ERIC Educational Resources Information Center
Navarro, Juan-Jose; Mora, Joaquin
2011-01-01
The renewed interest in the dynamic assessment of specific domains has led to reconsideration of this theory and the technique's contribution to the learning-teaching process. In this article, we analyze some elements concerning the internal structure of a dynamic assessment device of processes involved in reading tasks, establishing some of the…
ROS as Regulators of Mitochondrial Dynamics in Neurons.
Cid-Castro, Carolina; Hernández-Espinosa, Diego Rolando; Morán, Julio
2018-07-01
Mitochondrial dynamics is a complex process, which involves the fission and fusion of mitochondrial outer and inner membranes. These processes organize the mitochondrial size and morphology, as well as their localization throughout the cells. In the last two decades, it has become a spotlight due to their importance in the pathophysiological processes, particularly in neurological diseases. It is known that Drp1, mitofusin 1 and 2, and Opa1 constitute the core of proteins that coordinate this intricate and dynamic process. Likewise, changes in the levels of reactive oxygen species (ROS) lead to modifications in the expression and/or activity of the proteins implicated in the mitochondrial dynamics, suggesting an involvement of these molecules in the process. In this review, we discuss the role of ROS in the regulation of fusion/fission in the nervous system, as well as the involvement of mitochondrial dynamics proteins in neurodegenerative diseases.
ERIC Educational Resources Information Center
Sandefur, James T.
1991-01-01
Discussed is the process of translating situations involving changing quantities into mathematical relationships. This process, called dynamical modeling, allows students to learn new mathematics while sharpening their algebraic skills. A description of dynamical systems, problem-solving methods, a graphical analysis, and available classroom…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melintescu, A.; Galeriu, D.; Diabate, S.
2015-03-15
The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.
A Simple Microscopy Assay to Teach the Processes of Phagocytosis and Exocytosis
ERIC Educational Resources Information Center
Gray, Ross; Gray, Andrew; Fite, Jessica L.; Jordan, Renee; Stark, Sarah; Naylor, Kari
2012-01-01
Phagocytosis and exocytosis are two cellular processes involving membrane dynamics. While it is easy to understand the purpose of these processes, it can be extremely difficult for students to comprehend the actual mechanisms. As membrane dynamics play a significant role in many cellular processes ranging from cell signaling to cell division to…
Modeling Endoplasmic Reticulum Network Maintenance in a Plant Cell.
Lin, Congping; White, Rhiannon R; Sparkes, Imogen; Ashwin, Peter
2017-07-11
The endoplasmic reticulum (ER) in plant cells forms a highly dynamic network of complex geometry. ER network morphology and dynamics are influenced by a number of biophysical processes, including filament/tubule tension, viscous forces, Brownian diffusion, and interactions with many other organelles and cytoskeletal elements. Previous studies have indicated that ER networks can be thought of as constrained minimal-length networks acted on by a variety of forces that perturb and/or remodel the network. Here, we study two specific biophysical processes involved in remodeling. One is the dynamic relaxation process involving a combination of tubule tension and viscous forces. The other is the rapid creation of cross-connection tubules by direct or indirect interactions with cytoskeletal elements. These processes are able to remodel the ER network: the first reduces network length and complexity whereas the second increases both. Using live cell imaging of ER network dynamics in tobacco leaf epidermal cells, we examine these processes on ER network dynamics. Away from regions of cytoplasmic streaming, we suggest that the dynamic network structure is a balance between the two processes, and we build an integrative model of the two processes for network remodeling. This model produces quantitatively similar ER networks to those observed in experiments. We use the model to explore the effect of parameter variation on statistical properties of the ER network. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Pezard, Laurent; Doba, Karyn; Lesne, Annick; Nandrino, Jean-Louis
2017-07-01
Emotional interactions have been considered dynamical processes involved in the affective life of humans and their disturbances may induce mental disorders. Most studies of emotional interactions have focused on dyadic behaviors or self-reports of emotional states but neglected the dynamical processes involved in family therapy. The main objective of this study is to quantify the dynamics of emotional expressions and their changes using the family therapy of patients with anorexia nervosa as an example. Nonlinear methods characterize the variability of the dynamics at the level of the whole therapeutic system and reciprocal influence between the participants during family therapy. Results show that the variability of the dynamics is higher at the end of the therapy than at the beginning. The reciprocal influences between therapist and each member of the family and between mother and patient decrease with the course of family therapy. Our results support the development of new interpersonal strategies of emotion regulation during family therapy. The quantification of emotional dynamics can help understanding the emotional processes underlying psychopathology and evaluating quantitatively the changes achieved by the therapeutic intervention. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
DOT National Transportation Integrated Search
1969-04-01
Male subjects were tested after extensive training as two five-man 'crews' in an experiment designed to examine the effects of signal rate on the performance of a task involving the monitoring of a dynamic process. Performance was measured using thre...
Mesoscopic Modeling of Blood Clotting: Coagulation Cascade and Platelets Adhesion
NASA Astrophysics Data System (ADS)
Yazdani, Alireza; Li, Zhen; Karniadakis, George
2015-11-01
The process of clot formation and growth at a site on a blood vessel wall involve a number of multi-scale simultaneous processes including: multiple chemical reactions in the coagulation cascade, species transport and flow. To model these processes we have incorporated advection-diffusion-reaction (ADR) of multiple species into an extended version of Dissipative Particle Dynamics (DPD) method which is considered as a coarse-grained Molecular Dynamics method. At the continuum level this is equivalent to the Navier-Stokes equation plus one advection-diffusion equation for each specie. The chemistry of clot formation is now understood to be determined by mechanisms involving reactions among many species in dilute solution, where reaction rate constants and species diffusion coefficients in plasma are known. The role of blood particulates, i.e. red cells and platelets, in the clotting process is studied by including them separately and together in the simulations. An agonist-induced platelet activation mechanism is presented, while platelets adhesive dynamics based on a stochastic bond formation/dissociation process is included in the model.
ERIC Educational Resources Information Center
Fogel, Alan; And Others
1997-01-01
Cites research on smiling and laughter to illustrate a dynamic systems approach to emotion communication. Maintains that emotion is relational and not individual; the nonreflexive aspects of emotion involve the connection between a person and a context taken as a whole. Presents findings regarding social processes involved in smiling and laughter…
Dynamic of particle-laden liquid sheet
NASA Astrophysics Data System (ADS)
Sauret, Alban; Jop, Pierre; Troger, Anthony
2016-11-01
Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin liquid films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient free liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film as a function of time and the atomization process. We highlight that the presence of particles modifies the thickness and the stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.
ERIC Educational Resources Information Center
Chiu, Mei-Hung; Chou, Chin-Cheng; Liu, Chia-Ju
2002-01-01
Investigates students' mental models of chemical equilibrium using dynamic science assessments. Reports that students at various levels have misconceptions about chemical equilibrium. Involves 10th grade students (n=30) in the study doing a series of hands-on chemical experiments. Focuses on the process of constructing mental models, dynamic…
Dynamic Simulation and Static Matching for Action Prediction: Evidence from Body Part Priming
ERIC Educational Resources Information Center
Springer, Anne; Brandstadter, Simone; Prinz, Wolfgang
2013-01-01
Accurately predicting other people's actions may involve two processes: internal real-time simulation (dynamic updating) and matching recently perceived action images (static matching). Using a priming of body parts, this study aimed to differentiate the two processes. Specifically, participants played a motion-controlled video game with…
ERIC Educational Resources Information Center
Liu, Jiangang; Li, Jun; Rieth, Cory A.; Huber, David E.; Tian, Jie; Lee, Kang
2011-01-01
The present study employed dynamic causal modeling to investigate the effective functional connectivity between regions of the neural network involved in top-down letter processing. We used an illusory letter detection paradigm in which participants detected letters while viewing pure noise images. When participants detected letters, the response…
Computation and Dynamics: Classical and Quantum
NASA Astrophysics Data System (ADS)
Kisil, Vladimir V.
2010-05-01
We discuss classical and quantum computations in terms of corresponding Hamiltonian dynamics. This allows us to introduce quantum computations which involve parallel processing of both: the data and programme instructions. Using mixed quantum-classical dynamics we look for a full cost of computations on quantum computers with classical terminals.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers.
A Dynamic Interactive Theory of Person Construal
ERIC Educational Resources Information Center
Freeman, Jonathan B.; Ambady, Nalini
2011-01-01
A dynamic interactive theory of person construal is proposed. It assumes that the perception of other people is accomplished by a dynamical system involving continuous interaction between social categories, stereotypes, high-level cognitive states, and the low-level processing of facial, vocal, and bodily cues. This system permits lower-level…
New Interest in Wild Forest Products in Europe as an Expression of Biocultural Dynamics.
Wiersum, K F
2017-01-01
In Europe, interest in wild forest products is increasing. Such products may be interpreted in a biological sense as deriving from autonomously growing forest species or in a biocultural sense as reflecting dynamics in human living with biodiversity through re-wilding of earlier domesticated species. In this article I elaborate the idea that the new interests reflect biocultural dynamics. First, I identify these dynamics as involving both domestication and re-wilding and characterize these processes as involving biological, environmental, and cultural dimensions. Next, I present a comparative review of two approaches to re-wilding forest production in the Netherlands: meat production from new types of natural grazing systems, and food production from plants re-introduced to the wild. The first approach is based on the stimulation of naturally occurring ecological processes and the second on the stimulation of new forms of experiencing bio-cultural heritage. The examples demonstrate that the new interests in wild forest products involve both a return to earlier stages of domestication in an ecological sense and a new phase of acculturation to evolving socio-cultural conditions.
Fleştea, Alina Maria; Fodor, Oana Cătălina; Curşeu, Petru Lucian; Miclea, Mircea
2017-01-01
Multi-team systems (MTS) are used to tackle unpredictable events and to respond effectively to fast-changing environmental contingencies. Their effectiveness is influenced by within as well as between team processes (i.e. communication, coordination) and emergent phenomena (i.e. situational awareness). The present case study explores the way in which the emergent structures and the involvement of bystanders intertwine with the dynamics of processes and emergent states both within and between the component teams. Our findings show that inefficient transition process and the ambiguous leadership generated poor coordination and hindered the development of emergent phenomena within the whole system. Emergent structures and bystanders substituted leadership functions and provided a pool of critical resources for the MTS. Their involvement fostered the emergence of situational awareness and facilitated contingency planning processes. However, bystander involvement impaired the emergence of cross-understandings and interfered with coordination processes between the component teams. Practitioner Summary: Based on a real emergency situation, the present research provides important theoretical and practical insights about the role of bystander involvement in the dynamics of multi-team systems composed to tackle complex tasks and respond to fast changing and unpredictable environmental contingencies.
The dynamic-stimulus advantage of visual symmetry perception.
Niimi, Ryosuke; Watanabe, Katsumi; Yokosawa, Kazuhiko
2008-09-01
It has been speculated that visual symmetry perception from dynamic stimuli involves mechanisms different from those for static stimuli. However, previous studies found no evidence that dynamic stimuli lead to active temporal processing and improve symmetry detection. In this study, four psychophysical experiments investigated temporal processing in symmetry perception using both dynamic and static stimulus presentations of dot patterns. In Experiment 1, rapid successive presentations of symmetric patterns (e.g., 16 patterns per 853 ms) produced more accurate discrimination of orientations of symmetry axes than static stimuli (single pattern presented through 853 ms). In Experiments 2-4, we confirmed that the dynamic-stimulus advantage depended upon presentation of a large number of unique patterns within a brief period (853 ms) in the dynamic conditions. Evidently, human vision takes advantage of temporal processing for symmetry perception from dynamic stimuli.
Breaking down barriers in cooperative fault management: Temporal and functional information displays
NASA Technical Reports Server (NTRS)
Potter, Scott S.; Woods, David D.
1994-01-01
At the highest level, the fundamental question addressed by this research is how to aid human operators engaged in dynamic fault management. In dynamic fault management there is some underlying dynamic process (an engineered or physiological process referred to as the monitored process - MP) whose state changes over time and whose behavior must be monitored and controlled. In these types of applications (dynamic, real-time systems), a vast array of sensor data is available to provide information on the state of the MP. Faults disturb the MP and diagnosis must be performed in parallel with responses to maintain process integrity and to correct the underlying problem. These situations frequently involve time pressure, multiple interacting goals, high consequences of failure, and multiple interleaved tasks.
Multiscale Modeling of Multiphase Fluid Flow
2016-08-01
the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural
Lagrutta, Lucía C.; Montero-Villegas, Sandra; Layerenza, Juan P.; Sisti, Martín S.; García de Bravo, Margarita M.
2017-01-01
Neutral lipids—involved in many cellular processes—are stored as lipid droplets (LD), those mainly cytosolic (cLD) along with a small nuclear population (nLD). nLD could be involved in nuclear-lipid homeostasis serving as an endonuclear buffering system that would provide or incorporate lipids and proteins involved in signalling pathways as transcription factors and as enzymes of lipid metabolism and nuclear processes. Our aim was to determine if nLD constituted a dynamic domain. Oleic-acid (OA) added to rat hepatocytes or HepG2 cells in culture produced cellular-phenotypic LD modifications: increases in TAG, CE, C, and PL content and in cLD and nLD numbers and sizes. LD increments were reversed on exclusion of OA and were prevented by inhibition of acyl-CoA synthetase (with Triacsin C) and thus lipid biosynthesis. Under all conditions, nLD corresponded to a small population (2–10%) of total cellular LD. The anabolism triggered by OA, involving morphologic and size changes within the cLD and nLD populations, was reversed by a net balance of catabolism, upon eliminating OA. These catabolic processes included lipolysis and the mobilization of hydrolyzed FA from the LD to cytosolic-oxidation sites. These results would imply that nLD are actively involved in nuclear processes that include lipids. In conclusion, nLD are a dynamic nuclear domain since they are modified by OA through a reversible mechanism in combination with cLD; this process involves acyl-CoA-synthetase activity; ongoing TAG, CE, and PL biosynthesis. Thus, liver nLD and cLD are both dynamic cellular organelles. PMID:28125673
Use of a Computer Language in Teaching Dynamic Programming. Final Report.
ERIC Educational Resources Information Center
Trimble, C. J.; And Others
Most optimization problems of any degree of complexity must be solved using a computer. In the teaching of dynamic programing courses, it is often desirable to use a computer in problem solution. The solution process involves conceptual formulation and computational Solution. Generalized computer codes for dynamic programing problem solution…
Social Dynamics in the Preschool
ERIC Educational Resources Information Center
Martin, Carol Lynn; Fabes, Richard A.; Hanish, Laura D.; Hollenstein, Tom
2005-01-01
In this paper, we consider how concepts from dynamic systems (such as attractors, repellors, and self-organization) can be applied to the study of young children's peer relationships. We also consider how these concepts can be used to explore basic issues involving early peer processes. We use the dynamical systems approach called state space grid…
Classical molecular dynamics simulation of electronically non-adiabatic processes.
Miller, William H; Cotton, Stephen J
2016-12-22
Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).
Conformational relaxation dynamics in the excited electronic states of benzil in solution
NASA Astrophysics Data System (ADS)
Singh, Ajay K.; Palit, Dipak K.; Mittal, Jai P.
2002-07-01
Relaxation dynamics in the excited singlet (S1) state of benzil have been studied in solution using pico and subpicosecond transient absorption spectroscopic techniques. The triple exponential decay dynamics of the S1 state indicates that the process of conformational change from the cis-skewed to the trans-planar form takes place via the formation of a meta-stable intermediate conformer resulting the involvement of two consequent barrier crossing processes. The barrier crossing dynamics is governed by both the polarity of the solvent, which alters the barrier heights by `static' interactions, as well as the viscosity of the solvent via `dynamical' interactions.
NASA Technical Reports Server (NTRS)
Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)
2001-01-01
A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.
Perception of Scenes in Different Sensory Modalities: A Result of Modal Completion.
Gruber, Ronald R; Block, Richard A
2017-01-01
Dynamic perception includes amodal and modal completion, along with apparent movement. It fills temporal gaps for single objects. In 2 experiments, using 6 stimulus presentation conditions involving 3 sensory modalities, participants experienced 8-10 sequential stimuli (200 ms each) with interstimulus intervals (ISIs) of 0.25-7.0 s. Experiments focused on spatiotemporal completion (walking), featural completion (object changing), auditory, completion (falling bomb), and haptic changes (insect crawling). After each trial, participants judged whether they experienced the process of "happening " or whether they simply knew that the process must have occurred. The phenomenon was frequency independent, being reported at short ISIs but not at long ISIs. The phenomenon involves dynamic modal completion and possibly also conceptual processes.
A survey of automated methods for sensemaking support
NASA Astrophysics Data System (ADS)
Llinas, James
2014-05-01
Complex, dynamic problems in general present a challenge for the design of analysis support systems and tools largely because there is limited reliable a priori procedural knowledge descriptive of the dynamic processes in the environment. Problem domains that are non-cooperative or adversarial impute added difficulties involving suboptimal observational data and/or data containing the effects of deception or covertness. The fundamental nature of analysis in these environments is based on composite approaches involving mining or foraging over the evidence, discovery and learning processes, and the synthesis of fragmented hypotheses; together, these can be labeled as sensemaking procedures. This paper reviews and analyzes the features, benefits, and limitations of a variety of automated techniques that offer possible support to sensemaking processes in these problem domains.
Voltage Imaging of Waking Mouse Cortex Reveals Emergence of Critical Neuronal Dynamics
Scott, Gregory; Fagerholm, Erik D.; Mutoh, Hiroki; Leech, Robert; Sharp, David J.; Shew, Woodrow L.
2014-01-01
Complex cognitive processes require neuronal activity to be coordinated across multiple scales, ranging from local microcircuits to cortex-wide networks. However, multiscale cortical dynamics are not well understood because few experimental approaches have provided sufficient support for hypotheses involving multiscale interactions. To address these limitations, we used, in experiments involving mice, genetically encoded voltage indicator imaging, which measures cortex-wide electrical activity at high spatiotemporal resolution. Here we show that, as mice recovered from anesthesia, scale-invariant spatiotemporal patterns of neuronal activity gradually emerge. We show for the first time that this scale-invariant activity spans four orders of magnitude in awake mice. In contrast, we found that the cortical dynamics of anesthetized mice were not scale invariant. Our results bridge empirical evidence from disparate scales and support theoretical predictions that the awake cortex operates in a dynamical regime known as criticality. The criticality hypothesis predicts that small-scale cortical dynamics are governed by the same principles as those governing larger-scale dynamics. Importantly, these scale-invariant principles also optimize certain aspects of information processing. Our results suggest that during the emergence from anesthesia, criticality arises as information processing demands increase. We expect that, as measurement tools advance toward larger scales and greater resolution, the multiscale framework offered by criticality will continue to provide quantitative predictions and insight on how neurons, microcircuits, and large-scale networks are dynamically coordinated in the brain. PMID:25505314
Forensic molecular pathology: its impacts on routine work, education and training.
Maeda, Hitoshi; Ishikawa, Takaki; Michiue, Tomomi
2014-03-01
The major role of forensic pathology is the investigation of human death in relevance to social risk management to determine the cause and process of death, especially in violent and unexpected sudden deaths, which involve social and medicolegal issues of ultimate, personal and public concerns. In addition to the identification of victims and biological materials, forensic molecular pathology contributes to general explanation of the human death process and assessment of individual death on the basis of biological molecular evidence, visualizing dynamic functional changes involved in the dying process that cannot be detected by morphology (pathophysiological or molecular biological vital reactions); the genetic background (genomics), dynamics of gene expression (up-/down-regulation: transcriptomics) and vital phenomena, involving activated biological mediators and degenerative products (proteomics) as well as metabolic deterioration (metabolomics), are detected by DNA analysis, relative quantification of mRNA transcripts using real-time reverse transcription-PCR (RT-PCR), and immunohisto-/immunocytochemistry combined with biochemistry, respectively. Thus, forensic molecular pathology involves the application of omic medical sciences to investigate the genetic basis, and cause and process of death at the biological molecular level in the context of forensic pathology, that is, 'advanced molecular autopsy'. These procedures can be incorporated into routine death investigations as well as guidance, education and training programs in forensic pathology for 'dynamic assessment of the cause and process of death' on the basis of autopsy and laboratory data. Postmortem human data can also contribute to understanding patients' critical conditions in clinical management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Listening to sound patterns as a dynamic activity
NASA Astrophysics Data System (ADS)
Jones, Mari Riess
2003-04-01
The act of listening to a series of sounds created by some natural event is described as involving an entrainmentlike process that transpires in real time. Some aspects of this dynamic process are suggested. In particular, real-time attending is described in terms of an adaptive synchronization activity that permits a listener to target attending energy to forthcoming elements within an acoustical pattern (e.g., music, speech, etc.). Also described are several experiments that illustrate features of this approach as it applies to attending to musiclike patterns. These involve listeners' responses to changes in either the timing or the pitch structure (or both) of various acoustical sequences.
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
A Novel Approach to Teaching and Understanding Transformations of Matter in Dynamic Earth Systems
ERIC Educational Resources Information Center
Clark, Scott K.; Sibley, Duncan F.; Libarkin, Julie C.; Heidemann, Merle
2009-01-01
The need to engage K-12 and post-secondary students in considering the Earth as a dynamic system requires explicit discussion of system characteristics. Fundamentally, dynamic systems involve the movement and change of matter, often through processes that are difficult to see and comprehend. We introduce a novel instructional method, termed…
Stochastic dynamics of time correlation in complex systems with discrete time
NASA Astrophysics Data System (ADS)
Yulmetyev, Renat; Hänggi, Peter; Gafarov, Fail
2000-11-01
In this paper we present the concept of description of random processes in complex systems with discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCFs). We have introduced the dynamic (time dependent) information Shannon entropy Si(t) where i=0,1,2,3,..., as an information measure of stochastic dynamics of time correlation (i=0) and time memory (i=1,2,3,...). The set of functions Si(t) constitute the quantitative measure of time correlation disorder (i=0) and time memory disorder (i=1,2,3,...) in complex system. The theory developed started from the careful analysis of time correlation involving dynamics of vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihilation of time correlation (or time memory) in details. We carry out the analysis of vectors' dynamics employing finite-difference equations for random variables and the evolution operator describing their natural motion. The existence of TCF results in the construction of the set of projection operators by the usage of scalar product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCFs and memory functions (MFs). The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities for detecting the frequency spectra of power of entropy function Si(t) for time correlation (i=0) and time memory (i=1,2,3,...). The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR intervals from human ECG's shows convincing evidence for a non-Markovian phenomemena associated with a peculiarities in short- and long-range scaling. This method may be of use in distinguishing healthy from pathologic data sets based in differences in these non-Markovian properties.
NASA Astrophysics Data System (ADS)
Larger, Laurent; Baylón-Fuentes, Antonio; Martinenghi, Romain; Udaltsov, Vladimir S.; Chembo, Yanne K.; Jacquot, Maxime
2017-01-01
Reservoir computing, originally referred to as an echo state network or a liquid state machine, is a brain-inspired paradigm for processing temporal information. It involves learning a "read-out" interpretation for nonlinear transients developed by high-dimensional dynamics when the latter is excited by the information signal to be processed. This novel computational paradigm is derived from recurrent neural network and machine learning techniques. It has recently been implemented in photonic hardware for a dynamical system, which opens the path to ultrafast brain-inspired computing. We report on a novel implementation involving an electro-optic phase-delay dynamics designed with off-the-shelf optoelectronic telecom devices, thus providing the targeted wide bandwidth. Computational efficiency is demonstrated experimentally with speech-recognition tasks. State-of-the-art speed performances reach one million words per second, with very low word error rate. Additionally, to record speed processing, our investigations have revealed computing-efficiency improvements through yet-unexplored temporal-information-processing techniques, such as simultaneous multisample injection and pitched sampling at the read-out compared to information "write-in".
Transformational Education for Psychotherapy and Counselling: A Relational Dynamic Approach
ERIC Educational Resources Information Center
Macaskie, Jane; Meekums, Bonnie; Nolan, Greg
2013-01-01
An evolving relational dynamic approach to psychotherapy and counselling education is described. Key themes integrated within the approach are the learning community and transformational relationships. Learning is a reciprocal change process involving students, teachers, supervisors and therapists in overlapping learning communities. Drawing on…
The Dynamics of Curriculum Revision.
ERIC Educational Resources Information Center
LaPorte, Diane Howard; LaPorte, Ronald E.
This research study was undertaken in order to understand the dynamics of curriculum revision. The study examines reasons for change, persons involved in revision, frequency of revision, ways of evaluating a revised curriculum, and consistency of revision processes across school districts. Information was obtained through surveys distributed to…
An experimental study on particle effects in liquid sheets
NASA Astrophysics Data System (ADS)
Sauret, Alban; Troger, Anthony; Jop, Pierre
2017-06-01
Many industrial processes, such as surface coating or liquid transport in tubes, involve liquid sheets or thin films of suspensions. In these situations, the thickness of the liquid film becomes comparable to the particle size, which leads to unexpected dynamics. In addition, the classical constitutive rheological law for suspensions cannot be applied as the continuum approximation is no longer valid. Here, we consider experimentally a transient particle-laden liquid sheet that expands radially. We characterize the influence of the particles on the shape of the liquid film and the atomization process. We highlight that the presence of particles modifies the thickness and stability of the liquid sheet. Our study suggests that the influence of particles through capillary effects can modify significantly the dynamics of processes that involve suspensions and particles confined in liquid films.
Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
Summary We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism. PMID:26977380
Computational fluid dynamics applications to improve crop production systems
USDA-ARS?s Scientific Manuscript database
Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...
Environmental drivers of deadwood dynamics in woodlands and forests
M. Garbarino; R. Marzano; John Shaw; J. N. Long
2015-01-01
Deadwood dynamics play a key role in many forest ecosystems. Understanding the mechanisms involved in the accumulation and depletion of deadwood can enhance our understanding of fundamental processes such as carbon sequestration and disturbance regimes, allowing better predictions of future changes related to alternative management and climate scenarios. A...
ERIC Educational Resources Information Center
Riviere, James; Falaise, Aurelie
2011-01-01
An intriguing error has been observed in toddlers presented with a 3-location search task involving invisible displacements of an object, namely, the C-not-B task. In 3 experiments, the authors investigated the dynamics of the attentional focus process that is suspected to be involved in this task. In Experiment 1, 2.5-year-old children were…
Spatiotemporal dynamics during processing of abstract and concrete verbs: an ERP study.
Dalla Volta, Riccardo; Fabbri-Destro, Maddalena; Gentilucci, Maurizio; Avanzini, Pietro
2014-08-01
Different accounts have been proposed to explain the nature of concept representations. Embodied accounts claim a key involvement of sensory-motor systems during semantic processing while more traditional accounts posit that concepts are abstract mental entities independent of perceptual and motor brain systems. While the involvement of sensory-motor areas in concrete language processing is supported by a large number of studies, this involvement is far from being established when considering abstract language. The present study addressed abstract and concrete verb processing, by investigating the spatiotemporal dynamics of evoked responses by means of high density EEG while participants performed a semantic decision task. In addition, RTs to the same set of stimuli were collected. In both early and late time intervals, ERP scalp topography significantly differed according to word categories. Concrete verbs showed involvement of parieto-frontal networks for action, according to the implied body effector. In contrast, abstract verbs recruited mostly frontal regions outside the motor system, suggesting a non-motor semantic processing for this category. In addition, differently from what has been reported during action observation, the parietal recruitment related to concrete verbs presentation followed the frontal one. The present findings suggest that action word semantic is grounded in sensory-motor systems, provided a bodily effector is specified, while abstract concepts׳ representation cannot be easily explained by a motor embodiment. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Understanding force-generating microtubule systems through in vitro reconstitution
Kok, Maurits; Dogterom, Marileen
2016-01-01
ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments. PMID:27715396
NASA Astrophysics Data System (ADS)
Ebadi, H.; Saeedian, M.; Ausloos, M.; Jafari, G. R.
2016-11-01
The Boolean network is one successful model to investigate discrete complex systems such as the gene interacting phenomenon. The dynamics of a Boolean network, controlled with Boolean functions, is usually considered to be a Markovian (memory-less) process. However, both self-organizing features of biological phenomena and their intelligent nature should raise some doubt about ignoring the history of their time evolution. Here, we extend the Boolean network Markovian approach: we involve the effect of memory on the dynamics. This can be explored by modifying Boolean functions into non-Markovian functions, for example, by investigating the usual non-Markovian threshold function —one of the most applied Boolean functions. By applying the non-Markovian threshold function on the dynamical process of the yeast cell cycle network, we discover a power-law-like memory with a more robust dynamics than the Markovian dynamics.
Molecular Dynamics Study of Polystyrene-b-poly(ethylene oxide) Asymmetric Diblock Copolymer Systems.
Dobies, M; Makrocka-Rydzyk, M; Jenczyk, J; Jarek, M; Spontak, R J; Jurga, S
2017-09-12
Two polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers differing in molecular mass (49 and 78 kDa) but possessing the same PEO cylindrical morphology are examined to elucidate their molecular dynamics. Of particular interest here is the molecular motion of the PEO blocks involved in the rigid amorphous fraction (RAF). An analysis of complementary thermal calorimetry and X-ray scattering data confirms the presence of microphase-separated morphology as well as semicrystalline structure in each copolymer. Molecular motion within the copolymer systems is monitored by dielectric and nuclear magnetic resonance spectroscopies. The results reported herein reveal the existence of two local Arrhenius-type processes attributed to the noncooperative local motion of PEO segments involved in fully amorphous and rigid amorphous PEO microphases. In both systems, two structural relaxations governed by glass-transition phenomena are identified and assigned to cooperative segmental motion in the fully amorphous phase (the α process) and the RAF (the α c process). We measure the temperature dependence of the dynamics associated with all of the processes mentioned above and propose that these local processes are associated with corresponding cooperative segmental motion in both copolymer systems. In marked contrast to the thermal activation of the α process as discerned in both copolymers, the α c process appears to be a sensitive probe of the copolymer nanostructure. That is, the copolymer with shorter PEO blocks exhibits more highly restricted cooperative dynamics of PEO segments in the RAF, which can be explained in terms of the greater constraint imposed by the glassy PS matrix on the PEO blocks comprising smaller cylindrical microdomains.
Improved decision making in construction using virtual site visits.
DOT National Transportation Integrated Search
2003-01-01
This study explored the dynamics of information exchange involving field issues relating to construction and the assistance that a virtual site visit can provide to the field decision-making process. Such a process can be used for inspection and surv...
Dickinson, Christopher A.; Zelinsky, Gregory J.
2013-01-01
Two experiments are reported that further explore the processes underlying dynamic search. In Experiment 1, observers’ oculomotor behavior was monitored while they searched for a randomly oriented T among oriented L distractors under static and dynamic viewing conditions. Despite similar search slopes, eye movements were less frequent and more spatially constrained under dynamic viewing relative to static, with misses also increasing more with target eccentricity in the dynamic condition. These patterns suggest that dynamic search involves a form of sit-and-wait strategy in which search is restricted to a small group of items surrounding fixation. To evaluate this interpretation, we developed a computational model of a sit-and-wait process hypothesized to underlie dynamic search. In Experiment 2 we tested this model by varying fixation position in the display and found that display positions optimized for a sit-and-wait strategy resulted in higher d′ values relative to a less optimal location. We conclude that different strategies, and therefore underlying processes, are used to search static and dynamic displays. PMID:23372555
Lee, Junwoo; Choi, Eun Shik; Lee, Daeyoup
2018-01-01
The ability of elongating RNA polymerase II (RNAPII) to regulate the nucleosome barrier is poorly understood because we do not know enough about the involved factors and we lack a conceptual framework to model this process. Our group recently identified the conserved Fun30/SMARCAD1 family chromatin-remodeling factor, Fun30 Fft3 , as being critical for relieving the nucleosome barrier during RNAPII-mediated elongation, and proposed a model illustrating how Fun30 Fft3 may contribute to nucleosome disassembly during RNAPII-mediated elongation. Here, we present a model that describes nucleosome dynamics during RNAPII-mediated elongation in mathematical terms and addresses the involvement of Fun30 Fft3 in this process.
Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective.
Filippelli, Gabriel M
2011-08-01
The role that phosphorite formation, the ultimate source rock for fertilizer phosphate reserves, plays in the marine phosphorus (P) cycle has long been debated. A shift has occurred from early models that evoked strikingly different oceanic P cycling during times of widespread phosphorite deposition to current thinking that phosphorite deposits may be lucky survivors of a series of inter-related tectonic, geochemical, sedimentological, and oceanic conditions. This paradigm shift has been facilitated by an awareness of the widespread nature of phosphogenesis-the formation of authigenic P-bearing minerals in marine sediments that contributes to phosphorite formation. This process occurs not just in continental margin sediments, but in deep sea oozes as well, and helps to clarify the driving forces behind phosphorite formation and links to marine P geochemistry. Two processes come into play to make phosphorite deposits: chemical dynamism and physical dynamism. Chemical dynamism involves the diagenetic release and subsequent concentration of P-bearing minerals particularly in horizons, controlled by a number of sedimentological and biogeochemical factors. Physical dynamism involves the reworking and sedimentary capping of P-rich sediments, which can either concentrate the relatively heavy and insoluble disseminated P-bearing minerals or provide an episodic change in sedimentology to concentrate chemically mobilized P. Both processes can result from along-margin current dynamics and/or sea level variations. Interestingly, net P accumulation rates are highest (i.e., the P removal pump is most efficient) when phosphorites are not forming. Both physical and chemical pathways involve processes not dominant in deep sea environments and in fact not often coincide in space and time even on continental margins, contributing to the rarity of high-quality phosphorite deposits and the limitation of phosphate rock reserves. This limitation is becoming critical, as the human demand for P far outstrips the geologic replacement for P and few prospects exist for new discoveries of phosphate rock. Copyright © 2011 Elsevier Ltd. All rights reserved.
Principal process analysis of biological models.
Casagranda, Stefano; Touzeau, Suzanne; Ropers, Delphine; Gouzé, Jean-Luc
2018-06-14
Understanding the dynamical behaviour of biological systems is challenged by their large number of components and interactions. While efforts have been made in this direction to reduce model complexity, they often prove insufficient to grasp which and when model processes play a crucial role. Answering these questions is fundamental to unravel the functioning of living organisms. We design a method for dealing with model complexity, based on the analysis of dynamical models by means of Principal Process Analysis. We apply the method to a well-known model of circadian rhythms in mammals. The knowledge of the system trajectories allows us to decompose the system dynamics into processes that are active or inactive with respect to a certain threshold value. Process activities are graphically represented by Boolean and Dynamical Process Maps. We detect model processes that are always inactive, or inactive on some time interval. Eliminating these processes reduces the complex dynamics of the original model to the much simpler dynamics of the core processes, in a succession of sub-models that are easier to analyse. We quantify by means of global relative errors the extent to which the simplified models reproduce the main features of the original system dynamics and apply global sensitivity analysis to test the influence of model parameters on the errors. The results obtained prove the robustness of the method. The analysis of the sub-model dynamics allows us to identify the source of circadian oscillations. We find that the negative feedback loop involving proteins PER, CRY, CLOCK-BMAL1 is the main oscillator, in agreement with previous modelling and experimental studies. In conclusion, Principal Process Analysis is a simple-to-use method, which constitutes an additional and useful tool for analysing the complex dynamical behaviour of biological systems.
Structural dynamics technology research in NASA: Perspective on future needs
NASA Technical Reports Server (NTRS)
1979-01-01
The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.
Teachers' Use of Computational Tools to Construct and Explore Dynamic Mathematical Models
ERIC Educational Resources Information Center
Santos-Trigo, Manuel; Reyes-Rodriguez, Aaron
2011-01-01
To what extent does the use of computational tools offer teachers the possibility of constructing dynamic models to identify and explore diverse mathematical relations? What ways of reasoning or thinking about the problems emerge during the model construction process that involves the use of the tools? These research questions guided the…
The Dynamics of Climate Change: A Case Study in Organisational Learning
ERIC Educational Resources Information Center
Wasdell, David
2011-01-01
Purpose: Based in the discipline of applied consultancy-research, this paper seeks to present a synthesis-review of the social dynamics underlying the stalled negotiations of the United Nations Framework Convention on Climate Change. Its aim is to enhance understanding of the processes involved, to offer a working agenda to the organizational…
Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces.
Wang, Linjun; Long, Run; Prezhdo, Oleg V
2015-04-01
Nonequilibrium processes involving electronic and vibrational degrees of freedom in nanoscale materials are under active experimental investigation. Corresponding theoretical studies are much scarcer. The review starts with the basics of time-dependent density functional theory, recent developments in nonadiabatic molecular dynamics, and the fusion of the two techniques. Ab initio simulations of this kind allow us to directly mimic a great variety of time-resolved experiments performed with pump-probe laser spectroscopies. The focus is on the ultrafast photoinduced charge and exciton dynamics at interfaces formed by two complementary materials. We consider purely inorganic materials, inorganic-organic hybrids, and all organic interfaces, involving bulk semiconductors, metallic and semiconducting nanoclusters, graphene, carbon nanotubes, fullerenes, polymers, molecular crystals, molecules, and solvent. The detailed atomistic insights available from time-domain ab initio studies provide a unique description and a comprehensive understanding of the competition between electron transfer, thermal relaxation, energy transfer, and charge recombination processes. These advances now make it possible to directly guide the development of organic and hybrid solar cells, as well as photocatalytic, electronic, spintronic, and other devices relying on complex interfacial dynamics.
Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.
Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus
2013-12-01
Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.
Grounding explanations in evolving, diagnostic situations
NASA Technical Reports Server (NTRS)
Johannesen, Leila J.; Cook, Richard I.; Woods, David D.
1994-01-01
Certain fields of practice involve the management and control of complex dynamic systems. These include flight deck operations in commercial aviation, control of space systems, anesthetic management during surgery or chemical or nuclear process control. Fault diagnosis of these dynamic systems generally must occur with the monitored process on-line and in conjunction with maintaining system integrity.This research seeks to understand in more detail what it means for an intelligent system to function cooperatively, or as a 'team player' in complex, dynamic environments. The approach taken was to study human practitioners engaged in the management of a complex, dynamic process: anesthesiologists during neurosurgical operations. The investigation focused on understanding how team members cooperate in management and fault diagnosis and comparing this interaction to the situation with an Artificial Intelligence(AI) system that provides diagnoses and explanations. Of particular concern was to study the ways in which practitioners support one another in keeping aware of relevant information concerning the state of the monitored process and of the problem solving process.
Characterizing Conformational Dynamics of Proteins Using Evolutionary Couplings.
Feng, Jiangyan; Shukla, Diwakar
2018-01-25
Understanding of protein conformational dynamics is essential for elucidating molecular origins of protein structure-function relationship. Traditionally, reaction coordinates, i.e., some functions of protein atom positions and velocities have been used to interpret the complex dynamics of proteins obtained from experimental and computational approaches such as molecular dynamics simulations. However, it is nontrivial to identify the reaction coordinates a priori even for small proteins. Here, we evaluate the power of evolutionary couplings (ECs) to capture protein dynamics by exploring their use as reaction coordinates, which can efficiently guide the sampling of a conformational free energy landscape. We have analyzed 10 diverse proteins and shown that a few ECs are sufficient to characterize complex conformational dynamics of proteins involved in folding and conformational change processes. With the rapid strides in sequencing technology, we expect that ECs could help identify reaction coordinates a priori and enhance the sampling of the slow dynamical process associated with protein folding and conformational change.
Cellular Decision Making by Non-Integrative Processing of TLR Inputs.
Kellogg, Ryan A; Tian, Chengzhe; Etzrodt, Martin; Tay, Savaş
2017-04-04
Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs) that converge on the nuclear factor κB (NF-κB) pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term "non-integrative" processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Schneider, Bradley B.; Coy, Stephen L.; Krylov, Evgeny V.; Nazarov, Erkinjon G.
2013-01-01
Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure. PMID:20065515
Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics.
Ritterson Lew, Carolyn; Tolan, Dean R
2013-08-01
In addition to its roles in sugar metabolism, fructose-1,6-bisphosphate aldolase (aldolase) has been implicated in cellular functions independent from these roles, termed "moonlighting functions." These moonlighting functions likely involve the known aldolase-actin interaction, as many proteins with which aldolase interacts are involved in actin-dependent processes. Specifically, aldolase interacts both in vitro and in cells with Wiskott-Aldrich Syndrome Protein (WASP), a protein involved in controlling actin dynamics, yet the function of this interaction remains unknown. Here, the effect of aldolase on WASP-dependent processes in vitro and in cells is investigated. Aldolase inhibits WASP/Arp2/3-dependent actin polymerization in vitro. In cells, knockdown of aldolase results in a decreased rate of cell motility and cell spreading, two WASP-dependent processes. Expression of exogenous aldolase rescues these defects. Whether these effects of aldolase on WASP-dependent processes were due to aldolase catalysis or moonlighting functions is tested using aldolase variants defective in either catalytic or actin-binding activity. While the actin-binding deficient aldolase variant is unable to inhibit actin polymerization in vitro and is unable to rescue cell motility defects in cells, the catalytically inactive aldolase is able to perform these functions, providing evidence that aldolase moonlighting plays a role in WASP-mediated processes. Copyright © 2013 Wiley Periodicals, Inc.
Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling
Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars
2016-08-02
Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc-tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Because of its importance for photochemical processes the optical properties are of particular interest, and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups.more » Until now, it has not been established if it involves a higher lying ”dark” state or vibrational relaxation in the excited S 2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic 2 potential.« less
Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars
Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc-tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Because of its importance for photochemical processes the optical properties are of particular interest, and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups.more » Until now, it has not been established if it involves a higher lying ”dark” state or vibrational relaxation in the excited S 2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic 2 potential.« less
Zhong, Xiao-Zhong; Ma, Shi-Chun; Wang, Shi-Peng; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Deng, Yu; Kida, Kenji
2018-01-01
The present study compared the development of various physicochemical properties and the composition of microbial communities involved in the composting process in the solid fraction of dairy manure (SFDM) with a sawdust-regulated SFDM (RDM). The changes in several primary physicochemical properties were similar in the two composting processes, and both resulted in mature end-products within 48days. The bacterial communities in both composting processes primarily comprised Proteobacteria and Bacteroidetes. Firmicutes were predominant in the thermophilic phase, whereas Chloroflexi, Planctomycetes, and Nitrospirae were more abundant in the final mature phase. Furthermore, the succession of bacteria in both groups proceeded in a similar pattern, suggesting that the effects of the bulking material on bacterial dynamics were minor. These results demonstrate the feasibility of composting using only the SFDM, reflected by the evolution of physicochemical properties and the microbial communities involved in the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Jun; Liu, Jiangang; Liang, Jimin; Zhang, Hongchuan; Zhao, Jizheng; Rieth, Cory A.; Huber, David E.; Li, Wu; Shi, Guangming; Ai, Lin; Tian, Jie; Lee, Kang
2013-01-01
To study top-down face processing, the present study used an experimental paradigm in which participants detected non-existent faces in pure noise images. Conventional BOLD signal analysis identified three regions involved in this illusory face detection. These regions included the left orbitofrontal cortex (OFC) in addition to the right fusiform face area (FFA) and right occipital face area (OFA), both of which were previously known to be involved in both top-down and bottom-up processing of faces. We used Dynamic Causal Modeling (DCM) and Bayesian model selection to further analyze the data, revealing both intrinsic and modulatory effective connectivities among these three cortical regions. Specifically, our results support the claim that the orbitofrontal cortex plays a crucial role in the top-down processing of faces by regulating the activities of the occipital face area, and the occipital face area in turn detects the illusory face features in the visual stimuli and then provides this information to the fusiform face area for further analysis. PMID:20423709
Reconstruction dynamics of recorded holograms in photochromic glass.
Mihailescu, Mona; Pavel, Eugen; Nicolae, Vasile B
2011-06-20
We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO₄ laser radiation (λ=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, Δn) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.
van Koppen, Arianne; Verschuren, Lars; van den Hoek, Anita M; Verheij, Joanne; Morrison, Martine C; Li, Kelvin; Nagabukuro, Hiroshi; Costessi, Adalberto; Caspers, Martien P M; van den Broek, Tim J; Sagartz, John; Kluft, Cornelis; Beysen, Carine; Emson, Claire; van Gool, Alain J; Goldschmeding, Roel; Stoop, Reinout; Bobeldijk-Pastorova, Ivana; Turner, Scott M; Hanauer, Guido; Hanemaaijer, Roeland
2018-01-01
The incidence of nonalcoholic steatohepatitis (NASH) is increasing. The pathophysiological mechanisms of NASH and the sequence of events leading to hepatic fibrosis are incompletely understood. The aim of this study was to gain insight into the dynamics of key molecular processes involved in NASH and to rank early markers for hepatic fibrosis. A time-course study in low-density lipoprotein-receptor knockout. Leiden mice on a high-fat diet was performed to identify the temporal dynamics of key processes contributing to NASH and fibrosis. An integrative systems biology approach was used to elucidate candidate markers linked to the active fibrosis process by combining transcriptomics, dynamic proteomics, and histopathology. The translational value of these findings were confirmed using human NASH data sets. High-fat-diet feeding resulted in obesity, hyperlipidemia, insulin resistance, and NASH with fibrosis in a time-dependent manner. Temporal dynamics of key molecular processes involved in the development of NASH were identified, including lipid metabolism, inflammation, oxidative stress, and fibrosis. A data-integrative approach enabled identification of the active fibrotic process preceding histopathologic detection using a novel molecular fibrosis signature. Human studies were used to identify overlap of genes and processes and to perform a network biology-based prioritization to rank top candidate markers representing the early manifestation of fibrosis. An early predictive molecular signature was identified that marked the active profibrotic process before histopathologic fibrosis becomes manifest. Early detection of the onset of NASH and fibrosis enables identification of novel blood-based biomarkers to stratify patients at risk, development of new therapeutics, and help shorten (pre)clinical experimental time frames.
Episodic memory deficits slow down the dynamics of cognitive procedural learning in normal ageing
Beaunieux, Hélène; Hubert, Valérie; Pitel, Anne Lise; Desgranges, Béatrice; Eustache, Francis
2009-01-01
Cognitive procedural learning is characterized by three phases, each involving distinct processes. Considering the implication of the episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of aging. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyze procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older subjects. PMID:18654928
Parental Involvement in Child Assessment: A Dynamic Approach.
ERIC Educational Resources Information Center
SeokHoon, Alice Seng
This paper examines the status of parents in the developmental assessment process and considers how involving parents jointly with the professional to assess their young child may yield more accurate and valuable information. The paper explores the use of a mediated learning experience (MLE) approach as a framework for increasing support for…
The Dynamics of "Market-Making" in Higher Education
ERIC Educational Resources Information Center
Komljenovic, Janja; Robertson, Susan L.
2016-01-01
This paper examines what to some is a well-worked furrow; the processes and outcomes involved in what is typically referred to as "marketization" in the higher education sector. We do this through a case study of Newton University, where we reveal a rapid proliferation of market exchanges involving the administrative division of the…
Dynamical Systems Theory: Application to Pedagogy
NASA Astrophysics Data System (ADS)
Abraham, Jane L.
Theories of learning affect how cognition is viewed, and this subsequently leads to the style of pedagogical practice that is used in education. Traditionally, educators have relied on a variety of theories on which to base pedagogy. Behavioral learning theories influenced the teaching/learning process for over 50 years. In the 1960s, the information processing approach brought the mind back into the learning process. The current emphasis on constructivism integrates the views of Piaget, Vygotsky, and cognitive psychology. Additionally, recent scientific advances have allowed researchers to shift attention to biological processes in cognition. The problem is that these theories do not provide an integrated approach to understanding principles responsible for differences among students in cognitive development and learning ability. Dynamical systems theory offers a unifying theoretical framework to explain the wider context in which learning takes place and the processes involved in individual learning. This paper describes how principles of Dynamic Systems Theory can be applied to cognitive processes of students, the classroom community, motivation to learn, and the teaching/learning dynamic giving educational psychologists a framework for research and pedagogy.
Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; ...
2014-12-02
During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut
During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less
Li, Pan; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu
2016-10-14
The organocatalysis-based dynamic kinetic resolution (DKR) process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thio)urea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael-Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thio)urea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.
Cycles, scaling and crossover phenomenon in length of the day (LOD) time series
NASA Astrophysics Data System (ADS)
Telesca, Luciano
2007-06-01
The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.
Identity in agent-based models : modeling dynamic multiscale social processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozik, J.; Sallach, D. L.; Macal, C. M.
Identity-related issues play central roles in many current events, including those involving factional politics, sectarianism, and tribal conflicts. Two popular models from the computational-social-science (CSS) literature - the Threat Anticipation Program and SharedID models - incorporate notions of identity (individual and collective) and processes of identity formation. A multiscale conceptual framework that extends some ideas presented in these models and draws other capabilities from the broader CSS literature is useful in modeling the formation of political identities. The dynamic, multiscale processes that constitute and transform social identities can be mapped to expressive structures of the framework
Software conversion history of the Flight Dynamics System (FDS)
NASA Technical Reports Server (NTRS)
Liu, K.
1984-01-01
This report summarizes the overall history of the Flight Dynamics System (FDS) applications software conversion project. It describes the background and nature of the project; traces the actual course of conversion; assesses the process, product, and personnel involved; and offers suggestions for future projects. It also contains lists of pertinent reference material and examples of supporting data.
Bacterial subversion of host actin dynamics at the plasma membrane.
Carabeo, Rey
2011-10-01
Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion. © 2011 Blackwell Publishing Ltd.
Brain Dynamics Sustaining Rapid Rule Extraction from Speech
ERIC Educational Resources Information Center
de Diego-Balaguer, Ruth; Fuentemilla, Lluis; Rodriguez-Fornells, Antoni
2011-01-01
Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization…
The dynamics of meaningful social interactions and the emergence of collective knowledge
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-01-01
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games. PMID:26174482
The dynamics of meaningful social interactions and the emergence of collective knowledge
NASA Astrophysics Data System (ADS)
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-07-01
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions & Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor’s expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.
The dynamics of meaningful social interactions and the emergence of collective knowledge.
Dankulov, Marija Mitrović; Melnik, Roderick; Tadić, Bosiljka
2015-07-15
Collective knowledge as a social value may arise in cooperation among actors whose individual expertise is limited. The process of knowledge creation requires meaningful, logically coordinated interactions, which represents a challenging problem to physics and social dynamics modeling. By combining two-scale dynamics model with empirical data analysis from a well-known Questions &Answers system Mathematics, we show that this process occurs as a collective phenomenon in an enlarged network (of actors and their artifacts) where the cognitive recognition interactions are properly encoded. The emergent behavior is quantified by the information divergence and innovation advancing of knowledge over time and the signatures of self-organization and knowledge sharing communities. These measures elucidate the impact of each cognitive element and the individual actor's expertise in the collective dynamics. The results are relevant to stochastic processes involving smart components and to collaborative social endeavors, for instance, crowdsourcing scientific knowledge production with online games.
NASA Astrophysics Data System (ADS)
Xu, Boyi; Xu, Li Da; Fei, Xiang; Jiang, Lihong; Cai, Hongming; Wang, Shuai
2017-08-01
Facing the rapidly changing business environments, implementation of flexible business process is crucial, but difficult especially in data-intensive application areas. This study aims to provide scalable and easily accessible information resources to leverage business process management. In this article, with a resource-oriented approach, enterprise data resources are represented as data-centric Web services, grouped on-demand of business requirement and configured dynamically to adapt to changing business processes. First, a configurable architecture CIRPA involving information resource pool is proposed to act as a scalable and dynamic platform to virtualise enterprise information resources as data-centric Web services. By exposing data-centric resources as REST services in larger granularities, tenant-isolated information resources could be accessed in business process execution. Second, dynamic information resource pool is designed to fulfil configurable and on-demand data accessing in business process execution. CIRPA also isolates transaction data from business process while supporting diverse business processes composition. Finally, a case study of using our method in logistics application shows that CIRPA provides an enhanced performance both in static service encapsulation and dynamic service execution in cloud computing environment.
Priming semantic concepts affects the dynamics of aesthetic appreciation.
Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian
2010-10-01
Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noe, F; Diadone, Isabella; Lollmann, Marc
There is a gap between kinetic experiment and simulation in their views of the dynamics of complex biomolecular systems. Whereas experiments typically reveal only a few readily discernible exponential relaxations, simulations often indicate complex multistate behavior. Here, a theoretical framework is presented that reconciles these two approaches. The central concept is dynamical fingerprints which contain peaks at the time scales of the dynamical processes involved with amplitudes determined by the experimental observable. Fingerprints can be generated from both experimental and simulation data, and their comparison by matching peaks permits assignment of structural changes present in the simulation to experimentally observedmore » relaxation processes. The approach is applied here to a test case interpreting single molecule fluorescence correlation spectroscopy experiments on a set of fluorescent peptides with molecular dynamics simulations. The peptides exhibit complex kinetics shown to be consistent with the apparent simplicity of the experimental data. Moreover, the fingerprint approach can be used to design new experiments with site-specific labels that optimally probe specific dynamical processes in the molecule under investigation.« less
Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.
Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2017-09-14
We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.
2015-12-01
Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers.
Review of computational fluid dynamics applications in biotechnology processes.
Sharma, C; Malhotra, D; Rathore, A S
2011-01-01
Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years. © 2011 American Institute of Chemical Engineers
Dynamic functional connectivity of the default mode network tracks daydreaming.
Kucyi, Aaron; Davis, Karen D
2014-10-15
Humans spend much of their time engaged in stimulus-independent thoughts, colloquially known as "daydreaming" or "mind-wandering." A fundamental question concerns how awake, spontaneous brain activity represents the ongoing cognition of daydreaming versus unconscious processes characterized as "intrinsic." Since daydreaming involves brief cognitive events that spontaneously fluctuate, we tested the hypothesis that the dynamics of brain network functional connectivity (FC) are linked with daydreaming. We determined the general tendency to daydream in healthy adults based on a daydreaming frequency scale (DDF). Subjects then underwent both resting state functional magnetic resonance imaging (rs-fMRI) and fMRI during sensory stimulation with intermittent thought probes to determine the occurrences of mind-wandering events. Brain regions within the default mode network (DMN), purported to be involved in daydreaming, were assessed for 1) static FC across the entire fMRI scans, and 2) dynamic FC based on FC variability (FCV) across 30s progressively sliding windows of 2s increments within each scan. We found that during both resting and sensory stimulation states, individual differences in DDF were negatively correlated with static FC between the posterior cingulate cortex and a ventral DMN subsystem involved in future-oriented thought. Dynamic FC analysis revealed that DDF was positively correlated with FCV within the same DMN subsystem in the resting state but not during stimulation. However, dynamic but not static FC, in this subsystem, was positively correlated with an individual's degree of self-reported mind-wandering during sensory stimulation. These findings identify temporal aspects of spontaneous DMN activity that reflect conscious and unconscious processes. Copyright © 2014 Elsevier Inc. All rights reserved.
A qualitative study of DRG coding practice in hospitals under the Thai Universal Coverage scheme.
Pongpirul, Krit; Walker, Damian G; Winch, Peter J; Robinson, Courtland
2011-04-08
In the Thai Universal Coverage health insurance scheme, hospital providers are paid for their inpatient care using Diagnosis Related Group-based retrospective payment, for which quality of the diagnosis and procedure codes is crucial. However, there has been limited understandings on which health care professions are involved and how the diagnosis and procedure coding is actually done within hospital settings. The objective of this study is to detail hospital coding structure and process, and to describe the roles of key hospital staff, and other related internal dynamics in Thai hospitals that affect quality of data submitted for inpatient care reimbursement. Research involved qualitative semi-structured interview with 43 participants at 10 hospitals chosen to represent a range of hospital sizes (small/medium/large), location (urban/rural), and type (public/private). Hospital Coding Practice has structural and process components. While the structural component includes human resources, hospital committee, and information technology infrastructure, the process component comprises all activities from patient discharge to submission of the diagnosis and procedure codes. At least eight health care professional disciplines are involved in the coding process which comprises seven major steps, each of which involves different hospital staff: 1) Discharge Summarization, 2) Completeness Checking, 3) Diagnosis and Procedure Coding, 4) Code Checking, 5) Relative Weight Challenging, 6) Coding Report, and 7) Internal Audit. The hospital coding practice can be affected by at least five main factors: 1) Internal Dynamics, 2) Management Context, 3) Financial Dependency, 4) Resource and Capacity, and 5) External Factors. Hospital coding practice comprises both structural and process components, involves many health care professional disciplines, and is greatly varied across hospitals as a result of five main factors.
A qualitative study of DRG coding practice in hospitals under the Thai Universal Coverage Scheme
2011-01-01
Background In the Thai Universal Coverage health insurance scheme, hospital providers are paid for their inpatient care using Diagnosis Related Group-based retrospective payment, for which quality of the diagnosis and procedure codes is crucial. However, there has been limited understandings on which health care professions are involved and how the diagnosis and procedure coding is actually done within hospital settings. The objective of this study is to detail hospital coding structure and process, and to describe the roles of key hospital staff, and other related internal dynamics in Thai hospitals that affect quality of data submitted for inpatient care reimbursement. Methods Research involved qualitative semi-structured interview with 43 participants at 10 hospitals chosen to represent a range of hospital sizes (small/medium/large), location (urban/rural), and type (public/private). Results Hospital Coding Practice has structural and process components. While the structural component includes human resources, hospital committee, and information technology infrastructure, the process component comprises all activities from patient discharge to submission of the diagnosis and procedure codes. At least eight health care professional disciplines are involved in the coding process which comprises seven major steps, each of which involves different hospital staff: 1) Discharge Summarization, 2) Completeness Checking, 3) Diagnosis and Procedure Coding, 4) Code Checking, 5) Relative Weight Challenging, 6) Coding Report, and 7) Internal Audit. The hospital coding practice can be affected by at least five main factors: 1) Internal Dynamics, 2) Management Context, 3) Financial Dependency, 4) Resource and Capacity, and 5) External Factors. Conclusions Hospital coding practice comprises both structural and process components, involves many health care professional disciplines, and is greatly varied across hospitals as a result of five main factors. PMID:21477310
Recent advances in integrated multidisciplinary optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.
1992-01-01
A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.
Recent advances in multidisciplinary optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.
1992-01-01
A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.
Intragroup Processes and Teamwork within a Successful Chamber Choir
ERIC Educational Resources Information Center
Kirrane, Melrona; O'Connor, Cliodhna; Dunne, Ann-Marie; Moriarty, Patricia
2017-01-01
Despite the ubiquity of choirs across time and cultures, relatively little is known about the internal dynamics of these social systems. This article examines the group processes involved in a small European chamber choir. The research adopted a mixed-methods qualitative approach that combined individual interviews (n = 13) with ethnographic…
Thermodynamics of Gases: Combustion Processes, Analysed in Slow Motion
ERIC Educational Resources Information Center
Vollmer, Michael; Mollmann, Klaus-Peter
2013-01-01
We present a number of simple demonstration experiments recorded with high-speed cameras in the fields of gas dynamics and thermal physics. The experiments feature relatively slow combustion processes of pure hydrogen as well as fast reactions involving oxy-hydrogen in a stoichiometric mixture. (Contains 4 figures.)
Development of a Refined Space Vehicle Rollout Forcing Function
NASA Technical Reports Server (NTRS)
James, George; Tucker, Jon-Michael; Valle, Gerard; Grady, Robert; Schliesing, John; Fahling, James; Emory, Benjamin; Armand, Sasan
2016-01-01
For several decades, American manned spaceflight vehicles and the associated launch platforms have been transported from final assembly to the launch pad via a pre-launch phase called rollout. The rollout environment is rich with forced harmonics and higher order effects can be used for extracting structural dynamics information. To enable this utilization, processing tools are needed to move from measured and analytical data to dynamic metrics such as transfer functions, mode shapes, modal frequencies, and damping. This paper covers the range of systems and tests that are available to estimate rollout forcing functions for the Space Launch System (SLS). The specific information covered in this paper includes: the different definitions of rollout forcing functions; the operational and developmental data sets that are available; the suite of analytical processes that are currently in-place or in-development; and the plans and future work underway to solve two immediate problems related to rollout forcing functions. Problem 1 involves estimating enforced accelerations to drive finite element models for developing design requirements for the SLS class of launch vehicles. Problem 2 involves processing rollout measured data in near real time to understand structural dynamics properties of a specific vehicle and the class to which it belongs.
Matsuoka, Takeshi; Tanaka, Shigenori; Ebina, Kuniyoshi
2014-03-01
We propose a hierarchical reduction scheme to cope with coupled rate equations that describe the dynamics of multi-time-scale photosynthetic reactions. To numerically solve nonlinear dynamical equations containing a wide temporal range of rate constants, we first study a prototypical three-variable model. Using a separation of the time scale of rate constants combined with identified slow variables as (quasi-)conserved quantities in the fast process, we achieve a coarse-graining of the dynamical equations reduced to those at a slower time scale. By iteratively employing this reduction method, the coarse-graining of broadly multi-scale dynamical equations can be performed in a hierarchical manner. We then apply this scheme to the reaction dynamics analysis of a simplified model for an illuminated photosystem II, which involves many processes of electron and excitation-energy transfers with a wide range of rate constants. We thus confirm a good agreement between the coarse-grained and fully (finely) integrated results for the population dynamics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
2013-01-01
Background Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. Results We constructed an l-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for l-glutamic acid production; the results of this process corresponded with previous experimental data regarding l-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of l-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model l-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in l-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. Conclusions In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation. PMID:24053676
Nishio, Yousuke; Ogishima, Soichi; Ichikawa, Masao; Yamada, Yohei; Usuda, Yoshihiro; Masuda, Tadashi; Tanaka, Hiroshi
2013-09-22
Understanding the process of amino acid fermentation as a comprehensive system is a challenging task. Previously, we developed a literature-based dynamic simulation model, which included transcriptional regulation, transcription, translation, and enzymatic reactions related to glycolysis, the pentose phosphate pathway, the tricarboxylic acid (TCA) cycle, and the anaplerotic pathway of Escherichia coli. During simulation, cell growth was defined such as to reproduce the experimental cell growth profile of fed-batch cultivation in jar fermenters. However, to confirm the biological appropriateness of our model, sensitivity analysis and experimental validation were required. We constructed an L-glutamic acid fermentation simulation model by removing sucAB, a gene encoding α-ketoglutarate dehydrogenase. We then performed systematic sensitivity analysis for L-glutamic acid production; the results of this process corresponded with previous experimental data regarding L-glutamic acid fermentation. Furthermore, it allowed us to predicted the possibility that accumulation of 3-phosphoglycerate in the cell would regulate the carbon flux into the TCA cycle and lead to an increase in the yield of L-glutamic acid via fermentation. We validated this hypothesis through a fermentation experiment involving a model L-glutamic acid-production strain, E. coli MG1655 ΔsucA in which the phosphoglycerate kinase gene had been amplified to cause accumulation of 3-phosphoglycerate. The observed increase in L-glutamic acid production verified the biologically meaningful predictive power of our dynamic metabolic simulation model. In this study, dynamic simulation using a literature-based model was shown to be useful for elucidating the precise mechanisms involved in fermentation processes inside the cell. Further exhaustive sensitivity analysis will facilitate identification of novel factors involved in the metabolic regulation of amino acid fermentation.
Hierarchical nonlinear dynamics of human attention.
Rabinovich, Mikhail I; Tristan, Irma; Varona, Pablo
2015-08-01
Attention is the process of focusing mental resources on a specific cognitive/behavioral task. Such brain dynamics involves different partially overlapping brain functional networks whose interconnections change in time according to the performance stage, and can be stimulus-driven or induced by an intrinsically generated goal. The corresponding activity can be described by different families of spatiotemporal discrete patterns or sequential dynamic modes. Since mental resources are finite, attention modalities compete with each other at all levels of the hierarchy, from perception to decision making and behavior. Cognitive activity is a dynamical process and attention possesses some universal dynamical characteristics. Thus, it is time to apply nonlinear dynamical theory for the description and prediction of hierarchical attentional tasks. Such theory has to include the analyses of attentional control stability, the time cost of attention switching, the finite capacity of informational resources in the brain, and the normal and pathological bifurcations of attention sequential dynamics. In this paper we have integrated today's knowledge, models and results in these directions. Copyright © 2015 Elsevier Ltd. All rights reserved.
New levels of language processing complexity and organization revealed by granger causation.
Gow, David W; Caplan, David N
2012-01-01
Granger causation analysis of high spatiotemporal resolution reconstructions of brain activation offers a new window on the dynamic interactions between brain areas that support language processing. Premised on the observation that causes both precede and uniquely predict their effects, this approach provides an intuitive, model-free means of identifying directed causal interactions in the brain. It requires the analysis of all non-redundant potentially interacting signals, and has shown that even "early" processes such as speech perception involve interactions of many areas in a strikingly large network that extends well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of milliseconds. In this paper we describe this technique and review several general findings that reframe the way we think about language processing and brain function in general. These include the extent and complexity of language processing networks, the central role of interactive processing dynamics, the role of processing hubs where the input from many distinct brain regions are integrated, and the degree to which task requirements and stimulus properties influence processing dynamics and inform our understanding of "language-specific" localized processes.
NASA Astrophysics Data System (ADS)
Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.; Volkov, Sergey N.; Solov'yov, Andrey V.
2016-01-01
The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies. The implementation of the modified force field was carried out in the popular program MBN Explorer, and, to support the development, we provide several illustrative case studies where dynamical topology is necessary. In particular, it is shown that the modified molecular mechanics force field can be applied for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.
Image-plane processing of visual information
NASA Technical Reports Server (NTRS)
Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.
1984-01-01
Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.
Different routes to the glass transition: A comparison between chemical and physical vitrification
NASA Astrophysics Data System (ADS)
Caponi, Silvia; Corezzi, Silvia
2012-07-01
Despite the differences in the molecular processes involved in chemical and physical vitrification, surprising similarities are observed in the dynamics and in the thermodynamical properties of the resulting glasses. We report on a systematic study of reactive glass-formers undergoing a process of progressive polymerization of the constituent molecules via the formation of irreversible chemical bonds. The formation of most of the materials used in engineering plastics and the hardening of natural and synthetic resins, including epoxy resins, are based on chemical vitrification. The clear analogies characterizing the dynamic evolution of physical and chemical glass-formers, on the time scale of the structural and the low-frequency vibrational dynamics, are briefly reviewed.
ERIC Educational Resources Information Center
Vukasovic, Martina; Jungblut, Jens; Elken, Mari
2017-01-01
Numerous studies focused on the linkages between the Bologna Process and system--as well as organizational-level changes--implying significance of the process for higher education policy dynamics. However, what has been lacking is a closer examination of the political importance of Bologna for the different actors involved and whether this varies…
NASA Astrophysics Data System (ADS)
Koizumi, Kenichi; Boero, Mauro; Shigeta, Yasuteru; Oshiyama, Atsushi; Dept. of Applied Physics Team; Institute of Physics and Chemistry of Strasbourg (IPCMS) Collaboration; Department Of Materials Engineering Science Collaboration
2013-03-01
Oxygen plasma etching is a crucial step in the fabrication of electronic circuits and has recently received a renovated interest in view of the realization of carbon-based nanodevices. In an attempt at unraveling the atomic-scale details and to provide guidelines for the control of the etching processes mechanisms, we inspected the possible reaction pathways via reactive first principles simulations. These processes involve breaking and formation of several chemical bonds and are characterized by different free-energy barriers. Free-energy sampling techniques (metadynamics and blue moon), used to enhance the standard Car-Parrinello molecular dynamics, provide us a detailed microscopic picture of the etching of graphene surfaces and a comprehensive scenario of the activation barriers involved in the various steps. MEXT, Japan - contract N. 22104005
Toward a Framework for Dynamic Service Binding in E-Procurement
NASA Astrophysics Data System (ADS)
Ashoori, Maryam; Eze, Benjamin; Benyoucef, Morad; Peyton, Liam
In an online environment, an E-Procurement process should be able to react and adapt in near real-time to changes in suppliers, requirements, and regulations. WS-BPEL is an emerging standard for process automation, but is oriented towards design-time binding of services. This missing issue can be resolved through designing an extension to WS-BPEL to support automation of flexible e-Procurement processes. Our proposed framework will support dynamic acquisition of procurement services from different suppliers dealing with changing procurement requirements. The proposed framework is illustrated by applying it to health care where different health insurance providers could be involved to procure the medication for patients.
Dynamic Controllability and Dispatchability Relationships
NASA Technical Reports Server (NTRS)
Morris, Paul Henry
2014-01-01
An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. We present a fast algorithm for Dynamic Controllability. We also note a correspondence between the reduction steps in the algorithm and the operations involved in converting the projections to dispatchable form. This has implications for the complexity for sparse networks.
The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain.
Olbrich, Eckehard; Claussen, Jens Christian; Achermann, Peter
2011-10-13
A particular property of the sleeping brain is that it exhibits dynamics on very different time scales ranging from the typical sleep oscillations such as sleep spindles and slow waves that can be observed in electroencephalogram (EEG) segments of several seconds duration over the transitions between the different sleep stages on a time scale of minutes to the dynamical processes involved in sleep regulation with typical time constants in the range of hours. There is an increasing body of work on mathematical and computational models addressing these different dynamics, however, usually considering only processes on a single time scale. In this paper, we review and present a new analysis of the dynamics of human sleep EEG at the different time scales and relate the findings to recent modelling efforts pointing out both the achievements and remaining challenges.
Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy
Filenko, Nina A.; Palets, Dmytro B.; Lyubchenko, Yuri L.
2012-01-01
Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their populationmore » was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Wenjun; Dou, Wenjie; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu
2015-02-28
We investigate the incorporation of the surface-leaking (SL) algorithm into Tully’s fewest-switches surface hopping (FSSH) algorithm to simulate some electronic relaxation induced by an electronic bath in conjunction with some electronic transitions between discrete states. The resulting SL-FSSH algorithm is benchmarked against exact quantum scattering calculations for three one-dimensional model problems. The results show excellent agreement between SL-FSSH and exact quantum dynamics in the wide band limit, suggesting the potential for a SL-FSSH algorithm. Discrepancies and failures are investigated in detail to understand the factors that will limit the reliability of SL-FSSH, especially the wide band approximation. Considering the easinessmore » of implementation and the low computational cost, we expect this method to be useful in studying processes involving both a continuum of electronic states (where electronic dynamics are probabilistic) and processes involving only a few electronic states (where non-adiabatic processes cannot ignore short-time coherence)« less
Fort Collins Science Center Ecosystem Dynamics Branch
Wilson, Jim; Melcher, C.; Bowen, Z.
2009-01-01
Complex natural resource issues require understanding a web of interactions among ecosystem components that are (1) interdisciplinary, encompassing physical, chemical, and biological processes; (2) spatially complex, involving movements of animals, water, and airborne materials across a range of landscapes and jurisdictions; and (3) temporally complex, occurring over days, weeks, or years, sometimes involving response lags to alteration or exhibiting large natural variation. Scientists in the Ecosystem Dynamics Branch of the U.S. Geological Survey, Fort Collins Science Center, investigate a diversity of these complex natural resource questions at the landscape and systems levels. This Fact Sheet describes the work of the Ecosystems Dynamics Branch, which is focused on energy and land use, climate change and long-term integrated assessments, herbivore-ecosystem interactions, fire and post-fire restoration, and environmental flows and river restoration.
Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.
2013-06-18
High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damagemore » and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.« less
Multidimensional Framework for the Analysis of Innovations at Universities in Catalonia
ERIC Educational Resources Information Center
Tomas, Marina; Castro, Diego
2011-01-01
The purpose of this paper is to contribute to a better understanding of the nature of change processes and dynamics at Catalan universities. A multidimensional approach was adopted to examine the change processes and to analyse organizational innovation in higher education. The paper draws involved in each particular innovation. Analysis of these…
Dynamics of Higher Education. Old Assumptions and New Uncertainties in the Planning Process.
ERIC Educational Resources Information Center
Doi, James I.
1973-01-01
In past decades the planning process in higher education was based on certainties and assumptions about the source of funds, enrollments and enrollment distribution, levels of expenditures, and faculty. Today, none of these certainties remain. The uncertainties of today involve declining enrollments after 1980, society's capacity to effectively…
NASA Astrophysics Data System (ADS)
Walter, Nathan; Zhang, Yang
Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex
Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.
Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin
2015-11-21
Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.
ERIC Educational Resources Information Center
Santos-Oliveira, Daniela Cristina
2017-01-01
Models of speech perception suggest a dorsal stream connecting the temporal and inferior parietal lobe with the inferior frontal gyrus. This stream is thought to involve an auditory motor loop that translates acoustic information into motor/articulatory commands and is further influenced by decision making processes that involve maintenance of…
Optimum Design of High Speed Prop-Rotors
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi
1992-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.
Project Canada West. Canadian Urban Dynamics: A Model for Student Involvement in the Urban Setting.
ERIC Educational Resources Information Center
Western Curriculum Project on Canada Studies, Edmonton (Alberta).
This is a progress report of a project in the process of developing an interdisciplinary secondary school curriculum on the Canadian urban environment. The primary goal is to encourage constructive involvement in urban life and community decision-making, and develop a personal and social competence that will engender a greater commitment to the…
Muñoz-Soriano, Verónica; Ruiz, Carlos; Pérez-Alonso, Manuel; Mlodzik, Marek; Paricio, Nuria
2013-01-01
Ommatidial rotation is one of the most important events for correct patterning of the Drosophila eye. Although several signaling pathways are involved in this process, few genes have been shown to specifically affect it. One of them is nemo (nmo), which encodes a MAP-like protein kinase that regulates the rate of rotation throughout the entire process, and serves as a link between core planar cell polarity (PCP) factors and the E-cadherin–β-catenin complex. To determine more precisely the role of nmo in ommatidial rotation, live-imaging analyses in nmo mutant and wild-type early pupal eye discs were performed. We demonstrate that ommatidial rotation is not a continuous process, and that rotating and non-rotating interommatidial cells are very dynamic. Our in vivo analyses also show that nmo regulates the speed of rotation and is required in cone cells for correct ommatidial rotation, and that these cells as well as interommatidial cells are less dynamic in nmo mutants. Furthermore, microarray analyses of nmo and wild-type larval eye discs led us to identify new genes and signaling pathways related to nmo function during this process. One of them, miple, encodes the Drosophila ortholog of the midkine/pleiotrophin secreted cytokines that are involved in cell migration processes. miple is highly up-regulated in nmo mutant discs. Indeed, phenotypic analyses reveal that miple overexpression leads to ommatidial rotation defects. Genetic interaction assays suggest that miple is signaling through Ptp99A, the Drosophila ortholog of the vertebrate midkine/pleiotrophin PTPζ receptor. Accordingly, we propose that one of the roles of Nmo during ommatial rotation is to repress miple expression, which may in turn affect the dynamics in E-cadherin–β-catenin complexes. PMID:23428616
NASA Astrophysics Data System (ADS)
Guo, X.; Li, Y.; Suo, T.; Liu, H.; Zhang, C.
2017-11-01
This paper proposes a method for de-blurring of images captured in the dynamic deformation of materials. De-blurring is achieved based on the dynamic-based approach, which is used to estimate the Point Spread Function (PSF) during the camera exposure window. The deconvolution process involving iterative matrix calculations of pixels, is then performed on the GPU to decrease the time cost. Compared to the Gauss method and the Lucy-Richardson method, it has the best result of the image restoration. The proposed method has been evaluated by using the Hopkinson bar loading system. In comparison to the blurry image, the proposed method has successfully restored the image. It is also demonstrated from image processing applications that the de-blurring method can improve the accuracy and the stability of the digital imaging correlation measurement.
MHD processes in the outer heliosphere
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1984-01-01
The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.
NASA Astrophysics Data System (ADS)
Xie, Shijie; Schweizer, Kenneth
Recently, Cheng, Sokolov and coworkers have discovered qualitatively new dynamic behavior (exceptionally large Tg and fragility increases, unusual thermal and viscoelastic responses) in polymer nanocomposites composed of nanoparticles comparable in size to a polymer segment which form physical bonds with both themselves and segments. We generalize the Elastically Collective Nonlinear Langevin Equation theory of deeply supercooled molecular and polymer liquids to study the cooperative activated hopping dynamics of this system based on the dynamic free energy surface concept. The theoretical calculations are consistent with segmental relaxation time measurements as a function of temperature and nanoparticle volume fraction, and also the nearly linear growth of Tg with NP loading; predictions are made for the influence of nonuniversal chemical effects. The theory suggests the alpha process involves strongly coupled activated motion of segments and nanoparticles, consistent with the observed negligible change of the heat capacity jump with filler loading. Based on cohesive energy calculations and transient network ideas, full structural relaxation is suggested to involve a second, slower bond dissociation process with distinctive features and implications.
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; ...
2017-01-06
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV andmore » 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.« less
The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.
2017-01-01
The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from -20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10-0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.
Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments
NASA Astrophysics Data System (ADS)
Shpuntova, Galina; Austin, Joanna
2013-11-01
One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''
Using transfer functions to quantify El Niño Southern Oscillation dynamics in data and models.
MacMartin, Douglas G; Tziperman, Eli
2014-09-08
Transfer function tools commonly used in engineering control analysis can be used to better understand the dynamics of El Niño Southern Oscillation (ENSO), compare data with models and identify systematic model errors. The transfer function describes the frequency-dependent input-output relationship between any pair of causally related variables, and can be estimated from time series. This can be used first to assess whether the underlying relationship is or is not frequency dependent, and if so, to diagnose the underlying differential equations that relate the variables, and hence describe the dynamics of individual subsystem processes relevant to ENSO. Estimating process parameters allows the identification of compensating model errors that may lead to a seemingly realistic simulation in spite of incorrect model physics. This tool is applied here to the TAO array ocean data, the GFDL-CM2.1 and CCSM4 general circulation models, and to the Cane-Zebiak ENSO model. The delayed oscillator description is used to motivate a few relevant processes involved in the dynamics, although any other ENSO mechanism could be used instead. We identify several differences in the processes between the models and data that may be useful for model improvement. The transfer function methodology is also useful in understanding the dynamics and evaluating models of other climate processes.
Ingram, James N; Howard, Ian S; Flanagan, J Randall; Wolpert, Daniel M
2011-09-01
Motor learning has been extensively studied using dynamic (force-field) perturbations. These induce movement errors that result in adaptive changes to the motor commands. Several state-space models have been developed to explain how trial-by-trial errors drive the progressive adaptation observed in such studies. These models have been applied to adaptation involving novel dynamics, which typically occurs over tens to hundreds of trials, and which appears to be mediated by a dual-rate adaptation process. In contrast, when manipulating objects with familiar dynamics, subjects adapt rapidly within a few trials. Here, we apply state-space models to familiar dynamics, asking whether adaptation is mediated by a single-rate or dual-rate process. Previously, we reported a task in which subjects rotate an object with known dynamics. By presenting the object at different visual orientations, adaptation was shown to be context-specific, with limited generalization to novel orientations. Here we show that a multiple-context state-space model, with a generalization function tuned to visual object orientation, can reproduce the time-course of adaptation and de-adaptation as well as the observed context-dependent behavior. In contrast to the dual-rate process associated with novel dynamics, we show that a single-rate process mediates adaptation to familiar object dynamics. The model predicts that during exposure to the object across multiple orientations, there will be a degree of independence for adaptation and de-adaptation within each context, and that the states associated with all contexts will slowly de-adapt during exposure in one particular context. We confirm these predictions in two new experiments. Results of the current study thus highlight similarities and differences in the processes engaged during exposure to novel versus familiar dynamics. In both cases, adaptation is mediated by multiple context-specific representations. In the case of familiar object dynamics, however, the representations can be engaged based on visual context, and are updated by a single-rate process.
NASA Astrophysics Data System (ADS)
Zhu, S.; Sartelet, K. N.; Seigneur, C.
2015-06-01
The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.
Dynamics of Cooperation in a Task Completion Social Dilemma
Passino, Kevin M.
2017-01-01
We study the situation where the members of a community have the choice to participate in the completion of a common task. The process of completing the task involves only costs and no benefits to the individuals that participate in this process. However, completing the task results in changes that significantly benefit the community and that exceed the participation efforts. A task completion social dilemma arises when the short-term participation costs dissipate any interest in the community members to contribute to the task completion process and therefore to obtain the benefits that result from completing the task. In this work, we model the task completion problem using a dynamical system that characterizes the participation dynamics in the community and the task completion process. We show how this model naturally allows for the incorporation of several mechanisms that facilitate the emergence of cooperation and that have been studied in previous research on social dilemmas, including communication across a network, and indirect reciprocity through relative reputation. We provide mathematical analyses and computer simulations to study the qualitative properties of the participation dynamics in the community for different scenarios. PMID:28125721
A Mixed Kijima Model Using the Weibull-Based Generalized Renewal Processes
2015-01-01
Generalized Renewal Processes are useful for approaching the rejuvenation of dynamical systems resulting from planned or unplanned interventions. We present new perspectives for the Generalized Renewal Processes in general and for the Weibull-based Generalized Renewal Processes in particular. Disregarding from literature, we present a mixed Generalized Renewal Processes approach involving Kijima Type I and II models, allowing one to infer the impact of distinct interventions on the performance of the system under study. The first and second theoretical moments of this model are introduced as well as its maximum likelihood estimation and random sampling approaches. In order to illustrate the usefulness of the proposed Weibull-based Generalized Renewal Processes model, some real data sets involving improving, stable, and deteriorating systems are used. PMID:26197222
Parenting while Being Homeless
ERIC Educational Resources Information Center
Swick, Kevin J.; Williams, Reginald; Fields, Evelyn
2014-01-01
This article explores the dynamics of parenting while being in a homeless context. The mosaic of stressors involved in this homeless parenting process are explicated and discussed. In addition, resources and strategies that may support parenting are presented and discussed.
Style follows content: on the microgenesis of art perception.
Augustin, M Dorothee; Leder, Helmut; Hutzler, Florian; Carbon, Claus-Christian
2008-05-01
Despite fruitful research in experimental aesthetics, the dynamics of aesthetics, i.e., the processes involved in art perception, have received little attention. Concerning representational art, two aspects seem most important in this respect: style and content. In two experiments, we examined the dynamics of processing of style and content by means of the microgenetic approach. This approach systematically varies perceptual conditions to find out about the stages involved in the formation of percepts--their microgenesis. Participants gave similarity ratings for pairs of pictures that were fully crossed in style (artist) and content (motif). Presentation times were systematically varied between 10, 50, 202 and 3000 ms (Experiment 1) plus unlimited presentation time (Experiment 2). While effects of content were present at all presentation times, effects of style were traceable from 50 ms onwards. The results show clear differences in the microgenesis of style and content, suggesting that in art perception style follows content.
NASA Astrophysics Data System (ADS)
McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan
2014-03-01
Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.
NASA Astrophysics Data System (ADS)
Dang, Hongli; Xue, Wenhua; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2014-03-01
We report first-principles density-functional calculations and ab initio molecular dynamics (MD) simulations for the reactions involving furfural, which is an important intermediate in biomass conversion, at the catalytic liquid-solid interfaces. The different dynamic processes of furfural at the water-Cu(111) and water-Pd(111) interfaces suggest different catalytic reaction mechanisms for the conversion of furfural. Simulations for the dynamic processes with and without hydrogen demonstrate the importance of the liquid-solid interface as well as the presence of hydrogen in possible catalytic reactions including hydrogenation and decarbonylation of furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.
[Situational awareness: you won't see it unless you understand it].
Graafland, Maurits; Schijven, Marlies P
2015-01-01
In dynamic, high-risk environments such as the modern operating theatre, healthcare providers are required to identify a multitude of signals correctly and in time. Errors resulting from failure to identify or interpret signals correctly lead to calamities. Medical training curricula focus largely on teaching technical skills and knowledge, not on the cognitive skills needed to interact appropriately with fast-changing, complex environments in practice. The term 'situational awareness' describes the dynamic process of receiving, interpreting and processing information in such dynamic environments. Improving situational awareness in high-risk environments should be part of medical curricula. In addition, the flood of information in high-risk environments should be presented more clearly and effectively. It is important that physicians become more involved in this regard.
