects were asked to sing ascending scales on the vowel /a/ in three loudness conditions (comfortable=mf, very soft=pp, very loud=ff, respectively). Furthermore, fundamental frequency and sound pressure level were analysed from the simultaneously recorded optical audio signal after noise cancellation. The data show articulatory differences with respect to changes of both pitch and loudness. Here, lip opening and pharynx width were increased. While the vertical larynx position was rising with pitch it was lower for greater loudness. Especially, the lip opening and pharynx width were more strongly correlated with the sound pressure level than with pitch. For the vowel /a/ loudness has an effect on articulation during singing which should be considered when articulatory vocal tract data are interpreted.
Dynamic Measurements Near the Lambda-point in a Low-G Simulator on the Ground
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Strayer, D. M.; Chui, T. C. P.; Duncan, R. V.
1993-01-01
The properties of liquid helium very near the lambda-transition in the presence of a heat current has received recent theoretical and experimental attention. In this regime, gravity induced pressure effects place severe constraints on the types of experiments that can be performed. A new experiment is described which largely overcomes these difficulties by magnetostrictively canceling gravity influences in the helium sample with a suitable magnetic coil. Design limitations of the technique and a discussion of proposed experiments is presented.
Dynamic Measurements Near the Lambda-point in a Low-gravity Simulator on the Ground
NASA Technical Reports Server (NTRS)
Israelsson, U. E.; Strayer, D. M.; Chui, T. C. P.; Larson, M.; Duncan, R. V.
1993-01-01
The properties of liquid helium very near the lambda-transition in the presence of a heat current has received recent theoretical and experimental attention. In this regime, gravity induced pressure effects place severe constraints on the types of experiments that can be performed. A new experiment is described which largely overcomes these difficulties by magnetostrictively canceling gravity influences in the helium sample with a suitable magnetic coil. Design limitations of the technique and a discussion of proposed experiments is presented.
Damping seals for turbomachinery
NASA Technical Reports Server (NTRS)
Vonpragenau, G. L.
1985-01-01
Rotor whirl stabilization of high performance turbomachinery which operates at supercritical speed is discussed. Basic whirl driving forces are reviewed. Stabilization and criteria are discussed. Damping seals are offered as a solution to whirl and high vibration problems. Concept, advantages, retrofitting, and limits of damping seals are explained. Dynamic and leakage properties are shown to require a rough stator surface for stability and efficiency. Typical seal characteristics are given for the case of the high pressure oxidizer turbopump of the Space Shuttle. Ways of implementation and bearing load effects are discussed.
Status of the KTH-NASA Wind-Tunnel Test for Acquisition of Transonic Nonlinear Aeroelastic Data
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Ringertz, Ulf; Stenfelt, Gloria; Eller, David; Keller, Donald F.; Chwalowski, Pawel
2016-01-01
This paper presents a status report on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the design, fabrication, modeling, and testing of a full-span lighter configuration in the Transonic Dynamics Tunnel (TDT). The goal of the test is to acquire transonic limit-cycle- oscillation (LCO) data, including accelerations, strains, and unsteady pressures. Finite element models (FEMs) and aerodynamic models are presented and discussed along with results obtained to date.
Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.
1994-01-01
A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.
NASA Astrophysics Data System (ADS)
Alexandrov, Dmitri V.; Bashkirtseva, Irina A.; Ryashko, Lev B.
2015-04-01
A non-linear behavior of dynamic model of the magma-plug system under the action of N-shaped friction force and stochastic disturbances is studied. It is shown that the deterministic dynamics essentially depends on the mutual arrangement of an equilibrium point and the friction force branches. Variations of this arrangement imply bifurcations, birth and disappearance of stable limit cycles, changes of the stability of equilibria, system transformations between mono- and bistable regimes. A slope of the right increasing branch of the friction function is responsible for the formation of such regimes. In a bistable zone, the noise generates transitions between small and large amplitude stochastic oscillations. In a monostable zone with single stable equilibrium, a new dynamic phenomenon of noise-induced generation of large amplitude stochastic oscillations in the plug rate and pressure is revealed. A beat-type dynamics of the plug displacement under the influence of stochastic forcing is studied as well.
Fluid thermodynamics control thermal weakening during earthquake rupture.
NASA Astrophysics Data System (ADS)
Acosta, M.; Passelegue, F. X.; Schubnel, A.; Violay, M.
2017-12-01
Although fluids are pervasive among tectonic faults, thermo-hydro-mechanical couplings during earthquake slip remain unclear. We report full dynamic records of stick-slip events, performed on saw cut Westerly Granite samples loaded under triaxial conditions at stresses representative of the upper continental crust (σ3' 70 MPa) Three fluid pressure conditions were tested, dry, low , and high pressure (i.e. Pf=0, 1, and 25 MPa). Friction (μ) evolution recorded at 10 MHz sampling frequency showed that, for a single event, μ initially increased from its static pre-stress level, μ0 to a peak value μ p it then abruptly dropped to a minimum dynamic value μd before recovering to its residual value μr, where the fault reloaded elastically. Under dry and low fluid pressure conditions, dynamic friction (μd) was extremely low ( 0.2) and co-seismic slip (δ) was large ( 250 and 200 μm respectively) due to flash heating (FH) and melting of asperities as supported by microstructures. Conversely, at pf=25 MPa, μd was higher ( 0.45), δ was smaller ( 80 μm), and frictional melting was not found. We calculated flash temperatures at asperity contacts including heat buffering by on-fault fluid. Considering the isobaric evolution of water's thermodynamic properties with rising temperature showed that pressurized water controlled fault heating and weakening, through sharp variations of specific heat (cpw) and density (ρw) at water's phase transitions. Injecting the computed flash temperatures into slip-on-a-plane model for thermal pressurization (TP) showed that: (i) if pf was low enough so that frictional heating induced liquid/vapour phase transition, FH operated, allowing very low μd during earthquakes. (ii) Conversely, if pf was high enough that shear heating induced a sharp phase transition directly from liquid to supercritical state, an extraordinary rise in water's specific heat acted as a major energy sink inhibiting FH and limiting TP, allowing higher dynamic fault strengths. Further extrapolation of this simplified model to mid- and low- crustal depths shows that, large cpw rise during phase transitions makes TP the dominant weakening mechanism up to 5 km depth. Increasing depth allows somewhat larger shear stress and reduced cpw rise, and so substantial shear heating at low slip rates, favouring FH for fault weakening.
F-16B Pacer Aircraft Trailing Cone Length Extension Tube Investigative Study (HAVE CLETIS)
2007-06-01
the axial load experienced during high incompressible dynamic pressures and prevent the coupling from locking up as was observed for the 35-foot... axial loads due to incompressible dynamic pressure. (R4) “Guitar stringing” was used to describe the high frequency vibration of the pressure tube...Modify the design of the pressure tube and drag cone coupling to allow independent pressure tube and drag cone rotation under axial loads due to
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
Dynamics of organizational culture: Individual beliefs vs. social conformity.
Ellinas, Christos; Allan, Neil; Johansson, Anders
2017-01-01
The complex nature of organizational culture challenges our ability to infer its underlying dynamics from observational studies. Recent computational studies have adopted a distinctly different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work-(a) omittance of an individual's strive for achieving cognitive coherence; (b) limited integration of important contextual factors-by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of its organizational culture, yet be composed of individuals with reduced levels of coherence; (ii) the components of social conformity-peer-pressure and social rank-are influential at different aggregation levels.
Dynamics of organizational culture: Individual beliefs vs. social conformity
Allan, Neil; Johansson, Anders
2017-01-01
The complex nature of organizational culture challenges our ability to infer its underlying dynamics from observational studies. Recent computational studies have adopted a distinctly different view, where plausible mechanisms are proposed to describe a wide range of social phenomena, including the onset and evolution of organizational culture. In this spirit, this work introduces an empirically-grounded, agent-based model which relaxes a set of assumptions that describes past work–(a) omittance of an individual’s strive for achieving cognitive coherence; (b) limited integration of important contextual factors—by utilizing networks of beliefs and incorporating social rank into the dynamics. As a result, we illustrate that: (i) an organization may appear to be increasingly coherent in terms of its organizational culture, yet be composed of individuals with reduced levels of coherence; (ii) the components of social conformity—peer-pressure and social rank—are influential at different aggregation levels. PMID:28665960
Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo
2016-12-01
A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.
NASA Technical Reports Server (NTRS)
Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.
2009-01-01
Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.
Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek
2014-05-01
To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Radiation pressure in super star cluster formation
NASA Astrophysics Data System (ADS)
Tsang, Benny T.-H.; Milosavljević, Miloš
2018-05-01
The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.
Optimal guidance for the space shuttle transition
NASA Technical Reports Server (NTRS)
Stengel, R. F.
1972-01-01
A guidance method for the space shuttle's transition from hypersonic entry to subsonic cruising flight is presented. The method evolves from a numerical trajectory optimization technique in which kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations. This allows the open end-time problem to be transformed to one of fixed terminal energy. In its ultimate form, E-Guidance obtains energy balance (including dynamic-pressure-rate damping) and path length control by angle-of-attack modulation and cross-range control by roll angle modulation. The guidance functions also form the basis for a pilot display of instantaneous maneuver limits and destination. Numerical results illustrate the E-Guidance concept and the optimal trajectories on which it is based.
Study on Brain Injury Biomechanics Based on the Real Pedestrian Traffic Accidents
NASA Astrophysics Data System (ADS)
Feng, Chengjian; Yin, Zhiyong
This paper aimed to research the dynamic response and injury mechanisms of head based on real pedestrian traffic accidents with video. The kinematics of head contact with the vehicle was reconstructed by using multi-body dynamics models. These calculated parameters such as head impact velocity and impact location and head orientation were applied to the THUMS-4 FE head model as initial conditions. The intracranial pressure and stress of brain were calculated from simulations of head contact with the vehicle. These results were consistent with that of others. It was proved that real traffic accidents combined with simulation analysis can be used to study head injury biomechanics. Increasing in the number of cases, a tolerance limit of brain injury will be put forward.
Filament velocity scaling laws for warm ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, P.; Max-Planck-Institut für Plasmaphysik, EURATOM Assoziation, Boltzmannstr. 2, 85748 Garching; Carralero, D.
2013-10-15
The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevantmore » limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime.« less
NASA Astrophysics Data System (ADS)
Rodi, A. R.; Leon, D. C.
2012-11-01
A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns - angle of attack, angle of sideslip, dynamic pressure and the error in static pressure - if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft - a trailing cone - and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.
van Zoest, W J F; Hoogeveen, A R; Scheltinga, M R M; Sala, H A; van Mourik, J B A; Brink, P R G
2008-05-01
The present study evaluates the efficacy of two treatment regimens in individuals possibly suffering from chronic exercise induced compartment syndrome (CECS) of the deep posterior compartment of the leg. We hypothesised that the current method of fasciotomy of the deep posterior compartment of the leg is a procedure with a limited success rate. Dynamic intra-compartmental pressure measurements were applied to 46 patients that had symptomatology of a posterior CECS. Only those patients that met predefined pressure criteria, the "high-pressure group" (27 patients), were offered surgical treatment in the form of fasciotomy. The other 19 patients, "low-pressure group", received conservative treatment, consisting of inlays and physiotherapy. In addition, these patients were examined more closely in order to exclude different pathology. Efficacy of both approaches was evaluated by a questionnaire after a mean three-year follow-up. Fifty-two percent of the high-pressure group judged their operation successful, whereas 48 % did not. The majority of the low-pressure group (84 %) was free of symptoms, after conservative treatment as well as following treatment of other pathology. The present study shows that the success rate of patients surgically treated for posterior CECS is relatively low (52 %). The established cut-off points for the compartment pressure to deselect patients for an operation are justified based on the long-term success rate of the low-pressure group.
Passive Rocket Diffuser Theory: A Re-Examination of Minimum Second Throat Size
NASA Technical Reports Server (NTRS)
Jones, Daniel R.
2016-01-01
Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure during testing without using active control systems. Among the most critical design parameters is the relative area of the diffuser throat to that of the nozzle throat. A smaller second throat is generally desirable because it decreases the stagnation-to-ambient pressure ratio the diffuser requires for nominal operation. There is a limit, however. Below a certain size, the second throat can cause pressure buildup within the diffuser and prevent it from reaching the start condition that protects the nozzle from side-load damage. This paper presents a method for improved estimation of the minimum second throat area which enables diffuser start. The new 3-zone model uses traditional quasi-one-dimensional compressible flow theory to approximate the structure of two distinct diffuser flow fields observed in Computational Fluid Dynamics (CFD) simulations and combines them to provide a less-conservative estimate of the second throat size limit. It is unique among second throat sizing methods in that it accounts for all major conical nozzle and second throat diffuser design parameters within its limits of application. The performance of the 3-zone method is compared to the historical normal shock and force balance methods, and verified against a large number of CFD simulations at specific heat ratios of 1.4 and 1.25. Validation is left as future work, and the model is currently intended to function only as a first-order design tool.
Pionnier, Raphaël; Découfour, Nicolas; Barbier, Franck; Popineau, Christophe; Simoneau-Buessinger, Emilie
2016-03-01
The purpose of this study was to quantitatively and qualitatively assess dynamic balance with accuracy in individuals with chronic ankle instability (CAI). To this aim, a motion capture system was used while participants performed the Star Excursion Balance Test (SEBT). Reached distances for the 8 points of the star were automatically computed, thereby excluding any dependence to the experimenter. In addition, new relevant variables were also computed, such as absolute time needed to reach each distance, lower limb ranges of motion during unipodal stance, as well as absolute error of pointing. Velocity of the center of pressure and range of variation of ground reaction forces have also been assessed during the unipodal phase of the SEBT thanks to force plates. CAI group exhibited smaller reached distances and greater absolute error of pointing than the control group (p<0.05). Moreover, the ranges of motion of lower limbs joints, the velocity of the center of pressure and the range of variation of the ground reaction forces were all significantly smaller in the CAI group (p<0.05). These reduced quantitative and qualitative performances highlighted a lower dynamic postural control. The limited body movements and accelerations during the unipodal stance in the CAI group could highlight a protective strategy. The present findings could help clinicians to better understand the motor strategies used by CAI patients during dynamic balance and may guide the rehabilitation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Studies on pressure-gain combustion engines
NASA Astrophysics Data System (ADS)
Matsutomi, Yu
Various aspects of the pressure-gain combustion engine are investigated analytically and experimentally in the current study. A lumped parameter model is developed to characterize the operation of a valveless pulse detonation engine. The model identified the function of flame quenching process through gas dynamic process. By adjusting fuel manifold pressure and geometries, the duration of the air buffer can be effectively varied. The parametric study with the lumped parameter model has shown that engine frequency of up to approximately 15 Hz is attainable. However, requirements for upstream air pressure increases significantly with higher engine frequency. The higher pressure requirement indicates pressure loss in the system and lower overall engine performance. The loss of performance due to the pressure loss is a critical issue for the integrated pressure-gain combustors. Two types of transitional methods are examined using entropy-based models. An accumulator based transition has obvious loss due to sudden area expansion, but it can be minimized by utilizing the gas dynamics in the combustion tube. An ejector type transition has potential to achieve performance beyond the limit specified by a single flow path Humphrey cycle. The performance of an ejector was discussed in terms of apparent entropy and mixed flow entropy. Through an ideal ejector, the apparent part of entropy increases due to the reduction in flow unsteadiness, but entropy of the mixed flow remains constant. The method is applied to a CFD simulation with a simple manifold for qualitative evaluation. The operation of the wave rotor constant volume combustion rig is experimentally examined. The rig has shown versatility of operation for wide range of conditions. Large pressure rise in the rotor channel and in a section of the exhaust duct are observed even with relatively large leakage gaps on the rotor. The simplified analysis indicated that inconsistent combustion is likely due to insufficient fuel near the ignition source. However, it is difficult to conclude its fuel distribution with the current setup. Additional measurement near the rotor interfaces and better fuel control are required for the future test.
Wakayama, Tadashi; Suzuki, Masaaki; Tanuma, Tadashi
2016-01-01
Objective Nasal obstruction is a common problem in continuous positive airway pressure (CPAP) therapy for obstructive sleep apnea and limits treatment compliance. The purpose of this study is to model the effects of nasal obstruction on airflow parameters under CPAP using computational fluid dynamics (CFD), and to clarify quantitatively the relation between airflow velocity and pressure loss coefficient in subjects with and without nasal obstruction. Methods We conducted an observational cross-sectional study of 16 Japanese adult subjects, of whom 9 had nasal obstruction and 7 did not (control group). Three-dimensional reconstructed models of the nasal cavity and nasopharynx with a CPAP mask fitted to the nostrils were created from each subject’s CT scans. The digital models were meshed with tetrahedral cells and stereolithography formats were created. CPAP airflow simulations were conducted using CFD software. Airflow streamlines and velocity contours in the nasal cavities and nasopharynx were compared between groups. Simulation models were confirmed to agree with actual measurements of nasal flow rate and with pressure and flow rate in the CPAP machine. Results Under 10 cmH2O CPAP, average maximum airflow velocity during inspiration was 17.6 ± 5.6 m/s in the nasal obstruction group but only 11.8 ± 1.4 m/s in the control group. The average pressure drop in the nasopharynx relative to inlet static pressure was 2.44 ± 1.41 cmH2O in the nasal obstruction group but only 1.17 ± 0.29 cmH2O in the control group. The nasal obstruction and control groups were clearly separated by a velocity threshold of 13.5 m/s, and pressure loss coefficient threshold of approximately 10.0. In contrast, there was no significant difference in expiratory pressure in the nasopharynx between the groups. Conclusion This is the first CFD analysis of the effect of nasal obstruction on CPAP treatment. A strong correlation between the inspiratory pressure loss coefficient and maximum airflow velocity was found. PMID:26943335
Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed
NASA Technical Reports Server (NTRS)
Lekki, John D.
2002-01-01
Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.
NASA Astrophysics Data System (ADS)
Oostrom, M.; Zhong, L.; Wietsma, T.; Covert, M.
2007-12-01
Multifluid relative permeability - saturation - capillary pressure (k-S-P) empirical constitutive models are components of numerical simulators that are used to predict fluid distributions following a nonaqueous phase liquid (NAPL) contamination event or during remediation. The S-P parameter values for these empirical models are either obtained from the literature or determined experimentally by fitting the models to measured data. Most of the experimental emphasis so far has been on testing the S-P component of the k-S-P constitutive relations. Due to the difficulties in obtaining quality relative permeability laboratory data for multiphase systems, testing of the k-S models that are used in multifluid flow simulators has been virtually non-existent. A new tool, the Multiple Location Saturation Pressure Apparatus (MLSPA), located in PNNL's EMSL Subsurface Flow and Transport Laboratory, has been developed to obtain data sets that can be used to test both S-P and k-S relationships for two-phase NAPL-water systems. The MLSPA is a long column (~1 m) equipped with several hydrophilic and hydrophobic pressure transducers. Fluid saturations are determined along the length of a column using a dual-energy gamma radiation system. Although the MLSPA is limited to porous media with a relatively small entry pressure and fairly homogeneous pore-size distributions, it offers the distinct advantage of obtaining S-P data at multiple locations. Besides for static determinations of S-P relations, the MLSPA offers the benefit that it can be used for more dynamic experiments where fluid pressures are changed more rapidly. The data sets produced by the dynamic experiments can be used in relative permeability models. Results of several experiments with crude-oil brine systems will be presented.
Portable Dynamic Pressure Calibrator
NASA Technical Reports Server (NTRS)
Wright, Morgan S.; Maynard, Everett (Technical Monitor)
1996-01-01
A portable, dynamic pressure calibrator was fabricated for use on wind tunnel models at NASA-Ames Research Center. The calibrator generates sine wave pressures at levels up to 1 PSIG P-P(168dB) at frequencies from 10Hz to 6KHz and .5 PSIG P.P (162dB) at frequencies from 6KHz to 20KHz. The calibrator consists of two units connected by a single cable. The handheld unit contains a pressure transducer, speaker, and deadman switch. This unit allows application of dynamic pressure to transducers/ports on installed wind tunnel models. The base unit contains all of power supplies, controls and displays. This unit allows amplitude and frequency to be set and verified at a safe location off of the model.
High pressure study of molecular dynamics of protic ionic liquid lidocaine hydrochloride.
