Sample records for dynamic range acquisition

  1. High dynamic range image acquisition based on multiplex cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  2. Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS

    NASA Technical Reports Server (NTRS)

    Burton, William D., Jr.; Schultz, J. Albert; Vaughn, Valentine; McCully, Michael; Ulrich, Steven; Egan, Thomas F.

    2006-01-01

    A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal.

  3. Cine CT technique for dynamic airway studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ell, S.R.; Jolles, H.; Keyes, W.D.

    1985-07-01

    The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.

  4. The dynamics of mergers and acquisitions: ancestry as the seminal determinant

    PubMed Central

    Viegas, Eduardo; Cockburn, Stuart P.; Jensen, Henrik J.; West, Geoffrey B.

    2014-01-01

    Understanding the fundamental mechanisms behind the complex landscape of corporate mergers and acquisitions is of crucial importance to economies across the world. Adapting ideas from the fields of complexity and evolutionary dynamics to analyse business ecosystems, we show here that ancestry, i.e. the cumulative sum of historical mergers across all ancestors, is the key characteristic to company mergers and acquisitions. We verify this by comparing an agent-based model to an extensive range of business data, covering the period from the 1830s to the present day and a range of industries and geographies. This seemingly universal mechanism leads to imbalanced business ecosystems, with the emergence of a few very large, but sluggish ‘too big to fail’ entities, and very small, niche entities, thereby creating a paradigm where a configuration akin to effective oligopoly or monopoly is a likely outcome for free market systems. PMID:25383025

  5. The dynamics of mergers and acquisitions: ancestry as the seminal determinant.

    PubMed

    Viegas, Eduardo; Cockburn, Stuart P; Jensen, Henrik J; West, Geoffrey B

    2014-11-08

    Understanding the fundamental mechanisms behind the complex landscape of corporate mergers and acquisitions is of crucial importance to economies across the world. Adapting ideas from the fields of complexity and evolutionary dynamics to analyse business ecosystems, we show here that ancestry, i.e. the cumulative sum of historical mergers across all ancestors, is the key characteristic to company mergers and acquisitions. We verify this by comparing an agent-based model to an extensive range of business data, covering the period from the 1830s to the present day and a range of industries and geographies. This seemingly universal mechanism leads to imbalanced business ecosystems, with the emergence of a few very large, but sluggish 'too big to fail' entities, and very small, niche entities, thereby creating a paradigm where a configuration akin to effective oligopoly or monopoly is a likely outcome for free market systems.

  6. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative perfusion imaging with an acquisition strategy offering substantial radiation dose and computational complexity savings over dynamic CT.

  7. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Tahari, Abdel K; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ~15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ~45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ~35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  8. Dynamic whole body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    Static whole body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single bed-coverage limiting the axial field-of-view to ~15–20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole body PET acquisition protocol of ~45min total length is presented, composed of (i) an initial 6-min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (6 passes x 7 bed positions, each scanned for 45sec). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares (OLS) Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of 10 different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole-body. In addition, the total acquisition length can be reduced from 45min to ~35min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error (MSE) and the CNR metrics, resulting in enhanced task-based imaging. PMID:24080962

  9. Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Tahari, Abdel K.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-10-01

    Static whole-body PET/CT, employing the standardized uptake value (SUV), is considered the standard clinical approach to diagnosis and treatment response monitoring for a wide range of oncologic malignancies. Alternative PET protocols involving dynamic acquisition of temporal images have been implemented in the research setting, allowing quantification of tracer dynamics, an important capability for tumor characterization and treatment response monitoring. Nonetheless, dynamic protocols have been confined to single-bed-coverage limiting the axial field-of-view to ˜15-20 cm, and have not been translated to the routine clinical context of whole-body PET imaging for the inspection of disseminated disease. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. We investigate solutions to address the challenges of: (i) long acquisitions, (ii) small number of dynamic frames per bed, and (iii) non-invasive quantification of kinetics in the plasma. In the present study, a novel dynamic (4D) whole-body PET acquisition protocol of ˜45 min total length is presented, composed of (i) an initial 6 min dynamic PET scan (24 frames) over the heart, followed by (ii) a sequence of multi-pass multi-bed PET scans (six passes × seven bed positions, each scanned for 45 s). Standard Patlak linear graphical analysis modeling was employed, coupled with image-derived plasma input function measurements. Ordinary least squares Patlak estimation was used as the baseline regression method to quantify the physiological parameters of tracer uptake rate Ki and total blood distribution volume V on an individual voxel basis. Extensive Monte Carlo simulation studies, using a wide set of published kinetic FDG parameters and GATE and XCAT platforms, were conducted to optimize the acquisition protocol from a range of ten different clinically acceptable sampling schedules examined. The framework was also applied to six FDG PET patient studies, demonstrating clinical feasibility. Both simulated and clinical results indicated enhanced contrast-to-noise ratios (CNRs) for Ki images in tumor regions with notable background FDG concentration, such as the liver, where SUV performed relatively poorly. Overall, the proposed framework enables enhanced quantification of physiological parameters across the whole body. In addition, the total acquisition length can be reduced from 45 to ˜35 min and still achieve improved or equivalent CNR compared to SUV, provided the true Ki contrast is sufficiently high. In the follow-up companion paper, a set of advanced linear regression schemes is presented to particularly address the presence of noise, and attempt to achieve a better trade-off between the mean-squared error and the CNR metrics, resulting in enhanced task-based imaging.

  10. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies

    PubMed Central

    Tyrrell, Jean

    2016-01-01

    Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy. PMID:26643057

  11. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    NASA Technical Reports Server (NTRS)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  12. Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements

    NASA Astrophysics Data System (ADS)

    Di Sieno, L.; Contini, D.; Dalla Mora, A.; Torricelli, A.; Spinelli, L.; Cubeddu, R.; Tosi, A.; Boso, G.; Pifferi, A.

    2013-06-01

    In this article, we show experimental results of time-resolved optical spectroscopy performed with small distance between launching and detecting fibers. It was already demonstrated that depth discrimination is independent of source-detector separation and that measurements at small source detector distance provide better contrast and spatial resolution. The main disadvantage is represent by the huge increase in early photons (scarcely diffused by tissue) peak that can saturate the dynamic range of most detectors, hiding information carried by late photons. Thanks to a fast-gated Single- Photon Avalanche Diode (SPAD) module, we are able to reject the peak of early photons and to obtain high-dynamic range acquisitions. We exploit fast-gated SPAD module to perform for the first time functional near-infrared spectroscopy (fNIRS) at small source-detector distance for in vivo measurements and we demonstrate the possibility to detect non-invasively the dynamics of oxygenated and deoxygenated haemoglobin occurring in the motor cortex during a motor task. We also show the improvement in terms of signal amplitude and Signal-to-Noise Ratio (SNR) obtained exploiting fast-gated SPAD performances with respect to "non-gated" measurements.

  13. Acquisition and tracking for underwater optical communications

    NASA Astrophysics Data System (ADS)

    Williams, Andrew J.; Laycock, Leslie L.; Griffith, Michael S.; McCarthy, Andrew G.; Rowe, Duncan P.

    2017-10-01

    There is a growing requirement to transfer large volumes of data between underwater platforms. As seawater is transmissive in the visible band, underwater optical communications is an active area of interest since it offers the potential for power efficient, covert and high bandwidth datalinks at short to medium ranges. Short range systems have been successfully demonstrated using sources with low directionality. To realise higher data rates and/or longer ranges, the use of more efficient directional beams is required; by necessity, these must be sufficiently aligned to achieve the required link margin. For mobile platforms, the acquisition and tracking of each node is therefore critical in order to establish and maintain an optical datalink. This paper describes work undertaken to demonstrate acquisition and tracking in a 3D underwater environment. A range of optical sources, beam steering technologies, and tracking sensors have been assessed for suitability. A novel scanning strategy exploiting variable beam divergence was developed to provide robust acquisition whilst minimising acquisition time. A prototype system was assembled and demonstrated in a large water tank. This utilised custom quadrant detectors based on Silicon PhotoMultiplier (SiPM) arrays for fine tracking, and a Wide Field of View (WFoV) sCMOS camera for link acquisition. Fluidic lenses provided dynamic control of beam divergence, and AC modulation/filtering enabled background rejection. The system successfully demonstrated robust optical acquisition and tracking between two nodes with only nanowatt received optical powers. The acquisition time was shown to be dependent on the initial conditions and the transmitted optical power.

  14. Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS.

    PubMed

    Kaufmann, Anton

    2018-04-30

    Quadrupole Orbitrap instruments (Q Orbitrap) permit high-resolution mass spectrometry (HRMS)-based full scan acquisitions and have a number of acquisition modes where the quadrupole isolates a particular mass range prior to a possible fragmentation and HRMS-based acquisition. Selecting the proper acquisition mode(s) is essential if trace analytes are to be quantified in complex matrix extracts. Depending on the particular requirements, such as sensitivity, selectivity of detection, linear dynamic range, and speed of analysis, different acquisition modes may have to be chosen. This is particularly important in the field of multi-residue analysis (e.g., pesticides or veterinary drugs in food samples) where a large number of analytes within a complex matrix have to be detected and reliably quantified. Meeting the specific detection and quantification performance criteria for every targeted compound may be challenging. It is the aim of this paper to describe the strengths and the limitations of the currently available Q Orbitrap acquisition modes. In addition, the incorporation of targeted acquisitions between full scan experiments is discussed. This approach is intended to integrate compounds that require an additional degree of sensitivity or selectivity into multi-residue methods. This article is protected by copyright. All rights reserved.

  15. Comparison of blood flow models and acquisitions for quantitative myocardial perfusion estimation from dynamic CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2014-04-01

    Myocardial blood flow (MBF) can be estimated from dynamic contrast enhanced (DCE) cardiac CT acquisitions, leading to quantitative assessment of regional perfusion. The need for low radiation dose and the lack of consensus on MBF estimation methods motivates this study to refine the selection of acquisition protocols and models for CT-derived MBF. DCE cardiac CT acquisitions were simulated for a range of flow states (MBF = 0.5, 1, 2, 3 ml (min g)-1, cardiac output = 3, 5, 8 L min-1). Patient kinetics were generated by a mathematical model of iodine exchange incorporating numerous physiological features including heterogenenous microvascular flow, permeability and capillary contrast gradients. CT acquisitions were simulated for multiple realizations of realistic x-ray flux levels. CT acquisitions that reduce radiation exposure were implemented by varying both temporal sampling (1, 2, and 3 s sampling intervals) and tube currents (140, 70, and 25 mAs). For all acquisitions, we compared three quantitative MBF estimation methods (two-compartment model, an axially-distributed model, and the adiabatic approximation to the tissue homogeneous model) and a qualitative slope-based method. In total, over 11 000 time attenuation curves were used to evaluate MBF estimation in multiple patient and imaging scenarios. After iodine-based beam hardening correction, the slope method consistently underestimated flow by on average 47.5% and the quantitative models provided estimates with less than 6.5% average bias and increasing variance with increasing dose reductions. The three quantitative models performed equally well, offering estimates with essentially identical root mean squared error (RMSE) for matched acquisitions. MBF estimates using the qualitative slope method were inferior in terms of bias and RMSE compared to the quantitative methods. MBF estimate error was equal at matched dose reductions for all quantitative methods and range of techniques evaluated. This suggests that there is no particular advantage between quantitative estimation methods nor to performing dose reduction via tube current reduction compared to temporal sampling reduction. These data are important for optimizing implementation of cardiac dynamic CT in clinical practice and in prospective CT MBF trials.

  16. Effects of Scene Modulation Image Blur and Noise Upon Human Target Acquisition Performance.

    DTIC Science & Technology

    1997-06-01

    AFRL-HE-WP-TR-1998-0012 UNITED STATES AIR FORCE RESEARCH LABORATORY EFFECTS OF SCENE MODULATION IMAGE BLUR AND NOISE UPON HUMAN TARGET...COVERED INTERIM (July 1996 - August 1996) TITLE AND SUBTITLE Effects of Scene Modulation Image Blur and Noise Upon Human Target Acquisition...dilemma in image transmission and display is that we must compromise between die conflicting constraints of dynamic range and noise . Three target

  17. High dynamic range CMOS (HDRC) imagers for safety systems

    NASA Astrophysics Data System (ADS)

    Strobel, Markus; Döttling, Dietmar

    2013-04-01

    The first part of this paper describes the high dynamic range CMOS (HDRC®) imager - a special type of CMOS image sensor with logarithmic response. The powerful property of a high dynamic range (HDR) image acquisition is detailed by mathematical definition and measurement of the optoelectronic conversion function (OECF) of two different HDRC imagers. Specific sensor parameters will be discussed including the pixel design for the global shutter readout. The second part will give an outline on the applications and requirements of cameras for industrial safety. Equipped with HDRC global shutter sensors SafetyEYE® is a high-performance stereo camera system for safe three-dimensional zone monitoring enabling new and more flexible solutions compared to existing safety guards.

  18. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  19. Ku-band antenna acquisition and tracking performance study, volume 4

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Lindsey, W. C.

    1977-01-01

    The results pertaining to the tradeoff analysis and performance of the Ku-band shuttle antenna pointing and signal acquisition system are presented. The square, hexagonal and spiral antenna trajectories were investigated assuming the TDRS postulated uncertainty region and a flexible statistical model for the location of the TDRS within the uncertainty volume. The scanning trajectories, shuttle/TDRS signal parameters and dynamics, and three signal acquisition algorithms were integrated into a hardware simulation. The hardware simulation is quite flexible in that it allows for the evaluation of signal acquisition performance for an arbitrary (programmable) antenna pattern, a large range of C/N sub O's, various TDRS/shuttle a priori uncertainty distributions, and three distinct signal search algorithms.

  20. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces

    NASA Astrophysics Data System (ADS)

    Jiang, Hongzhi; Zhao, Huijie; Li, Xudong

    2012-10-01

    This paper presents a novel 3-D scanning technique for high-reflective surfaces based on phase-shifting fringe projection method. High dynamic range fringe acquisition (HDRFA) technique is developed to process the fringe images reflected from the shiny surfaces, and generates a synthetic fringe image by fusing the raw fringe patterns, acquired with different camera exposure time and the illumination fringe intensity from the projector. Fringe image fusion algorithm is introduced to avoid saturation and under-illumination phenomenon by choosing the pixels in the raw fringes with the highest fringe modulation intensity. A method of auto-selection of HDRFA parameters is developed and largely increases the measurement automation. The synthetic fringes have higher signal-to-noise ratio (SNR) under ambient light by optimizing HDRFA parameters. Experimental results show that the proposed technique can successfully measure objects with high-reflective surfaces and is insensitive to ambient light.

  1. A design method for high performance seismic data acquisition based on oversampling delta-sigma modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shanghua; Xue, Bing

    2017-04-01

    The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10-20 dB lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter (ADC) chips with more than 24 bits in the market. So the key difficulties for higher-resolution data acquisition devices lie in achieving more than 24-bit ADC circuit. In the paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus forming a complete analog to digital converting circuit. Experimental results show that, within the 0.1-40 Hz frequency range, the circuit board's dynamic range reaches 158.2 dB, its resolution reaches 25.99 dB, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even solve the amplitude-limitation problem that broadband observation systems so commonly have to face during strong earthquakes.

  2. Real-time dynamic range and signal to noise enhancement in beam-scanning microscopy by integration of sensor characteristics, data acquisition hardware, and statistical methods

    NASA Astrophysics Data System (ADS)

    Kissick, David J.; Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2013-02-01

    Despite the ubiquitous use of multi-photon and confocal microscopy measurements in biology, the core techniques typically suffer from fundamental compromises between signal to noise (S/N) and linear dynamic range (LDR). In this study, direct synchronous digitization of voltage transients coupled with statistical analysis is shown to allow S/N approaching the theoretical maximum throughout an LDR spanning more than 8 decades, limited only by the dark counts of the detector on the low end and by the intrinsic nonlinearities of the photomultiplier tube (PMT) detector on the high end. Synchronous digitization of each voltage transient represents a fundamental departure from established methods in confocal/multi-photon imaging, which are currently based on either photon counting or signal averaging. High information-density data acquisition (up to 3.2 GB/s of raw data) enables the smooth transition between the two modalities on a pixel-by-pixel basis and the ultimate writing of much smaller files (few kB/s). Modeling of the PMT response allows extraction of key sensor parameters from the histogram of voltage peak-heights. Applications in second harmonic generation (SHG) microscopy are described demonstrating S/N approaching the shot-noise limit of the detector over large dynamic ranges.

  3. Data acquisition and readout system for the LUX dark matter experiment

    DOE PAGES

    Akerib, D. S.; Bai, X.; Bedikian, S.; ...

    2011-11-28

    LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils from interactions with dark matter particles. Signals from the LUX detector are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. The DAQ is comprised of commercial digitizers with firmware customized for the LUX experiment. Data acquisition systems in rare-event searches must accommodate high rate and large dynamic range during precision calibrations involving radioactive sources, while also delivering low threshold for maximum sensitivity. The LUX DAQ meets these challenges using real-time baseline sup- pression that allows formore » a maximum event acquisition rate in excess of 1.5 kHz with virtually no deadtime. This work describes the LUX DAQ and the novel acquisition techniques employed in the LUX experiment.« less

  4. Face recognition based on matching of local features on 3D dynamic range sequences

    NASA Astrophysics Data System (ADS)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  5. Fast exposure time decision in multi-exposure HDR imaging

    NASA Astrophysics Data System (ADS)

    Piao, Yongjie; Jin, Guang

    2012-10-01

    Currently available imaging and display system exists the problem of insufficient dynamic range, and the system cannot restore all the information for an high dynamic range (HDR) scene. The number of low dynamic range(LDR) image samples and fastness of exposure time decision impacts the real-time performance of the system dramatically. In order to realize a real-time HDR video acquisition system, this paper proposed a fast and robust method for exposure time selection in under and over exposure area which is based on system response function. The method utilized the monotony of the imaging system. According to this characteristic the exposure time is adjusted to an initial value to make the median value of the image equals to the middle value of the system output range; then adjust the exposure time to make the pixel value on two sides of histogram be the middle value of the system output range. Thus three low dynamic range images are acquired. Experiments show that the proposed method for adjusting the initial exposure time can converge in two iterations which is more fast and stable than average gray control method. As to the exposure time adjusting in under and over exposed area, the proposed method can use the dynamic range of the system more efficiently than fixed exposure time method.

  6. Development of induction current acquisition device based on ARM

    NASA Astrophysics Data System (ADS)

    Ji, Yanju; Liu, Xiyang; Huang, Wanyu; Yao, Jiang; Yuan, Guiyang; Hui, Luan; Guan, Shanshan

    2018-03-01

    We design an induction current acquisition device based on ARM in order to realize high resolution and high sampling rate of acquisition for the induction current in wire-loop. Considering its characteristics of fast attenuation and small signal amplitude, we use the method of multi-path fusion for noise suppression. In the paper, the design is carried out from three aspects of analog circuit and device selection, independent power supply structure and the electromagnetic interference suppression of high frequency. DMA and ping-pong buffer, as a new data transmission technology, solves real time storage problem of massive data. The performance parameters of ARM acquisition device are tested. The comparison test of ARM acquisition device and cRIO acquisition device is performed at different time constants. The results show that it has 120dB dynamic range, 47kHz bandwidth, 96kHz sampling rate, 5μV the smallest resolution, and its average error value is not more than 4%, which proves the high accuracy and stability of the device.

  7. Image-plane processing of visual information

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Fales, C. L.; Park, S. K.; Samms, R. W.

    1984-01-01

    Shannon's theory of information is used to optimize the optical design of sensor-array imaging systems which use neighborhood image-plane signal processing for enhancing edges and compressing dynamic range during image formation. The resultant edge-enhancement, or band-pass-filter, response is found to be very similar to that of human vision. Comparisons of traits in human vision with results from information theory suggest that: (1) Image-plane processing, like preprocessing in human vision, can improve visual information acquisition for pattern recognition when resolving power, sensitivity, and dynamic range are constrained. Improvements include reduced sensitivity to changes in lighter levels, reduced signal dynamic range, reduced data transmission and processing, and reduced aliasing and photosensor noise degradation. (2) Information content can be an appropriate figure of merit for optimizing the optical design of imaging systems when visual information is acquired for pattern recognition. The design trade-offs involve spatial response, sensitivity, and sampling interval.

  8. Optimal variable flip angle schemes for dynamic acquisition of exchanging hyperpolarized substrates

    NASA Astrophysics Data System (ADS)

    Xing, Yan; Reed, Galen D.; Pauly, John M.; Kerr, Adam B.; Larson, Peder E. Z.

    2013-09-01

    In metabolic MRI with hyperpolarized contrast agents, the signal levels vary over time due to T1 decay, T2 decay following RF excitations, and metabolic conversion. Efficient usage of the nonrenewable hyperpolarized magnetization requires specialized RF pulse schemes. In this work, we introduce two novel variable flip angle schemes for dynamic hyperpolarized MRI in which the flip angle is varied between excitations and between metabolites. These were optimized to distribute the magnetization relatively evenly throughout the acquisition by accounting for T1 decay, prior RF excitations, and metabolic conversion. Simulation results are presented to confirm the flip angle designs and evaluate the variability of signal dynamics across typical ranges of T1 and metabolic conversion. They were implemented using multiband spectral-spatial RF pulses to independently modulate the flip angle at various chemical shift frequencies. With these schemes we observed increased SNR of [1-13C]lactate generated from [1-13C]pyruvate, particularly at later time points. This will allow for improved characterization of tissue perfusion and metabolic profiles in dynamic hyperpolarized MRI.

  9. Acousto-optic RF signal acquisition system

    NASA Astrophysics Data System (ADS)

    Bloxham, Laurence H.

    1990-09-01

    This paper describes the architecture and performance of a prototype Acousto-Optic RF Signal Acquisition System designed to intercept, automatically identify, and track communication signals in the VHF band. The system covers 28.0 to 92.0 MHz with five manually selectable, dual conversion; 12.8 MHZ bandwidth front ends. An acousto-optic spectrum analyzer (AOSA) implemented using a tellurium dioxide (Te02) Bragg cell is used to channelize the 12.8 MHz pass band into 512 25 KHz channels. Polarization switching is used to suppress optical noise. Excellent isolation and dynamic range are achieved by using a linear array of 512 custom 40/50 micron fiber optic cables to collect the light at the focal plane of the AOSA and route the light to individual photodetectors. The photodetectors are operated in the photovoltaic mode to compress the greater than 60 dB input optical dynamic range into an easily processed electrical signal. The 512 signals are multiplexed and processed as a line in a video image by a customized digital image processing system. The image processor simultaneously analyzes the channelized signal data and produces a classical waterfall display.

  10. Multi-mode acquisition (MMA): An MS/MS acquisition strategy for maximizing selectivity, specificity and sensitivity of DIA product ion spectra.

    PubMed

    Williams, Brad J; Ciavarini, Steve J; Devlin, Curt; Cohn, Steven M; Xie, Rong; Vissers, Johannes P C; Martin, LeRoy B; Caswell, Allen; Langridge, James I; Geromanos, Scott J

    2016-08-01

    In proteomics studies, it is generally accepted that depth of coverage and dynamic range is limited in data-directed acquisitions. The serial nature of the method limits both sensitivity and the number of precursor ions that can be sampled. To that end, a number of data-independent acquisition (DIA) strategies have been introduced with these methods, for the most part, immune to the sampling issue; nevertheless, some do have other limitations with respect to sensitivity. The major limitation with DIA approaches is interference, i.e., MS/MS spectra are highly chimeric and often incapable of being identified using conventional database search engines. Utilizing each available dimension of separation prior to ion detection, we present a new multi-mode acquisition (MMA) strategy multiplexing both narrowband and wideband DIA acquisitions in a single analytical workflow. The iterative nature of the MMA workflow limits the adverse effects of interference with minimal loss in sensitivity. Qualitative identification can be performed by selected ion chromatograms or conventional database search strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dynamic Target Acquisition: Empirical Models of Operator Performance.