Salutogenic service user involvement in nursing research: a case study.
Mjøsund, Nina Helen; Vinje, Hege Forbech; Eriksson, Monica; Haaland-Øverby, Mette; Jensen, Sven Liang; Kjus, Solveig; Norheim, Irene; Portaasen, Inger-Lill; Espnes, Geir Arild
2018-05-12
The aim was to explore the process of involving mental healthcare service users in a mental health promotion research project as research advisors and to articulate features of the collaboration which encouraged and empowered the advisors to make significant contributions to the research process and outcome. There is an increasing interest in evaluating aspects of service user involvement in nursing research. Few descriptions exist of features that enable meaningful service user involvement. We draw on experiences from conducting research which used the methodology interpretative phenomenological analysis to explore how persons with mental disorders perceived mental health. Aside from the participants in the project, five research advisors with service user experience were involved in the entire research process. We applied a case study design to explore the ongoing processes of service user involvement. Documents and texts produced while conducting the project (2012-2016), as well as transcripts from multistage focus group discussions with the research advisors, were analysed. The level of involvement was dynamic and varied throughout the different stages of the research process. Six features: leadership, meeting structure, role clarification, being members of a team, a focus on possibilities and being seen and treated as holistic individuals, were guiding principles for a salutogenic service user involvement. These features strengthened the advisors' perception of themselves as valuable and competent contributors. Significant contributions from research advisors were promoted by facilitating the process of involvement. A supporting structure and atmosphere were consistent with a salutogenic service user involvement. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.
Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall
2014-10-01
Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.
Theoretical Studies of Chemical Reactions following Electronic Excitation
NASA Technical Reports Server (NTRS)
Chaban, Galina M.
2003-01-01
The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.
ERIC Educational Resources Information Center
Hargreaves, Ian S.; White, Michelle; Pexman, Penny M.; Pittman, Dan; Goodyear, Brad G.
2012-01-01
Task effects in semantic processing were investigated by contrasting the neural activation associated with two semantic categorization tasks (SCT) using event-related fMRI. The two SCTs involved different decision categories: "is it an animal?" vs. "is it a concrete thing?" Participants completed both tasks and, across participants, the same core…
2014-09-30
floor. OBJECTIVES To identify the phenomena involved in the cascade of energy from mesoscales to turbulent scales. In particular, we wish to quantify the...data from the profiler to the surface buoy. The WW Iridium telemetry system was tested on the WW moored over the continental shelf. Telemetry...2580 email: ajlucas@ucsd.edu Award: N00014-12-1-0635 LONG-TERM GOALS To gain a more complete understanding of ocean dynamical processes
NASA Astrophysics Data System (ADS)
Voter, Arthur
Many important materials processes take place on time scales that far exceed the roughly one microsecond accessible to molecular dynamics simulation. Typically, this long-time evolution is characterized by a succession of thermally activated infrequent events involving defects in the material. In the accelerated molecular dynamics (AMD) methodology, known characteristics of infrequent-event systems are exploited to make reactive events take place more frequently, in a dynamically correct way. For certain processes, this approach has been remarkably successful, offering a view of complex dynamical evolution on time scales of microseconds, milliseconds, and sometimes beyond. We have recently made advances in all three of the basic AMD methods (hyperdynamics, parallel replica dynamics, and temperature accelerated dynamics (TAD)), exploiting both algorithmic advances and novel parallelization approaches. I will describe these advances, present some examples of our latest results, and discuss what should be possible when exascale computing arrives in roughly five years. Funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, and by the Los Alamos Laboratory Directed Research and Development program.
Dynamical analysis of yeast protein interaction network during the sake brewing process.
Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N
2011-12-01
Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.
System Dynamics Modeling for Public Health: Background and Opportunities
Homer, Jack B.; Hirsch, Gary B.
2006-01-01
The systems modeling methodology of system dynamics is well suited to address the dynamic complexity that characterizes many public health issues. The system dynamics approach involves the development of computer simulation models that portray processes of accumulation and feedback and that may be tested systematically to find effective policies for overcoming policy resistance. System dynamics modeling of chronic disease prevention should seek to incorporate all the basic elements of a modern ecological approach, including disease outcomes, health and risk behaviors, environmental factors, and health-related resources and delivery systems. System dynamics shows promise as a means of modeling multiple interacting diseases and risks, the interaction of delivery systems and diseased populations, and matters of national and state policy. PMID:16449591
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
Interactive information processing for NASA's mesoscale analysis and space sensor program
NASA Technical Reports Server (NTRS)
Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.
1985-01-01
The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.
Gore, J; Ogden, J
1998-01-01
BACKGROUND: Previous research has examined the doctor-patient relationship in terms of its therapeutic effect, the need to consider the patients' models of their illness, and the patients' expectations of their doctor. However, to date, no research has examined the patients' views of the doctor-patient relationship. AIM: To examine patients' views of the process of creating a relationship with their general practitioner (GP). METHOD: A qualitative design was used involving in-depth interviews with 27 frequently attending patients from four urban general practices. They were chosen to provide a heterogeneous group in terms of age, sex, and ethnicity. RESULTS: The responders described creating the relationship in terms of three stages: development, validation, and consolidation. The development stage involved overcoming initial reservations, actively searching for a doctor that met the patient's needs, or knowing from the start that the doctor was the right one for them. The validation stage involved evaluating the nature of the relationship by searching for evidence of caring, comparing their doctor with others, storing key events for illustration of the value of the relationship, recruiting the views of others to support their own perspectives, and the willingness to make tradeoffs. The consolidation stage involved testing and setting boundaries concerned with knowledge, power, and a personal relationship. CONCLUSION: Creating a relationship with a GP is a dynamic process involving an active patient who searches out a GP who matches their own representation of the 'ideal', selects and retains information to validate their choice, and locates mutually acceptable boundaries. PMID:9800396
Exploring sensitivity of a multistate occupancy model to inform management decisions
Green, A.W.; Bailey, L.L.; Nichols, J.D.
2011-01-01
Dynamic occupancy models are often used to investigate questions regarding the processes that influence patch occupancy and are prominent in the fields of population and community ecology and conservation biology. Recently, multistate occupancy models have been developed to investigate dynamic systems involving more than one occupied state, including reproductive states, relative abundance states and joint habitat-occupancy states. Here we investigate the sensitivities of the equilibrium-state distribution of multistate occupancy models to changes in transition rates. We develop equilibrium occupancy expressions and their associated sensitivity metrics for dynamic multistate occupancy models. To illustrate our approach, we use two examples that represent common multistate occupancy systems. The first example involves a three-state dynamic model involving occupied states with and without successful reproduction (California spotted owl Strix occidentalis occidentalis), and the second involves a novel way of using a multistate occupancy approach to accommodate second-order Markov processes (wood frog Lithobates sylvatica breeding and metamorphosis). In many ways, multistate sensitivity metrics behave in similar ways as standard occupancy sensitivities. When equilibrium occupancy rates are low, sensitivity to parameters related to colonisation is high, while sensitivity to persistence parameters is greater when equilibrium occupancy rates are high. Sensitivities can also provide guidance for managers when estimates of transition probabilities are not available. Synthesis and applications. Multistate models provide practitioners a flexible framework to define multiple, distinct occupied states and the ability to choose which state, or combination of states, is most relevant to questions and decisions about their own systems. In addition to standard multistate occupancy models, we provide an example of how a second-order Markov process can be modified to fit a multistate framework. Assuming the system is near equilibrium, our sensitivity analyses illustrate how to investigate the sensitivity of the system-specific equilibrium state(s) to changes in transition rates. Because management will typically act on these transition rates, sensitivity analyses can provide valuable information about the potential influence of different actions and when it may be prudent to shift the focus of management among the various transition rates. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.
Many-body kinetics of dynamic nuclear polarization by the cross effect
NASA Astrophysics Data System (ADS)
Karabanov, A.; Wiśniewski, D.; Raimondi, F.; Lesanovsky, I.; Köckenberger, W.
2018-03-01
Dynamic nuclear polarization (DNP) is an out-of-equilibrium method for generating nonthermal spin polarization which provides large signal enhancements in modern diagnostic methods based on nuclear magnetic resonance. A particular instance is cross-effect DNP, which involves the interaction of two coupled electrons with the nuclear spin ensemble. Here we develop a theory for this important DNP mechanism and show that the nonequilibrium nuclear polarization buildup is effectively driven by three-body incoherent Markovian dissipative processes involving simultaneous state changes of two electrons and one nucleus. We identify different parameter regimes for effective polarization transfer and discuss under which conditions the polarization dynamics can be simulated by classical kinetic Monte Carlo methods. Our theoretical approach allows simulations of the polarization dynamics on an individual spin level for ensembles consisting of hundreds of nuclear spins. The insight obtained by these simulations can be used to find optimal experimental conditions for cross-effect DNP and to design tailored radical systems that provide optimal DNP efficiency.
NASA Astrophysics Data System (ADS)
Ahn, Yong Nam; Mohan, Gunjan; Kopelevich, Dmitry I.
2012-10-01
Dynamics of absorption and desorption of a surfactant monomer into and out of a spherical non-ionic micelle is investigated by coarse-grained molecular dynamics (MD) simulations. It is shown that these processes involve a complex interplay between the micellar structure and the monomer configuration. A quantitative model for collective dynamics of these degrees of freedom is developed. This is accomplished by reconstructing a multi-dimensional free energy landscape of the surfactant-micelle system using constrained MD simulations in which the distance between the micellar and monomer centers of mass is held constant. Results of this analysis are verified by direct (unconstrained) MD simulations of surfactant absorption in the micelle. It is demonstrated that the system dynamics is likely to deviate from the minimum energy path on the energy landscape. These deviations create an energy barrier for the monomer absorption and increase an existing barrier for the monomer desorption. A reduced Fokker-Planck equation is proposed to model these effects.
NASA Astrophysics Data System (ADS)
Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.
2011-04-01
The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.
Stochastic Dynamics through Hierarchically Embedded Markov Chains
NASA Astrophysics Data System (ADS)
Vasconcelos, Vítor V.; Santos, Fernando P.; Santos, Francisco C.; Pacheco, Jorge M.
2017-02-01
Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects—such as mutations in evolutionary dynamics and a random exploration of choices in social systems—including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.
Ab initio study on the dynamics of furfural at the liquid-solid interfaces
NASA Astrophysics Data System (ADS)
Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2013-03-01
Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers
Stochastic Dynamics through Hierarchically Embedded Markov Chains.
Vasconcelos, Vítor V; Santos, Fernando P; Santos, Francisco C; Pacheco, Jorge M
2017-02-03
Studying dynamical phenomena in finite populations often involves Markov processes of significant mathematical and/or computational complexity, which rapidly becomes prohibitive with increasing population size or an increasing number of individual configuration states. Here, we develop a framework that allows us to define a hierarchy of approximations to the stationary distribution of general systems that can be described as discrete Markov processes with time invariant transition probabilities and (possibly) a large number of states. This results in an efficient method for studying social and biological communities in the presence of stochastic effects-such as mutations in evolutionary dynamics and a random exploration of choices in social systems-including situations where the dynamics encompasses the existence of stable polymorphic configurations, thus overcoming the limitations of existing methods. The present formalism is shown to be general in scope, widely applicable, and of relevance to a variety of interdisciplinary problems.
Khaligh-Razavi, Seyed-Mahdi; Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude
2018-06-07
Animacy and real-world size are properties that describe any object and thus bring basic order into our perception of the visual world. Here, we investigated how the human brain processes real-world size and animacy. For this, we applied representational similarity to fMRI and MEG data to yield a view of brain activity with high spatial and temporal resolutions, respectively. Analysis of fMRI data revealed that a distributed and partly overlapping set of cortical regions extending from occipital to ventral and medial temporal cortex represented animacy and real-world size. Within this set, parahippocampal cortex stood out as the region representing animacy and size stronger than most other regions. Further analysis of the detailed representational format revealed differences among regions involved in processing animacy. Analysis of MEG data revealed overlapping temporal dynamics of animacy and real-world size processing starting at around 150 msec and provided the first neuromagnetic signature of real-world object size processing. Finally, to investigate the neural dynamics of size and animacy processing simultaneously in space and time, we combined MEG and fMRI with a novel extension of MEG-fMRI fusion by representational similarity. This analysis revealed partly overlapping and distributed spatiotemporal dynamics, with parahippocampal cortex singled out as a region that represented size and animacy persistently when other regions did not. Furthermore, the analysis highlighted the role of early visual cortex in representing real-world size. A control analysis revealed that the neural dynamics of processing animacy and size were distinct from the neural dynamics of processing low-level visual features. Together, our results provide a detailed spatiotemporal view of animacy and size processing in the human brain.
NASA Astrophysics Data System (ADS)
Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel
2018-06-01
We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.
Impact of hydration and temperature history on the structure and dynamics of lignin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vural, Derya; Gainaru, C.; O'Neill, Hugh Michael
The full utilization of plant biomass for the production of energy and novel materials often involves high temperature treatment. Examples include melt spinning of lignin for manufacturing low-cost carbon fiber and the relocalization of lignin to increase the accessibility of cellulose for production of biofuels. These temperature-induced effects arise from poorly understood changes in lignin flexibility. Here, we combine molecular dynamics simulations with neutron scattering and dielectric spectroscopy experiments to probe the dependence of lignin dynamics on hydration and thermal history. We find a dynamical and structural hysteresis: at a given temperature, the lignin molecules are more expanded and theirmore » dynamics faster when the lignin is cooled than when heated. The structural hysteresis is more pronounced for dry lignin. The difference in dynamics, however, follows a different trend, it is found to be more significant at high temperatures and high hydration levels. The simulations also reveal syringyl units to be more dynamic than guiacyl. The results provide an atomic-detailed description of lignin dynamics, important for understanding lignin role in plant cell wall mechanics and for rationally improving lignin processing. The lignin glass transition, at which the polymer softens, is lower when lignin is cooled than when heated, therefore extending the cooling phase of processing and shortening the heating phase may offer ways to lower processing costs.« less
Impact of hydration and temperature history on the structure and dynamics of lignin
Vural, Derya; Gainaru, C.; O'Neill, Hugh Michael; ...
2018-03-16
The full utilization of plant biomass for the production of energy and novel materials often involves high temperature treatment. Examples include melt spinning of lignin for manufacturing low-cost carbon fiber and the relocalization of lignin to increase the accessibility of cellulose for production of biofuels. These temperature-induced effects arise from poorly understood changes in lignin flexibility. Here, we combine molecular dynamics simulations with neutron scattering and dielectric spectroscopy experiments to probe the dependence of lignin dynamics on hydration and thermal history. We find a dynamical and structural hysteresis: at a given temperature, the lignin molecules are more expanded and theirmore » dynamics faster when the lignin is cooled than when heated. The structural hysteresis is more pronounced for dry lignin. The difference in dynamics, however, follows a different trend, it is found to be more significant at high temperatures and high hydration levels. The simulations also reveal syringyl units to be more dynamic than guiacyl. The results provide an atomic-detailed description of lignin dynamics, important for understanding lignin role in plant cell wall mechanics and for rationally improving lignin processing. The lignin glass transition, at which the polymer softens, is lower when lignin is cooled than when heated, therefore extending the cooling phase of processing and shortening the heating phase may offer ways to lower processing costs.« less
Experimental Determination of Dynamical Lee-Yang Zeros
NASA Astrophysics Data System (ADS)
Brandner, Kay; Maisi, Ville F.; Pekola, Jukka P.; Garrahan, Juan P.; Flindt, Christian
2017-05-01
Statistical physics provides the concepts and methods to explain the phase behavior of interacting many-body systems. Investigations of Lee-Yang zeros—complex singularities of the free energy in systems of finite size—have led to a unified understanding of equilibrium phase transitions. The ideas of Lee and Yang, however, are not restricted to equilibrium phenomena. Recently, Lee-Yang zeros have been used to characterize nonequilibrium processes such as dynamical phase transitions in quantum systems after a quench or dynamic order-disorder transitions in glasses. Here, we experimentally realize a scheme for determining Lee-Yang zeros in such nonequilibrium settings. We extract the dynamical Lee-Yang zeros of a stochastic process involving Andreev tunneling between a normal-state island and two superconducting leads from measurements of the dynamical activity along a trajectory. From the short-time behavior of the Lee-Yang zeros, we predict the large-deviation statistics of the activity which is typically difficult to measure. Our method paves the way for further experiments on the statistical mechanics of many-body systems out of equilibrium.
Branching dynamics of viral information spreading.
Iribarren, José Luis; Moro, Esteban
2011-10-01
Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants' decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31,000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the "tipping point" and can be used for prediction and management of viral information spreading processes.
Branching dynamics of viral information spreading
NASA Astrophysics Data System (ADS)
Iribarren, José Luis; Moro, Esteban
2011-10-01
Despite its importance for rumors or innovations propagation, peer-to-peer collaboration, social networking, or marketing, the dynamics of information spreading is not well understood. Since the diffusion depends on the heterogeneous patterns of human behavior and is driven by the participants’ decisions, its propagation dynamics shows surprising properties not explained by traditional epidemic or contagion models. Here we present a detailed analysis of our study of real viral marketing campaigns where tracking the propagation of a controlled message allowed us to analyze the structure and dynamics of a diffusion graph involving over 31 000 individuals. We found that information spreading displays a non-Markovian branching dynamics that can be modeled by a two-step Bellman-Harris branching process that generalizes the static models known in the literature and incorporates the high variability of human behavior. It explains accurately all the features of information propagation under the “tipping point” and can be used for prediction and management of viral information spreading processes.
Introduction to Shock Waves and Shock Wave Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, William Wyatt
2017-02-02
M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and commonmore » techniques. However, the list will not be exhaustive by any means.« less
Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing.
Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko; Toichi, Motomi
2017-03-01
Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering
Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...
2015-01-27
Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less
ERIC Educational Resources Information Center
Song, Hairong; Ferrer, Emilio
2009-01-01
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
Architecting Systems for Human Space Flight
NASA Technical Reports Server (NTRS)
Wocken, Gerald
2002-01-01
Human-system interactions have been largely overlooked in the traditional systems engineering process. Awareness of human factors (HF) has increased in the past few years, but the involvement of HF specialists is still often too little and too late. In systems involving long-duration human space flight, it is essential that the human component be properly considered in the initial architectural definition phase, as well as throughout the system design process. HF analysis must include not only the strengths and limitations of humans in general, but the variability between individuals and within an individual over time, and the dynamics of group interactions.
Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H
2009-01-01
Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning.
Cooperative structural transitions in amyloid-like aggregation
NASA Astrophysics Data System (ADS)
Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.
2017-04-01
Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.
Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L.; Deadwyler, Sam A.; Hampson, Robert E.; Kraft, Robert A.
2014-01-01
Background Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. New method Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain–computer interfaces and nonlinear neuronal models. Results Neurons involved in memory processing (“Functional Cell Types” or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid-type 1 receptor partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. Comparison with existing methods WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. Conclusion z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain–computer interfaces. PMID:25086297
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-01-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459
Plat, Rika; Lowie, Wander; de Bot, Kees
2017-01-01
Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koniges, A.E.; Craddock, G.G.; Schnack, D.D.
The purpose of the workshop was to assemble workers, both within and outside of the fusion-related computations areas, for discussion regarding the issues of dynamically adaptive gridding. There were three invited talks related to adaptive gridding application experiences in various related fields of computational fluid dynamics (CFD), and nine short talks reporting on the progress of adaptive techniques in the specific areas of scrape-off-layer (SOL) modeling and magnetohydrodynamic (MHD) stability. Adaptive mesh methods have been successful in a number of diverse fields of CFD for over a decade. The method involves dynamic refinement of computed field profiles in a waymore » that disperses uniformly the numerical errors associated with discrete approximations. Because the process optimizes computational effort, adaptive mesh methods can be used to study otherwise the intractable physical problems that involve complex boundary shapes or multiple spatial/temporal scales. Recent results indicate that these adaptive techniques will be required for tokamak fluid-based simulations involving the diverted tokamak SOL modeling and MHD simulations problems related to the highest priority ITER relevant issues.Individual papers are indexed separately on the energy data bases.« less
Xu, Yao; Havenith, Martina
2015-11-07
Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.
NASA Astrophysics Data System (ADS)
Xu, Yao; Havenith, Martina
2015-11-01
Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.
Generic equilibration dynamics of planar defects in trapped atomic superfluids
Scherpelz, Peter; Padavić, Karmela; Murray, Andy; ...
2015-03-18
Here, we investigate equilibration processes shortly after sudden perturbations are applied to ultracold trapped superfluids. We show the similarity of phase imprinting and localized density depletion perturbations, both of which initially are found to produce “phase walls”. These planar defects are associated with a sharp gradient in the phase. Importantly they relax following a quite general sequence. Our studies, based on simulations of the complex time-dependent Ginzburg-Landau equation, address the challenge posed by these experiments: how a superfluid eventually eliminatesa spatially extended planar defect. The processes involved are necessarily more complex than equilibration involving simpler line vortices. An essential mechanismmore » form relaxation involves repeated formation and loss of vortex rings near the trap edge.« less
Stacking fault energies and slip in nanocrystalline metals.
Van Swygenhoven, H; Derlet, P M; Frøseth, A G
2004-06-01
The search for deformation mechanisms in nanocrystalline metals has profited from the use of molecular dynamics calculations. These simulations have revealed two possible mechanisms; grain boundary accommodation, and intragranular slip involving dislocation emission and absorption at grain boundaries. But the precise nature of the slip mechanism is the subject of considerable debate, and the limitations of the simulation technique need to be taken into consideration. Here we show, using molecular dynamics simulations, that the nature of slip in nanocrystalline metals cannot be described in terms of the absolute value of the stacking fault energy-a correct interpretation requires the generalized stacking fault energy curve, involving both stable and unstable stacking fault energies. The molecular dynamics technique does not at present allow for the determination of rate-limiting processes, so the use of our calculations in the interpretation of experiments has to be undertaken with care.
From electromyographic activity to frequency modulation in zebra finch song.
Döppler, Juan F; Bush, Alan; Goller, Franz; Mindlin, Gabriel B
2018-02-01
Behavior emerges from the interaction between the nervous system and peripheral devices. In the case of birdsong production, a delicate and fast control of several muscles is required to control the configuration of the syrinx (the avian vocal organ) and the respiratory system. In particular, the syringealis ventralis muscle is involved in the control of the tension of the vibrating labia and thus affects the frequency modulation of the sound. Nevertheless, the translation of the instructions (which are electrical in nature) into acoustical features is complex and involves nonlinear, dynamical processes. In this work, we present a model of the dynamics of the syringealis ventralis muscle and the labia, which allows calculating the frequency of the generated sound, using as input the electrical activity recorded in the muscle. In addition, the model provides a framework to interpret inter-syllabic activity and hints at the importance of the biomechanical dynamics in determining behavior.
Duplicate retention in signalling proteins and constraints from network dynamics.
Soyer, O S; Creevey, C J
2010-11-01
Duplications are a major driving force behind evolution. Most duplicates are believed to fix through genetic drift, but it is not clear whether this process affects all duplications equally or whether there are certain gene families that are expected to show neutral expansions under certain circumstances. Here, we analyse the neutrality of duplications in different functional classes of signalling proteins based on their effects on response dynamics. We find that duplications involving intermediary proteins in a signalling network are neutral more often than those involving receptors. Although the fraction of neutral duplications in all functional classes increase with decreasing population size and selective pressure on dynamics, this effect is most pronounced for receptors, indicating a possible expansion of receptors in species with small population size. In line with such an expectation, we found a statistically significant increase in the number of receptors as a fraction of genome size in eukaryotes compared with prokaryotes. Although not confirmative, these results indicate that neutral processes can be a significant factor in shaping signalling networks and affect proteins from different functional classes differently. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.
Figueiro, Ana Claudia; de Araújo Oliveira, Sydia Rosana; Hartz, Zulmira; Couturier, Yves; Bernier, Jocelyne; do Socorro Machado Freire, Maria; Samico, Isabella; Medina, Maria Guadalupe; de Sa, Ronice Franco; Potvin, Louise
2017-03-01
Public health interventions are increasingly represented as complex systems. Research tools for capturing the dynamic of interventions processes, however, are practically non-existent. This paper describes the development and proof of concept process of an analytical tool, the critical event card (CEC), which supports the representation and analysis of complex interventions' evolution, based on critical events. Drawing on the actor-network theory (ANT), we developed and field-tested the tool using three innovative health interventions in northeastern Brazil. Interventions were aimed to promote health equity through intersectoral approaches; were engaged in participatory evaluation and linked to professional training programs. The CEC developing involve practitioners and researchers from projects. Proof of concept was based on document analysis, face-to-face interviews and focus groups. Analytical categories from CEC allow identifying and describing critical events as milestones in the evolution of complex interventions. Categories are (1) event description; (2) actants (human and non-human) involved; (3) interactions between actants; (4) mediations performed; (5) actions performed; (6) inscriptions produced; and (7) consequences for interventions. The CEC provides a tool to analyze and represent intersectoral internvetions' complex and dynamic evolution.
Sato, Wataru; Toichi, Motomi; Uono, Shota; Kochiyama, Takanori
2012-08-13
Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD.We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI). Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG), fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex-MTG-IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD.
Uono, Shota; Sato, Wataru; Toichi, Motomi
2010-03-01
Individuals with pervasive developmental disorder (PDD) have difficulty with social communication via emotional facial expressions, but behavioral studies involving static images have reported inconsistent findings about emotion recognition. We investigated whether dynamic presentation of facial expression would enhance subjective perception of expressed emotion in 13 individuals with PDD and 13 typically developing controls. We presented dynamic and static emotional (fearful and happy) expressions. Participants were asked to match a changeable emotional face display with the last presented image. The results showed that both groups perceived the last image of dynamic facial expression to be more emotionally exaggerated than the static facial expression. This finding suggests that individuals with PDD have an intact perceptual mechanism for processing dynamic information in another individual's face.
Direct characterization of quantum dynamics with noisy ancilla
Dumitrescu, Eugene F.; Humble, Travis S.
2015-11-23
We present methods for the direct characterization of quantum dynamics (DCQD) in which both the principal and ancilla systems undergo noisy processes. Using a concatenated error detection code, we discriminate between located and unlocated errors on the principal system in what amounts to filtering of ancilla noise. The example of composite noise involving amplitude damping and depolarizing channels is used to demonstrate the method, while we find the rate of noise filtering is more generally dependent on code distance. Furthermore our results indicate the accuracy of quantum process characterization can be greatly improved while remaining within reach of current experimentalmore » capabilities.« less
Cauchy flights in confining potentials
NASA Astrophysics Data System (ADS)
Garbaczewski, Piotr
2010-03-01
We analyze confining mechanisms for Lévy flights evolving under an influence of external potentials. Given a stationary probability density function (pdf), we address the reverse engineering problem: design a jump-type stochastic process whose target pdf (eventually asymptotic) equals the preselected one. To this end, dynamically distinct jump-type processes can be employed. We demonstrate that one “targeted stochasticity” scenario involves Langevin systems with a symmetric stable noise. Another derives from the Lévy-Schrödinger semigroup dynamics (closely linked with topologically induced super-diffusions), which has no standard Langevin representation. For computational and visualization purposes, the Cauchy driver is employed to exemplify our considerations.
Special Issue: Troubled Family Interactions and Group Intervention.
ERIC Educational Resources Information Center
West, John D.; Kirby, Jonell, Eds.
1981-01-01
Examines the view that individual pathologies and problems are manifestations of family dysfunctions. The interdependence of family members is the critical element in the family group therapy process. Intervention involves the disruption of the dynamic balance maintained by the family system. (RC)
Navarro, Juan-José; Lara, Laura
2017-01-01
Dynamic Assessment (DA) has been shown to have more predictive value than conventional tests for academic performance. However, in relation to reading difficulties, further research is needed to determine the predictive validity of DA for specific aspects of the different processes involved in reading and the differential validity of DA for different subgroups of students with an academic disadvantage. This paper analyzes the implementation of a DA device that evaluates processes involved in reading (EDPL) among 60 students with reading comprehension difficulties between 9 and 16 years of age, of whom 20 have intellectual disabilities, 24 have reading-related learning disabilities, and 16 have socio-cultural disadvantages. We specifically analyze the predictive validity of the EDPL device over attitude toward reading, and the use of dialogue/participation strategies in reading activities in the classroom during the implementation stage. We also analyze if the EDPL device provides additional information to that obtained with a conventionally applied personal-social adjustment scale (APSL). Results showed that dynamic scores, obtained from the implementation of the EDPL device, significantly predict the studied variables. Moreover, dynamic scores showed a significant incremental validity in relation to predictions based on an APSL scale. In relation to differential validity, the results indicated the superior predictive validity for DA for students with intellectual disabilities and reading disabilities than for students with socio-cultural disadvantages. Furthermore, the role of metacognition and its relation to the processes of personal-social adjustment in explaining the results is discussed.
Navarro, Juan-José; Lara, Laura
2017-01-01
Dynamic Assessment (DA) has been shown to have more predictive value than conventional tests for academic performance. However, in relation to reading difficulties, further research is needed to determine the predictive validity of DA for specific aspects of the different processes involved in reading and the differential validity of DA for different subgroups of students with an academic disadvantage. This paper analyzes the implementation of a DA device that evaluates processes involved in reading (EDPL) among 60 students with reading comprehension difficulties between 9 and 16 years of age, of whom 20 have intellectual disabilities, 24 have reading-related learning disabilities, and 16 have socio-cultural disadvantages. We specifically analyze the predictive validity of the EDPL device over attitude toward reading, and the use of dialogue/participation strategies in reading activities in the classroom during the implementation stage. We also analyze if the EDPL device provides additional information to that obtained with a conventionally applied personal-social adjustment scale (APSL). Results showed that dynamic scores, obtained from the implementation of the EDPL device, significantly predict the studied variables. Moreover, dynamic scores showed a significant incremental validity in relation to predictions based on an APSL scale. In relation to differential validity, the results indicated the superior predictive validity for DA for students with intellectual disabilities and reading disabilities than for students with socio-cultural disadvantages. Furthermore, the role of metacognition and its relation to the processes of personal-social adjustment in explaining the results is discussed. PMID:28243215
Techniques for animation of CFD results. [computational fluid dynamics
NASA Technical Reports Server (NTRS)
Horowitz, Jay; Hanson, Jeffery C.
1992-01-01
Video animation is becoming increasingly vital to the computational fluid dynamics researcher, not just for presentation, but for recording and comparing dynamic visualizations that are beyond the current capabilities of even the most powerful graphic workstation. To meet these needs, Lewis Research Center has recently established a facility to provide users with easy access to advanced video animation capabilities. However, producing animation that is both visually effective and scientifically accurate involves various technological and aesthetic considerations that must be understood both by the researcher and those supporting the visualization process. These considerations include: scan conversion, color conversion, and spatial ambiguities.
Physical Modeling of Microtubules Network
NASA Astrophysics Data System (ADS)
Allain, Pierre; Kervrann, Charles
2014-10-01
Microtubules (MT) are highly dynamic tubulin polymers that are involved in many cellular processes such as mitosis, intracellular cell organization and vesicular transport. Nevertheless, the modeling of cytoskeleton and MT dynamics based on physical properties is difficult to achieve. Using the Euler-Bernoulli beam theory, we propose to model the rigidity of microtubules on a physical basis using forces, mass and acceleration. In addition, we link microtubules growth and shrinkage to the presence of molecules (e.g. GTP-tubulin) in the cytosol. The overall model enables linking cytosol to microtubules dynamics in a constant state space thus allowing usage of data assimilation techniques.
Elements of the cellular metabolic structure
De la Fuente, Ildefonso M.
2015-01-01
A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell. PMID:25988183
Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.
2015-07-07
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPDmore » simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.« less
Hurto, Rebecca L; Tong, Amy Hin Yan; Boone, Charles; Hopper, Anita K
2007-06-01
Nuclear export of tRNA is an essential eukaryotic function, yet the one known yeast tRNA nuclear exporter, Los1, is nonessential. Moreover recent studies have shown that tRNAs can move retrograde from the cytosol to the nucleus by an undefined process. Therefore, additional gene products involved in tRNA nucleus-cytosol dynamics have yet to be identified. Synthetic genetic array (SGA) analysis was employed to identify proteins involved in Los1-independent tRNA transport and in regulating tRNA nucleus-cytosol distribution. These studies uncovered synthetic interactions between los1Delta and pho88Delta involved in inorganic phopsphate uptake. Further analysis revealed that inorganic phosphate deprivation causes transient, temperature-dependent nuclear accumulation of mature cytoplasmic tRNA within nuclei via a Mtr10- and retrograde-dependent pathway, providing a novel connection between tRNA subcellular dynamics and phosphate availability.
Hurto, Rebecca L.; Tong, Amy Hin Yan; Boone, Charles; Hopper, Anita K.
2007-01-01
Nuclear export of tRNA is an essential eukaryotic function, yet the one known yeast tRNA nuclear exporter, Los1, is nonessential. Moreover recent studies have shown that tRNAs can move retrograde from the cytosol to the nucleus by an undefined process. Therefore, additional gene products involved in tRNA nucleus–cytosol dynamics have yet to be identified. Synthetic genetic array (SGA) analysis was employed to identify proteins involved in Los1-independent tRNA transport and in regulating tRNA nucleus–cytosol distribution. These studies uncovered synthetic interactions between los1Δ and pho88Δ involved in inorganic phopshate uptake. Further analysis revealed that inorganic phosphate deprivation causes transient, temperature-dependent nuclear accumulation of mature cytoplasmic tRNA within nuclei via a Mtr10- and retrograde-dependent pathway, providing a novel connection between tRNA subcellular dynamics and phosphate availability. PMID:17409072
Cracks dynamics under tensional stress - a DEM approach
NASA Astrophysics Data System (ADS)
Debski, Wojciech; Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Szpindler, Maciej
2017-04-01
Breaking and fragmentation of solid materials is an extremely complex process involving scales ranging from an atomic scale (breaking inter-atomic bounds) up to thousands of kilometers in case of catastrophic earthquakes (in energy scale it ranges from single eV up to 1024 J). Such a large scale span of breaking processes opens lot of questions like, for example, scaling of breaking processes, existence of factors controlling final size of broken area, existence of precursors, dynamics of fragmentation, to name a few. The classical approach to study breaking process at seismological scales, i.e., physical processes in earthquake foci, is essentially based on two factors: seismic data (mostly) and the continuum mechanics (including the linear fracture mechanics). Such approach has been gratefully successful in developing kinematic (first) and dynamic (recently) models of seismic rupture and explaining many of earthquake features observed all around the globe. However, such approach will sooner or latter face a limitation due to a limited information content of seismic data and inherit limitations of the fracture mechanics principles. A way of avoiding this expected limitation is turning an attention towards a well established in physics method of computational simulations - a powerful branch of contemporary physics. In this presentation we discuss preliminary results of analysis of fracturing dynamics under external tensional forces using the Discrete Element Method approach. We demonstrate that even under a very simplified tensional conditions, the fragmentation dynamics is a very complex process, including multi-fracturing, spontaneous fracture generation and healing, etc. We also emphasis a role of material heterogeneity on the fragmentation process.
An integrated optimum design approach for high speed prop-rotors including acoustic constraints
NASA Technical Reports Server (NTRS)
Chattopadhyay, Aditi; Wells, Valana; Mccarthy, Thomas; Han, Arris
1993-01-01
The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop multilevel decomposition optimization process. The procedures involve the consideration of blade-aeroelastic aerodynamic performance, structural-dynamic design requirements, and acoustics. Further, since the design involves consideration of several different objective functions, multiobjective function formulation techniques are developed.
Xiao, Fengqiu; Zheng, Zhiwei; Wang, Ya; Cui, Jifang; Chen, Yinghe
2015-08-01
The implicit association test (IAT) is a promising method used to assess individual implicit attitudes by indirectly measuring the strengths of associations between target and attribute categories. To date, the cognitive processes involved in the prosocial attitude IAT task have received little attention. The present study examined the temporal dynamics of the IAT that measures prosocial attitude using event-related potentials (ERPs). ERP results revealed enhanced N2 amplitudes for incongruent trials when compared with congruent trials and enhanced P300 amplitudes for congruent trials when compared with incongruent trials. In addition, the N2 amplitude differences were significantly correlated with individual prosocial behavior (the amount of donation). Our findings suggest that conflict monitoring and stimulus categorization processes are involved in the prosocial attitude IAT task and that the ERP indices of IATs that measure prosocial attitude may predict individual prosocial behavior.
On a Possible Unified Scaling Law for Volcanic Eruption Durations
Cannavò, Flavio; Nunnari, Giuseppe
2016-01-01
Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour. PMID:26926425
On a Possible Unified Scaling Law for Volcanic Eruption Durations.
Cannavò, Flavio; Nunnari, Giuseppe
2016-03-01
Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.
NASA Astrophysics Data System (ADS)
Eule, S.; Friedrich, R.
2013-03-01
Dynamical processes exhibiting non-Poissonian kinetics with nonexponential waiting times are frequently encountered in nature. Examples are biochemical processes like gene transcription which are known to involve multiple intermediate steps. However, often a second process, obeying Poissonian statistics, affects the first one simultaneously, such as the degradation of mRNA in the above example. The aim of the present article is to provide a concise treatment of such random systems which are affected by regular and non-Poissonian kinetics at the same time. We derive the governing master equation and provide a controlled approximation scheme for this equation. The simplest approximation leads to generalized reaction rate equations. For a simple model of gene transcription we solve the resulting equation and show how the time evolution is influenced significantly by the type of waiting time distribution assumed for the non-Poissonian process.
Stochastic Adaptive Estimation and Control.
1994-10-26
Marcus, "Language Stability and Stabilizability of Discrete Event Dynamical Systems ," SIAM Journal on Control and Optimization, 31, September 1993...in the hierarchical control of flexible manufacturing systems ; in this problem, the model involves a hybrid process in continuous time whose state is...of the average cost control problem for discrete- time Markov processes. Our exposition covers from finite to Borel state and action spaces and
Challenges and opportunities for improved understanding of regional climate dynamics
NASA Astrophysics Data System (ADS)
Collins, Matthew; Minobe, Shoshiro; Barreiro, Marcelo; Bordoni, Simona; Kaspi, Yohai; Kuwano-Yoshida, Akira; Keenlyside, Noel; Manzini, Elisa; O'Reilly, Christopher H.; Sutton, Rowan; Xie, Shang-Ping; Zolina, Olga
2018-01-01
Dynamical processes in the atmosphere and ocean are central to determining the large-scale drivers of regional climate change, yet their predictive understanding is poor. Here, we identify three frontline challenges in climate dynamics where significant progress can be made to inform adaptation: response of storms, blocks and jet streams to external forcing; basin-to-basin and tropical-extratropical teleconnections; and the development of non-linear predictive theory. We highlight opportunities and techniques for making immediate progress in these areas, which critically involve the development of high-resolution coupled model simulations, partial coupling or pacemaker experiments, as well as the development and use of dynamical metrics and exploitation of hierarchies of models.
Marino, Kristen A.; Filizola, Marta
2017-01-01
An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important—albeit static—pictures of how small molecules or peptides interact with their receptors. These high-resolution structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches. PMID:29188572
Marino, Kristen A; Filizola, Marta
2018-01-01
An increasing number of G protein-coupled receptor (GPCR) crystal structures provide important-albeit static-pictures of how small molecules or peptides interact with their receptors. These high-resolution structures represent a tremendous opportunity to apply molecular dynamics (MD) simulations to capture atomic-level dynamical information that is not easy to obtain experimentally. Understanding ligand binding and unbinding processes, as well as the related responses of the receptor, is crucial to the design of better drugs targeting GPCRs. Here, we discuss possible ways to study the dynamics involved in the binding of small molecules to GPCRs, using long timescale MD simulations or metadynamics-based approaches.
Dynamic Control of Plans with Temporal Uncertainty
NASA Technical Reports Server (NTRS)
Morris, Paul; Muscettola, Nicola; Vidal, Thierry
2001-01-01
Certain planning systems that deal with quantitative time constraints have used an underlying Simple Temporal Problem solver to ensure temporal consistency of plans. However, many applications involve processes of uncertain duration whose timing cannot be controlled by the execution agent. These cases require more complex notions of temporal feasibility. In previous work, various "controllability" properties such as Weak, Strong, and Dynamic Controllability have been defined. The most interesting and useful Controllability property, the Dynamic one, has ironically proved to be the most difficult to analyze. In this paper, we resolve the complexity issue for Dynamic Controllability. Unexpectedly, the problem turns out to be tractable. We also show how to efficiently execute networks whose status has been verified.
Fiebach, Christian J; Schubotz, Ricarda I
2006-05-01
This paper proposes a domain-general model for the functional contribution of ventral premotor cortex (PMv) and adjacent Broca's area to perceptual, cognitive, and motor processing. We propose to understand this frontal region as a highly flexible sequence processor, with the PMv mapping sequential events onto stored structural templates and Broca's Area involved in more complex, hierarchical or hypersequential processing. This proposal is supported by reference to previous functional neuroimaging studies investigating abstract sequence processing and syntactic processing.
A data-driven dynamics simulation framework for railway vehicles
NASA Astrophysics Data System (ADS)
Nie, Yinyu; Tang, Zhao; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2018-03-01
The finite element (FE) method is essential for simulating vehicle dynamics with fine details, especially for train crash simulations. However, factors such as the complexity of meshes and the distortion involved in a large deformation would undermine its calculation efficiency. An alternative method, the multi-body (MB) dynamics simulation provides satisfying time efficiency but limited accuracy when highly nonlinear dynamic process is involved. To maintain the advantages of both methods, this paper proposes a data-driven simulation framework for dynamics simulation of railway vehicles. This framework uses machine learning techniques to extract nonlinear features from training data generated by FE simulations so that specific mesh structures can be formulated by a surrogate element (or surrogate elements) to replace the original mechanical elements, and the dynamics simulation can be implemented by co-simulation with the surrogate element(s) embedded into a MB model. This framework consists of a series of techniques including data collection, feature extraction, training data sampling, surrogate element building, and model evaluation and selection. To verify the feasibility of this framework, we present two case studies, a vertical dynamics simulation and a longitudinal dynamics simulation, based on co-simulation with MATLAB/Simulink and Simpack, and a further comparison with a popular data-driven model (the Kriging model) is provided. The simulation result shows that using the legendre polynomial regression model in building surrogate elements can largely cut down the simulation time without sacrifice in accuracy.