Swiety-Pospiech, A; Wojnarowska, Z; Pionteck, J; Pawlus, S; Grzybowski, A; Hensel-Bielowka, S; Grzybowska, K; Szulc, A; Paluch, M
2012-06-14
In this paper, we investigate the effect of pressure on the molecular dynamics of protic ionic liquid lidocaine hydrochloride, a commonly used pharmaceutical, by means of dielectric spectroscopy and pressure-temperature-volume methods. We observed that near T(g) the pressure dependence of conductivity relaxation times reveals a peculiar behavior, which can be treated as a manifestation of decoupling between ion migration and structural relaxation times. Moreover, we discuss the validity of thermodynamic scaling in lidocaine HCl. We also employed the temperature-volume Avramov model to determine the value of pressure coefficient of glass transition temperature, dT(g)/dP|(P = 0.1). Finally, we investigate the role of thermal and density fluctuations in controlling of molecular dynamics of the examined compound.
NASA Technical Reports Server (NTRS)
Budweg, H. L.; Shin, Y. S.
1987-01-01
An experimental investigation was conducted to determine the static and dynamic responses of a specific stiffened flat plate design. The air-backed rectangular flat plates of 6061-T6 aluminum with an externally machined longitudinal narrow-flanged T-stiffener and clamped boundary conditions were subjected to static loading by water hydropump pressure and shock loading from an eight pound TNT charge detonated underwater. The dynamic test plate was instrumented to measure transient strains and free field pressure. The static test plate was instrumented to measure transient strains, plate deflection, and pressure. Emphasis was placed upon forcing static and dynamic stiffener tripping, obtaining relevant strain and pressure data, and studying the associated plate-stiffener behavior.
Analysis of oscillatory pressure data including dynamic stall effects
NASA Technical Reports Server (NTRS)
Carta, F. O.
1974-01-01
The dynamic stall phenomenon was examined in detail by analyzing an existing set of unsteady pressure data obtained on an airfoil oscillating in pitch. Most of the data were for sinusoidal oscillations which penetrated the stall region in varying degrees, and here the effort was concentrated on the chordwise propagation of pressure waves associated with the dynamic stall. It was found that this phenomenon could be quantified in terms of a pressure wave velocity which is consistently much less than free-stream velocity, and which varies directly with frequency. It was also found that even when the stall region has been deeply penetrated and a substantial dynamic stall occurs during the downstroke, stall recovery near minimum incidence will occur, followed by a potential flow behavior up to stall inception.
Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.
Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao
2017-07-19
Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.
A molecular perspective on the limits of life: Enzymes under pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Q.; Tran, K. N.; Rodgers, J. M.
From a purely operational standpoint, the existence of microbes that can grow under extreme conditions, or “extremophiles”, leads to the question of how the molecules making up these microbes can maintain both their structure and function. Furthermore, while microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure have been neglected, in part due to the difficulty of collecting samples and performing experiments under the ambient conditions of the microbe. But, thermodynamic arguments imply that the effects of pressure might lead to different organismal solutions than from the effects of temperature. Observationally,more » some of these solutions might be in the condensed matter properties of the intracellular milieu in addition to genetic modi1cations of the macromolecules or repair mechanisms for the macromolecules. Here, the effects of pressure on enzymes, which are proteins essential for the growth and reproduction of an organism, and some adaptations against these effects are reviewed and ampli1ed by the results from molecular dynamics simulations. Our aim is to provide biological background for soft matter studies of these systems under pressure.« less
A molecular perspective on the limits of life: Enzymes under pressure
Huang, Q.; Tran, K. N.; Rodgers, J. M.; ...
2016-03-01
From a purely operational standpoint, the existence of microbes that can grow under extreme conditions, or “extremophiles”, leads to the question of how the molecules making up these microbes can maintain both their structure and function. Furthermore, while microbes that live under extremes of temperature have been heavily studied, those that live under extremes of pressure have been neglected, in part due to the difficulty of collecting samples and performing experiments under the ambient conditions of the microbe. But, thermodynamic arguments imply that the effects of pressure might lead to different organismal solutions than from the effects of temperature. Observationally,more » some of these solutions might be in the condensed matter properties of the intracellular milieu in addition to genetic modi1cations of the macromolecules or repair mechanisms for the macromolecules. Here, the effects of pressure on enzymes, which are proteins essential for the growth and reproduction of an organism, and some adaptations against these effects are reviewed and ampli1ed by the results from molecular dynamics simulations. Our aim is to provide biological background for soft matter studies of these systems under pressure.« less
Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume
NASA Technical Reports Server (NTRS)
Gordon, Grant
2015-01-01
In this program, a database of dynamic temperature and dynamic pressure measurements were acquired inside the core of a TECH977 turbofan engine to support investigations of indirect combustion noise. Dynamic temperature and pressure measurements were recorded for engine gas dynamics up to temperatures of 3100 degrees Fahrenheit and transient responses as high as 1000 hertz. These measurements were made at the entrance of the high pressure turbine (HPT) and at the entrance and exit of the low pressure turbine (LPT). Measurements were made at two circumferential clocking positions. In the combustor and inter-turbine duct (ITD), measurements were made at two axial locations to enable the exploration of time delays. The dynamic temperature measurements were made using dual thin-wire thermocouple probes. The dynamic pressure measurements were made using semi-infinite probes. Prior to the engine test, a series of bench, oven, and combustor rig tests were conducted to characterize the performance of the dual wire temperature probes and to define and characterize the data acquisition systems. A measurement solution for acquiring dynamic temperature and pressure data on the engine was defined. A suite of hardware modifications were designed to incorporate the dynamic temperature and pressure instrumentation into the TECH977 engine. In particular, a probe actuation system was developed to protect the delicate temperature probes during engine startup and transients in order to maximize sensor life. A set of temperature probes was procured and the TECH977 engine was assembled with the suite of new and modified hardware. The engine was tested at four steady state operating speeds, with repeats. Dynamic pressure and temperature data were acquired at each condition for at least one minute. At the two highest power settings, temperature data could not be obtained at the forward probe locations since the mean temperatures exceeded the capability of the probes. The temperature data were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.
NASA Technical Reports Server (NTRS)
Walker, James F.; Dimofte, Florin; Addy, Harold E., Jr.
1995-01-01
A new hydrodynamic bearing concept, the wave journal bearing, is being developed because it has better stability characteristics than plain journal bearings while maintaining similar load capacity. An analysis code to predict the steady state and dynamic performance of the wave journal bearing is also part of the development. To verify numerical predictions and contrast the wave journal bearing's stability characteristics to a plain journal bearing, tests were conducted at NASA Lewis Research Center using an air bearing test rig. Bearing film pressures were measured at 16 ports located around the bearing circumference at the middle of the bearing length. The pressure measurements for both a plain journal bearing and a wave journal bearing compared favorably with numerical predictions. Both bearings were tested with no radial load to determine the speed threshold for self-excited fractional frequency whirl. The plain journal bearing started to whirl immediately upon shaft start-up. The wave journal did not incur self-excited whirl until 800 to 900 rpm as predicted by the analysis. Furthermore, the wave bearing's geometry limited the whirl orbit to less than the bearing's clearance. In contrast, the plain journal bearing did not limit the whirl orbit, causing it to rub.
McCoy, Chad A.; Knudson, Marcus D.
2017-08-24
Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, Chad A.; Knudson, Marcus D.
Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ~200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, atmore » ~100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. Lastly, we show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.« less
Jia, Xiaohong; Zhang, Ming; Li, Xiaobing; Lee, Winson C C
2005-07-01
To predict the interface pressure between residual limb and prosthetic socket for trans-tibial amputees during walking. A quasi-dynamic finite element model was built based on the actual geometry of residual limb, internal bones and socket liner. To simulate the friction/slip boundary conditions between the skin and liner, automated surface-to-surface contact was used. Besides variable external loads and material inertia, the coupling between the large rigid displacement of knee joint and small elastic deformation of residual limb and prosthetic components were also considered. Interface pressure distribution was found to have the same profile during walking. The high pressures fall over popliteal depression, middle patella tendon, lateral tibia and medial tibia regions. Interface pressure predicted by static or quasi-dynamic analysis had the similar double-peaked waveform shape in stance phase. The consideration of inertial effects and motion of knee joint cause 210% average variation of the area between the pressure curve and the horizontal line of pressure threshold between two cases, even though there is only a small change in the peak pressure. The findings in this paper show that the coupling dynamic effects of inertial loads and knee flexion must be considered to study interface pressure between residual limb and prosthetic socket during walking.
Acoustofluidic particle dynamics: Beyond the Rayleigh limit.
Baasch, Thierry; Dual, Jürg
2018-01-01
In this work a numerical model to calculate the trajectories of multiple acoustically and hydrodynamically interacting spherical particles is presented. The acoustic forces are calculated by solving the fully coupled three-dimensional scattering problem using finite element software. The method is not restricted to single re-scattering events, mono- and dipole radiation, and long wavelengths with respect to the particle diameter, thus expanding current models. High frequency surface acoustic waves have been used in the one cell per well technology to focus individual cells in a two-dimensional wave-field. Sometimes the cells started forming clumps and it was not possible to focus on individual cells. Due to a lack of existing theory, this could not be fully investigated. Here, the authors use the full dynamic simulations to identify limiting factors of the one-cell-per-well technology. At first, the authors demonstrate good agreement of the numerical model with analytical results in the Rayleigh limiting case. A frequency dependent stability exchange between the pressure and velocity was then demonstrated. The numerical formulation presented in this work is relatively general and can be used for a multitude of different high frequency applications. It is a powerful tool in the analysis of microscale acoustofluidic devices and processes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SYSTEMS General § 64.5 Definitions. As used in this part: (a) Marine portable tank or MPT means a liquid... consisting of the absolute vapor pressure of the product at 122 °F added to the dynamic pressure, based on... maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...
Demodulation System for Fiber Optic Bragg Grating Dynamic Pressure Sensing
NASA Technical Reports Server (NTRS)
Lekki, John D.; Adamovsky, Grigory; Floyd, Bertram
2001-01-01
Fiber optic Bragg gratings have been used for years to measure quasi-static phenomena. In aircraft engine applications there is a need to measure dynamic signals such as variable pressures. In order to monitor these pressures a detection system with broad dynamic range is needed. This paper describes an interferometric demodulator that was developed and optimized for this particular application. The signal to noise ratio was maximized through temporal coherence analysis. The demodulator was incorporated in a laboratory system that simulates conditions to be measured. Several pressure sensor configurations incorporating a fiber optic Bragg grating were also explored. The results of the experiments are reported in this paper.
Increases in intramuscular pressure raise arterial blood pressure during dynamic exercise
NASA Technical Reports Server (NTRS)
Gallagher, K. M.; Fadel, P. J.; Smith, S. A.; Norton, K. H.; Querry, R. G.; Olivencia-Yurvati, A.; Raven, P. B.
2001-01-01
This investigation was designed to determine the role of intramuscular pressure-sensitive mechanoreceptors and chemically sensitive metaboreceptors in affecting the blood pressure response to dynamic exercise in humans. Sixteen subjects performed incremental (20 W/min) cycle exercise to fatigue under four conditions: control, exercise with thigh cuff occlusion of 90 Torr (Cuff occlusion), exercise with lower body positive pressure (LBPP) of 45 Torr, and a combination of thigh cuff occlusion and LBPP (combination). Indexes of central command (heart rate, oxygen uptake, ratings of perceived exertion, and electromyographic activity), cardiac output, stroke volume, and total peripheral resistance were not significantly different between the four conditions. Mechanical stimulation during LBPP and combination conditions resulted in significant elevations in intramuscular pressure and mean arterial pressure from control at rest and throughout the incremental exercise protocol (P < 0.05). Conversely, there existed no significant changes in mean arterial pressure when the metaboreflex was stimulated by cuff occlusion. These findings suggest that under normal conditions the mechanoreflex is tonically active and is the primary mediator of exercise pressor reflex-induced alterations in arterial blood pressure during submaximal dynamic exercise in humans.
NASA Astrophysics Data System (ADS)
Jerng, Dong Wook; Kim, Dong Eok
2018-01-01
The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.
Stabilizing detached Bridgman melt crystal growth: Model-based nonlinear feedback control
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.
2012-12-01
The dynamics and operability limits of a nonlinear-proportional-integral controller designed to stabilize detached vertical Bridgman crystal growth are studied. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. The controller consists of a model-based nonlinear component coupled with a standard proportional-integral controller. The nonlinear component is based on a capillary model of shape stability. Perturbations to gap width, pressure difference, wetting angle, and growth angle are studied under both shape stable and shape unstable conditions. The nonlinear-PI controller allows a wider operating range of gain than a standard PI controller used alone, is easier to tune, and eliminates solution multiplicity from closed-loop operation.
Nonlinear flutter analysis of composite panels
NASA Astrophysics Data System (ADS)
An, Xiaomin; Wang, Yan
2018-05-01
Nonlinear panel flutter is an interesting subject of fluid-structure interaction. In this paper, nonlinear flutter characteristics of curved composite panels are studied in very low supersonic flow. The composite panel with geometric nonlinearity is modeled by a nonlinear finite element method; and the responses are computed by the nonlinear Newmark algorithm. An unsteady aerodynamic solver, which contains a flux splitting scheme and dual time marching technology, is employed in calculating the unsteady pressure of the motion of the panel. Based on a half-step staggered coupled solution, the aeroelastic responses of two composite panels with different radius of R = 5 and R = 2.5 are computed and compared with each other at different dynamic pressure for Ma = 1.05. The nonlinear flutter characteristics comprising limited cycle oscillations and chaos are analyzed and discussed.
NASA Technical Reports Server (NTRS)
Marston, Philip L.; Marr-Lyon, Mark J.; Morse, S. F.; Thiessen, David B.
1996-01-01
In the work reported here it is demonstrated that acoustic radiation pressure may be used in simulated low gravity to produce stable bridges significantly beyond the Rayleigh limit with S as large as 3.6. The bridge (PDMS mixed with a dense liquid) has the same density as the surrounding water bath containing an ultrasonic standing wave. Modulation was first used to excite specific bridge modes. In the most recent work reported here the shape of the bridge is optically sensed and the ultrasonic drive is electronically adjusted such that the radiation stress distribution dynamically quenches the most unstable mode. This active control simulates passive stabilization suggested for low gravity. Feedback increases the mode frequency in the naturally stable region since the effective stiffness of the mode is increased.
Extended frequency turbofan model
NASA Technical Reports Server (NTRS)
Mason, J. R.; Park, J. W.; Jaekel, R. F.
1980-01-01
The fan model was developed using two dimensional modeling techniques to add dynamic radial coupling between the core stream and the bypass stream of the fan. When incorporated into a complete TF-30 engine simulation, the fan model greatly improved compression system frequency response to planar inlet pressure disturbances up to 100 Hz. The improved simulation also matched engine stability limits at 15 Hz, whereas the one dimensional fan model required twice the inlet pressure amplitude to stall the simulation. With verification of the two dimensional fan model, this program formulated a high frequency F-100(3) engine simulation using row by row compression system characteristics. In addition to the F-100(3) remote splitter fan, the program modified the model fan characteristics to simulate a proximate splitter version of the F-100(3) engine.
On the relationship between forearc deformation, frictional properties and megathrust earthquakes
NASA Astrophysics Data System (ADS)
Cubas, Nadaya; Singh, Satish
2014-05-01
A better understanding of the relation between the structural geology and the morphology of forearc wedges with frictional properties could provide insights on earthquake mechanics. Therefore, we study, with simple mechanical analysis allowing for inverse studies, the three subduction zones that produced the major earthquakes of the 21st century : Central Chile (Maule 2010 Mw 8.8), NE Japan (Tohoku-Oki 2011 Mw 9.0) and Sumatra (Sumatra-Andaman 2004 Mw 9.1, Nias 2005 Mw 8.7). We first apply the critical taper theory that yields the effective friction of the subduction interface, the wedge internal friction and pore fluid pressure. We then apply the limit analysis approach to constrain variations of frictional properties along the megathrust from the location and style of forearc faulting. We show that seismic ruptures most often coincide with the mechanically stable part of the wedge whereas regions undergoing aseismic slip are at critical state, consistent with evidence for active deformation. In the rupture area, we found a low effective dynamic friction, probably reflecting strong dynamic weakening. Where no frontal rupture was observed, we obtain intermediate values of long-term effective friction along the frontal aseismic zone, implying hydrostatic pore pressure. On the contrary, where the rupture reached the seafloor (Tohoku-Oki earthquake, parts of the Sumatra-Andaman 2004 earthquake), a very low long-term effective friction and a high pore pressure are observed. The difference of properties of the frontal wedge might reflect differences in permeability. A lower permeability would enhance dynamic weakening and allow for frontal propagation of ruptures. We also show that spatial variations of frictional properties between aseismic and seismogenic zones can lead to the activation of splay faults. We also show that a high pore pressure along accretionary wedges can change the vergence of frontal thrusts. As a consequence, wedge morphology and deformation can be used to improve seismic and tsunamigenic risk assessment.
NASA Astrophysics Data System (ADS)
Jasper, Ahren W.; Dawes, Richard
2013-10-01
The lowest-energy singlet (1 1A') and two lowest-energy triplet (1 3A' and 1 3A″) electronic states of CO2 are characterized using dynamically weighted multireference configuration interaction (dw-MRCI+Q) electronic structure theory calculations extrapolated to the complete basis set (CBS) limit. Global analytic representations of the dw-MRCI+Q/CBS singlet and triplet surfaces and of their CASSCF/aug-cc-pVQZ spin-orbit coupling surfaces are obtained via the interpolated moving least squares (IMLS) semiautomated surface fitting method. The spin-forbidden kinetics of the title reaction is calculated using the coupled IMLS surfaces and coherent switches with decay of mixing non-Born-Oppenheimer molecular dynamics. The calculated spin-forbidden association rate coefficient (corresponding to the high pressure limit of the rate coefficient) is 7-35 times larger at 1000-5000 K than the rate coefficient used in many detailed chemical models of combustion. A dynamical analysis of the multistate trajectories is presented. The trajectory calculations reveal direct (nonstatistical) and indirect (statistical) spin-forbidden reaction mechanisms and may be used to test the suitability of transition-state-theory-like statistical methods for spin-forbidden kinetics. Specifically, we consider the appropriateness of the "double passage" approximation, of assuming statistical distributions of seam crossings, and of applications of the unified statistical model for spin-forbidden reactions.
Unsteady Extinction of Opposed Jet Ethylene/Methane HIFiRE Surrogate Fuel Mixtures vs Air
NASA Technical Reports Server (NTRS)
Vaden, Sarah N.; Debes, Rachel L.; Lash, E. Lara; Burk, Rachel S.; Boyd, C. Merritt; Wilson, Lloyd G.; Pellett, Gerald L.
2009-01-01
A unique idealized study of the subject fuel vs. air systems was conducted using an Oscillatory-input Opposed Jet Burner (OOJB) system and a newly refined analysis. Extensive dynamic-extinction measurements were obtained on unanchored (free-floating) laminar Counter Flow Diffusion Flames (CFDFs) at 1-atm, stabilized by steady input velocities (e.g., U(sub air)) and perturbed by superimposed in-phase sinusoidal velocity inputs at fuel and air nozzle exits. Ethylene (C2H4) and methane (CH4), and intermediate 64/36 and 15/85 molar percent mixtures were studied. The latter gaseous surrogates were chosen earlier to mimic ignition and respective steady Flame Strengths (FS = U(sub air)) of vaporized and cracked, and un-cracked, JP-7 "like" kerosene for a Hypersonic International Flight Research Experimentation (HIFiRE) scramjet. For steady idealized flameholding, the 100% C2H4 flame is respectively approx. 1.3 and approx.2.7 times stronger than a 64/36 mix and CH4; but is still 12.0 times weaker than a 100% H2-air flame. Limited Hot-Wire (HW) measurements of velocity oscillations at convergent-nozzle exits, and more extensive Probe Microphone (PM) measurements of acoustic pressures, were used to normalize Dynamic FSs, which decayed linearly with pk/pk U(sub air) (velocity magnitude, HW), and also pk/pk P (pressure magnitude, PM). Thus Dynamic Flame Weakening (DFW) is defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = -100 d(U(sub air)/U(sub air),0Hz)/d(pkpk P). Key findings are: (1) Ethylene flames are uniquely strong and resilient to extinction by oscillating inflows below 150 Hz; (2) Methane flames are uniquely weak; (3) Ethylene / methane surrogate flames are disproportionately strong with respect to ethylene content; and (4) Flame weakening is consistent with limited published results on forced unsteady CFDFs. Thus from 0 to approx. 10 Hz and slightly higher, lagging diffusive responses of key species led to progressive phase lags (relative to inputs) in the oscillating flames, and caused maximum weakening. At 20 to 150 Hz, diffusion-rate-limited effects diminished, causing flames to "regain strengnth," and eventually become completely insensitive beyond 300 Hz. Detailed mechanistic understanding is needed. Overall, ethylene flames are remarkably resilient to dynamic extinction by oscillating inflows. They are the strongest, with the notable exception of H2. For HIFiRE tests, the 64%/36% surrogate disproportionally retains the high dynamic FS of ethylene, so the potential for loss of scramjet flameholding (flameout) due to low frequency oscillations is significantly mitigated.