    DTIC Science & Technology

    1980-08-01

    for 30,000 Ft Initial Slant Range VARIABLES MEAN Signature X Scene Complexity Low Medium High Active Target FLIR 22794 20162 20449 Inactive Target...Interactions for 30,000 Ft Initial Slant Range I Signature X Scene Complexity V * ORDERED MEANS 14867 18076 18079 18315 19105 19643 20162 20449 22794...14867 18076 1 183159 19105* 1 19643 20162* 20449 * 1 22794Signature X Speed I ORDERED MEANS 13429 15226 16604 17344 19033 20586 22641 24033 24491 1

  12. New data acquisition system for beam loss monitor used in J-PARC main ring

    NASA Astrophysics Data System (ADS)

    Satou, K.; Toyama, T.; Kamikubota, N.; Yoshida, S.; Matsushita, J.; Wakita, T.; Sugiyama, M.; Morino, T.

    2018-04-01

    A new data acquisition system has been developed continually as a part of the development of a new beam loss monitor (BLM) system for the J-PARC main ring. This development includes a newly designed front-end isolation amp that uses photo-couplers and a VME-based new analog-to-digital converter (ADC) system. Compared to the old amp, the new amp has a 10 times higher conversion impedance for the input current to the output voltage; this value is 1 M Ω. Moreover, the bandwidth was improved to from DC to 50 kHz, which is about two orders of magnitude greater than the previously used bandwidth. The theoretical estimations made in this study roughly agree with the frequency response obtained for the new system. The new ADC system uses an on-board field-programmable gate array chip for signal processing. By replacing the firmware of this chip, changes pertaining to future accelerator upgrade plans may be introduced into the new ADC system; in addition, the ADC system can be used in other applications. The sampling speed of the system is 1 MS/s, and it exhibits a 95 dBc spurious-free dynamic range and 16.5 effective number of bits. The obtained waveform and integrated charge data are compared with two reference levels in the ADC system. If the data exceeds the reference level, the system generates an alarm to dump the beams. By using the new data acquisition system, it was proved that the new BLM system shows a wide dynamic range of 160 dB. In this study, the details of the new data acquisition system are described.

  13. Dynamic 3D analysis of myocardial sympathetic innervation: an experimental study using 123I-MIBG and a CZT camera.

    PubMed

    Giorgetti, Assuero; Burchielli, Silvia; Positano, Vincenzo; Kovalski, Gil; Quaranta, Angela; Genovesi, Dario; Tredici, Manuel; Duce, Valerio; Landini, Luigi; Trivella, Maria Giovanna; Marzullo, Paolo

    2015-03-01

    Data on the in vivo myocardial kinetics of (123)I-metaiodobenzylguanidine ((123)I-MIBG) are scarce and have always been obtained using planar acquisitions. To clarify the normal kinetics of (123)I-MIBG in vivo over time, we designed an experimental protocol using a 3-dimensional (3D) dynamic approach with a cadmium zinc telluride (CZT) camera. We studied 6 anesthetized pigs (mean body weight, 37 ± 4 kg). Left ventricular myocardial perfusion and sympathetic innervation were assessed using (99m)Tc-tetrofosmin (26 ± 6 MBq), (123)I-MIBG (54 ± 14 MBq), and a CZT camera. A normal perfusion/function match on gated SPECT was the inclusion criterion. A dynamic acquisition in list mode started simultaneously with the bolus injection of (123)I-MIBG, and data were collected every 5 min for the first 20 min and then at acquisition steps of 30, 60, 90, and 120 min. Each step was reconstructed using dedicate software and reframed (60 s/frame). On the reconstructed transaxial slice that best showed the left ventricular cavity, regions of interest were drawn to obtain myocardial and blood pool activities. Myocardial time-activity curves were generated by interpolating data between contiguous acquisition steps, corrected for radiotracer decay and injected dose, and fitted to a bicompartmental model. Time to myocardial maximum signal intensity (MSI), MSI value, radiotracer retention index (RI, myocardial activity/blood pool integral), and washout rate were calculated. The mediastinal signal was measured and fitted to a linear model. The myocardial MSI of (123)I-MIBG was reached within 5.57 ± 4.23 min (range, 2-12 min). The mean MSI was 0.426% ± 0.092%. Myocardial RI decreased over time and reached point zero at 176 ± 31 min (range, 140-229 min). The ratio between myocardial and mediastinal signal at 15 and 125 min and extrapolated at 176 and 4 h was 5.45% ± 0.61%, 4.33% ± 1.23% (not statistically significant vs. 15 min), 3.95% ± 1.46% (P < 0.03 vs. 125 min), and 3.63% ± 1.64% (P < 0.03 vs. 176 min), respectively. Mean global washout rate at 125 min was 15% ± 14% (range, 0%-34%), and extrapolated data at 176 min and 4 h were 18% ± 18% (range, 0.49%-45%) and 25% ± 23% (range, 1.7%-56.2%; not statistically significant vs. 176 min), respectively. 3D dynamic analysis of (123)I-MIBG suggests that myocardial peak uptake is reached more quickly than previously described. Myocardial RI decreases over time and, on average, is null about 3 h after injection. The combination of an early peak and variations in delayed myocardial uptake could result in a wide physiologic range of washout rates. Mediastinal activity appears to be constant over time and significantly lower than previously described in planar studies, resulting in a higher heart-to-mediastinum ratio. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  14. Spectral Dynamics Inc., ships hybrid, 316-channel data acquisition system to Sandia Labs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Douglas

    2003-09-01

    Spectral Dynamics announced the shipment of a 316-channel data acquisition system. The system was custom designed for the Light Initiated High Explosive (LIHE) facility at Sandia Labs in Albuquerque, New Mexico by Spectral Dynamics Advanced Research Products Group. This Spectral Dynamics data acquisition system was tailored to meet the unique LIHE environmental and testing requirements utilizing Spectral Dynamics commercial off the shelf (COTS) Jaguar and VIDAS products supplemented by SD Alliance partner's (COTS) products. 'This system is just the beginning of our cutting edge merged technology solutions,' stated Mark Remelman, Manager for the Spectral Dynamics Advanced Research Products Group. 'Thismore » Hybrid system has 316-channels of data acquisition capability, comprised of 102.4kHz direct to disk acquisition and 2.5MHz, 200Mhz & 500Mhz RAM based capabilities. In addition it incorporates the advanced bridge conditioning and dynamic configuration capabilities offered by Spectral Dynamics new Smart Interface Panel System (SIPS{trademark}).' After acceptance testing, Tony King, the Instrumentation Engineer facilitating the project for the Sandia LIHE group commented; 'The LIHE staff was very impressed with the design, construction, attention to detail and overall performance of the instrumentation system'. This system combines VIDAS, a leading edge fourth generation SD-VXI hardware and field-proven software system from SD's Advanced Research Products Group with SD's Jaguar, a multiple Acquisition Control Peripheral (ACP) system that allows expansion to hundreds of channels without sacrificing signal processing performance. Jaguar incorporates dedicated throughput disks for each ACP providing time streaming to disk at up to the maximum sample rate. Spectral Dynamics, Inc. is a leading worldwide supplier of systems and software for advanced computer-automated data acquisition, vibration testing, structural dynamics, explosive shock, high-speed transient capture, acoustic analysis, monitoring, measurement, control and backup. Spectral Dynamics products are used for research, design verification, product testing and process improvement by manufacturers of all types of electrical, electronic and mechanical products, as well as by universities and government-funded agencies. The Advanced Research Products Group is the newest addition to the Spectral Dynamics family. Their newest VXI data acquisition hardware pushes the envelope on capabilities and embodies the same rock solid design methodologies, which have always differentiated Spectral Dynamics from its competition.« less

  15. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less

  16. Synchronous digitization for high dynamic range lock-in amplification in beam-scanning microscopy

    PubMed Central

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.; Simpson, Garth J.

    2014-01-01

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher laser power without sample damage is advantageous for increasing the observed signal content. PMID:24689588

  17. Direct Observation of Individual Charges and Their Dynamics on Graphene by Low-Energy Electron Holography.

    PubMed

    Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-09-14

    Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.

  18. 3D parallel-detection microwave tomography for clinical breast imaging

    PubMed Central

    Meaney, P. M.; Paulsen, K. D.

    2014-01-01

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery of 3D dielectric property distributions for breast-like phantoms with tumor inclusions utilizing both the in-plane and new cross-plane data. PMID:25554311

  19. Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Rolland, Jannick P.

    2010-01-01

    Phase-Resolved Doppler Optical Coherence Tomography (PR-DOCT) allows visualization and characterization of the location, direction, velocity, and profile of flow activity embedded in a static sample structure. The detectable Velocity Dynamic Range (VDR) of each particular PR-DOCT system is governed by a detectable Doppler phase shift, a flow angle, and an acquisition time interval used to determine the Doppler phase shift. In general, the lower boundary of the detectable Doppler phase shift is limited by the phase stability of the system, while the upper boundary is limited by the π phase ambiguity. For a given range of detectable Doppler phase shift, shortening the acquisition duration will increase not only the maximum detectable velocity but unfortunately also the minimum detectable velocity, which may lead to the invisibility of a slow flow. In this paper, we present an alternative acquisition scheme for PR-DOCT that extends the lower limit of the velocity dynamic range, while maintaining the maximum detectable velocity, hence increasing the overall VDR of PR-DOCT system. The essence of the approach is to implement a technique of multi-scale measurement to simultaneously acquire multiple VDRs in a single measurement. We demonstrate an example of implementation of the technique in a dual VDR DOCT, where two Doppler maps having different detectable VDRs were simultaneously detected, processed, and displayed in real time. One was a fixed VDR DOCT capable of measuring axial velocity of up to 10.9 mm/s without phase unwrapping. The other was a variable VDR DOCT capable of adjusting its detectable VDR to reveal slow flow information down to 11.3 μm/s. The technique is shown to effectively extend the overall detectable VDR of the PR-DOCT system. Examples of real time Doppler imaging of an African frog tadpole are demonstrated using the dual-VDR DOCT system. PMID:21258521

  20. Progress in sensor performance testing, modeling and range prediction using the TOD method: an overview

    NASA Astrophysics Data System (ADS)

    Bijl, Piet; Hogervorst, Maarten A.; Toet, Alexander

    2017-05-01

    The Triangle Orientation Discrimination (TOD) methodology includes i) a widely applicable, accurate end-to-end EO/IR sensor test, ii) an image-based sensor system model and iii) a Target Acquisition (TA) range model. The method has been extensively validated against TA field performance for a wide variety of well- and under-sampled imagers, systems with advanced image processing techniques such as dynamic super resolution and local adaptive contrast enhancement, and sensors showing smear or noise drift, for both static and dynamic test stimuli and as a function of target contrast. Recently, significant progress has been made in various directions. Dedicated visual and NIR test charts for lab and field testing are available and thermal test benches are on the market. Automated sensor testing using an objective synthetic human observer is within reach. Both an analytical and an image-based TOD model have recently been developed and are being implemented in the European Target Acquisition model ECOMOS and in the EOSTAR TDA. Further, the methodology is being applied for design optimization of high-end security camera systems. Finally, results from a recent perception study suggest that DRI ranges for real targets can be predicted by replacing the relevant distinctive target features by TOD test patterns of the same characteristic size and contrast, enabling a new TA modeling approach. This paper provides an overview.

  1. Rapid mapping of polarization switching through complete information acquisition

    NASA Astrophysics Data System (ADS)

    Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2016-12-01

    Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (~1 s) switching and fast (~10 kHz-1 MHz) detection waveforms. Here we develop an approach for rapid probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures.

  2. Dynamic high-speed acquisition system design of transmission error with USB based on LabVIEW and FPGA

    NASA Astrophysics Data System (ADS)

    Zheng, Yong; Chen, Yan

    2013-10-01

    To realize the design of dynamic acquisition system for real-time detection of transmission chain error is very important to improve the machining accuracy of machine tool. In this paper, the USB controller and FPGA is used for hardware platform design, combined with LabVIEW to design user applications, NI-VISA is taken for develop USB drivers, and ultimately achieve the dynamic acquisition system design of transmission error

  3. Post-Correlation Semi-Coherent Integration for High-Dynamic and Weak GPS Signal Acquisition (Preprint)

    DTIC Science & Technology

    2008-06-01

    provide the coverage. To enable weak GPS signal acquisition , one known technique at the receiver end is to extend the signal integration time...Han, “Block Accumulating Coherent Integration Over Extended Interval (BACIX) for Weak GPS Signal Acquisition ,” Proc. of ION-GNSS’06, Ft. Worth, TX...AFRL-RY-WP-TP-2008-1158 POST-CORRELATION SEMI-COHERENT INTEGRATION FOR HIGH-DYNAMIC AND WEAK GPS SIGNAL ACQUISITION (PREPRINT) Chun Yang

  4. Promoting Affordability in Defense Acquisitions: A Multi-Period Portfolio Approach

    DTIC Science & Technology

    2014-04-30

    has evolved out of many areas of research, ranging from economics to modern control theory (Powell, 2011). The general form of a dynamic programming...states 5 School of Aeronautics & Astronautics A Portfolio Approach: Background • Balance expected profit (performance) against risk ( variance ) in...investments (Markowitz 1952) • Efficiency frontier of optimal portfolios given investor risk averseness • Extends to multi-period case with various

  5. High dynamic range hyperspectral imaging for camouflage performance test and evaluation

    NASA Astrophysics Data System (ADS)

    Pearce, D.; Feenan, J.

    2016-10-01

    This paper demonstrates the use of high dynamic range processing applied to the specific technique of hyper-spectral imaging with linescan spectrometers. The technique provides an improvement in signal to noise for reflectance estimation. This is demonstrated for field measurements of rural imagery collected from a ground-based linescan spectrometer of rural scenes. Once fully developed, the specific application is expected to improve the colour estimation approaches and consequently the test and evaluation accuracy of camouflage performance tests. Data are presented on both field and laboratory experiments that have been used to evaluate the improvements granted by the adoption of high dynamic range data acquisition in the field of hyperspectral imaging. High dynamic ranging imaging is well suited to the hyperspectral domain due to the large variation in solar irradiance across the visible and short wave infra-red (SWIR) spectrum coupled with the wavelength dependence of the nominal silicon detector response. Under field measurement conditions it is generally impractical to provide artificial illumination; consequently, an adaptation of the hyperspectral imaging and re ectance estimation process has been developed to accommodate the solar spectrum. This is shown to improve the signal to noise ratio for the re ectance estimation process of scene materials in the 400-500 nm and 700-900 nm regions.

  6. Differential Laser Doppler based Non-Contact Sensor for Dimensional Inspection with Error Propagation Evaluation

    PubMed Central

    Mekid, Samir; Vacharanukul, Ketsaya

    2006-01-01

    To achieve dynamic error compensation in CNC machine tools, a non-contact laser probe capable of dimensional measurement of a workpiece while it is being machined has been developed and presented in this paper. The measurements are automatically fed back to the machine controller for intelligent error compensations. Based on a well resolved laser Doppler technique and real time data acquisition, the probe delivers a very promising dimensional accuracy at few microns over a range of 100 mm. The developed optical measuring apparatus employs a differential laser Doppler arrangement allowing acquisition of information from the workpiece surface. In addition, the measurements are traceable to standards of frequency allowing higher precision.

  7. An improved fast acquisition phase frequency detector for high speed phase-locked loops

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Zongmin; Zhang, Tieliang; Peng, Xinmang

    2018-04-01

    Phase-locked loops (PLL) have been widely applied in many high-speed designs, such as microprocessors or communication systems. In this paper, an improved fast acquisition phase frequency detector for high speed phase-locked loops is proposed. An improved structure based on dynamic latch is used to eliminate the non-ideal effect such as dead zone and blind zone. And frequency dividers are utilized to vastly extend the phase difference detection range and enhance the operation frequency of the PLL. Proposed PFD has been implemented in 65nm CMOS technology, which occupies an area of 0.0016mm2 and consumes 1.5mW only. Simulation results demonstrate that maximum operation frequency can be up to 5GHz. In addition, the acquisition time of PLL using proposed PFD is 1.0us which is 2.6 times faster than that of the PLL using latch-based PFD without divider.

  8. Improved virtual cardiac phantom with variable diastolic filling rates and coronary artery velocities

    NASA Astrophysics Data System (ADS)

    Sturgeon, Gregory M.; Richards, Taylor W.; Samei, E.; Segars, W. P.

    2017-03-01

    To facilitate studies of measurement uncertainty in computed tomography angiography (CTA), we investigated the cardiac motion profile and resulting coronary artery motion utilizing innovative dynamic virtual and physical phantoms. The four-chamber cardiac finite element (FE) model developed in the Living Heart Project (LHP) served as the computational basis for our virtual cardiac phantom. This model provides deformation or strain information at high temporal and spatial resolution, exceeding that of speckle tracking echocardiography or tagged MRI. This model was extended by fitting its motion profile to left ventricular (LV) volume-time curves obtained from patient echocardiography data. By combining the dynamic patient variability from echo with the local strain information from the FE model, a series of virtual 4D cardiac phantoms were developed. Using the computational phantoms, we characterized the coronary motion and its effect on plaque imaging under a range of heart rates subject to variable diastolic function. The coronary artery motion was sampled at 248 spatial locations over 500 consecutive time frames. The coronary artery velocities were calculated as their average velocity during an acquisition window centered at each time frame, which minimized the discretization error. For the initial set of twelve patients, the diastatic coronary artery velocity ranged from 36.5 mm/s to 2.0 mm/s with a mean of 21.4 mm/s assuming an acquisition time of 75 ms. The developed phantoms have great potential in modeling cardiac imaging, providing a known truth and multiple realistic cardiac motion profiles to evaluate different image acquisition or reconstruction methods.

  9. The UOSAT magnetometer experiment

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.

    1982-01-01

    The magnetometer aboard the University of Surrey satellite (UOSAT) and its associated electronics are described. The basic fluxgate magnetometer employed has a dynamic range of plus or minus 8000 nT with outputs digitized by a 12-bit successive approximation A-D converter having a resolution of plus or minus 2 nT. Noise in the 3-13 Hz bandwidth is less than 1 nT. A bias field generator extends the dynamic range to plus or minus 64,000 nT with quantization steps of 8000 nT. The magnetometer experiment is expected to provide information on the secular variation of the geomagnetic field, and the decay rate of the dipole term. Special emphasis will be placed on the acquisition of real time and memory data over the poles which can be correlated with that from Magsat.

  10. Guidelines for dynamic data acquisition and analysis

    NASA Technical Reports Server (NTRS)

    Piersol, Allan G.

    1992-01-01

    The recommendations concerning pyroshock data presented in the final draft of a proposed military handbook on Guidelines for Dynamic Data Acquisition and Analysis are reviewed. The structural responses produced by pyroshocks are considered to be one of the most difficult types of dynamic data to accurately measure and analyze.

  11. Shortened acquisition protocols for the quantitative assessment of the 2-tissue-compartment model using dynamic PET/CT 18F-FDG studies.

    PubMed

    Strauss, Ludwig G; Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2011-03-01

    (18)F-FDG kinetics are quantified by a 2-tissue-compartment model. The routine use of dynamic PET is limited because of this modality's 1-h acquisition time. We evaluated shortened acquisition protocols up to 0-30 min regarding the accuracy for data analysis with the 2-tissue-compartment model. Full dynamic series for 0-60 min were analyzed using a 2-tissue-compartment model. The time-activity curves and the resulting parameters for the model were stored in a database. Shortened acquisition data were generated from the database using the following time intervals: 0-10, 0-16, 0-20, 0-25, and 0-30 min. Furthermore, the impact of adding a 60-min uptake value to the dynamic series was evaluated. The datasets were analyzed using dedicated software to predict the results of the full dynamic series. The software is based on a modified support vector machines (SVM) algorithm and predicts the compartment parameters of the full dynamic series. The SVM-based software provides user-independent results and was accurate at predicting the compartment parameters of the full dynamic series. If a squared correlation coefficient of 0.8 (corresponding to 80% explained variance of the data) was used as a limit, a shortened acquisition of 0-16 min was accurate at predicting the 60-min 2-tissue-compartment parameters. If a limit of 0.9 (90% explained variance) was used, a dynamic series of at least 0-20 min together with the 60-min uptake values is required. Shortened acquisition protocols can be used to predict the parameters of the 2-tissue-compartment model. Either a dynamic PET series of 0-16 min or a combination of a dynamic PET/CT series of 0-20 min and a 60-min uptake value is accurate for analysis with a 2-tissue-compartment model.

  12. Tools to Perform Local Dense 3D Reconstruction of Shallow Water Seabed ‡

    PubMed Central

    Avanthey, Loïca; Beaudoin, Laurent; Gademer, Antoine; Roux, Michel

    2016-01-01

    Tasks such as distinguishing or identifying individual objects of interest require the production of dense local clouds at the scale of these individual objects of interest. Due to the physical and dynamic properties of an underwater environment, the usual dense matching algorithms must be rethought in order to be adaptive. These properties also imply that the scene must be observed at close range. Classic robotized acquisition systems are oversized for local studies in shallow water while the systematic acquisition of data is not guaranteed with divers. We address these two major issues through a multidisciplinary approach. To efficiently acquire on-demand stereoscopic pairs using simple logistics in small areas of shallow water, we devised an agile light-weight dedicated system which is easy to reproduce. To densely match two views in a reliable way, we devised a reconstruction algorithm that automatically accounts for the dynamics, variability and light absorption of the underwater environment. Field experiments in the Mediterranean Sea were used to assess the results. PMID:27196913

  13. NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data

    PubMed Central

    Rothman, Jason S.; Silver, R. Angus

    2018-01-01

    Acquisition, analysis and simulation of electrophysiological properties of the nervous system require multiple software packages. This makes it difficult to conserve experimental metadata and track the analysis performed. It also complicates certain experimental approaches such as online analysis. To address this, we developed NeuroMatic, an open-source software toolkit that performs data acquisition (episodic, continuous and triggered recordings), data analysis (spike rasters, spontaneous event detection, curve fitting, stationarity) and simulations (stochastic synaptic transmission, synaptic short-term plasticity, integrate-and-fire and Hodgkin-Huxley-like single-compartment models). The merging of a wide range of tools into a single package facilitates a more integrated style of research, from the development of online analysis functions during data acquisition, to the simulation of synaptic conductance trains during dynamic-clamp experiments. Moreover, NeuroMatic has the advantage of working within Igor Pro, a platform-independent environment that includes an extensive library of built-in functions, a history window for reviewing the user's workflow and the ability to produce publication-quality graphics. Since its original release, NeuroMatic has been used in a wide range of scientific studies and its user base has grown considerably. NeuroMatic version 3.0 can be found at http://www.neuromatic.thinkrandom.com and https://github.com/SilverLabUCL/NeuroMatic. PMID:29670519

  14. Design and application of pulse information acquisition and analysis system with dynamic recognition in traditional Chinese medicine.

    PubMed

    Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong

    2014-09-01

    To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.

  15. Diagnostic System for Decomposition Studies of Energetic Materials

    DTIC Science & Technology

    2017-10-03

    transition states and reaction pathways are sought. The overall objective for these combined experimental studies and quantum mechanics investigations...peak-to-peak 1 min: 50,000:1 ( 8.6×10-6 AU noise) peak-to-peak Interferometer UltraScan linear air bearing scanner with True -Alignment Aperture... True 24 bit dynamic range for all scan velocities, dual channel data acquisition Validation Internal validation unit, 6 positions, certified

  16. DDS-Suite - A Dynamic Data Acquisition, Processing, and Analysis System for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Burnside, Jathan J.

    2012-01-01

    Wind Tunnels have optimized their steady-state data systems for acquisition and analysis and even implemented large dynamic-data acquisition systems, however development of near real-time processing and analysis tools for dynamic-data have lagged. DDS-Suite is a set of tools used to acquire, process, and analyze large amounts of dynamic data. Each phase of the testing process: acquisition, processing, and analysis are handled by separate components so that bottlenecks in one phase of the process do not affect the other, leading to a robust system. DDS-Suite is capable of acquiring 672 channels of dynamic data at rate of 275 MB / s. More than 300 channels of the system use 24-bit analog-to-digital cards and are capable of producing data with less than 0.01 of phase difference at 1 kHz. System architecture, design philosophy, and examples of use during NASA Constellation and Fundamental Aerodynamic tests are discussed.