Improving the Horizontal Transport in the Lower Troposphere with Four Dimensional Data Assimilation
The physical processes involved in air quality modeling are governed by dynamically-generated meteorological model fields. This research focuses on reducing the uncertainty in the horizontal transport in the lower troposphere by improving the four dimensional data assimilation (F...
ERIC Educational Resources Information Center
Johansen, Bjorn Tore
1997-01-01
A think-aloud technique, in which 20 orienteers verbalized their exact thoughts during orienteering, was used to examine the phenomenon of cognition during orienteering. Results indicate that orienteering is experienced as a task to be accomplished, a physical movement, and a dynamic process, and that thinking involves attuning perceptions to…
The time course of saccadic decision making: dynamic field theory.
Wilimzig, Claudia; Schneider, Stefan; Schöner, Gregor
2006-10-01
Making a saccadic eye movement involves two decisions, the decision to initiate the saccade and the selection of the visual target of the saccade. Here we provide a theoretical account for the time-courses of these two processes, whose instabilities are the basis of decision making. We show how the cross-over from spatial averaging for fast saccades to selection for slow saccades arises from the balance between excitatory and inhibitory processes. Initiating a saccade involves overcoming fixation, as can be observed in the countermanding paradigm, which we model accounting both for the temporal evolution of the suppression probability and its dependence on fixation activity. The interaction between the two forms of decision making is demonstrated by predicting how the cross-over from averaging to selection depends on the fixation stimulus in gap-step-overlap paradigms. We discuss how the activation dynamics of our model may be mapped onto neuronal structures including the motor map and the fixation cells in superior colliculus.
NASA Astrophysics Data System (ADS)
Huang, Yu Shan; Ku, Hui Yu; Tsai, Yun Chi; Chang, Chin Hao; Pao, Sih Hua; Sun, Y. Henry; Chiou, Arthur
2017-03-01
5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments.
Creative Cognition and Brain Network Dynamics
Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.
2015-01-01
Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223
Reconstruction of the evolution of microbial defense systems.
Puigbò, Pere; Makarova, Kira S; Kristensen, David M; Wolf, Yuri I; Koonin, Eugene V
2017-04-04
Evolution of bacterial and archaeal genomes is a highly dynamic process that involves intensive loss of genes as well as gene gain via horizontal transfer, with a lesser contribution from gene duplication. The rates of these processes can be estimated by comparing genomes that are linked by an evolutionary tree. These estimated rates of genome dynamics events substantially differ for different functional classes of genes. The genes involved in defense against viruses and other invading DNA are among those that are gained and lost at the highest rates. We employed a stochastic birth-and-death model to obtain maximum likelihood estimates of the rates of gain and loss of defense genes in 35 groups of closely related bacterial genomes and one group of archaeal genomes. We find that on average, the defense genes experience 1.4 fold higher flux than the rest of microbial genes. This excessive flux of defense genes over the genomic mean is consistent across diverse microbial groups. The few exceptions include intracellular parasites with small, degraded genomes that possess few defense systems which are more stable than in other microbes. Generally, defense genes follow the previously established pattern of genome dynamics, with gene family loss being about 3 times more common than gain and an order of magnitude more common than expansion or contraction of gene families. Case by case analysis of the evolutionary dynamics of defense genes indicates frequent multiple events in the same locus and widespread involvement of mobile elements in the gain and loss of defense genes. Evolution of microbial defense systems is highly dynamic but, notwithstanding the host-parasite arms race, generally follows the same trends that have been established for the rest of the genes. Apart from the paucity and the low flux of defense genes in parasitic bacteria with deteriorating genomes, there is no clear connection between the evolutionary regime of defense systems and microbial life style.
Binot, Aurelie; Duboz, Raphaël; Promburom, Panomsak; Phimpraphai, Waraphon; Cappelle, Julien; Lajaunie, Claire; Goutard, Flavie Luce; Pinyopummintr, Tanu; Figuié, Muriel; Roger, François Louis
2015-12-01
As Southeast Asia (SEA) is characterized by high human and domestic animal densities, growing intensification of trade, drastic land use changes and biodiversity erosion, this region appears to be a hotspot to study complex dynamics of zoonoses emergence and health issues at the Animal-Human-Environment interface. Zoonotic diseases and environmental health issues can have devastating socioeconomic and wellbeing impacts. Assessing and managing the related risks implies to take into account ecological and social dynamics at play, in link with epidemiological patterns. The implementation of a One Health ( OH ) approach in this context calls for improved integration among disciplines and improved cross-sectoral collaboration, involving stakeholders at different levels. For sure, such integration is not achieved spontaneously, implies methodological guidelines and has transaction costs. We explore pathways for implementing such collaboration in SEA context, highlighting the main challenges to be faced by researchers and other target groups involved in OH actions. On this basis, we propose a conceptual framework of OH integration. Throughout 3 components (field-based data management, professional training workshops and higher education), we suggest to develop a new culture of networking involving actors from various disciplines, sectors and levels (from the municipality to the Ministries) through a participatory modelling process, fostering synergies and cooperation. This framework could stimulate long-term dialogue process, based on the combination of case studies implementation and capacity building. It aims for implementing both institutional OH dynamics (multi-stakeholders and cross-sectoral) and research approaches promoting systems thinking and involving social sciences to follow-up and strengthen collective action.
Weinstein, Nathan; Ortiz-Gutiérrez, Elizabeth; Muñoz, Stalin; Rosenblueth, David A; Álvarez-Buylla, Elena R; Mendoza, Luis
2015-03-13
There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes. Here we propose a simplified model of the regulatory network that includes sufficient molecules involved in the control of both the cell cycle and cell differentiation in the C. elegans vulva to recover their dynamic behavior. We first infer both the topology and the update rules of the cell cycle module from an expected time series. Next, we use a symbolic algorithmic approach to find which interactions must be included in the regulatory network. Finally, we use a continuous-time version of the update rules for the cell cycle module to validate the cyclic behavior of the network, as well as to rule out the presence of potential artifacts due to the synchronous updating of the discrete model. We analyze the dynamical behavior of the model for the wild type and several mutants, finding that most of the results are consistent with published experimental results. Our model shows that the regulation of Notch signaling by the cell cycle preserves the potential of the VPCs and the three vulval fates to differentiate and de-differentiate, allowing them to remain completely responsive to the concentration of LIN-3 and lateral signal in the extracellular microenvironment.
True Triaxial Experimental Study of Rockbursts Induced By Ramp and Cyclic Dynamic Disturbances
NASA Astrophysics Data System (ADS)
Su, Guoshao; Hu, Lihua; Feng, Xiating; Yan, Liubin; Zhang, Gangliang; Yan, Sizhou; Zhao, Bin; Yan, Zhaofu
2018-04-01
A modified rockburst testing system was utilized to reproduce rockbursts induced by ramp and cyclic dynamic disturbances with a low-intermediate strain rate of 2 × 10-3-5 × 10-3 s-1 in the laboratory. The experimental results show that both the ramp and cyclic dynamic disturbances play a significant role in inducing rockbursts. In the tests of rockbursts induced by a ramp dynamic disturbance, as the static stress before the dynamic disturbance increases, both the strength of specimens and the kinetic energy of the ejected fragments first increase and then decrease. In the tests of rockbursts induced by a cyclic dynamic disturbance, there exists a rockburst threshold of the static stress and the dynamic disturbance amplitude, and the kinetic energy of the ejected fragments first increases and then decreases as the cyclic dynamic disturbance frequency increases. The main differences between rockbursts induced by ramp dynamic disturbances and those induced by cyclic dynamic disturbances are as follows: the rockburst development process of the former is characterized by an impact failure feature, while that of the latter is characterized by a fatigue failure feature; the damage evolution curve of the specimen of the former has a leap-developing form with a significant catastrophic feature, while that of the latter has an inverted S-shape with a remarkable fatigue damage characteristic; the energy mechanism of the former involves the ramp dynamic disturbance giving extra elastic strain energy to rocks, while that of the latter involves the cyclic dynamic disturbance decreasing the ultimate energy storage capacity of rocks.
Task modulates functional connectivity networks in free viewing behavior.
Seidkhani, Hossein; Nikolaev, Andrey R; Meghanathan, Radha Nila; Pezeshk, Hamid; Masoudi-Nejad, Ali; van Leeuwen, Cees
2017-10-01
In free visual exploration, eye-movement is immediately followed by dynamic reconfiguration of brain functional connectivity. We studied the task-dependency of this process in a combined visual search-change detection experiment. Participants viewed two (nearly) same displays in succession. First time they had to find and remember multiple targets among distractors, so the ongoing task involved memory encoding. Second time they had to determine if a target had changed in orientation, so the ongoing task involved memory retrieval. From multichannel EEG recorded during 200 ms intervals time-locked to fixation onsets, we estimated the functional connectivity using a weighted phase lag index at the frequencies of theta, alpha, and beta bands, and derived global and local measures of the functional connectivity graphs. We found differences between both memory task conditions for several network measures, such as mean path length, radius, diameter, closeness and eccentricity, mainly in the alpha band. Both the local and the global measures indicated that encoding involved a more segregated mode of operation than retrieval. These differences arose immediately after fixation onset and persisted for the entire duration of the lambda complex, an evoked potential commonly associated with early visual perception. We concluded that encoding and retrieval differentially shape network configurations involved in early visual perception, affecting the way the visual input is processed at each fixation. These findings demonstrate that task requirements dynamically control the functional connectivity networks involved in early visual perception. Copyright © 2017 Elsevier Inc. All rights reserved.
General approach and scope. [rotor blade design optimization
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Mantay, Wayne R.
1989-01-01
This paper describes a joint activity involving NASA and Army researchers at the NASA Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure will be closely coupled, while acoustics and airframe dynamics will be decoupled and be accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is to be integrated with the first three disciplines. Finally, in phase 3, airframe dynamics will be fully integrated with the other four disciplines. This paper deals with details of the phase 1 approach and includes details of the optimization formulation, design variables, constraints, and objective function, as well as details of discipline interactions, analysis methods, and methods for validating the procedure.
Between soap bubbles and vesicles: The dynamics of freely floating smectic bubbles
NASA Astrophysics Data System (ADS)
Stannarius, Ralf; May, Kathrin; Harth, Kirsten; Trittel, Torsten
2013-03-01
The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. We introduce freely floating bubbles of smectic liquid crystals and report their unique dynamic properties. Smectic bubbles can be used as simple models for dynamic studies of fluid membranes. In equilibrium, they form minimal surfaces like soap films. However, shape transformations of closed smectic membranes that change the surface area involve the formation and motion of molecular layer dislocations. These processes are slow compared to the capillary wave dynamics, therefore the effective surface tension is zero like in vesicles. Freely floating smectic bubbles are prepared from collapsing catenoid films and their dynamics is studied with optical high-speed imaging. Experiments are performed under normal gravity and in microgravity during parabolic flights. Supported by DLR within grant OASIS-Co.
Siódmiak, Jacek; Uher, Jan J; Santamaría-Holek, Ivan; Kruszewska, Natalia; Gadomski, Adam
2007-08-01
A superdiffusive random-walk action in the depletion zone around a growing protein crystal is considered. It stands for a dynamic boundary condition of the growth process and competes steadily with a quasistatic, curvature-involving (thermodynamic) free boundary condition, both of them contributing to interpret the (mainly late-stage) growth process in terms of a prototype ion-channeling effect. An overall diffusion function contains quantitative signatures of both boundary conditions mentioned and indicates whether the new phase grows as an orderly phase or a converse scenario occurs. This situation can be treated in a quite versatile way both numerically and analytically, within a generalized Smoluchowski framework. This study can help in (1) elucidating some dynamic puzzles of a complex crystal formation vs biomolecular aggregation, also those concerning ion-channel formation, and (2) seeing how ion-channel-type dynamics of non-Markovian nature may set properly the pace of model (dis)ordered protein aggregation.
Population Dynamics of Genetic Regulatory Networks
NASA Astrophysics Data System (ADS)
Braun, Erez
2005-03-01
Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.
Toward understanding dynamic annealing processes in irradiated ceramics
NASA Astrophysics Data System (ADS)
Myers, Michael Thomas
High energy particle irradiation inevitably generates defects in solids in the form of collision cascades. The ballistic formation and thermalization of cascades occur rapidly and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic an- nealing is crucial since such processes play an important role in the formation of stable post-irradiation disorder in ion-beam-processed semiconductors and determines the "radiation tolerance" of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken. First, the effects of dynamic annealing are investigated in ZnO, a technologically relevant material that exhibits very high dynamic defect annealing at room temper- ature. Such high dynamic annealing leads to unusual defect accumulation in heavy ion bombarded ZnO. Through this work, the puzzling features that were observed more than a decade ago in ion-channeling spectra have finally been explained. We show that the presence of a polar surface substantially alters damage accumulation. Non-polar surface terminations of ZnO are shown to exhibit enhanced dynamic an- nealing compared to polar surface terminated ZnO. Additionally, we demonstrate one method to reduce radiation damage in polar surface terminated ZnO by means of a surface modification. These results advance our efforts in the long-sought-after goal of understanding complex radiation damage processes in ceramics. Second, a pulsed-ion-beam method is developed and demonstrated in the case of Si as a prototypical non-metallic target. Such a method is shown to be a novel experimental technique for direct extraction of dynamic annealing parameters. The relaxation times and effective diffusion lengths of mobile defects during the dynamic annealing process play a vital role in damage accumulation. We demonstrate that these parameters dominate the formation of stable post-irradiation disorder. In Si, a defect lifetime of ˜ 6 ms and a characteristic defect diffusion length of ˜ 30 nm are measured. These results should nucleate future pulsed-beam studies of dynamic defect interaction processes in technologically relevant materials. In particular, un- derstanding length- and time-scales of defect interactions are essential for extending laboratory findings to nuclear material lifetimes and to the time-scales of geological storage of nuclear waste.
Molecular Dynamics Characterization of Protein Crystal Contacts in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Pellicane, Giuseppe; Smith, Graham; Sarkisov, Lev
2008-12-01
We employ nonequilibrium molecular dynamics simulation to characterize the effective interactions between lysozyme molecules involved in the formation of two hydrophobic crystal contacts. We show that the effective interactions between crystal contacts do not exceed a few kT, the range of the attractive part of the potential is less than 4 Å, and, within this range, there is a significant depletion of water density between two protein contacts. Our findings highlight the different natures of protein crystallization and protein recognition processes.
NASA Technical Reports Server (NTRS)
Dryer, M. (Editor); Tandberg-Hanssen, E.
1980-01-01
The symposium focuses on solar phenomena as the source of transient events propagating through the solar system, and theoretical and observational assessments of the dynamic processes involved in these events. The topics discussed include the life history of coronal structures and fields, coronal and interplanetary responses to long time scale phenomena, solar transient phenomena affecting the corona and interplanetary medium, coronal and interplanetary responses to short time scale phenomena, and future directions.
Metrics for comparing dynamic earthquake rupture simulations
Barall, Michael; Harris, Ruth A.
2014-01-01
Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.
Magnetospheric disturbance effects on the Equatorial Ionization Anomaly (EIA) - An overview
NASA Astrophysics Data System (ADS)
Abdu, M. A.; Sobral, J. H. A.; de Paula, E. R.; Batista, I. S.
1991-08-01
The EIA response to magnetospheric disturbance processes is reviewed. It is concluded that the direct penetration to equatorial latitudes of magnetospheric electric fields and the thermospheric disturbances involving winds, electric fields, and composition changes produce significant alteration in the EIA morphology and dynamics.
ERIC Educational Resources Information Center
Hubbard, James; And Others
To encourage the involvement of the community in mathematics, science, and technology education, some states and localities have formed alliances. This book outlines four key components of alliance building: process, environment, structure, and outcomes; and describes how changes in one component affect the others. It is designed to serve as a…
Practicing Improvisation: Preparing Multicultural Educators
ERIC Educational Resources Information Center
Hull, Karla
2015-01-01
Preparing competent multicultural educators involves a dynamic process requiring constant self-reflection and assisting pre-service teachers to sharpen their cultural vision as they learn to be responsive educators. Reflections on lessons learned as a teacher educator are shared through personal experiences that are identified as keys to prepare…
Differential dynamic microscopy to characterize Brownian motion and bacteria motility
NASA Astrophysics Data System (ADS)
Germain, David; Leocmach, Mathieu; Gibaud, Thomas
2016-03-01
We have developed a lab module for undergraduate students, which involves the process of quantifying the dynamics of a suspension of microscopic particles using Differential Dynamic Microscopy (DDM). DDM is a relatively new technique that constitutes an alternative method to more classical techniques such as dynamic light scattering (DLS) or video particle tracking (VPT). The technique consists of imaging a particle dispersion with a standard light microscope and a camera and analyzing the images using a digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM in the textbook case of colloids under Brownian motion, where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biological systems such as motile bacteria.
A New Role for Attentional Corticopetal Acetylcholine in Cortical Memory Dynamics
NASA Astrophysics Data System (ADS)
Fujii, Hiroshi; Kanamaru, Takashi; Aihara, Kazuyuki; Tsuda, Ichiro
2011-09-01
Although the role of corticopetal acetylcholine (ACh) in higher cognitive functions is increasingly recognized, the questions as (1) how ACh works in attention(s), memory dynamics and cortical state transitions, and also (2) why and how loss of ACh is involved in dysfunctions such as visual hallucinations in dementia with Lewy bodies and deficit of attention(s), are not well understood. From the perspective of a dynamical systems viewpoint, we hypothesize that transient ACh released under top-down attention serves to temporarily invoke attractor-like memories, while a background level of ACh reverses this process returning the dynamical nature of the memory structure back to attractor ruins (quasi-attractors). In fact, transient ACh loosens inhibitions of py ramidal neurons (PYRs) by P V+ fas t spiking (FS) i nterneurons, while a baseline ACh recovers inhibitory actions of P V+ FS. Attentional A Ch thus dynamically modifies brain's connectivity. Th e core of this process is in the depression of GABAergic inhibitory currents in PYRs due to muscarinic (probably M2 subtype) presyn aptic effects on GABAergic synapses of PV+ FS neurons
Dudschig, Carolin; Kaup, Barbara
2018-05-01
Human thought and language is traditionally considered as abstract, amodal, and symbolic. However, recent theories propose that high-level human cognition is directly linked to basic, modal biological systems such as sensorimotor areas. Despite this influential representational debate very little is known regarding whether the mechanisms involved in sensorimotor control are also shared with higher-level cognitive processes, such as language comprehension. We investigated negation as a universal of human language, addressing two key questions: (a) Does negation result in a conflict-like representation? (b) Does negation trigger executive control adjustments in a similar manner as standard information processing conflicts do (e.g., Simon, Flanker)? Electrophysiological data indicated that phrases such as "not left/not right" result in initial activation of the to-be-negated information and subsequently the outcome of the negation process. More importantly, our findings also suggest that negation triggers conflict-related adjustments in information processing in line with traditional conflict tasks. Trial-by-trial conflict adaptation patterns in both behavioral and electrophysiological data indicated that negation processing dynamically changes depending on the current cognitive state. In summary, negation processing results in cognitive conflict, and dynamic influences of the cognitive state determine conflict resolution, that is, negation implementation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders
2012-01-01
Background Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD. We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI). Result Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG), fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex–MTG–IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. Conclusions These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD. PMID:22889284
Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.
Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani
2017-10-14
Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.
Hertz, Uri; Amedi, Amir
2015-01-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756
Hertz, Uri; Amedi, Amir
2015-08-01
The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. © The Author 2014. Published by Oxford University Press.
The neural component-process architecture of endogenously generated emotion
Kanske, Philipp; Singer, Tania
2017-01-01
Abstract Despite the ubiquity of endogenous emotions and their role in both resilience and pathology, the processes supporting their generation are largely unknown. We propose a neural component process model of endogenous generation of emotion (EGE) and test it in two functional magnetic resonance imaging (fMRI) experiments (N = 32/293) where participants generated and regulated positive and negative emotions based on internal representations, usin self-chosen generation methods. EGE activated nodes of salience (SN), default mode (DMN) and frontoparietal control (FPCN) networks. Component processes implemented by these networks were established by investigating their functional associations, activation dynamics and integration. SN activation correlated with subjective affect, with midbrain nodes exclusively distinguishing between positive and negative affect intensity, showing dynamics consistent generation of core affect. Dorsomedial DMN, together with ventral anterior insula, formed a pathway supporting multiple generation methods, with activation dynamics suggesting it is involved in the generation of elaborated experiential representations. SN and DMN both coupled to left frontal FPCN which in turn was associated with both subjective affect and representation formation, consistent with FPCN supporting the executive coordination of the generation process. These results provide a foundation for research into endogenous emotion in normal, pathological and optimal function. PMID:27522089
Clinchy, Michael; Haydon, Daniel T; Smith, Andrew T
2002-04-01
Patch occupancy surveys are commonly used to parameterize metapopulation models. If isolation predicts patch occupancy, this is generally attributed to a balance between distance-dependent recolonization and spatially independent extinctions. We investigated whether similar patterns could also be generated by a process of spatially correlated extinctions following a unique colonization event (analogous to nonequilibrium processes in island biogeography). We simulated effects of spatially correlated extinctions on patterns of patch occupancy among pikas (Ochotona princeps) at Bodie, California, using randomly located extinction disks to represent the likely effects of predation. Our simulations produced similar patterns to those cited as evidence of balanced metapopulation dynamics. Simulations using a variety of disk sizes and patch configurations confirmed that our results are potentially applicable to a broad range of species and sites. Analyses of the observed patterns of patch occupancy at Bodie revealed little evidence of rescue effects and strong evidence that most recolonizations are ephemeral in nature. Persistence will be overestimated if static or declining patterns of patch occupancy are mistakenly attributed to dynamically stable metapopulation processes. Consequently, simple patch occupancy surveys should not be considered as substitutes for detailed experimental tests of hypothesized population processes, particularly when conservation concerns are involved.
Vilarroya, Oscar
2014-01-01
In this paper, I explore the notion of sensorimotor event as the building block of sensorimotor cognition. A sensorimotor event is presented here as a neurally controlled event that recruits those processes and elements that are necessary to address the demands of the situation in which the individual is involved. The notion of sensorimotor event is intended to subsume the dynamic, embodied, and embedded nature of sensorimotor cognition, in agreement with the satisficing and bricoleur approach to sensorimotor cognition presented elsewhere (Vilarroya, 2012). In particular, the notion of sensorimotor event encompasses those relevant neural processes, but also those bodily and environmental elements, that are necessary to deal with the situation in which the individual is involved. This continuum of neural processes as well as bodily and environmental elements can be characterized, and this characterization is considered the basis for the identification of the particular sensorimotor event. Among other consequences, the notion of sensorimotor event suggests a different approach to the classical account of sensory-input mapping onto a motor output. Instead of characterizing how a neural system responds to an external input, the idea defended here is to characterize how system-in-an-environment responds to its antecedent situation. PMID:24427133
Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H.
2009-01-01
Background Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. Methods We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and paediatric cardiology. This has permitted the preparation of three-dimensional (3-D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. Results We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. Conclusion We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.
2018-05-01
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less
Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures
Prisk, Timothy; Hoffmann, Christina; Kolesnikov, Alexander I.; ...
2018-05-09
Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here in this paper, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factormore » reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10–100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.« less
Ligand diffusion in proteins via enhanced sampling in molecular dynamics.
Rydzewski, J; Nowak, W
2017-12-01
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter. Copyright © 2017 Elsevier B.V. All rights reserved.
Understanding healthcare innovation systems: the Stockholm region case.
Larisch, Lisa-Marie; Amer-Wåhlin, Isis; Hidefjäll, Patrik
2016-11-21
Purpose There is an increasing interest in understanding how innovation processes can address current challenges in healthcare. The purpose of this paper is to analyze the wider socio-economic context and conditions for such innovation processes in the Stockholm region, using the functional dynamics approach to innovation systems (ISs). Design/methodology/approach The analysis is based on triangulation using data from 16 in-depth interviews, two workshops, and additional documents. Using the functional dynamics approach, critical structural and functional components of the healthcare IS were analyzed. Findings The analysis revealed several mechanisms blocking innovation processes such as fragmentation, lack of clear leadership, as well as insufficient involvement of patients and healthcare professionals. Furthermore, innovation is expected to occur linearly as a result of research. Restrictive rules for collaboration with industry, reimbursement, and procurement mechanisms limit entrepreneurial experimentation, commercialization, and spread of innovations. Research limitations/implications In this study, the authors analyzed how certain functions of the functional dynamics approach to ISs related to each other. The authors grouped knowledge creation, resource mobilization, and legitimacy as they jointly constitute conditions for needs articulation and entrepreneurial experimentation. The economic effects of entrepreneurial experimentation and needs articulation are mainly determined by the stage of market formation and existence of positive externalities. Social implications Stronger user involvement; a joint innovation strategy for healthcare, academia, and industry; and institutional reform are necessary to remove blocking mechanisms that today prevent innovation from occurring. Originality/value This study is the first to provide an analysis of the system of innovation in healthcare using a functional dynamics approach, which has evolved as a tool for public policy making. A better understanding of ISs in general, and in healthcare in particular, may provide the basis for designing and evaluating innovation policy.
Dynamical evolution of globular-cluster systems in clusters of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzio, J.C.
1987-04-01
The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.
Parameter estimating state reconstruction
NASA Technical Reports Server (NTRS)
George, E. B.
1976-01-01
Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.
NASA Technical Reports Server (NTRS)
Ottino, Julio M.
1991-01-01
Computer flow simulation aided by dynamical systems analysis is used to investigate the kinematics of time-periodic vortex shedding past a two-dimensional circular cylinder in the context of the following general questions: (1) Is a dynamical systems viewpoint useful in the understanding of this and similar problems involving time-periodic shedding behind bluff bodies; and (2) Is it indeed possible, by adopting such a point of view, to complement previous analyses or to understand kinematical aspects of the vortex shedding process that somehow remained hidden in previous approaches. We argue that the answers to these questions are positive. Results are described.
Rate Kinetics and Molecular Dynamics of the Structural Transitions in Amyloidogenic Proteins
NASA Astrophysics Data System (ADS)
Steckmann, Timothy M.
Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's and others. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. Amyloid fibrils are composed of proteins that originate in an innocuous alpha-helix or random-coil structure. The alpha-helices convert their structure to beta-strands that aggregate into beta-sheets, and then into protofibrils, and ultimately into fully formed amyloid fibrils. On the basis of experimental data, I have developed a mathematical model for the kinetics of the reaction pathways and determined rate parameters for peptide secondary structural conversion and aggregation during the entire fibrillogenesis process from random coil to fibrils, including the molecular species that accelerate the conversions. The specific steps of the model and the rate constants that are determined by fitting to experimental data provide insight on the molecular species involved in the fibril formation process. To better understand the molecular basis of the protein structural transitions and aggregation, I report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccbeta, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow beta-hairpin proteins to straighten, and the subsequent formation of interchain hydrogen bonds during aggregation into amyloid fibrils. For my MD simulations, I found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccbeta protein experiences during the process of forming protofibrillar structures. Both the mathematical modeling of the kinetics and the MD simulations show that molecular structural heterogeneity is a major factor in the process. The MD simulations also show that intrachain and interchain hydrogen bonds breaking and forming is strongly correlated to the process of amyloid formation.
Singlet-to-triplet intermediates and triplet exciton dynamics in pentacene thinfilms
NASA Astrophysics Data System (ADS)
Thorsmolle, Verner; Korber, Michael; Obergfell, Emanuel; Kuhlman, Thomas; Campbell, Ian; Crone, Brian; Taylor, Antoinette; Averitt, Richard; Demsar, Jure
Singlet-to-triplet fission in organic semiconductors is a spin-conserving multiexciton process in which one spin-zero singlet excitation is converted into two spin-one triplet excitations on an ultrafast timescale. Current scientific interest into this carrier multiplication process is largely driven by prospects of enhancing the efficiency in photovoltaic applications by generating two long-lived triplet excitons by one photon. The fission process is known to involve intermediate states, known as correlated triplet pairs, with an overall singlet character, before being interchanged into uncorrelated triplets. Here we use broadband femtosecond real-time spectroscopy to study the excited state dynamics in pentacene thin films, elucidating the fission process and the role of intermediate triplet states. VKT and AJT acknowledge support by the LDRD program at Los Alamos National Laboratory and the Department of Energy, Grant No. DE-FG02-04ER118. MK, MO and JD acknowledge support by the Alexander von Humboldt Foundation.
Smart in Everything Except School.
ERIC Educational Resources Information Center
Getman, G. N.
This book focuses on the prevention of academic failure through focus on developmental processes (especially development of essential visual skills) within the individual learner. A distinction is made between sight and vision with vision involving the entire person and his/her learning experiences The first chapter examines "The Dynamics of the…
From Needs to Wants: Motivation and the Language Learner.
ERIC Educational Resources Information Center
Ladousse, Gillian Porter
1982-01-01
Discusses theories of motivation in foreign language learning especially as an interactional, dynamic process focusing on how diffuse needs become channeled into wants through behavior itself. Sociological issues involved include the personality model of the learner and the institutional setting where language is being taught. (Author/BK)
Rote or Raft? Science and Adventure at a Summer Camp.
ERIC Educational Resources Information Center
Martin, Jenni
1997-01-01
Describes the group dynamics, science discovery processes, and activities involved in building a raft at camp. The project used recycled products and required group cooperation; critical thinking about density, buoyancy, and balance; use of familiar resources in creative ways; and application of previously learned facts. (SAS)
Transforming Business Communication by Building on Forman's Translation Metaphor.
ERIC Educational Resources Information Center
Sherblom, John C.
1998-01-01
Responds to an article in this issue. Reconceptualizes translation as a bidirectional, dynamically negotiated process that occurs within and between communities of scholars and that transforms the language, the person of the translator, the communities involved, and the cultural expectations. Argues that conception of translation predicts a…
ERIC Educational Resources Information Center
Panis, Sven; Wagemans, Johan
2009-01-01
To study the dynamic interplay between different component processes involved in the identification of fragmented object outlines, the authors used a discrete-identification paradigm in which the masked presentation duration of fragmented object outlines was repeatedly increased until correct naming occurred. Survival analysis was used to…
The Contribution of Visualization to Learning Computer Architecture
ERIC Educational Resources Information Center
Yehezkel, Cecile; Ben-Ari, Mordechai; Dreyfus, Tommy
2007-01-01
This paper describes a visualization environment and associated learning activities designed to improve learning of computer architecture. The environment, EasyCPU, displays a model of the components of a computer and the dynamic processes involved in program execution. We present the results of a research program that analysed the contribution of…
Deliberating International Science Policy Controversies: Uncertainty and AIDS in South Africa
ERIC Educational Resources Information Center
Paroske, Marcus
2009-01-01
International science policy controversies involve disputes over cultural differences in the assessment of knowledge claims and competing visions of the policy-making process between different nations. This essay analyzes these dynamics in the recent controversy surrounding AIDS policy in South Africa. It develops the notion of an epistemological…
Dehistoricized Cultural Identity and Cultural Othering
ERIC Educational Resources Information Center
Weiguo, Qu
2013-01-01
The assumption that each culture has its own distinctive identity has been generally accepted in the discussion of cultural identities. Quite often identity formation is not perceived as a dynamic and interactive ongoing process that engages other cultures and involves change in its responses to different challenges at different times. I will…
Silenced Voices: Learning about Early Childhood Programs in the South East Asian Region.
ERIC Educational Resources Information Center
MacNaughton, Glenda
1996-01-01
Explores political, cultural, historical, and economic dynamics of the Asian region. Suggests how English-speaking Australians might begin the process of learning about early childhood programs in Asia. Addresses political and practical challenges that monolingual, English-speaking Australians face when involved in cross-cultural exchanges with…
A Guide to Curriculum Planning in Reading. Bulletin No. 6305.
ERIC Educational Resources Information Center
Wisconsin State Dept. of Public Instruction, Madison.
Defining reading as a dynamic, interactive process involving the reader in constructing meaning, this guide for the elementary and secondary curriculum was designed to facilitate effective and creative decision making by teachers for (1) integrating reading and writing across the curriculum, (2) developing readers who can independently apply…
Doing "Business as Usual": Dynamics of Voice in Community Organizing Talk
ERIC Educational Resources Information Center
O'Connor, Kevin; Hanny, Courtney; Lewis, Cameron
2011-01-01
This article examines discourse in a community change project committed to undoing "business as usual"--attempts to "fix" problems within the community without involvement of residents in the process. We show how, despite commitments to recognizing community "voice," participants' orientation to powerful "centering institutions" (Jan Blommaert…
NASA Astrophysics Data System (ADS)
Zion, Michal; Schwartz, Renee S.; Rimerman-Shmueli, Esther; Adler, Idit
2018-05-01
One of today's challenges in science education involves the development of appropriate conceptions of inquiry teaching and realizing how these experiences can support students' understanding of the nature of science and inquiry (NOS and NOSI). To meet this challenge, we developed a course for in-service science teachers, in which explicit-reflective instruction of NOS was coupled with an open inquiry process. This process included documentation tools adjusted to emphasize the dynamic, logical, and reflective aspects of scientific inquiry. Teachers' documentations, reflections, and questionnaires were examined for indications of perceptual connection between comprehending the essence of dynamic open inquiry and understanding certain NOS tenets. The results indicated that the in-service teachers experienced all criteria of dynamic open inquiry, however not to the same extent. By focusing on four teachers who clearly addressed changes in their perspective of NOS and NOSI, we were able to examine the nature of those changes, and relate them to the teachers' personal experiences and perceptions of the characteristics of dynamic open inquiry. Our results suggest that the participants' personal experiences and perceptions of the dynamic characteristics of open inquiry play a crucial role in shaping their understanding of NOS and NOSI. The findings of this research underscore the importance of enhancing teachers' personal experiences and perceptions of the dynamic characteristics of open inquiry, as a vehicle to improve their understanding of NOS and NOSI.
NASA Astrophysics Data System (ADS)
Moebius, F.; Or, D.
2012-04-01
Many natural and engineering processes involve motion of fluid fronts in porous media, from infiltration and drainage in hydrology to reservoir management in petroleum engineering. Macroscopically smooth and continuous motion of displacement fronts involves numerous rapid interfacial jumps and local reconfigurations. Detailed observations of displacement processes in micromodels illustrate the wide array of fluid interfacial dynamics ranging from irregular jumping-pinning motions to gradual pore scale invasions. The pressure fluctuations associated with interfacial motions reflect not only pore geometry (as traditionally hypothesized) but there is a strong influence of boundary conditions (e.g., mean drainage rate). The time scales associated with waiting time distribution of individual invasion events and decay time of inertial oscillations (following a rapid interfacial jump) provide a means for distinguishing between displacement regimes. Direct observations using high-speed camera combined with concurrent pressure signal measurements were instrumental in clarifying influences of flow rates, pore size, and gravity on burst size distribution and waiting times. We compared our results with the early experimental and theoretical study on burst size and waiting time distribution during slow drainage processes of Måløy et al. [Måløy et al., 1992]. Results provide insights on critical invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment behind leading to hysteresis. Måløy, K. J., L. Furuberg, J. Feder, and T. Jossang (1992), Dynamics of Slow Drainage in Porous-Media, Phys Rev Lett, 68(14), 2161-2164.
Role for syn-eruptive plagioclase disequilibrium crystallisation in basaltic magma ascent dynamics
NASA Astrophysics Data System (ADS)
La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Arzilli, Fabio
2017-04-01
Magma ascent dynamics in volcanic conduits play a key role in determining the eruptive style of a volcano. The lack of direct observations inside the conduit means that numerical conduit models, constrained with observational data, provide invaluable tools for quantitative insights into complex magma ascent dynamics. The highly nonlinear, interdependent processes involved in magma ascent dynamics require several simplifications when modelling their ascent. For example, timescales of magma ascent in conduit models are typically assumed to be much longer than crystallisation and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallisation and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Using observations from Mount Etna's 2001 eruption and a magma ascent model we are able to constrain timescales for crystallisation and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were 1 h. Furthermore, we have related the amount of plagioclase in erupted products with the ascent dynamics of basaltic eruptions. We find that relatively high plagioclase content requires crystallisation in a shallow reservoir, whilst a low plagioclase content reflects a disequilibrium crystallisation occurring during a fast ascent from depth to the surface. Using these new constraints on disequilibrium plagioclase crystallisation we also reproduce observed crystal abundances for different basaltic eruptions: Etna 2002/2003, Stromboli 2007 (effusive eruption) and 1930 (paroxysm) and different Pu'u' O'o eruptions at Kilauea (episodes 49-53). Therefore, our results show that disequilibrium processes play a key role on the ascent dynamics of basaltic magmas and cannot be neglected when describing basaltic eruptions. Quantifying the characteristic times for crystallisation and exsolution represents a major step towards a more complete, realistic and general model of basaltic volcanism
A Process for the Creation of T-MATS Propulsion System Models from NPSS data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Trademark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
A Process for the Creation of T-MATS Propulsion System Models from NPSS Data
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.
Nonequilibrium dynamics of the phonon gas in ultrafast-excited antimony
NASA Astrophysics Data System (ADS)
Krylow, Sergej; Zijlstra, Eeuwe S.; Kabeer, Fairoja Cheenicode; Zier, Tobias; Bauerhenne, Bernd; Garcia, Martin E.
2017-12-01
The ultrafast relaxation dynamics of a nonequilibrium phonon gas towards thermal equilibrium involves many-body collisions that cannot be properly described by perturbative approaches. Here, we develop a nonperturbative method to elucidate the microscopic mechanisms underlying the decay of laser-excited coherent phonons in the presence of electron-hole pairs, which so far are not fully understood. Our theory relies on ab initio molecular dynamics simulations on laser-excited potential-energy surfaces. Those simulations are compared with runs in which the laser-excited coherent phonon is artificially deoccupied. We apply this method to antimony and show that the decay of the A1 g phonon mode at low laser fluences can be accounted mainly to three-body down-conversion processes of an A1 g phonon into acoustic phonons. For higher excitation strengths, however, we see a crossover to a four-phonon process, in which two A1 g phonons decay into two optical phonons.
Bittorf, A.; Diepgen, T. L.
1996-01-01
The World Wide Web (WWW) is becoming the major way of acquiring information in all scientific disciplines as well as in business. It is very well suitable for fast distribution and exchange of up to date teaching resources. However, to date most teaching applications on the Web do not use its full power by integrating interactive components. We have set up a computer based training (CBT) framework for Dermatology, which consists of dynamic lecture scripts, case reports, an atlas and a quiz system. All these components heavily rely on an underlying image database that permits the creation of dynamic documents. We used a demon process that keeps the database open and can be accessed using HTTP to achieve better performance and avoid the overhead involved by starting CGI-processes. The result of our evaluation was very encouraging. Images Figure 3 PMID:8947625
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.
Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing
2017-05-30
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
When anticipation beats accuracy: Threat alters memory for dynamic scenes.
Greenstein, Michael; Franklin, Nancy; Martins, Mariana; Sewack, Christine; Meier, Markus A
2016-05-01
Threat frequently leads to the prioritization of survival-relevant processes. Much of the work examining threat-related processing advantages has focused on the detection of static threats or long-term memory for details. In the present study, we examined immediate memory for dynamic threatening situations. We presented participants with visually neutral, dynamic stimuli using a representational momentum (RM) paradigm, and manipulated threat conceptually. Although the participants in both the threatening and nonthreatening conditions produced classic RM effects, RM was stronger for scenarios involving threat (Exps. 1 and 2). Experiments 2 and 3 showed that this effect does not generalize to the nonthreatening objects within a threatening scene, and that it does not extend to arousing happy situations. Although the increased RM effect for threatening objects by definition reflects reduced accuracy, we argue that this reduced accuracy may be offset by a superior ability to predict, and thereby evade, a moving threat.
Employment of CB models for non-linear dynamic analysis
NASA Technical Reports Server (NTRS)
Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.
1990-01-01
The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.
The Center for Multiscale Plasma Dynamics, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gombosi, Tamas I.
The University of Michigan participated in the joint UCLA/Maryland fusion science center focused on plasma physics problems for which the traditional separation of the dynamics into microscale and macroscale processes breaks down. These processes involve large scale flows and magnetic fields tightly coupled to the small scale, kinetic dynamics of turbulence, particle acceleration and energy cascade. The interaction between these vastly disparate scales controls the evolution of the system. The enormous range of temporal and spatial scales associated with these problems renders direct simulation intractable even in computations that use the largest existing parallel computers. Our efforts focused on twomore » main problems: the development of Hall MHD solvers on solution adaptive grids and the development of solution adaptive grids using generalized coordinates so that the proper geometry of inertial confinement can be taken into account and efficient refinement strategies can be obtained.« less
Pavan, Andrea; Ghin, Filippo; Donato, Rita; Campana, Gianluca; Mather, George
2017-08-15
A long-held view of the visual system is that form and motion are independently analysed. However, there is physiological and psychophysical evidence of early interaction in the processing of form and motion. In this study, we used a combination of Glass patterns (GPs) and repetitive Transcranial Magnetic Stimulation (rTMS) to investigate in human observers the neural mechanisms underlying form-motion integration. GPs consist of randomly distributed dot pairs (dipoles) that induce the percept of an oriented stimulus. GPs can be either static or dynamic. Dynamic GPs have both a form component (i.e., orientation) and a non-directional motion component along the orientation axis. GPs were presented in two temporal intervals and observers were asked to discriminate the temporal interval containing the most coherent GP. rTMS was delivered over early visual area (V1/V2) and over area V5/MT shortly after the presentation of the GP in each interval. The results showed that rTMS applied over early visual areas affected the perception of static GPs, but the stimulation of area V5/MT did not affect observers' performance. On the other hand, rTMS was delivered over either V1/V2 or V5/MT strongly impaired the perception of dynamic GPs. These results suggest that early visual areas seem to be involved in the processing of the spatial structure of GPs, and interfering with the extraction of the global spatial structure also affects the extraction of the motion component, possibly interfering with early form-motion integration. However, visual area V5/MT is likely to be involved only in the processing of the motion component of dynamic GPs. These results suggest that motion and form cues may interact as early as V1/V2. Copyright © 2017 Elsevier Inc. All rights reserved.