Harrigan, T P
1996-01-01
A simple compartmental model for myogenic regulation of interstitial pressure in bone is developed, and the interaction between changes in interstitial pressure and changes in arterial and venous resistance is studied. The arterial resistance is modeled by a myogenic model that depends on transmural pressure, and the venous resistance is modeled by using a vascular waterfall. Two series capacitances model blood storage in the vascular system and interstitial fluid storage in the extravascular space. The static results mimic the observed effect that vasodilators work less well in bone than do vasoconstrictors. The static results also show that the model gives constant flow rates over a limited range of arterial pressure. The dynamic model shows unstable behavior at small values of bony capacitance and at high enough myogenic gain. At low myogenic gain, only a single equilibrium state is present, but a high enough myogenic gain, two new equilibrium states appear. At additional increases in gain, one of the two new states merges with and then separates from the original state, and the original state becomes a saddle point. The appearance of the new states and the transition of the original state to a saddle point do not depend on the bony capacitance, and these results are relevant to general fluid compartments. Numerical integration of the rate equations confirms the stability calculations and shows limit cycling behavior in several situations. The relevance of this model to circulation in bone and to other compartments is discussed.
NASA Technical Reports Server (NTRS)
1973-01-01
A study has been made of possible ways to improve the performance of the Langley Research Center's Transonic Dynamics Tunnel (TDT). The major effort was directed toward obtaining increased dynamic pressure in the Mach number range from 0.8 to 1.2, but methods to increase Mach number capability were also considered. Methods studied for increasing dynamic pressure capability were higher total pressure, auxiliary suction, reducing circuit losses, reduced test medium temperature, smaller test section and higher molecular weight test medium. Increased Mach number methods investigated were nozzle block inserts, variable geometry nozzle, changes in test section wall configuration, and auxiliary suction.
49 CFR 192.201 - Required capacity of pressure relieving and limiting stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Design of Pipeline Components § 192.201 Required capacity of pressure relieving and limiting stations. (a) Each pressure relief station or pressure limiting station or group of those stations installed to... 49 Transportation 3 2012-10-01 2012-10-01 false Required capacity of pressure relieving and...
49 CFR 192.201 - Required capacity of pressure relieving and limiting stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Design of Pipeline Components § 192.201 Required capacity of pressure relieving and limiting stations. (a) Each pressure relief station or pressure limiting station or group of those stations installed to... 49 Transportation 3 2011-10-01 2011-10-01 false Required capacity of pressure relieving and...
49 CFR 192.201 - Required capacity of pressure relieving and limiting stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Design of Pipeline Components § 192.201 Required capacity of pressure relieving and limiting stations. (a) Each pressure relief station or pressure limiting station or group of those stations installed to... 49 Transportation 3 2013-10-01 2013-10-01 false Required capacity of pressure relieving and...
49 CFR 192.201 - Required capacity of pressure relieving and limiting stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Design of Pipeline Components § 192.201 Required capacity of pressure relieving and limiting stations. (a) Each pressure relief station or pressure limiting station or group of those stations installed to... 49 Transportation 3 2014-10-01 2014-10-01 false Required capacity of pressure relieving and...
A Mechanism for Frequency Modulation in Songbirds Shared with Humans
Margoliash, Daniel
2013-01-01
In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways. PMID:23825417
A mechanism for frequency modulation in songbirds shared with humans.
Amador, Ana; Margoliash, Daniel
2013-07-03
In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways.
Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, John; Saunders, John
2014-01-01
Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.
Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Slater, J. W.; Saunders, J. D.
2015-01-01
Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.
Fluid dynamics of the shock wave reactor
NASA Astrophysics Data System (ADS)
Masse, Robert Kenneth
2000-10-01
High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter dependence of shock recompression in ducts. Distinct variation of the flow Reynolds and Mach numbers and section height allow unique mapping of each of these parameter dependencies. Agreement with a new one-dimensional model is demonstrated, predicting an exponential pressure profile characterized by two key parameters, the maximum pressure recovery and a characteristic length scale. Transition from one to two-dimensional dependence of the length parameter is observed as the duct aspect ratio varies significantly from unity.
Molecular dynamics of liquid SiO2 under high pressure
NASA Technical Reports Server (NTRS)
Rustad, James R.; Yuen, David A.; Spera, Frank J.
1990-01-01
The molecular dynamics of pure SiO2 liquids was investigated up to pressures of 20 GPa at 4000 K using 252, 498, 864, and 1371 particles. The results obtained suggest that the pressure-induced maxima in the self-diffusion coefficients of both oxygen and silicon are dependent on the system size. In the case of larger systems, the maximum decreases and shifts to lower pressures. Changes in the velocity autocorrelation function with increasing pressure are described. The populations of anomalously coordinated silicon and oxygen are then discussed as a function of pressure and system size.
Dynamic Pressure Calibration Standard
NASA Technical Reports Server (NTRS)
Schutte, P. C.; Cate, K. H.; Young, S. D.
1986-01-01
Vibrating columns of fluid used to calibrate transducers. Dynamic pressure calibration standard developed for calibrating flush diaphragm-mounted pressure transducers. Pressures up to 20 kPa (3 psi) accurately generated over frequency range of 50 to 1,800 Hz. System includes two conically shaped aluminum columns one 5 cm (2 in.) high for low pressures and another 11 cm (4.3 in.) high for higher pressures, each filled with viscous fluid. Each column mounted on armature of vibration exciter, which imparts sinusoidally varying acceleration to fluid column. Signal noise low, and waveform highly dependent on quality of drive signal in vibration exciter.
Real-time combustion control and diagnostics sensor-pressure oscillation monitor
Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV
2009-07-14
An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.
Dynamic analysis of solid propellant grains subjected to ignition pressurization loading
NASA Astrophysics Data System (ADS)
Chyuan, Shiang-Woei
2003-11-01
Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.
Dynamic stall characterization using modal analysis of phase-averaged pressure distributions
NASA Astrophysics Data System (ADS)
Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan
2017-11-01
Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.
NASA Technical Reports Server (NTRS)
Nissim, Eli
1990-01-01
The effectiveness of aerodynamic excitation is evaluated analytically in conjunction with the experimental determination of flutter dynamic pressure by parameter identification. Existing control surfaces were used, with an additional vane located at the wingtip. The equations leading to the identification of the equations of motion were reformulated to accommodate excitation forces of aerodynamic origin. The aerodynamic coefficients of the excitation forces do not need to be known since they are determined by the identification procedure. The 12 degree-of-freedom numerical example treated in this work revealed the best wingtip vane locations, and demonstrated the effectiveness of the aileron-vane excitation system. Results from simulated data gathered at much lower dynamic pressures (approximately half the value of flutter dynamic pressure) predicted flutter dynamic pressures with 2-percent errors.
NASA Astrophysics Data System (ADS)
Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken
2007-07-01
We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less
On the lower altitude limit of the Venusian ionopause
NASA Astrophysics Data System (ADS)
Mahajan, K. K.; Mayr, H. G.; Brace, L. H.; Cloutier, P. A.
1989-07-01
It has been observed from the plasma experiments on the Pioneer Venus Orbiter that the altitude of the upper boundary of the ionosphere decreases in response to increasing solar wind dynamic pressure. However, at pressures above about 2.5 x 10 to the -8th dynes/sq cm, the further decrease in the ionopause height is rather small. Following the model of Cloutier et al. (1969), it is suggested that during high solar wind conditions, when the ionopause is formed at lower altitudes, the solar wind induces vertical and horizontal flows which sweep away the ionospheric plasma that is produced locally by photoionization. As a result, a disturbed photodynamical ionosphere is formed which has the scale height of the ionizable neutral constituent. It is shown that such a photodynamical ionosphere is observed at the subsolar ionopause under these conditions. As a consequence of this interaction, the ionopause altitude is observed to follow the small-scale height of the ionizable species, atomic oxygen, showing only small changes with solar wind pressure.
Mass Flux of ZnSe by Physical Vapor Transport
NASA Technical Reports Server (NTRS)
Sha, Yi-Gao; Su, Ching-Hua; Palosz, W.; Volz, M. P.; Gillies, D. C.; Szofran, F. R.; Lehoczky, S. L.; Liu, Hao-Chieh; Brebrick, R. F.
1995-01-01
Mass fluxes of ZnSe by physical vapor transport (PVT) were measured in the temperature range of 1050 to 1160 C using an in-situ dynamic technique. The starting materials were either baked out or distilled under vacuum to obtain near-congruently subliming compositions. Using an optical absorption technique Zn and Se, were found to be the dominant vapor species. Partial pressures of Zn and Se, over the starting materials at temperatures between 960 and 1140 C were obtained by measuring the optical densities of the vapor phase at the wavelengths of 2138, 3405, 3508, 3613, and 3792 A. The amount and composition of the residual gas inside the experimental ampoules were measured after the run using a total pressure gauge. For the first time, the experimentally determined partial pressures of Zn and Se, and the amount and composition of the residual gas were used in a one-dimensional diffusion limited analysis of the mass transport rates for a PVT system. Reasonable agreement between the experimental and theoretical results was observed.
Analysis of inner and outer zone: OGO-1 and OGO-2 electron spectrometer and ion chamber data
NASA Technical Reports Server (NTRS)
Pfitzer, K. A.
1972-01-01
The dynamic processes governing the acceleration and loss of electrons in the radiation zones are investigated. The radial diffusion coefficient was determined for a McIlwain parameter between 1.6 and 2.2 for electrons having a first adiabatic invariant of 12 MeV/gauss. The coefficient is larger than earlier values and suggests that there exists a lower limit to the fluxes in the inner zone. The agreement between observed and calculated magnetic fields and particle fluxes is improved by using solar wind pressure as input to the magnetic field models. Changes in the plasma pressure can cause apparent local time asymmetries in particle flux. A comparison of the magnetic field models with observed location of the trapping boundary also indicates the need for including distributed currents within the magnetosphere. The high latitude trapping boundary is only weakly dependent on A sub p, and the trapping boundary data are improved by including in the models a stand-off distance which varies with the plasma pressure.
Output-Adaptive Tetrahedral Cut-Cell Validation for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Park, Michael A.; Darmofal, David L.
2008-01-01
A cut-cell approach to Computational Fluid Dynamics (CFD) that utilizes the median dual of a tetrahedral background grid is described. The discrete adjoint is also calculated, which permits adaptation based on improving the calculation of a specified output (off-body pressure signature) in supersonic inviscid flow. These predicted signatures are compared to wind tunnel measurements on and off the configuration centerline 10 body lengths below the model to validate the method for sonic boom prediction. Accurate mid-field sonic boom pressure signatures are calculated with the Euler equations without the use of hybrid grid or signature propagation methods. Highly-refined, shock-aligned anisotropic grids were produced by this method from coarse isotropic grids created without prior knowledge of shock locations. A heuristic reconstruction limiter provided stable flow and adjoint solution schemes while producing similar signatures to Barth-Jespersen and Venkatakrishnan limiters. The use of cut-cells with an output-based adaptive scheme completely automated this accurate prediction capability after a triangular mesh is generated for the cut surface. This automation drastically reduces the manual intervention required by existing methods.
Flow rate limitation in open wedge channel under microgravity
NASA Astrophysics Data System (ADS)
Wei, YueXing; Chen, XiaoQian; Huang, YiYong
2013-08-01
A study of flow rate limitation in an open wedge channel is reported in this paper. Under microgravity condition, the flow is controlled by the convection and the viscosity in the channel as well as the curvature of the liquid free surface. A maximum flow rate is achieved when the curvature cannot balance the pressure difference leading to a collapse of the free surface. A 1-dimensional theoretical model is used to predict the critical flow rate and calculate the shape of the free surface. Computational Fluid Dynamics tool is also used to simulate the phenomenon. Results show that the 1-dimensional model overestimates the critical flow rate because extra pressure loss is not included in the governing equation. Good agreement is found in 3-dimensional simulation results. Parametric study with different wedge angles and channel lengths show that the critical flow rate increases with increasing the cross section area; and decreases with increasing the channel length. The work in this paper can help understand the surface collapsing without gravity and for the design in propellant management devices in satellite tanks.
Harnessing the power of reputation: strengths and limits for promoting cooperative behaviors.
Barclay, Pat
2012-12-20
Evolutionary approaches have done much to identify the pressures that select for cooperative sentiment. This helps us understand when and why cooperation will arise, and applied research shows how these pressures can be harnessed to promote various types of cooperation. In particular, recent evidence shows how opportunities to acquire a good reputation can promote cooperation in laboratory and applied settings. Cooperation can be promoted by tapping into forces like indirect reciprocity, costly signaling, and competitive altruism. When individuals help others, they receive reputational benefits (or avoid reputational costs), and this gives people an incentive to help. Such findings can be applied to promote many kinds of helping and cooperation, including charitable donations, tax compliance, sustainable and pro-environmental behaviors, risky heroism, and more. Despite the potential advantages of using reputation to promote positive behaviors, there are several risks and limits. Under some circumstances, opportunities for reputation will be ineffective or promote harmful behaviors. By better understanding the dynamics of reputation and the circumstances under which cooperation can evolve, we can better design social systems to increase the rate of cooperation and reduce conflict.
Operation of large RF sources for H-: Lessons learned at ELISE
NASA Astrophysics Data System (ADS)
Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.
2017-08-01
The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.
Flow dynamics in bioreactors containing tissue engineering scaffolds.
Lawrence, Benjamin J; Devarapalli, Mamatha; Madihally, Sundararajan V
2009-02-15
Bioreactors are widely used in tissue engineering as a way to distribute nutrients within porous materials and provide physical stimulus required by many tissues. However, the fluid dynamics within the large porous structure are not well understood. In this study, we explored the effect of reactor geometry by using rectangular and circular reactors with three different inlet and outlet patterns. Geometries were simulated with and without the porous structure using the computational fluid dynamics software Comsol Multiphysics 3.4 and/or ANSYS CFX 11 respectively. Residence time distribution analysis using a step change of a tracer within the reactor revealed non-ideal fluid distribution characteristics within the reactors. The Brinkman equation was used to model the permeability characteristics with in the chitosan porous structure. Pore size was varied from 10 to 200 microm and the number of pores per unit area was varied from 15 to 1,500 pores/mm(2). Effect of cellular growth and tissue remodeling on flow distribution was also assessed by changing the pore size (85-10 microm) while keeping the number of pores per unit area constant. These results showed significant increase in pressure with reduction in pore size, which could limit the fluid flow and nutrient transport. However, measured pressure drop was marginally higher than the simulation results. Maximum shear stress was similar in both reactors and ranged approximately 0.2-0.3 dynes/cm(2). The simulations were validated experimentally using both a rectangular and circular bioreactor, constructed in-house. Porous structures for the experiments were formed using 0.5% chitosan solution freeze-dried at -80 degrees C, and the pressure drop across the reactor was monitored.
Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution
NASA Astrophysics Data System (ADS)
Wisniewiski, David
2015-03-01
Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.
Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport.
Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu
2018-02-01
The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores' deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles.
Liquid gating elastomeric porous system with dynamically controllable gas/liquid transport
Sheng, Zhizhi; Wang, Honglong; Tang, Yongliang; Wang, Miao; Huang, Lizhi; Min, Lingli; Meng, Haiqiang; Chen, Songyue; Jiang, Lei; Hou, Xu
2018-01-01
The development of membrane technology is central to fields ranging from resource harvesting to medicine, but the existing designs are unable to handle the complex sorting of multiphase substances required for many systems. Especially, the dynamic multiphase transport and separation under a steady-state applied pressure have great benefits for membrane science, but have not been realized at present. Moreover, the incorporation of precisely dynamic control with avoidance of contamination of membranes remains elusive. We show a versatile strategy for creating elastomeric microporous membrane-based systems that can finely control and dynamically modulate the sorting of a wide range of gases and liquids under a steady-state applied pressure, nearly eliminate fouling, and can be easily applied over many size scales, pressures, and environments. Experiments and theoretical calculation demonstrate the stability of our system and the tunability of the critical pressure. Dynamic transport of gas and liquid can be achieved through our gating interfacial design and the controllable pores’ deformation without changing the applied pressure. Therefore, we believe that this system will bring new opportunities for many applications, such as gas-involved chemical reactions, fuel cells, multiphase separation, multiphase flow, multiphase microreactors, colloidal particle synthesis, and sizing nano/microparticles. PMID:29487906
Cherin, Emmanuel; Melis, Johan M; Bourdeau, Raymond W; Yin, Melissa; Kochmann, Dennis M; Foster, F Stuart; Shapiro, Mikhail G
2017-05-01
Gas vesicles (GVs) are a new and unique class of biologically derived ultrasound contrast agents with sub-micron size whose acoustic properties have not been fully elucidated. In this study, we investigated the acoustic collapse pressure and behavior of Halobacterium salinarum gas vesicles at transmit center frequencies ranging from 12.5 to 27.5 MHz. The acoustic collapse pressure was found to be above 550 kPa at all frequencies, nine-fold higher than the critical pressure observed under hydrostatic conditions. We illustrate that gas vesicles behave non-linearly when exposed to ultrasound at incident pressure ranging from 160 kPa to the collapse pressure and generate second harmonic amplitudes of -2 to -6 dB below the fundamental in media with viscosities ranging from 0.89 to 8 mPa·s. Simulations performed using a Rayleigh-Plesset-type model accounting for buckling and a dynamic finite-element analysis suggest that buckling is the mechanism behind the generation of harmonics. We found good agreement between the level of second harmonic relative to the fundamental measured at 20 MHz and the Rayleigh-Plesset model predictions. Finite-element simulations extended these findings to a non-spherical geometry, confirmed that the acoustic buckling pressure corresponds to the critical pressure under hydrostatic conditions and support the hypothesis of limited gas flow across the GV shell during the compression phase in the frequency range investigated. From simulations, estimates of GV bandwidth-limited scattering indicate that a single GV has a scattering cross section comparable to that of a red blood cell. These findings will inform the development of GV-based contrast agents and pulse sequences to optimize their detection with ultrasound. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.
2014-06-01
Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550more » nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.« less
Active Sensing Air Pressure Using Differential Absorption Barometric Radar
NASA Astrophysics Data System (ADS)
Lin, B.
2016-12-01
Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.
Dynamic model including piping acoustics of a centrifugal compression system
NASA Astrophysics Data System (ADS)
van Helvoirt, Jan; de Jager, Bram
2007-04-01
This paper deals with low-frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the presence of acoustic pulsations in the compression system under study. It is argued that these acoustic phenomena are common for full-scale compression systems where pipe system dynamics have a significant influence on the overall system behavior. The main objective of this paper is to extend the basic compressor model in order to include the relevant pipe system dynamics. For this purpose a pipeline model is proposed, based on previous developments for fluid transmission lines. The connection of this model to the lumped parameter model is accomplished via the selection of appropriate boundary conditions. Validation results will be presented, showing a good agreement between simulation and measurement data. The results indicate that the damping of piping transients depends on the nominal, time-varying pressure and flow velocity. Therefore, model parameters are made dependent on the momentary pressure and a switching nonlinearity is introduced into the model to vary the acoustic damping as a function of flow velocity. These modifications have limited success and the results indicate that a more sophisticated model is required to fully describe all (nonlinear) acoustic effects. However, the very good qualitative results show that the model adequately combines compressor and pipe system dynamics. Therefore, the proposed model forms a step forward in the analysis and modeling of surge in full-scale centrifugal compression systems and opens the path for further developments in this field.
Dynamic Characteristics of The DSI-Type Constant-Flow Valves
NASA Astrophysics Data System (ADS)
Kang, Yuan; Hu, Sheng-Yan; Chou, Hsien-Chin; Lee, Hsing-Han
Constant flow valves have been presented in industrial applications or academic studies, which compensate recess pressures of a hydrostatic bearing to resist load fluctuating. The flow rate of constant-flow valves can be constant in spite of the pressure changes in recesses, however the design parameters must be specified. This paper analyzes the dynamic responses of DSI-type constant-flow valves that is designed as double pistons on both ends of a spool with single feedback of working pressure and regulating restriction at inlet. In this study the static analysis presents the specific relationships among design parameters for constant flow rate and the dynamic analyses give the variations around the constant flow rate as the working pressure fluctuates.