  17. Performance comparison between 8 and 14 bit-depth imaging in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragoda, Deepa K.; Matcher, Stephen J.

    2011-03-01

    We compare true 8 and 14 bit-depth imaging of SS-OCT and polarization-sensitive SS-OCT (PS-SS-OCT) at 1.3μm wavelength by using two hardware-synchronized high-speed data acquisition (DAQ) boards. The two DAQ boards read exactly the same imaging data for comparison. The measured system sensitivity at 8-bit depth is comparable to that for 14-bit acquisition when using the more sensitive of the available full analog input voltage ranges of the ADC. Ex-vivo structural and birefringence images of an equine tendon sample indicate no significant differences between images acquired by the two DAQ boards suggesting that 8-bit DAQ boards can be employed to increase imaging speeds and reduce storage in clinical SS-OCT/PS-SS-OCT systems. We also compare the resulting image quality when the image data sampled with the 14-bit DAQ from human finger skin is artificially bit-reduced during post-processing. However, in agreement with the results reported previously, we also observe that in our system that real-world 8-bit image shows more artifacts than the image acquired by numerically truncating to 8-bits from the raw 14-bit image data, especially in low intensity image area. This is due to the higher noise floor and reduced dynamic range of the 8-bit DAQ. One possible disadvantage is a reduced imaging dynamic range which can manifest itself as an increase in image artefacts due to strong Fresnel reflection.

  18. Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis*

    PubMed Central

    Gillet, Ludovic C.; Navarro, Pedro; Tate, Stephen; Röst, Hannes; Selevsek, Nathalie; Reiter, Lukas; Bonner, Ron; Aebersold, Ruedi

    2012-01-01

    Most proteomic studies use liquid chromatography coupled to tandem mass spectrometry to identify and quantify the peptides generated by the proteolysis of a biological sample. However, with the current methods it remains challenging to rapidly, consistently, reproducibly, accurately, and sensitively detect and quantify large fractions of proteomes across multiple samples. Here we present a new strategy that systematically queries sample sets for the presence and quantity of essentially any protein of interest. It consists of using the information available in fragment ion spectral libraries to mine the complete fragment ion maps generated using a data-independent acquisition method. For this study, the data were acquired on a fast, high resolution quadrupole-quadrupole time-of-flight (TOF) instrument by repeatedly cycling through 32 consecutive 25-Da precursor isolation windows (swaths). This SWATH MS acquisition setup generates, in a single sample injection, time-resolved fragment ion spectra for all the analytes detectable within the 400–1200 m/z precursor range and the user-defined retention time window. We show that suitable combinations of fragment ions extracted from these data sets are sufficiently specific to confidently identify query peptides over a dynamic range of 4 orders of magnitude, even if the precursors of the queried peptides are not detectable in the survey scans. We also show that queried peptides are quantified with a consistency and accuracy comparable with that of selected reaction monitoring, the gold standard proteomic quantification method. Moreover, targeted data extraction enables ad libitum quantification refinement and dynamic extension of protein probing by iterative re-mining of the once-and-forever acquired data sets. This combination of unbiased, broad range precursor ion fragmentation and targeted data extraction alleviates most constraints of present proteomic methods and should be equally applicable to the comprehensive analysis of other classes of analytes, beyond proteomics. PMID:22261725

  19. Proposed military handbook for dynamic data acquisition and analysis - An invitation to review

    NASA Technical Reports Server (NTRS)

    Himelblau, Harry; Wise, James H.; Piersol, Allan G.; Grundvig, Max R.

    1990-01-01

    A draft Military Handbook prepared under the sponsorship of the USAF Space Division is presently being distributed throughout the U.S. for review by the aerospace community. This comprehensive document provides recommended guidelines for the acquisition and analysis of structural dynamics and aeroacoustic data, and is intended to reduce the errors and variability commonly found in flight, ground and laboratory dynamic test measurements. In addition to the usual variety of measurement problems encountered in the definition of dynamic loads, the development of design and test criteria, and the analysis of failures, special emphasis is given to certain state-of-the-art topics, such as pyroshock data acquisition and nonstationary random data analysis.

  20. A Parallel Spectroscopic Method for Examining Dynamic Phenomena on the Millisecond Time Scale

    PubMed Central

    Snively, Christopher M.; Chase, D. Bruce; Rabolt, John F.

    2009-01-01

    An infrared spectroscopic technique based on planar array infrared (PAIR) spectroscopy has been developed that allows the acquisition of spectra from multiple samples simultaneously. Using this technique, it is possible to acquire spectra over a spectral range of 950–1900cm−1 with a temporal resolution of 2.2ms. The performance of this system was demonstrated by determining the shear-induced orientational response of several low molecular weight liquid crystals. Five different liquid crystals were examined in combination with five different alignment layers, and both primary and secondary screens were demonstrated. Implementation of this high throughput PAIR technique resulted in a reduction in acquisition time as compared to both step-scan and ultra-rapid-scanning FTIR spectroscopy. PMID:19239197

  1. Extending HHG spectroscopy to new molecular species

    NASA Astrophysics Data System (ADS)

    McGrath, F.; Hawkins, P.; Simpson, E.; Siegel, T.; Diveki, Z.; Austin, D.; Zair, A.; Castillejo, M.; Marangos, J. P.

    2014-03-01

    We present technical and experimental advances for performing HHG experiments in a range of substituted benzene molecules starting in the liquid phase. We demonstrate sub 3% fluctutaions in the harmonic signal generated in a benzene vapour backed continuous flow gas jet using a mid-IR laser source. The longer drive wavelength is necessary as the target molecules have low ionization potential and exhibit femtosecond timescale dynamics. We present the acquisition of stable and reproducible harmonic spectra from a range of substituted benzene molecules and the dependence of HHG upon the ellipticity of the laser beam was measured for a number of molecules.

  2. Ultra-low power high-dynamic range color pixel embedding RGB to r-g chromaticity transformation

    NASA Astrophysics Data System (ADS)

    Lecca, Michela; Gasparini, Leonardo; Gottardi, Massimo

    2014-05-01

    This work describes a novel color pixel topology that converts the three chromatic components from the standard RGB space into the normalized r-g chromaticity space. This conversion is implemented with high-dynamic range and with no dc power consumption, and the auto-exposure capability of the sensor ensures to capture a high quality chromatic signal, even in presence of very bright illuminants or in the darkness. The pixel is intended to become the basic building block of a CMOS color vision sensor, targeted to ultra-low power applications for mobile devices, such as human machine interfaces, gesture recognition, face detection. The experiments show that significant improvements of the proposed pixel with respect to standard cameras in terms of energy saving and accuracy on data acquisition. An application to skin color-based description is presented.

  3. Towards a microchannel-based X-ray detector with two-dimensional spatial and time resolution and high dynamic range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.; Mane, Anil U.; Elam, Jeffrey W.

    X-ray detectors that combine two-dimensional spatial resolution with a high time resolution are needed in numerous applications of synchrotron radiation. Most detectors with this combination of capabilities are based on semiconductor technology and are therefore limited in size. Furthermore, the time resolution is often realised through rapid time-gating of the acquisition, followed by a slower readout. Here, a detector technology is realised based on relatively inexpensive microchannel plates that uses GHz waveform sampling for a millimeter-scale spatial resolution and better than 100 ps time resolution. The technology is capable of continuous streaming of time- and location-tagged events at rates greatermore » than 10 7events per cm 2. Time-gating can be used for improved dynamic range.« less

  4. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    NASA Astrophysics Data System (ADS)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  5. Noise analysis of the seismic system employed in the northern and southern California seismic nets

    USGS Publications Warehouse

    Eaton, J.P.

    1984-01-01

    The seismic networks have been designed and operated to support recording on Develocorders (less than 40db dynamic range) and analog magnetic tape (about 50 db dynamic range). The principal analysis of the records has been based on Develocorder films; and background earth noise levels have been adjusted to be about 1 to 2 mm p-p on the film readers. Since the traces are separated by only 10 to 12 mm on the reader screen, they become hopelessly tangled when signal amplitudes on several adjacent traces exceed 10 to 20 mm p-p. Thus, the background noise level is hardly more than 20 db below the level of largest readable signals. The situation is somewhat better on tape playbacks, but the high level of background noise set to accomodate processing from film records effectively limits the range of maximum-signal to background-earth-noise on high gain channels to a little more than 30 db. Introduction of the PDP 11/44 seismic data acquisition system has increased the potential dynamic range of recorded network signals to more than 60 db. To make use of this increased dynamic range we must evaluate the characteristics and performance of the seismic system. In particular, we must determine whether the electronic noise in the system is or can be made sufficiently low so that background earth noise levels can be lowered significantly to take advantage of the increased dynamic range of the digital recording system. To come to grips with the complex problem of system noise, we have carried out a number of measurements and experiments to evaluate critical components of the system as well as to determine the noise characteristics of the system as a whole.

  6. Feasibility of through-time spiral generalized autocalibrating partial parallel acquisition for low latency accelerated real-time MRI of speech.

    PubMed

    Lingala, Sajan Goud; Zhu, Yinghua; Lim, Yongwan; Toutios, Asterios; Ji, Yunhua; Lo, Wei-Ching; Seiberlich, Nicole; Narayanan, Shrikanth; Nayak, Krishna S

    2017-12-01

    To evaluate the feasibility of through-time spiral generalized autocalibrating partial parallel acquisition (GRAPPA) for low-latency accelerated real-time MRI of speech. Through-time spiral GRAPPA (spiral GRAPPA), a fast linear reconstruction method, is applied to spiral (k-t) data acquired from an eight-channel custom upper-airway coil. Fully sampled data were retrospectively down-sampled to evaluate spiral GRAPPA at undersampling factors R = 2 to 6. Pseudo-golden-angle spiral acquisitions were used for prospective studies. Three subjects were imaged while performing a range of speech tasks that involved rapid articulator movements, including fluent speech and beat-boxing. Spiral GRAPPA was compared with view sharing, and a parallel imaging and compressed sensing (PI-CS) method. Spiral GRAPPA captured spatiotemporal dynamics of vocal tract articulators at undersampling factors ≤4. Spiral GRAPPA at 18 ms/frame and 2.4 mm 2 /pixel outperformed view sharing in depicting rapidly moving articulators. Spiral GRAPPA and PI-CS provided equivalent temporal fidelity. Reconstruction latency per frame was 14 ms for view sharing and 116 ms for spiral GRAPPA, using a single processor. Spiral GRAPPA kept up with the MRI data rate of 18ms/frame with eight processors. PI-CS required 17 minutes to reconstruct 5 seconds of dynamic data. Spiral GRAPPA enabled 4-fold accelerated real-time MRI of speech with a low reconstruction latency. This approach is applicable to wide range of speech RT-MRI experiments that benefit from real-time feedback while visualizing rapid articulator movement. Magn Reson Med 78:2275-2282, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Rapid mapping of polarization switching through complete information acquisition

    DOE PAGES

    Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; ...

    2016-12-02

    Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (~1 s) switching and fast (~10 kHz–1 MHz) detection waveforms. Here we develop an approach for rapidmore » probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures.« less

  8. Rapid mapping of polarization switching through complete information acquisition

    PubMed Central

    Somnath, Suhas; Belianinov, Alex; Kalinin, Sergei V.; Jesse, Stephen

    2016-01-01

    Polarization switching in ferroelectric and multiferroic materials underpins a broad range of current and emergent applications, ranging from random access memories to field-effect transistors, and tunnelling devices. Switching in these materials is exquisitely sensitive to local defects and microstructure on the nanometre scale, necessitating spatially resolved high-resolution studies of these phenomena. Classical piezoresponse force microscopy and spectroscopy, although providing necessary spatial resolution, are fundamentally limited in data acquisition rates and energy resolution. This limitation stems from their two-tiered measurement protocol that combines slow (∼1 s) switching and fast (∼10 kHz–1 MHz) detection waveforms. Here we develop an approach for rapid probing of ferroelectric switching using direct strain detection of material response to probe bias. This approach, facilitated by high-sensitivity electronics and adaptive filtering, enables spectroscopic imaging at a rate 3,504 times faster the current state of the art, achieving high-veracity imaging of polarization dynamics in complex microstructures. PMID:27910941

  9. Soft tissue deformation for surgical simulation: a position-based dynamics approach.

    PubMed

    Camara, Mafalda; Mayer, Erik; Darzi, Ara; Pratt, Philip

    2016-06-01

    To assist the rehearsal and planning of robot-assisted partial nephrectomy, a real-time simulation platform is presented that allows surgeons to visualise and interact with rapidly constructed patient-specific biomechanical models of the anatomical regions of interest. Coupled to a framework for volumetric deformation, the platform furthermore simulates intracorporeal 2D ultrasound image acquisition, using preoperative imaging as the data source. This not only facilitates the planning of optimal transducer trajectories and viewpoints, but can also act as a validation context for manually operated freehand 3D acquisitions and reconstructions. The simulation platform was implemented within the GPU-accelerated NVIDIA FleX position-based dynamics framework. In order to validate the model and determine material properties and other simulation parameter values, a porcine kidney with embedded fiducial beads was CT-scanned and segmented. Acquisitions for the rest position and three different levels of probe-induced deformation were collected. Optimal values of the cluster stiffness coefficients were determined for a range of different particle radii, where the objective function comprised the mean distance error between real and simulated fiducial positions over the sequence of deformations. The mean fiducial error at each deformation stage was found to be compatible with the level of ultrasound probe calibration error typically observed in clinical practice. Furthermore, the simulation exhibited unconditional stability on account of its use of clustered shape-matching constraints. A novel position-based dynamics implementation of soft tissue deformation has been shown to facilitate several desirable simulation characteristics: real-time performance, unconditional stability, rapid model construction enabling patient-specific behaviour and accuracy with respect to reference CT images.

  10. Increasingly automated procedure acquisition in dynamic systems

    NASA Technical Reports Server (NTRS)

    Mathe, Nathalie; Kedar, Smadar

    1992-01-01

    Procedures are widely used by operators for controlling complex dynamic systems. Currently, most development of such procedures is done manually, consuming a large amount of paper, time, and manpower in the process. While automated knowledge acquisition is an active field of research, not much attention has been paid to the problem of computer-assisted acquisition and refinement of complex procedures for dynamic systems. The Procedure Acquisition for Reactive Control Assistant (PARC), which is designed to assist users in more systematically and automatically encoding and refining complex procedures. PARC is able to elicit knowledge interactively from the user during operation of the dynamic system. We categorize procedure refinement into two stages: diagnosis - diagnose the failure and choose a repair - and repair - plan and perform the repair. The basic approach taken in PARC is to assist the user in all steps of this process by providing increased levels of assistance with layered tools. We illustrate the operation of PARC in refining procedures for the control of a robot arm.

  11. Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography: effect of acquisition time and implications for protocols.

    PubMed

    Goh, Vicky; Halligan, Steve; Hugill, Jo-Ann; Gartner, Louise; Bartram, Clive I

    2005-01-01

    To determine the effect of acquisition time on quantitative colorectal cancer perfusion measurement. Dynamic contrast-enhanced computed tomography (CT) was performed prospectively in 10 patients with histologically proven colorectal cancer using 4-detector row CT (Lightspeed Plus; GE Healthcare Technologies, Waukesha, WI). Tumor blood flow, blood volume, mean transit time, and permeability were assessed for 3 acquisition times (45, 65, and 130 seconds). Mean values for all 4 perfusion parameters for each acquisition time were compared using the paired t test. Significant differences in permeability values were noted between acquisitions of 45 seconds and 65 and 130 seconds, respectively (P=0.02, P=0.007). There was no significant difference for values of blood volume, blood flow, and mean transit time between any of the acquisition times. Scan acquisitions of 45 seconds are too short for reliable permeability measurement in the abdomen. Longer acquisition times are required.

  12. Design of a short nonuniform acquisition protocol for quantitative analysis in dynamic cardiac SPECT imaging - a retrospective 123 I-MIBG animal study.

    PubMed

    Zan, Yunlong; Long, Yong; Chen, Kewei; Li, Biao; Huang, Qiu; Gullberg, Grant T

    2017-07-01

    Our previous works have found that quantitative analysis of 123 I-MIBG kinetics in the rat heart with dynamic single-photon emission computed tomography (SPECT) offers the potential to quantify the innervation integrity at an early stage of left ventricular hypertrophy. However, conventional protocols involving a long acquisition time for dynamic imaging reduce the animal survival rate and thus make longitudinal analysis difficult. The goal of this work was to develop a procedure to reduce the total acquisition time by selecting nonuniform acquisition times for projection views while maintaining the accuracy and precision of estimated physiologic parameters. Taking dynamic cardiac imaging with 123 I-MIBG in rats as an example, we generated time activity curves (TACs) of regions of interest (ROIs) as ground truths based on a direct four-dimensional reconstruction of experimental data acquired from a rotating SPECT camera, where TACs represented as the coefficients of B-spline basis functions were used to estimate compartmental model parameters. By iteratively adjusting the knots (i.e., control points) of B-spline basis functions, new TACs were created according to two rules: accuracy and precision. The accuracy criterion allocates the knots to achieve low relative entropy between the estimated left ventricular blood pool TAC and its ground truth so that the estimated input function approximates its real value and thus the procedure yields an accurate estimate of model parameters. The precision criterion, via the D-optimal method, forces the estimated parameters to be as precise as possible, with minimum variances. Based on the final knots obtained, a new protocol of 30 min was built with a shorter acquisition time that maintained a 5% error in estimating rate constants of the compartment model. This was evaluated through digital simulations. The simulation results showed that our method was able to reduce the acquisition time from 100 to 30 min for the cardiac study of rats with 123 I-MIBG. Compared to a uniform interval dynamic SPECT protocol (1 s acquisition interval, 30 min acquisition time), the newly proposed protocol with nonuniform interval achieved comparable (K1 and k2, P = 0.5745 for K1 and P = 0.0604 for k2) or better (Distribution Volume, DV, P = 0.0004) performance for parameter estimates with less storage and shorter computational time. In this study, a procedure was devised to shorten the acquisition time while maintaining the accuracy and precision of estimated physiologic parameters in dynamic SPECT imaging. The procedure was designed for 123 I-MIBG cardiac imaging in rat studies; however, it has the potential to be extended to other applications, including patient studies involving the acquisition of dynamic SPECT data. © 2017 American Association of Physicists in Medicine.

  13. An Empirical Study of Combining Communicating Processes in a Parallel Discrete Event Simulation

    DTIC Science & Technology

    1990-12-01

    dynamics of the cost/performance criteria which typically made up computer resource acquisition decisions . offering a broad range of tradeoffs in the way... prcesses has a significant impact on simulation performance. It is the hypothesis of this 3-4 SYSTEM DECOMPOSITION PHYSICAL SYSTEM 1: N PHYSICAL PROCESS 1...EMPTY)) next-event = pop(next-event-queue); lp-clock = next-event - time; Simulate next event departure- consume event-enqueue new event end while; If no

  14. A Low-Cost Data Acquisition System for Automobile Dynamics Applications

    PubMed Central

    González, Alejandro; Vinolas, Jordi

    2018-01-01

    This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources. PMID:29382039

  15. A Low-Cost Data Acquisition System for Automobile Dynamics Applications.

    PubMed

    González, Alejandro; Olazagoitia, José Luis; Vinolas, Jordi

    2018-01-27

    This project addresses the need for the implementation of low-cost acquisition technology in the field of vehicle engineering: the design, development, manufacture, and verification of a low-cost Arduino-based data acquisition platform to be used in <80 Hz data acquisition in vehicle dynamics, using low-cost accelerometers. In addition to this, a comparative study is carried out of professional vibration acquisition technologies and low-cost systems, obtaining optimum results for low- and medium-frequency operations with an error of 2.19% on road tests. It is therefore concluded that these technologies are applicable to the automobile industry, thereby allowing the project costs to be reduced and thus facilitating access to this kind of research that requires limited resources.

  16. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles.

    PubMed

    Lee, Young Kwang; Kim, Sungi; Nam, Jwa-Min

    2015-01-12

    Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microfluidic flow spectrometer

    NASA Astrophysics Data System (ADS)

    Vázquez-Vergara, Pamela; Torres Rojas, Aimee M.; Guevara-Pantoja, Pablo E.; Corvera Poiré, Eugenia; Caballero-Robledo, Gabriel A.

    2017-07-01

    We present a microfluidic device which allows one to study the dynamics of oscillatory flows for a frequency range between 1 and 300 Hz. The fluid in the microdevice could be Newtonian, viscoelastic, or even a biofluid, since the device is made of PMMA, which makes it biocompatible and free of elastomeric elements. Coupling a piezoelectric to a micropiston allows one to impose periodic movement to the fluid, with zero mean flow and amplitudes of up to 20~μ m, within the microchannels in which the dynamics is studied. The use of a fast camera coupled to a microscope allows one to study the dynamics of 1~μ m tracer particles and interfaces at an image acquisition rate as fast as 5000 frames per second. The fabrication of the device is easy and cost-effective, since it is based on the use of a micromilling machine. The dynamics of a Newtonian fluid is studied as a proof of principle.

  18. Design of CMOS imaging system based on FPGA

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Xiaolai

    2017-10-01

    In order to meet the needs of engineering applications for high dynamic range CMOS camera under the rolling shutter mode, a complete imaging system is designed based on the CMOS imaging sensor NSC1105. The paper decides CMOS+ADC+FPGA+Camera Link as processing architecture and introduces the design and implementation of the hardware system. As for camera software system, which consists of CMOS timing drive module, image acquisition module and transmission control module, the paper designs in Verilog language and drives it to work properly based on Xilinx FPGA. The ISE 14.6 emulator ISim is used in the simulation of signals. The imaging experimental results show that the system exhibits a 1280*1024 pixel resolution, has a frame frequency of 25 fps and a dynamic range more than 120dB. The imaging quality of the system satisfies the requirement of the index.

  19. Two-Color Nonlinear Spectroscopy for the Rapid Acquisition of Coherent Dynamics.

    PubMed

    Senlik, S Seckin; Policht, Veronica R; Ogilvie, Jennifer P

    2015-07-02

    There has been considerable recent interest in the observation of coherent dynamics in photosynthetic systems by 2D electronic spectroscopy (2DES). In particular, coherences that persist during the "waiting time" in a 2DES experiment have been attributed to electronic, vibrational, and vibronic origins in various systems. The typical method for characterizing these coherent dynamics requires the acquisition of 2DES spectra as a function of waiting time, essentially a 3DES measurement. Such experiments require lengthy data acquisition times that degrade the signal-to-noise of the recorded coherent dynamics. We present a rapid and high signal-to-noise pulse-shaping-based approach for the characterization of coherent dynamics. Using chlorophyll a, we demonstrate that this method retains much of the information content of a 3DES measurement and provides insight into the physical origin of the coherent dynamics, distinguishing between ground and excited state coherences. It also enables high resolution determination of ground and excited state frequencies.

  20. High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons

    NASA Astrophysics Data System (ADS)

    Dekorsy, T.; Taubert, R.; Hudert, F.; Schrenk, G.; Bartels, A.; Cerna, R.; Kotaidis, V.; Plech, A.; Köhler, K.; Schmitz, J.; Wagner, J.

    2007-12-01

    A new optical pump-probe technique is implemented for the investigation of coherent acoustic phonon dynamics in the GHz to THz frequency range which is based on two asynchronously linked femtosecond lasers. Asynchronous optical sampling (ASOPS) provides the performance of on all-optical oscilloscope and allows us to record optically induced lattice dynamics over nanosecond times with femtosecond resolution at scan rates of 10 kHz without any moving part in the set-up. Within 1 minute of data acquisition time signal-to-noise ratios better than 107 are achieved. We present examples of the high-sensitivity detection of coherent phonons in superlattices and of the coherent acoustic vibration of metallic nanoparticles.