DNA topology and transcription
Kouzine, Fedor; Levens, David; Baranello, Laura
2014-01-01
Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522
Creative Cognition and Brain Network Dynamics.
Beaty, Roger E; Benedek, Mathias; Silvia, Paul J; Schacter, Daniel L
2016-02-01
Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relation, tend to cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.
Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella
2013-12-18
Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.
NASA Astrophysics Data System (ADS)
Kumagai, Takashi
2015-08-01
Hydrogen(H)-bond dynamics are involved in many elementary processes in chemistry and biology. Because of its fundamental importance, a variety of experimental and theoretical approaches have been employed to study the dynamics in gas, liquid, solid phases, and their interfaces. This review describes the recent progress of direct observation and control of H-bond dynamics in several model systems on a metal surface by using low-temperature scanning tunneling microscopy (STM). General aspects of H-bond dynamics and the experimental methods are briefly described in chapter 1 and 2. In the subsequent four chapters, I present direct observation of an H-bond exchange reaction within a single water dimer (chapter 3), a symmetric H bond (chapter 4) and H-atom relay reactions (chapter 5) within water-hydroxyl complexes, and an intramolecular H-atom transfer reaction (tautomerization) within a single porphycene molecule (chapter 6). These results provide novel microscopic insights into H-bond dynamics at the single-molecule level, and highlight significant impact on the process from quantum effects, namely tunneling and zero-point vibration, resulting from the small mass of H atom. Additionally, local environmental effect on H-bond dynamics is also examined by using atom/molecule manipulation with the STM.
Plat, Rika; Lowie, Wander; de Bot, Kees
2018-01-01
Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages. PMID:29403404
Mechanochemical Modeling of Dynamic Microtubule Growth Involving Sheet-to-Tube Transition
Ji, Xiang-Ying; Feng, Xi-Qiao
2011-01-01
Microtubule dynamics is largely influenced by nucleotide hydrolysis and the resultant tubulin configuration changes. The GTP cap model has been proposed to interpret the stabilizing mechanisms of microtubule growth from the view of hydrolysis effects. Besides, the growth of a microtubule involves the closure of a curved sheet at its growing end. The curvature conversion from the longitudinal direction to the circumferential direction also helps to stabilize the successive growth, and the curved sheet is referred to as the conformational cap. However, there still lacks theoretical investigation on the mechanical–chemical coupling growth process of microtubules. In this paper, we study the growth mechanisms of microtubules by using a coarse-grained molecular method. First, the closure process involving a sheet-to-tube transition is simulated. The results verify the stabilizing effect of the sheet structure and predict that the minimum conformational cap length that can stabilize the growth is two dimers. Then, we show that the conformational cap and the GTP cap can function independently and harmoniously, signifying the pivotal role of mechanical factors. Furthermore, based on our theoretical results, we describe a Tetris-like growth style of microtubules: the stochastic tubulin assembly is regulated by energy and harmonized with the seam zipping such that the sheet keeps a practically constant length during growth. PMID:22205994
Design Challenges in Converting a Paper Checklist to Digital Format for Dynamic Medical Settings
Sarcevic, Aleksandra; Rosen, Brett J.; Kulp, Leah J.; Marsic, Ivan; Burd, Randall S.
2016-01-01
We describe a mobile digital checklist that we designed and developed for trauma resuscitation—a dynamic, fast-paced medical process of treating severely injured patients. The checklist design was informed by our analysis of user interactions with a paper checklist that was introduced to improve team performance during resuscitations. The design process followed an iterative approach and involved several medical experts. We discuss design challenges in converting a paper checklist to its digital counterpart, as well as our approaches for addressing those challenges. While we show that using a digital checklist during a fast-paced medical event is feasible, we also recognize several design constraints, including limited display size, difficulties in entering notes about the medical process and patient, and difficulties in replicating user experience with paper checklists. PMID:28480116
Neural dynamics of speech act comprehension: an MEG study of naming and requesting.
Egorova, Natalia; Pulvermüller, Friedemann; Shtyrov, Yury
2014-05-01
The neurobiological basis and temporal dynamics of communicative language processing pose important yet unresolved questions. It has previously been suggested that comprehension of the communicative function of an utterance, i.e. the so-called speech act, is supported by an ensemble of neural networks, comprising lexico-semantic, action and mirror neuron as well as theory of mind circuits, all activated in concert. It has also been demonstrated that recognition of the speech act type occurs extremely rapidly. These findings however, were obtained in experiments with insufficient spatio-temporal resolution, thus possibly concealing important facets of the neural dynamics of the speech act comprehension process. Here, we used magnetoencephalography to investigate the comprehension of Naming and Request actions performed with utterances controlled for physical features, psycholinguistic properties and the probability of occurrence in variable contexts. The results show that different communicative actions are underpinned by a dynamic neural network, which differentiates between speech act types very early after the speech act onset. Within 50-90 ms, Requests engaged mirror-neuron action-comprehension systems in sensorimotor cortex, possibly for processing action knowledge and intentions. Still, within the first 200 ms of stimulus onset (100-150 ms), Naming activated brain areas involved in referential semantic retrieval. Subsequently (200-300 ms), theory of mind and mentalising circuits were activated in medial prefrontal and temporo-parietal areas, possibly indexing processing of intentions and assumptions of both communication partners. This cascade of stages of processing information about actions and intentions, referential semantics, and theory of mind may underlie dynamic and interactive speech act comprehension.
Numerical grid generation in computational field simulations. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, B.K.; Thompson, J.F.; Haeuser, J.
1996-12-31
To enhance the CFS technology to its next level of applicability (i.e., to create acceptance of CFS in an integrated product and process development involving multidisciplinary optimization) the basic requirements are: rapid turn-around time, reliable and accurate simulation, affordability and appropriate linkage to other engineering disciplines. In response to this demand, there has been a considerable growth in the grid generation related research activities involving automization, parallel processing, linkage with the CAD-CAM systems, CFS with dynamic motion and moving boundaries, strategies and algorithms associated with multi-block structured, unstructured, hybrid, hexahedral, and Cartesian grids, along with its applicability to various disciplinesmore » including biomedical, semiconductor, geophysical, ocean modeling, and multidisciplinary optimization.« less
Where do we stand after twenty years of dynamic triggering studies? (Invited)
NASA Astrophysics Data System (ADS)
Prejean, S. G.; Hill, D. P.
2013-12-01
In the past two decades, remote dynamic triggering of earthquakes by other earthquakes has been explored in a variety of physical environments with a wide array of observation and modeling techniques. These studies have significantly refined our understanding of the state of the crust and the physical conditions controlling earthquake nucleation. Despite an ever growing database of dynamic triggering observations, significant uncertainties remain and vigorous debate in almost all aspects of the science continues. For example, although dynamic earthquake triggering can occur with peak dynamic stresses as small as 1 kPa, triggering thresholds and their dependence on local stress state, hydrological environment, and frictional properties of faults are not well understood. Some studies find a simple threshold based on the peak amplitude of shaking while others find dependencies on frequency, recharge time, and other parameters. Considerable debate remains over the range of physical processes responsible for dynamic triggering, and the wide variation in dynamic triggering responses and time scales suggests triggering by multiple physical processes. Although Coulomb shear failure with various friction laws can often explain dynamic triggering, particularly instantaneous triggering, delayed dynamic triggering may be dependent on fluid transport and other slowly evolving aseismic processes. Although our understanding of the global distribution of dynamic triggering has improved, it is far from complete due to spatially uneven monitoring. A major challenge involves establishing statistical significance of potentially triggered earthquakes, particularly if they are isolated events or time-delayed with respect to triggering stresses. Here we highlight these challenges and opportunities with existing data. We focus on environmental dependence of dynamic triggering by large remote earthquakes particularly in volcanic and geothermal systems, as these systems often have high rates of background seismicity. In many volcanic and geothermal systems, such as the Geysers in Northern California, dynamic triggering of micro-earthquakes is frequent and predictable. In contrast, most active and even erupting volcanoes in Alaska (with the exception of the Katmai Volcanic Cluster) do not experience dynamic triggering. We explore why.
Co-transcriptional nuclear actin dynamics
Percipalle, Piergiorgio
2013-01-01
Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified. PMID:23138849
Ulrich, Martin; Adams, Sarah C; Kiefer, Markus
2014-11-01
In classical theories of attention, unconscious automatic processes are thought to be independent of higher-level attentional influences. Here, we propose that unconscious processing depends on attentional enhancement of task-congruent processing pathways implemented by a dynamic modulation of the functional communication between brain regions. Using functional magnetic resonance imaging, we tested our model with a subliminally primed lexical decision task preceded by an induction task preparing either a semantic or a perceptual task set. Subliminal semantic priming was significantly greater after semantic compared to perceptual induction in ventral occipito-temporal (vOT) and inferior frontal cortex, brain areas known to be involved in semantic processing. The functional connectivity pattern of vOT varied depending on the induction task and successfully predicted the magnitude of behavioral and neural priming. Together, these findings support the proposal that dynamic establishment of functional networks by task sets is an important mechanism in the attentional control of unconscious processing. © 2014 Wiley Periodicals, Inc.
Empirical studies of design software: Implications for software engineering environments
NASA Technical Reports Server (NTRS)
Krasner, Herb
1988-01-01
The empirical studies team of MCC's Design Process Group conducted three studies in 1986-87 in order to gather data on professionals designing software systems in a range of situations. The first study (the Lift Experiment) used thinking aloud protocols in a controlled laboratory setting to study the cognitive processes of individual designers. The second study (the Object Server Project) involved the observation, videotaping, and data collection of a design team of a medium-sized development project over several months in order to study team dynamics. The third study (the Field Study) involved interviews with the personnel from 19 large development projects in the MCC shareholders in order to study how the process of design is affected by organizationl and project behavior. The focus of this report will be on key observations of design process (at several levels) and their implications for the design of environments.
Single-spin observables and orbital structures in hadronic distributions
NASA Astrophysics Data System (ADS)
Sivers, Dennis
2006-11-01
Single-spin observables in scattering processes (either analyzing powers or polarizations) are highly constrained by rotational invariance and finite symmetries. For example, it is possible to demonstrate that all single-spin observables are odd under the finite transformation O=PAτ where P is parity and Aτ is a finite symmetry that can be designated “artificial time reversal”. The operators P, O and Aτ all have eigenvalues ±1 so that all single-spin observables can be classified into two distinct categories: (1) P-odd and Aτ-even, (2) P-even and Aτ-odd. Within the light-quark sector of the standard model, P-odd observables are generated from pointlike electroweak processes while Aτ-odd observables (neglecting quark mass parameters) come from dynamic spin-orbit correlations within hadrons or within larger composite systems, such as nuclei. The effects of Aτ-odd dynamics can be inserted into transverse-momentum dependent constituent distribution functions and, in this paper, we construct the contribution from an orbital quark to the Aτ-odd quark parton distribution ΔNGq/p↑front(x,kTN;μ2). Using this distribution, we examine the crucial role of initial- and final-state interactions in the observation of the scattering asymmetries in different hard-scattering processes. This construction provides a geometrical and dynamical interpretation of the Collins conjugation relation between single-spin asymmetries in semi-inclusive deep inelastic scattering and the asymmetries in Drell-Yan production. Finally, our construction allows us to display a significant difference between the calculation of a spin asymmetry generated by a hard-scattering mechanism involving color-singlet exchange (such as a photon) and a calculation of an asymmetry with a hard-scattering exchange involving gluons. This leads to an appreciation of the process-dependence inherent in measurements of single-spin observables.
NASA Technical Reports Server (NTRS)
Ragan, R.
1982-01-01
General problems faced by hydrologists when using historical records, real time data, statistical analysis, and system simulation in providing quantitative information on the temporal and spatial distribution of water are related to the limitations of these data. Major problem areas requiring multispectral imaging-based research to improve hydrology models involve: evapotranspiration rates and soil moisture dynamics for large areas; the three dimensional characteristics of bodies of water; flooding in wetlands; snow water equivalents; runoff and sediment yield from ungaged watersheds; storm rainfall; fluorescence and polarization of water and its contained substances; discriminating between sediment and chlorophyll in water; role of barrier island dynamics in coastal zone processes; the relationship between remotely measured surface roughness and hydraulic roughness of land surfaces and stream networks; and modeling the runoff process.
The histone codes for meiosis.
Wang, Lina; Xu, Zhiliang; Khawar, Muhammad Babar; Liu, Chao; Li, Wei
2017-09-01
Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field. © 2017 Society for Reproduction and Fertility.
Modelling information dissemination under privacy concerns in social media
NASA Astrophysics Data System (ADS)
Zhu, Hui; Huang, Cheng; Lu, Rongxing; Li, Hui
2016-05-01
Social media has recently become an important platform for users to share news, express views, and post messages. However, due to user privacy preservation in social media, many privacy setting tools are employed, which inevitably change the patterns and dynamics of information dissemination. In this study, a general stochastic model using dynamic evolution equations was introduced to illustrate how privacy concerns impact the process of information dissemination. Extensive simulations and analyzes involving the privacy settings of general users, privileged users, and pure observers were conducted on real-world networks, and the results demonstrated that user privacy settings affect information differently. Finally, we also studied the process of information diffusion analytically and numerically with different privacy settings using two classic networks.
ON THE DYNAMICAL DERIVATION OF EQUILIBRIUM STATISTICAL MECHANICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prigogine, I.; Balescu, R.; Henin, F.
1960-12-01
Work on nonequilibrium statistical mechanics, which allows an extension of the kinetic proof to all results of equilibrium statistical mechanics involving a finite number of degrees of freedom, is summarized. As an introduction to the general N-body problem, the scattering theory in classical mechanics is considered. The general N-body problem is considered for the case of classical mechanics, quantum mechanics with Boltzmann statistics, and quantum mechanics including quantum statistics. Six basic diagrams, which describe the elementary processes of the dynamics of correlations, were obtained. (M.C.G.)
Emulating a flexible space structure: Modeling
NASA Technical Reports Server (NTRS)
Waites, H. B.; Rice, S. C.; Jones, V. L.
1988-01-01
Control Dynamics, in conjunction with Marshall Space Flight Center, has participated in the modeling and testing of Flexible Space Structures. Through the series of configurations tested and the many techniques used for collecting, analyzing, and modeling the data, many valuable insights have been gained and important lessons learned. This paper discusses the background of the Large Space Structure program, Control Dynamics' involvement in testing and modeling of the configurations (especially the Active Control Technique Evaluation for Spacecraft (ACES) configuration), the results from these two processes, and insights gained from this work.
NASA Technical Reports Server (NTRS)
Dehoff, R. L.; Reed, W. B.; Trankle, T. L.
1977-01-01
The development and validation of a spey engine model is described. An analysis of the dynamical interactions involved in the propulsion unit is presented. The model was reduced to contain only significant effects, and was used, in conjunction with flight data obtained from an augmentor wing jet STOL research aircraft, to develop initial estimates of parameters in the system. The theoretical background employed in estimating the parameters is outlined. The software package developed for processing the flight data is described. Results are summarized.
Quasi-Uniform High Speed Foam Crush Testing Using a Guided Drop Mass Impact
NASA Technical Reports Server (NTRS)
Jones, Lisa E. (Technical Monitor); Kellas, Sotiris
2004-01-01
A relatively simple method for measuring the dynamic crush response of foam materials at various loading rates is described. The method utilizes a drop mass impact configuration with mass and impact velocity selected such that the crush speed remains approximately uniform during the entire sample crushing event. Instrumentation, data acquisition, and data processing techniques are presented, and limitations of the test method are discussed. The objective of the test method is to produce input data for dynamic finite element modeling involving crash and energy absorption characteristics of foam materials.
Using Technology to Create a Dynamic Classroom Experience
ERIC Educational Resources Information Center
Courts, Bari; Tucker, Jan
2012-01-01
There are a multitude of diverse technologies available for integration in the college classroom, but considering how to implement these initiatives can be overwhelming to the instructor. The adaptation of this technology is often very simple and involves little more than the Internet and basic word processing skills. A review of the multimedia…
ERIC Educational Resources Information Center
Meier, Daniel R.; Britsch, Susan J.
Preschool can be an opportunity to emphasize literacy teaching and learning and to develop the role of "literacy as community," rather than being only kindergarten preparation. The results of two studies view children's literacy development as a dynamic, developmental process involving language, thought, and social interaction. In…
The Aims of Lifelong Learning through the Dynamic of Ambition
ERIC Educational Resources Information Center
Saccomanno, Benjamin
2017-01-01
This article addresses the personal negotiations that lead individuals to pursue adult education. Analysing this process determines ambitions pursued, and thus makes it possible to identify how the individuals involved perceive their desired future as an improvement. This study found that ambitions were negotiated in order to make them acceptable…
Anxious Identification in "The Sopranos" and Sport: Psychoanalytic and Queer Theories of Embodiment
ERIC Educational Resources Information Center
Sykes, Heather
2007-01-01
The article uses an episode from the television series "The Sopranos" to illustrate how embodied experiences of sporting practices such as high-school football involve both conscious and unconscious dynamics. It outlines how cultural practices such as masculinist sport are psychically incorporated into the body through the process of…
Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem
Jonathan P. Benstead; Amy D. Rosemond; Wyatt F. Cross; J. Bruce Wallace; Susan L. Eggert; Keller Suberkropp; Vladislav Gulis; Jennifer L. Greenwood; Cynthia J. Tant
2009-01-01
Responses of detrital pathways to nutrients may differ fundamentally from pathways involving living plants: basal carbon resources can potentially decrease rather than increase with nutrient enrichment. Despite the potential for nutrients to accelerate heterotrophic processes and fluxes of detritus, few studies have examined detritus-nutrient dynamics at whole-...
Neural Dynamics of Autistic Behaviors: Cognitive, Emotional, and Timing Substrates
ERIC Educational Resources Information Center
Grossberg, Stephen; Seidman, Don
2006-01-01
What brain mechanisms underlie autism, and how do they give rise to autistic behavioral symptoms? This article describes a neural model, called the Imbalanced Spectrally Timed Adaptive Resonance Theory (iSTART) model, that proposes how cognitive, emotional, timing, and motor processes that involve brain regions such as the prefrontal and temporal…
Determination of Visual Figure and Ground in Dynamically Deforming Shapes
ERIC Educational Resources Information Center
Barenholtz, Elan; Feldman, Jacob
2006-01-01
Figure/ground assignment--determining which part of the visual image is foreground and which background--is a critical step in early visual analysis, upon which much later processing depends. Previous research on the assignment of figure and ground to opposing sides of a contour has almost exclusively involved static geometric factors--such as…
Kinetic Classroom: Acid-Base and Redox Demonstrations with Student Movement.
ERIC Educational Resources Information Center
Lomax, Joseph F.
1994-01-01
Describes classroom activities that involve student movement to demonstrate principles of kinetics. This classroom method can be used for any topic related to dynamic processes. The method used in this activity illustrates Brxnsted-Lowry acid-base theory and redox reactions. Takes advantage of analogies between proton and electron transfers. Use…
Gene expression in the tanoak-Phytophthora ramorum interaction
Katherine J. Hayden; Matteo Garbelotto; Hardeep Fai; Brian Knaus; Richard Cronn; Jessica W. Wright
2012-01-01
Disease processes are dynamic, involving a suite of gene expression changes in both the host and the pathogen, all within a single tissue. As such, they lend themselves well to transcriptomic analysis. Here we focus on a generalist invasive pathogen (Phytophthora ramorum) and its most susceptible California Floristic Province native host, tanoak (...
ERIC Educational Resources Information Center
Visto, Jane C.; And Others
1996-01-01
Ten children (ages 12-16) with specific language impairments (SLI) and controls matched for chronological or language age were tested with measures of complex sound localization involving the precedence effect phenomenon. SLI children exhibited tracking skills similar to language-age matched controls, indicating impairment in their ability to use…
Dynamic Processes at Semiconductor Interfaces: Atomic Intermixing, Diffusion Barriers, and Stability
1991-08-15
that the movement of the Fermi level position at the Si surface and the variation of heterojunction band lineup correlated to the density of...that the topmost layer of As atoms was initially involved in a sequential two-step reaction to produce As l - and As 3+- like oxides. These reactions
Introduce Construction Technology through Home Inspection
ERIC Educational Resources Information Center
Wiggins, Enrique R.
2007-01-01
Introducing technology education students to the field of home inspection gives them a great opportunity to learn about and apply construction technology content. In working with his 8th-grade students, the author covers the purpose of a home inspection, the dynamic of home inspections, the process involved in inspecting schools and homes and…
Instructional Design for Advanced Learners: Training Recognition Skills to Hasten Expertise
ERIC Educational Resources Information Center
Fadde, Peter Jae
2009-01-01
Expertise in domains ranging from sports to surgery involves a process of recognition-primed decision-making (RPD) in which experts make rapid, intuitive decisions based on recognizing critical features of dynamic performance situations. While the development of expert RPD is assumed to require years of domain experience, the transition from…
Cue competition affects temporal dynamics of edge-assignment in human visual cortex.
Brooks, Joseph L; Palmer, Stephen E
2011-03-01
Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.
Hyodo, Fuminori; Ito, Shinji; Yasukawa, Keiji; Kobayashi, Ryoma; Utsumi, Hideo
2014-08-05
Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.
Quantum indistinguishability in chemical reactions.
Fisher, Matthew P A; Radzihovsky, Leo
2018-05-15
Quantum indistinguishability plays a crucial role in many low-energy physical phenomena, from quantum fluids to molecular spectroscopy. It is, however, typically ignored in most high-temperature processes, particularly for ionic coordinates, implicitly assumed to be distinguishable, incoherent, and thus well approximated classically. We explore enzymatic chemical reactions involving small symmetric molecules and argue that in many situations a full quantum treatment of collective nuclear degrees of freedom is essential. Supported by several physical arguments, we conjecture a "quantum dynamical selection" (QDS) rule for small symmetric molecules that precludes chemical processes that involve direct transitions from orbitally nonsymmetric molecular states. As we propose and discuss, the implications of the QDS rule include ( i ) a differential chemical reactivity of para- and orthohydrogen, ( ii ) a mechanism for inducing intermolecular quantum entanglement of nuclear spins, ( iii ) a mass-independent isotope fractionation mechanism, ( iv ) an explanation of the enhanced chemical activity of "reactive oxygen species", ( v ) illuminating the importance of ortho-water molecules in modulating the quantum dynamics of liquid water, and ( vi ) providing the critical quantum-to-biochemical linkage in the nuclear spin model of the (putative) quantum brain, among others.
[Work and health: Two social rights].
García Blanco, Lucía
2015-01-01
Work and health are two concepts whose formulation varies from one society to another depending on unique and temporal appreciation. Updating them to our time involves the challenge to understand their construction as part of consuming organized societies. Political and social processes during the last decades must be analyzed, and so must be the worker subject as a psychophysics unit. Health, as well, ought to be considered a universal right, from where to focus and understand pathological social behaviors impacting the workplace. The subject's social dimension and the health-work relationship are dynamic. And keeping this dynamic involves to continuously review principles, norms and regulations which need to fit reality, and specific communication and language modes, as well as working conditions and environmental aspects. These processes must be considered as taking part in Argentina's social imaginary worth highlighting: a shift in how the State's role is considered, the public policy's sense, the importance of working in a complementary and interdisciplinary way, redesigning the concept of health through the broadening of those under the State's care and considering and building the workplace as a healthy space.
Signal detection via residence-time asymmetry in noisy bistable devices.
Bulsara, A R; Seberino, C; Gammaitoni, L; Karlsson, M F; Lundqvist, B; Robinson, J W C
2003-01-01
We introduce a dynamical readout description for a wide class of nonlinear dynamic sensors operating in a noisy environment. The presence of weak unknown signals is assessed via the monitoring of the residence time in the metastable attractors of the system, in the presence of a known, usually time-periodic, bias signal. This operational scenario can mitigate the effects of sensor noise, providing a greatly simplified readout scheme, as well as significantly reduced processing procedures. Such devices can also show a wide variety of interesting dynamical features. This scheme for quantifying the response of a nonlinear dynamic device has been implemented in experiments involving a simple laboratory version of a fluxgate magnetometer. We present the results of the experiments and demonstrate that they match the theoretical predictions reasonably well.
Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rimmerman, Dolev; Leshchev, Denis; Hsu, Darren J.
Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combinationmore » of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.« less
Valenza, Gaetano; Faes, Luca; Citi, Luca; Orini, Michele; Barbieri, Riccardo
2018-05-01
Measures of transfer entropy (TE) quantify the direction and strength of coupling between two complex systems. Standard approaches assume stationarity of the observations, and therefore are unable to track time-varying changes in nonlinear information transfer with high temporal resolution. In this study, we aim to define and validate novel instantaneous measures of TE to provide an improved assessment of complex nonstationary cardiorespiratory interactions. We here propose a novel instantaneous point-process TE (ipTE) and validate its assessment as applied to cardiovascular and cardiorespiratory dynamics. In particular, heartbeat and respiratory dynamics are characterized through discrete time series, and modeled with probability density functions predicting the time of the next physiological event as a function of the past history. Likewise, nonstationary interactions between heartbeat and blood pressure dynamics are characterized as well. Furthermore, we propose a new measure of information transfer, the instantaneous point-process information transfer (ipInfTr), which is directly derived from point-process-based definitions of the Kolmogorov-Smirnov distance. Analysis on synthetic data, as well as on experimental data gathered from healthy subjects undergoing postural changes confirms that ipTE, as well as ipInfTr measures are able to dynamically track changes in physiological systems coupling. This novel approach opens new avenues in the study of hidden, transient, nonstationary physiological states involving multivariate autonomic dynamics in cardiovascular health and disease. The proposed method can also be tailored for the study of complex multisystem physiology (e.g., brain-heart or, more in general, brain-body interactions).
Velazquez, Hector A; Hamelberg, Donald
2015-02-21
Cis-trans isomerization of peptidyl-prolyl bonds of the protein backbone plays an important role in numerous biological processes. Cis-trans isomerization can be the rate-limiting step due its extremely slow dynamics, compared to the millisecond time scale of many processes, and is catalyzed by a widely studied family of peptidyl-prolyl cis-trans isomerase enzymes. Also, mechanical forces along the peptide chain can speed up the rate of isomerization, resulting in "mechanical catalysis," and have been used to study peptidyl-prolyl cis-trans isomerization and other mechanical properties of proteins. Here, we use constant force molecular dynamics simulations to study the dynamical effects of phosphorylation on serine/threonine-proline protein motifs that are involved in the function of many proteins and have been implicated in many aberrant biological processes. We show that the rate of cis-trans isomerization is slowed down by phosphorylation, in excellent agreement with experiments. We use a well-grounded theory to describe the force dependent rate of isomerization. The calculated rates at zero force are also in excellent agreement with experimentally measured rates, providing additional validation of the models and force field parameters. Our results suggest that the slowdown in the rate upon phosphorylation is mainly due to an increase in the friction along the peptidyl-prolyl bond angle during isomerization. Our results provide a microscopic description of the dynamical effects of post-translational phosphorylation on cis-trans isomerization and insights into the properties of proteins under tension.
NASA Astrophysics Data System (ADS)
Velazquez, Hector A.; Hamelberg, Donald
2015-02-01
Cis-trans isomerization of peptidyl-prolyl bonds of the protein backbone plays an important role in numerous biological processes. Cis-trans isomerization can be the rate-limiting step due its extremely slow dynamics, compared to the millisecond time scale of many processes, and is catalyzed by a widely studied family of peptidyl-prolyl cis-trans isomerase enzymes. Also, mechanical forces along the peptide chain can speed up the rate of isomerization, resulting in "mechanical catalysis," and have been used to study peptidyl-prolyl cis-trans isomerization and other mechanical properties of proteins. Here, we use constant force molecular dynamics simulations to study the dynamical effects of phosphorylation on serine/threonine-proline protein motifs that are involved in the function of many proteins and have been implicated in many aberrant biological processes. We show that the rate of cis-trans isomerization is slowed down by phosphorylation, in excellent agreement with experiments. We use a well-grounded theory to describe the force dependent rate of isomerization. The calculated rates at zero force are also in excellent agreement with experimentally measured rates, providing additional validation of the models and force field parameters. Our results suggest that the slowdown in the rate upon phosphorylation is mainly due to an increase in the friction along the peptidyl-prolyl bond angle during isomerization. Our results provide a microscopic description of the dynamical effects of post-translational phosphorylation on cis-trans isomerization and insights into the properties of proteins under tension.
Dynamic pathways for viral capsid assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, Michael F.; Chandler, David
2006-02-09
We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss themore » relationship between these mechanisms and experimental evaluations of capsid assembly processes.« less
Towards Agile Ontology Maintenance
NASA Astrophysics Data System (ADS)
Luczak-Rösch, Markus
Ontologies are an appropriate means to represent knowledge on the Web. Research on ontology engineering reached practices for an integrative lifecycle support. However, a broader success of ontologies in Web-based information systems remains unreached while the more lightweight semantic approaches are rather successful. We assume, paired with the emerging trend of services and microservices on the Web, new dynamic scenarios gain momentum in which a shared knowledge base is made available to several dynamically changing services with disparate requirements. Our work envisions a step towards such a dynamic scenario in which an ontology adapts to the requirements of the accessing services and applications as well as the user's needs in an agile way and reduces the experts' involvement in ontology maintenance processes.
Zhang, Huijing; Yu, Hui; Zhao, Xi; Liu, Xiaoguang; Feng, Xianli; Huang, Xuri
2017-05-01
Takeout (To) proteins exist in a diverse range of insect species. They are involved in many important processes of insect physiology and behaviors. As the ligand carriers, To proteins can transport the small molecule to the target tissues. However, ligand release mechanism of To proteins is unclear so far. In this contribution, the process and pathway of the ligand binding and release are revealed by conventional molecular dynamics simulation, steered molecular dynamics simulation and umbrella sampling methods. Our results show that the α4-side of the protein is the unique gate for the ligand binding and release. The structural analysis confirms that the internal cavity of the protein has high rigidity, which is in accordance with the recent experimental results. By using the potential of mean force calculations in combination with residue cross correlation calculation, we concluded that the binding between the ligand and To proteins is a process of conformational selection. Furthermore, the conformational changes of To proteins and the hydrophobic interactions both are the key factors for ligand binding and release.
Brain-heart linear and nonlinear dynamics during visual emotional elicitation in healthy subjects.
Valenza, G; Greco, A; Gentili, C; Lanata, A; Toschi, N; Barbieri, R; Sebastiani, L; Menicucci, D; Gemignani, A; Scilingo, E P
2016-08-01
This study investigates brain-heart dynamics during visual emotional elicitation in healthy subjects through linear and nonlinear coupling measures of EEG spectrogram and instantaneous heart rate estimates. To this extent, affective pictures including different combinations of arousal and valence levels, gathered from the International Affective Picture System, were administered to twenty-two healthy subjects. Time-varying maps of cortical activation were obtained through EEG spectral analysis, whereas the associated instantaneous heartbeat dynamics was estimated using inhomogeneous point-process linear models. Brain-Heart linear and nonlinear coupling was estimated through the Maximal Information Coefficient (MIC), considering EEG time-varying spectra and point-process estimates defined in the time and frequency domains. As a proof of concept, we here show preliminary results considering EEG oscillations in the θ band (4-8 Hz). This band, indeed, is known in the literature to be involved in emotional processes. MIC highlighted significant arousal-dependent changes, mediated by the prefrontal cortex interplay especially occurring at intermediate arousing levels. Furthermore, lower and higher arousing elicitations were associated to not significant brain-heart coupling changes in response to pleasant/unpleasant elicitations.
Observing Consistency in Online Communication Patterns for User Re-Identification.
Adeyemi, Ikuesan Richard; Razak, Shukor Abd; Salleh, Mazleena; Venter, Hein S
2016-01-01
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas.
Dynamic pathway modeling of signal transduction networks: a domain-oriented approach.
Conzelmann, Holger; Gilles, Ernst-Dieter
2008-01-01
Mathematical models of biological processes become more and more important in biology. The aim is a holistic understanding of how processes such as cellular communication, cell division, regulation, homeostasis, or adaptation work, how they are regulated, and how they react to perturbations. The great complexity of most of these processes necessitates the generation of mathematical models in order to address these questions. In this chapter we provide an introduction to basic principles of dynamic modeling and highlight both problems and chances of dynamic modeling in biology. The main focus will be on modeling of s transduction pathways, which requires the application of a special modeling approach. A common pattern, especially in eukaryotic signaling systems, is the formation of multi protein signaling complexes. Even for a small number of interacting proteins the number of distinguishable molecular species can be extremely high. This combinatorial complexity is due to the great number of distinct binding domains of many receptors and scaffold proteins involved in signal transduction. However, these problems can be overcome using a new domain-oriented modeling approach, which makes it possible to handle complex and branched signaling pathways.
Self-organizing biopsychosocial dynamics and the patient-healer relationship.
Pincus, David
2012-01-01
The patient-healer relationship has an increasing area of interest for complementary and alternative medicine (CAM) researchers. This focus on the interpersonal context of treatment is not surprising as dismantling studies, clinical trials and other linear research designs continually point toward the critical role of context and the broadband biopsychosocial nature of therapeutic responses to CAM. Unfortunately, the same traditional research models and methods that fail to find simple and specific treatment-outcome relations are similarly failing to find simple and specific mechanisms to explain how interpersonal processes influence patient outcomes. This paper presents an overview of some of the key models and methods from nonlinear dynamical systems that are better equipped for empirical testing of CAM outcomes on broadband biopsychosocial processes. Suggestions are made for CAM researchers to assist in modeling the interactions among key process dynamics interacting across biopsychosocial scales: empathy, intra-psychic conflict, physiological arousal, and leukocyte telomerase activity. Finally, some speculations are made regarding the possibility for deeper cross-scale information exchange involving quantum temporal nonlocality. Copyright © 2012 S. Karger AG, Basel.
Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review
NASA Astrophysics Data System (ADS)
Sharman, R. D.; Trier, S. B.; Lane, T. P.; Doyle, J. D.
2012-06-01
Turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and is the underlying cause of many people's fear of air travel. Not only are turbulence encounters a safety issue, they also result in millions of dollars of operational costs to airlines, leading to increased costs passed on to the consumer. For these reasons, pilots, dispatchers, and air traffic controllers attempt to avoid turbulence wherever possible. Accurate forecasting of aviation-scale turbulence has been hampered in part by a lack of understanding of the underlying dynamical processes. However, more precise observations of turbulence encounters together with recent research into turbulence generation processes is helping to elucidate the detailed dynamical processes involved and is laying the foundation for improved turbulence forecasting and avoidance. In this paper we briefly review some of the more important recent observational, theoretical, and modeling results related to turbulence at cruise altitudes for commercial aircraft (i.e., the upper troposphere and lower stratosphere), and their implications for aviation turbulence forecasting.
NASA Astrophysics Data System (ADS)
Shinoda, Wataru; Hatanaka, Yuta; Hirakawa, Masashi; Okazaki, Susumu; Tsuzuki, Seiji; Ueno, Kazuhide; Watanabe, Masayoshi
2018-05-01
Equimolar mixtures of glymes and organic lithium salts are known to produce solvate ionic liquids, in which the stability of the [Li(glyme)]+ complex plays an important role in determining the ionic dynamics. Since these mixtures have attractive physicochemical properties for application as electrolytes, it is important to understand the dependence of the stability of the [Li(glyme)]+ complex on the ion dynamics. A series of microsecond molecular dynamics simulations has been conducted to investigate the dynamic properties of these solvate ionic liquids. Successful solvate ionic liquids with high stability of the [Li(glyme)]+ complex have been shown to have enhanced ion dynamics. Li-glyme pair exchange rarely occurs: its characteristic time is longer than that of ion diffusion by one or two orders of magnitude. Li-glyme pair exchange most likely occurs through cluster formation involving multiple [Li(glyme)]+ pairs. In this process, multiple exchanges likely take place in a concerted manner without the production of energetically unfavorable free glyme or free Li+ ions.
Protein folding simulations: from coarse-grained model to all-atom model.
Zhang, Jian; Li, Wenfei; Wang, Jun; Qin, Meng; Wu, Lei; Yan, Zhiqiang; Xu, Weixin; Zuo, Guanghong; Wang, Wei
2009-06-01
Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure-stability-function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein-protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based Gō-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL, the development of discrete MD and its application in studying the alpha-beta conformational conversion and oligomer assembling process, and the modeling of metal ion involved protein folding. (c) 2009 IUBMB.
Photoisomerization and photoionization of the photoactive yellow protein chromophore in solution.
Larsen, Delmar S; Vengris, Mikas; van Stokkum, Ivo H M; van der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk
2004-04-01
Dispersed pump-dump-probe spectroscopy has the ability to characterize and identify the underlying ultrafast dynamical processes in complicated chemical and biological systems. This technique builds on traditional pump-probe techniques by exploring both ground- and excited-state dynamics and characterizing the connectivity between constituent transient states. We have used the dispersed pump-dump-probe technique to investigate the ground-state dynamics and competing excited-state processes in the excitation-induced ultrafast dynamics of thiomethyl p-coumaric acid, a model chromophore for the photoreceptor photoactive yellow protein. Our results demonstrate the parallel formation of two relaxation pathways (with multiple transient states) that jointly lead to two different types of photochemistry: cis-trans isomerization and detachment of a hydrated electron. The relative transition rates and quantum yields of both pathways have been determined. We find that the relaxation of the photoexcited chromophores involves multiple, transient ground-state intermediates and the chromophore in solution does not generate persistent photoisomerized products, but instead undergoes photoionization resulting in the generation of detached electrons and radicals. These results are of great value in interpreting the more complex dynamical changes in the optical properties of the photoactive yellow protein.
Photoisomerization and Photoionization of the Photoactive Yellow Protein Chromophore in Solution
Larsen, Delmar S.; Vengris, Mikas; van Stokkum, Ivo H. M.; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk
2004-01-01
Dispersed pump-dump-probe spectroscopy has the ability to characterize and identify the underlying ultrafast dynamical processes in complicated chemical and biological systems. This technique builds on traditional pump-probe techniques by exploring both ground- and excited-state dynamics and characterizing the connectivity between constituent transient states. We have used the dispersed pump-dump-probe technique to investigate the ground-state dynamics and competing excited-state processes in the excitation-induced ultrafast dynamics of thiomethyl p-coumaric acid, a model chromophore for the photoreceptor photoactive yellow protein. Our results demonstrate the parallel formation of two relaxation pathways (with multiple transient states) that jointly lead to two different types of photochemistry: cis-trans isomerization and detachment of a hydrated electron. The relative transition rates and quantum yields of both pathways have been determined. We find that the relaxation of the photoexcited chromophores involves multiple, transient ground-state intermediates and the chromophore in solution does not generate persistent photoisomerized products, but instead undergoes photoionization resulting in the generation of detached electrons and radicals. These results are of great value in interpreting the more complex dynamical changes in the optical properties of the photoactive yellow protein. PMID:15041690
Bouzguenda, Lotfi; Turki, Manel
2014-04-01
This paper shows how the combined use of agent and web services technologies can help to design an architectural style for dynamic medical Cross-Organizational Workflow (COW) management system. Medical COW aims at supporting the collaboration between several autonomous and possibly heterogeneous medical processes, distributed over different organizations (Hospitals, Clinic or laboratories). Dynamic medical COW refers to occasional cooperation between these health organizations, free of structural constraints, where the medical partners involved and their number are not pre-defined. More precisely, this paper proposes a new architecture style based on agents and web services technologies to deal with two key coordination issues of dynamic COW: medical partners finding and negotiation between them. It also proposes how the proposed architecture for dynamic medical COW management system can connect to a multi-agent system coupling the Clinical Decision Support System (CDSS) with Computerized Prescriber Order Entry (CPOE). The idea is to assist the health professionals such as doctors, nurses and pharmacists with decision making tasks, as determining diagnosis or patient data analysis without stopping their clinical processes in order to act in a coherent way and to give care to the patient.
Dynamic pupillary exchange engages brain regions encoding social salience
Harrison, Neil A.; Gray, Marcus A.; Critchley, Hugo D.
2008-01-01
Covert exchange of autonomic responses may shape social affective behavior, as observed in mirroring of pupillary responses during sadness processing. We examined how, independent of facial emotional expression, dynamic coherence between one's own and another's pupil size modulates regional brain activity. Fourteen subjects viewed pairs of eye stimuli while undergoing fMRI. Using continuous pupillometry biofeedback, the size of the observed pupils was varied, correlating positively or negatively with changes in participants’ own pupils. Viewing both static and dynamic stimuli activated right fusiform gyrus. Observing dynamically changing pupils activated STS and amygdala, regions engaged by non-static and salient facial features. Discordance between observed and observer's pupillary changes enhanced activity within bilateral anterior insula, left amygdala and anterior cingulate. In contrast, processing positively correlated pupils enhanced activity within left frontal operculum. Our findings suggest pupillary signals are monitored continuously during social interactions and that incongruent changes activate brain regions involved in tracking motivational salience and attentionally meaningful information. Naturalistically, dynamic coherence in pupillary change follows fluctuations in ambient light. Correspondingly, in social contexts discordant pupil response is likely to reflect divergence of dispositional state. Our data provide empirical evidence for an autonomically mediated extension of forward models of motor control into social interaction. PMID:19048432
Photo-Carrier Multi-Dynamical Imaging at the Nanometer Scale in Organic and Inorganic Solar Cells.
Fernández Garrillo, Pablo A; Borowik, Łukasz; Caffy, Florent; Demadrille, Renaud; Grévin, Benjamin
2016-11-16
Investigating the photocarrier dynamics in nanostructured and heterogeneous energy materials is of crucial importance from both fundamental and technological points of view. Here, we demonstrate how noncontact atomic force microscopy combined with Kelvin probe force microscopy under frequency-modulated illumination can be used to simultaneously image the surface photopotential dynamics at different time scales with a sub-10 nm lateral resolution. The basic principle of the method consists in the acquisition of spectroscopic curves of the surface potential as a function of the illumination frequency modulation on a two-dimensional grid. We show how this frequency-spectroscopy can be used to probe simultaneously the charging rate and several decay processes involving short-lived and long-lived carriers. With this approach, dynamical images of the trap-filling, trap-delayed recombination and nongeminate recombination processes have been acquired in nanophase segregated organic donor-acceptor bulk heterojunction thin films. Furthermore, the spatial variation of the minority carrier lifetime has been imaged in polycrystalline silicon thin films. These results establish two-dimensional multidynamical photovoltage imaging as a universal tool for local investigations of the photocarrier dynamics in photoactive materials and devices.