Pressure calculation in hybrid particle-field simulations
NASA Astrophysics Data System (ADS)
Milano, Giuseppe; Kawakatsu, Toshihiro
2010-12-01
In the framework of a recently developed scheme for a hybrid particle-field simulation techniques where self-consistent field (SCF) theory and particle models (molecular dynamics) are combined [J. Chem. Phys. 130, 214106 (2009)], we developed a general formulation for the calculation of instantaneous pressure and stress tensor. The expressions have been derived from statistical mechanical definition of the pressure starting from the expression for the free energy functional in the SCF theory. An implementation of the derived formulation suitable for hybrid particle-field molecular dynamics-self-consistent field simulations is described. A series of test simulations on model systems are reported comparing the calculated pressure with those obtained from standard molecular dynamics simulations based on pair potentials.
Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures
Davis, Jean -Paul; Knudson, Marcus D.; Shulenburger, Luke; ...
2016-10-26
An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performedmore » using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ~300 GPa, and confirming the nonlinear dependence of the refractive index on density. Lastly, we present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.« less
NASA Astrophysics Data System (ADS)
Kolster, C.; Mac Dowell, N.; Krevor, S. C.; Agada, S.
2016-12-01
Carbon capture and storage (CCS) is needed for meeting legally binding greenhouse gas emissions targets in the UK (ECCC 2016). Energy systems models have been key to identifying the importance of CCS but they tend to impose few constraints on the availability and use of geologic CO2 storage reservoirs. Our aim is to develop simple models that use dynamic representations of limits on CO2 storage resources. This will allow for a first order representation of the storage reservoir for use in systems models with CCS. We use the ECLIPSE reservoir simulator and a model of the Southern North Sea Bunter Sandstone saline aquifer. We analyse reservoir performance sensitivities to scenarios of varying CO2 injection demand for a future UK low carbon energy market. With 12 injection sites, we compare the impact of injecting at a constant 2MtCO2/year per site and varying this rate by a factor of 1.8 and 0.2 cyclically every 5 and 2.5 years over 50 years of injection. The results show a maximum difference in average reservoir pressure of 3% amongst each case and a similar variation in plume migration extent. This suggests that simplified models can maintain accuracy by using average rates of injection over similar time periods. Meanwhile, by initiating injection at rates limited by pressurization at the wellhead we find that injectivity steadily increases. As a result, dynamic capacity increases. We find that instead of injecting into sites on a need basis, we can strategically inject the CO2 into 6 of the deepest sites increasing injectivity for the first 15 years by 13%. Our results show injectivity as highly dependent on reservoir heterogeneity near the injection site. Injecting 1MTCO2/year into a shallow, low permeability and porosity site instead of into a deep injection site with high permeability and porosity reduces injectivity in the first 5 years by 52%. ECCC. 2016. Future of Carbon Capture and Storage in the UK. UK Parliament House of Commons, Energy and Climate Change Committee, London: The Stationary Office Limited.
Scale Dependence of Dark Energy Antigravity
NASA Astrophysics Data System (ADS)
Perivolaropoulos, L.
2002-09-01
We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.
Unsteady-Pressure and Dynamic-Deflection Measurements on an Aeroelastic Supercritical Wing
NASA Technical Reports Server (NTRS)
Seidel, David A.; Sandford, Maynard C.; Eckstrom, Clinton V.
1991-01-01
Transonic steady and unsteady pressure tests were conducted on a large elastic wing. The wing has a supercritical airfoil, a full span aspect ratio of 10.3, a leading edge sweepback angle of 28.8 degrees, and two inboard and one outboard trailing edge control surfaces. Only the outboard control surface was deflected statically and dynamically to generate steady and unsteady flow over the wing. The unsteady surface pressure and dynamic deflection measurements of this elastic wing are presented to permit correlations of the experimental data with theoretical predictions.
Fluid Dynamic Mechanisms and Interactions within Separated Flows.
1986-07-01
Vol. 42, Series E, No., pp. 197, pp. 387-39S. b5-bD, March N95, 18. Warpinski , N. R., and Chow, W. L., "Base Pres- 27. Chow, W. L., "Base Pressure of a...lied Rocket/Plume Fluid Dynamic Interactions, Vol. Mechanics, Vol. 46, No. 3, Sept. 197. 1, Base Flows, Fluid Dynamic Lab Report 63-101, 19. Warpinski ...34Surface Pressure Measurements ’" Warpinski , N. R. and Chow, W. L., "Base Pressure Associated on a Boattailed Projectile Shape at Transonic Speeds," ARBRL
Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan
2014-06-01
Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.
Autonomic neural control of dynamic cerebral autoregulation in humans
NASA Technical Reports Server (NTRS)
Zhang, Rong; Zuckerman, Julie H.; Iwasaki, Kenichi; Wilson, Thad E.; Crandall, Craig G.; Levine, Benjamin D.
2002-01-01
BACKGROUND: The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS: We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P<0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. CONCLUSIONS: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.
Characterization of flame stabilization technologies
NASA Astrophysics Data System (ADS)
Bush, Scott Matthew
To experimentally explore and characterize a V-gutter stabilized flame, this research study developed a Combustion Wind Tunnel Test Facility capable of effectively simulating the freestream Mach #'s and temperatures achieved within the back end of a gas turbine jet engine. After validating this facility, it was then used to gain a better understanding of the flow dynamics and combustion dynamics associated with the V-gutter configuration. The motivation for studying the V-gutter stabilized flame is due to the concern in industry today with combustion instabilities that are encountered in military aircraft. To gain a better understanding of the complex flow field associated with the V-gutter stabilized flame, this research study utilized Particle Image Velocimetry to capture both non-reacting and reacting instantaneous and mean flow structures formed in the wake region of the three dimensional V-gutter bluff body. The results of this study showed significant differences between the non-reacting and reacting flow fields. The non-reacting case resulted in asymmetric shedding of large scale vortices from the V-gutter edges while the reacting case resulted in a combination of both symmetric and asymmetric shedding of smaller scale vortical structures. A comparison of the mean velocity components shows that the reacting case results in a larger region of reversed flow, experiences an acceleration of the freestream flow due to combustion, and results in a slower dissipation of the wake region. Simultaneous dynamic pressure and CH* chemiluminescence measurements were also recorded to determine the coupling between the flow dynamics and combustion dynamics. The results of this study showed that only low frequency combustion instabilities were encountered at various conditions within the envelope of stable operation because of the interaction between longitudinal acoustic waves and unsteady heat release. When approaching rich blow out, rms pressure amplitudes were as high as 2 psi, and approaching lean blow out lead to rms pressure amplitudes around 0.2 psi. These studies also showed the instability frequency increasing with increases in either inlet temperature or inlet Mach #. Additionally, increasing the inlet velocity or the DeZubay parameter reduced the stability limits of operation for the V-gutter stabilized flame.
Model improvements and validation of TerraSAR-X precise orbit determination
NASA Astrophysics Data System (ADS)
Hackel, S.; Montenbruck, O.; Steigenberger, P.; Balss, U.; Gisinger, C.; Eineder, M.
2017-05-01
The radar imaging satellite mission TerraSAR-X requires precisely determined satellite orbits for validating geodetic remote sensing techniques. Since the achieved quality of the operationally derived, reduced-dynamic (RD) orbit solutions limits the capabilities of the synthetic aperture radar (SAR) validation, an effort is made to improve the estimated orbit solutions. This paper discusses the benefits of refined dynamical models on orbit accuracy as well as estimated empirical accelerations and compares different dynamic models in a RD orbit determination. Modeling aspects discussed in the paper include the use of a macro-model for drag and radiation pressure computation, the use of high-quality atmospheric density and wind models as well as the benefit of high-fidelity gravity and ocean tide models. The Sun-synchronous dusk-dawn orbit geometry of TerraSAR-X results in a particular high correlation of solar radiation pressure modeling and estimated normal-direction positions. Furthermore, this mission offers a unique suite of independent sensors for orbit validation. Several parameters serve as quality indicators for the estimated satellite orbit solutions. These include the magnitude of the estimated empirical accelerations, satellite laser ranging (SLR) residuals, and SLR-based orbit corrections. Moreover, the radargrammetric distance measurements of the SAR instrument are selected for assessing the quality of the orbit solutions and compared to the SLR analysis. The use of high-fidelity satellite dynamics models in the RD approach is shown to clearly improve the orbit quality compared to simplified models and loosely constrained empirical accelerations. The estimated empirical accelerations are substantially reduced by 30% in tangential direction when working with the refined dynamical models. Likewise the SLR residuals are reduced from -3 ± 17 to 2 ± 13 mm, and the SLR-derived normal-direction position corrections are reduced from 15 to 6 mm, obtained from the 2012-2014 period. The radar range bias is reduced from -10.3 to -6.1 mm with the updated orbit solutions, which coincides with the reduced standard deviation of the SLR residuals. The improvements are mainly driven by the satellite macro-model for the purpose of solar radiation pressure modeling, improved atmospheric density models, and the use of state-of-the-art gravity field models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, D.; Turton, R.; Zitney, S.
In this presentation, development of a plant-wide dynamic model of an advanced Integrated Gasification Combined Cycle (IGCC) plant with CO2 capture will be discussed. The IGCC reference plant generates 640 MWe of net power using Illinois No.6 coal as the feed. The plant includes an entrained, downflow, General Electric Energy (GEE) gasifier with a radiant syngas cooler (RSC), a two-stage water gas shift (WGS) conversion process, and two advanced 'F' class combustion turbines partially integrated with an elevated-pressure air separation unit (ASU). A subcritical steam cycle is considered for heat recovery steam generation. Syngas is selectively cleaned by a SELEXOLmore » acid gas removal (AGR) process. Sulfur is recovered using a two-train Claus unit with tail gas recycle to the AGR. A multistage intercooled compressor is used for compressing CO2 to the pressure required for sequestration. Using Illinois No.6 coal, the reference plant generates 640 MWe of net power. The plant-wide steady-state and dynamic IGCC simulations have been generated using the Aspen Plus{reg_sign} and Aspen Plus Dynamics{reg_sign} process simulators, respectively. The model is generated based on the Case 2 IGCC configuration detailed in the study available in the NETL website1. The GEE gasifier is represented with a restricted equilibrium reactor model where the temperature approach to equilibrium for individual reactions can be modified based on the experimental data. In this radiant-only configuration, the syngas from the Radiant Syngas Cooler (RSC) is quenched in a scrubber. The blackwater from the scrubber bottom is further cleaned in the blackwater treatment plant. The cleaned water is returned back to the scrubber and also used for slurry preparation. The acid gas from the sour water stripper (SWS) is sent to the Claus plant. The syngas from the scrubber passes through a sour shift process. The WGS reactors are modeled as adiabatic plug flow reactors with rigorous kinetics based on the mid-life activity of the shift-catalyst. The SELEXOL unit consists of the H2S and CO2 absorbers that are designed to meet the stringent environmental limits and requirements of other associated units. The model also considers the stripper for recovering H2S that is sent as a feed to a split-flow Claus unit. The tail gas from the Claus unit is recycled to the SELEXOL unit. The cleaned syngas is sent to the GE 7FB gas turbine. This turbine is modeled as per published data in the literature. Diluent N2 is used from the elevated-pressure ASU for reducing the NOx formation. The heat recovery steam generator (HRSG) is modeled by considering generation of high-pressure, intermediate-pressure, and low-pressure steam. All of the vessels, reactors, heat exchangers, and the columns have been sized. The basic IGCC process control structure has been synthesized by standard guidelines and existing practices. The steady-state simulation is solved in sequential-modular mode in Aspen Plus{reg_sign} and consists of more than 300 unit operations, 33 design specs, and 16 calculator blocks. The equation-oriented dynamic simulation consists of more than 100,000 equations solved using a multi-step Gear's integrator in Aspen Plus Dynamics{reg_sign}. The challenges faced in solving the dynamic model and key transient results from this dynamic model will also be discussed.« less
Jacchetti, Emanuela; Gabellieri, Edi; Cioni, Patrizia; Bizzarri, Ranieri; Nifosì, Riccardo
2016-05-14
By combining spectroscopic measurements under high pressure with molecular dynamics simulations and quantum mechanics calculations we investigate how sub-angstrom structural perturbations are able to tune protein function. We monitored the variations in fluorescence output of two green fluorescent protein mutants (termed Mut2 and Mut2Y, the latter containing the key T203Y mutation) subjected to pressures up to 600 MPa, at various temperatures in the 280-320 K range. By performing 150 ns molecular dynamics simulations of the protein structures at various pressures, we evidenced subtle changes in conformation and dynamics around the light-absorbing chromophore. Such changes explain the measured spectral tuning in the case of the sizable 120 cm(-1) red-shift observed for pressurized Mut2Y, but absent in Mut2. Previous work [Barstow et al., Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 13362] on pressure effects on GFP also involved a T203Y mutant. On the basis of cryocooling X-ray crystallography, the pressure-induced fluorescence blue shift at low temperature (77 K) was attributed to key changes in relative conformation of the chromophore and Tyr203 phenol ring. At room temperature, however, a red shift was observed at high pressure, analogous to the one we observe in Mut2Y. Our investigation of structural variations in compressed Mut2Y also explains their result, bridging the gap between low-temperature and room-temperature high-pressure effects.
Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter
NASA Technical Reports Server (NTRS)
Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.
1992-01-01
The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.
Molecular dynamics modelling of solidification in metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boercker, D.B.; Belak, J.; Glosli, J.
1997-12-31
Molecular dynamics modeling is used to study the solidification of metals at high pressure and temperature. Constant pressure MD is applied to a simulation cell initially filled with both solid and molten metal. The solid/liquid interface is tracked as a function of time, and the data are used to estimate growth rates of crystallites at high pressure and temperature in Ta and Mg.
Dynamic tire pressure sensor for measuring ground vibration.
Wang, Qi; McDaniel, James Gregory; Wang, Ming L
2012-11-07
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.
Dynamic Tire Pressure Sensor for Measuring Ground Vibration
Wang, Qi; McDaniel, James Gregory; Wang, Ming L.
2012-01-01
This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application. PMID:23202206
Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions
NASA Astrophysics Data System (ADS)
Xiao, Jianwei; Du, Jinglian; Wen, Bin; Melnik, Roderick; Kawazoe, Yoshiyuki; Zhang, Xiangyi
2014-04-01
Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ˜1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode.
Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jianwei; Du, Jinglian; Wen, Bin, E-mail: wenbin@ysu.edu.cn
2014-04-28
Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ∼1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode.
Pressure effect on phonon frequencies in some transition metals: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Kazanc, S.; Ozgen, S.
2005-08-01
It is important to determine the atomic lattice vibrations of metallic materials, under high-pressure conditions, due to its effects on material properties such as thermal, electrical and optical conductions. In this work, we have investigated the changes of acoustic phonon frequencies with hydrostatic pressure for Cu, Ni, Al, Ag and Au transition metals, using molecular dynamics (MD) simulations based on embedded atom method (EAM). For this aim, we have adopted the embedded atom potential proposed by Sutton and Chen. The phonon frequencies have been calculated from the dynamical matrix for [1 0 0], [1 1 0] and [1 1 1] high symmetry directions of the Brillouin zone. The obtained results show that the hydrostatic pressure causes an increment in phonon frequencies, and this rising do not depend linearly on the increasing pressure.
Electronic Desorption of gas from metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molvik, A W; Kollmus, H; Mahner, E
During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.
Large-scale galaxy flow from a non-gravitational impulse
NASA Technical Reports Server (NTRS)
Hogan, Craig J.; Kaiser, Nick
1989-01-01
A theory is presented describing linear perturbations of an expanding universe containing multiple, independently perturbed, collisionless, gravitationally coupled constituents. Solutions are found in the limit where one initially unperturbed component dominates the total density. The theory is applied to perturbations generated by a nongravitational process in one or more of the light components, as would occur in explosive or radiation-pressure-instability theories of galaxy formation. The apparent dynamical density parameter and correlations between density and velocity amplitude for various populations, are evaluated as a function of cosmic scale factor.
Effect of thermal pressurization on dynamic rupture propagation under depth-dependent stress
NASA Astrophysics Data System (ADS)
Urata, Y.; Kuge, K.; Kase, Y.
2009-12-01
Fluid and pore pressure evolution can affect dynamic propagation of earthquake ruptures owing to thermal pressurization (e.g., Mase and Smith, 1985). We investigate dynamic rupture propagation with thermal pressurization on a fault subjected to depth-dependent stress, on the basis of 3-D numerical simulations for spontaneous dynamic ruptures. We put a vertical strike-slip rectangular fault in a semi-infinite, homogenous, and elastic medium. The length and width of the fault are 8 and 3 km, respectively. We assume a depth-dependent stress estimated by Yamashita et al. (2004). The numerical algorithm is based on the finite-difference method by Kase and Kuge (2001). A rupture is initiated by increasing shear stress in a small patch at the bottom of the fault, and then proceeds spontaneously, governed by a slip-weakening law with the Coulomb failure criteria. Coefficients of friction and Dc are homogeneous on the fault. On a fault with thermal pressurization, we allow effective normal stress to vary with pore pressure change due to frictional heating by the formulation of Bizzarri and Cocco (2006). When thermal pressurization does not work, tractions drop in the same way everywhere and rupture velocity is subshear except near the free surface. Due to thermal pressurization, dynamic friction on the fault decreases and is heterogeneous not only vertically but horizontally, slip increases, and rupture velocity along the strike direction becomes supershear. As a result, plural peaks of final slip appear, as observed in the case of undrained dip-slip fault by Urata et al. (2008). We found in this study that the early stage of rupture growth under the depth-dependent stress is affected by the location of an initial crack. When a rupture is initiated at the center of the fault without thermal pressurization, the rupture cannot propagate and terminates. Thermal pressurization can help such a powerless rupture to keep propagating.
NASA Astrophysics Data System (ADS)
Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.
2017-06-01
Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.
Karkokli, R; McConville, K M Valter
2006-01-01
This paper portrays the design and instrumentation of a low cost plantar pressure analysis system, suitable for clinical podiatry. The system measures plantar pressure between the foot and shoe during dynamic movement in real-time, which can be used in clinical gait analysis. It contains a pressure sensing insole which the patient can insert in his/her shoe, and user-friendly software to graph and analyze the data. Applications include occupational health and safety, research and private practice.
Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
Murray, Preston R; Thomson, Scott L
2011-12-02
Sound for the human voice is produced via flow-induced vocal fold vibration. The vocal folds consist of several layers of tissue, each with differing material properties. Normal voice production relies on healthy tissue and vocal folds, and occurs as a result of complex coupling between aerodynamic, structural dynamic, and acoustic physical phenomena. Voice disorders affect up to 7.5 million annually in the United States alone and often result in significant financial, social, and other quality-of-life difficulties. Understanding the physics of voice production has the potential to significantly benefit voice care, including clinical prevention, diagnosis, and treatment of voice disorders. Existing methods for studying voice production include in vivo experimentation using human and animal subjects, in vitro experimentation using excised larynges and synthetic models, and computational modeling. Owing to hazardous and difficult instrument access, in vivo experiments are severely limited in scope. Excised larynx experiments have the benefit of anatomical and some physiological realism, but parametric studies involving geometric and material property variables are limited. Further, they are typically only able to be vibrated for relatively short periods of time (typically on the order of minutes). Overcoming some of the limitations of excised larynx experiments, synthetic vocal fold models are emerging as a complementary tool for studying voice production. Synthetic models can be fabricated with systematic changes to geometry and material properties, allowing for the study of healthy and unhealthy human phonatory aerodynamics, structural dynamics, and acoustics. For example, they have been used to study left-right vocal fold asymmetry, clinical instrument development, laryngeal aerodynamics, vocal fold contact pressure, and subglottal acoustics (a more comprehensive list can be found in Kniesburges et al.) Existing synthetic vocal fold models, however, have either been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration). In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave.