  1. Near ground level sensing for spatial analysis of vegetation

    NASA Technical Reports Server (NTRS)

    Sauer, Tom; Rasure, John; Gage, Charlie

    1991-01-01

    Measured changes in vegetation indicate the dynamics of ecological processes and can identify the impacts from disturbances. Traditional methods of vegetation analysis tend to be slow because they are labor intensive; as a result, these methods are often confined to small local area measurements. Scientists need new algorithms and instruments that will allow them to efficiently study environmental dynamics across a range of different spatial scales. A new methodology that addresses this problem is presented. This methodology includes the acquisition, processing, and presentation of near ground level image data and its corresponding spatial characteristics. The systematic approach taken encompasses a feature extraction process, a supervised and unsupervised classification process, and a region labeling process yielding spatial information.

  2. Usefulness of the dynamic gadolinium-enhanced magnetic resonance imaging with simultaneous acquisition of coronal and sagittal planes for detection of pituitary microadenomas.

    PubMed

    Lee, Han Bee; Kim, Sung Tae; Kim, Hyung-Jin; Kim, Keon Ha; Jeon, Pyoung; Byun, Hong Sik; Choi, Jin Wook

    2012-03-01

    Does dynamic gadolinium-enhanced imaging with simultaneous acquisition of coronal and sagittal planes improve diagnostic accuracy of pituitary microadenomas compared with coronal images alone? Fifty-six patients underwent 3-T sella MRI including dynamic simultaneous acquisition of coronal and sagittal planes after gadolinium injection. According to conspicuity, lesions were divided into four scores (0, no; 1, possible; 2, probable; 3, definite delayed enhancing lesion). Additional information on supplementary sagittal images compared with coronal ones was evaluated with a 4-point score (0, no; 1, possible; 2, probable; 3, definite additional information). Accuracy of tumour detection was calculated. Average scores for lesion detection of a combination of two planes, coronal, and sagittal images were 2.59, 2.32, and 2.18. 6/10 lesions negative on coronal images were detected on sagittal ones. Accuracy of a combination of two planes, of coronal and of sagittal images was 92.86%, 82.14% and 75%. Six patients had probable or definite additional information on supplementary sagittal images compared with coronal ones alone (10.71%). Dynamic MRI with combined coronal and sagittal planes was more accurate for detection of pituitary microadenomas than routinely used coronal images. Simultaneous dynamic enhanced acquisition can make study time fast and costs low. We present a new dynamic MRI technique for evaluating pituitary microadenomas • This technique provides simultaneous acquisition of contrast enhanced coronal and sagittal images. • This technique makes the diagnosis more accurate and reduces the examination time. • Such MR imaging only requires one single bolus of contrast agent.

  3. AdaNET Dynamic Software Inventory (DSI) prototype component acquisition plan

    NASA Technical Reports Server (NTRS)

    Hanley, Lionel

    1989-01-01

    A component acquisition plan contains the information needed to evaluate, select, and acquire software and hardware components necessary for successful completion of the AdaNET Dynamic Software Inventory (DSI) Management System Prototype. This plan will evolve and be applicable to all phases of the DSI prototype development. Resources, budgets, schedules, and organizations related to component acquisition activities are provided. A purpose and description of a software or hardware component which is to be acquired are presented. Since this is a plan for acquisition of all components, this section is not applicable. The procurement activities and events conducted by the acquirer are described and who is responsible is identified, where the activity will be performed, and when the activities will occur for each planned procurement. Acquisition requirements describe the specific requirements and standards to be followed during component acquisition. The activities which will take place during component acquisition are described. A list of abbreviations and acronyms, and a glossary are contained.

  4. Interacting Learning Processes during Skill Acquisition: Learning to control with gradually changing system dynamics.

    PubMed

    Ludolph, Nicolas; Giese, Martin A; Ilg, Winfried

    2017-10-16

    There is increasing evidence that sensorimotor learning under real-life conditions relies on a composition of several learning processes. Nevertheless, most studies examine learning behaviour in relation to one specific learning mechanism. In this study, we examined the interaction between reward-based skill acquisition and motor adaptation to changes of object dynamics. Thirty healthy subjects, split into two groups, acquired the skill of balancing a pole on a cart in virtual reality. In one group, we gradually increased the gravity, making the task easier in the beginning and more difficult towards the end. In the second group, subjects had to acquire the skill on the maximum, most difficult gravity level. We hypothesized that the gradual increase in gravity during skill acquisition supports learning despite the necessary adjustments to changes in cart-pole dynamics. We found that the gradual group benefits from the slow increment, although overall improvement was interrupted by the changes in gravity and resulting system dynamics, which caused short-term degradations in performance and timing of actions. In conclusion, our results deliver evidence for an interaction of reward-based skill acquisition and motor adaptation processes, which indicates the importance of both processes for the development of optimized skill acquisition schedules.

  5. Independent Assessment of the Backshell Pressure Field for Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2)

    NASA Technical Reports Server (NTRS)

    Prince, Jill L.; Shoenenberger, Mark

    2017-01-01

    The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) project requested that the NASA Engineering and Safety Center (NESC) support a ballistic range test to measure backshell pressures on scale models of the Mars 2020 entry capsule. The MEDLI2 project needed the test to provide important dynamic pressure data to help select a backshell pressure port, quantify drag coefficient reconstruction uncertainties, and design the data acquisition hardware. This document contains the outcome of the NESC assessment.

  6. Variability and Variation in Second Language Acquisition Orders: A Dynamic Reevaluation

    ERIC Educational Resources Information Center

    Lowie, Wander; Verspoor, Marjolijn

    2015-01-01

    The traditional morpheme order studies in second language acquisition have tried to demonstrate the existence of a fixed order of acquisition of English morphemes, regardless of the second language learner's background. Such orders have been taken as evidence of the preprogrammed nature of language acquisition. This article argues for a…

  7. Assessment of Lymph Nodes and Prostate Status Using Early Dynamic Curves with (18)F-Choline PET/CT in Prostate Cancer.

    PubMed

    Mathieu, Cédric; Ferrer, Ludovic; Carlier, Thomas; Colombié, Mathilde; Rusu, Daniela; Kraeber-Bodéré, Françoise; Campion, Loic; Rousseau, Caroline

    2015-01-01

    Dynamic image acquisition with (18)F-Choline [fluorocholine (FCH)] PET/CT in prostate cancer is mostly used to overcome the bladder repletion, which could obstruct the loco-regional analysis. The aim of our study was to analyze early dynamic FCH acquisitions to define pelvic lymph node or prostate pathological status. Retrospective analysis was performed on 39 patients for initial staging (n = 18), or after initial treatment (n = 21). Patients underwent 10-min dynamic acquisitions centered on the pelvis, after injection of 3-4 MBq/kg of FCH. Whole-body images were acquired about 1 h after injection using a PET/CT GE Discovery LS (GE-LS) or Siemens Biograph mCT (mCT). Maximum and mean SUV according to time were measured on nodal and prostatic lesions. SUVmean was corrected for partial volume effect (PVEC) with suitable recovery coefficients. The status of each lesion was based on histological results or patient follow-up (>6 months). A Mann-Whitney test and ANOVA were used to compare mean and receiver operating characteristic (ROC) curve analysis. The median PSA was 8.46 ng/mL and the median Gleason score was 3 + 4. Ninety-two lesions (43 lymph nodes and 49 prostate lesions) were analyzed, including 63 malignant lesions. In early dynamic acquisitions, the maximum and mean SUV were significantly higher, respectively, on mCT and GE-LS, in malignant versus benign lesions (p < 0.001, p < 0.001). Mean SUV without PVEC, allowed better discrimination of benign from malignant lesions, in comparison with maximum and mean SUV (with PVEC), for both early and late acquisitions. For patients acquired on mCT, area under the ROC curve showed a trend to better sensitivity and specificity for early acquisitions, compared with late acquisitions (SUVmax AUC 0.92 versus 0.85, respectively). Assessment of lymph nodes and prostate pathological status with early dynamic imaging using PET/CT FCH allowed prostate cancer detection in situations where proof of malignancy is difficult to obtain.

  8. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    NASA Astrophysics Data System (ADS)

    Lasker, Joseph M.

    Over the last decade, optical tomography (OT) has emerged as viable biomedical imaging modality. Various imaging systems have been developed that are employed in preclinical as well as clinical studies, mostly targeting breast imaging, brain imaging, and cancer related studies. Of particular interest are so-called dynamic imaging studies where one attempts to image changes in optical properties and/or physiological parameters as they occur during a system perturbation. To successfully perform dynamic imaging studies, great effort is put towards system development that offers increasingly enhanced signal-to-noise performance at ever shorter data acquisition times, thus capturing high fidelity tomographic data within narrower time periods. Towards this goal, I have developed in this thesis a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this instrument is a digital signal processor (DSP) that collects, collates, and processes the digitized data set. Complementary protocols between the DSP and a complex programmable logic device synchronizes the sampling process and organizes data flow. Instrument control is implemented through a comprehensive graphical user interface which integrates automated calibration, data acquisition, and signal post-processing. Real-time data is generated at frame rates as high as 140 Hz. An extensive dynamic range (˜190 dB) accommodates a wide scope of measurement geometries and tissue types. Performance analysis demonstrates very low system noise (˜1 pW rms noise equivalent power), excellent signal precision (˜0.04%--0.2%) and long term system stability (˜1% over 40 min). Experiments on tissue phantoms validate spatial and temporal accuracy of the system. As a potential new application of dynamic optical imaging I present the first application of this method to use vascular hemodynamics as a means of characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system and previously implemented reconstruction scheme, I have performed initial dynamic imaging case studies on healthy volunteers and patients diagnosed with RA. These studies support our hypothesis that differences in the vascular and metabolic reactivity exist between affected and unaffected joints and can be used for diagnostic purposes.

  9. An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor

    NASA Astrophysics Data System (ADS)

    Liscombe, Michael

    3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.

  10. Rapid anatomical brain imaging using spiral acquisition and an expanded signal model.

    PubMed

    Kasper, Lars; Engel, Maria; Barmet, Christoph; Haeberlin, Maximilian; Wilm, Bertram J; Dietrich, Benjamin E; Schmid, Thomas; Gross, Simon; Brunner, David O; Stephan, Klaas E; Pruessmann, Klaas P

    2018-03-01

    We report the deployment of spiral acquisition for high-resolution structural imaging at 7T. Long spiral readouts are rendered manageable by an expanded signal model including static off-resonance and B 0 dynamics along with k-space trajectories and coil sensitivity maps. Image reconstruction is accomplished by inversion of the signal model using an extension of the iterative non-Cartesian SENSE algorithm. Spiral readouts up to 25 ms are shown to permit whole-brain 2D imaging at 0.5 mm in-plane resolution in less than a minute. A range of options is explored, including proton-density and T 2 * contrast, acceleration by parallel imaging, different readout orientations, and the extraction of phase images. Results are shown to exhibit competitive image quality along with high geometric consistency. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Modeling the effects of contrast enhancement on target acquisition performance

    NASA Astrophysics Data System (ADS)

    Du Bosq, Todd W.; Fanning, Jonathan D.

    2008-04-01

    Contrast enhancement and dynamic range compression are currently being used to improve the performance of infrared imagers by increasing the contrast between the target and the scene content, by better utilizing the available gray levels either globally or locally. This paper assesses the range-performance effects of various contrast enhancement algorithms for target identification with well contrasted vehicles. Human perception experiments were performed to determine field performance using contrast enhancement on the U.S. Army RDECOM CERDEC NVESD standard military eight target set using an un-cooled LWIR camera. The experiments compare the identification performance of observers viewing linearly scaled images and various contrast enhancement processed images. Contrast enhancement is modeled in the US Army thermal target acquisition model (NVThermIP) by changing the scene contrast temperature. The model predicts improved performance based on any improved target contrast, regardless of feature saturation or enhancement. To account for the equivalent blur associated with each contrast enhancement algorithm, an additional effective MTF was calculated and added to the model. The measured results are compared with the predicted performance based on the target task difficulty metric used in NVThermIP.

  12. Determination of the number of navigation satellites within satellite acquisition range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurenkov, Vladimir I., E-mail: kvi.48@mail.ru, E-mail: ask@ssau.ru; Kucherov, Alexander S., E-mail: kvi.48@mail.ru, E-mail: ask@ssau.ru; Gordeev, Alexey I., E-mail: exactoone@yahoo.com

    2014-12-10

    The problem of determination of the number of navigation satellites within acquisition range with regard to antenna systems configuration and stochastic land remote sensing satellite maneuvers is the subject considered in the paper. Distribution function and density function of the number of navigation satellites within acquisition range are obtained.

  13. Acquisition of Dynamic Mechanical Analyzer and Stress-Controlled Rheometer for the Mechanical Characterization of Advanced Materials

    DTIC Science & Technology

    2017-06-27

    Distribution Unlimited UU UU UU UU 27-06-2017 1-May-2016 30-Apr-2017 Final Report: Acquisition of Dynamic Mechanical Analyzer and Stress -ControlledRheometer...and Stress -Controlled Rheometer for the Mechanical Characterization of Advanced Materials ARO Grant # W911NF-16-1-0205 K. Wagener (PI) Chemistry

  14. Handbook for Dynamic Data Acquisition and Analysis - IES Recommended Practices 012.1

    NASA Technical Reports Server (NTRS)

    Himelblau, H.; Wise, J. W.; Piersol, A. G.; Grundvig, M. R.

    1994-01-01

    The original motivation for this Handbook came from personnel of The Aerospace Corporation (TAC), who are technical advisors to the Air Force Space and Missile Systems Center. Over the preceding two decades, TAC has observed a seemingly endless series of errors and anomalies in the acquisition and analysis of structural dynamic and aeroacoustic data.

  15. E-Book as Facilitator of Vocabulary Acquisition: Support of Adults, Dynamic Dictionary and Static Dictionary

    ERIC Educational Resources Information Center

    Korat, Ofra; Levin, Iris; Atishkin, Shifra; Turgeman, Merav

    2014-01-01

    We investigated the effects of three facilitators: adults' support, dynamic visual vocabulary support and static visual vocabulary support on vocabulary acquisition in the context of e-book reading. Participants were 144 Israeli Hebrew-speaking preschoolers (aged 4-6) from middle SES neighborhoods. The entire sample read the e-book without a…

  16. Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C imaging using the bSSFP sequence

    NASA Astrophysics Data System (ADS)

    Milshteyn, Eugene; von Morze, Cornelius; Reed, Galen D.; Shang, Hong; Shin, Peter J.; Larson, Peder E. Z.; Vigneron, Daniel B.

    2018-05-01

    Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, [1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T2 maps.

  17. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)

    PubMed Central

    George, Ansel; Dorval, Alan D.; Christini, David J.

    2017-01-01

    The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998

  18. Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization.

    PubMed

    Bladin, Karl; Axelsson, Emil; Broberg, Erik; Emmart, Carter; Ljung, Patric; Bock, Alexander; Ynnerman, Anders

    2017-08-29

    Results of planetary mapping are often shared openly for use in scientific research and mission planning. In its raw format, however, the data is not accessible to non-experts due to the difficulty in grasping the context and the intricate acquisition process. We present work on tailoring and integration of multiple data processing and visualization methods to interactively contextualize geospatial surface data of celestial bodies for use in science communication. As our approach handles dynamic data sources, streamed from online repositories, we are significantly shortening the time between discovery and dissemination of data and results. We describe the image acquisition pipeline, the pre-processing steps to derive a 2.5D terrain, and a chunked level-of-detail, out-of-core rendering approach to enable interactive exploration of global maps and high-resolution digital terrain models. The results are demonstrated for three different celestial bodies. The first case addresses high-resolution map data on the surface of Mars. A second case is showing dynamic processes, such as concurrent weather conditions on Earth that require temporal datasets. As a final example we use data from the New Horizons spacecraft which acquired images during a single flyby of Pluto. We visualize the acquisition process as well as the resulting surface data. Our work has been implemented in the OpenSpace software [8], which enables interactive presentations in a range of environments such as immersive dome theaters, interactive touch tables, and virtual reality headsets.

  19. A Five-Dimensional Mathematical Model for Regional and Global Changes in Cardiac Uptake and Motion

    NASA Astrophysics Data System (ADS)

    Pretorius, P. H.; King, M. A.; Gifford, H. C.

    2004-10-01

    The objective of this work was to simultaneously introduce known regional changes in contraction pattern and perfusion to the existing gated Mathematical Cardiac Torso (MCAT) phantom heart model. We derived a simple integral to calculate the fraction of the ellipsoidal volume that makes up the left ventricle (LV), taking into account the stationary apex and the moving base. After calculating the LV myocardium volume of the existing beating heart model, we employed the property of conservation of mass to manipulate the LV ejection fraction to values ranging between 13.5% and 68.9%. Multiple dynamic heart models that differ in degree of LV wall thickening, base-to-apex motion, and ejection fraction, are thus available for use with the existing MCAT methodology. To introduce more complex regional LV contraction and perfusion patterns, we used composites of dynamic heart models to create a central region with little or no motion or perfusion, surrounded by a region in which the motion and perfusion gradually reverts to normal. To illustrate this methodology, the following gated cardiac acquisitions for different clinical situations were simulated analytically: 1) reduced regional motion and perfusion; 2) same perfusion as in (1) without motion intervention; and 3) washout from the normal and diseased myocardial regions. Both motion and perfusion can change dynamically during a single rotation or multiple rotations of a simulated single-photon emission computed tomography acquisition system.

  20. ASRC Aerospace Corporation Selects Dynamically Reconfigurable Anadigm(Registered Trademark) FPAA For Advanced Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.

    2003-01-01

    Anadigm(registered trademark) today announced that ASRC Aerospace Corporation has designed Anadigm's dynamically reconfigurable Field Programmable Analog Array (FPAA) technology into an advanced data acquisition system developed under contract for NASA. ASRC Aerospace designed in the Anadigm(registered trademark) FPAA to provide complex analog signal conditioning in its intelligent, self-calibrating, and self-healing advanced data acquisition system (ADAS). The ADAS has potential applications in industrial, manufacturing, and aerospace markets. This system offers highly reliable operation while reducing the need for user interaction. Anadigm(registered trademark)'s dynamically reconfigurable FPAAs can be reconfigured in-system by the designer or on the fly by a microprocessor. A single device can thus be programmed to implement multiple analog functions and/or to adapt on-the-fly to maintain precision operation despite system degradation and aging. In the case of the ASRC advanced data acquisition system, the FPAA helps ensure that the system will continue to operating at 100% functionality despite changes in the environment, component degradation, and/or component failures.

  1. Empirical Analysis of Effects of Bank Mergers and Acquisitions on Small Business Lending in Nigeria

    NASA Astrophysics Data System (ADS)

    Ita, Asuquo Akabom

    2012-11-01

    Mergers and acquisitions are the major instruments of the recent banking reforms in Nigeria.The effects and the implications of the reforms on the lending practices of merged banks to small businesses were considered in this study. These effects were divided into static and dynamic effects (restructuring, direct and external). Data were collected by cross-sectional research design and were subsequently analyzed by the ordinary least square (OLS) method.The analyses show that bank size, financial characteristics and deposit of non-merged banks are positively related to small business lending. While for the merged banks, the reverse is the case. From the above result, it is evident that merger and acquisition have not only static effect on small business lending but also dynamic effect, therefore, given the central position of small businesses in the current government policy on industrialization in Nigeria, policy makers in Nigeria, should consider both the static and dynamic effects of merger and acquisition on small business lending in their policy thrust.

  2. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space.

    PubMed

    Collins, Liam; Belianinov, Alex; Somnath, Suhas; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen

    2016-08-12

    Kelvin probe force microscopy (KPFM) has provided deep insights into the local electronic, ionic and electrochemical functionalities in a broad range of materials and devices. In classical KPFM, which utilizes heterodyne detection and closed loop bias feedback, the cantilever response is down-sampled to a single measurement of the contact potential difference (CPD) per pixel. This level of detail, however, is insufficient for materials and devices involving bias and time dependent electrochemical events; or at solid-liquid interfaces, where non-linear or lossy dielectrics are present. Here, we demonstrate direct recovery of the bias dependence of the electrostatic force at high temporal resolution using General acquisition Mode (G-Mode) KPFM. G-Mode KPFM utilizes high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates. We show how G-Mode KPFM can be used to capture nanoscale CPD and capacitance information with a temporal resolution much faster than the cantilever bandwidth, determined by the modulation frequency of the AC voltage. In this way, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as a promising route to extend KPFM to the solid-liquid interface.

  3. Evaluation of the Geotech SMART24BH 20Vpp/5Vpp data acquisition system with active fortezza crypto card data signing and authentication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rembold, Randy Kai; Hart, Darren M.

    Sandia National Laboratories has tested and evaluated Geotech SMART24BH borehole data acquisition system with active Fortezza crypto card data signing and authentication. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of two Geotech SMART24BH digitizers with a Fortezza PCMCIAmore » crypto card actively implementing the signing of data packets. The results of this evaluation were compared to relevant specifications provided within manufacturer's documentation notes. The tests performed were chosen to demonstrate different performance aspects of the digitizer under test. The performance aspects tested include determining noise floor, least significant bit (LSB), dynamic range, cross-talk, relative channel-to-channel timing, time-tag accuracy/statistics/drift, analog bandwidth.« less

  4. The Effect of Dynamic Assessment on L2 Grammar Acquisition by Iranian EFL Learners

    ERIC Educational Resources Information Center

    Kamali, Mojtaba; Abbasi, Mehdi; Sadighi, Firooz

    2018-01-01

    This study investigated the effect of dynamic Assessment (DA) on the acquisition of L2 grammar by EFL learners. The focus was on teaching Conditional Type II, or Unreal Conditional, which is a difficult structure for language learners to acquire. To this end, two intact classes of intermediate EFL learners, each consisting of 23 male students were…

  5. Developing the Next Generation NATO Reference Mobility Model

    DTIC Science & Technology

    2016-06-27

    acquisition • design UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited.(#27992) Vehicle Dynamics Model...and numerical resolution – for use in vehicle design , acquisition and operational mobility planning 27 June 2016 An open architecture was established...the current empirical methods for simulating vehicle and suspension designs . – Industry wide shortfall with tire dynamics and soft soil behavior

  6. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    PubMed Central

    Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883

  7. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.

    PubMed

    Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  8. Applying Online Monitoring for Nuclear Power Plant Instrumentation and Control

    NASA Astrophysics Data System (ADS)

    Hashemian, H. M.

    2010-10-01

    This paper presents a practical review of the state-of-the-art means for applying OLM data acquisition in nuclear power plant instrumentation and control, qualifying or validating the OLM data, and then analyzing it for static and dynamic performance monitoring applications. Whereas data acquisition for static or steady-state OLM applications can require sample rates of anywhere from 1 to 10 seconds to 1 minutes per sample, for dynamic data acquisition, higher sampling frequencies are required (e.g., 100 to 1000 Hz) using a dedicated data acquisition system capable of providing isolation, anti-aliasing and removal of extraneous noise, and analog-to-digital (A/D) conversion. Qualifying the data for use with OLM algorithms can involve removing data `dead' spots (for static data) and calculating, examining, and trending amplitude probability density, variance, skewness, and kurtosis. For static OLM applications with redundant signals, trending and averaging qualification techniques are used, and for single or non-redundant signals physical and empirical modeling are used. Dynamic OLM analysis is performed in the frequency domain and/or time domain, and is based on the assumption that sensors' or transmitters' dynamic characteristics are linear and that the input noise signal (i.e., the process fluctuations) has proper spectral characteristics.

  9. Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    NASA Technical Reports Server (NTRS)

    Scholl, R. E. (Editor)

    1979-01-01

    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.

  10. Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit.