NASA Astrophysics Data System (ADS)
Mielke, Steven P.; Grønbech-Jensen, Niels; Krishnan, V. V.; Fink, William H.; Benham, Craig J.
2005-09-01
The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.
Optimal control of multiphoton ionization dynamics of small alkali aggregates
NASA Astrophysics Data System (ADS)
Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger
2003-11-01
We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.
Mielke, Steven P; Grønbech-Jensen, Niels; Krishnan, V V; Fink, William H; Benham, Craig J
2005-09-22
The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.
Strong-Field Control of Laser Filamentation Mechanisms
NASA Astrophysics Data System (ADS)
Levis, Robert; Romanov, Dmitri; Filin, Aleskey; Compton, Ryan
2008-05-01
The propagation of short strong-file laser pulses in gas and solution phases often result in formation of filaments. This phenomenon involves many nonlinear processes including Kerr lensing, group velocity dispersion, multi-photon ionization, plasma defocusing, intensity clamping, and self-steepening. Of these, formation and dynamics of pencil-shape plasma areas plays a crucial role. The fundamental understanding of these laser-induced plasmas requires additional effort, because the process is highly nonlinear and complex. We studied the ultrafast laser-generated plasma dynamics both experimentally and theoretically. Ultrafast plasma dynamics was probed using Coherent Anti-Stokes Raman Scattering. The measurements were made in a room temperature gas maintained at 1 atm in a flowing cell. The time dependent scattering was measured by delaying the CARS probe with respect to the intense laser excitation pulse. A general trend is observed between the spacing of the ground state and the first allowed excited state with the rise time for the noble gas series and the molecular gases. This trend is consistent with our theoretical model, which considers the ultrafast dynamics of the strong field generated plasma as a three-step process; (i) strong-field ionization followed by the electron gaining considerable kinetic energy during the pulse; (ii) immediate post-pulse dynamics: fast thermalization, impact-ionization-driven electron multiplication and cooling; (iii) ensuing relaxation: evolution to electron-ion equilibrium and eventual recombination.
Radiotracer Technology in Mixing Processes for Industrial Applications
Othman, N.; Kamarudin, S. K.
2014-01-01
Many problems associated with the mixing process remain unsolved and result in poor mixing performance. The residence time distribution (RTD) and the mixing time are the most important parameters that determine the homogenisation that is achieved in the mixing vessel and are discussed in detail in this paper. In addition, this paper reviews the current problems associated with conventional tracers, mathematical models, and computational fluid dynamics simulations involved in radiotracer experiments and hybrid of radiotracer. PMID:24616642
(abstract) Application of the GPS Worldwide Network in the Study of Global Ionospheric Storms
NASA Technical Reports Server (NTRS)
Ho, C. M.; Mannucci, A. J.; Lindqwister, U. J.; Pi, X.; Sparks, L. C.; Rao, A. M.; Wilsion, B. D.; Yuan, D. N.; Reyes, M.
1997-01-01
Ionospheric storm dynamics as a response to the geomagnetic storms is a very complicated global process involving many different mechanisms. Studying ionospheric storms will help us to understand the energy coupling process between the Sun and Earth and possibly also to effectively forecast space weather changes. Such a study requires a worldwide monitoring system. The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility.
Comer, Clinton S; Harrison, Patti Kelly; Harrison, David W
2015-01-01
Arousal theory as discussed within the present paper refers to those mechanisms and neural systems involved in central nervous system activation and more specifically the systems involved in cortical activation. Historical progress in the evolution of arousal theory has led to a better understanding of the functional neural systems involved in arousal or activation processes and ultimately contributed much to our current theories of emotion. Despite evidence for the dynamic interplay between the left and right cerebral hemispheres, the concepts of cerebral balance and dynamic activation have been emphasized in the neuropsychological literature. A conceptual model is proposed herein that incorporates the unique contributions from multiple neuropsychological theories of arousal and emotion. It is argued that the cerebral hemispheres may play oppositional roles in emotion partially due to the differences in their functional specializations and in their persistence upon activation. In the presence of a threat or provocation, the right hemisphere may activate survival relevant responses partially derived from hemispheric specializations in arousal and emotional processing, including the mobilization of sympathetic drive to promote heightened blood pressure, heart rate, glucose mobilization and respiratory support necessary for the challenge. Oppositional processes and mechanisms are discussed, which may be relevant to the regulatory control over the survival response; however, the capacity of these systems is necessarily limited. A limited capacity mechanism is proposed, which is familiar within other physiological systems, including that providing for the prevention of muscular damage under exceptional demand. This capacity theory is proposed, wherein a link may be expected between exceptional stress within a neural system and damage to the neural system. These mechanisms are proposed to be relevant to emotion and emotional disorders. Discussion is provided on the possible role of currently applied therapeutic interventions for emotional disorders.
Dissociation of a Dynamic Protein Complex Studied by All-Atom Molecular Simulations.
Zhang, Liqun; Borthakur, Susmita; Buck, Matthias
2016-02-23
The process of protein complex dissociation remains to be understood at the atomic level of detail. Computers now allow microsecond timescale molecular-dynamics simulations, which make the visualization of such processes possible. Here, we investigated the dissociation process of the EphA2-SHIP2 SAM-SAM domain heterodimer complex using unrestrained all-atom molecular-dynamics simulations. Previous studies on this system have shown that alternate configurations are sampled, that their interconversion can be fast, and that the complex is dynamic by nature. Starting from different NMR-derived structures, mutants were designed to stabilize a subset of configurations by swapping ion pairs across the protein-protein interface. We focused on two mutants, K956D/D1235K and R957D/D1223R, with attenuated binding affinity compared with the wild-type proteins. In contrast to calculations on the wild-type complexes, the majority of simulations of these mutants showed protein dissociation within 2.4 μs. During the separation process, we observed domain rotation and pivoting as well as a translation and simultaneous rolling, typically to alternate and weaker binding interfaces. Several unsuccessful recapturing attempts occurred once the domains were moderately separated. An analysis of protein solvation suggests that the dissociation process correlates with a progressive loss of protein-protein contacts. Furthermore, an evaluation of internal protein dynamics using quasi-harmonic and order parameter analyses indicates that changes in protein internal motions are expected to contribute significantly to the thermodynamics of protein dissociation. Considering protein association as the reverse of the separation process, the initial role of charged/polar interactions is emphasized, followed by changes in protein and solvent dynamics. The trajectories show that protein separation does not follow a single distinct pathway, but suggest that the mechanism of dissociation is common in that it initially involves transitions to surfaces with fewer, less favorable contacts compared with those seen in the fully formed complex. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions
Hasson, Uri; Frith, Chris D.
2016-01-01
When people observe one another, behavioural alignment can be detected at many levels, from the physical to the mental. Likewise, when people process the same highly complex stimulus sequences, such as films and stories, alignment is detected in the elicited brain activity. In early sensory areas, shared neural patterns are coupled to the low-level properties of the stimulus (shape, motion, volume, etc.), while in high-order brain areas, shared neural patterns are coupled to high-levels aspects of the stimulus, such as meaning. Successful social interactions require such alignments (both behavioural and neural), as communication cannot occur without shared understanding. However, we need to go beyond simple, symmetric (mirror) alignment once we start interacting. Interactions are dynamic processes, which involve continuous mutual adaptation, development of complementary behaviour and division of labour such as leader–follower roles. Here, we argue that interacting individuals are dynamically coupled rather than simply aligned. This broader framework for understanding interactions can encompass both processes by which behaviour and brain activity mirror each other (neural alignment), and situations in which behaviour and brain activity in one participant are coupled (but not mirrored) to the dynamics in the other participant. To apply these more sophisticated accounts of social interactions to the study of the underlying neural processes we need to develop new experimental paradigms and novel methods of data analysis PMID:27069044
Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties
NASA Technical Reports Server (NTRS)
He, Cheng-Jian; Peters, David A.
1990-01-01
Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.
Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058
Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.
Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng
2016-05-01
Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.
How patients with gout become engaged in disease management: a constructivist grounded theory study.
Howren, Alyssa; Cox, Susan M; Shojania, Kam; Rai, Sharan K; Choi, Hyon K; De Vera, Mary A
2018-06-01
Prior qualitative research on gout has focused primarily on barriers to disease management. Our objective was to use patients' perspectives to construct an explanatory framework to understand how patients become engaged in the management of their gout. We recruited a sample of individuals with gout who were participating in a proof-of-concept study of an eHealth-supported collaborative care model for gout involving rheumatology, pharmacy, and dietetics. Semistructured interviews were used. We analyzed transcripts using principles of constructivist grounded theory involving initial coding, focused coding and categorizing, and theoretical coding. Twelve participants with gout (ten males, two females; mean age, 66.5 ± 13.3 years) were interviewed. The analysis resulted in the construction of three themes as well as a framework describing the dynamically linked themes on (1) processing the diagnosis and management of gout, (2) supporting management of gout, and (3) interfering with management of gout. In this framework, patients with gout transition between each theme in the process of becoming engaged in the management of their gout and may represent potential opportunities for healthcare intervention. Findings derived from this study show that becoming engaged in gout management is a dynamic process whereby patients with gout experience factors that interfere with gout management, process their disease and its management, and develop the practical and perceptual skills necessary to manage their gout. By understanding this process, healthcare providers can identify points to adapt care delivery and thereby improve health outcomes.
Sreenivasachary, Nampally; Lehn, Jean-Marie
2005-01-01
The guanosine hydrazide 1 yields a stable supramolecular hydrogel based on the formation of a guanine quartet (G-quartet) in presence of metal cations. The effect of various parameters (concentration, nature of metal ion, and temperature) on the properties of this gel has been studied. Proton NMR spectroscopy is shown to allow a molecular characterization of the gelation process. Hydrazide 1 and its assemblies can be reversibly decorated by acylhydrazone formation with various aldehydes, resulting in formation of highly viscous dynamic hydrogels. When a mixture of aldehydes is used, the dynamic system selects the aldehyde that leads to the most stable gel. Mixing hydrazides 1, 9 and aldehydes 6, 8 in 1:1:1:1 ratio generated a constitutional dynamic library containing the four acylhydrazone derivatives A, B, C, and D. The library constitution displayed preferential formation of the acylhydrazone B that yields the strongest gel. Thus, gelation redirects the acylhydrazone distribution in the dynamic library as guanosine hydrazide 1 scavenges preferentially aldehyde 8, under the pressure of gelation because of the collective interactions in the assemblies of G-quartets B, despite the strong preference of the competing hydrazide 9 for 8. Gel formation and component selection are thermoreversible. The process amounts to gelation-driven self-organization with component selection and amplification in constitutional dynamic hydrogels based on G-quartet formation and reversible covalent connections. The observed self-organization and component selection occur by means of a multilevel self-assembly involving three dynamic processes, two of supramolecular and one of reversible covalent nature. They extend constitutional dynamic chemistry to phase-organization and phase-transition events. PMID:15840720
Sreenivasachary, Nampally; Lehn, Jean-Marie
2005-04-26
The guanosine hydrazide 1 yields a stable supramolecular hydrogel based on the formation of a guanine quartet (G-quartet) in presence of metal cations. The effect of various parameters (concentration, nature of metal ion, and temperature) on the properties of this gel has been studied. Proton NMR spectroscopy is shown to allow a molecular characterization of the gelation process. Hydrazide 1 and its assemblies can be reversibly decorated by acylhydrazone formation with various aldehydes, resulting in formation of highly viscous dynamic hydrogels. When a mixture of aldehydes is used, the dynamic system selects the aldehyde that leads to the most stable gel. Mixing hydrazides 1, 9 and aldehydes 6, 8 in 1:1:1:1 ratio generated a constitutional dynamic library containing the four acylhydrazone derivatives A, B, C, and D. The library constitution displayed preferential formation of the acylhydrazone B that yields the strongest gel. Thus, gelation redirects the acylhydrazone distribution in the dynamic library as guanosine hydrazide 1 scavenges preferentially aldehyde 8, under the pressure of gelation because of the collective interactions in the assemblies of G-quartets B, despite the strong preference of the competing hydrazide 9 for 8. Gel formation and component selection are thermoreversible. The process amounts to gelation-driven self-organization with component selection and amplification in constitutional dynamic hydrogels based on G-quartet formation and reversible covalent connections. The observed self-organization and component selection occur by means of a multilevel self-assembly involving three dynamic processes, two of supramolecular and one of reversible covalent nature. They extend constitutional dynamic chemistry to phase-organization and phase-transition events.
NASA Astrophysics Data System (ADS)
Binder, Robert; Lauvergnat, David; Burghardt, Irene
2018-06-01
We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ˜400 fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.
On the coherency of dynamic load estimates for vehicles on flexible structures
NASA Astrophysics Data System (ADS)
Mitra, Mainak; Gordon, Timothy
2014-05-01
This paper develops a novel form of a well-known signal processing technique, so as to be applicable to the interaction between a heavy truck and a supporting bridge structure. Motivated by the problem of structural health monitoring of bridges, a new modal coherency function is defined. This relates the input action of moving wheel loads to the dynamic response of the bridge, including the effects of unevenness of the road surface and the vertical dynamics of the truck suspension. The analysis here is specifically aimed at future experimental testing - the validation of axle load estimators obtained from sensors on the truck. It is applicable even when no independent 'ground truth' for the dynamic loads is available. The approach can be more widely used in the analysis of dynamic interactions involving suspended moving loads on deformable structures, e.g. for structural vibrations due to high-speed trains.
Binder, Robert; Lauvergnat, David; Burghardt, Irene
2018-06-01
We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ∼400 fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Peter
This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less
Scale-Free Neural and Physiological Dynamics in Naturalistic Stimuli Processing
Lin, Amy
2016-01-01
Abstract Neural activity recorded at multiple spatiotemporal scales is dominated by arrhythmic fluctuations without a characteristic temporal periodicity. Such activity often exhibits a 1/f-type power spectrum, in which power falls off with increasing frequency following a power-law function: P(f)∝1/fβ, which is indicative of scale-free dynamics. Two extensively studied forms of scale-free neural dynamics in the human brain are slow cortical potentials (SCPs)—the low-frequency (<5 Hz) component of brain field potentials—and the amplitude fluctuations of α oscillations, both of which have been shown to carry important functional roles. In addition, scale-free dynamics characterize normal human physiology such as heartbeat dynamics. However, the exact relationships among these scale-free neural and physiological dynamics remain unclear. We recorded simultaneous magnetoencephalography and electrocardiography in healthy subjects in the resting state and while performing a discrimination task on scale-free dynamical auditory stimuli that followed different scale-free statistics. We observed that long-range temporal correlation (captured by the power-law exponent β) in SCPs positively correlated with that of heartbeat dynamics across time within an individual and negatively correlated with that of α-amplitude fluctuations across individuals. In addition, across individuals, long-range temporal correlation of both SCP and α-oscillation amplitude predicted subjects’ discrimination performance in the auditory task, albeit through antagonistic relationships. These findings reveal interrelations among different scale-free neural and physiological dynamics and initial evidence for the involvement of scale-free neural dynamics in the processing of natural stimuli, which often exhibit scale-free dynamics. PMID:27822495
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion
NASA Astrophysics Data System (ADS)
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-01
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K -shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
Ultrafast Charge Transfer of a Valence Double Hole in Glycine Driven Exclusively by Nuclear Motion.
Li, Zheng; Vendrell, Oriol; Santra, Robin
2015-10-02
We explore theoretically the ultrafast transfer of a double electron hole between the functional groups of glycine after K-shell ionization and subsequent Auger decay. Although a large energy gap of about 15 eV initially exists between the two electronic states involved and coherent electronic dynamics play no role in the hole transfer, we find that the double hole is transferred within 3 to 4 fs between both functional ends of the glycine molecule driven solely by specific nuclear displacements and non-Born-Oppenheimer effects. The nuclear displacements along specific vibrational modes are of the order of 15% of a typical chemical bond between carbon, oxygen, and nitrogen atoms and about 30% for bonds involving hydrogen atoms. The time required for the hole transfer corresponds to less than half a vibrational period of the involved nuclear modes. This finding challenges the common wisdom that nuclear dynamics of the molecular skeleton are unimportant for charge transfer processes at the few-femtosecond time scale and shows that they can even play a prominent role. It also indicates that in x-ray imaging experiments, in which ionization is unavoidable, valence electron redistribution caused by nuclear dynamics might be much faster than previously anticipated. Thus, non-Born-Oppenheimer effects may affect the apparent electron densities extracted from such measurements.
Collective dynamics during cell division
NASA Astrophysics Data System (ADS)
Zapperi, Stefano; Bertalan, Zsolt; Budrikis, Zoe; La Porta, Caterina A. M.
In order to correctly divide, cells have to move all their chromosomes at the center, a process known as congression. This task is performed by the combined action of molecular motors and randomly growing and shrinking microtubules. Chromosomes are captured by growing microtubules and transported by motors using the same microtubules as tracks. Coherent motion occurs as a result of a large collection of random and deterministic dynamical events. Understanding this process is important since a failure in chromosome segregation can lead to chromosomal instability one of the hallmarks of cancer. We describe this complex process in a three dimensional computational model involving thousands of microtubules. The results show that coherent and robust chromosome congression can only happen if the total number of microtubules is neither too small, nor too large. Our results allow for a coherent interpretation a variety of biological factors already associated in the past with chromosomal instability and related pathological conditions.
The formation of blobs from a pure interchange process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, P., E-mail: pzhu@ustc.edu.cn; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706; Sovinec, C. R.
2015-02-15
In this work, we focus on examining a pure interchange process in a shear-less slab configuration as a prototype mechanism for blob formation. We employ full magnetohydrodynamic simulations to demonstrate that the blob-like structures can emerge through the nonlinear development of a pure interchange instability originating from a pedestal-like transition region. In the early nonlinear stage, filamentary structures develop and extend in the direction of the effective gravity. The blob-like structures appear when the radially extending filaments break off and disconnect from the core plasma. The morphology and the dynamics of these filaments and blobs vary dramatically with a sensitivemore » dependence on the dissipation mechanisms in the system and the initial perturbation. Despite the complexity in morphology and dynamics, the nature of the entire blob formation process in the shear-less slab configuration remains strictly interchange without involving any change in magnetic topology.« less
Emami, Fereshteh; Maeder, Marcel; Abdollahi, Hamid
2015-05-07
Thermodynamic studies of equilibrium chemical reactions linked with kinetic procedures are mostly impossible by traditional approaches. In this work, the new concept of generalized kinetic study of thermodynamic parameters is introduced for dynamic data. The examples of equilibria intertwined with kinetic chemical mechanisms include molecular charge transfer complex formation reactions, pH-dependent degradation of chemical compounds and tautomerization kinetics in micellar solutions. Model-based global analysis with the possibility of calculating and embedding the equilibrium and kinetic parameters into the fitting algorithm has allowed the complete analysis of the complex reaction mechanisms. After the fitting process, the optimal equilibrium and kinetic parameters together with an estimate of their standard deviations have been obtained. This work opens up a promising new avenue for obtaining equilibrium constants through the kinetic data analysis for the kinetic reactions that involve equilibrium processes.
Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.
Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P
2010-02-18
Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.
Neurobiology of dynamic psychotherapy: an integration possible?
Mundo, Emanuela
2006-01-01
In the last decades, Kandel's innovative experiments have demonstrated that brain structures and synaptic connections are dynamic. Synapses can be modified by a wide variety of environmental factors, including learning and memory processes. The hypothesis that dynamic psychotherapy process involves memory and learning processes has opened the possibility of a dialogue between neuroscience and psychoanalysis and related psychotherapy techniques. The primary aim of the present article is to critically review the more recent data on neurobiological effects of dynamic psychotherapy in psychiatric disorders. Relevant literature has been selected using the databases currently available online (i.e., PubMed). The literature search has been limited to the past 10 years and to genetic, molecular biology, and neuroimaging studies that have addressed the issue of changes induced by psychotherapy. Most of the genetic studies on mental disorders have demonstrated that psychiatric conditions result from a complex interaction of genetic susceptibility and environmental effects. For none of the many psychiatric conditions investigated has a purely genetic background been found. Molecular biology studies have indicated that gene expression is influenced by several environmental factors, including early experiences, traumas, learning, and memory processes. Neuroimaging studies (using fMRI and PET) have found that not only cognitive but also dynamic psychotherapy has measurable effects on the brain. In addition, psychotherapy may modify brain function and metabolism in specific brain areas. Most of these studies have considered patients with major depressive disorders and compared the effects of psychotherapy with the effect of standard pharmacotherapy. In conclusion, recent results from neuroscience studies have suggested that dynamic psychotherapy has a significant impact on brain function and metabolism in specific brain areas. The possible applications and developments of this new area of research toward the conceptualization of an integrative approach to treatment of psychiatric disorders are discussed.
A dynamically minimalist cognitive explanation of musical preference: is familiarity everything?
Schubert, Emery; Hargreaves, David J; North, Adrian C
2014-01-01
This paper examines the idea that attraction to music is generated at a cognitive level through the formation and activation of networks of interlinked "nodes." Although the networks involved are vast, the basic mechanism for activating the links is relatively simple. Two comprehensive cognitive-behavioral models of musical engagement are examined with the aim of identifying the underlying cognitive mechanisms and processes involved in musical experience. A "dynamical minimalism" approach (after Nowak, 2004) is applied to re-interpret musical engagement (listening, performing, composing, or imagining any of these) and to revise the latest version of the reciprocal-feedback model (RFM) of music processing. Specifically, a single cognitive mechanism of "spreading activation" through previously associated networks is proposed as a pleasurable outcome of musical engagement. This mechanism underlies the dynamic interaction of the various components of the RFM, and can thereby explain the generation of positive affects in the listener's musical experience. This includes determinants of that experience stemming from the characteristics of the individual engaging in the musical activity (whether listener, composer, improviser, or performer), the situation and contexts (e.g., social factors), and the music (e.g., genre, structural features). The theory calls for new directions for future research, two being (1) further investigation of the components of the RFM to better understand musical experience and (2) more rigorous scrutiny of common findings about the salience of familiarity in musical experience and preference.
A dynamic deep sleep stage in Drosophila.
van Alphen, Bart; Yap, Melvyn H W; Kirszenblat, Leonie; Kottler, Benjamin; van Swinderen, Bruno
2013-04-17
How might one determine whether simple animals such as flies sleep in stages? Sleep in mammals is a dynamic process involving different stages of sleep intensity, and these are typically associated with measurable changes in brain activity (Blake and Gerard, 1937; Rechtschaffen and Kales, 1968; Webb and Agnew, 1971). Evidence for different sleep stages in invertebrates remains elusive, even though it has been well established that many invertebrate species require sleep (Campbell and Tobler, 1984; Hendricks et al., 2000; Shaw et al., 2000; Sauer et al., 2003). Here we used electrophysiology and arousal-testing paradigms to show that the fruit fly, Drosophila melanogaster, transitions between deeper and lighter sleep within extended bouts of inactivity, with deeper sleep intensities after ∼15 and ∼30 min of inactivity. As in mammals, the timing and intensity of these dynamic sleep processes in flies is homeostatically regulated and modulated by behavioral experience. Two molecules linked to synaptic plasticity regulate the intensity of the first deep sleep stage. Optogenetic upregulation of cyclic adenosine monophosphate during the day increases sleep intensity at night, whereas loss of function of a molecule involved in synaptic pruning, the fragile-X mental retardation protein, increases sleep intensity during the day. Our results show that sleep is not homogenous in insects, and suggest that waking behavior and the associated synaptic plasticity mechanisms determine the timing and intensity of deep sleep stages in Drosophila.
Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization.
Demangeat, Jean-Louis
2015-04-01
Nanobubbles (NBs) have been a subject of intensive research over the past decade. Their peculiar characteristics, including extremely low buoyancy, longevity, enhanced solubility of oxygen in water, zeta potentials and burst during collapse, have led to many applications in the industrial, biological and medical fields. NBs may form spontaneously from dissolved gas but the process is greatly enhanced by gas supersaturation and mechanical actions such as dynamization. Therefore, the formation of NBs during the preparation of homeopathic dilutions under atmospheric pressure cannot be ignored. I suggested in 2009 the involvement of NBs in nanometric superstructures revealed in high dilutions using NMR relaxation. These superstructures seemed to increase in size with dilution, well into the ultramolecular range (>12c). I report here new experiments that confirm the involvement of NBs and prove the crucial role of dynamization to create superstructures specific to the solute. A second dynamization was shown to enhance or regenerate these superstructures. I postulate that superstructures result from a nucleation process of NBs around the solute, with shells of highly organized water (with ions and silicates if any) which protect the solute against out-diffusion and behave as nucleation centres for further dilution steps. The sampling tip may play an active role by catching the superstructures and thus carry the encaged solute across the dilution range, possibly up to the ultramolecular range. The superstructures were not observed at low dilution, probably because of a destructuring of the solvent by the solute and/or of an inadequate gas/solute ratio. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Multistability of the Brain Network for Self-other Processing
Chen, Yi-An; Huang, Tsung-Ren
2017-01-01
Early fMRI studies suggested that brain areas processing self-related and other-related information were highly overlapping. Hypothesising functional localisation of the cortex, researchers have tried to locate “self-specific” and “other-specific” regions within these overlapping areas by subtracting suspected confounding signals in task-based fMRI experiments. Inspired by recent advances in whole-brain dynamic modelling, we instead explored an alternative hypothesis that similar spatial activation patterns could be associated with different processing modes in the form of different synchronisation patterns. Combining an automated synthesis of fMRI data with a presumption-free diffusion spectrum image (DSI) fibre-tracking algorithm, we isolated a network putatively composed of brain areas and white matter tracts involved in self-other processing. We sampled synchronisation patterns from the dynamical systems of this network using various combinations of physiological parameters. Our results showed that the self-other processing network, with simulated gamma-band activity, tended to stabilise at a number of distinct synchronisation patterns. This phenomenon, termed “multistability,” could serve as an alternative model in theorising the mechanism of processing self-other information. PMID:28256520
Coactosin accelerates cell dynamism by promoting actin polymerization.
Hou, Xubin; Katahira, Tatsuya; Ohashi, Kazumasa; Mizuno, Kensaku; Sugiyama, Sayaka; Nakamura, Harukazu
2013-07-01
During development, cells dynamically move or extend their processes, which are achieved by actin dynamics. In the present study, we paid attention to Coactosin, an actin binding protein, and studied its role in actin dynamics. Coactosin was associated with actin and Capping protein in neural crest cells and N1E-115 neuroblastoma cells. Accumulation of Coactosin to cellular processes and its association with actin filaments prompted us to reveal the effect of Coactosin on cell migration. Coactosin overexpression induced cellular processes in cultured neural crest cells. In contrast, knock-down of Coactosin resulted in disruption of actin polymerization and of neural crest cell migration. Importantly, Coactosin was recruited to lamellipodia and filopodia in response to Rac signaling, and mutated Coactosin that cannot bind to F-actin did not react to Rac signaling, nor support neural crest cell migration. It was also shown that deprivation of Rac signaling from neural crest cells by dominant negative Rac1 (DN-Rac1) interfered with neural crest cell migration, and that co-transfection of DN-Rac1 and Coactosin restored neural crest cell migration. From these results we have concluded that Coactosin functions downstream of Rac signaling and that it is involved in neurite extension and neural crest cell migration by actively participating in actin polymerization. Copyright © 2013 Elsevier Inc. All rights reserved.
Rizal, Datu; Tani, Shinichi; Nishiyama, Kimitoshi; Suzuki, Kazuhiko
2006-10-11
In this paper, a novel methodology in batch plant safety and reliability analysis is proposed using a dynamic simulator. A batch process involving several safety objects (e.g. sensors, controller, valves, etc.) is activated during the operational stage. The performance of the safety objects is evaluated by the dynamic simulation and a fault propagation model is generated. By using the fault propagation model, an improved fault tree analysis (FTA) method using switching signal mode (SSM) is developed for estimating the probability of failures. The timely dependent failures can be considered as unavailability of safety objects that can cause the accidents in a plant. Finally, the rank of safety object is formulated as performance index (PI) and can be estimated using the importance measures. PI shows the prioritization of safety objects that should be investigated for safety improvement program in the plants. The output of this method can be used for optimal policy in safety object improvement and maintenance. The dynamic simulator was constructed using Visual Modeler (VM, the plant simulator, developed by Omega Simulation Corp., Japan). A case study is focused on the loss of containment (LOC) incident at polyvinyl chloride (PVC) batch process which is consumed the hazardous material, vinyl chloride monomer (VCM).
Quantitative ultrasonic evaluation of engineering properties in metals, composites and ceramics
NASA Technical Reports Server (NTRS)
Vary, A.
1980-01-01
Ultrasonic technology from the perspective of nondestructive evaluation approaches to material strength prediction and property verification is reviewed. Emergent advanced technology involving quantitative ultrasonic techniques for materials characterization is described. Ultrasonic methods are particularly useful in this area because they involve mechanical elastic waves that are strongly modulated by the same morphological factors that govern mechanical strength and dynamic failure processes. It is emphasized that the technology is in its infancy and that much effort is still required before all the available techniques can be transferred from laboratory to industrial environments.
Kinases Involved in Both Autophagy and Mitosis.
Li, Zhiyuan; Zhang, Xin
2017-08-31
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.
Kinases Involved in Both Autophagy and Mitosis
2017-01-01
Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations. PMID:28858266
Aftershocks and triggering processes in rock fracture
NASA Astrophysics Data System (ADS)
Davidsen, J.; Kwiatek, G.; Goebel, T.; Stanchits, S. A.; Dresen, G.
2017-12-01
One of the hallmarks of our understanding of seismicity in nature is the importance of triggering processes, which makes the forecasting of seismic activity feasible. These triggering processes by which one earthquake induces (dynamic or static) stress changes leading to potentially multiple other earthquakes are at the core relaxation processes. A specic example of triggering are aftershocks following a large earthquake, which have been observed to follow certain empirical relationships such as the Omori-Utsu relation. Such an empirical relation should arise from the underlying microscopic dynamics of the involved physical processes but the exact connection remains to be established. Simple explanations have been proposed but their general applicability is unclear. Many explanations involve the picture of an earthquake as a purely frictional sliding event. Here, we present experimental evidence that these empirical relationships are not limited to frictional processes but also arise in fracture zone formation and are mostly related to compaction-type events. Our analysis is based on tri-axial compression experiments under constant displacement rate on sandstone and granite samples using spatially located acoustic emission events and their focal mechanisms. More importantly, we show that event-event triggering plays an important role in the presence of large-scale or macrocopic imperfections while such triggering is basically absent if no signicant imperfections are present. We also show that spatial localization and an increase in activity rates close to failure do not necessarily imply triggering behavior associated with aftershocks. Only if a macroscopic crack is formed and its propagation remains subcritical do we observe significant triggering.
NASA Astrophysics Data System (ADS)
Reiss, P.
2018-05-01
Chemical analysis of lunar soil samples often involves thermal processing to extract their volatile constituents, such as loosely adsorbed water. For the characterization of volatiles and their bonding mechanisms it is important to determine their desorption temperature. However, due to the low thermal diffusivity of lunar regolith, it might be difficult to reach a uniform heat distribution in a sample that is larger than only a few particles. Furthermore, the mass transport through such a sample is restricted, which might lead to a significant delay between actual desorption and measurable outgassing of volatiles from the sample. The entire volatiles extraction process depends on the dynamically changing heat and mass transfer within the sample, and is influenced by physical parameters such as porosity, tortuosity, gas density, temperature and pressure. To correctly interpret measurements of the extracted volatiles, it is important to understand the interaction between heat transfer, sorption, and gas transfer through the sample. The present paper discusses the molecular kinetics and mechanisms that are involved in the thermal extraction process and presents a combined parametrical computation model to simulate this process. The influence of water content on the gas diffusivity and thermal diffusivity is discussed and the issue of possible resorption of desorbed molecules within the sample is addressed. Based on the multi-physical computation model, a case study for the ProSPA instrument for in situ analysis of lunar volatiles is presented, which predicts relevant dynamic process parameters, such as gas pressure and process duration.
Effect of Alignment on L2 Written Production
ERIC Educational Resources Information Center
Wang, Chuming; Wang, Min
2015-01-01
This article aims to uncover how L2 writing is affected by alignment, a socio-cognitive process involving dynamic coordination and adaptation. For this, two studies were conducted. Study 1 required two groups of 24 learners of English as a foreign language (EFL) to continue in English two stories with their endings removed, both of which had a…
ERIC Educational Resources Information Center
Duffield, Cecily Jill
2013-01-01
A key debate in the psycholinguistic study of grammatical language production is whether the process is a syntactocentric one, driven by grammatical information and grammatical rules, or a dynamic, interactive one, involving both semantic and syntactic information. Examining how speakers produce subject-verb number agreement has been useful in…
Signifying the Accumulation Graph in a Dynamic and Multi-Representation Environment
ERIC Educational Resources Information Center
Yerushalmy, Michal; Swidan, Osama
2012-01-01
The present study focuses on the accumulation process involved in the integration of a single-variable function. Observing the work of two high-school calculus students who had not yet learned any other integral-related ideas, we analyze the emergence of the semiotic relationship between personal and mathematical meanings, as expressed through the…
ERIC Educational Resources Information Center
Romano, Angela
2016-01-01
This article outlines the potential for Research Higher Degree (RHD) supervisors at universities and similar institutions to use ethical review as a constructive, dynamic tool in guiding RHD students in the timely completion of effective, innovative research projects. Ethical review involves a bureaucratized process for checking that researchers…
Disturbance in forest ecosystems caused by pathogens and insects
Philip M. Wargo; Philip M. Wargo
1995-01-01
Pathogens and insects are major driving forces of processes in forested ecosystems. Disturbances caused by them are as intimately involved in ecosystem dynamics as the more sudden and obvious abiotic disturbances, for example, those caused by wind or fire. However, because pathogens and insects are selective and may affect only one or several related species of...
ERIC Educational Resources Information Center
Brown, Raymond; Renshaw, Peter
2006-01-01
Bakhtin's (1981) concept of chronotope provides a way of viewing student participation in the classroom as a dynamic process constituted through the interaction of past experience, ongoing involvement, and yet-to-be-accomplished goals. Although the actual design and use of classroom space may be important in facilitating a participatory pedagogy,…
Access, Status, and Representation: Some Reflections from Two Ethnographic Studies of Elite Schools
ERIC Educational Resources Information Center
Gaztambide-Fernandez, Ruben A.; Howard, Adam
2012-01-01
In this article, we use our experiences to demonstrate the limits of the "studying up" metaphor to capture the complexity of the dynamics involved in doing research on groups that occupy positions of power within social hierarchies. The article focuses on different facets of the research process, alternating between our individual narratives and a…
ERIC Educational Resources Information Center
McNamara, Lauren
2013-01-01
This article describes the first two years of an ongoing, collaborative action research project focused on the troubled recess environment in 4 elementary schools in southern Ontario. The project involves an iterative, dynamic process of inquiry, planning, action, and reflection among students, teachers, university researchers, university student…
Study of Elementary Reactions and Energy Transfer Processes Involving the NH and CN Free Radicals
1991-06-14
with noble gases. Experiments on this system are being carried out in Bochum 7 and Santa Cruz. Our work is the first computational study of inelastic...in the dynamics of this reactions, namely H2N) and HNOH. With quantul chemitry cilculations utilizing fourth-order Moller-Plesset perturbation theory
ERIC Educational Resources Information Center
Rochat, Shékina
2018-01-01
Little is known about the origins of anxiety manifested in the career counseling process. Through a case illustration, this article highlights the appropriateness of using functional family therapy (FFT) principles in career counseling sessions to assess the family dynamics involved in this issue. The discussion emphasizes seven suggestions: (1)…
ERIC Educational Resources Information Center
Lavigne, Frederic; Dumercy, Laurent; Darmon, Nelly
2011-01-01
Recall and language comprehension while processing sequences of words involves multiple semantic priming between several related and/or unrelated words. Accounting for multiple and interacting priming effects in terms of underlying neuronal structure and dynamics is a challenge for current models of semantic priming. Further elaboration of current…
Academic Reading Strategies Used by Leeds Metropolitan University Graduates: A Case Study
ERIC Educational Resources Information Center
Sohail, Samira
2015-01-01
Academic reading is different from other forms of reading because it is complex and discipline-specific. It involves a measured, challenging, and multifaceted process in which students are dynamically engaged with a range of reading strategies. Academic reading improvement is possible, provided students work on it and there are no short cuts or…
Brain Structure-function Couplings (FY11)
2012-01-01
influence time-evolving models of global brain function and dynamic changes in cognitive performance. Both structural and functional connections change on...Artifact Resistant Measure to Detect Cognitive EEG Activity During Locomotion. Journal of NeuroEngineering and Rehabilitation, submitted. 10...Specifically, identifying the communication between brain regions that occurs during tasks may provide information regarding the cognitive processes involved in
Luo, Guo; Yi, Jianxun; Ma, Changling; Xiao, Yajuan; Yi, Frank; Yu, Tian; Zhou, Jingsong
2013-01-01
Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1(G93A)). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A) in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A) forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A) model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1(G93A) action on mitochondrial dynamics, indicating SOD1(G93A) likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A) inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may actively promote ALS progression.
Single-layer HDR video coding with SDR backward compatibility
NASA Astrophysics Data System (ADS)
Lasserre, S.; François, E.; Le Léannec, F.; Touzé, D.
2016-09-01
The migration from High Definition (HD) TV to Ultra High Definition (UHD) is already underway. In addition to an increase of picture spatial resolution, UHD will bring more color and higher contrast by introducing Wide Color Gamut (WCG) and High Dynamic Range (HDR) video. As both Standard Dynamic Range (SDR) and HDR devices will coexist in the ecosystem, the transition from Standard Dynamic Range (SDR) to HDR will require distribution solutions supporting some level of backward compatibility. This paper presents a new HDR content distribution scheme, named SL-HDR1, using a single layer codec design and providing SDR compatibility. The solution is based on a pre-encoding HDR-to-SDR conversion, generating a backward compatible SDR video, with side dynamic metadata. The resulting SDR video is then compressed, distributed and decoded using standard-compliant decoders (e.g. HEVC Main 10 compliant). The decoded SDR video can be directly rendered on SDR displays without adaptation. Dynamic metadata of limited size are generated by the pre-processing and used to reconstruct the HDR signal from the decoded SDR video, using a post-processing that is the functional inverse of the pre-processing. Both HDR quality and artistic intent are preserved. Pre- and post-processing are applied independently per picture, do not involve any inter-pixel dependency, and are codec agnostic. Compression performance, and SDR quality are shown to be solidly improved compared to the non-backward and backward-compatible approaches, respectively using the Perceptual Quantization (PQ) and Hybrid Log Gamma (HLG) Opto-Electronic Transfer Functions (OETF).
Manipulation of host membranes by bacterial effectors.
Ham, Hyeilin; Sreelatha, Anju; Orth, Kim
2011-07-18
Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.
A Comparative Analysis of Phase-Change Wastewater Processing Approaches for Microgravity
NASA Technical Reports Server (NTRS)
Lange, Kevin
2016-01-01
Two phase-change wastewater processing candidates, the ISS Vapor Compression Distillation (VCD) System and the Cascade Distiller System (CDS), are compared based on dynamic modeling of both technologies. Differences in fluid handling and energy recovery for the technologies are described and contrasted. Model predictions are presented showing how temperatures, pressures, and compositions vary locally within each distiller. These dynamic variations are difficult to observe experimentally and have implications regarding non-condensable buildup and salt precipitation potential. Alternative architectures involving VCD and CDS components are analyzed in terms of predicted performance and equivalent system mass (ESM). The addition of a downstream brine processor to increase water recovery is also evaluated. Options for reducing overall ESM are discussed, including the possibility of developing a single precipitation-tolerant primary wastewater processor.
Farigliano, Lucas M; Paz, Sergio A; Leiva, Ezequiel P M; Villarreal, Marcos A
2017-08-08
The coalescence process of two nanoparticles to yield a core-shell structure is analyzed by a well-tempered metadynamics procedure. This methodology has been shown to be useful in understanding the present phenomenon in terms of two collective variables: the distance between the center of mass of the coalescing particles and the gyration radius of the resulting core element. The free-energy contour plots clearly show that the coalescence process involves the deformation of the core material, which is manifested in the residence of the system in regions with a larger gyration radius. Results from molecular dynamics for the same system were found helpful to reach the definition of this second collective variable. The advantages and limitations of the latter approach are discussed.
Magnetic drops in a soft-magnetic cylinder
NASA Astrophysics Data System (ADS)
Hertel, Riccardo; Kirschner, Jürgen
2004-07-01
Magnetization reversal in a cylindrical ferromagnetic particle seems to be a simple textbook problem in magnetism. But at a closer look, the magnetization reversal dynamics in a cylinder is far from being trivial. The difficulty arises from the central axis, where the magnetization switches in a discontinuous fashion. Micromagnetic computer simulations allow for a detailed description of the evolution of the magnetic structure on the sub-nanosecond time scale. The switching process involves the injection of a magnetic point singularity (Bloch point) into the cylinder. Further point singularities may be generated and annihilated periodically during the reversal process. This results in the temporary formation of micromagnetic drops, i.e., isolated, non-reversed regions. This surprising feature in dynamic micromagnetism is due to different mobilities of domain wall and Bloch point.
Using a System Model for Irrigation Management
NASA Astrophysics Data System (ADS)
de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba
2014-05-01
When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.