Masdeu, Maria J.; Patel, Amit V.; Seelall, Vijay; Rapoport, David M.; Ayappa, Indu
2012-01-01
Study Objectives: Patients with obstructive sleep apnea may have difficulty exhaling against positive pressure, hence limiting their acceptance of continuous positive airway pressure (CPAP). C-Flex is designed to improve comfort by reducing pressure in the mask during expiration proportionally to expiratory airflow (3 settings correspond to increasing pressure changes). When patients use CPAP, nasal resistance determines how much higher supraglottic pressure is than mask pressure. We hypothesized that increased nasal resistance results in increased expiratory supraglottic pressure swings that could be mitigated by the effects of C-Flex on mask pressure. Design: Cohort study. Setting: Sleep center. Participants: Seventeen patients with obstructive sleep apnea/hypopnea syndrome and a mechanical model of the upper airway. Interventions: In patients on fixed CPAP, CPAP with different C-Flex levels was applied multiple times during the night. In the model, 2 different respiratory patterns and resistances were tested. Measurements and Results: Airflow, expiratory mask, and supraglottic pressures were measured on CPAP and on C-Flex. Swings in pressure during expiration were determined. On CPAP, higher nasal resistance produced greater expiratory pressure swings in the supraglottis in the patients and in the model, as expected. C-Flex 3 produced expiratory drops in mask pressure (range −0.03 to −2.49 cm H2O) but mitigated the expira-tory pressure rise in the supraglottis only during a sinusoidal respiratory pattern in the model. Conclusions: Expiratory changes in mask pressure induced by C-Flex did not uniformly transmit to the supraglottis in either patients with obstructive sleep apnea on CPAP or in a mechanical model of the upper airway with fixed resistance. Data suggest that the observed lack of expiratory drop in supraglottic pressure swings is related to dynamics of the C-Flex algorithm. Citation: Masdeu MJ; Patel AV; Seelall V; Rapoport DM; Ayappa I. The supraglottic effect of a reduction in expiratory mask pressure during continuous positive airway pressure. SLEEP 2012;35(2):263-272. PMID:22294817
NASA Astrophysics Data System (ADS)
Campbell, Timothy; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Ogata, Shuji; Rodgers, Stephen
1999-06-01
Oxidation of aluminum nanoclusters is investigated with a parallel molecular-dynamics approach based on dynamic charge transfer among atoms. Structural and dynamic correlations reveal that significant charge transfer gives rise to large negative pressure in the oxide which dominates the positive pressure due to steric forces. As a result, aluminum moves outward and oxygen moves towards the interior of the cluster with the aluminum diffusivity 60% higher than that of oxygen. A stable 40 Å thick amorphous oxide is formed; this is in excellent agreement with experiments.
Liao, Fuyuan; Jan, Yih-Kuen
2012-06-01
This paper presents a recurrence network approach for the analysis of skin blood flow dynamics in response to loading pressure. Recurrence is a fundamental property of many dynamical systems, which can be explored in phase spaces constructed from observational time series. A visualization tool of recurrence analysis called recurrence plot (RP) has been proved to be highly effective to detect transitions in the dynamics of the system. However, it was found that delay embedding can produce spurious structures in RPs. Network-based concepts have been applied for the analysis of nonlinear time series recently. We demonstrate that time series with different types of dynamics exhibit distinct global clustering coefficients and distributions of local clustering coefficients and that the global clustering coefficient is robust to the embedding parameters. We applied the approach to study skin blood flow oscillations (BFO) response to loading pressure. The results showed that global clustering coefficients of BFO significantly decreased in response to loading pressure (p<0.01). Moreover, surrogate tests indicated that such a decrease was associated with a loss of nonlinearity of BFO. Our results suggest that the recurrence network approach can practically quantify the nonlinear dynamics of BFO.
Dynamic Characterization of an Inflatable Concentrator for Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Leigh, Larry; Hamidzadeh, Hamid; Tinker, Michael L.; Rodriguez, Pedro I. (Technical Monitor)
2001-01-01
An inflatable structural system that is a technology demonstrator for solar thermal propulsion and other applications is characterized for structural dynamic behavior both experimentally and computationally. The inflatable structure is a pressurized assembly developed for use in orbit to support a Fresnel lens or inflatable lenticular element for focusing sunlight into a solar thermal rocket engine. When the engine temperature reaches a pre-set level, the propellant is injected into the engine, absorbs heat from an exchanger, and is expanded through the nozzle to produce thrust. The inflatable structure is a passively adaptive system in that a regulator and relief valve are utilized to maintain pressure within design limits during the full range of orbital conditions. Modeling and test activities are complicated by the fact that the polyimide film material used for construction of the inflatable is nonlinear, with modulus varying as a function of frequency, temperature, and level of excitation. Modal vibration testing and finite element modeling are described in detail in this paper. The test database is used for validation and modification of the model. This work is highly significant because of the current interest in inflatable structures for space application, and because of the difficulty in accurately modeling such systems.
Fundamental incorporation of the density change during melting of a confined phase change material
NASA Astrophysics Data System (ADS)
Hernández, Ernesto M.; Otero, José A.
2018-02-01
The modeling of thermal diffusion processes taking place in a phase change material presents a challenge when the dynamics of the phase transition is coupled to the mechanical properties of the container. Thermo-mechanical models have been developed by several authors, however, it will be shown that these models only explain the phase transition dynamics at low pressures when the density of each phase experiences negligible changes. In our proposal, a new energy-mass balance equation at the interface is derived and found to be a consequence of mass conservation. The density change experienced in each phase is predicted by the proposed formulation of the problem. Numerical and semi-analytical solutions to the proposed model are presented for an example on a high temperature phase change material. The solutions to the models presented by other authors are observed to be well-behaved close to the isobaric limit. However, compared to the results obtained from our model, the change in the fusion temperature, latent heat, and absolute pressure is found to be greatly overestimated by other proposals when the phase transition is studied close to the isochoric regime.
Morphometric Differences of Vocal Tract Articulators in Different Loudness Conditions in Singing
Echternach, Matthias; Burk, Fabian; Burdumy, Michael; Traser, Louisa; Richter, Bernhard
2016-01-01
Introduction Dynamic MRI analysis of phonation has gathered interest in voice and speech physiology. However, there are limited data addressing the extent to which articulation is dependent on loudness. Material and Methods 12 professional singer subjects of different voice classifications were analysed concerning the vocal tract profiles recorded with dynamic real-time MRI with 25fps in different pitch and loudness conditions. The subjects were asked to sing ascending scales on the vowel /a/ in three loudness conditions (comfortable = mf, very soft = pp, very loud = ff, respectively). Furthermore, fundamental frequency and sound pressure level were analysed from the simultaneously recorded optical audio signal after noise cancellation. Results The data show articulatory differences with respect to changes of both pitch and loudness. Here, lip opening and pharynx width were increased. While the vertical larynx position was rising with pitch it was lower for greater loudness. Especially, the lip opening and pharynx width were more strongly correlated with the sound pressure level than with pitch. Conclusion For the vowel /a/ loudness has an effect on articulation during singing which should be considered when articulatory vocal tract data are interpreted. PMID:27096935
Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics
Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em
2011-01-01
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548
Pressure-based high-order TVD methodology for dynamic stall control
NASA Astrophysics Data System (ADS)
Yang, H. Q.; Przekwas, A. J.
1992-01-01
The quantitative prediction of the dynamics of separating unsteady flows, such as dynamic stall, is of crucial importance. This six-month SBIR Phase 1 study has developed several new pressure-based methodologies for solving 3D Navier-Stokes equations in both stationary and moving (body-comforting) coordinates. The present pressure-based algorithm is equally efficient for low speed incompressible flows and high speed compressible flows. The discretization of convective terms by the presently developed high-order TVD schemes requires no artificial dissipation and can properly resolve the concentrated vortices in the wing-body with minimum numerical diffusion. It is demonstrated that the proposed Newton's iteration technique not only increases the convergence rate but also strongly couples the iteration between pressure and velocities. The proposed hyperbolization of the pressure correction equation is shown to increase the solver's efficiency. The above proposed methodologies were implemented in an existing CFD code, REFLEQS. The modified code was used to simulate both static and dynamic stalls on two- and three-dimensional wing-body configurations. Three-dimensional effect and flow physics are discussed.
Hypertensive Medications in Competitive Athletes.
Pelto, Henry
Hypertension is the most common cardiovascular disease in athletes. It is an important cause of long-term morbidity and mortality, even in a fit, athletic population. Management options to reduce these long-term risks exist that have minimal impact on athletic performance. Identification and management of underlying lifestyle factors and diseases that may lead to secondary hypertension is critical. These include substance abuse, medications, and underlying medical conditions. After evaluation and management of these issues, medications can be used to reduce blood pressure. In the athletic population, first-line medication treatment should include ACE inhibitors, angiotensin II receptor blockers (ARB), and calcium channel blockers (CCB). The response to treatment should be followed closely to ensure adequate blood pressure control. Athletic participation in sports with high dynamic load should be limited in individuals with stage 2 hypertension or stage 1 hypertension with evidence of end organ damage.
Experimental and numerical study of the British Experimental Rotor Programme blade
NASA Technical Reports Server (NTRS)
Brocklehurst, Alan; Duque, Earl P. N.
1990-01-01
Wind-tunnel tests on the British Experimental Rotor Programme (BERP) tip are described, and the results are compared with computational fluid dynamics (CFD) results. The test model was molded using the Lynx-BERP blade tooling to provide a semispan, cantilever wing comprising the outboard 30 percent of the rotor blade. The tests included both surface-pressure measurements and flow visualization to obtain detailed information of the flow over the BERP tip for a range of angles of attack. It was observed that, outboard of the notch, favorable pressure gradients exist which ensure attached flow, and that the tip vortex also remains stable to large angles of attack. On the rotor, these features yield a very gradual break in control loads when the retreating-blade limit is eventually reached. Computational and experimental results were generally found to be in good agreement.
Limitations and possibilities of AC calorimetry in diamond anvil cells
NASA Astrophysics Data System (ADS)
Geballe, Zachary; Colins, Gilbert; Jeanloz, Raymond
2013-06-01
Dynamic laser heating or internal resistive heating could allow for the determination of calorimetric properties of samples that are held statically at high pressure. However, the highly non-adiabatic environment of high-pressure cells presents several challenges. Here, we quantify the errors in AC calorimetry measurements using laser heating or internal resistive heating inside diamond anvil cells, summarize the equipment requirements of supplying sufficient power modulated at a high enough frequency to measure specific heats and latent heats of phase transitions, and propose two new experiments in internally-heated diamond anvil cells: an absolute measurement of specific heat (with ~10% uncertainty) of non-magnetic metals using resistive heating at ~10 MHz, and a relative measurement to detect changes in either the specific heat of metals or in the effusively (the product of specific heat, density and thermal conductivity) of an insulator.
40 CFR 146.64 - Corrective action for wells in the area of review.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requiring corrective action other than pressure limitations shall include a compliance schedule requiring... require observance of appropriate pressure limitations under paragraph (d)(3) until all other corrective... have been taken. (3) The Director may require pressure limitations in lieu of plugging. If pressure...
49 CFR 192.741 - Pressure limiting and regulating stations: Telemetering or recording gauges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Pressure limiting and regulating stations... STANDARDS Maintenance § 192.741 Pressure limiting and regulating stations: Telemetering or recording gauges. (a) Each distribution system supplied by more than one district pressure regulating station must be...
Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-01-01
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. PMID:26377556
High-speed motion picture camera experiments of cavitation in dynamically loaded journal bearings
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Hamrock, B. J.
1982-01-01
A high-speed camera was used to investigate cavitation in dynamically loaded journal bearings. The length-diameter ratio of the bearing, the speeds of the shaft and bearing, the surface material of the shaft, and the static and dynamic eccentricity of the bearing were varied. The results reveal not only the appearance of gas cavitation, but also the development of previously unsuspected vapor cavitation. It was found that gas cavitation increases with time until, after many hundreds of pressure cycles, there is a constant amount of gas kept in the cavitation zone of the bearing. The gas can have pressures of many times the atmospheric pressure. Vapor cavitation bubbles, on the other hand, collapse at pressures lower than the atmospheric pressure and cannot be transported through a high-pressure zone, nor does the amount of vapor cavitation in a bearing increase with time. Analysis is given to support the experimental findings for both gas and vapor cavitation.
NASA Astrophysics Data System (ADS)
Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.
2018-01-01
Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.
Pressure effect on micellization of non-ionic surfactant Triton X-100
NASA Astrophysics Data System (ADS)
Espinosa, Yanis R.; Caffarena, Ernesto R.; Martínez, Yanina Berrueta; Grigera, J. Raúl
2018-02-01
Micellar aggregates can be arranged in new types of conformational assemblies when they are isotropically compressed. Thus, the pressure effects in the underlying fundamental interactions leading to self-assembly of micellar aggregates can be represented by changes in the phase boundaries with increasing pressure. In this paper, we have employed molecular dynamics simulations to study the self-assembly of micelles composed of the non-ionic surfactant Triton X-100 at the atomic scale, monitoring the changes in the solvation dynamics when the micelles are subjected to a wide range of hydrostatic pressures. The computational molecular model was capable of self-assembling and forming a non-ionic micelle, which subsequently was coupled to a high-pressure barostat producing a geometric transition of the micelle due to changes in the solvation dynamics. Accordingly, under a high pressure regime, the hydrogen bonds are redistributed, the water density is modified, and water acts as an unstructured liquid, capable of penetrating into the micelle.
Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel
NASA Astrophysics Data System (ADS)
Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari
2017-08-01
Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.
NASA Astrophysics Data System (ADS)
Mohn, C.; Christiansen, B.; Denda, A.; George, K. H.; Kaufmann, M.; Maranhão, M.; Martin, B.; Metzger, T.; Peine, F.; Schuster, A.; Springer, B.; Stefanowitsch, B.; Turnewitsch, R.; Wehrmann, H.
2016-02-01
Seamounts are amongst the most common physiographic open ocean systems, but remoteness and geographic complexity have limited the number of integrated and multidisciplinary seamount surveys in the past. As a consequence, important aspects of seamount ecology and dynamics remain poorly studied. Here we present a multi-parameter data set from individual and repeated seamount surveys conducted at different sites in the Northeast Atlantic and Eastern Mediterranean between 2003 and 2013. The main objective of these surveys was to establish a collection of ecosystem relevant descriptors and to develop a better understanding of seamount ecosystem composition and variability in different dynamical and bio-geographic environments. Measurements were conducted at four seamounts in the Northeast Atlantic (Ampère, Sedlo, Seine, Senghor) and two seamounts in the Eastern Mediterranean (Anaximenes, Eratosthenes). The data set comprises records from a total number of 11 cruises including physical oceanography (temperature, salinity, pressure, currents), biology (phytoplankton, zooplankton, fish, benthos) and biogeochemistry (sedimentary particle dynamics, carbon flux). The resulting multi-disciplinary data collection provides a unique opportunity for comparative studies of seamount ecosystem structure and dynamics between different physical, biological and biogeochemical regimes
Dynamic behaviors of cavitation bubble for the steady cavitating flow
NASA Astrophysics Data System (ADS)
Cai, Jun; Huai, Xiulan; Li, Xunfeng
2009-12-01
In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkholder, Michael B.; Litster, Shawn, E-mail: litster@andrew.cmu.edu
In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurablemore » regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.« less
Elucidating Microbial Adaptation Dynamics via Autonomous Exposure and Sampling
NASA Technical Reports Server (NTRS)
Grace, Joseph M.; Verseux, Cyprien; Gentry, Diana; Moffet, Amy; Thayabaran, Ramanen; Wong, Nathan; Rothschild, Lynn
2013-01-01
The adaptation of micro-organisms to their environments is a complex process of interaction between the pressures of the environment and of competition. Reducing this multifactorial process to environmental exposure in the laboratory is a common tool for elucidating individual mechanisms of evolution, such as mutation rates. Although such studies inform fundamental questions about the way adaptation and even speciation occur, they are often limited by labor-intensive manual techniques. Current methods for controlled study of microbial adaptation limit the length of time, the depth of collected data, and the breadth of applied environmental conditions. Small idiosyncrasies in manual techniques can have large effects on outcomes; for example, there are significant variations in induced radiation resistances following similar repeated exposure protocols. We describe here a project under development to allow rapid cycling of multiple types of microbial environmental exposure. The system allows continuous autonomous monitoring and data collection of both single species and sampled communities, independently and concurrently providing multiple types of controlled environmental pressure (temperature, radiation, chemical presence or absence, and so on) to a microbial community in dynamic response to the ecosystem's current status. When combined with DNA sequencing and extraction, such a controlled environment can cast light on microbial functional development, population dynamics, inter- and intra-species competition, and microbe-environment interaction. The project's goal is to allow rapid, repeatable iteration of studies of both natural and artificial microbial adaptation. As an example, the same system can be used both to increase the pH of a wet soil aliquot over time while periodically sampling it for genetic activity analysis, or to repeatedly expose a culture of bacteria to the presence of a toxic metal, automatically adjusting the level of toxicity based on the number or growth rate of surviving cells. We are on our second prototype iteration, with demonstrated functions of microbial growth monitoring and dynamic exposure to UV-C radiation and temperature. We plan to add functionality for general chemical presence or absence by Nov. 2013. By making the project low-cost and open-source, we hope to encourage others to use it as a basis for future development of a common microbial environmental adaptation testbed.
Dynamics of large-diameter water pipes in hydroelectric power plants
NASA Astrophysics Data System (ADS)
Pavić, G.; Chevillotte, F.; Heraud, J.
2017-04-01
An outline is made of physical behaviour of water - filled large pipes. The fluid-wall coupling, the key factor governing the pipe dynamics, is discussed in some detail. Different circumferential pipe modes and the associated cut-on frequencies are addressed from a theoretical as well as practical point of view. Major attention is paid to the breathing mode in view of its importance regarding main dynamic phenomena, such as water hammer. Selected measurement results done at EDF are presented to demonstrate how an external, non-intrusive sensor can detect pressure pulsations of the breathing mode in a pressure pipe. Differences in the pressure measurement using intrusive and non-intrusive sensors reveal the full complexity of large-diameter pipe dynamics.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Apparent competition with an exotic plant reduces native plant establishment.
Orrock, John L; Witter, Martha S; Reichman, O J
2008-04-01
Biological invasions can change ecosystem function, have tremendous economic costs, and impact human health; understanding the forces that cause and maintain biological invasions is thus of immediate importance. A mechanism by which exotic plants might displace native plants is by increasing the pressure of native consumers on native plants, a form of indirect interaction termed "apparent competition." Using experimental exclosures, seed addition, and monitoring of small mammals in a California grassland, we examined whether exotic Brassica nigra increases the pressure of native consumers on a native bunchgrass, Nassella pulchra. Experimental plots were weeded to focus entirely on indirect effects via consumers. We demonstrate that B. nigra alters the activity of native small-mammal consumers, creating a gradient of consumption that dramatically reduces N. pulchra establishment. Previous work has shown that N. pulchra is a strong competitor, but that it is heavily seed limited. By demonstrating that consumer pressure is sufficient to curtail establishment, our work provides a mechanism for this seed limitation and suggests that, despite being a good competitor, N. pulchra cannot reestablish close to B. nigra within its old habitats because exotic-mediated consumption preempts direct competitive exclusion. Moreover, we find that apparent competition has a spatial extent, suggesting that consumers may dictate the rate of invasion and the area available for restoration, and that nonspatial studies of apparent competition may miss important dynamics.
NASA Technical Reports Server (NTRS)
Albertson, Cindy W.
1987-01-01
A model to be used in the flow studies and curved Thermal Protection System (TPS) evaluations was tested in the Langley 8 Foot High-Temperature Tunnel at a nominal Mach number of 6.8. The purpose of the study was to define the surface pressure and heating rates at high angles of attack (in support of curved metallic TPS studies) and to determine the conditions for which the model would be suitable as a test bed for aerothermal load studies. The present study was conducted at a nominal total temperature of 2400 and 3300 R, dynamic pressures from 2.3 to 10.9 psia, and free-stream Reynolds numbers from 4000,000 to 1,700,000/ft. The measurements consisted primarily of surface pressure and cold-wall (530 R) heating rates. Qualitative comparisons between predictions and data show that for this configuration, aerothermal tests should be limited to angles of attack between 10 and -10 degrees. Outside this range, the effects of free-stream flow nonuniformity appear in the data, as a result of the long length of the model. However, for TPS testing, this is not a concern and tests can be performed at angles of attack ranging from 20 to -20 degrees. Laminar and naturally turbulent boundary layers are available over limited ranges of conditions.
NASA Astrophysics Data System (ADS)
Wang, Yi-Xian; Hu, Cui-E.; Chen, Yang-Mei; Cheng, Yan; Ji, Guang-Fu
2016-11-01
The structural, optical, dynamical, and thermodynamic properties of BaZnO2 under pressure are studied based on the density functional theory. The calculated structural parameters are consistent with the available experimental data. In the ground state, the electronic band structure and density of states indicate that BaZnO2 is an insulator with a direct gap of 2.2 eV. The Mulliken charges are also analyzed to characterize the bonding property. After the structural relaxation, the optical properties are studied. It is found that the dielectric function of E Vert x and EVert y are isotropic, whereas the EVert x and EVert z are anisotropic. The effect of pressure on the energy-loss function in the ultraviolet region becomes more obvious as the pressure increases. Furthermore, the dynamical properties under different pressures are investigated using the finite displacement method. We find that the P3121 phase of BaZnO2 is dynamically stable under the pressure ranging from 0 GPa to 30 GPa. The phonon dispersion curves, phonon density of states, vibrational modes and atoms that contribute to these vibrations at {{\\varvec{Γ }}} point under different pressures are also reported in this work. Finally, by employing the quasi-harmonic approximation, the thermodynamic properties such as the temperature dependence of the thermal expansion coefficient, specific heat, entropy and Gibbs free energy under different pressures are investigated. It is found that the influences of the temperature on the heat capacity are much more significant than that of the pressure on it.