    PubMed

    Dehairs, M; Bosmans, H; Desmet, W; Marshall, N W

    2017-07-31

    Current automatic dose rate controls (ADRCs) of dynamic x-ray imaging systems adjust their acquisition parameters in response to changes in patient thickness in order to achieve a constant signal level in the image receptor. This work compares a 3 parameter (3P) ADRC control to a more flexible 5-parameter (5P) method to meet this goal. A phantom composed of 15 composite poly(methyl) methacrylate (PMMA)/aluminium (Al) plates was imaged on a Siemens Artis Q dynamic system using standard 3P and 5P ADRC techniques. Phantom thickness covered a water equivalent thickness (WET) range of 2.5 cm to 37.5 cm. Acquisition parameter settings (tube potential, tube current, pulse length, copper filtration and focus size) and phantom entrance air kerma rate (EAKR) were recorded as the thickness changed. Signal difference to noise ratio (SDNR) was measured using a 0.3 mm iron insert centred in the PMMA stack, positioned at the system isocentre. SDNR was then multiplied by modulation transfer function (MTF) based correction factors for focal spot penumbral blurring and motion blurring, to give a spatial frequency dependent parameter, SDNR(u). These MTF correction factors were evaluated for an object motion of 25 mm s -1 and at a spatial frequency of 1.4 mm -1 in the object plane, typical for cardiac imaging. The figure of merit (FOM) was calculated as SDNR(u)²/EAKR for the two ADRC regimes. Using 5P versus 3P technique showed clear improvements over all thicknesses. Averaged over clinically relevant adult WET values (20 cm-37.5 cm), EAKR was reduced by 13% and 27% for fluoroscopy and acquisition modes, respectively, while the SDNR(u) based FOM increased by 16% and 34% for fluoroscopy and acquisition. In conclusion, the generalized FOM, taking into account the influence of focus size and object motion, showed benefit in terms of image quality and patient dose for the 5-parameter control over 3-parameter method for the ADRC programming of dynamic x-ray imaging systems.

  11. Evaluation of automatic dose rate control for flat panel imaging using a spatial frequency domain figure of merit

    NASA Astrophysics Data System (ADS)

    Dehairs, M.; Bosmans, H.; Desmet, W.; Marshall, N. W.

    2017-08-01

    Current automatic dose rate controls (ADRCs) of dynamic x-ray imaging systems adjust their acquisition parameters in response to changes in patient thickness in order to achieve a constant signal level in the image receptor. This work compares a 3 parameter (3P) ADRC control to a more flexible 5-parameter (5P) method to meet this goal. A phantom composed of 15 composite poly(methyl) methacrylate (PMMA)/aluminium (Al) plates was imaged on a Siemens Artis Q dynamic system using standard 3P and 5P ADRC techniques. Phantom thickness covered a water equivalent thickness (WET) range of 2.5 cm to 37.5 cm. Acquisition parameter settings (tube potential, tube current, pulse length, copper filtration and focus size) and phantom entrance air kerma rate (EAKR) were recorded as the thickness changed. Signal difference to noise ratio (SDNR) was measured using a 0.3 mm iron insert centred in the PMMA stack, positioned at the system isocentre. SDNR was then multiplied by modulation transfer function (MTF) based correction factors for focal spot penumbral blurring and motion blurring, to give a spatial frequency dependent parameter, SDNR(u). These MTF correction factors were evaluated for an object motion of 25 mm s-1 and at a spatial frequency of 1.4 mm-1 in the object plane, typical for cardiac imaging. The figure of merit (FOM) was calculated as SDNR(u)²/EAKR for the two ADRC regimes. Using 5P versus 3P technique showed clear improvements over all thicknesses. Averaged over clinically relevant adult WET values (20 cm-37.5 cm), EAKR was reduced by 13% and 27% for fluoroscopy and acquisition modes, respectively, while the SDNR(u) based FOM increased by 16% and 34% for fluoroscopy and acquisition. In conclusion, the generalized FOM, taking into account the influence of focus size and object motion, showed benefit in terms of image quality and patient dose for the 5-parameter control over 3-parameter method for the ADRC programming of dynamic x-ray imaging systems.

  12. Dynamic whole body PET parametric imaging: II. Task-oriented statistical estimation

    PubMed Central

    Karakatsanis, Nicolas A.; Lodge, Martin A.; Zhou, Y.; Wahl, Richard L.; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15–20cm) of a single bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical FDG patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994

  13. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection.

  14. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meets the “fast” dynamic requirement of a precision sound level meter indicating meter system for the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sound data acquisition system. 205.54... data acquisition system. (a) Systems employing tape recorders and graphic level recorders may be...

  15. Flexible, rapid and automatic neocortical word form acquisition mechanism in children as revealed by neuromagnetic brain response dynamics.

    PubMed

    Partanen, Eino; Leminen, Alina; de Paoli, Stine; Bundgaard, Anette; Kingo, Osman Skjold; Krøjgaard, Peter; Shtyrov, Yury

    2017-07-15

    Children learn new words and word forms with ease, often acquiring a new word after very few repetitions. Recent neurophysiological research on word form acquisition in adults indicates that novel words can be acquired within minutes of repetitive exposure to them, regardless of the individual's focused attention on the speech input. Although it is well-known that children surpass adults in language acquisition, the developmental aspects of such rapid and automatic neural acquisition mechanisms remain unexplored. To address this open question, we used magnetoencephalography (MEG) to scrutinise brain dynamics elicited by spoken words and word-like sounds in healthy monolingual (Danish) children throughout a 20-min repetitive passive exposure session. We found rapid neural dynamics manifested as an enhancement of early (~100ms) brain activity over the short exposure session, with distinct spatiotemporal patterns for different novel sounds. For novel Danish word forms, signs of such enhancement were seen in the left temporal regions only, suggesting reliance on pre-existing language circuits for acquisition of novel word forms with native phonology. In contrast, exposure both to novel word forms with non-native phonology and to novel non-speech sounds led to activity enhancement in both left and right hemispheres, suggesting that more wide-spread cortical networks contribute to the build-up of memory traces for non-native and non-speech sounds. Similar studies in adults have previously reported more sluggish (~15-25min, as opposed to 4min in the present study) or non-existent neural dynamics for non-native sound acquisition, which might be indicative of a higher degree of plasticity in the children's brain. Overall, the results indicate a rapid and highly plastic mechanism for a dynamic build-up of memory traces for novel acoustic information in the children's brain that operates automatically and recruits bilateral temporal cortical circuits. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Unattended real-time re-establishment of visibility in high dynamic range video and stills

    NASA Astrophysics Data System (ADS)

    Abidi, B.

    2014-05-01

    We describe a portable unattended persistent surveillance system that corrects for harsh illumination conditions, where bright sun light creates mixed contrast effects, i.e., heavy shadows and washouts. These effects result in high dynamic range scenes, where illuminance can vary from few luxes to a 6 figure value. When using regular monitors and cameras, such wide span of illuminations can only be visualized if the actual range of values is compressed, leading to the creation of saturated and/or dark noisy areas and a loss of information in these areas. Images containing extreme mixed contrast cannot be fully enhanced from a single exposure, simply because all information is not present in the original data. The active intervention in the acquisition process is required. A software package, capable of integrating multiple types of COTS and custom cameras, ranging from Unmanned Aerial Systems (UAS) data links to digital single-lens reflex cameras (DSLR), is described. Hardware and software are integrated via a novel smart data acquisition algorithm, which communicates to the camera the parameters that would maximize information content in the final processed scene. A fusion mechanism is then applied to the smartly acquired data, resulting in an enhanced scene where information in both dark and bright areas is revealed. Multi-threading and parallel processing are exploited to produce automatic real time full motion corrected video. A novel enhancement algorithm was also devised to process data from legacy and non-controllable cameras. The software accepts and processes pre-recorded sequences and stills, enhances visible, night vision, and Infrared data, and successfully applies to night time and dark scenes. Various user options are available, integrating custom functionalities of the application into intuitive and easy to use graphical interfaces. The ensuing increase in visibility in surveillance video and intelligence imagery will expand the performance and timely decision making of the human analyst, as well as that of unmanned systems performing automatic data exploitation, such as target detection and identification.

  17. Evaluation of large format electron bombarded virtual phase CCDs as ultraviolet imaging detectors

    NASA Technical Reports Server (NTRS)

    Opal, Chet B.; Carruthers, George R.

    1989-01-01

    In conjunction with an external UV-sensitive cathode, an electron-bombarded CCD may be used as a high quantum efficiency/wide dynamic range photon-counting UV detector. Results are presented for the case of a 1024 x 1024, 18-micron square pixel virtual phase CCD used with an electromagnetically focused f/2 Schmidt camera, which yields excellent simgle-photoevent discrimination and counting efficiency. Attention is given to the vacuum-chamber arrangement used to conduct system tests and the CCD electronics and data-acquisition systems employed.

  18. Data Collecting using the MetalMapper in Dynamic Data Acquisition and Cued Modes TEMTADS Surveys at Redstone Arsenal, Huntsville, Alabama

    DTIC Science & Technology

    2017-06-20

    inch mortars, large caliber projectiles (75-millimeter [mm] to 155-mm), and numerous types of bombs . With the exception of some areas north of RSA-312...scarring/craters are visible in RSA-073 in the Light Detection and Ranging data set. The MEC reportedly used in RSA-073 includes: AN-M76 bombs , PT1...incendiary mixture similar to Goop) filled; M47-type bombs , isobutyl methacrylate incendiary mix (IM-AE) and napalm filled; M69 bombs , IM-AE filled; 155

  19. Criteria for Side-Force Control in Air-to-Ground Target Acquisition and Tracking

    NASA Technical Reports Server (NTRS)

    Sammonds, Robert I.; McNeill, Walter E.; Bunnell, John W.

    1982-01-01

    A moving-base simulator experiment conducted at Ames Research Center demonstrated that a wings-level-turn control mode improved flying qualities for air-to-ground weapons delivery compared with those of a conventional aircraft. Evaluations of criteria for dynamic response for this system have shown that pilot ratings correlate well with equivalent time constant of the initial response and with system bandwidth. Ranges of this time constant, as well as digital-system transport delays and lateral-acceleration control authorities that encompassed level 1 through level 3 handling qualities, were determined.

  20. Quantification of Carbohydrates and Related Materials Using Sodium Ion Adducts Produced by Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2016-11-01

    The utility of sodium ion adducts produced by matrix-assisted laser desorption ionization for the quantification of analytes with multiple oxygen atoms was evaluated. Uses of homogeneous solid samples and temperature control allowed the acquisition of reproducible spectra. The method resulted in a direct proportionality between the ion abundance ratio I([A + Na]+)/I([M + Na]+) and the analyte concentration, which could be used as a calibration curve. This was demonstrated for carbohydrates, glycans, and polyether diols with dynamic range exceeding three orders of magnitude.

  1. Phase incremented echo train acquisition applied to magnetic resonance pore imaging

    NASA Astrophysics Data System (ADS)

    Hertel, S. A.; Galvosas, P.

    2017-02-01

    Efficient phase cycling schemes remain a challenge for NMR techniques if the pulse sequences involve a large number of rf-pulses. Especially complex is the Carr Purcell Meiboom Gill (CPMG) pulse sequence where the number of rf-pulses can range from hundreds to several thousands. Our recent implementation of Magnetic Resonance Pore Imaging (MRPI) is based on a CPMG rf-pulse sequence in order to refocus the effect of internal gradients inherent in porous media. While the spin dynamics for spin- 1 / 2 systems in CPMG like experiments are well understood it is still not straight forward to separate the desired pathway from the spectrum of unwanted coherence pathways. In this contribution we apply Phase Incremented Echo Train Acquisition (PIETA) to MRPI. We show how PIETA offers a convenient way to implement a working phase cycling scheme and how it allows one to gain deeper insights into the amplitudes of undesired pathways.

  2. Free-decay time-domain modal identification for large space structures

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Vanhorn, David A.; Doiron, Harold H.

    1992-01-01

    Concept definition studies for the Modal Identification Experiment (MIE), a proposed space flight experiment for the Space Station Freedom (SSF), have demonstrated advantages and compatibility of free-decay time-domain modal identification techniques with the on-orbit operational constraints of large space structures. Since practical experience with modal identification using actual free-decay responses of large space structures is very limited, several numerical and test data reduction studies were conducted. Major issues and solutions were addressed, including closely-spaced modes, wide frequency range of interest, data acquisition errors, sampling delay, excitation limitations, nonlinearities, and unknown disturbances during free-decay data acquisition. The data processing strategies developed in these studies were applied to numerical simulations of the MIE, test data from a deployable truss, and launch vehicle flight data. Results of these studies indicate free-decay time-domain modal identification methods can provide accurate modal parameters necessary to characterize the structural dynamics of large space structures.

  3. Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C imaging using the bSSFP sequence.

    PubMed

    Milshteyn, Eugene; von Morze, Cornelius; Reed, Galen D; Shang, Hong; Shin, Peter J; Larson, Peder E Z; Vigneron, Daniel B

    2018-05-01

    Acceleration of dynamic 2D (T 2 Mapping) and 3D hyperpolarized 13 C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm 2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2- 13 C]pyruvate, [1- 13 C]lactate, [ 13 C,  15 N 2 ]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T 2 maps. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effects of fundamentals acquisition and strategy switch on stock price dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Songtao; He, Jianmin; Li, Shouwei

    2018-02-01

    An agent-based artificial stock market is developed to simulate trading behavior of investors. In the market, acquisition and employment of information about fundamentals and strategy switch are investigated to explain stock price dynamics. Investors could obtain the information from both market and neighbors resided on their social networks. Depending on information status and performances of different strategies, an informed investor may switch to the strategy of fundamentalist. This in turn affects the information acquisition process, since fundamentalists are more inclined to search and spread the information than chartists. Further investigation into price dynamics generated from three typical networks, i.e. regular lattice, small-world network and random graph, are conducted after general relation between network structures and price dynamics is revealed. In each network, integrated effects of different combinations of information efficiency and switch intensity are investigated. Results have shown that, along with increasing switch intensity, market and social information efficiency play different roles in the formation of price distortion, standard deviation and kurtosis of returns.

  5. DORCA II: Dynamic operations requirements and cost analysis program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Program is written to handle logistics of acquisition and transport of personnel, equipment, and services and to determine costs, transport schedules, acquisition schedules, and fuel requirements of cargo transport.

  6. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis

    NASA Astrophysics Data System (ADS)

    Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.

    2017-09-01

    High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.

  7. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery

    NASA Astrophysics Data System (ADS)

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L.

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques.

  8. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Tatsuya J.; Nofiele, Joris; Yuan, Qing

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed usingmore » a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3–0.4 mm, which was smaller than the reconstructed pixel resolution of 0.67 mm. In the patient study, the dynamic 2D MRI enabled the monitoring of cycle-to-cycle respiratory variability present in the tumor position. It was seen that the range of centroid motion as well as the area covered due to target motion during each individual respiratory cycle was underestimated compared to the entire motion range observed over multiple breathing cycles. Conclusions: The authors’ initial results demonstrate that sparse-sampling- and reconstruction-based dynamic MRI can be used to achieve adequate image acquisition speeds without significant information loss for the task of radiotherapy guidance. Such monitoring can yield spatial and temporal information superior to conventional offline and online motion capture methods used in thoracic and abdominal radiotherapy.« less

  9. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy.

    PubMed

    Arai, Tatsuya J; Nofiele, Joris; Madhuranthakam, Ananth J; Yuan, Qing; Pedrosa, Ivan; Chopra, Rajiv; Sawant, Amit

    2016-06-01

    Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of "true" information due to greater reliance on a priori information. Lung tumor motion trajectories in the superior-inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3-0.4 mm, which was smaller than the reconstructed pixel resolution of 0.67 mm. In the patient study, the dynamic 2D MRI enabled the monitoring of cycle-to-cycle respiratory variability present in the tumor position. It was seen that the range of centroid motion as well as the area covered due to target motion during each individual respiratory cycle was underestimated compared to the entire motion range observed over multiple breathing cycles. The authors' initial results demonstrate that sparse-sampling- and reconstruction-based dynamic MRI can be used to achieve adequate image acquisition speeds without significant information loss for the task of radiotherapy guidance. Such monitoring can yield spatial and temporal information superior to conventional offline and online motion capture methods used in thoracic and abdominal radiotherapy.

  10. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    PubMed Central

    Arai, Tatsuya J.; Nofiele, Joris; Madhuranthakam, Ananth J.; Yuan, Qing; Pedrosa, Ivan; Chopra, Rajiv; Sawant, Amit

    2016-01-01

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3–0.4 mm, which was smaller than the reconstructed pixel resolution of 0.67 mm. In the patient study, the dynamic 2D MRI enabled the monitoring of cycle-to-cycle respiratory variability present in the tumor position. It was seen that the range of centroid motion as well as the area covered due to target motion during each individual respiratory cycle was underestimated compared to the entire motion range observed over multiple breathing cycles. Conclusions: The authors’ initial results demonstrate that sparse-sampling- and reconstruction-based dynamic MRI can be used to achieve adequate image acquisition speeds without significant information loss for the task of radiotherapy guidance. Such monitoring can yield spatial and temporal information superior to conventional offline and online motion capture methods used in thoracic and abdominal radiotherapy. PMID:27277029

  11. Optimization of sampling pattern and the design of Fourier ptychographic illuminator.

    PubMed

    Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan

    2015-03-09

    Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.

  12. A multi-MHz single-shot data acquisition scheme with high dynamic range: pump-probe X-ray experiments at synchrotrons.

    PubMed

    Britz, Alexander; Assefa, Tadesse A; Galler, Andreas; Gawelda, Wojciech; Diez, Michael; Zalden, Peter; Khakhulin, Dmitry; Fernandes, Bruno; Gessler, Patrick; Sotoudi Namin, Hamed; Beckmann, Andreas; Harder, Manuel; Yavaş, Hasan; Bressler, Christian

    2016-11-01

    The technical implementation of a multi-MHz data acquisition scheme for laser-X-ray pump-probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high-repetition rates of X-ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60-bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X-ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12-bit resolution. These traces are then processed to deliver an integrated value for each recorded single X-ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single-shot values are averaged over ∼10 7  pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X-ray probe energy. The sensitivity reaches down to the shot-noise limit, and signal-to-noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse -1 and is only technically limited by the utilized APD.

  13. Data processing has major impact on the outcome of quantitative label-free LC-MS analysis.

    PubMed

    Chawade, Aakash; Sandin, Marianne; Teleman, Johan; Malmström, Johan; Levander, Fredrik

    2015-02-06

    High-throughput multiplexed protein quantification using mass spectrometry is steadily increasing in popularity, with the two major techniques being data-dependent acquisition (DDA) and targeted acquisition using selected reaction monitoring (SRM). However, both techniques involve extensive data processing, which can be performed by a multitude of different software solutions. Analysis of quantitative LC-MS/MS data is mainly performed in three major steps: processing of raw data, normalization, and statistical analysis. To evaluate the impact of data processing steps, we developed two new benchmark data sets, one each for DDA and SRM, with samples consisting of a long-range dilution series of synthetic peptides spiked in a total cell protein digest. The generated data were processed by eight different software workflows and three postprocessing steps. The results show that the choice of the raw data processing software and the postprocessing steps play an important role in the final outcome. Also, the linear dynamic range of the DDA data could be extended by an order of magnitude through feature alignment and a charge state merging algorithm proposed here. Furthermore, the benchmark data sets are made publicly available for further benchmarking and software developments.

  14. A unified acquisition system for acoustic data

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Holmes, H. K.

    1977-01-01

    A multichannel, acoustic AM carrier system was developed for a wide variety of applications, particularly for aircraft noise and sonic boom measurements. Each data acquisition channel consists of a condenser microphone, an acoustic signal converter, and a Zero Drive amplifier, along with peripheral supporting equipment. A control network insures continuous optimal tuning of the converter and permits remote calibration of the condenser microphone. With a 12.70-mm (1/2-in.) condenser microphone, the converter/Zero Drive amplifier combination has a frequency response from 0 Hz to 20 kHz (-3 db), a dynamic range exceeding 70 db, and a minimum noise floor of 50 db ref. 20 micro Pa) in the band 22.4 Hz to 22.4 kHz. The system requires no external impedance matching networks and is insensitive to cable length, at least up to 900 m (3,000 ft). System gain varies only + or - 1 db over the temperature range 4 to 54 C (40 to 130 F). Adapters are available to accommodate 23.77-mm (1-in.) and 6.35-mm (1/4-in.) microphones and to provide 30-db attenuation. A field test to obtain the acoustical time history of a helicopter flyover proved successful.

  15. Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel

    2017-03-01

    Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.

  16. Combination of High Rate, Real-Time GNSS and Accelerometer Observations and Rapid Seismic Event Notification for Earthquake Early Warning and Volcano Monitoring with a Focus on the Pacific Rim.

    NASA Astrophysics Data System (ADS)

    Zimakov, L. G.; Passmore, P.; Raczka, J.; Alvarez, M.; Jackson, M.

    2014-12-01

    Scientific GNSS networks are moving towards a model of real-time data acquisition, epoch-by-epoch storage integrity, and on-board real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 sps) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies, volcano monitoring, and critical infrastructure monitoring applications. Our presentation will focus on the characteristics of GNSS, seismic, and strong motion sensors in high dynamic environments, including historic earthquakes in Southern California and the Pacific Rim, replicated on a shake table, over a range of displacements and frequencies. We will explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios. In addition we will discuss implementation of a Rapid Seismic Event Notification System that provides quick delivery of digital data from seismic stations to the acquisition and processing center and a full data integrity model for real-time earthquake notification that provides warning prior to significant ground shaking.

  17. Performance of a Ka-band transponder breadboard for deep-space applications

    NASA Technical Reports Server (NTRS)

    Mysoor, N. R.; Lane, J. P.; Kayalar, S.; Kermode, A. W.

    1995-01-01

    This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results.

  18. A generic individual-based model to simulate morphogenesis, C-N acquisition and population dynamics in contrasting forage legumes.

    PubMed

    Louarn, Gaëtan; Faverjon, Lucas

    2018-04-18

    Individual-based models (IBMs) are promising tools to disentangle plant interactions in multi-species grasslands and foster innovative species mixtures. This study describes an IBM dealing with the morphogenesis, growth and C-N acquisition of forage legumes that integrates plastic responses from functional-structural plant models. A generic model was developed to account for herbaceous legume species with contrasting above- and below-ground morphogenetic syndromes and to integrate the responses of plants to light, water and N. Through coupling with a radiative transfer model and a three-dimensional virtual soil, the model allows dynamic resolution of competition for multiple resources at individual plant level within a plant community. The behaviour of the model was assessed on a range of monospecific stands grown along gradients of light, water and N availability. The model proved able to capture the diversity of morphologies encountered among the forage legumes. The main density-dependent features known about even-age plant populations were correctly anticipated. The model predicted (1) the 'reciprocal yield' law relating average plant mass to density, (2) a self-thinning pattern close to that measured for herbaceous species and (3) consistent changes in the size structure of plant populations with time and pedo-climatic conditions. In addition, plastic changes in the partitioning of dry matter, the N acquisition mode and in the architecture of shoots and roots emerged from the integration of plant responses to their local environment. This resulted in taller plants and thinner roots when competition was dominated by light, and shorter plants with relatively more developed root systems when competition was dominated by soil resources. A population dynamic model considering growth and morphogenesis responses to multiple resources heterogeneously distributed in the environment was presented. It should allow scaling plant-plant interactions from individual to community levels without the inconvenience of average plant models.

  19. Data Acquisition Backbone Core DABC release v1.0

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Essel, H. G.; Kurz, N.; Linev, S.

    2010-04-01

    The Data Acquisition Backbone Core (DABC) is a general purpose software framework designed for the implementation of a wide-range of data acquisition systems - from various small detector test beds to high performance systems. DABC consists of a compact data-flow kernel and a number of plug-ins for various functional components like data inputs, device drivers, user functional modules and applications. DABC provides configurable components for implementing event building over fast networks like InfiniBand or Gigabit Ethernet. A generic Java GUI provides the dynamic control and visualization of control parameters and commands, provided by DIM servers. A first set of application plug-ins has been implemented to use DABC as event builder for the front-end components of the GSI standard DAQ system MBS (Multi Branch System). Another application covers the connection to DAQ readout chains from detector front-end boards (N-XYTER) linked to read-out controller boards (ROC) over UDP into DABC for event building, archiving and data serving. This was applied for data taking in the September 2008 test beamtime for the CBM experiment at GSI. DABC version 1.0 is released and available from the website.