Lee, Wei-Hua; Higuchi, Hitoshi; Ikeda, Sakae; Macke, Erica L; Takimoto, Tetsuya; Pattnaik, Bikash R; Liu, Che; Chu, Li-Fang; Siepka, Sandra M; Krentz, Kathleen J; Rubinstein, C Dustin; Kalejta, Robert F; Thomson, James A; Mullins, Robert F; Takahashi, Joseph S; Pinto, Lawrence H; Ikeda, Akihiro
2016-01-01
While the aging process is central to the pathogenesis of age-dependent diseases, it is poorly understood at the molecular level. We identified a mouse mutant with accelerated aging in the retina as well as pathologies observed in age-dependent retinal diseases, suggesting that the responsible gene regulates retinal aging, and its impairment results in age-dependent disease. We determined that a mutation in the transmembrane 135 (Tmem135) is responsible for these phenotypes. We observed localization of TMEM135 on mitochondria, and imbalance of mitochondrial fission and fusion in mutant Tmem135 as well as Tmem135 overexpressing cells, indicating that TMEM135 is involved in the regulation of mitochondrial dynamics. Additionally, mutant retina showed higher sensitivity to oxidative stress. These results suggest that the regulation of mitochondrial dynamics through TMEM135 is critical for protection from environmental stress and controlling the progression of retinal aging. Our study identified TMEM135 as a critical link between aging and age-dependent diseases. DOI: http://dx.doi.org/10.7554/eLife.19264.001 PMID:27863209
Relationship between femtosecond-picosecond dynamics to enzyme catalyzed H-transfer
Cheatum, Christopher M.; Kohen, Amnon
2015-01-01
At physiological temperatures, enzymes exhibit a broad spectrum of conformations, which interchange via thermally activated dynamics. These conformations are sampled differently in different complexes of the protein and its ligands, and the dynamics of exchange between these conformers depends on the mass of the group that is moving and the length scale of the motion, as well as restrictions imposed by the globular fold of the enzymatic complex. Many of these motions have been examined and their role in the enzyme function illuminated, yet most experimental tools applied so far have identified dynamics at time scales of seconds to nanoseconds, which are much slower than the time scale for H-transfer between two heavy atoms. This chemical conversion and other processes involving cleavage of covalent bonds occur on picosecond to femtosecond time scales, where slower processes mask both the kinetics and dynamics. Here we present a combination of kinetic and spectroscopic methods that may enable closer examination of the relationship between enzymatic C-H→C transfer and the dynamics of the active site environment at the chemically relevant time scale. These methods include kinetic isotope effects and their temperature dependence, which are used to study the kinetic nature of the H-transfer, and 2D IR spectroscopy, which is used to study the dynamics of transition-state- and ground-state-analog complexes. The combination of these tools is likely to provide a new approach to examine the protein dynamics that directly influence the chemical conversion catalyzed by enzymes. PMID:23539379
Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains
Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka
2014-01-01
SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060
Isabelle, Boulangeat; Pauline, Philippe; Sylvain, Abdulhak; Roland, Douzet; Luc, Garraud; Sébastien, Lavergne; Sandra, Lavorel; Jérémie, Van Es; Pascal, Vittoz; Wilfried, Thuiller
2013-01-01
The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. PMID:24403847
Cell fate determination dynamics in bacteria
NASA Astrophysics Data System (ADS)
Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Garcia-Ojalvo, Jordi; Suel, Gurol
2010-03-01
The fitness of an organism depends on many processes that serve the purpose to adapt to changing environment in a robust and coordinated fashion. One example of such process is cellular fate determination. In the presence of a variety of alternative responses each cell adopting a particular fate represents a ``choice'' that must be tightly regulated to ensure the best survival strategy for the population taking into account the broad range of possible environmental challenges. We investigated this problem in the model organism B.Subtilis which under stress conditions differentiates terminally into highly resistant spores or initiates an alternative transient state of competence. The dynamics underlying cell fate choice remains largely unknown. We utilize quantitative fluorescent microscopy to track the activities of genes involved in these responses on a single-cell level. We explored the importance of temporal interactions between competing cell fates by re- engineering the differentiation programs. I will discuss how the precise dynamics of cellular ``decision-making'' governed by the corresponding biological circuits may enable cells to adjust to diverse environments and determine survival.
Cloud fluid models of gas dynamics and star formation in galaxies
NASA Technical Reports Server (NTRS)
Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.
1987-01-01
The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.
Environmental-stress-induced Chromatin Regulation and its Heritability
Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K
2014-01-01
Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives. PMID:25045581
4D multiple-cathode ultrafast electron microscopy
Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H.
2014-01-01
Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging. PMID:25006261
4D multiple-cathode ultrafast electron microscopy.
Baskin, John Spencer; Liu, Haihua; Zewail, Ahmed H
2014-07-22
Four-dimensional multiple-cathode ultrafast electron microscopy is developed to enable the capture of multiple images at ultrashort time intervals for a single microscopic dynamic process. The dynamic process is initiated in the specimen by one femtosecond light pulse and probed by multiple packets of electrons generated by one UV laser pulse impinging on multiple, spatially distinct, cathode surfaces. Each packet is distinctly recorded, with timing and detector location controlled by the cathode configuration. In the first demonstration, two packets of electrons on each image frame (of the CCD) probe different times, separated by 19 picoseconds, in the evolution of the diffraction of a gold film following femtosecond heating. Future elaborations of this concept to extend its capabilities and expand the range of applications of 4D ultrafast electron microscopy are discussed. The proof-of-principle demonstration reported here provides a path toward the imaging of irreversible ultrafast phenomena of materials, and opens the door to studies involving the single-frame capture of ultrafast dynamics using single-pump/multiple-probe, embedded stroboscopic imaging.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.
Involving young people in health promotion, research and policy-making: practical recommendations.
Aceves-Martins, Magaly; Aleman-Diaz, Aixa Y; Giralt, Montse; Solà, Rosa
2018-05-18
Youth is a dynamic and complex transition period in life where many factors jeopardise its present and future health. Youth involvement enables young people to influence processes and decisions that affect them, leading to changes in themselves and their environment (e.g. peers, services, communities and policies); this strategy could be applied to improve health and prevent diseases. Nonetheless, scientific evidence of involving youth in health-related programmes is scarce. The aim of this paper is to describe youth involvement as a health promotion strategy and to compile practical recommendations for health promoters, researchers and policy-makers interested in successful involvement of young people in health-related programmes. These suggestions aim to encourage a positive working synergy between adults and youth during the development, implementation and evaluation of policies, research and/or health promotion efforts that target adolescents.
Model-Based Prognostics of Hybrid Systems
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal
2015-01-01
Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.
No question about exciting questions in cell biology.
Pollard, Thomas D
2013-12-01
Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.
Pion-nucleon scattering: from chiral perturbation theory to Roy-Steiner equations
NASA Astrophysics Data System (ADS)
Kubis, Bastian; Hoferichter, Martin; de Elvira, Jacobo Ruiz; Meißner, Ulf-G.
2016-11-01
Ever since Weinberg's seminal predictions of the pion-nucleon scattering amplitudes at threshold, this process has been of central interest for the study of chiral dynamics involving nucleons. The scattering lengths or the pion-nucleon σ-term are fundamental quantities characterizing the explicit breaking of chiral symmetry by means of the light quark masses. On the other hand, pion-nucleon dynamics also strongly affects the long-range part of nucleon-nucleon potentials, and hence has a far-reaching impact on nuclear physics. We discuss the fruitful combination of dispersion-theoretical methods, in the form of Roy-Steiner equations, with chiral dynamics to determine pion-nucleon scattering amplitudes at low energies with high precision.
Mutations in actin used for structural studies partially disrupt β-thymosin/WH2 domains interaction.
Deville, Célia; Girard-Blanc, Christine; Assrir, Nadine; Nhiri, Naïma; Jacquet, Eric; Bontems, François; Renault, Louis; Petres, Stéphane; van Heijenoort, Carine
2016-10-01
Understanding the structural basis of actin cytoskeleton remodeling requires stabilization of actin monomers, oligomers, and filaments in complex with partner proteins, using various biochemical strategies. Here, we report a dramatic destabilization of the dynamic interaction with a model β-thymosin/WH2 domain induced by mutations in actin. This result underlines that mutant actins should be used with prudence to characterize interactions with intrinsically disordered partners as destabilization of dynamic interactions, although identifiable by NMR, may be invisible to other structural techniques. It also highlights how both β-thymosin/WH2 domains and actin tune local structure and dynamics in regulatory processes involving intrinsically disordered domains. © 2016 Federation of European Biochemical Societies.
An open source platform for multi-scale spatially distributed simulations of microbial ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segre, Daniel
2014-08-14
The goal of this project was to develop a tool for facilitating simulation, validation and discovery of multiscale dynamical processes in microbial ecosystems. This led to the development of an open-source software platform for Computation Of Microbial Ecosystems in Time and Space (COMETS). COMETS performs spatially distributed time-dependent flux balance based simulations of microbial metabolism. Our plan involved building the software platform itself, calibrating and testing it through comparison with experimental data, and integrating simulations and experiments to address important open questions on the evolution and dynamics of cross-feeding interactions between microbial species.
Comparative primate genomics: emerging patterns of genome content and dynamics
Rogers, Jeffrey; Gibbs, Richard A.
2014-01-01
Preface Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for several primates, with analyses of several others underway. Whole genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other nonhuman primates provide valuable insight into genetic similarities and differences among species used as models for disease-related research. This review summarizes current knowledge regarding primate genome content and dynamics and offers a series of goals for the near future. PMID:24709753
Advances in modelling of biomimetic fluid flow at different scales
2011-01-01
The biomimetic flow at different scales has been discussed at length. The need of looking into the biological surfaces and morphologies and both geometrical and physical similarities to imitate the technological products and processes has been emphasized. The complex fluid flow and heat transfer problems, the fluid-interface and the physics involved at multiscale and macro-, meso-, micro- and nano-scales have been discussed. The flow and heat transfer simulation is done by various CFD solvers including Navier-Stokes and energy equations, lattice Boltzmann method and molecular dynamics method. Combined continuum-molecular dynamics method is also reviewed. PMID:21711847
Comparative primate genomics: emerging patterns of genome content and dynamics.
Rogers, Jeffrey; Gibbs, Richard A
2014-05-01
Advances in genome sequencing technologies have created new opportunities for comparative primate genomics. Genome assemblies have been published for various primate species, and analyses of several others are underway. Whole-genome assemblies for the great apes provide remarkable new information about the evolutionary origins of the human genome and the processes involved. Genomic data for macaques and other non-human primates offer valuable insights into genetic similarities and differences among species that are used as models for disease-related research. This Review summarizes current knowledge regarding primate genome content and dynamics, and proposes a series of goals for the near future.
Identification of pilot dynamics from in-flight tracking data
NASA Technical Reports Server (NTRS)
Hess, R. A.; Mnich, M. A.
1985-01-01
Data from a representative flight task involving an F-14 'pursuer' aircraft tracking a T-38 'target' aircraft in a 3G wind-up turn and in level flight are processed using a least squares identification technique in an attempt to identify pilot/vehicle dynamics. Comparative identification results are provided by a Fourier coefficient method which requires a carefully designed and implemented input consisting of a sum of sinusoids. The least-squares results compare favorably with those obtained by the Fourier technique. An example of crossover frequency regression is discussed in the light of the conditions of one of the flight configurations.
Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.
Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S
2017-05-03
During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
An integrative process model of leadership: examining loci, mechanisms, and event cycles.
Eberly, Marion B; Johnson, Michael D; Hernandez, Morela; Avolio, Bruce J
2013-09-01
Utilizing the locus (source) and mechanism (transmission) of leadership framework (Hernandez, Eberly, Avolio, & Johnson, 2011), we propose and examine the application of an integrative process model of leadership to help determine the psychological interactive processes that constitute leadership. In particular, we identify the various dynamics involved in generating leadership processes by modeling how the loci and mechanisms interact through a series of leadership event cycles. We discuss the major implications of this model for advancing an integrative understanding of what constitutes leadership and its current and future impact on the field of psychological theory, research, and practice. © 2013 APA, all rights reserved.
Preliminary development of digital signal processing in microwave radiometers
NASA Technical Reports Server (NTRS)
Stanley, W. D.
1980-01-01
Topics covered involve a number of closely related tasks including: the development of several control loop and dynamic noise model computer programs for simulating microwave radiometer measurements; computer modeling of an existing stepped frequency radiometer in an effort to determine its optimum operational characteristics; investigation of the classical second order analog control loop to determine its ability to reduce the estimation error in a microwave radiometer; investigation of several digital signal processing unit designs; initiation of efforts to develop required hardware and software for implementation of the digital signal processing unit; and investigation of the general characteristics and peculiarities of digital processing noiselike microwave radiometer signals.
Neuromechanics: an integrative approach for understanding motor control.
Nishikawa, Kiisa; Biewener, Andrew A; Aerts, Peter; Ahn, Anna N; Chiel, Hillel J; Daley, Monica A; Daniel, Thomas L; Full, Robert J; Hale, Melina E; Hedrick, Tyson L; Lappin, A Kristopher; Nichols, T Richard; Quinn, Roger D; Satterlie, Richard A; Szymik, Brett
2007-07-01
Neuromechanics seeks to understand how muscles, sense organs, motor pattern generators, and brain interact to produce coordinated movement, not only in complex terrain but also when confronted with unexpected perturbations. Applications of neuromechanics include ameliorating human health problems (including prosthesis design and restoration of movement following brain or spinal cord injury), as well as the design, actuation and control of mobile robots. In animals, coordinated movement emerges from the interplay among descending output from the central nervous system, sensory input from body and environment, muscle dynamics, and the emergent dynamics of the whole animal. The inevitable coupling between neural information processing and the emergent mechanical behavior of animals is a central theme of neuromechanics. Fundamentally, motor control involves a series of transformations of information, from brain and spinal cord to muscles to body, and back to brain. The control problem revolves around the specific transfer functions that describe each transformation. The transfer functions depend on the rules of organization and operation that determine the dynamic behavior of each subsystem (i.e., central processing, force generation, emergent dynamics, and sensory processing). In this review, we (1) consider the contributions of muscles, (2) sensory processing, and (3) central networks to motor control, (4) provide examples to illustrate the interplay among brain, muscles, sense organs and the environment in the control of movement, and (5) describe advances in both robotics and neuromechanics that have emerged from application of biological principles in robotic design. Taken together, these studies demonstrate that (1) intrinsic properties of muscle contribute to dynamic stability and control of movement, particularly immediately after perturbations; (2) proprioceptive feedback reinforces these intrinsic self-stabilizing properties of muscle; (3) control systems must contend with inevitable time delays that can simplify or complicate control; and (4) like most animals under a variety of circumstances, some robots use a trial and error process to tune central feedforward control to emergent body dynamics.
A 3-D model of tumor progression based on complex automata driven by particle dynamics.
Wcisło, Rafał; Dzwinel, Witold; Yuen, David A; Dudek, Arkadiusz Z
2009-12-01
The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.
Regulation of floral stem cell termination in Arabidopsis
Sun, Bo; Ito, Toshiro
2015-01-01
In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network. PMID:25699061
Topographic Cues Reveal Two Distinct Spreading Mechanisms in Blood Platelets
Sandmann, Rabea; Köster, Sarah
2016-01-01
Blood platelets are instrumental in blood clotting and are thus heavily involved in early wound closure. After adhering to a substrate they spread by forming protrusions like lamellipodia and filopodia. However, the interaction of these protrusions with the physical environment of platelets while spreading is not fully understood. Here we dynamically image platelets during this spreading process and compare their behavior on smooth and on structured substrates. In particular we analyze the temporal evolution of the spread area, the cell morphology and the dynamics of individual filopodia. Interestingly, the topographic cues enable us to distinguish two spreading mechanisms, one that is based on numerous persistent filopodia and one that rather involves lamellipodia. Filopodia-driven spreading coincides with a strong response of platelet morphology to the substrate topography during spreading, whereas lamellipodia-driven spreading does not. Thus, we quantify different degrees of filopodia formation in platelets and the influence of filopodia in spreading on structured substrates. PMID:26934830
Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis
NASA Astrophysics Data System (ADS)
Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie
2011-01-01
Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.
Stott, Jeffrey J; Redish, A David
2014-11-05
Both orbitofrontal cortex (OFC) and ventral striatum (vStr) have been identified as key structures that represent information about value in decision-making tasks. However, the dynamics of how this information is processed are not yet understood. We recorded ensembles of cells from OFC and vStr in rats engaged in the spatial adjusting delay-discounting task, a decision-making task that involves a trade-off between delay to and magnitude of reward. Ventral striatal neural activity signalled information about reward before the rat's decision, whereas such reward-related signals were absent in OFC until after the animal had committed to its decision. These data support models in which vStr is directly involved in action selection, but OFC processes decision-related information afterwards that can be used to compare the predicted and actual consequences of behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Multiobjective optimization in structural design with uncertain parameters and stochastic processes
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.
Lapierre, Mark; Howe, Piers D. L.; Cropper, Simon J.
2013-01-01
Many tasks involve tracking multiple moving objects, or stimuli. Some require that individuals adapt to changing or unfamiliar conditions to be able to track well. This study explores processes involved in such adaptation through an investigation of the interaction of attention and memory during tracking. Previous research has shown that during tracking, attention operates independently to some degree in the left and right visual hemifields, due to putative anatomical constraints. It has been suggested that the degree of independence is related to the relative dominance of processes of attention versus processes of memory. Here we show that when individuals are trained to track a unique pattern of movement in one hemifield, that learning can be transferred to the opposite hemifield, without any evidence of hemifield independence. However, learning is not influenced by an explicit strategy of memorisation of brief periods of recognisable movement. The findings lend support to a role for implicit memory in overcoming putative anatomical constraints on the dynamic, distributed spatial allocation of attention involved in tracking multiple objects. PMID:24349555
Dynamic functional brain networks involved in simple visual discrimination learning.
Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis
2014-10-01
Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Dynamics of Lamin-A Processing Following Precursor Accumulation
Liu, Qian; Kim, Dae In; Syme, Janet; LuValle, Phyllis; Burke, Brian; Roux, Kyle J.
2010-01-01
Lamin A (LaA) is a component of the nuclear lamina, an intermediate filament meshwork that underlies the inner nuclear membrane (INM) of the nuclear envelope (NE). Newly synthesized prelamin A (PreA) undergoes extensive processing involving C-terminal farnesylation followed by proteolysis yielding non-farnesylated mature lamin A. Different inhibitors of these processing events are currently used therapeutically. Hutchinson-Gilford Progeria Syndrome (HGPS) is most commonly caused by mutations leading to an accumulation of a farnesylated LaA isoform, prompting a clinical trial using farnesyltransferase inhibitors (FTI) to reduce this modification. At therapeutic levels, HIV protease inhibitors (PI) can unexpectedly inhibit the final processing step in PreA maturation. We have examined the dynamics of LaA processing and associated cellular effects during PI or FTI treatment and following inhibitor washout. While PI reversibility was rapid, with respect to both LaA maturation and associated cellular phenotype, recovery from FTI treatment was more gradual. FTI reversibility is influenced by both cell type and rate of proliferation. These results suggest a less static lamin network than has previously been observed. PMID:20526372
Addiction, adolescence, and the integration of control and motivation.
Gladwin, Thomas E; Figner, Bernd; Crone, Eveline A; Wiers, Reinout W
2011-10-01
The likelihood of initiating addictive behaviors is higher during adolescence than during any other developmental period. The differential developmental trajectories of brain regions involved in motivation and control processes may lead to adolescents' increased risk taking in general, which may be exacerbated by the neural consequences of drug use. Neuroimaging studies suggest that increased risk-taking behavior in adolescence is related to an imbalance between prefrontal cortical regions, associated with executive functions, and subcortical brain regions related to affect and motivation. Dual-process models of addictive behaviors are similarly concerned with difficulties in controlling abnormally strong motivational processes. We acknowledge concerns raised about dual-process models, but argue that they can be addressed by carefully considering levels of description: motivational processes and top-down biasing can be understood as intertwined, co-developing components of more versus less reflective states of processing. We illustrate this with a model that further emphasizes temporal dynamics. Finally, behavioral interventions for addiction are discussed. Insights in the development of control and motivation may help to better understand - and more efficiently intervene in - vulnerabilities involving control and motivation. Copyright © 2011 Elsevier Ltd. All rights reserved.
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS
Almquist, Zack W.; Butts, Carter T.
2015-01-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach. PMID:26120218
LOGISTIC NETWORK REGRESSION FOR SCALABLE ANALYSIS OF NETWORKS WITH JOINT EDGE/VERTEX DYNAMICS.
Almquist, Zack W; Butts, Carter T
2014-08-01
Change in group size and composition has long been an important area of research in the social sciences. Similarly, interest in interaction dynamics has a long history in sociology and social psychology. However, the effects of endogenous group change on interaction dynamics are a surprisingly understudied area. One way to explore these relationships is through social network models. Network dynamics may be viewed as a process of change in the edge structure of a network, in the vertex set on which edges are defined, or in both simultaneously. Although early studies of such processes were primarily descriptive, recent work on this topic has increasingly turned to formal statistical models. Although showing great promise, many of these modern dynamic models are computationally intensive and scale very poorly in the size of the network under study and/or the number of time points considered. Likewise, currently used models focus on edge dynamics, with little support for endogenously changing vertex sets. Here, the authors show how an existing approach based on logistic network regression can be extended to serve as a highly scalable framework for modeling large networks with dynamic vertex sets. The authors place this approach within a general dynamic exponential family (exponential-family random graph modeling) context, clarifying the assumptions underlying the framework (and providing a clear path for extensions), and they show how model assessment methods for cross-sectional networks can be extended to the dynamic case. Finally, the authors illustrate this approach on a classic data set involving interactions among windsurfers on a California beach.
Experience with dynamic reinforcement rates decreases resistance to extinction.
Craig, Andrew R; Shahan, Timothy A
2016-03-01
The ability of organisms to detect reinforcer-rate changes in choice preparations is positively related to two factors: the magnitude of the change in rate and the frequency with which rates change. Gallistel (2012) suggested similar rate-detection processes are responsible for decreases in responding during operant extinction. Although effects of magnitude of change in reinforcer rate on resistance to extinction are well known (e.g., the partial-reinforcement-extinction effect), effects of frequency of changes in rate prior to extinction are unknown. Thus, the present experiments examined whether frequency of changes in baseline reinforcer rates impacts resistance to extinction. Pigeons pecked keys for variable-interval food under conditions where reinforcer rates were stable and where they changed within and between sessions. Overall reinforcer rates between conditions were controlled. In Experiment 1, resistance to extinction was lower following exposure to dynamic reinforcement schedules than to static schedules. Experiment 2 showed that resistance to presession feeding, a disruptor that should not involve change-detection processes, was unaffected by baseline-schedule dynamics. These findings are consistent with the suggestion that change detection contributes to extinction. We discuss implications of change-detection processes for extinction of simple and discriminated operant behavior and relate these processes to the behavioral-momentum based approach to understanding extinction. © 2016 Society for the Experimental Analysis of Behavior.
Proteomic analysis of Bombyx mori molting fluid: Insights into the molting process.
Liu, Hua-Wei; Wang, Luo-Ling; Tang, Xin; Dong, Zhao-Ming; Guo, Peng-Chao; Zhao, Dong-Chao; Xia, Qing-You; Zhao, Ping
2018-02-20
Molting is an essential biological process occurring multiple times throughout the life cycle of most Ecdysozoa. Molting fluids accumulate and function in the exuvial space during the molting process. In this study, we used liquid chromatography-tandem mass spectrometry to investigate the molting fluids to analyze the molecular mechanisms of molting in the silkworm, Bombyx mori. In total, 375 proteins were identified in molting fluids from the silkworm at 14-16h before pupation and eclosion, including 12 chitin metabolism-related enzymes, 35 serine proteases, 15 peptidases, and 38 protease inhibitors. Gene ontology analysis indicated that "catalytic" constitutes the most enriched function in the molting fluid. Gene expression patterns and bioinformatic analyses suggested that numerous enzymes are involved in the degradation of cuticle proteins and chitin. Protein-protein interaction network and activity analyses showed that protease inhibitors are involved in the regulation of multiple pathways in molting fluid. Additionally, many immune-related proteins may be involved in the immune defense during molting. These results provide a comprehensive proteomic insight into proteolytic enzymes and protease inhibitors in molting fluid, and will likely improve the current understanding of physiological processes in insect molting. Insect molting constitutes a dynamic physiological process. To better understand this process, we used LC-MS/MS to investigate the proteome of silkworm molting fluids and identified key proteins involved in silkworm molting. The biological processes of the old cuticle degradation pathway and immune defense response were analyzed in the proteome of silkworm molting fluid. We report that protease inhibitors serve as key factors in the regulation of the molting process. The proteomic results provide new insight into biological molting processes in insects. Copyright © 2017 Elsevier B.V. All rights reserved.
Overview 1993: Computational applications
NASA Technical Reports Server (NTRS)
Benek, John A.
1993-01-01
Computational applications include projects that apply or develop computationally intensive computer programs. Such programs typically require supercomputers to obtain solutions in a timely fashion. This report describes two CSTAR projects involving Computational Fluid Dynamics (CFD) technology. The first, the Parallel Processing Initiative, is a joint development effort and the second, the Chimera Technology Development, is a transfer of government developed technology to American industry.
Implementing the Project Approach: A Case Study of Hybrid Pedagogy in a Hong Kong Kindergarten
ERIC Educational Resources Information Center
Chen, Jennifer J.; Li, Hui; Wang, Jing-ying
2017-01-01
The Project Approach has been promoted in Hong Kong kindergartens since the 1990s. However, the dynamic processes and underlying mechanisms involved in the teachers' implementation of this pedagogical method there have not yet been fully investigated. This case study of one typical kindergarten in Hong Kong documented how and why eight teachers…
Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid
NASA Astrophysics Data System (ADS)
Hu, Wei; Tian, Qiang; Hu, HaiYan
2018-04-01
As a subsequent work of previous studies of authors, a new parallel computation approach is proposed to simulate the coupled dynamics of a rigid-flexible multibody system and compressible fluid. In this approach, the smoothed particle hydrodynamics (SPH) method is used to model the compressible fluid, the natural coordinate formulation (NCF) and absolute nodal coordinate formulation (ANCF) are used to model the rigid and flexible bodies, respectively. In order to model the compressible fluid properly and efficiently via SPH method, three measures are taken as follows. The first is to use the Riemann solver to cope with the fluid compressibility, the second is to define virtual particles of SPH to model the dynamic interaction between the fluid and the multibody system, and the third is to impose the boundary conditions of periodical inflow and outflow to reduce the number of SPH particles involved in the computation process. Afterwards, a parallel computation strategy is proposed based on the graphics processing unit (GPU) to detect the neighboring SPH particles and to solve the dynamic equations of SPH particles in order to improve the computation efficiency. Meanwhile, the generalized-alpha algorithm is used to solve the dynamic equations of the multibody system. Finally, four case studies are given to validate the proposed parallel computation approach.
Nonlinear dynamics of team performance and adaptability in emergency response.
Guastello, Stephen J
2010-04-01
The impact of team size and performance feedback on adaptation levels and performance of emergency response (ER) teams was examined to introduce a metric for quantifying adaptation levels based on nonlinear dynamical systems (NDS) theory. NDS principles appear in reports surrounding Hurricane Katrina, earthquakes, floods, a disease epidemic, and the Southeast Asian tsunami. They are also intrinsic to coordination within teams, adaptation levels, and performance in dynamic decision processes. Performance was measured in a dynamic decision task in which ER teams of different sizes worked against an attacker who was trying to destroy a city (total N = 225 undergraduates). The complexity of teams' and attackers' adaptation strategies and the role of the opponents' performance were assessed by nonlinear regression analysis. An optimal group size for team performance was identified. Teams were more readily influenced by the attackers' performance than vice versa. The adaptive capabilities of attackers and teams were impaired by their opponents in some conditions. ER teams should be large enough to contribute a critical mass of ideas but not so large that coordination would be compromised. ER teams used self-organized strategies that could have been more adaptive, whereas attackers used chaotic strategies. The model and results are applicable to ER processes or training maneuvers involving dynamic decisions but could be limited to nonhierarchical groups.
Operator-assisted planning and execution of proximity operations subject to operational constraints
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1991-01-01
Future multi-vehicle operations will involve multiple scenarios that will require a planning tool for the rapid, interactive creation of fuel-efficient trajectories. The planning process must deal with higher-order, non-linear processes involving dynamics that are often counter-intuitive. The optimization of resulting trajectories can be difficult to envision. An interaction proximity operations planning system is being developed to provide the operator with easily interpreted visual feedback of trajectories and constraints. This system is hosted on an IRIS 4D graphics platform and utilizes the Clohessy-Wiltshire equations. An inverse dynamics algorithm is used to remove non-linearities while the trajectory maneuvers are decoupled and separated in a geometric spreadsheet. The operator has direct control of the position and time of trajectory waypoints to achieve the desired end conditions. Graphics provide the operator with visualization of satisfying operational constraints such as structural clearance, plume impingement, approach velocity limits, and arrival or departure corridors. Primer vector theory is combined with graphical presentation to improve operator understanding of suggested automated system solutions and to allow the operator to review, edit, or provide corrective action to the trajectory plan.
Kobayashi, Masaki; Sasaki, Kensuke; Enomoto, Masaru; Ehara, Yoshio
2007-01-01
The hypersensitive response (HR) is one mechanism of the resistance of plants to pathogen infection. It involves the generation of reactive oxygen species (ROS) which have crucial roles in signal transduction or as toxic agents leading to cell death. Often, ROS generation is accompanied by an ultraweak photon emission resulting from radical reactions that are initiated by ROS through the oxidation of living materials such as lipids, proteins, and DNA. This photon emission, referred to as 'biophotons', is extremely weak, but, based on the technique of photon counting imaging, a system has been developed to analyse the spatiotemporal properties of photon emission. Using this system, the dynamics of photon emission which might be associated with the oxidative burst, which promotes the HR, have been determined. Here, the transient generation of biophotons is demonstrated during the HR process in cowpea elicited by cucumber mosaic virus. The distinctive dynamics in spatiotemporal properties of biophoton emission during the HR expression on macroscopic and microscopic levels are also described. This study reveals the involvement of ROS generation in biophoton emission in the process of HR through the determination of the inhibitory effect of an antioxidant (Tiron) on biophoton emission.
Ince, Robin A. A.; Jaworska, Katarzyna; Gross, Joachim; Panzeri, Stefano; van Rijsbergen, Nicola J.; Rousselet, Guillaume A.; Schyns, Philippe G.
2016-01-01
A key to understanding visual cognition is to determine “where”, “when”, and “how” brain responses reflect the processing of the specific visual features that modulate categorization behavior—the “what”. The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features. PMID:27550865
Gow, David W; Olson, Bruna B
2015-07-01
Phonotactic frequency effects play a crucial role in a number of debates over language processing and representation. It is unclear however, whether these effects reflect prelexical sensitivity to phonotactic frequency, or lexical "gang effects" in speech perception. In this paper, we use Granger causality analysis of MR-constrained MEG/EEG data to understand how phonotactic frequency influences neural processing dynamics during auditory lexical decision. Effective connectivity analysis showed weaker feedforward influence from brain regions involved in acoustic-phonetic processing (superior temporal gyrus) to lexical areas (supramarginal gyrus) for high phonotactic frequency words, but stronger top-down lexical influence for the same items. Low entropy nonwords (nonwords judged to closely resemble real words) showed a similar pattern of interactions between brain regions involved in lexical and acoustic-phonetic processing. These results contradict the predictions of a feedforward model of phonotactic frequency facilitation, but support the predictions of a lexically mediated account.
Gow, David W.; Olson, Bruna B.
2015-01-01
Phonotactic frequency effects play a crucial role in a number of debates over language processing and representation. It is unclear however, whether these effects reflect prelexical sensitivity to phonotactic frequency, or lexical “gang effects” in speech perception. In this paper, we use Granger causality analysis of MR-constrained MEG/EEG data to understand how phonotactic frequency influences neural processing dynamics during auditory lexical decision. Effective connectivity analysis showed weaker feedforward influence from brain regions involved in acoustic-phonetic processing (superior temporal gyrus) to lexical areas (supramarginal gyrus) for high phonotactic frequency words, but stronger top-down lexical influence for the same items. Low entropy nonwords (nonwords judged to closely resemble real words) showed a similar pattern of interactions between brain regions involved in lexical and acoustic-phonetic processing. These results contradict the predictions of a feedforward model of phonotactic frequency facilitation, but support the predictions of a lexically mediated account. PMID:25883413
Dynamics of Nanoscale Grain-Boundary Decohesion in Aluminum by Molecular-Dynamics Simulation
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Phillips, D. R.; Glaessegen, E. H.
2007-01-01
The dynamics and energetics of intergranular crack growth along a flat grain boundary in aluminum is studied by a molecular-dynamics simulation model for crack propagation under steady-state conditions. Using the ability of the molecular-dynamics simulation to identify atoms involved in different atomistic mechanisms, it was possible to identify the energy contribution of different processes taking place during crack growth. The energy contributions were divided as: elastic energy, defined as the potential energy of the atoms in fcc crystallographic state; and plastically stored energy, the energy of stacking faults and twin boundaries; grain-boundary and surface energy. In addition, monitoring the amount of heat exchange with the molecular-dynamics thermostat gives the energy dissipated as heat in the system. The energetic analysis indicates that the majority of energy in a fast growing crack is dissipated as heat. This dissipation increases linearly at low speed, and faster than linear at speeds approaching 1/3 the Rayleigh wave speed when the crack tip becomes dynamically unstable producing periodic dislocation bursts until the crack is blunted.
A nanobiosensor for dynamic single cell analysis during microvascular self-organization.
Wang, S; Sun, J; Zhang, D D; Wong, P K
2016-10-14
The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.
Mothersill, Omar; Morris, Derek W; Kelly, Sinead; Rose, Emma Jane; Bokde, Arun; Reilly, Richard; Gill, Michael; Corvin, Aiden P; Donohoe, Gary
2014-08-01
Processing the emotional content of faces is recognised as a key deficit of schizophrenia, associated with poorer functional outcomes and possibly contributing to the severity of clinical symptoms such as paranoia. At the neural level, fMRI studies have reported altered limbic activity in response to facial stimuli. However, previous studies may be limited by the use of cognitively demanding tasks and static facial stimuli. To address these issues, the current study used a face processing task involving both passive face viewing and dynamic social stimuli. Such a task may (1) lack the potentially confounding effects of high cognitive demands and (2) show higher ecological validity. Functional MRI was used to examine neural activity in 25 patients with a DSM-IV diagnosis of schizophrenia/schizoaffective disorder and 21 age- and gender-matched healthy controls while they participated in a face processing task, which involved viewing videos of angry and neutral facial expressions, and a non-biological baseline condition. While viewing faces, patients showed significantly weaker deactivation of the medial prefrontal cortex, including the anterior cingulate, and decreased activation in the left cerebellum, compared to controls. Patients also showed weaker medial prefrontal deactivation while viewing the angry faces relative to baseline. Given that the anterior cingulate plays a role in processing negative emotion, weaker deactivation of this region in patients while viewing faces may contribute to an increased perception of social threat. Future studies examining the neurobiology of social cognition in schizophrenia using fMRI may help establish targets for treatment interventions. Copyright © 2014 Elsevier B.V. All rights reserved.
Barbagallo, Simone; Corradi, Luca; de Ville de Goyet, Jean; Iannucci, Marina; Porro, Ivan; Rosso, Nicola; Tanfani, Elena; Testi, Angela
2015-05-17
The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40% of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activities involved. This is highly challenging due to the inherent variable and unpredictable nature of surgery. A Business Process Modeling Notation (BPMN 2.0) was used for the representation of the "OR Process" (being defined as the sequence of all of the elementary steps between "patient ready for surgery" to "patient operated upon") as a general pathway ("path"). The path was then both further standardized as much as possible and, at the same time, keeping all of the key-elements that would allow one to address or define the other steps of planning, and the inherent and wide variability in terms of patient specificity. The path was used to schedule OR activity, room-by-room, and day-by-day, feeding the process from a "waiting list database" and using a mathematical optimization model with the objective of ending up in an optimized planning. The OR process was defined with special attention paid to flows, timing and resource involvement. Standardization involved a dynamics operation and defined an expected operating time for each operation. The optimization model has been implemented and tested on real clinical data. The comparison of the results reported with the real data, shows that by using the optimization model, allows for the scheduling of about 30% more patients than in actual practice, as well as to better exploit the OR efficiency, increasing the average operating room utilization rate up to 20%. The optimization of OR activity planning is essential in order to manage the hospital's waiting list. Optimal planning is facilitated by defining the operation as a standard pathway where all variables are taken into account. By allowing a precise scheduling, it feeds the process of planning and, further up-stream, the management of a waiting list in an interactive and bi-directional dynamic process.
Observing Consistency in Online Communication Patterns for User Re-Identification
Venter, Hein S.
2016-01-01
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas. PMID:27918593
Modelling and analysis of the sugar cataract development process using stochastic hybrid systems.
Riley, D; Koutsoukos, X; Riley, K
2009-05-01
Modelling and analysis of biochemical systems such as sugar cataract development (SCD) are critical because they can provide new insights into systems, which cannot be easily tested with experiments; however, they are challenging problems due to the highly coupled chemical reactions that are involved. The authors present a stochastic hybrid system (SHS) framework for modelling biochemical systems and demonstrate the approach for the SCD process. A novel feature of the framework is that it allows modelling the effect of drug treatment on the system dynamics. The authors validate the three sugar cataract models by comparing trajectories computed by two simulation algorithms. Further, the authors present a probabilistic verification method for computing the probability of sugar cataract formation for different chemical concentrations using safety and reachability analysis methods for SHSs. The verification method employs dynamic programming based on a discretisation of the state space and therefore suffers from the curse of dimensionality. To analyse the SCD process, a parallel dynamic programming implementation that can handle large, realistic systems was developed. Although scalability is a limiting factor, this work demonstrates that the proposed method is feasible for realistic biochemical systems.
Integration of the Gene Ontology into an object-oriented architecture.
Shegogue, Daniel; Zheng, W Jim
2005-05-10
To standardize gene product descriptions, a formal vocabulary defined as the Gene Ontology (GO) has been developed. GO terms have been categorized into biological processes, molecular functions, and cellular components. However, there is no single representation that integrates all the terms into one cohesive model. Furthermore, GO definitions have little information explaining the underlying architecture that forms these terms, such as the dynamic and static events occurring in a process. In contrast, object-oriented models have been developed to show dynamic and static events. A portion of the TGF-beta signaling pathway, which is involved in numerous cellular events including cancer, differentiation and development, was used to demonstrate the feasibility of integrating the Gene Ontology into an object-oriented model. Using object-oriented models we have captured the static and dynamic events that occur during a representative GO process, "transforming growth factor-beta (TGF-beta) receptor complex assembly" (GO:0007181). We demonstrate that the utility of GO terms can be enhanced by object-oriented technology, and that the GO terms can be integrated into an object-oriented model by serving as a basis for the generation of object functions and attributes.
Integration of the Gene Ontology into an object-oriented architecture
Shegogue, Daniel; Zheng, W Jim
2005-01-01
Background To standardize gene product descriptions, a formal vocabulary defined as the Gene Ontology (GO) has been developed. GO terms have been categorized into biological processes, molecular functions, and cellular components. However, there is no single representation that integrates all the terms into one cohesive model. Furthermore, GO definitions have little information explaining the underlying architecture that forms these terms, such as the dynamic and static events occurring in a process. In contrast, object-oriented models have been developed to show dynamic and static events. A portion of the TGF-beta signaling pathway, which is involved in numerous cellular events including cancer, differentiation and development, was used to demonstrate the feasibility of integrating the Gene Ontology into an object-oriented model. Results Using object-oriented models we have captured the static and dynamic events that occur during a representative GO process, "transforming growth factor-beta (TGF-beta) receptor complex assembly" (GO:0007181). Conclusion We demonstrate that the utility of GO terms can be enhanced by object-oriented technology, and that the GO terms can be integrated into an object-oriented model by serving as a basis for the generation of object functions and attributes. PMID:15885145
NASA Astrophysics Data System (ADS)
Santoli, S.
The concepts of Active Shape Control ( ASC ) and of Generalized Quantum Holography ( GQH ), respectively embodying a closer approach to biomimicry than the current macrophysics-based attempts at bioinspired robotic systems, and realizing a non-connectionistic, life-like kind of information processing that allows increasingly depths of mimicking of the biological structure-function solidarity, which have been formulated in physical terms in previous papers, are here further investigated for application to bioinspired flying or swimming robots for planetary exploration. It is shown that nano-to-micro integration would give the deepest level of biomimicry, and that both low and very low Reynolds number ( Re ) fluidics would involve GQH and Fiber Bundle Topology ( FBT ) for processing information at the various levels of ASC bioinspired robotics. While very low Re flows lend themselves to geometrization of microrobot dynamics and to FBT design, the general design problem is geometrized through GQH , i.e. made independent of dynamic considerations, thus allowing possible problems of semantic dyscrasias in highly complex hierarchical dynamical chains of sensing information processing actuating to be overcome. A roadmap to near- and medium-term nanostructured and nano-to-micro integration realizations is suggested.
A nationwide survey of state-mandated evaluation practices for domestic violence agencies.
Riger, Stephanie; Staggs, Susan L
2011-01-01
Many agencies serving survivors of domestic violence are required to evaluate their services. Three possible evaluation strategies include: a) process measurement, which typically involves a frequency count of agency activities, such as the number of counseling hours given; b) outcome evaluation, which measures the impact of agency activities on clients, such as increased understanding of the dynamics of abuse; or c) performance measurement, which assesses the extent to which agencies achieve their stated goals. Findings of a telephone survey of state funders of domestic violence agencies in the United States revealed that most states (67%) require only process measurement, while fewer than 10% require performance measurement. Most (69%) funders reported satisfaction with their evaluation strategy and emphasized the need for involvement of all stakeholders, especially grantees, in developing an evaluation.
Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.
Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2005-02-01
cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.