Nanoscale Origin of the Dichotimous Viscosity-Pressure Behavior in Silicate Melts
NASA Astrophysics Data System (ADS)
Wang, Y.; Sakamaki, T.; Skiner, L.; Jing, Z.; Yu, T.; Kono, Y.; Park, C.; Shen, G.; Rivers, M. L.; Sutton, S. R.
2013-12-01
A defining characteristic of silicate melts is the degree of polymerization (tetrahedral connectivity), which dictates physical properties such as viscosity and density. While viscosity of depolymerized silicate melts increases with pressure consistent with free volume theory, isothermal viscosity of polymerized melts decreases with pressure up to ~3 - 5 GPa, above which it turns over to normal (positive) pressure dependence. We conducted high-pressure melt structure studies along the jadeite (Jd) - diopside (Di) join, using a Paris-Edinburgh Press at the HPCAT beamline 16-BM-B and measured Jd melt density using a DIA type apparatus based on x-ray absorption at GSECARS beamline 13-BM-D. Structures of polymerized (Jd and Jd50Di50) and depolymerized (Di) melts show distinct responses to pressure. For Jd melt, T-O, T-T bond lengths (where T denotes tetrahedrally coordinated Al and Si) and T-O-T angle all exhibit rapid, sometimes non-linear decrease with increasing pressure to ~3 GPa. For Di melt, these parameters vary linearly with pressure and change very little. Molecular dynamics calculations, constrained by the x-ray structural data, were employed to examine details of structural evolution in polymerized and depolymerized liquids. A structural model is developed to link structural evolution to changes in melt properties, such as density and viscosity, with pressure. We show that the pressure of the viscosity turnover corresponds to the tetrahedral packing limit, below which the structure is compressed through tightening of the inter-tetrahedral bond angle, resulting in continual breakup of tetrahedral connectivity and viscosity decrease. Above the turnover pressure, Si and Al coordination increases to allow further packing, with increasing viscosity. This structural response prescribes the distribution of melt viscosity and density with depth, and may be the main controlling factor for magma transport rates in terrestrial planetary interiors.
The dynamics of double slab subduction
NASA Astrophysics Data System (ADS)
Holt, A. F.; Royden, L. H.; Becker, T. W.
2017-04-01
We use numerical models to investigate the dynamics of two interacting slabs with parallel trenches. Cases considered are: a single slab reference, outward dipping slabs (out-dip), inward dipping slabs (in-dip) and slabs dipping in the same direction (same-dip). Where trenches converge over time (same-dip and out-dip systems), large positive dynamic pressures in the asthenosphere are generated beneath the middle plate and large trench-normal extensional forces are transmitted through the middle plate. This results in slabs that dip away from the middle plate at depth, independent of trench geometry. The single slab, the front slab in the same-dip case and both out-dip slabs undergo trench retreat and exhibit stable subduction. However, slabs within the other double subduction systems tend to completely overturn at the base of the upper mantle, and exhibit either trench advance (rear slab in same-dip), or near-stationary trenches (in-dip). For all slabs, the net slab-normal dynamic pressure at 330 km depth is nearly equal to the slab-normal force induced by slab buoyancy. For double subduction, the net outward force on the slabs due to dynamic pressure from the asthenosphere is effectively counterbalanced by the net extensional force transmitted through the middle plate. Thus, dynamic pressure at depth, interplate coupling and lithospheric stresses are closely linked and their effects cannot be isolated. Our results provide insights into both the temporal evolution of double slab systems on Earth and, more generally, how the various components of subduction systems, from mantle flow/pressure to interplate coupling, are dynamically linked.
Cost Implications of Uncertainty in CO{sub 2} Storage Resource Estimates: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Steven T., E-mail: sanderson@usgs.gov
Carbon capture from stationary sources and geologic storage of carbon dioxide (CO{sub 2}) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO{sub 2} storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference,more » and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO{sub 2}, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO{sub 2} storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO{sub 2} injection will be mitigated by reservoir pressure management, estimates of the costs of CO{sub 2} storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO{sub 2} storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO{sub 2} storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO{sub 2} storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO{sub 2} concentrations in the atmosphere.« less
Cost implications of uncertainty in CO2 storage resource estimates: A review
Anderson, Steven T.
2017-01-01
Carbon capture from stationary sources and geologic storage of carbon dioxide (CO2) is an important option to include in strategies to mitigate greenhouse gas emissions. However, the potential costs of commercial-scale CO2 storage are not well constrained, stemming from the inherent uncertainty in storage resource estimates coupled with a lack of detailed estimates of the infrastructure needed to access those resources. Storage resource estimates are highly dependent on storage efficiency values or storage coefficients, which are calculated based on ranges of uncertain geological and physical reservoir parameters. If dynamic factors (such as variability in storage efficiencies, pressure interference, and acceptable injection rates over time), reservoir pressure limitations, boundaries on migration of CO2, consideration of closed or semi-closed saline reservoir systems, and other possible constraints on the technically accessible CO2 storage resource (TASR) are accounted for, it is likely that only a fraction of the TASR could be available without incurring significant additional costs. Although storage resource estimates typically assume that any issues with pressure buildup due to CO2 injection will be mitigated by reservoir pressure management, estimates of the costs of CO2 storage generally do not include the costs of active pressure management. Production of saline waters (brines) could be essential to increasing the dynamic storage capacity of most reservoirs, but including the costs of this critical method of reservoir pressure management could increase current estimates of the costs of CO2 storage by two times, or more. Even without considering the implications for reservoir pressure management, geologic uncertainty can significantly impact CO2 storage capacities and costs, and contribute to uncertainty in carbon capture and storage (CCS) systems. Given the current state of available information and the scarcity of (data from) long-term commercial-scale CO2 storage projects, decision makers may experience considerable difficulty in ascertaining the realistic potential, the likely costs, and the most beneficial pattern of deployment of CCS as an option to reduce CO2 concentrations in the atmosphere.
Jin, Kaiqiang; Duan, Qiangling; Liew, K M; Peng, Zhongjing; Gong, Liang; Sun, Jinhua
2017-04-05
Research surrounding premixed flame propagation in ducts has a history of more than one hundred years. Most previous studies focus on the tulip flame formation and flame acceleration in pure gas fuel-air flame. However, the premixed natural gas-air flame may show different behaviors and pressure dynamics due to its unique composition. Natural gas, methane and acetylene are chosen here to conduct a comparison study on different flame behaviors and pressure dynamics, and to explore the influence of different compositions on premixed flame dynamics. The characteristics of flame front and pressure dynamics are recorded using high-speed schlieren photography and a pressure transducer, respectively. The results indicate that the compositions of the gas mixture greatly influence flame behaviors and pressure. Acetylene has the fastest flame tip speed and the highest pressure, while natural gas has a faster flame tip speed and higher pressure than methane. The Bychkov theory for predicting the flame skirt motion is verified, and the results indicate that the experimental data coincide well with theory in the case of equivalence ratios close to 1.00. Moreover, the Bychkov theory is able to predict flame skirt motion for acetylene, even outside of the best suitable expansion ratio range of 6
Membrane Desalination: Where Are We, and What Can We Learn from Fundamentals?
Imbrogno, Joseph; Belfort, Georges
2016-06-07
Although thermal desalination technology provides potable water in arid regions (e.g., Israel and the Gulf), its relatively high cost has limited application to less arid regions with large populations (e.g., California). Energy-intensive distillation is currently being replaced with less costly pressure- and electrically driven membrane-based processes. Reverse osmosis (RO) is a preferred membrane technology owing to process and pre- and posttreatment improvements that have significantly reduced energy requirements and cost. Further technical advances will require a deeper understanding of the fundamental science underlying RO. This includes determining the mechanism for water selectivity; elucidating the behavior of molecular water near polar and apolar surfaces, as well as the advantages and limitations of hydrophobic versus hydrophilic pores; learning the rules of selective water transport from nature; and designing synthetic analogs for selective water transport. Molecular dynamics simulations supporting experiments will play an important role in advancing these efforts. Finally, future improvements in RO are limited by inherent technical mass transfer limitations.
NASA Astrophysics Data System (ADS)
Kubota, T.; Saito, T.; Suzuki, W.; Hino, R.
2017-12-01
When an earthquake occurs in offshore region, ocean bottom pressure gauges (OBP) observe the low-frequency (> 400s) pressure change due to tsunami and also high-frequency (< 200 s) pressure change due to seismic waves (e.g. Filloux 1983; Matsumoto et al. 2012). When the period of the seafloor motion is sufficiently long (> 20 s), the relation between seafloor dynamic pressure change p and seafloor vertical acceleration az is approximately given as p=ρ0h0az (ρ0: seawater density, h0: sea depth) (e.g., Bolshakova et al. 2011; Matsumoto et al.,2012; Saito and Tsushima, 2016, JGR; Saito, 2017, GJI). Based on this relation, it is expected that OBP can be used as vertical accelerometers. If we use OBP deployed in offshore region as seismometer, the station coverage is improved and then the accuracy of the earthquake location is also improved. In this study, we analyzed seismograms together with seafloor dynamic pressure change records to estimate the CMT of the interplate earthquakes occurred at off the coast of Tohoku on 9 March, 2011 (Mw 7.3 and 6.5) (Kubota et al., 2017, EPSL), and discussed the estimation accuracy of the centroid horizontal location. When the dynamic pressure change recorded by OBP is used in addition to the seismograms, the horizontal location of CMT was reliably constrained. The centroid was located in the center of the rupture area estimated by the tsunami inversion analysis (Kubota et al., 2017). These CMTs had reverse-fault mechanisms consistent with the interplate earthquakes and well reproduces the dynamic pressure signals in the OBP records. Meanwhile, when we used only the inland seismometers, the centroids were estimated to be outside the rupture area. This study proved that the dynamic pressure change in OBP records are available as seismic-wave records, which greatly helped to investigate the source process of offshore earthquakes far from the coast.
NASA Astrophysics Data System (ADS)
Kubota, T.; Saito, T.; Suzuki, W.; Hino, R.
2016-12-01
When an earthquake occurs in offshore region, ocean bottom pressure gauges (OBP) observe the low-frequency (> 400s) pressure change due to tsunami and also high-frequency (< 200 s) pressure change due to seismic waves (e.g. Filloux 1983; Matsumoto et al. 2012). When the period of the seafloor motion is sufficiently long (> 20 s), the relation between seafloor dynamic pressure change p and seafloor vertical acceleration az is approximately given as p=ρ0h0az (ρ0: seawater density, h0: sea depth) (e.g., Bolshakova et al. 2011; Matsumoto et al.,2012; Saito and Tsushima, 2016, JGR; Saito, 2017, GJI). Based on this relation, it is expected that OBP can be used as vertical accelerometers. If we use OBP deployed in offshore region as seismometer, the station coverage is improved and then the accuracy of the earthquake location is also improved. In this study, we analyzed seismograms together with seafloor dynamic pressure change records to estimate the CMT of the interplate earthquakes occurred at off the coast of Tohoku on 9 March, 2011 (Mw 7.3 and 6.5) (Kubota et al., 2017, EPSL), and discussed the estimation accuracy of the centroid horizontal location. When the dynamic pressure change recorded by OBP is used in addition to the seismograms, the horizontal location of CMT was reliably constrained. The centroid was located in the center of the rupture area estimated by the tsunami inversion analysis (Kubota et al., 2017). These CMTs had reverse-fault mechanisms consistent with the interplate earthquakes and well reproduces the dynamic pressure signals in the OBP records. Meanwhile, when we used only the inland seismometers, the centroids were estimated to be outside the rupture area. This study proved that the dynamic pressure change in OBP records are available as seismic-wave records, which greatly helped to investigate the source process of offshore earthquakes far from the coast.
Prediction of new high pressure structural sequence in thorium carbide: A first principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Joshi, K. D.; Gupta, Satish C.
2015-05-14
In the present work, we report the detailed electronic band structure calculations on thorium monocarbide. The comparison of enthalpies, derived for various phases using evolutionary structure search method in conjunction with first principles total energy calculations at several hydrostatic compressions, yielded a high pressure structural sequence of NaCl type (B1) → Pnma → Cmcm → CsCl type (B2) at hydrostatic pressures of ∼19 GPa, 36 GPa, and 200 GPa, respectively. However, the two high pressure experimental studies by Gerward et al. [J. Appl. Crystallogr. 19, 308 (1986); J. Less-Common Met. 161, L11 (1990)] one up to 36 GPa and other up to 50 GPa, onmore » substoichiometric thorium carbide samples with carbon deficiency of ∼20%, do not report any structural transition. The discrepancy between theory and experiment could be due to the non-stoichiometry of thorium carbide samples used in the experiment. Further, in order to substantiate the results of our static lattice calculations, we have determined the phonon dispersion relations for these structures from lattice dynamic calculations. The theoretically calculated phonon spectrum reveal that the B1 phase fails dynamically at ∼33.8 GPa whereas the Pnma phase appears as dynamically stable structure around the B1 to Pnma transition pressure. Similarly, the Cmcm structure also displays dynamic stability in the regime of its structural stability. The B2 phase becomes dynamically stable much below the Cmcm to B2 transition pressure. Additionally, we have derived various thermophysical properties such as zero pressure equilibrium volume, bulk modulus, its pressure derivative, Debye temperature, thermal expansion coefficient and Gruneisen parameter at 300 K and compared these with available experimental data. Further, the behavior of zero pressure bulk modulus, heat capacity and Helmholtz free energy has been examined as a function temperature and compared with the experimental data of Danan [J. Nucl. Mater. 57, 280 (1975)].« less
49 CFR 192.201 - Required capacity of pressure relieving and limiting stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Design of Pipeline Components § 192.201 Required capacity of pressure relieving and limiting stations. (a) Each pressure relief station or pressure limiting station or group of those stations installed to... part of the pipeline or distribution system in excess of those for which it was designed, or against...
Inaccuracy of a physical strain trainer for the monitoring of partial weight bearing.
Pauser, Johannes; Jendrissek, Andreas; Swoboda, Bernd; Gelse, Kolja; Carl, Hans-Dieter
2011-11-01
To investigate the use of a physical strain trainer for the monitoring of partial weight bearing. Case series with healthy volunteers. Orthopedic clinic. Healthy volunteers (N=10) with no history of foot complaints. Volunteers were taught to limit weight bearing to 10% body weight (BW) and 50% BW, monitored by a physical strain trainer. The parameters peak pressure, maximum force, force-time integral, and pressure-time integral were assessed by dynamic pedobarography when volunteers walked with full BW (condition 1), 50% BW (condition 2), and 10% BW (condition 3). With 10% BW (condition 3), forces with normative gait (condition 1) were statistically significantly reduced under the hindfoot where the physical strain trainer is placed. All pedobarographic parameters were, however, exceeded when the total foot was measured. A limitation to 10% BW with the physical strain trainer (condition 3) was equal to a bisection of peak pressure and maximum force for the total foot with normative gait (condition 1). Halved BW (condition 2) left a remaining mean 82% of peak pressure and mean 59% of maximum force from full BW (condition 1). The concept of controlling partial weight bearing with the hindfoot-addressing device does not represent complete foot loading. Such devices may be preferably applied in cases when the hindfoot in particular must be off-loaded. Other training devices (eg, biofeedback soles) that monitor forces of the total foot have to be used to control partial weight bearing of the lower limb accurately. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Fluid Dynamics of a Novel Micro-Fistula Implant for the Surgical Treatment of Glaucoma.
Sheybani, Arsham; Reitsamer, Herbert; Ahmed, Iqbal Ike K
2015-07-01
The purpose of this study was to describe the fluidics of a novel non-valved glaucoma implant designed to prevent hypotony and compare the fluidics of this device with two commonly used non-valved glaucoma devices. The XEN 45 micro-fistula implant was designed to limit hypotony by virtue of its length and width according to the Hagen-Poiseuille equation. Flow testing was performed using a syringe pump and pressure transducer at multiple flow rates. The pressure differentials across the XEN implant, the Ex-Press implant, and 10 mm of silicone tubing from a Baerveldt implant at a physiologic flow rate (2.5 μL/min) were extrapolated. The XEN 45 achieved a steady-state pressure calculated at 7.56 mm Hg at 2.5 μL/min. At the same flow rate, the Ex-Press device and Baerveldt tubing reached steady-state pressures of 0.09 and 0.01 mm Hg, respectively. Under flow testing, the XEN micro-fistula implant was able to maintain backpressure above numerical hypotony levels without the use of complex valve systems. This is due to the XEN implant's design, derived from the principles that dictate Newtonian fluids.
Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography
NASA Technical Reports Server (NTRS)
Greenberg, N. L.; Vandervoort, P. M.; Firstenberg, M. S.; Garcia, M. J.; Thomas, J. D.
2001-01-01
Previous studies have shown that small intraventricular pressure gradients (IVPG) are important for efficient filling of the left ventricle (LV) and as a sensitive marker for ischemia. Unfortunately, there has previously been no way of measuring these noninvasively, severely limiting their research and clinical utility. Color Doppler M-mode (CMM) echocardiography provides a spatiotemporal velocity distribution along the inflow tract throughout diastole, which we hypothesized would allow direct estimation of IVPG by using the Euler equation. Digital CMM images, obtained simultaneously with intracardiac pressure waveforms in six dogs, were processed by numerical differentiation for the Euler equation, then integrated to estimate IVPG and the total (left atrial to left ventricular apex) pressure drop. CMM-derived estimates agreed well with invasive measurements (IVPG: y = 0.87x + 0.22, r = 0.96, P < 0.001, standard error of the estimate = 0.35 mmHg). Quantitative processing of CMM data allows accurate estimation of IVPG and tracking of changes induced by beta-adrenergic stimulation. This novel approach provides unique information on LV filling dynamics in an entirely noninvasive way that has previously not been available for assessment of diastolic filling and function.
NASA Astrophysics Data System (ADS)
Borgardt, Elena; Panchenko, Olha; Hackemüller, Franz Josef; Giffin, Jürgen; Bram, Martin; Müller, Martin; Lehnert, Werner; Stolten, Detlef
2018-01-01
Differential pressure electrolysis offers the potential for more efficient hydrogen compression. Due to the differential pressures acting within the electrolytic cell, the porous transport layer (PTL) is subjected to high stress. For safety reasons, the PTL's mechanical stability must be ensured. However, the requirements for high porosity and low thickness stand in contrast to that for mechanical stability. Porous transport layers for polymer electrolyte membrane (PEM) electrolysis are typically prepared by means of the thermal sintering of titanium powder. Thus far, the factors that influence the mechanical strength of the sintered bodies and how all requirements can be simultaneously fulfilled have not been investigated. Here, the static and dynamic mechanical properties of thin sintered titanium sheets are investigated ex-situ via tensile tests and periodic loading in a test cell, respectively. In order for a sintered PTL with a thickness of 500 μm and porosities above 25% to be able to withstand 50 bar differential pressure in the cell, the maximum flow field width should be limited to 3 mm. Thus, a method was developed to test the suitability of PTL materials for use in electrolysis for various differential pressures and flow field widths.
A pressure-based force and torque prediction technique for the study of fish-like swimming
Dabiri, John O.; Lauder, George V.
2017-01-01
Many outstanding questions about the evolution and function of fish morphology are linked to swimming dynamics, and a detailed knowledge of time-varying forces and torques along the animal’s body is a key component in answering many of these questions. Yet, quantifying these forces and torques experimentally represents a major challenge that to date prevents a full understanding of fish-like swimming. Here, we develop a method for obtaining these force and torque data non-invasively using standard 2D digital particle image velocimetry in conjunction with a pressure field algorithm. We use a mechanical flapping foil apparatus to model fish-like swimming and measure forces and torques directly with a load cell, and compare these measured values to those estimated simultaneously using our pressure-based approach. We demonstrate that, when out-of-plane flows are relatively small compared to the planar flow, and when pressure effects sufficiently dominate shear effects, this technique is able to accurately reproduce the shape, magnitude, and timing of locomotor forces and torques experienced by a fish-like swimmer. We conclude by exploring of the limits of this approach and its feasibility in the study of freely-swimming fishes. PMID:29216264
Detonation duct gas generator demonstration program
NASA Technical Reports Server (NTRS)
Wortman, Andrew; Brinlee, Gayl A.; Othmer, Peter; Whelan, Michael A.