  20. A simple encoding method for Sigma-Delta ADC based biopotential acquisition systems.

    PubMed

    Guerrero, Federico N; Spinelli, Enrique M

    2017-10-01

    Sigma Delta analogue-to-digital converters allow acquiring the full dynamic range of biomedical signals at the electrodes, resulting in less complex hardware and increased measurement robustness. However, the increased data size per sample (typically 24 bits) demands the transmission of extremely large volumes of data across the isolation barrier, thus increasing power consumption on the patient side. This problem is accentuated when a large number of channels is used as in current 128-256 electrodes biopotential acquisition systems, that usually opt for an optic fibre link to the computer. An analogous problem occurs for simpler low-power acquisition platforms that transmit data through a wireless link to a computing platform. In this paper, a low-complexity encoding method is presented to decrease sample data size without losses, while preserving the full DC-coupled signal. The method achieved a 2.3 average compression ratio evaluated over an ECG and EMG signal bank acquired with equipment based on Sigma-Delta converters. It demands a very low processing load: a C language implementation is presented that resulted in an 110 clock cycles average execution on an 8-bit microcontroller.

  1. The LUX experiment - trigger and data acquisition systems

    NASA Astrophysics Data System (ADS)

    Druszkiewicz, Eryk

    2013-04-01

    The Large Underground Xenon (LUX) detector is a two-phase xenon time projection chamber designed to detect interactions of dark matter particles with the xenon nuclei. Signals from the detector PMTs are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. During calibrations, both systems must be able to handle high rates and have large dynamic ranges; during dark matter searches, maximum sensitivity requires low thresholds. The trigger system uses eight-channel 64-MHz digitizers (DDC-8) connected to a Trigger Builder (TB). The FPGA cores on the digitizers perform real-time pulse identification (discriminating between S1 and S2-like signals) and event localization. The TB uses hit patterns, hit maps, and maximum response detection to make trigger decisions, which are reached within few microseconds after the occurrence of an event of interest. The DAQ system is comprised of commercial digitizers with customized firmware. Its real-time baseline suppression allows for a maximum event acquisition rate in excess of 1.5 kHz, which results in virtually no deadtime. The performance of the trigger and DAQ systems during the commissioning runs of LUX will be discussed.

  2. ADAPTIVE REAL-TIME CARDIAC MRI USING PARADISE: VALIDATION BY THE PHYSIOLOGICALLY IMPROVED NCAT PHANTOM

    PubMed Central

    Sharif, Behzad; Bresler, Yoram

    2013-01-01

    Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475

  3. Japanese and Chinese Learners' Acquisition of the Narrow-Range Rules for the Dative Alternation in English.

    ERIC Educational Resources Information Center

    Inagaki, Shunji

    1997-01-01

    Investigated the acquisition of narrow-range rules governing the dative alternation by adult learners of English as a Second Language, native English speakers, and Japanese and Chinese speakers. Suggests that the Japanese and Chinese learners' acquisition of the dative alternation in English is governed by the properties of an equivalent structure…

  4. A high dynamic range method for the direct readout of a dynamic phase change in homodyne interferometers

    NASA Astrophysics Data System (ADS)

    Marçal, L. A. P.; Kitano, C.; Higuti, R. T.; Nader, G.; Silva, E. C. N.

    2012-12-01

    Piezoelectric flextensional actuators (PFAs) are an efficient alternative to systems that demand nano-positioning of devices, such as in nanotechnology. Optical techniques constitute an excellent choice for contactless measurement of nano-displacements. In particular, optical interferometry constitutes an adequate choice for characterizing PFAs. There are several types of interferometers, as well as optical phase demodulation methods, used in practice. One interesting class of demodulation methods uses the spectrum of the photo-detected signal and its intrinsic properties when there is a harmonically varying time-domain modulating signal. In this work, a low cost homodyne Michelson interferometer, associated with simple electronic circuits for signal conditioning and acquisition, is used. A novel dynamic phase demodulation method, named Jm&Jm + 2, is proposed, which uses only the magnitude spectrum of the photo-detected signal, without the need to know its phase spectrum. The method is passive, direct, self-consistent, without problems of phase ambiguity and immune to fading, and presents a dynamic range from 0.45 to 100 rad displacements (between 22.6 nm and 5 µm, for λ = 632.8 nm). When applied to the measurement of half-wave voltage in a proof-of-concept Pockels cell, it presents errors smaller than 0.9% when compared to theory. For the estimation of PFA displacement, it allows the measurement of linearity and frequency response curves, with excellent results.

  5. Temporal Dynamics of Late Second Language Acquisition: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Steinhauer, Karsten; White, Erin J.; Drury, John E.

    2009-01-01

    The ways in which age of acquisition (AoA) may affect (morpho)syntax in second language acquisition (SLA) are discussed. We suggest that event-related brain potentials (ERPs) provide an appropriate online measure to test some such effects. ERP findings of the past decade are reviewed with a focus on recent and ongoing research. It is concluded…

  6. Establishing a learning foundation in a dynamically changing world: Insights from artificial language work

    NASA Astrophysics Data System (ADS)

    Gonzales, Kalim

    It is argued that infants build a foundation for learning about the world through their incidental acquisition of the spatial and temporal regularities surrounding them. A challenge is that learning occurs across multiple contexts whose statistics can greatly differ. Two artificial language studies with 12-month-olds demonstrate that infants come prepared to parse statistics across contexts using the temporal and perceptual features that distinguish one context from another. These results suggest that infants can organize their statistical input with a wider range of features that typically considered. Possible attention, decision making, and memory mechanisms are discussed.

  7. Adaptive electric potential sensors for smart signal acquisition and processing

    NASA Astrophysics Data System (ADS)

    Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.

    2007-07-01

    Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.

  8. Studying dynamic processes in liquids by TEM/STEM/DTEM

    NASA Astrophysics Data System (ADS)

    Abellan, Patricia; Evans, James; Woehl, Taylor; Jungjohann, Katherine; Parent, Lucas; Arslan, Ilke; Ristenpart, William; Browning, Nigel; Mater. Sci. Group Team; Microsc. Group Team; Catal. Sci. Group Collaboration; Ristenpart Res. Group Collaboration

    2013-03-01

    In order to study dynamic phenomena such as corrosion or catalysis, extreme environmental conditions must be reproduced around the specimen - these include high-temperatures, high-pressures, specific oxidizing/reducing atmospheres or a liquid environment. The use of environmental stages specifically designed to fit in any transmission electron microscope (TEM) allows us to apply the distinct capabilities of each instrument to study dynamic processes. Localized gas/fluid conditions are created around the sample and separated from the high vacuum inside the microscope using hermetically sealed windowed-cells. Advanced capabilities of these techniques include spatial resolutions of ~1 Angstrom or better in aberration corrected instruments or temporal resolutions in the microsecond-nanosecond range in a dynamic TEM (DTEM). Here, unique qualities of the DTEM that benefit the in-situ experiments with gas/fluid environmental cells will be discussed. We also present our results with a liquid stage allowing atomic resolution imaging of nanomaterials in a colloidal suspension, core EEL spectra acquisition, continuous flow, controlled growth of nanocrystals and systematic calibration of the effect of the electron dose on silver nuclei formation.

  9. Accuracy Analysis for Automatic Orientation of a Tumbling Oblique Viewing Sensor System

    NASA Astrophysics Data System (ADS)

    Stebner, K.; Wieden, A.

    2014-03-01

    Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera's orientation greatly influence the projection of oblique images. In this publication these effects - originating from the kinematic chain of a dynamic camera system - are analysed and validated. A member of the Modular Airborne Camera System family - MACS-TumbleCam - consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.

  10. Knowledge acquisition and representation using fuzzy evidential reasoning and dynamic adaptive fuzzy Petri nets.

    PubMed

    Liu, Hu-Chen; Liu, Long; Lin, Qing-Lian; Liu, Nan

    2013-06-01

    The two most important issues of expert systems are the acquisition of domain experts' professional knowledge and the representation and reasoning of the knowledge rules that have been identified. First, during expert knowledge acquisition processes, the domain expert panel often demonstrates different experience and knowledge from one another and produces different types of knowledge information such as complete and incomplete, precise and imprecise, and known and unknown because of its cross-functional and multidisciplinary nature. Second, as a promising tool for knowledge representation and reasoning, fuzzy Petri nets (FPNs) still suffer a couple of deficiencies. The parameters in current FPN models could not accurately represent the increasingly complex knowledge-based systems, and the rules in most existing knowledge inference frameworks could not be dynamically adjustable according to propositions' variation as human cognition and thinking. In this paper, we present a knowledge acquisition and representation approach using the fuzzy evidential reasoning approach and dynamic adaptive FPNs to solve the problems mentioned above. As is illustrated by the numerical example, the proposed approach can well capture experts' diversity experience, enhance the knowledge representation power, and reason the rule-based knowledge more intelligently.

  11. Accelerated dynamic EPR imaging using fast acquisition and compressive recovery.

    PubMed

    Ahmad, Rizwan; Samouilov, Alexandre; Zweier, Jay L

    2016-12-01

    Electron paramagnetic resonance (EPR) allows quantitative imaging of tissue redox status, which provides important information about ischemic syndromes, cancer and other pathologies. For continuous wave EPR imaging, however, poor signal-to-noise ratio and low acquisition efficiency limit its ability to image dynamic processes in vivo including tissue redox, where conditions can change rapidly. Here, we present a data acquisition and processing framework that couples fast acquisition with compressive sensing-inspired image recovery to enable EPR-based redox imaging with high spatial and temporal resolutions. The fast acquisition (FA) allows collecting more, albeit noisier, projections in a given scan time. The composite regularization based processing method, called spatio-temporal adaptive recovery (STAR), not only exploits sparsity in multiple representations of the spatio-temporal image but also adaptively adjusts the regularization strength for each representation based on its inherent level of the sparsity. As a result, STAR adjusts to the disparity in the level of sparsity across multiple representations, without introducing any tuning parameter. Our simulation and phantom imaging studies indicate that a combination of fast acquisition and STAR (FASTAR) enables high-fidelity recovery of volumetric image series, with each volumetric image employing less than 10 s of scan. In addition to image fidelity, the time constants derived from FASTAR also match closely to the ground truth even when a small number of projections are used for recovery. This development will enhance the capability of EPR to study fast dynamic processes that cannot be investigated using existing EPR imaging techniques. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mercury in Retrograde: Shaking Up the Study of Orbital Motion with Kinesthetic Learning

    NASA Astrophysics Data System (ADS)

    DeStefano, Paul; Allen, Thomas; Widenhorn, Ralf

    2018-06-01

    We are investigating the use of kinesthetic activities to teach the orbital motion of planets at the introductory astronomy level. In addition to breaking the monotony of traditional classroom settings, kinesthetic activities can allow novel connections to form between the student and the material, as established in a recent study. In our example active learning activity, two students walk along predetermined paths in the classroom, simulating the dynamics of any two real or fictional bodies in orbital motion about a common object. Each student carries a short-range, local positioning device that records its 2D position, continuously. The position data from both devices are collected on a single computer. After acquisition, the data can be used to highlight interesting features of orbital dynamics. For example, we demonstrate a particular transformation of the data that shows apparent retrograde motion arising directly from the relative motion of two bodies orbiting a common object. This activity provides students with the opportunity to observe interesting orbital dynamics on a human scale.

  13. A data base and analysis program for shuttle main engine dynamic pressure measurements

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base management system is described for measurements obtained from space shuttle main engine (SSME) hot firing tests. The data were provided in terms of engine power level and rms pressure time histories, and power spectra of the dynamic pressure measurements at selected times during each test. Test measurements and engine locations are defined along with a discussion of data acquisition and reduction procedures. A description of the data base management analysis system is provided and subroutines developed for obtaining selected measurement means, variances, ranges and other statistics of interest are discussed. A summary of pressure spectra obtained at SSME rated power level is provided for reference. Application of the singular value decomposition technique to spectrum interpolation is discussed and isoplots of interpolated spectra are presented to indicate measurement trends with engine power level. Program listings of the data base management and spectrum interpolation software are given. Appendices are included to document all data base measurements.

  14. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

    2010-01-01

    Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

  15. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  16. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  17. A High Performance Delta-Sigma Modulator for Neurosensing

    PubMed Central

    Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md. Kafiul; Yang, Zhi

    2015-01-01

    Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-μm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR) and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 μW, which corresponds to a figure-of-merit (FOM) of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors. PMID:26262623

  18. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition.

    PubMed

    Gong, Zhaoyuan; Walls, Jamie D

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T 2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T 2 -relaxing species are more suppressed relative to the sharp signals from slow T 2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Enhancing the detection of edges and non-differentiable points in an NMR spectrum using delayed-acquisition

    NASA Astrophysics Data System (ADS)

    Gong, Zhaoyuan; Walls, Jamie D.

    2018-02-01

    Delayed-acquisition, which is a common technique for improving spectral resolution in Fourier transform based spectroscopies, typically relies upon differences in T2 relaxation rates that are often due to underlying differences in dynamics and/or complexities of the spin systems being studied. After an acquisition delay, the broad signals from fast T2 -relaxing species are more suppressed relative to the sharp signals from slow T2 -relaxing species. In this paper, an alternative source of differential "dephasing" under delayed-acquisition is demonstrated that is based solely upon the mathematical properties of the line shape and is independent of the underlying spin dynamics and/or complexity. Signals associated with frequencies where the line shape either changes sharply and/or is non-differentiable at some finite order dephase at a much slower rate than those signals associated with frequencies where the line shape is smooth. Experiments employing delayed-acquisition to study interfaces in biphasic samples, to measure spatially-dependent longitudinal relaxation, and to highlight sharp features in NMR spectra are presented.

  20. Research of built-in self test technology on cable-free self-positioning seismograph

    NASA Astrophysics Data System (ADS)

    Huaizhu, Z.; Lin, J.; Chen, Z.; Zhang, L.; Yang, H.; Zheng, F.

    2011-12-01

    Cable-free self-positioning seismograph is the key instrument and equipment required for deep seismic exploration in China. In order to measure the performance of seismic data acquisition systems whether meet exploration requirements , to ensure the accuracy of seismic data, and to ensure equipment reliability and stability, a built-in self test solution of the cable-free self-positioning seismic recorder is provided. Within a 24-bits Σ-Δ DAC, the seismograph can produce sine, step, pulse and other high-precision analog test signal, with dynamic range of 120dB or more, through the FPGA to control the analog multiplexer switching the input signal acquisition channels, and start the 24-bit Σ-Δ ADC in the instrument internal simultaneously to acquisition the test signal data, carries on the fast Fournier transformation by instrument internal CPU, to achieve the instrument of analysis and calculation of performance indicators, including: the equivalent noise and drift, common mode rejection ratio (CMRR), crosstalk, harmonic distortion, dynamic range, channel response consistency, detector impulse response , etc. A lot of testing experiments about the various parameters were performed and studied currently. By setting different sampling rate (1Hz, 5Hz, ..., 4kHz), each of the measurement system noise level was measured, and the maximum noise is about 0.5μV; the crosstalk between channels was tested using the 31.25Hz sine wave, the result is more than-120dB with sampling rate of 1kHz; the harmonic distortion was measured by adding the high-precision sine wave signals of different frequencies, such as 500Hz, 250 Hz, 125 Hz, 62.5 Hz, 31.25 Hz, 15.625 Hz, 7.812 Hz, 3.90625Hz, etc. the calculated results is in-118dB or more. The experimental results show that, the parameters of the cable-free self-positioning of the seismic recorder meet the technical requirements for the deep exploration, compared to the corresponding parameters with the 428XL seismograph of the French Sercel company, the instrument in performance has reached the advanced level of overseas equipment.

  1. Rapid acquisition of data dense solid-state CPMG NMR spectral sets using multi-dimensional statistical analysis

    DOE PAGES

    Mason, H. E.; Uribe, E. C.; Shusterman, J. A.

    2018-01-01

    Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.

  2. Rapid acquisition of data dense solid-state CPMG NMR spectral sets using multi-dimensional statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, H. E.; Uribe, E. C.; Shusterman, J. A.

    Tensor-rank decomposition methods have been applied to variable contact time 29 Si{ 1 H} CP/CPMG NMR data sets to extract NMR dynamics information and dramatically decrease conventional NMR acquisition times.

  3. A high-efficiency real-time digital signal averager for time-of-flight mass spectrometry.

    PubMed

    Wang, Yinan; Xu, Hui; Li, Qingjiang; Li, Nan; Huang, Zhengxu; Zhou, Zhen; Liu, Husheng; Sun, Zhaolin; Xu, Xin; Yu, Hongqi; Liu, Haijun; Li, David D-U; Wang, Xi; Dong, Xiuzhen; Gao, Wei

    2013-05-30

    Analog-to-digital converter (ADC)-based acquisition systems are widely applied in time-of-flight mass spectrometers (TOFMS) due to their ability to record the signal intensity of all ions within the same pulse. However, the acquisition system raises the requirement for data throughput, along with increasing the conversion rate and resolution of the ADC. It is therefore of considerable interest to develop a high-performance real-time acquisition system, which can relieve the limitation of data throughput. We present in this work a high-efficiency real-time digital signal averager, consisting of a signal conditioner, a data conversion module and a signal processing module. Two optimization strategies are implemented using field programmable gate arrays (FPGAs) to enhance the efficiency of the real-time processing. A pipeline procedure is used to reduce the time consumption of the accumulation strategy. To realize continuous data transfer, a high-efficiency transmission strategy is developed, based on a ping-pong procedure. The digital signal averager features good responsiveness, analog bandwidth and dynamic performance. The optimal effective number of bits reaches 6.7 bits. For a 32 µs record length, the averager can realize 100% efficiency with an extraction frequency below 31.23 kHz by modifying the number of accumulation steps. In unit time, the averager yields superior signal-to-noise ratio (SNR) compared with data accumulation in a computer. The digital signal averager is combined with a vacuum ultraviolet single-photon ionization time-of-flight mass spectrometer (VUV-SPI-TOFMS). The efficiency of the real-time processing is tested by analyzing the volatile organic compounds (VOCs) from ordinary printed materials. In these experiments, 22 kinds of compounds are detected, and the dynamic range exceeds 3 orders of magnitude. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Advanced Data Acquisition Systems with Self-Healing Circuitry

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Ihlefeld, Curtis M.; Medelius, Pedro J.; Delgado, H. (Technical Monitor)

    2001-01-01

    Kennedy Space Center's Spaceport Engineering & Technology Directorate has developed a data acquisition system that will help drive down the cost of ground launch operations. This system automates both the physical measurement set-up function as well as configuration management documentation. The key element of the system is a self-configuring, self-calibrating, signal-conditioning amplifier that automatically adapts to any sensor to which it is connected. This paper will describe the core technology behind this device and the automated data system in which it has been integrated. The paper will also describe the revolutionary enhancements that are planned for this innovative measurement technology. All measurement electronics devices contain circuitry that, if it fails or degrades, requires the unit to be replaced, adding to the cost of operations. Kennedy Space Center is now developing analog circuits that will be able to detect their own failure and dynamically reconfigure their circuitry to restore themselves to normal operation. This technology will have wide ranging application in all electronic devices used in space and ground systems.

  5. Acquisition and analysis of accelerometer data

    NASA Astrophysics Data System (ADS)

    Verges, Keith R.

    1990-08-01

    Acceleration data reduction must be undertaken with a complete understanding of the physical process, the means by which the data are acquired, and finally, the calculations necessary to put the data into a meaningful format. Discussed here are the acceleration sensor requirements dictated by the measurements desired. Sensor noise, dynamic range, and linearity will be determined from the physical parameters of the experiment. The digitizer requirements are discussed. Here the system from sensor to digital storage medium will be integrated, and rules of thumb for experiment duration, filter response, and number of bits are explained. Data reduction techniques after storage are also discussed. Time domain operations including decimating, digital filtering, and averaging are covered, as well as frequency domain methods, including windowing and the difference between power and amplitude spectra, and simple noise determination via coherence analysis. Finally, an example experiment using the Teledyne Geotech Model 44000 Seismometer to measure from 1 Hz to 10(exp -6) Hz is discussed. The sensor, data acquisition system, and example spectra are presented.

  6. Acquisition and analysis of accelerometer data

    NASA Technical Reports Server (NTRS)

    Verges, Keith R.

    1990-01-01

    Acceleration data reduction must be undertaken with a complete understanding of the physical process, the means by which the data are acquired, and finally, the calculations necessary to put the data into a meaningful format. Discussed here are the acceleration sensor requirements dictated by the measurements desired. Sensor noise, dynamic range, and linearity will be determined from the physical parameters of the experiment. The digitizer requirements are discussed. Here the system from sensor to digital storage medium will be integrated, and rules of thumb for experiment duration, filter response, and number of bits are explained. Data reduction techniques after storage are also discussed. Time domain operations including decimating, digital filtering, and averaging are covered, as well as frequency domain methods, including windowing and the difference between power and amplitude spectra, and simple noise determination via coherence analysis. Finally, an example experiment using the Teledyne Geotech Model 44000 Seismometer to measure from 1 Hz to 10(exp -6) Hz is discussed. The sensor, data acquisition system, and example spectra are presented.

  7. Workload-Matched Adaptive Automation Support of Air Traffic Controller Information Processing Stages

    NASA Technical Reports Server (NTRS)

    Kaber, David B.; Prinzel, Lawrence J., III; Wright, Melanie C.; Clamann, Michael P.

    2002-01-01

    Adaptive automation (AA) has been explored as a solution to the problems associated with human-automation interaction in supervisory control environments. However, research has focused on the performance effects of dynamic control allocations of early stage sensory and information acquisition functions. The present research compares the effects of AA to the entire range of information processing stages of human operators, such as air traffic controllers. The results provide evidence that the effectiveness of AA is dependent on the stage of task performance (human-machine system information processing) that is flexibly automated. The results suggest that humans are better able to adapt to AA when applied to lower-level sensory and psychomotor functions, such as information acquisition and action implementation, as compared to AA applied to cognitive (analysis and decision-making) tasks. The results also provide support for the use of AA, as compared to completely manual control. These results are discussed in terms of implications for AA design for aviation.

  8. Phenotypic clines, energy balances and ecological responses to climate change.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G

    2014-01-01

    The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  9. SeismoGeodesy: Combination of High Rate, Real-time GNSS and Accelerometer Observations and Rapid Seismic Event Notification for Earth Quake Early Warning and Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Jackson, Michael; Zimakov, Leonid; Moessmer, Matthias

    2015-04-01

    Scientific GNSS networks are moving towards a model of real-time data acquisition, epoch-by-epoch storage integrity, and on-board real-time position and displacement calculations. This new paradigm allows the integration of real-time, high-rate GNSS displacement information with acceleration and velocity data to create very high-rate displacement records. The mating of these two instruments allows the creation of a new, very high-rate (200 Hz) displacement observable that has the full-scale displacement characteristics of GNSS and high-precision dynamic motions of seismic technologies. It is envisioned that these new observables can be used for earthquake early warning studies, volcano monitoring, and critical infrastructure monitoring applications. Our presentation will focus on the characteristics of GNSS, seismic, and strong motion sensors in high dynamic environments, including historic earthquakes replicated on a shake table over a range of displacements and frequencies. We will explore the optimum integration of these sensors from a filtering perspective including simple harmonic impulses over varying frequencies and amplitudes and under the dynamic conditions of various earthquake scenarios. We will also explore the tradeoffs between various GNSS processing schemes including real-time precise point positioning (PPP) and real-time kinematic (RTK) as applied to seismogeodesy. In addition we will discuss implementation of a Rapid Seismic Event Notification System that provides quick delivery of digital data from seismic stations to the acquisition and processing center and a full data integrity model for real-time earthquake notification that provides warning prior to significant ground shaking.