Modeling Common-Sense Decisions in Artificial Intelligence
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
A methodology has been conceived for efficient synthesis of dynamical models that simulate common-sense decision- making processes. This methodology is intended to contribute to the design of artificial-intelligence systems that could imitate human common-sense decision making or assist humans in making correct decisions in unanticipated circumstances. This methodology is a product of continuing research on mathematical models of the behaviors of single- and multi-agent systems known in biology, economics, and sociology, ranging from a single-cell organism at one extreme to the whole of human society at the other extreme. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the three most recent and relevant being Characteristics of Dynamics of Intelligent Systems (NPO -21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; Self-Supervised Dynamical Systems (NPO-30634), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72; and Complexity for Survival of Living Systems (NPO- 43302), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 62. The methodology involves the concepts reported previously, albeit viewed from a different perspective. One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Models of motor dynamics are used to simulate the observable behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. Autonomy is imparted to the decisionmaking process by feedback from mental to motor dynamics. This feedback replaces unavailable external information by information stored in the internal knowledge base. Representation of the dynamical models in a parameterized form reduces the task of common-sense-based decision making to a solution of the following hetero-associated-memory problem: store a set of m predetermined stochastic processes given by their probability distributions in such a way that when presented with an unexpected change in the form of an input out of the set of M inputs, the coupled motormental dynamics converges to the corresponding one of the m pre-assigned stochastic process, and a sample of this process represents the decision.
Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle
Richard W. Hofstetter; James T. Cronin; Kier D. Klepzig; John C. Moser; Matthew P. Ayres
2005-01-01
Feedback from community interactions involving mutualisms are a rarely explored mechanism for generating complex population dynamics. We examined the effects of two linked mutualisms on the population dynamics of a beetle that exhibits outbreak dynamics. One mutualism involves an obligate association between the bark beetle, Dendroctonus frontalis...
Murine Mesenchymal Stem Cell Commitment to Differentiation is Regulated by Mitochondrial Dynamics
Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J.
2015-01-01
Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105+CD90+CD73+CD29+CD34− mesodermal precursors which, after in vitro induction, undergo chondro, adipo and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process. We addressed this knowledge gap by isolating MSCs from Swiss female mice, inducing these cells to differentiate into osteo, chondro and adipocytes and measuring changes in mass, morphology, dynamics and bioenergetics. Mitochondrial biogenesis was increased in adipogenesis, as evaluated through confocal microscopy, citrate synthase activity and mtDNA content. The early steps of adipo and osteogenesis involved mitochondrial elongation, as well as increased expression of mitochondrial fusion proteins Mfn1 and 2. Chondrogenesis involved a fragmented mitochondrial phenotype, increased expression of fission proteins Drp1, Fis1 and 2 and enhanced mitophagy. These events were accompanied by profound bioenergetic alterations during the commitment period. Moreover, knockdown of Mfn2 in adipo and osteogenesis and the overexpression of a dominant negative form of Drp1 during chondrogenesis resulted in a loss of differentiation ability. Overall, we find that mitochondrial morphology and its regulating processes of fission/fusion are modulated early on during commitment, leading to alterations in the bioenergetic profile that are important for differentiation. We thus propose a central role for mitochondrial dynamics in the maintenance/commitment of mesenchymal stem cells. PMID:26638184
Cocolin, Luca; Dolci, Paola; Rantsiou, Kalliopi
2011-11-01
The ecology of fermented sausages is complex and includes different species and strains of bacteria, yeasts and molds. The developments in the field of molecular biology, allowed for new methods to become available, which could be applied to better understand dynamics and diversity of the microorganisms involved in the production of sausages. Methods, such as denaturing gradient gel electrophoresis (DGGE), employed as a culture-independent approach, allow to define the microbial dynamics during the fermentation and ripening. Such approach has highlighted that two main species of lactic acid bacteria, namely Lactobacillus sakei and Lb. curvatus, are involved in the transformation process and that they are accompanied by Staphylococcus xylosus, as representative of the coagulase-negative cocci. These findings were repeatedly confirmed in different regions of the world, mainly in the Mediterranean countries where dry fermented sausages have a long tradition and history. The application of molecular methods for the identification and characterization of isolated strains from fermentations highlighted a high degree of diversity within the species mentioned above, underlining the need to better follow strain dynamics during the transformation process. While there is an important number of papers dealing with bacterial ecology by using molecular methods, studies on mycobiota of fermented sausages are just a few. This review reports on how the application of molecular methods made possible a better comprehension of the sausage fermentations, opening up new fields of research that in the near future will allow to unravel the connection between sensory properties and co-presence of multiple strains of the same species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Strategies for investigating nuclear-cytoplasmic tRNA dynamics in yeast and mammalian cells.
Pierce, Jacqueline B; Chafe, Shawn C; Eswara, Manoja B K; van der Merwe, George; Mangroo, Dev
2014-01-01
Nuclear-cytoplasmic tRNA transport involves multiple pathways that are segregated by the involvement of distinct proteins. The tRNA export process begins in the nucleolus, where the functionality of newly produced tRNAs are tested by aminoacylation, and ends with the delivery of the exported aminoacyl tRNAs to the eukaryotic elongation factor eEF-1A for utilization in protein synthesis in the cytoplasm. Recent studies have identified a number of proteins that participate in nuclear tRNA export in both yeast and mammals. However, genetic and biochemical evidence suggest that additional components, which have yet to be identified, also participate in nuclear-cytoplasmic tRNA trafficking. Here we review key strategies that have led to the identification and characterization of proteins that are involved in the nuclear tRNA export process in yeasts and mammals. The approaches described will greatly facilitate the identification and delineation of the roles of new proteins involved in nuclear export of tRNAs to the cytoplasm. Copyright © 2014 Elsevier Inc. All rights reserved.
Spatio-temporal diffusion of dynamic PET images
NASA Astrophysics Data System (ADS)
Tauber, C.; Stute, S.; Chau, M.; Spiteri, P.; Chalon, S.; Guilloteau, D.; Buvat, I.
2011-10-01
Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.
CoMoDo: identifying dynamic protein domains based on covariances of motion.
Wieninger, Silke A; Ullmann, G Matthias
2015-06-09
Most large proteins are built of several domains, compact units which enable functional protein motions. Different domain assignment approaches exist, which mostly rely on concepts of stability, folding, and evolution. We describe the automatic assignment method CoMoDo, which identifies domains based on protein dynamics. Covariances of atomic fluctuations, here calculated by an Elastic Network Model, are used to group residues into domains of different hierarchical levels. The so-called dynamic domains facilitate the study of functional protein motions involved in biological processes like ligand binding and signal transduction. By applying CoMoDo to a large number of proteins, we demonstrate that dynamic domains exhibit features absent in the commonly assigned structural domains, which can deliver insight into the interactions between domains and between subunits of multimeric proteins. CoMoDo is distributed as free open source software at www.bisb.uni-bayreuth.de/CoMoDo.html .
Nonequilibrium Population Dynamics of Phenotype Conversion of Cancer Cells
Zhou, Joseph Xu; Pisco, Angela Oliveira; Qian, Hong; Huang, Sui
2014-01-01
Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection) or by environment-instructed transitions (Lamarckism induction). This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance. PMID:25438251
Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism
Hughes, Travis S.; Chalmers, Michael J.; Novick, Scott; Kuruvilla, Dana S.; Chang, Mi Ra; Kamenecka, Theodore M.; Rance, Mark; Johnson, Bruce A.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.
2011-01-01
SUMMARY Ligand binding to proteins is not a static process, but rather involves a number of complex dynamic transitions. A flexible ligand can change conformation upon binding its target. The conformation and dynamics of a protein can change to facilitate ligand binding. The conformation of the ligand, however, is generally presumed to have one primary binding mode, shifting the protein conformational ensemble from one state to another. We report solution NMR studies that reveal peroxisome proliferator-activated receptor γ (PPARγ) modulators can sample multiple binding modes manifesting in multiple receptor conformations in slow conformational exchange. Our NMR, hydrogen/deuterium exchange and docking studies reveal that ligand-induced receptor stabilization and binding mode occupancy correlate with the graded agonist response of the ligand. Our results suggest that ligand and receptor dynamics affect the graded transcriptional output of PPARγ modulators. PMID:22244763
Sediment dynamics in the Adriatic Sea investigated with coupled models
Sherwood, Christopher R.; Book, Jeffrey W.; Carniel, Sandro; Cavaleri, Luigi; Chiggiato, Jacopo; Das, Himangshu; Doyle, James D.; Harris, Courtney K.; Niedoroda, Alan W.; Perkins, Henry; Poulain, Pierre-Marie; Pullen, Julie; Reed, Christopher W.; Russo, Aniello; Sclavo, Mauro; Signell, Richard P.; Traykovski, Peter A.; Warner, John C.
2004-01-01
Several large research programs focused on the Adriatic Sea in winter 2002-2003, making it an exciting place for sediment dynamics modelers (Figure 1). Investigations of atmospheric forcing and oceanic response (including wave generation and propagation, water-mass formation, stratification, and circulation), suspended material, bottom boundary layer dynamics, bottom sediment, and small-scale stratigraphy were performed by European and North American researchers participating in several projects. The goal of EuroSTRATAFORM researchers is to improve our ability to understand and simulate the physical processes that deliver sediment to the marine environment and generate stratigraphic signatures. Scientists involved in the Po and Apennine Sediment Transport and Accumulation (PASTA) experiment benefited from other major research programs including ACE (Adriatic Circulation Experiment), DOLCE VITA (Dynamics of Localized Currents and Eddy Variability in the Adriatic), EACE (the Croatian East Adriatic Circulation Experiment project), WISE (West Istria Experiment), and ADRICOSM (Italian nowcasting and forecasting) studies.
Finite-temperature lattice dynamics and superionic transition in ceria from first principles
NASA Astrophysics Data System (ADS)
Klarbring, Johan; Skorodumova, Natalia V.; Simak, Sergei I.
2018-03-01
Ab initio molecular dynamics (AIMD) in combination with the temperature dependent effective potential (TDEP) method has been used to go beyond the quasiharmonic approximation and study the lattice dynamics in ceria, CeO2, at finite temperature. The results indicate that the previously proposed connection between the B1 u phonon mode turning imaginary and the transition to the superionic phase in fluorite structured materials is an artifact of the failure of the quasiharmonic approximation in describing the lattice dynamics at elevated temperatures. We instead show that, in the TDEP picture, a phonon mode coupling to the Eu mode prevents the B1 u mode from becoming imaginary. We directly observe the superionic transition at high temperatures in our AIMD simulations and find that it is initiated by the formation of oxygen Frenkel pairs (FP). These FP are found to form in a collective process involving simultaneous motion of two oxygen ions.
A dynamically minimalist cognitive explanation of musical preference: is familiarity everything?
Schubert, Emery; Hargreaves, David J.; North, Adrian C.
2014-01-01
This paper examines the idea that attraction to music is generated at a cognitive level through the formation and activation of networks of interlinked “nodes.” Although the networks involved are vast, the basic mechanism for activating the links is relatively simple. Two comprehensive cognitive-behavioral models of musical engagement are examined with the aim of identifying the underlying cognitive mechanisms and processes involved in musical experience. A “dynamical minimalism” approach (after Nowak, 2004) is applied to re-interpret musical engagement (listening, performing, composing, or imagining any of these) and to revise the latest version of the reciprocal-feedback model (RFM) of music processing. Specifically, a single cognitive mechanism of “spreading activation” through previously associated networks is proposed as a pleasurable outcome of musical engagement. This mechanism underlies the dynamic interaction of the various components of the RFM, and can thereby explain the generation of positive affects in the listener’s musical experience. This includes determinants of that experience stemming from the characteristics of the individual engaging in the musical activity (whether listener, composer, improviser, or performer), the situation and contexts (e.g., social factors), and the music (e.g., genre, structural features). The theory calls for new directions for future research, two being (1) further investigation of the components of the RFM to better understand musical experience and (2) more rigorous scrutiny of common findings about the salience of familiarity in musical experience and preference. PMID:24567723
The economics of project analysis: Optimal investment criteria and methods of study
NASA Technical Reports Server (NTRS)
Scriven, M. C.
1979-01-01
Insight is provided toward the development of an optimal program for investment analysis of project proposals offering commercial potential and its components. This involves a critique of economic investment criteria viewed in relation to requirements of engineering economy analysis. An outline for a systems approach to project analysis is given Application of the Leontief input-output methodology to analysis of projects involving multiple processes and products is investigated. Effective application of elements of neoclassical economic theory to investment analysis of project components is demonstrated. Patterns of both static and dynamic activity levels are incorporated.
Electric-field enhanced performance in catalysis and solid-state devices involving gases
Blackburn, Bryan M.; Wachsman, Eric D.; Van Assche, IV, Frederick Martin
2015-05-19
Electrode configurations for electric-field enhanced performance in catalysis and solid-state devices involving gases are provided. According to an embodiment, electric-field electrodes can be incorporated in devices such as gas sensors and fuel cells to shape an electric field provided with respect to sensing electrodes for the gas sensors and surfaces of the fuel cells. The shaped electric fields can alter surface dynamics, system thermodynamics, reaction kinetics, and adsorption/desorption processes. In one embodiment, ring-shaped electric-field electrodes can be provided around sensing electrodes of a planar gas sensor.
SNARE-mediated membrane fusion in autophagy
Wang, Yongyao; Li, Linsen; Hou, Chen; Lai, Ying; Long, Jiangang; Liu, Jiankang; Zhong, Qing; Diao, Jiajie
2016-01-01
Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy. PMID:27422330
Estimates of Ionospheric Transport and Ion Loss at Mars
NASA Astrophysics Data System (ADS)
Cravens, T. E.; Hamil, O.; Houston, S.; Bougher, S.; Ma, Y.; Brain, D.; Ledvina, S.
2017-10-01
Ion loss from the topside ionosphere of Mars associated with the solar wind interaction makes an important contribution to the loss of volatiles from this planet. Data from NASA's Mars Atmosphere and Volatile Evolution mission combined with theoretical modeling are now helping us to understand the processes involved in the ion loss process. Given the complexity of the solar wind interaction, motivation exists for considering a simple approach to this problem and for understanding how the loss rates might scale with solar wind conditions and solar extreme ultraviolet irradiance. This paper reviews the processes involved in the ionospheric dynamics. Simple analytical and semiempirical expressions for ion flow speeds and ion loss are derived. In agreement with more sophisticated models and with purely empirical studies, it is found that the oxygen loss rate from ion transport is about 5% (i.e., global O ion loss rate of Qion ≈ 4 × 1024 s-1) of the total oxygen loss rate. The ion loss is found to approximately scale as the square root of the solar ionizing photon flux and also as the square root of the solar wind dynamic pressure. Typical ion flow speeds are found to be about 1 km/s in the topside ionosphere near an altitude of 300 km on the dayside. Not surprisingly, the plasma flow speed is found to increase with altitude due to the decreasing ion-neutral collision frequency.
Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation
Yang, Liang; Wang, C. Z.; Lin, Shiwei; ...
2018-01-01
Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titaniummore » (0001) surface and further prevented oxidation in the deeper layers. As a result, the mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.« less
Design and Control of Glycerol-tert-Butyl Alcohol Etherification Process
Vlad, Elena; Bozga, Grigore
2012-01-01
Design, economics, and plantwide control of a glycerol-tert-butyl alcohol (TBA) etherification plant are presented. The reaction takes place in liquid phase, in a plug flow reactor, using Amberlyst 15 as a catalyst. The products' separation is achieved by two distillation columns where high-purity ethers are obtained and a section involving extractive distillation with 1,4-butanediol as solvent, which separates TBA from the TBA/water azeotrope. Details of design performed in AspenPlus and an economic evaluation of the process are given. Three plantwide control structures are examined using a mass balance model of the plant. The preferred control structure fixes the fresh glycerol flow rate and the ratio glycerol + monoether : TBA at reactor-inlet. The stability and robustness in the operation are checked by rigorous dynamic simulation in AspenDynamics. PMID:23365512
Computational aerodynamics and artificial intelligence
NASA Technical Reports Server (NTRS)
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Neutral dynamics and cell renewal of colonic crypts in homeostatic regime
NASA Astrophysics Data System (ADS)
Fendrik, A. J.; Romanelli, L.; Rotondo, E.
2018-05-01
The self renewal process in colonic crypts is the object of several studies. We present here a new compartment model with the following characteristics: (a) we distinguish different classes of cells: stem cells, six generations of transit amplifying cells and the differentiated cells; (b) in order to take into account the monoclonal character of crypts in homeostatic regimes we include symmetric divisions of the stem cells. We first consider the dynamic differential equations that describe the evolution of the mean values of the populations, but the small observed value of the total number of cells involved plus the huge dispersion of experimental data found in the literature leads us to study the stochastic discrete process. This analysis allows us to study fluctuations, the neutral drift that leads to monoclonality, and the effects of the fixation of mutant clones.
NASA Astrophysics Data System (ADS)
Fu, Libi; Song, Weiguo; Lo, Siuming
2017-01-01
Emergencies involved in mass events are related to a variety of factors and processes. An important factor is the transmission of information on danger that has an influence on nonlinear crowd dynamics during the process of crowd dispersion. Due to much uncertainty in this process, there is an urgent need to propose a method to investigate the influence. In this paper, a novel fuzzy-theory-based method is presented to study crowd dynamics under the influence of information transmission. Fuzzy functions and rules are designed for the ambiguous description of human states. Reasonable inference is employed to decide the output values of decision making such as pedestrian movement speed and directions. Through simulation under four-way pedestrian situations, good crowd dispersion phenomena are achieved. Simulation results under different conditions demonstrate that information transmission cannot always induce successful crowd dispersion in all situations. This depends on whether decision strategies in response to information on danger are unified and effective, especially in dense crowds. Results also suggest that an increase in drift strength at low density and the percentage of pedestrians, who choose one of the furthest unoccupied Von Neumann neighbors from the dangerous source as the drift direction at high density, is helpful in crowd dispersion. Compared with previous work, our comprehensive study improves an in-depth understanding of nonlinear crowd dynamics under the effect of information on danger.
Detecting dynamic causal inference in nonlinear two-phase fracture flow
NASA Astrophysics Data System (ADS)
Faybishenko, Boris
2017-08-01
Identifying dynamic causal inference involved in flow and transport processes in complex fractured-porous media is generally a challenging task, because nonlinear and chaotic variables may be positively coupled or correlated for some periods of time, but can then become spontaneously decoupled or non-correlated. In his 2002 paper (Faybishenko, 2002), the author performed a nonlinear dynamical and chaotic analysis of time-series data obtained from the fracture flow experiment conducted by Persoff and Pruess (1995), and, based on the visual examination of time series data, hypothesized that the observed pressure oscillations at both inlet and outlet edges of the fracture result from a superposition of both forward and return waves of pressure propagation through the fracture. In the current paper, the author explores an application of a combination of methods for detecting nonlinear chaotic dynamics behavior along with the multivariate Granger Causality (G-causality) time series test. Based on the G-causality test, the author infers that his hypothesis is correct, and presents a causation loop diagram of the spatial-temporal distribution of gas, liquid, and capillary pressures measured at the inlet and outlet of the fracture. The causal modeling approach can be used for the analysis of other hydrological processes, for example, infiltration and pumping tests in heterogeneous subsurface media, and climatic processes, for example, to find correlations between various meteorological parameters, such as temperature, solar radiation, barometric pressure, etc.
Di Dio, Cinzia; Ardizzi, Martina; Massaro, Davide; Di Cesare, Giuseppe; Gilli, Gabriella; Marchetti, Antonella; Gallese, Vittorio
2016-01-01
Movement perception and its role in aesthetic experience have been often studied, within empirical aesthetics, in relation to the human body. No such specificity has been defined in neuroimaging studies with respect to contents lacking a human form. The aim of this work was to explore, through functional magnetic imaging (f MRI), how perceived movement is processed during the aesthetic judgment of paintings using two types of content: human subjects and scenes of nature. Participants, untutored in the arts, were shown the stimuli and asked to make aesthetic judgments. Additionally, they were instructed to observe the paintings and to rate their perceived movement in separate blocks. Observation highlighted spontaneous processes associated with aesthetic experience, whereas movement judgment outlined activations specifically related to movement processing. The ratings recorded during aesthetic judgment revealed that nature scenes received higher scored than human content paintings. The imaging data showed similar activation, relative to baseline, for all stimuli in the three tasks, including activation of occipito-temporal areas, posterior parietal, and premotor cortices. Contrast analyses within aesthetic judgment task showed that human content activated, relative to nature, precuneus, fusiform gyrus, and posterior temporal areas, whose activation was prominent for dynamic human paintings. In contrast, nature scenes activated, relative to human stimuli, occipital and posterior parietal cortex/precuneus, involved in visuospatial exploration and pragmatic coding of movement, as well as central insula. Static nature paintings further activated, relative to dynamic nature stimuli, central and posterior insula. Besides insular activation, which was specific for aesthetic judgment, we found a large overlap in the activation pattern characterizing each stimulus dimension (content and dynamism) across observation, aesthetic judgment, and movement judgment tasks. These findings support the idea that the aesthetic evaluation of artworks depicting both human subjects and nature scenes involves a motor component, and that the associated neural processes occur quite spontaneously in the viewer. Furthermore, considering the functional roles of posterior and central insula, we suggest that nature paintings may evoke aesthetic processes requiring an additional proprioceptive and sensori-motor component implemented by “motor accessibility” to the represented scenario, which is needed to judge the aesthetic value of the observed painting. PMID:26793087
Ji, Jialei; Yang, Limei; Fang, Zhiyuan; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao; Liu, Yumei; Li, Zhansheng
2018-05-15
Plant male reproductive development is a very complex biological process that involves multiple metabolic pathways. To reveal novel insights into male reproductive development, we conducted an integrated profiling of gene activity in the developing buds of a cabbage recessive genetic male sterile mutant. Using RNA-Seq and label-free quantitative proteomics, 2881 transcripts and 1245 protein species were identified with significant differential abundance between the male sterile line 83121A and its isogenic maintainer line 83121B. Analyses of function annotations and correlations between transcriptome and proteome and protein interaction networks were also conducted, which suggested that the male sterility involves a complex regulatory pattern. Moreover, several key biological processes, such as fatty acid metabolism, tapetosome biosynthesis, amino acid metabolism and protein synthesis and degradation were identified as being of relevance to male reproductive development. A large number of protein species involved in sporopollenin synthesis, amino acid synthesis, ribosome assembly, protein processing in endoplasmic reticulum and lipid transfer were observed to be significantly down-accumulated in 83121A buds, indicating their potential roles in the regulation of cabbage microspore abortion. In summary, the conjoint analysis of the transcriptome and proteome provided a global picture regarding the molecular dynamics in male sterile buds of 83121A. Male sterile mutants are excellent materials for the study of plant male reproductive development. This study revealed the molecular dynamics of recessive male sterility in cabbage at the transcriptome and proteome levels, which deepens our understanding of the metabolic pathways involved in male development. Moreover, the male sterility-related genes identified in this study could provide a reference for the artificial regulation of cabbage fertility by using genetic engineering technology, which may result in potential applications in agriculture such as production of hybrid seeds using male sterility. Copyright © 2018 Elsevier B.V. All rights reserved.
Protein dynamics in a broad frequency range: Dielectric spectroscopy studies
Nakanishi, Masahiro; Sokolov, Alexei P.
2014-09-17
We present detailed dielectric spectroscopy studies of dynamics in two hydrated proteins, lysozyme and myoglobin. We emphasize the importance of explicit account for possible Maxwell-Wagner (MW) polarization effects in protein powder samples. Combining our data with earlier literature results, we demonstrate the existence of three major relaxation processes in globular proteins. To understand the mechanisms of these relaxations we involve literature data on neutron scattering, simulations and NMR studies. The faster process is ascribed to coupled protein-hydration water motions and has relaxation time similar to 10-50 Ps at room temperature. The intermediate process is similar to 10(2)-10(3) times slower thanmore » the faster process and might be strongly affected by MW polarizations. Based on the analysis of data obtained by different experimental techniques and simulations, we ascribe this process to large scale domain-like motions of proteins. The slowest observed process is similar to 10(6)-10(7) times slower than the faster process and has anomalously large dielectric amplitude Delta epsilon similar to 10(2)-10(4). The microscopic nature of this process is not clear, but it seems to be related to the glass transition of hydrated proteins. The presentedresults suggest a general classification of the relaxation processes in hydrated proteins. (c) 2014 Elsevier B.V. All rights reserved.« less
A tone mapping operator based on neural and psychophysical models of visual perception
NASA Astrophysics Data System (ADS)
Cyriac, Praveen; Bertalmio, Marcelo; Kane, David; Vazquez-Corral, Javier
2015-03-01
High dynamic range imaging techniques involve capturing and storing real world radiance values that span many orders of magnitude. However, common display devices can usually reproduce intensity ranges only up to two to three orders of magnitude. Therefore, in order to display a high dynamic range image on a low dynamic range screen, the dynamic range of the image needs to be compressed without losing details or introducing artefacts, and this process is called tone mapping. A good tone mapping operator must be able to produce a low dynamic range image that matches as much as possible the perception of the real world scene. We propose a two stage tone mapping approach, in which the first stage is a global method for range compression based on a gamma curve that equalizes the lightness histogram the best, and the second stage performs local contrast enhancement and color induction using neural activity models for the visual cortex.
Phase ordering dynamics of reconstituting particles
NASA Astrophysics Data System (ADS)
Albarracín, F. A. Gómez; Rosales, H. D.; Grynberg, M. D.
2017-06-01
We consider the large-time dynamics of one-dimensional processes involving adsorption and desorption of extended hard-core particles (dimers, trimers, ..., k -mers), while interacting through their constituent monomers. Desorption can occur whether or not these latter adsorbed together, which leads to reconstitution of k -mers and the appearance of sectors of motion with nonlocal conservation laws for k ≥3 . Dynamic exponents of the sector including the empty chain are evaluated by finite-size scaling analyses of the relaxation times embodied in the spectral gaps of evolution operators. For attractive interactions it is found that in the low-temperature limit such time scales converge to those of the Glauber dynamics, thus suggesting a diffusive universality class for k ≥2 . This is also tested by simulated quenches down to T =0 , where a common scaling function emerges. By contrast, under repulsive interactions the low-temperature dynamics is characterized by metastable states which decay subdiffusively to a highly degenerate and partially jammed phase.
Thermal fluctuations and elastic relaxation in the compressed exponential dynamics of colloidal gels
NASA Astrophysics Data System (ADS)
Bouzid, Mehdi; Colombo, Jader; Del Gado, Emanuela
Colloidal gels belong to the class of amorphous systems, they are disordered elastic solids that can form at very low volume fraction, via aggregation into a rich variety of networks. They exhibit a slow relaxation process in the aging regime similar to the glassy dynamics. A wide range of experiments on colloidal gels show unusual compressed exponential of the relaxation dynamical properties. We use molecular dynamics simulation to investigate how the dynamic change with the age of the system. Upon breaking and reorganization of the network structure, the system may display stretched or compressed exponential relaxation. We show that the transition between these two regimes is associated to the interplay between thermally activated rearrangements and the elastic relaxation of internal stresses. In particular, ballistic-like displacements emerge from the non local relaxation of internal stresses mediated by a series of ''micro-collapses''. When thermal fluctuations dominate, the gel restructuring involves instead more homogeneous displacements across the heterogeneous gel network, leading to a stretched exponential type of relaxation.
Yamburenko, Maria V; Kieber, Joseph J; Schaller, G Eric
2017-01-01
Inflorescence development in cereals, including such important crops as rice, maize, and wheat, directly affects grain number and size and is a key determinant of yield. Cytokinin regulates meristem size and activity and, as a result, has profound effects on inflorescence development and architecture. To clarify the role of cytokinin action in inflorescence development, we used the NanoString nCounter system to analyze gene expression in the early stages of rice panicle development, focusing on 67 genes involved in cytokinin biosynthesis, degradation, and signaling. Results point toward key members of these gene families involved in panicle development and indicate that the expression of many genes involved in cytokinin action differs between the panicle and vegetative tissues. Dynamic patterns of gene expression suggest that subnetworks mediate cytokinin action during different stages of panicle development. The variation of expression during panicle development is greater among genes encoding proteins involved in cytokinin metabolism and negative regulators of the pathway than for the genes in the primary response pathway. These results provide insight into the expression patterns of genes involved in cytokinin action during inflorescence development in a crop of agricultural importance, with relevance to similar processes in other monocots. The identification of subnetworks of genes expressed at different stages of early panicle development suggests that manipulation of their expression could have substantial effects on inflorescence architecture.
Epting, Jannis; Page, Rebecca M; Auckenthaler, Adrian; Huggenberger, Peter
2018-06-01
The presented work illustrates to what extent field investigations as well as monitoring and modeling approaches are necessary to understand the high discharge dynamics and vulnerability of Karst springs. In complex settings the application of 3D geological models is essential for evaluating the vulnerability of Karst systems. They allow deriving information on catchment characteristics, as the geometry of aquifers and aquitards as well as their displacements along faults. A series of Karst springs in northwestern Switzerland were compared and Karst system dynamics with respect to qualitative and quantitative issues were evaluated. The main objective of the studies was to combine information of catchment characteristics and data from novel monitoring systems (physicochemical and microbiological parameters) to assess the intrinsic vulnerability of Karst springs to microbiological contamination with simulated spring discharges derived from numerical modeling (linear storage models). The numerically derived relation of fast and slow groundwater flow components enabled us to relate different sources of groundwater recharge and to characterize the dynamics of the Karst springs. Our study illustrates that comparably simple model-setups were able to reproduce the overall dynamic intrinsic vulnerability of several Karst systems and that one of the most important processes involved was the temporal variation of groundwater recharge (precipitation, evapotranspiration and snow melt). Furthermore, we make a first attempt on how to link intrinsic to specific vulnerability of Karst springs, which involves activities within the catchment area as human impacts from agriculture and settlements. Likewise, by a more detailed representation of system dynamics the influence of surface water, which is impacted by release events from storm sewers, infiltrating into the Karst system, could be considered. Overall, we demonstrate that our approach can be the basis for a more flexible and differentiated management and monitoring of raw-water quality of Karst springs. Copyright © 2017 Elsevier B.V. All rights reserved.
The devil is in the detail: brain dynamics in preparation for a global-local task.
Leaver, Echo E; Low, Kathy A; DiVacri, Assunta; Merla, Arcangelo; Fabiani, Monica; Gratton, Gabriele
2015-08-01
When analyzing visual scenes, it is sometimes important to determine the relevant "grain" size. Attention control mechanisms may help direct our processing to the intended grain size. Here we used the event-related optical signal, a method possessing high temporal and spatial resolution, to examine the involvement of brain structures within the dorsal attention network (DAN) and the visual processing network (VPN) in preparation for the appropriate level of analysis. Behavioral data indicate that the small features of a hierarchical stimulus (local condition) are more difficult to process than the large features (global condition). Consistent with this finding, cues predicting a local trial were associated with greater DAN activation. This activity was bilateral but more pronounced in the left hemisphere, where it showed a frontal-to-parietal progression over time. Furthermore, the amount of DAN activation, especially in the left hemisphere and in parietal regions, was predictive of subsequent performance. Although local cues elicited left-lateralized DAN activity, no preponderantly right activity was observed for global cues; however, the data indicated an interaction between level of analysis (local vs. global) and hemisphere in VPN. They further showed that local processing involves structures in the ventral VPN, whereas global processing involves structures in the dorsal VPN. These results indicate that in our study preparation for analyzing different size features is an asymmetric process, in which greater preparation is required to focus on small rather than large features, perhaps because of their lesser salience. This preparation involves the same DAN used for other attention control operations.
Dynamical analysis of uterine cell electrical activity model.
Rihana, S; Santos, J; Mondie, S; Marque, C
2006-01-01
The uterus is a physiological system consisting of a large number of interacting smooth muscle cells. The uterine excitability changes remarkably with time, generally quiescent during pregnancy, the uterus exhibits forceful synchronized contractions at term leading to fetus expulsion. These changes characterize thus a dynamical system susceptible of being studied through formal mathematical tools. Multiple physiological factors are involved in the regulation process of this complex system. Our aim is to relate the physiological factors to the uterine cell dynamic behaviors. Taking into account a previous work presented, in which the electrical activity of a uterine cell is described by a set of ordinary differential equations, we analyze the impact of physiological parameters on the response of the model, and identify the main subsystems generating the complex uterine electrical activity, with respect to physiological data.
Computing the Length of the Shortest Telomere in the Nucleus
NASA Astrophysics Data System (ADS)
Dao Duc, K.; Holcman, D.
2013-11-01
The telomere length can either be shortened or elongated by an enzyme called telomerase after each cell division. Interestingly, the shortest telomere is involved in controlling the ability of a cell to divide. Yet, its dynamics remains elusive. We present here a stochastic approach where we model this dynamics using a Markov jump process. We solve the forward Fokker-Planck equation to obtain the steady state distribution and the statistical moments of telomere lengths. We focus specifically on the shortest one and we estimate its length difference with the second shortest telomere. After extracting key parameters such as elongation and shortening dynamics from experimental data, we compute the length of telomeres in yeast and obtain as a possible prediction the minimum concentration of telomerase required to ensure a proper cell division.
The temporal scaling of Caenorhabditis elegans ageing.
Stroustrup, Nicholas; Anthony, Winston E; Nash, Zachary M; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F; Apfeld, Javier; Fontana, Walter
2016-02-04
The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.
The temporal scaling of Caenorhabditis elegans ageing
NASA Astrophysics Data System (ADS)
Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter
2016-02-01
The process of ageing makes death increasingly likely, involving a random aspect that produces a wide distribution of lifespan even in homogeneous populations. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating the manner and extent to which specific molecular processes contribute to the aspect of ageing that determines lifespan.
The temporal scaling of Caenorhabditis elegans ageing
Stroustrup, Nicholas; Anthony, Winston E.; Nash, Zachary M.; Gowda, Vivek; Gomez, Adam; López-Moyado, Isaac F.; Apfeld, Javier; Fontana, Walter
2016-01-01
The process of ageing makes death increasingly likely, but involves a random aspect that produces a wide distribution of lifespan even in homogeneous populations1,2. The study of this stochastic behaviour may link molecular mechanisms to the ageing process that determines lifespan. Here, by collecting high-precision mortality statistics from large populations, we observe that interventions as diverse as changes in diet, temperature, exposure to oxidative stress, and disruption of genes including the heat shock factor hsf-1, the hypoxia-inducible factor hif-1, and the insulin/IGF-1 pathway components daf-2, age-1, and daf-16 all alter lifespan distributions by an apparent stretching or shrinking of time. To produce such temporal scaling, each intervention must alter to the same extent throughout adult life all physiological determinants of the risk of death. Organismic ageing in Caenorhabditis elegans therefore appears to involve aspects of physiology that respond in concert to a diverse set of interventions. In this way, temporal scaling identifies a novel state variable, r(t), that governs the risk of death and whose average decay dynamics involves a single effective rate constant of ageing, kr. Interventions that produce temporal scaling influence lifespan exclusively by altering kr. Such interventions, when applied transiently even in early adulthood, temporarily alter kr with an attendant transient increase or decrease in the rate of change in r and a permanent effect on remaining lifespan. The existence of an organismal ageing dynamics that is invariant across genetic and environmental contexts provides the basis for a new, quantitative framework for evaluating how and how much specific molecular processes contribute to the aspect of ageing that determines lifespan. PMID:26814965
Houyoux, Nicolas; Wattiez, Ruddy; Ris, Laurence
2017-09-01
Contextual memory is an intricate process involving synaptic plasticity and network rearrangement. Both are governed by many molecular processes including phosphorylation and modulation of protein expression. However, little is known about the molecules involved in it. Here, we exploited the advantages of a quantitative proteomic approach to identify a great number of molecules in the rat dentate gyrus after a contextual fear conditioning session. Our results allowed us to highlight protein expression patterns, not only related to neuroplasticity, but also to myelin structure, such as myelin basic protein and myelin proteolipid protein showing a decrease in expression. Validation of the modification in protein expression reveals a dynamic profile during the 48 h following the fear conditioning session. The expression of proteins involved in neurite outgrowth, such as BASP-1 and calcineurin B1, and in synaptic structure and function, VAMP2 and RAB3C, was increased in the dentate gyrus of rats submitted to fear conditioning compared to controls. We showed that the increase in BASP-1 protein was specific to fear conditioning learning as it was not present in immediate-shock rats, neither in rats exposed to a novel environment without being shocked. As myelin is known to stabilise synaptic network, the decrease in myelin proteins suggests a neuroglia interactive process taking place in the dentate gyrus in the 24 h following contextual fear learning, which has never been demonstrated before. These results therefore open the way to the study of new plasticity mechanisms underlying learning and memory. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Revealing time bunching effect in single-molecule enzyme conformational dynamics.
Lu, H Peter
2011-04-21
In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a cross correlation analysis can be applied for each specific segment to obtain a detailed fluctuation dynamics analysis.
A Qualitative Analysis of Loneliness Dynamics Involved with College Long-Distance Relationships
ERIC Educational Resources Information Center
Firmin, Michael W.; Firmin, Ruth L.; Lorenzen, Kailee
2014-01-01
The present phenomenological, qualitative research study involved in-depth interviews of all 16 female, sophomore students involved in respective distance relationships at a private, selective, comprehensive, Midwest university. Among other results found in the study, the present article specifically addressed the loneliness dynamics involved with…
Application of computational fluid mechanics to atmospheric pollution problems
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liaw, G. S.; Smith, R. E.
1986-01-01
One of the most noticeable effects of air pollution on the properties of the atmosphere is the reduction in visibility. This paper reports the results of investigations of the fluid dynamical and microphysical processes involved in the formation of advection fog on aerosols from combustion-related pollutants, as condensation nuclei. The effects of a polydisperse aerosol distribution, on the condensation/nucleation processes which cause the reduction in visibility are studied. This study demonstrates how computational fluid mechanics and heat transfer modeling can be applied to simulate the life cycle of the atmosphereic pollution problems.
NASA Technical Reports Server (NTRS)
Nilsson, Per-Olof (Editor); Nordgren, Joseph (Editor)
1987-01-01
The interactions of VUV radiation with solids are explored in reviews and reports of recent theoretical and experimental investigations from the fields of atomic and molecular physics, solid-state physics, and VUV instrumentation. Topics examined include photoabsorption and photoionization, multiphoton processes, plasma physics, VUV lasers, time-resolved spectroscopy, synchrotron radiation centers, solid-state spectroscopy, and dynamical processes involving localized levels. Consideration is given to the fundamental principles of photoemission, spin-polarized photoemission, inverse photoemission, semiconductors, organic materials, and adsorbates.
Developing clinical leadership capability.
Pintar, Kristi A; Capuano, Terry A; Rosser, Gwendolyn D
2007-01-01
Nursing facilities must be committed to ongoing leadership development and to developing and retaining their staff in the increasingly competitive healthcare market. In this article, the authors share the processes involved in creating a focused small group approach to developing clinical leaders. Programmatic approaches to development, clarity of needs of those targeted for development, individual development plans, external expertise partnerships, and small group session dynamics are discussed. Applications of the process and lessons learned from the program will benefit others in their efforts to enhance organization succession planning, leadership development, group learning, and program administration.
Nucleosome displacement in transcription.
Workman, Jerry L
2006-08-01
Recent reports reinforce the notion that nucleosomes are highly dynamic in response to the process of transcription. Nucleosomes are displaced at promoters during gene activation in a process that involves histone modification, ATP-dependent nucleosome remodeling complexes, histone chaperones and perhaps histone variants. During transcription elongation nucleosomes are acetylated and transferred behind RNA polymerase II where they are required to suppress spurious transcription initiation within the body of the gene. It is becoming increasingly clear that the eukaryotic transcriptional machinery is adapted to exploit the presence of nucleosomes in very sophisticated ways.
Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim
2013-01-01
Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371
An Architecture for Autonomic Web Service Process Planning
NASA Astrophysics Data System (ADS)
Moore, Colm; Xue Wang, Ming; Pahl, Claus
Web service composition is a technology that has received considerable attention in the last number of years. Languages and tools to aid in the process of creating composite Web services have been received specific attention. Web service composition is the process of linking single Web services together in order to accomplish more complex tasks. One area of Web service composition that has not received as much attention is the area of dynamic error handling and re-planning, enabling autonomic composition. Given a repository of service descriptions and a task to complete, it is possible for AI planners to automatically create a plan that will achieve this goal. If however a service in the plan is unavailable or erroneous the plan will fail. Motivated by this problem, this paper suggests autonomous re-planning as a means to overcome dynamic problems. Our solution involves automatically recovering from faults and creating a context-dependent alternate plan. We present an architecture that serves as a basis for the central activities autonomous composition, monitoring and fault handling.
Technology Transfer: A Contact Sport
NASA Technical Reports Server (NTRS)
Paynter, Nina P.
1995-01-01
Technology transfer is a dynamic process, involving dynamic people as the bridge between NASA Langley Research Center and the outside world. This bridge, for nonaerospace applications, is known as the Technology Applications Group. The introduction of new innovations and expertise where they are needed occurs through a 'push' and 'pull' process. A 'push' occurs when a new technology is first developed with high commercial potential and then a company is found to licence or further develop the technology. The 'pull' process occurs through problem statements. A company or group will submit a written statement of what they need and the shortcomings of commercially available technology. The Technology Transfer Team (T3) reviews these problem statements and decides where NASA LaRC can offer assistance. A researcher or group of researchers are then identified who can help solve the problem and they are put in contact with the company. Depending upon the situation in either method, a Space Act Agreement (SAA), or outline of the responsibilities for each party, is developed.
Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
Vorobev, Anatoliy
2010-11-01
We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.
In situ observation of shear-driven amorphization in silicon crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yang; Zhong, Li; Fan, Feifei
Amorphous materials have attracted great interest in the scientific and technological fields. An amorphous solid usually forms under the externally driven conditions of melt-quenching, irradiation and severe mechanical deformation. However, its dynamic formation process remains elusive. Here we report the in situ atomic-scale observation of dynamic amorphization processes during mechanical straining of nanoscale silicon crystals by high resolution transmission electron microscopy (HRTEM). We observe the shear-driven amorphization (SDA) occurring in a dominant shear band. The SDA involves a sequence of processes starting with the shear-induced diamond-cubic to diamond-hexagonal phase transition that is followed by dislocation nucleation and accumulation in themore » newly formed phase, leading to the formation of amorphous silicon. The SDA formation through diamond-hexagonal phase is rationalized by its structural conformity with the order in the paracrystalline amorphous silicon, which maybe widely applied to diamond-cubic materials. Besides, the activation of SDA is orientation-dependent through the competition between full dislocation nucleation and partial gliding.« less