1991-01-01
The feasibility of the generation of detonation waves moving periodically across high speed channel flow is experimentally demonstrated. Such waves are essential to the concept of compressing requirements and increasing the engine pressure compressor with the objective of reducing conventional compressor requirements and increasing the engine thermodynamic efficiency through isochoric energy addition. By generating transient transverse waves, rather than standing waves, shock wave losses are reduced by an order of magnitude. The ultimate objective is to use such detonation ducts downstream of a low pressure gas turbine compressor to produce a high overall pressure ratio thermodynamic cycle. A 4 foot long, 1 inch x 12 inch cross-section, detonation duct was operated in a blow-down mode using compressed air reservoirs. Liquid or vapor propane was injected through injectors or solenoid valves located in the plenum or the duct itself. Detonation waves were generated when the mixture was ignited by a row of spark plugs in the duct wall. Problems with fuel injection and mixing limited the air speeds to about Mach 0.5, frequencies to below 10 Hz, and measured pressure ratios of about 5 to 6. The feasibility of the gas dynamic compression was demonstrated and the critical problem areas were identified.
Pneumatic pressure wave generator provides economical, simple testing of pressure transducers
NASA Technical Reports Server (NTRS)
Gaal, A. E.; Weldon, T. P.
1967-01-01
Testing device utilizes the change in pressure about a bias or reference pressure level produced by displacement of a center-driven piston in a closed cylinder. Closely controlled pneumatic pressure waves allow testing under dynamic conditions.
NASA Astrophysics Data System (ADS)
Rosin, M. S.; Schekochihin, A. A.; Rincon, F.; Cowley, S. C.
2011-05-01
Weakly collisional magnetized cosmic plasmas have a dynamical tendency to develop pressure anisotropies with respect to the local direction of the magnetic field. These anisotropies trigger plasma instabilities at scales just above the ion Larmor radius ρi and much below the mean free path λmfp. They have growth rates of a fraction of the ion cyclotron frequency, which is much faster than either the global dynamics or even local turbulence. Despite their microscopic nature, these instabilities dramatically modify the transport properties and, therefore, the macroscopic dynamics of the plasma. The non-linear evolution of these instabilities is expected to drive pressure anisotropies towards marginal stability values, controlled by the plasma beta βi. Here this non-linear evolution is worked out in an ab initio kinetic calculation for the simplest analytically tractable example - the parallel (k⊥= 0) firehose instability in a high-beta plasma. An asymptotic theory is constructed, based on a particular physical ordering and leading to a closed non-linear equation for the firehose turbulence. In the non-linear regime, both the analytical theory and the numerical solution predict secular (∝t) growth of magnetic fluctuations. The fluctuations develop a k-3∥ spectrum, extending from scales somewhat larger than ρi to the maximum scale that grows secularly with time (∝t1/2); the relative pressure anisotropy (p⊥-p∥)/p∥ tends to the marginal value -2/βi. The marginal state is achieved via changes in the magnetic field, not particle scattering. When a parallel ion heat flux is present, the parallel firehose mutates into the new gyrothermal instability (GTI), which continues to exist up to firehose-stable values of pressure anisotropy, which can be positive and are limited by the magnitude of the ion heat flux. The non-linear evolution of the GTI also features secular growth of magnetic fluctuations, but the fluctuation spectrum is eventually dominated by modes around a maximal scale ˜ρilT/λmfp, where lT is the scale of the parallel temperature variation. Implications for momentum and heat transport are speculated about. This study is motivated by our interest in the dynamics of galaxy cluster plasmas (which are used as the main astrophysical example), but its relevance to solar wind and accretion flow plasmas is also briefly discussed.
What can numerical simulations say about Jupiter’s deep, long-lived anticyclones?
NASA Astrophysics Data System (ADS)
Chan, Kwing L.
2017-10-01
If Jupiter’s long-lived anticyclones, GRS being the most prominent example, are indeed deep as indicated, the study of their dynamics would be much more difficult than if they were shallow. A shallow phenomenon limited to the troposphere can be modeled by general circulation models like those used in weather prediction for Earth’s atmosphere, as the layer overall is convectively stable (hydrostatic approximation can be applied) and the time scales (advection and radiation) are relatively short. If the dynamics involve the deep convective envelop below, the time scales for thermal relaxation and spin-up would be many orders of magnitudes longer. At the same time, the requirements for handling stratification, turbulence, compressibility, fast rotation, spatial resolution, and numerical stability conditions are not forgiving. Currently, numerical studies of long-lived vortices generated in convection zone are limited to ‘numerical experiments’ having internal energy fluxes many orders of magnitudes greater than that of Jupiter (for faster thermal and dynamical relaxation). Though these experiments cannot predict quantitative values for direct observational comparison, their information on the spatial distributions and connections among velocity, temperature, pressure etc. can tell a lot about what a deep-seated model can predict or describe. We are going to present the results of our latest fully compressible, large-eddy-simulation model for generation of long-lived anticyclones in deep convection zone. The high turbulence and complex internal structures of the vortices can naturally be explained. One prediction for observation is: While fluctuations of temperature and vertical velocity dissipate relative fast with height in the troposphere (stable region), the horizontal velocities (vortical motions) drop much slower; they hardly decrease by a factor of two in four pressure scale heights in the overshoot region. Acknowledgement: This research is supported by FDCT of Macau 039/2013/A2 and 080/2015/A3.
Won, Jungeun; Monroy, Guillermo L; Huang, Pin-Chieh; Dsouza, Roshan; Hill, Malcolm C; Novak, Michael A; Porter, Ryan G; Chaney, Eric; Barkalifa, Ronit; Boppart, Stephen A
2018-02-01
Pneumatic otoscopy to assess the mobility of the tympanic membrane (TM) is a highly recommended diagnostic method of otitis media (OM), a widespread middle ear infection characterized by the fluid accumulation in the middle ear. Nonetheless, limited depth perception and subjective interpretation of small TM displacements have challenged the appropriate and efficient examination of TM dynamics experienced during OM. In this paper, a pneumatic otoscope integrated with low coherence interferometry (LCI) was adapted with a controlled pressure-generating system to record the pneumatic response of the TM and to estimate middle ear pressure (MEP). Forty-two ears diagnosed as normal (n = 25), with OM (n = 10), or associated with an upper respiratory infection (URI) (n = 7) were imaged with a pneumatic LCI otoscope with an axial, transverse, and temporal resolution of 6 µm, 20 µm, and 1 msec, respectively. The TM displacement under pneumatic pressure transients (a duration of 0.5 sec with an intensity of ± 150 daPa) was measured to compute two metrics (compliance and amplitude ratio). These metrics were correlated with peak acoustic admittance and MEP from tympanometry and statistically compared via Welch's t- test. As a result, the compliance represents pneumatic TM mobility, and the amplitude ratio estimates MEP. The presence of a middle ear effusion (MEE) significantly decreased compliance (p<0.001). The amplitude ratio of the OM group was statistically less than that of the normal group (p<0.01), indicating positive MEP. Unlike tympanometry, pneumatic LCI otoscopy quantifies TM mobility as well as MEP regardless of MEE presence. With combined benefits of pneumatic otoscopy and tympanometry, pneumatic LCI otoscopy may provide new quantitative metrics for understanding TM dynamics and diagnosing OM.
Won, Jungeun; Monroy, Guillermo L.; Huang, Pin-Chieh; Dsouza, Roshan; Hill, Malcolm C.; Novak, Michael A.; Porter, Ryan G.; Chaney, Eric; Barkalifa, Ronit; Boppart, Stephen A.
2018-01-01
Pneumatic otoscopy to assess the mobility of the tympanic membrane (TM) is a highly recommended diagnostic method of otitis media (OM), a widespread middle ear infection characterized by the fluid accumulation in the middle ear. Nonetheless, limited depth perception and subjective interpretation of small TM displacements have challenged the appropriate and efficient examination of TM dynamics experienced during OM. In this paper, a pneumatic otoscope integrated with low coherence interferometry (LCI) was adapted with a controlled pressure-generating system to record the pneumatic response of the TM and to estimate middle ear pressure (MEP). Forty-two ears diagnosed as normal (n = 25), with OM (n = 10), or associated with an upper respiratory infection (URI) (n = 7) were imaged with a pneumatic LCI otoscope with an axial, transverse, and temporal resolution of 6 µm, 20 µm, and 1 msec, respectively. The TM displacement under pneumatic pressure transients (a duration of 0.5 sec with an intensity of ± 150 daPa) was measured to compute two metrics (compliance and amplitude ratio). These metrics were correlated with peak acoustic admittance and MEP from tympanometry and statistically compared via Welch’s t-test. As a result, the compliance represents pneumatic TM mobility, and the amplitude ratio estimates MEP. The presence of a middle ear effusion (MEE) significantly decreased compliance (p<0.001). The amplitude ratio of the OM group was statistically less than that of the normal group (p<0.01), indicating positive MEP. Unlike tympanometry, pneumatic LCI otoscopy quantifies TM mobility as well as MEP regardless of MEE presence. With combined benefits of pneumatic otoscopy and tympanometry, pneumatic LCI otoscopy may provide new quantitative metrics for understanding TM dynamics and diagnosing OM. PMID:29552381
Supporting technology of roadside in gob-side entry in 110 longwall mining method
NASA Astrophysics Data System (ADS)
He, Manchao; Guo, Pengfei; Chen, Shangyuan; Gao, Yubing; Wang, Yajun
2017-05-01
To get better results of shaping roadside in 110 longwall mining method, the roadside support can be reasonably choose and designed through theoretical analysis, engineering test and other methods. The roadway support need to be designed based on the mining height and influence of mining pressure, and it is necessary to consider the "limited deformation" but also "given deformation". Because of the small mining high and short time under mining pressure effect in thin coal seam, roadside support can meet the requirements of block rock from gob using I-steel, but I-steel can't satisfy the deformation of roadway roof and easily lead to I-steel flexural buckling. In that condition we should use the U-steel that can compatible deformation with subsidence of roadway roof and enough torque in overlapping part between tow U-steel should be given when the U-steel is used to support gangue from gob and the U steel assembling two cards can coordinal deformation in dynamic pressure area keeping constant resistance with the deformation of roadway roof and can get a good effect. Through field test, due to the great impact force of the gangue from gob, single props and I-steel and U-steel are easily knocked down when the mining height is more than 4m. For large mining height, gangue blocking hydraulic support is designed and developed which can guarantee the stability and integrity of the roadway roof in the dynamic pressure area and can prevent the impact of gangue from gob. So it has better effect of forming roadway side using gangue from gob. According to above classification, the field experiments were carried out and obtained satisfactory results.
NASA Astrophysics Data System (ADS)
Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.
2017-11-01
Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.
Molecular simulation of disjoining-pressure isotherms for free liquid , Lennard-Jones thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatt, Divesh; Newman, John; Radke, C.J.
2001-10-01
We present canonical-ensemble molecular-dynamics simulations of disjoining-pressure isotherms in Lennard-Jones free liquid films. Thermodynamics demands that the disjoining pressure is determined uniquely as a function of the chemical potential purely from the phase diagram of the fluid. Our results from molecular dynamics validate this argument. The inverse-sixth-power distance term in the Lennard-Jones intermolecular potential represents van der Waals dispersion forces. Hence, we compare our results with classical Hamaker theory that is based on dispersion forces but assumes a slab geometry for the density profile and completely neglects fluid structure and entropy. We find that the Hamaker constant obtained from ourmore » simulations is about an order of magnitude larger than that from classical theory. To investigate the origin of this discrepancy, we calculate the disjoining-pressure isotherm using a density-functional theory relaxing the inherent assumptions in the Hamaker theory and imparting to the fluid an approximate structure. For disjoining pressure as a function of chemical potential, the results of density-functional theory and molecular dynamics are very close. Even for disjoining-pressure isotherms, and the subsequently calculated Hamaker constant, results of the density-functional theory are closer to the molecular-dynamics simulations by about a factor of 4 compared to Hamaker theory. [References: 44]« less
Choi, Ja Young; Jung, Soojin; Rha, Dong-wook
2016-01-01
Purpose To investigate the effect of intramuscular Botulinum toxin type A (BoNT-A) injection on gait and dynamic foot pressure distribution in children with spastic cerebral palsy (CP) with dynamic equinovarus foot. Materials and Methods Twenty-five legs of 25 children with CP were investigated in this study. BoNT-A was injected into the gastrocnemius (GCM) and tibialis posterior (TP) muscles under the guidance of ultrasonography. The effects of the toxin were clinically assessed using the modified Ashworth scale (MAS) and modified Tardieu scale (MTS), and a computerized gait analysis and dynamic foot pressure measurements using the F-scan system were also performed before injection and at 1 and 4 months after injection. Results Spasticity of the ankle plantar-flexor in both the MAS and MTS was significantly reduced at both 1 and 4 months after injection. On dynamic foot pressure measurements, the center of pressure index and coronal index, which represent the asymmetrical weight-bearing of the medial and lateral columns of the foot, significantly improved at both 1 and 4 months after injection. The dynamic foot pressure index, total contact area, contact length and hind foot contact width all increased at 1 month after injection, suggesting better heel contact. Ankle kinematic data were significantly improved at both 1 and 4 months after injection, and ankle power generation was significantly increased at 4 months after injection compared to baseline data. Conclusion Using a computerized gait analysis and foot scan, this study revealed significant benefits of BoNT-A injection into the GCM and TP muscles for dynamic equinovarus foot in children with spastic CP. PMID:26847306
Smirl, J D; Tzeng, Y C; Monteleone, B J; Ainslie, P N
2014-06-15
We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P < 0.001). During the squat-stand maneuvers (0.05 and 0.10 Hz), the point estimates of absolute gain were universally reduced, and phase was increased under both conditions. In addition to an absence of regional differences, our findings indicate that alterations in CVRi independent of PaCO2 can alter cerebral pressure-flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics. Copyright © 2014 the American Physiological Society.
Reaction of SO2 with OH in the atmosphere.
Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G
2017-03-15
The OH + SO 2 reaction plays a critical role in understanding the oxidation of SO 2 in the atmosphere, and its rate constant is critical for clarifying the fate of SO 2 in the atmosphere. The rate constant of the OH + SO 2 reaction is calculated here by using beyond-CCSDT correlation energy calculations for a benchmark, validated density functional methods for direct dynamics, canonical variational transition state theory with anharmonicity and multidimensional tunneling for the high-pressure rate constant, and system-specific quantum RRK theory for pressure effects; the combination of these methods can compete in accuracy with experiments. There has been a long-term debate in the literature about whether the OH + SO 2 reaction is barrierless, but our calculations indicate a positive barrier with an transition structure that has an enthalpy of activation of 0.27 kcal mol -1 at 0 K. Our results show that the high-pressure limiting rate constant of the OH + SO 2 reaction has a positive temperature dependence, but the rate constant at low pressures has a negative temperature dependence. The computed high-pressure limiting rate constant at 298 K is 1.25 × 10 -12 cm 3 molecule -1 s -1 , which agrees excellently with the value (1.3 × 10 -12 cm 3 molecule -1 s -1 ) recommended in the most recent comprehensive evaluation for atmospheric chemistry. We show that the atmospheric lifetime of SO 2 with respect to oxidation by OH depends strongly on altitude (in the range 0-50 km) due to the falloff effect. We introduce a new interpolation procedure for fitting the combined temperature and pressure dependence of the rate constant, and it fits the calculated rate constants over the whole range with a mean unsigned error of only 7%. The present results provide reliable kinetics data for this specific reaction, and also they demonstrate convenient theoretical methods that can be reliable for predicting rate constants of other gas-phase reactions.
Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen
NASA Astrophysics Data System (ADS)
Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.
2012-10-01
Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.
Direct observations of evolving subglacial drainage beneath the Greenland Ice Sheet.
Andrews, Lauren C; Catania, Ginny A; Hoffman, Matthew J; Gulley, Jason D; Lüthi, Martin P; Ryser, Claudia; Hawley, Robert L; Neumann, Thomas A
2014-10-02
Seasonal acceleration of the Greenland Ice Sheet is influenced by the dynamic response of the subglacial hydrologic system to variability in meltwater delivery to the bed via crevasses and moulins (vertical conduits connecting supraglacial water to the bed of the ice sheet). As the melt season progresses, the subglacial hydrologic system drains supraglacial meltwater more efficiently, decreasing basal water pressure and moderating the ice velocity response to surface melting. However, limited direct observations of subglacial water pressure mean that the spatiotemporal evolution of the subglacial hydrologic system remains poorly understood. Here we show that ice velocity is well correlated with moulin hydraulic head but is out of phase with that of nearby (0.3-2 kilometres away) boreholes, indicating that moulins connect to an efficient, channelized component of the subglacial hydrologic system, which exerts the primary control on diurnal and multi-day changes in ice velocity. Our simultaneous measurements of moulin and borehole hydraulic head and ice velocity in the Paakitsoq region of western Greenland show that decreasing trends in ice velocity during the latter part of the melt season cannot be explained by changes in the ability of moulin-connected channels to convey supraglacial melt. Instead, these observations suggest that decreasing late-season ice velocity may be caused by changes in connectivity in unchannelized regions of the subglacial hydrologic system. Understanding this spatiotemporal variability in subglacial pressures is increasingly important because melt-season dynamics affect ice velocity beyond the conclusion of the melt season.
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.
2015-01-01
Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.
A Low-Erosion Starting Technique for High-Performance Arcjets
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Curran, Francis M.
1994-01-01
The NASA arcjet program is currently sponsoring development of high specific impulse thrusters for next generation geosynchronous communications satellites (2 kW-class) and low-power arcjets for power limited spacecraft (approx. 0.5 kW-class). Performance goals in both of these efforts will require up to 1000 starts at propellant mass flow rates significantly below those used in state-of-the-art arcjet thruster systems (i.e., high specific power levels). Reductions in mass flow rate can lead to damaging modes of operation, particularly at thruster ignition. During the starting sequence, the gas dynamic force due to low propellant flow is often insufficient to rapidly push the arc anode attachment to its steady-state position in the diverging section of the nozzle. This paper describes the development and demonstration of a technique which provides for non-damaging starts at low steady-state flow rates. The technique employs a brief propellant pressure pulse at ignition to increase gas dynamic forces during the critical ignition/transition phase of operation. Starting characteristics obtained using both pressure-pulsed and conventional starting techniques were compared across a wide range of propellant flow rates. The pressure-pulsed starting technique provided reliable starts at mass flow rates down to 21 mg/s, typically required for 700 s specific impulse level operation of 2 kW thrusters. Following the comparison, a 600 start test was performed across a wide flow rate range. Post-test inspection showed minimal erosion of critical arcjet anode/nozzle surfaces.
Ghiasvand, Ali Reza; Nouriasl, Kolsoum; Yazdankhah, Fatemeh
2018-01-01
A low-cost, sensitive and reliable reduced-pressure headspace solid-phase microextraction (HS-SPME) setup was developed and evaluated for direct extraction of residual solvents in commercial antibiotics, followed by determination by gas chromatography with flame ionization detection (GC-FID). A stainless steel narrow wire was made porous and adhesive by platinization by a modified electrophoretic deposition method and coated with a polyaniline/multiwalled carbon nanotube nanocomposite. All experimental variables affecting the extraction efficiency were investigated for both atmospheric-pressure and reduced-pressure conditions. Comparison of the optimal experimental conditions and the results demonstrated that the reduced-pressure strategy leads to a remarkable increase in the extraction efficiency and reduction of the extraction time and temperature (10 min, 25 °Ϲ vs 20 min, 40 °Ϲ). Additionally, the reduced-pressure strategy showed better analytical performances compared with those obtained by the conventional HS-SPME-GC-FID method. Limit of detections, linear dynamic ranges, and relative standard deviations of the reduced-pressure HS-SPME procedure for benzene, toluene, ethylbenzene, and xylene (BTEX) in injectable solid drugs were obtained over the ranges of 20-100 pg g -1 , 0.02-40 μg g -1 , and 2.8-10.2%, respectively. The procedure developed was successful for the analysis of BTEX in commercial containers of penicillin, ampicillin, ceftriaxone, and cefazolin. Graphical abstract Schematic representation of the developed RP-HS-SPME setup.
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, D. E.; Abel, P. B.
1993-01-01
Cavitation of the oil film in a dynamically loaded journal bearing was studied using high-speed photography and pressure measurement simultaneously. Comparison of the visual and pressure data provided considerable insight into the occurence and non-occurrence of cavitation. It was found that (1), cavitation typically occurred in the form of one bubble with the pressure in the cavitation bubble close to the absolute zero; and (2), for cavitation-producing operating conditions, cavitation did not always occur; with the oil film then supporting a tensile stress.
Aqueous Humor Dynamics of the Brown-Norway Rat
Ficarrotta, Kayla R.; Bello, Simon A.; Mohamed, Youssef H.; Passaglia, Christopher L.