  10. The proper treatment of language acquisition and change in a population setting.

    PubMed

    Niyogi, Partha; Berwick, Robert C

    2009-06-23

    Language acquisition maps linguistic experience, primary linguistic data (PLD), onto linguistic knowledge, a grammar. Classically, computational models of language acquisition assume a single target grammar and one PLD source, the central question being whether the target grammar can be acquired from the PLD. However, real-world learners confront populations with variation, i.e., multiple target grammars and PLDs. Removing this idealization has inspired a new class of population-based language acquisition models. This paper contrasts 2 such models. In the first, iterated learning (IL), each learner receives PLD from one target grammar but different learners can have different targets. In the second, social learning (SL), each learner receives PLD from possibly multiple targets, e.g., from 2 parents. We demonstrate that these 2 models have radically different evolutionary consequences. The IL model is dynamically deficient in 2 key respects. First, the IL model admits only linear dynamics and so cannot describe phase transitions, attested rapid changes in languages over time. Second, the IL model cannot properly describe the stability of languages over time. In contrast, the SL model leads to nonlinear dynamics, bifurcations, and possibly multiple equilibria and so suffices to model both the case of stable language populations, mixtures of more than 1 language, as well as rapid language change. The 2 models also make distinct, empirically testable predictions about language change. Using historical data, we show that the SL model more faithfully replicates the dynamics of the evolution of Middle English.

  11. Quantitative Assessment of Liver Function Using Gadoxetate-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Georgiou, Leonidas; Penny, Jeffrey; Nicholls, Glynis; Woodhouse, Neil; Blé, François-Xavier; Hubbard Cristinacce, Penny L.; Naish, Josephine H.

    2017-01-01

    Objective The objective of this study was to use noninvasive dynamic contrast-enhanced magnetic resonance imaging (MRI) techniques to study, in vivo, the distribution and elimination of the hepatobiliary contrast agent gadoxetate in the human body and characterize the transport mechanisms involved in its uptake into hepatocytes and subsequent efflux into the bile using a novel tracer kinetic model in a group of healthy volunteers. Materials and Methods Ten healthy volunteers (age range, 18–29 years), with no history of renal or hepatic impairment, were recruited via advertisement. Participants attended 2 MRI visits (at least a week apart) with gadoxetate as the contrast agent. Dynamic contrast-enhanced MRI data were acquired for approximately 50 minutes with a 3-dimensional gradient-echo sequence in the axial plane, at a temporal resolution of 6.2 seconds. Data from regions of interest drawn in the liver were analyzed using the proposed 2-compartment uptake and efflux model to provide estimates for the uptake rate of gadoxetate in hepatocytes and its efflux rate into the bile. Reproducibility statistics for the 2 visits were obtained to examine the robustness of the technique and its dependence in acquisition time. Results Eight participants attended the study twice and were included into the analysis. The resulting images provided the ability to simultaneously monitor the distribution of gadoxetate in multiple organs including the liver, spleen, and kidneys as well as its elimination through the common bile duct, accumulation in the gallbladder, and excretion in the duodenum. The mean uptake (ki) and efflux (kef) rates in hepatocytes, for the 2 visits using the 50-minute acquisition, were 0.22 ± 0.05 and 0.017 ± 0.006/min, respectively. The hepatic extraction fraction was estimated to be 0.19 ± 0.04/min. The variability between the 2 visits within the group level (95% confidence interval; ki: ±0.02/min, kef: ±0.004/min) was lower compared with the individual variability (repeatability; ki: ±0.06/min, kef: ±0.012/min). Data truncation demonstrated that the uptake rate estimates retained their precision as well as their group and individual reproducibility down to approximately 10 minutes of acquisition. Efflux rate estimates were underestimated (compared with the 50-minute acquisition) as the duration of the acquisition decreased, although these effects were more pronounced for acquisition times shorter than approximately 30 minutes. Conclusions This is the first study that reports estimates for the hepatic uptake and efflux transport process of gadoxetate in healthy volunteers in vivo. The results highlight that dynamic contrast-enhanced MRI with gadoxetate can provide novel quantitative insights into liver function and may therefore prove useful in studies that aim to monitor liver pathology, as well as being an alternative approach for studying hepatic drug-drug interactions. PMID:28002117

  12. Quantitative Assessment of Liver Function Using Gadoxetate-Enhanced Magnetic Resonance Imaging: Monitoring Transporter-Mediated Processes in Healthy Volunteers.

    PubMed

    Georgiou, Leonidas; Penny, Jeffrey; Nicholls, Glynis; Woodhouse, Neil; Blé, François-Xavier; Hubbard Cristinacce, Penny L; Naish, Josephine H

    2017-02-01

    The objective of this study was to use noninvasive dynamic contrast-enhanced magnetic resonance imaging (MRI) techniques to study, in vivo, the distribution and elimination of the hepatobiliary contrast agent gadoxetate in the human body and characterize the transport mechanisms involved in its uptake into hepatocytes and subsequent efflux into the bile using a novel tracer kinetic model in a group of healthy volunteers. Ten healthy volunteers (age range, 18-29 years), with no history of renal or hepatic impairment, were recruited via advertisement. Participants attended 2 MRI visits (at least a week apart) with gadoxetate as the contrast agent. Dynamic contrast-enhanced MRI data were acquired for approximately 50 minutes with a 3-dimensional gradient-echo sequence in the axial plane, at a temporal resolution of 6.2 seconds. Data from regions of interest drawn in the liver were analyzed using the proposed 2-compartment uptake and efflux model to provide estimates for the uptake rate of gadoxetate in hepatocytes and its efflux rate into the bile. Reproducibility statistics for the 2 visits were obtained to examine the robustness of the technique and its dependence in acquisition time. Eight participants attended the study twice and were included into the analysis. The resulting images provided the ability to simultaneously monitor the distribution of gadoxetate in multiple organs including the liver, spleen, and kidneys as well as its elimination through the common bile duct, accumulation in the gallbladder, and excretion in the duodenum. The mean uptake (ki) and efflux (kef) rates in hepatocytes, for the 2 visits using the 50-minute acquisition, were 0.22 ± 0.05 and 0.017 ± 0.006/min, respectively. The hepatic extraction fraction was estimated to be 0.19 ± 0.04/min. The variability between the 2 visits within the group level (95% confidence interval; ki: ±0.02/min, kef: ±0.004/min) was lower compared with the individual variability (repeatability; ki: ±0.06/min, kef: ±0.012/min). Data truncation demonstrated that the uptake rate estimates retained their precision as well as their group and individual reproducibility down to approximately 10 minutes of acquisition. Efflux rate estimates were underestimated (compared with the 50-minute acquisition) as the duration of the acquisition decreased, although these effects were more pronounced for acquisition times shorter than approximately 30 minutes. This is the first study that reports estimates for the hepatic uptake and efflux transport process of gadoxetate in healthy volunteers in vivo. The results highlight that dynamic contrast-enhanced MRI with gadoxetate can provide novel quantitative insights into liver function and may therefore prove useful in studies that aim to monitor liver pathology, as well as being an alternative approach for studying hepatic drug-drug interactions.

  13. A Routine Experimental Protocol for qHNMR Illustrated with Taxol⊥

    PubMed Central

    Pauli, Guido F.; Jaki, Birgit U.; Lankin, David C.

    2012-01-01

    Quantitative 1H NMR (qHNMR) provides a value-added dimension to the standard spectroscopic data set involved in structure analysis, especially when analyzing bioactive molecules and elucidating new natural products. The qHNMR method can be integrated into any routine qualitative workflow without much additional effort by simply establishing quantitative conditions for the standard solution 1H NMR experiments. Moreover, examination of different chemical lots of taxol and a Taxus brevifolia extract as working examples led to a blueprint for a generic approach to performing a routinely practiced 13C-decoupled qHNMR experiment, and for recognizing its potential and main limitations. The proposed protocol is based on a newly assembled 13C GARP broadband decoupled proton acquisition sequence that reduces spectroscopic complexity by removal of carbon satellites. The method is capable of providing qualitative and quantitative NMR data simultaneously and covers various analytes from pure compounds to complex mixtures such as metabolomes. Due to a routinely achievable dynamic range of 300:1 (0.3%) or better, qHNMR qualifies for applications ranging from reference standards to biologically active compounds to metabolome analysis. Providing a “cookbook” approach to qHNMR, acquisition conditions are described that can be adapted for contemporary NMR spectrometers of all major manufacturers. PMID:17298095

  14. Preliminary investigation of electrothermal vaporization sample introduction for inductively coupled plasma time-of-flight mass spectrometry.

    PubMed

    Mahoney, P P; Ray, S J; Li, G; Hieftje, G M

    1999-04-01

    The coupling of an electrothermal vaporization (ETV) apparatus to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) is described. The ability of the ICP-TOFMS to produce complete elemental mass spectra at high repetition rates is experimentally demonstrated. A signal-averaging data acquisition board is employed to rapidly record complete elemental spectra throughout the vaporization stage of the ETV temperature cycle; a solution containing 34 elements is analyzed. The reduction of both molecular and atomic isobaric interferences through the temperature program of the furnace is demonstrated. Isobaric overlaps among the isotopes of cadmium, tin, and indium are resolved by exploiting differences in the vaporization characteristics of the elements. Figures of merit for the system are defined with several different data acquisition schemes capable of operating at the high repetition rate of the TOF instrument. With the use of both ion counting and a boxcar averager, the dynamic range is shown to be linear over a range of at least 6 orders of magnitude. A pair of boxcar averagers are used to measure the isotope ratio for silver with a precision of 1.9% RSD, despite a cycle-to-cycle precision of 19% RSD. Detection limits of 10-80 fg are calculated for seven elements, based upon a 10-microL injection.

  15. A Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI)

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Gao, Feng

    2016-05-01

    Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77-0.94 compared to 0.01-0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.

  16. Effects of Resolution, Range, and Image Contrast on Target Acquisition Performance.

    PubMed

    Hollands, Justin G; Terhaar, Phil; Pavlovic, Nada J

    2018-05-01

    We sought to determine the joint influence of resolution, target range, and image contrast on the detection and identification of targets in simulated naturalistic scenes. Resolution requirements for target acquisition have been developed based on threshold values obtained using imaging systems, when target range was fixed, and image characteristics were determined by the system. Subsequent work has examined the influence of factors like target range and image contrast on target acquisition. We varied the resolution and contrast of static images in two experiments. Participants (soldiers) decided whether a human target was located in the scene (detection task) or whether a target was friendly or hostile (identification task). Target range was also varied (50-400 m). In Experiment 1, 30 participants saw color images with a single target exemplar. In Experiment 2, another 30 participants saw monochrome images containing different target exemplars. The effects of target range and image contrast were qualitatively different above and below 6 pixels per meter of target for both tasks in both experiments. Target detection and identification performance were a joint function of image resolution, range, and contrast for both color and monochrome images. The beneficial effects of increasing resolution for target acquisition performance are greater for closer (larger) targets.

  17. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat

    PubMed Central

    Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling

    2015-01-01

    The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat. PMID:25631933

  18. Enhancement of faba bean competitive ability by arbuscular mycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat.

    PubMed

    Qiao, Xu; Bei, Shuikuan; Li, Chunjie; Dong, Yan; Li, Haigang; Christie, Peter; Zhang, Fusuo; Zhang, Junling

    2015-01-29

    The mechanistic understanding of the dynamic processes linking nutrient acquisition and biomass production of competing individuals can be instructive in optimizing intercropping systems. Here, we examine the effect of inoculation with Funneliformis mosseae on competitive dynamics between wheat and faba bean. Wheat is less responsive to mycorrhizal inoculation. Both inoculated and uninoculated wheat attained the maximum instantaneous N and P capture approximately five days before it attained the maximum instantaneous biomass production, indicating that wheat detected the competitor and responded physiologically to resource limitation prior to the biomass response. By contrast, the instantaneous N and P capture by uninoculated faba bean remained low throughout the growth period, and plant growth was not significantly affected by competing wheat. However, inoculation substantially enhanced biomass production and N and P acquisition of faba bean. The exudation of citrate and malate acids and acid phosphatase activity were greater in mycorrhizal than in uninoculated faba bean, and rhizosphere pH tended to decrease. We conclude that under N and P limiting conditions, temporal separation of N and P acquisition by competing plant species and enhancement of complementary resource use in the presence of AMF might be attributable to the competitive co-existence of faba bean and wheat.

  19. Poster error probability in the Mu-11 Sequential Ranging System

    NASA Technical Reports Server (NTRS)

    Coyle, C. W.

    1981-01-01

    An expression is derived for the posterior error probability in the Mu-2 Sequential Ranging System. An algorithm is developed which closely bounds the exact answer and can be implemented in the machine software. A computer simulation is provided to illustrate the improved level of confidence in a ranging acquisition using this figure of merit as compared to that using only the prior probabilities. In a simulation of 20,000 acquisitions with an experimentally determined threshold setting, the algorithm detected 90% of the actual errors and made false indication of errors on 0.2% of the acquisitions.

  20. Fiber-optic three axis magnetometer prototype development

    NASA Technical Reports Server (NTRS)

    Wang, Thomas D.; Mccomb, David G.; Kingston, Bradley R.; Dube, C. Michael; Poehls, Kenneth A.; Wanser, Keith

    1989-01-01

    The goal of this research program was to develop a high sensitivity, fiber optic, interferometric, three-axis magnetometer for interplanetary spacecraft applications. Dynamics Technology, Inc. (DTI) has successfully integrated a low noise, high bandwidth interferometer with high sensitivity metallic glass transducers. Also, DTI has developed sophisticated signal processing electronics and complete data acquisition, filtering, and display software. The sensor was packaged in a compact, low power and weight unit which facilitates deployment. The magnetic field sensor had subgamma sensitivity and a dynamic range of 10(exp 5) gamma in a 10 Hz bandwidth. Furthermore, the vector instrument exhibited the lowest noise level when only one axis was in operation. A system noise level of 1 gamma rms was observed in a 1 Hz bandwidth. However, with the other two channels operating, the noise level increased by about one order of magnitude. Higher system noise was attributed to cross-channel interference among the dither fields.

  1. Application of interactive computer graphics in wind-tunnel dynamic model testing

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Hammond, C. E.

    1975-01-01

    The computer-controlled data-acquisition system recently installed for use with a transonic dynamics tunnel was described. This includes a discussion of the hardware/software features of the system. A subcritical response damping technique, called the combined randomdec/moving-block method, for use in windtunnel-model flutter testing, that has been implemented on the data-acquisition system, is described in some detail. Some results using the method are presented and the importance of using interactive graphics in applying the technique in near real time during wind-tunnel test operations is discussed.

  2. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System.

    PubMed

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-03-03

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R²) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively.

  3. A fast and flexible MRI system for the study of dynamic vocal tract shaping.

    PubMed

    Lingala, Sajan Goud; Zhu, Yinghua; Kim, Yoon-Chul; Toutios, Asterios; Narayanan, Shrikanth; Nayak, Krishna S

    2017-01-01

    The aim of this work was to develop and evaluate an MRI-based system for study of dynamic vocal tract shaping during speech production, which provides high spatial and temporal resolution. The proposed system utilizes (a) custom eight-channel upper airway coils that have high sensitivity to upper airway regions of interest, (b) two-dimensional golden angle spiral gradient echo acquisition, (c) on-the-fly view-sharing reconstruction, and (d) off-line temporal finite difference constrained reconstruction. The system also provides simultaneous noise-cancelled and temporally aligned audio. The system is evaluated in 3 healthy volunteers, and 1 tongue cancer patient, with a broad range of speech tasks. We report spatiotemporal resolutions of 2.4 × 2.4 mm 2 every 12 ms for single-slice imaging, and 2.4 × 2.4 mm 2 every 36 ms for three-slice imaging, which reflects roughly 7-fold acceleration over Nyquist sampling. This system demonstrates improved temporal fidelity in capturing rapid vocal tract shaping for tasks, such as producing consonant clusters in speech, and beat-boxing sounds. Novel acoustic-articulatory analysis was also demonstrated. A synergistic combination of custom coils, spiral acquisitions, and constrained reconstruction enables visualization of rapid speech with high spatiotemporal resolution in multiple planes. Magn Reson Med 77:112-125, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Development of an Unmanned Aerial Vehicle-Borne Crop-Growth Monitoring System

    PubMed Central

    Ni, Jun; Yao, Lili; Zhang, Jingchao; Cao, Weixing; Zhu, Yan; Tai, Xiuxiang

    2017-01-01

    In view of the demand for a low-cost, high-throughput method for the continuous acquisition of crop growth information, this study describes a crop-growth monitoring system which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments show that the monitoring system has good dynamic stability and measurement accuracy over the range of operating altitudes of the sensor. The linear fitting determination coefficients (R2) for the output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAI, and LDW, respectively) and the RMSEs are 1.44, 1.01 and 3.01, respectively. PMID:28273815

  5. Hub and blade structural loads measurements of an SA349/2 helicopter

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Heffernan, Ruth M.; Gaubert, Michel

    1988-01-01

    Data from 23 flight conditions, including level flights ranging from advance ratio mu = 0.14 to 0.37 and steady turning flights from advance ratio mu = 0.26 to 0.35, are presented for an Aerospatiale SA349/2 Gazelle helicopter. The data include hub loads data (for 6 of the 23 conditions), blade structural data at eleven different blade radial stations, and fuselage structural data. All dynamic data are presented as harmonic analysis coefficients (ten harmonics per rotor revolution). The data acquisition and reduction procedures are also documented. Blade structural and inertial properties are provided in addition to control system geometry and properties.

  6. Genomics of Escherichia and Shigella

    NASA Astrophysics Data System (ADS)

    Perna, Nicole T.

    The laboratory workhorse Escherichia coli K-12 is among the most intensively studied living organisms on earth, and this single strain serves as the model system behind much of our understanding of prokaryotic molecular biology. Dense genome sequencing and recent insightful comparative analyses are making the species E. coli, as a whole, an emerging system for studying prokaryotic population genetics and the relationship between system-scale, or genome-scale, molecular evolution and complex traits like host range and pathogenic potential. Genomic perspective has revealed a coherent but dynamic species united by intraspecific gene flow via homologous lateral or horizontal transfer and differentiated by content flux mediated by acquisition of DNA segments from interspecies transfers.

  7. Measuring Acquisition Workforce Quality through Dynamic Knowledge and Performance: An Exploratory Investigation to Interrelate Acquisition Knowledge with Process Maturity

    DTIC Science & Technology

    2013-10-08

    Sciences, and Graduate School of Business & Public Policy Dr. Rene G. Rendon, Associate Professor Graduate School of Business & Public Policy...ES) Naval Postgraduate School,Graduate School of Business & Public Policy,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...report was supported by the Acquisition Research Program of the Graduate School of Business & Public Policy at the Naval Postgraduate School. To

  8. Toward an Operational Proxy for Acquisition Workforce Quality: Measuring Dynamic Knowledge and Performance at the Tactical Edges of Organizations

    DTIC Science & Technology

    2012-10-13

    Business & Public Policy Naval Postgraduate School Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...presented in this report was supported by the Acquisition Research Program of the Graduate School of Business & Public Policy at the Naval...Program GRADUATE SCHOOL OF BUSINESS & PUBLIC POLICY - iii - NAVAL POSTGRADUATE SCHOOL NPS-AM-12-206 ACQUISITION RESEARCH SPONSORED REPORT SERIES

  9. Brain Dynamics Sustaining Rapid Rule Extraction from Speech

    ERIC Educational Resources Information Center

    de Diego-Balaguer, Ruth; Fuentemilla, Lluis; Rodriguez-Fornells, Antoni

    2011-01-01

    Language acquisition is a complex process that requires the synergic involvement of different cognitive functions, which include extracting and storing the words of the language and their embedded rules for progressive acquisition of grammatical information. As has been shown in other fields that study learning processes, synchronization…

  10. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free-breathing 3D acquisitions. PMID:24123058

  11. NASA Lewis 8- by 6-foot supersonic wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    The 8- by 6-Foot Supersonic Wind Tunnel (SWT) at Lewis Research Center is available for use by qualified researchers. This manual contains tunnel performance maps which show the range of total temperature, total pressure, static pressure, dynamic pressure, altitude, Reynolds number, and mass flow as a function of test section Mach number. These maps are applicable for both the aerodynamic and propulsion cycle. The 8- by 6-Foot Supersonic Wind Tunnel is an atmospheric facility with a test section Mach number range from 0.36 to 2.0. General support systems (air systems, hydraulic system, hydrogen system, infrared system, laser system, laser sheet system, and schlieren system are also described as are instrumentation and data processing and acquisition systems. Pretest meeting formats are outlined. Tunnel user responsibility and personal safety requirements are also stated.

  12. Temporal Dynamics of Hypothesis Generation: The Influences of Data Serial Order, Data Consistency, and Elicitation Timing

    PubMed Central

    Lange, Nicholas D.; Thomas, Rick P.; Davelaar, Eddy J.

    2012-01-01

    The pre-decisional process of hypothesis generation is a ubiquitous cognitive faculty that we continually employ in an effort to understand our environment and thereby support appropriate judgments and decisions. Although we are beginning to understand the fundamental processes underlying hypothesis generation, little is known about how various temporal dynamics, inherent in real world generation tasks, influence the retrieval of hypotheses from long-term memory. This paper presents two experiments investigating three data acquisition dynamics in a simulated medical diagnosis task. The results indicate that the mere serial order of data, data consistency (with previously generated hypotheses), and mode of responding influence the hypothesis generation process. An extension of the HyGene computational model endowed with dynamic data acquisition processes is forwarded and explored to provide an account of the present data. PMID:22754547

  13. Dynamic Calorimetry for Students

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    A student experiment on dynamic calorimetry is described. Dynamic calorimetry is a powerful technique for calorimetric studies, especially at high temperatures and pressures. A low-power incandescent lamp serves as the sample. The ScienceWorkshop data-acquisition system with DataStudio software from PASCO Scientific displays the results of the…

  14. Analog signal processing for optical coherence imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei

    Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.

  15. Molecular DYNAmics of Soil Organic carbon (DYNAMOS ): a project focusing on soils and carbon through data and modeling

    NASA Astrophysics Data System (ADS)

    Mendez-Millan, Mercedes

    2010-05-01

    Here we present the first results of the DynaMOS project whose main issue is the build-up of a new generation of soil carbon model. The modeling will describe together soil organic geochemistry and soil carbon dynamics in a generalized, quantitative representation. The carbon dynamics time scale envisaged here will cover the 1 to 1000 yr range and describe molecule behaviours (i.e.)carbohydrate, peptide, amino acid, lignin, lipids, their products of biodegradation and uncharacterized carbonaceous species of biological origin. Three main characteristics define DYNAMOS model originalities: it will consider organic matter at the molecular scale, integrate back to global scale and account for component vertical movements. In a first step, specific data acquisition will concern the production, fate and age of carbon of individual organic compounds. Dynamic parameters will be acquired by compound-specific carbon isotope analysis of both 13C and 14C, by GC/C/IR-MS and AMS. Sites for data acquisition, model calibration and model validation will be chosen on the base of their isotopic history and environmental constraints: 13C natural labeling (with and without C3/C4 vegetation changes), 13C/15N-labelled litter application in both forest and cropland. They include some long-term experiments owned by the partners themselves plus a worldwide panel of sites. In a second step the depth distribution of organic species, isotopes and ages in soils (1D representation) will be modeled by coupling carbon dynamics and vertical movement. Besides the main objective of providing a robust soil carbon dynamics model, DYNAMOS will assess and model the alteration of the isotopic signature of molecules throughout decay and create a shared database of both already published and new data of compound specific information. Issues of the project will concern different scientific fields: global geochemical cycles by refining the description of the terrestrial carbon cycle and entering the chemical composition of organic matter in carbon models; forestry or agriculture by offering a chemical frame for the management of crop residues or organic wastes; geochronology, paleoecology and paleo climatology by modeling the alteration of isotope signature and the preservation of terrestrial biomarkers.

  16. InfoSymbiotics/DDDAS - The power of Dynamic Data Driven Applications Systems for New Capabilities in Environmental -, Geo-, and Space- Sciences

    NASA Astrophysics Data System (ADS)

    Darema, F.