2018-01-01
Purpose The study aimed to provide a quantitative description of aqueous humor dynamics in healthy rat eyes. Methods One eye of 26 anesthetized adult Brown-Norway rats was cannulated with a needle connected to a perfusion pump and pressure transducer. Pressure-flow data were measured in live and dead eyes by varying pump rate (constant-flow technique) or by modulating pump duty cycle to hold intraocular pressure (IOP) at set levels (modified constant-pressure technique). Data were fit by the Goldmann equation to estimate conventional outflow facility (\\begin{document}\
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
Wind loads on flat plate photovoltaic array fields (nonsteady winds)
NASA Technical Reports Server (NTRS)
Miller, R. D.; Zimmerman, D. K.
1981-01-01
Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.
Araujo, Thaís L S; Borges, Julio Cesar; Ramos, Carlos H; Meyer-Fernandes, José Roberto; Oliveira Júnior, Reinaldo S; Pascutti, Pedro G; Foguel, Debora; Palhano, Fernando L
2014-05-13
We investigated the folding of the 70 kDa human cytosolic inducible protein (Hsp70) in vitro using high hydrostatic pressure as a denaturing agent. We followed the structural changes in Hsp70 induced by high hydrostatic pressure using tryptophan fluorescence, molecular dynamics, circular dichroism, high-performance liquid chromatography gel filtration, dynamic light scattering, ATPase activity, and chaperone activity. Although monomeric, Hsp70 is very sensitive to hydrostatic pressure; after pressure had been removed, the protein did not return to its native sate but instead formed oligomeric species that lost chaperone activity but retained ATPase activity.
Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics
NASA Astrophysics Data System (ADS)
Dvořák, Lukáš; Fojtášek, Kamil
2015-05-01
Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.
Bubble dynamics in a standing sound field: the bubble habitat.
Koch, P; Kurz, T; Parlitz, U; Lauterborn, W
2011-11-01
Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure.
NASA Astrophysics Data System (ADS)
Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.
2017-11-01
The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.
NASA Astrophysics Data System (ADS)
Boudouridis, A.; Zesta, E.; Lyons, L. R.; Kim, H.-J.; Lummerzheim, D.; Wiltberger, M.; Weygand, J. M.; Ruohoniemi, J. M.; Ridley, A. J.
2012-04-01
The solar wind dynamic pressure, both through its steady state value and through its variations, plays an important role in the determination of the state of the terrestrial magnetosphere and ionosphere, its effects being only secondary to those of the Interplanetary Magnetic Field (IMF). Recent studies have demonstrated the significant effect solar wind dynamic pressure enhancements have on ionospheric convection and the transpolar potential. Further studies have shown a strong response of the polar cap boundary and thus the open flux content of the magnetosphere. These studies clearly illustrate the strong coupling of solar wind dynamic pressure fronts to the terrestrial magnetosphere-ionosphere system. We present statistical studies of the response of Super Dual Auroral Radar Network (SuperDARN) flows, and Assimilative Mapping of Ionospheric Electrodynamics (AMIE) transpolar potentials to sudden enhancements in solar wind dynamic pressure. The SuperDARN results show that the convection is enhanced within both the dayside and nightside ionosphere. The dayside response is more clear and immediate, while the response on the nightside is slower and more evident for low IMF By values. AMIE results show that the overall convection, represented by the transpolar potential, has a strong response immediately after an increase in pressure, with magnitude and duration modulated by the background IMF Bz conditions. We compare the location of the SuperDARN convection enhancements with the location and motion of the polar cap boundary, as determined by POLAR Ultra-Violet Imager (UVI) images and runs of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic model for specific events. We find that the boundary exhibits a poleward motion after the increase in dynamic pressure. The enhanced ionospheric flows and the poleward motion of the boundary on the nightside are both signatures of enhanced tail reconnection, a conclusion that is reinforced by the observation of the enhanced flows crossing the polar cap boundary in selected case studies when simultaneous measurements are available.
Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H. (Inventor)
2002-01-01
Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.
Aspirator increases relief valve poppet stroke
NASA Technical Reports Server (NTRS)
Biddle, M. E.
1967-01-01
Addition of an aspirator to a relief valve increases the valve poppet stroke under dynamic flow conditions. The aspirator allows poppet inlet dynamic forces to overcome relief valve spring force. It reduces the fluid pressure in the skirt cavity by providing a low pressure sense probe.
Chen, José Enrique; Nurbakhsh, Babak; Layton, Gillian; Bussmann, Markus; Kishen, Anil
2014-08-01
Complexities in root canal anatomy and surface adherent biofilm structures remain as challenges in endodontic disinfection. The ability of an irrigant to penetrate into the apical region of a canal, along with its interaction with the root canal walls, will aid in endodontic disinfection. The aim of this study was to qualitatively examine the irrigation dynamics of syringe irrigation with different needle tip designs (open-ended and closed-ended), apical negative pressure irrigation with the EndoVac® system, and passive ultrasonic-assisted irrigation, using a computational fluid dynamics model. Syringe-based irrigation with a side-vented needle showed a higher wall shear stress than the open-ended but was localised to a small region of the canal wall. The apical negative pressure mode of irrigation generated the lowest wall shear stress, while the passive-ultrasonic irrigation group showed the highest wall shear stress along with the greatest magnitude of velocity. © 2013 The Authors. Australian Endodontic Journal © 2013 Australian Society of Endodontology.
NASA Technical Reports Server (NTRS)
Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.
1977-01-01
An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.
Repeatability Modeling for Wind-Tunnel Measurements: Results for Three Langley Facilities
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.; Houlden, Heather P.
2014-01-01
Data from extensive check standard tests of seven measurement processes in three NASA Langley Research Center wind tunnels are statistically analyzed to test a simple model previously presented in 2000 for characterizing short-term, within-test and across-test repeatability. The analysis is intended to support process improvement and development of uncertainty models for the measurements. The analysis suggests that the repeatability can be estimated adequately as a function of only the test section dynamic pressure over a two-orders- of-magnitude dynamic pressure range. As expected for low instrument loading, short-term coefficient repeatability is determined by the resolution of the instrument alone (air off). However, as previously pointed out, for the highest dynamic pressure range the coefficient repeatability appears to be independent of dynamic pressure, thus presenting a lower floor for the standard deviation for all three time frames. The simple repeatability model is shown to be adequate for all of the cases presented and for all three time frames.
Detailed Measurement of ORSC Main Chamber Injector Dynamics
NASA Astrophysics Data System (ADS)
Bedard, Michael J.
Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry resulted in more acoustic energy into higher frequency modes, while the flat-face geometry excited modes closer to the fundamental longitudinal mode frequency and its harmonics. Multi-scale analysis techniques were used to investigate intermittency and the range of physical scales present in measured signals. Flame light emission measurements confirmed the presence of flame holding in the injector recess in both configurations. Analysis of dynamics in light emission signals showed flame response at the chamber acoustic resonance frequency in addition to non-acoustic modes associated with mixing shear layer dynamics in the injector recess. The first known benchmark quality data sets of such injector dynamics were recorded in each configuration to enable pressure-based validation of high fidelity models of gas-centered swirl coaxial injectors. This work presents a critical contribution to development of validated combustion dynamics predictive tools and to the understanding of gas-centered swirl coaxial injector elements.
Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-11-15
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryk, Taras; Lviv Polytechnic National University, 12 S. Bandera Street, UA-79013 Lviv; Ruocco, G.
Unlike phonons in crystals, the collective excitations in liquids cannot be treated as propagation of harmonic displacements of atoms around stable local energy minima. The viscoelasticity of liquids, reflected in transition from the adiabatic to elastic high-frequency speed of sound and in absence of the long-wavelength transverse excitations, results in dispersions of longitudinal (L) and transverse (T) collective excitations essentially different from the typical phonon ones. Practically, nothing is known about the effect of high pressure on the dispersion of collective excitations in liquids, which causes strong changes in liquid structure. Here dispersions of L and T collective excitations inmore » liquid Li in the range of pressures up to 186 GPa were studied by ab initio simulations. Two methodologies for dispersion calculations were used: direct estimation from the peak positions of the L/T current spectral functions and simulation-based calculations of wavenumber-dependent collective eigenmodes. It is found that at ambient pressure, the longitudinal and transverse dynamics are well separated, while at high pressures, the transverse current spectral functions, density of vibrational states, and dispersions of collective excitations yield evidence of two types of propagating modes that contribute strongly to transverse dynamics. Emergence of the unusually high-frequency transverse modes gives evidence of the breakdown of a regular viscoelastic theory of transverse dynamics, which is based on coupling of a single transverse propagating mode with shear relaxation. The explanation of the observed high-frequency shift above the viscoelastic value is given by the presence of another branch of collective excitations. With the pressure increasing, coupling between the two types of collective excitations is rationalized within a proposed extended viscoelastic model of transverse dynamics.« less
NASA Astrophysics Data System (ADS)
Sarma, Rahul; Paul, Sandip
2012-03-01
Molecular dynamics simulations are performed to study the effects of pressure on the hydrophobic interactions between neopentane molecules immersed in water. Simulations are carried out for five different pressure values ranging from 1 atm to 8000 atm. From potential of mean force calculations, we find that with enhancement of pressure, there is decrease in the well depth of contact minimum (CM) and the relative stability of solvent separated minimum over CM increases. Lower clustering of neopentane at high pressure is also observed in association constant and cluster-structure analysis. Selected site-site radial distribution functions suggest efficient packing of water molecules around neopentane molecules at elevated pressure. The orientational profile calculations of water molecules show that the orientation of water molecules in the vicinity of solute molecule is anisotropic and this distribution becomes flatter as we move away from the solute. Increasing pressure slightly changes the water distribution. Our hydrogen bond properties and dynamics calculations reveal pressure-induced formation of more and more number of water molecules with five and four hydrogen bond at the expense of breaking of two and three hydrogen bonded water molecules. We also find lowering of water-water continuous hydrogen bond lifetime on application of pressure. Implication of these results for relative dispersion of hydrophobic molecules at high pressure are discussed.
Single bubble sonoluminescence
NASA Astrophysics Data System (ADS)
Dan, Manas
In recent years considerable attention has been directed to the phenomenon of single bubble sonoluminescence, SBSL in which a single, stable, acoustically levitated bubble is made to oscillate with sufficiently large amplitude so as to emit picosecond light pulses in each cycle of the acoustic drive pressure. Remarkably, the phenomenon represents about twelve orders of magnitude of energy focusing. SBSL has been carefully and thoroughly studied in part of parameter space by previous authors. In the present work, the experimental observation of the influence of another important parameter namely the ambient pressure will be presented. It is the first complete and controlled study of the modifications of the bubble dynamics and SL emission due to the variation of the ambient pressure. It has been observed that the equilibrium radius as well as the maximum radius increase as the ambient pressure is decreased at constant driving pressure. Furthermore the expansion ratio (Rmax/ Rmin) increases as the ambient pressure is decreased, resulting in a change in the SL radiation. The intensity of SL emission increases about seven times for only a fifteen percent decrease of ambient pressure at constant driving pressure. However, it is not possible to push SL radiation beyond a certain limit by continuously decreasing the ambient pressure. On the other hand increasing the ambient pressure decreases the equilibrium radius, as well as the expansion ratio leading to a decrease of SL intensity. Amongst the SBSL emissions the light emission has been investigated rather elaborately. The other single bubble emission is the acoustic emission, AE. Here a detailed study of AE will be presented. The AE has been measured by a calibrated needle hydrophone in different regimes of bubble motion. The hydrophone response shows a large amplitude AE pulse which corresponds to the principal collapse, along with smaller amplitude pulses which can be associated with the after bounces of the bubble just after the initial collapse. The pressure amplitudes of the main AE spike are much weaker below the sonoluminescing regime. The amplitude of the principal AE spike in the sonoluminescing regime is about 1.2 atm at 7.2 mm from the bubble. The rise time as well as the FWHM of the principal spikes and after bounces in three different regimes of bubble motion has been reported. A light scattering experiment has been carried out to study the bubble dynamics. An extremely strong correlation between the results of light scattering and those of AE has been found.
Computed Tomography Studies of Lung Mechanics
Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.
2005-01-01
The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757
SAMuS: Service-Oriented Architecture for Multisensor Surveillance in Smart Homes
Van de Walle, Rik
2014-01-01
The design of a service-oriented architecture for multisensor surveillance in smart homes is presented as an integrated solution enabling automatic deployment, dynamic selection, and composition of sensors. Sensors are implemented as Web-connected devices, with a uniform Web API. RESTdesc is used to describe the sensors and a novel solution is presented to automatically compose Web APIs that can be applied with existing Semantic Web reasoners. We evaluated the solution by building a smart Kinect sensor that is able to dynamically switch between IR and RGB and optimizing person detection by incorporating feedback from pressure sensors, as such demonstrating the collaboration among sensors to enhance detection of complex events. The performance results show that the platform scales for many Web APIs as composition time remains limited to a few hundred milliseconds in almost all cases. PMID:24778579
Quantification of bulk solution limits for liquid and interfacial transport in nanoconfinements.
Kelly, Shaina; Balhoff, Matthew T; Torres-Verdín, Carlos
2015-02-24
Liquid imbibition, the capillary-pressure-driven flow of a liquid into a gas, provides a mechanism for studying the effects of solid-liquid and solid-liquid-gas interfaces on nanoscale transport. Deviations from the classic Washburn equation for imbibition are generally observed for nanoscale imbibition, but the identification of the origin of these irregularities in terms of transport variables varies greatly among investigators. We present an experimental method and corresponding image and data analysis scheme that enable the determination of independent effective values of nanoscale capillary pressure, liquid viscosity, and interfacial gas partitioning coefficients, all critical transport variables, from imbibition within nanochannels. Experiments documented herein are performed within two-dimensional siliceous nanochannels of varying size and as small as 30 nm × 60 nm in cross section. The wetting fluid used is the organic solvent isopropanol and the nonwetting fluid is air, but investigations are not limited to these fluids. Optical data of dynamic flow are rare in geometries that are nanoscale in two dimensions due to the limited resolution of optical microscopy. We are able to capture tracer-free liquid imbibition with reflected differential interference contrast microscopy. Results with isopropanol show a significant departure from bulk transport values in the nanochannels: reduced capillary pressures, increased liquid viscosity, and nonconstant interfacial mass-transfer coefficients. The findings equate to the nucleation of structured, quasi-crystalline boundary layers consistently ∼10-25 nm in extent. This length is far thicker than the boundary layer range prescribed by long-range intermolecular force interactions. Slower but linear imbibition in some experimental cases suggests that structured boundary layers may inhibit viscous drag at confinement walls for critical nanochannel dimensions. Probing the effects of nanoconfinement on the definitions of capillary pressure, viscosity, and interfacial mass transfer is critical in determining and improving the functionality and fluid transport efficacy of geological, biological, and synthetic nanoporous media and materials.
NASA Astrophysics Data System (ADS)
Shu, Gequn; Pan, Jiaying; Wei, Haiqiao; Shi, Ning
2013-03-01
Knock in spark-ignition(SI) engines severely limits engine performance and thermal efficiency. The researches on knock of downsized SI engine have mainly focused on structural design, performance optimization and advanced combustion modes, however there is little for simulation study on the effect of cooled exhaust gas recirculation(EGR) combined with downsizing technologies on SI engine performance. On the basis of mean pressure and oscillating pressure during combustion process, the effect of different levels of cooled EGR ratio, supercharging and compression ratio on engine dynamic and knock characteristic is researched with three-dimensional KIVA-3V program coupled with pressure wave equation. The cylinder pressure, combustion temperature, ignition delay timing, combustion duration, maximum mean pressure, and maximum oscillating pressure at different initial conditions are discussed and analyzed to investigate potential approaches to inhibiting engine knock while improving power output. The calculation results of the effect of just cooled EGR on knock characteristic show that appropriate levels of cooled EGR ratio can effectively suppress cylinder high-frequency pressure oscillations without obvious decrease in mean pressure. Analysis of the synergistic effect of cooled EGR, supercharging and compression ratio on knock characteristic indicates that under the condition of high supercharging and compression ratio, several times more cooled EGR ratio than that under the original condition is necessarily utilized to suppress knock occurrence effectively. The proposed method of synergistic effect of cooled EGR and downsizing technologies on knock characteristic, analyzed from the aspects of mean pressure and oscillating pressure, is an effective way to study downsized SI engine knock and provides knock inhibition approaches in practical engineering.
Dynamic Analysis of Hammer Mechanism "Twin Hammer" of Impact Wrench
NASA Astrophysics Data System (ADS)
Konečný, M.; Slavík, J.
This paper describes function of the hammer mechanism "Twin hammer" the impact wrench, calculation of dynamic forces exerted on the mechanism and determining the contact pressures between the parts of the mechanism. The modelling of parts was performed in system Pro ENGINEER—standard. The simulation and finding dynamic forces was performed in advanced module Pro ENGINEER—mechanism design and finding contacts pressures in modul Pro ENGENEER—mechanica.
Bubbles are responsive materials interesting for nonequilibrium physics
NASA Astrophysics Data System (ADS)
Andreeva, Daria; Granick, Steve
Understanding of nature and conditions of non-equilibrium transformations of bubbles, droplets, polysomes and vesicles in a gradient filed is a breath-taking question that dissipative systems raise. We ask: how to establish a dynamic control of useful characteristics, for example dynamic control of morphology and composition modulation in soft matter. A possible answer is to develop a new generation of dynamic impactors that can trigger spatiotemporal oscillations of structures and functions. We aim to apply acoustic filed for development of temperature and pressure oscillations at a microscale area. We demonstrate amazing dynamic behavior of gas-filled bubbles in pressure gradient field using a unique technique combining optical imaging, high intensity ultrasound and high speed camera. We find that pressure oscillations trigger continuous phase transformations that are considered to be impossible in physical systems.
Modeling Ullage Dynamics of Tank Pressure Control Experiment during Jet Mixing in Microgravity
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating the fluid dynamics of the jet induced mixing process is utilized in this paper to model the pressure control portion of the Tank Pressure Control Experiment (TPCE) in microgravity1. The Volume of Fluid (VOF) method is used for modeling the dynamics of the interface during mixing. The simulations were performed at a range of jet Weber numbers from non-penetrating to fully penetrating. Two different initial ullage positions were considered. The computational results for the jet-ullage interaction are compared with still images from the video of the experiment. A qualitative comparison shows that the CFD model was able to capture the main features of the interfacial dynamics, as well as the jet penetration of the ullage.
Pressure-Sensitive Paints Advance Rotorcraft Design Testing
NASA Technical Reports Server (NTRS)
2013-01-01
The rotors of certain helicopters can spin at speeds as high as 500 revolutions per minute. As the blades slice through the air, they flex, moving into the wind and back out, experiencing pressure changes on the order of thousands of times a second and even higher. All of this makes acquiring a true understanding of rotorcraft aerodynamics a difficult task. A traditional means of acquiring aerodynamic data is to conduct wind tunnel tests using a vehicle model outfitted with pressure taps and other sensors. These sensors add significant costs to wind tunnel testing while only providing measurements at discrete locations on the model's surface. In addition, standard sensor solutions do not work for pulling data from a rotor in motion. "Typical static pressure instrumentation can't handle that," explains Neal Watkins, electronics engineer in Langley Research Center s Advanced Sensing and Optical Measurement Branch. "There are dynamic pressure taps, but your costs go up by a factor of five to ten if you use those. In addition, recovery of the pressure tap readings is accomplished through slip rings, which allow only a limited amount of sensors and can require significant maintenance throughout a typical rotor test." One alternative to sensor-based wind tunnel testing is pressure sensitive paint (PSP). A coating of a specialized paint containing luminescent material is applied to the model. When exposed to an LED or laser light source, the material glows. The glowing material tends to be reactive to oxygen, explains Watkins, which causes the glow to diminish. The more oxygen that is present (or the more air present, since oxygen exists in a fixed proportion in air), the less the painted surface glows. Imaged with a camera, the areas experiencing greater air pressure show up darker than areas of less pressure. "The paint allows for a global pressure map as opposed to specific points," says Watkins. With PSP, each pixel recorded by the camera becomes an optical pressure tap. "Instead of having 100 or 200 pressure taps, you can have in theory several million, up to whatever the resolution of your camera is." Watkins explains that typical wind tunnel testing requires two models: one with very little instrumentation, and a pressure model with a significant amount of sensors applied. "If you can make all of your measurements on one model with PSP, you've decreased your model costs by at least a factor of two and preferably your testing costs by about that much," he says. PSP technology has been around for almost 20 years, but a PSP solution for gathering instantaneous dynamic pressure data from surfaces moving at high speeds, such as rotor blades, was not available until a NASA partnership led to a game-changing innovation.
Preliminary characterization of an expanding flow of siloxane vapor MDM
NASA Astrophysics Data System (ADS)
Spinelli, A.; Cozzi, F.; Cammi, G.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A.
2017-03-01
The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases state-of-the-art thermodynamic models were applied.