    2016-12-01

    InfoSymbiotics/DDDAS embodies the power of Dynamic Data Driven Applications Systems (DDDAS), a concept whereby an executing application model is dynamically integrated, in a feed-back loop, with the real-time data-acquisition and control components, as well as other data sources of the application system. Advanced capabilities can be created through such new computational approaches in modeling and simulations, and in instrumentation methods, and include: enhancing the accuracy of the application model; speeding-up the computation to allow faster and more comprehensive models of a system, and create decision support systems with the accuracy of full-scale simulations; in addition, the notion of controlling instrumentation processes by the executing application results in more efficient management of application-data and addresses challenges of how to architect and dynamically manage large sets of heterogeneous sensors and controllers, an advance over the static and ad-hoc ways of today - with DDDAS these sets of resources can be managed adaptively and in optimized ways. Large-Scale-Dynamic-Data encompasses the next wave of Big Data, and namely dynamic data arising from ubiquitous sensing and control in engineered, natural, and societal systems, through multitudes of heterogeneous sensors and controllers instrumenting these systems, and where opportunities and challenges at these "large-scales" relate not only to data size but the heterogeneity in data, data collection modalities, fidelities, and timescales, ranging from real-time data to archival data. In tandem with this important dimension of dynamic data, there is an extended view of Big Computing, which includes the collective computing by networked assemblies of multitudes of sensors and controllers, this range from the high-end to the real-time seamlessly integrated and unified, and comprising the Large-Scale-Big-Computing. InfoSymbiotics/DDDAS engenders transformative impact in many application domains, ranging from the nano-scale to the terra-scale and to the extra-terra-scale. The talk will address opportunities for new capabilities together with corresponding research challenges, with illustrative examples from several application areas including environmental sciences, geosciences, and space sciences.

  17. Pragmatic User Model Implementation in an Intelligent Help System.

    ERIC Educational Resources Information Center

    Fernandez-Manjon, Baltasar; Fernandez-Valmayor, Alfredo; Fernandez-Chamizo, Carmen

    1998-01-01

    Describes Aran, a knowledge-based system designed to help users deal with problems related to Unix operation. Highlights include adaptation to the individual user; user modeling knowledge; stereotypes; content of the individual user model; instantiation, acquisition, and maintenance of the individual model; dynamic acquisition of objective and…

  18. Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition

    ERIC Educational Resources Information Center

    Archbold, Georgina E.; Dobbek, Nick; Nader, Karim

    2013-01-01

    Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…

  19. Dynamic Courseware Generation on the WWW.

    ERIC Educational Resources Information Center

    Vassileva, Julita; Deters, Ralph

    1998-01-01

    The Dynamic Courseware Generator (DCG), which runs on a Web server, was developed for the authoring of adaptive computer-assisted learning courses. It generates an individual course according to the learner's goals and previous knowledge, and dynamically adapts the course according to the learner's success in knowledge acquisition. The tool may be…

  20. Experimental study on synchronization of three coupled mechanical metronomes

    NASA Astrophysics Data System (ADS)

    Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan

    2013-03-01

    In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.

  1. Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa

    NASA Astrophysics Data System (ADS)

    Hoogenboom, M.; Beraud, E.; Ferrier-Pagès, C.

    2010-03-01

    This study quantified variation in net photosynthetic carbon gain in response to natural fluctuations in symbiont density for the Mediterranean coral Cladocora caespitosa, and evaluated which density maximized photosynthetic carbon acquisition. To do this, carbon acquisition was modeled as an explicit function of symbiont density. The model was parameterized using measurements of rates of photosynthesis and respiration for small colonies with a broad range of zooxanthella concentrations. Results demonstrate that rates of net photosynthesis increase asymptotically with symbiont density, whereas rates of respiration increase linearly. In combination, these functional responses meant that colony energy acquisition decreased at both low and at very high zooxanthella densities. However, there was a wide range of symbiont densities for which net daily photosynthesis was approximately equivalent. Therefore, significant changes in symbiont density do not necessarily cause a change in autotrophic energy acquisition by the colony. Model estimates of the optimal range of cell densities corresponded well with independent observations of symbiont concentrations obtained from field and laboratory studies of healthy colonies. Overall, this study demonstrates that the seasonal fluctuations, in symbiont numbers observed in healthy colonies of the Mediterranean coral investigated, do not have a strong effect on photosynthetic energy acquisition.

  2. Second Language Developmental Dynamics: How Dynamic Systems Theory Accounts for Issues in Second Language Learning

    ERIC Educational Resources Information Center

    Rosmawati

    2014-01-01

    Dynamic systems theory (DST) is presented in this article as a suitable approach to research the acquisition of second language (L2) because of its close alignment with the process of second language learning. Through a process of identifying and comparing the characteristics of a dynamic system with the process of L2 learning, this article…

  3. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.

    PubMed

    Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin

    2013-09-01

    Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.

  4. Mars Science Laboratory Sample Acquisition, Sample Processing and Handling: Subsystem Design and Test Challenges

    NASA Technical Reports Server (NTRS)

    Jandura, Louise

    2010-01-01

    The Sample Acquisition/Sample Processing and Handling subsystem for the Mars Science Laboratory is a highly-mechanized, Rover-based sampling system that acquires powdered rock and regolith samples from the Martian surface, sorts the samples into fine particles through sieving, and delivers small portions of the powder into two science instruments inside the Rover. SA/SPaH utilizes 17 actuated degrees-of-freedom to perform the functions needed to produce 5 sample pathways in support of the scientific investigation on Mars. Both hardware redundancy and functional redundancy are employed in configuring this sampling system so some functionality is retained even with the loss of a degree-of-freedom. Intentional dynamic environments are created to move sample while vibration isolators attenuate this environment at the sensitive instruments located near the dynamic sources. In addition to the typical flight hardware qualification test program, two additional types of testing are essential for this kind of sampling system: characterization of the intentionally-created dynamic environment and testing of the sample acquisition and processing hardware functions using Mars analog materials in a low pressure environment. The overall subsystem design and configuration are discussed along with some of the challenges, tradeoffs, and lessons learned in the areas of fault tolerance, intentional dynamic environments, and special testing

  5. Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.

    PubMed

    Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A

    2011-04-01

    Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE)

    PubMed Central

    Sharif, Behzad; Derbyshire, J. Andrew; Faranesh, Anthony Z.; Bresler, Yoram

    2010-01-01

    MR imaging of the human heart without explicit cardiac synchronization promises to extend the applicability of cardiac MR to a larger patient population and potentially expand its diagnostic capabilities. However, conventional non-gated imaging techniques typically suffer from low image quality or inadequate spatio-temporal resolution and fidelity. Patient-Adaptive Reconstruction and Acquisition in Dynamic Imaging with Sensitivity Encoding (PARADISE) is a highly-accelerated non-gated dynamic imaging method that enables artifact-free imaging with high spatio-temporal resolutions by utilizing novel computational techniques to optimize the imaging process. In addition to using parallel imaging, the method gains acceleration from a physiologically-driven spatio-temporal support model; hence, it is doubly accelerated. The support model is patient-adaptive, i.e., its geometry depends on dynamics of the imaged slice, e.g., subject’s heart-rate and heart location within the slice. The proposed method is also doubly adaptive as it adapts both the acquisition and reconstruction schemes. Based on the theory of time-sequential sampling, the proposed framework explicitly accounts for speed limitations of gradient encoding and provides performance guarantees on achievable image quality. The presented in-vivo results demonstrate the effectiveness and feasibility of the PARADISE method for high resolution non-gated cardiac MRI during a short breath-hold. PMID:20665794

  7. Aircraft Lightning Electromagnetic Environment Measurement

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.

    2011-01-01

    This paper outlines a NASA project plan for demonstrating a prototype lightning strike measurement system that is suitable for installation onto research aircraft that already operate in thunderstorms. This work builds upon past data from the NASA F106, FAA CV-580, and Transall C-180 flight projects, SAE ARP5412, and the European ILDAS Program. The primary focus is to capture airframe current waveforms during attachment, but may also consider pre and post-attachment current, electric field, and radiated field phenomena. New sensor technologies are being developed for this system, including a fiber-optic Faraday polarization sensor that measures lightning current waveforms from DC to over several Megahertz, and has dynamic range covering hundreds-of-volts to tens-of-thousands-of-volts. A study of the electromagnetic emission spectrum of lightning (including radio wave, microwave, optical, X-Rays and Gamma-Rays), and a compilation of aircraft transfer-function data (including composite aircraft) are included, to aid in the development of other new lightning environment sensors, their placement on-board research aircraft, and triggering of the onboard instrumentation system. The instrumentation system will leverage recent advances in high-speed, high dynamic range, deep memory data acquisition equipment, and fiber-optic interconnect.

  8. Time-Lapse Video Microscopy for Assessment of EYFP-Parkin Aggregation as a Marker for Cellular Mitophagy

    PubMed Central

    Di Sante, Gabriele; Casimiro, Mathew C.; Pestell, Timothy G.; Pestell, Richard G.

    2016-01-01

    Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach. PMID:27168174

  9. Time-Lapse Video Microscopy for Assessment of EYFP-Parkin Aggregation as a Marker for Cellular Mitophagy.

    PubMed

    Di Sante, Gabriele; Casimiro, Mathew C; Pestell, Timothy G; Pestell, Richard G

    2016-05-04

    Time-lapse video microscopy can be defined as the real time imaging of living cells. This technique relies on the collection of images at different time points. Time intervals can be set through a computer interface that controls the microscope-integrated camera. This kind of microscopy requires both the ability to acquire very rapid events and the signal generated by the observed cellular structure during these events. After the images have been collected, a movie of the entire experiment is assembled to show the dynamic of the molecular events of interest. Time-lapse video microscopy has a broad range of applications in the biomedical research field and is a powerful and unique tool for following the dynamics of the cellular events in real time. Through this technique, we can assess cellular events such as migration, division, signal transduction, growth, and death. Moreover, using fluorescent molecular probes we are able to mark specific molecules, such as DNA, RNA or proteins and follow them through their molecular pathways and functions. Time-lapse video microscopy has multiple advantages, the major one being the ability to collect data at the single-cell level, that make it a unique technology for investigation in the field of cell biology. However, time-lapse video microscopy has limitations that can interfere with the acquisition of high quality images. Images can be compromised by both external factors; temperature fluctuations, vibrations, humidity and internal factors; pH, cell motility. Herein, we describe a protocol for the dynamic acquisition of a specific protein, Parkin, fused with the enhanced yellow fluorescent protein (EYFP) in order to track the selective removal of damaged mitochondria, using a time-lapse video microscopy approach.

  10. The Dynamics of Syntax Acquisition: Facilitation between Syntactic Structures

    ERIC Educational Resources Information Center

    Keren-Portnoy, Tamar; Keren, Michael

    2011-01-01

    This paper sets out to show how facilitation between different clause structures operates over time in syntax acquisition. The phenomenon of facilitation within given structures has been widely documented, yet inter-structure facilitation has rarely been reported so far. Our findings are based on the naturalistic production corpora of six toddlers…

  11. The Human Side of Knowledge Management: An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Mayer, Pamela S.

    This annotated bibliography lists books and articles that have direct application to managing the human side of knowledge acquisition, transfer, and application. What is meant by the human dimension of knowledge is how motivation and learning affect the acquisition and transfer of knowledge and how group dynamics mediate the role of knowledge in…

  12. The Teaching-Learning Environment, an Information-Dynamic Approach

    ERIC Educational Resources Information Center

    De Blasio, Cataldo; Järvinen, Mika

    2014-01-01

    In the present study a generalized approach is given for the description of acquisition procedures with a particular focus on the knowledge acquisition process. The learning progression is given as an example here letting the theory to be applied to different situations. An analytical approach is performed starting from the generalized fundamental…

  13. Measuring Acquisition Workforce Quality Through Dynamic Knowledge and Performance: An Exploratory Investigation to Interrelate Acquisition Knowledge With Process Maturity

    DTIC Science & Technology

    2014-04-30

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School,Graduate School of Business & Public Policy,555 Dyer Rd,Monterey,CA,93943 8...pÅÜççä= The research presented in this report was supported by the Acquisition Research Program of the Graduate School of Business & Public Policy at...big business . The U.S. Department of Defense (DoD) alone routinely executes 12-figure budgets for research, development, procurement, and support of

  14. Langley 14- by 22-foot subsonic tunnel test engineer's data acquisition and reduction manual

    NASA Technical Reports Server (NTRS)

    Quinto, P. Frank; Orie, Nettie M.

    1994-01-01

    The Langley 14- by 22-Foot Subsonic Tunnel is used to test a large variety of aircraft and nonaircraft models. To support these investigations, a data acquisition system has been developed that has both static and dynamic capabilities. The static data acquisition and reduction system is described; the hardware and software of this system are explained. The theory and equations used to reduce the data obtained in the wind tunnel are presented; the computer code is not included.

  15. Dragging in a Dynamic Geometry Environment through the Lens of Variation

    ERIC Educational Resources Information Center

    Leung, Allen

    2008-01-01

    What makes Dynamic Geometry Environment (DGE) a powerful mathematical knowledge acquisition microworld is its ability to visually make explicit the implicit dynamism of thinking about mathematical geometrical concepts. One of DGE's powers is to equip us with the ability to retain the background of a geometrical configuration while we can…

  16. Multi-modal anatomical optical coherence tomography and CT for in vivo dynamic upper airway imaging

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Santosh; Bu, Ruofei; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-02-01

    We describe a novel, multi-modal imaging protocol for validating quantitative dynamic airway imaging performed using anatomical Optical Coherence Tomography (aOCT). The aOCT system consists of a catheter-based aOCT probe that is deployed via a bronchoscope, while a programmable ventilator is used to control airway pressure. This setup is employed on the bed of a Siemens Biograph CT system capable of performing respiratory-gated acquisitions. In this arrangement the position of the aOCT catheter may be visualized with CT to aid in co-registration. Utilizing this setup we investigate multiple respiratory pressure parameters with aOCT, and respiratory-gated CT, on both ex vivo porcine trachea and live, anesthetized pigs. This acquisition protocol has enabled real-time measurement of airway deformation with simultaneous measurement of pressure under physiologically relevant static and dynamic conditions- inspiratory peak or peak positive airway pressures of 10-40 cm H2O, and 20-30 breaths per minute for dynamic studies. We subsequently compare the airway cross sectional areas (CSA) obtained from aOCT and CT, including the change in CSA at different stages of the breathing cycle for dynamic studies, and the CSA at different peak positive airway pressures for static studies. This approach has allowed us to improve our acquisition methodology and to validate aOCT measurements of the dynamic airway for the first time. We believe that this protocol will prove invaluable for aOCT system development and greatly facilitate translation of OCT systems for airway imaging into the clinical setting.

  17. Characterizing the effects of droplines on target acquisition performance on a 3-D perspective display

    NASA Technical Reports Server (NTRS)

    Liao, Min-Ju; Johnson, Walter W.

    2004-01-01

    The present study investigated the effects of droplines on target acquisition performance on a 3-D perspective display in which participants were required to move a cursor into a target cube as quickly as possible. Participants' performance and coordination strategies were characterized using both Fitts' law and acquisition patterns of the 3 viewer-centered target display dimensions (azimuth, elevation, and range). Participants' movement trajectories were recorded and used to determine movement times for acquisitions of the entire target and of each of its display dimensions. The goodness of fit of the data to a modified Fitts function varied widely among participants, and the presence of droplines did not have observable impacts on the goodness of fit. However, droplines helped participants navigate via straighter paths and particularly benefited range dimension acquisition. A general preference for visually overlapping the target with the cursor prior to capturing the target was found. Potential applications of this research include the design of interactive 3-D perspective displays in which fast and accurate selection and manipulation of content residing at multiple ranges may be a challenge.

  18. Dynamic half Fourier acquisition, single shot turbo spin-echo magnetic resonance imaging for evaluating the female pelvis.

    PubMed

    Gousse, A E; Barbaric, Z L; Safir, M H; Madjar, S; Marumoto, A K; Raz, S

    2000-11-01

    We assessed the merit of dynamic half Fourier acquisition, single shot turbo spin-echo sequence T2-weighted magnetic resonance imaging (MRI) for evaluating pelvic organ prolapse and all other female pelvic pathology by prospectively correlating clinical with imaging findings. From September 1997 to April 1998, 100 consecutive women 23 to 88 years old with (65) and without (35) pelvic organ prolapse underwent half Fourier acquisition, single shot turbo spin-echo sequence dynamic pelvic T2-weighted MRI at our institution using a 1.5 Tesla magnet with phased array coils. Mid sagittal and parasagittal views with the patient supine, relaxed and straining were obtained using no pre-examination preparation or instrumentation. We evaluated the anterior vaginal wall, bladder, urethra, posterior vaginal wall, rectum, pelvic floor musculature, perineum, uterus, vaginal cuff, ovaries, ureters and intraperitoneal organs for all pathological conditions, including pelvic prolapse. Patients underwent a prospective physical examination performed by a female urologist, and an experienced radiologist blinded to pre-imaging clinical findings interpreted all studies. Physical examination, MRI and intraoperative findings were statistically correlated. Total image acquisition time was 2.5 minutes, room time 10 minutes and cost American $540. Half Fourier acquisition, single shot turbo spin-echo T2-weighted MRI revealed pathological entities other than pelvic prolapse in 55 cases, including uterine fibroids in 11, ovarian cysts in 9, bilateral ureteronephrosis in 3, nabothian cyst in 7, Bartholin's gland cyst in 4, urethral diverticulum in 3, polytetrafluoroethylene graft abscess in 3, bladder diverticulum in 2, sacral spinal abnormalities in 2, bladder tumor in 1, sigmoid diverticulosis in 1 and other in 9. Intraoperative findings were considered the gold standard against which physical examination and MRI were compared. Using these criteria the sensitivity, specificity and positive predictive value of MRI were 100%, 83% and 97% for cystocele; 100%, 75% and 94% for urethrocele; 100%, 54% and 33% for vaginal vault prolapse; 83%, 100% and 100% for uterine prolapse; 87%, 80% and 91% for enterocele; and 76%, 50% and 96% for rectocele. Dynamic half Fourier acquisition, single shot turbo spin-echo MRI appears to be an important adjunct in the comprehensive evaluation of the female pelvis. Except for rectocele, pelvic floor prolapse is accurately staged and pelvic organ pathology reliably detected. The technique is rapid, noninvasive and cost-effective, and it allows the clinician to visualize the whole pelvis using a single dynamic study that provides superb anatomical detail.

  19. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition

    PubMed Central

    Sun, Ryan; Bouchard, Matthew B.; Hillman, Elizabeth M. C.

    2010-01-01

    Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software’s framework and provide details to guide users with development of this and similar software. PMID:21258475

  20. Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation.

    PubMed

    Saba, Julian; Dutta, Sucharita; Hemenway, Eric; Viner, Rosa

    2012-01-01

    Currently, glycans are attracting attention from the scientific community as potential biomarkers or as posttranslational modifications (PTMs) of therapeutic proteins. However, structural characterization of glycoproteins and glycopeptides remains analytically challenging. Here, we report on the implementation of a novel acquisition strategy termed higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation (HCD-PD-ETD) on a hybrid linear ion trap-orbitrap mass spectrometer. This acquisition strategy uses the complementary fragmentations of ETD and HCD for glycopeptides analysis in an intelligent fashion. Furthermore, the approach minimizes user input for optimizing instrumental parameters and enables straightforward detection of glycopeptides. ETD spectra are only acquired when glycan oxonium ions from MS/MS HCD are detected. The advantage of this approach is that it streamlines data analysis and improves dynamic range and duty cycle. Here, we present the benefits of HCD-PD-ETD relative to the traditional alternating HCD/ETD for a trainer set containing twelve-protein mixture with two glycoproteins: human serotransferrin, ovalbumin and contaminations of two other: bovine alpha 1 acid glycoprotein (bAGP) and bovine fetuin.

  1. High-speed optical coherence tomography by circular interferometric ranging

    NASA Astrophysics Data System (ADS)

    Siddiqui, Meena; Nam, Ahhyun S.; Tozburun, Serhat; Lippok, Norman; Blatter, Cedric; Vakoc, Benjamin J.

    2018-02-01

    Existing three-dimensional optical imaging methods excel in controlled environments, but are difficult to deploy over large, irregular and dynamic fields. This means that they can be ill-suited for use in areas such as material inspection and medicine. To better address these applications, we developed methods in optical coherence tomography to efficiently interrogate sparse scattering fields, that is, those in which most locations (voxels) do not generate meaningful signal. Frequency comb sources are used to superimpose reflected signals from equispaced locations through optical subsampling. This results in circular ranging, and reduces the number of measurements required to interrogate large volumetric fields. As a result, signal acquisition barriers that have limited speed and field in optical coherence tomography are avoided. With a new ultrafast, time-stretched frequency comb laser design operating with 7.6 MHz to 18.9 MHz repetition rates, we achieved imaging of multi-cm3 fields at up to 7.5 volumes per second.

  2. Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.

  3. Simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) for dynamic contrast-enhanced MRI of liver.

    PubMed

    Ning, Jia; Sun, Yongliang; Xie, Sheng; Zhang, Bida; Huang, Feng; Koken, Peter; Smink, Jouke; Yuan, Chun; Chen, Huijun

    2018-05-01

    To propose a simultaneous acquisition sequence for improved hepatic pharmacokinetics quantification accuracy (SAHA) method for liver dynamic contrast-enhanced MRI. The proposed SAHA simultaneously acquired high temporal-resolution 2D images for vascular input function extraction using Cartesian sampling and 3D large-coverage high spatial-resolution liver dynamic contrast-enhanced images using golden angle stack-of-stars acquisition in an interleaved way. Simulations were conducted to investigate the accuracy of SAHA in pharmacokinetic analysis. A healthy volunteer and three patients with cirrhosis or hepatocellular carcinoma were included in the study to investigate the feasibility of SAHA in vivo. Simulation studies showed that SAHA can provide closer results to the true values and lower root mean square error of estimated pharmacokinetic parameters in all of the tested scenarios. The in vivo scans of subjects provided fair image quality of both 2D images for arterial input function and portal venous input function and 3D whole liver images. The in vivo fitting results showed that the perfusion parameters of healthy liver were significantly different from those of cirrhotic liver and HCC. The proposed SAHA can provide improved accuracy in pharmacokinetic modeling and is feasible in human liver dynamic contrast-enhanced MRI, suggesting that SAHA is a potential tool for liver dynamic contrast-enhanced MRI. Magn Reson Med 79:2629-2641, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  4. A real time dynamic data acquisition and processing system for velocity, density, and total temperature fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1991-01-01

    The real time Dynamic Data Acquisition and Processing System (DDAPS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAPS replaces both a recording mechanism and a separate data processing system. DDAPS receives input from hot wire anemometers. Amplifiers and filters condition the signals with computer controlled modules. The analog signals are simultaneously digitized and digitally recorded on disk. Automatic acquisition collects necessary calibration and environment data. Hot wire sensitivities are generated and applied to the hot wire data to compute fluctuations. The presentation of the raw and processed data is accomplished on demand. The interface to DDAPS is described along with the internal mechanisms of DDAPS. A summary of operations relevant to the use of the DDAPS is also provided.

  5. Algorithms development for the GEM-based detection system

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-09-01

    The measurement system based on GEM - Gas Electron Multiplier detector - is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an Xray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals and cluster charge values corresponding to the energy spectra.

  6. Electrical system for measurement of breakdown voltage of vacuum and gas-filled tubes using a dynamic method

    NASA Astrophysics Data System (ADS)

    Pejović, Milić M.; Milosavljević, Čedomir S.; Pejović, Momčilo M.

    2003-06-01

    This article describes an electrical system aimed at measuring and data acquisition of breakdown voltages of vacuum and gas-filled tubes. The measurements were performed using a nitrogen-filled tube at 4 mbar pressure. Based on the measured breakdown voltage data as a function of the applied voltage increase rate, a static breakdown voltage is estimated for the applied voltage gradient ranging from 0.1 to 1 V s-1 and from 1 to 10 V s-1. The histograms of breakdown voltages versus applied voltage increase rates from 0.1 and 0.5 V s-1 are approximated by the probability density functions using a fitting procedure.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muir, Ryan D.; Sullivan, Shane Z.; Oglesbee, Robert A.

    Digital lock-in amplification (LIA) with synchronous digitization (SD) is shown to provide significant signal to noise (S/N) and linear dynamic range advantages in beam-scanning microscopy measurements using pulsed laser sources. Direct comparisons between SD-LIA and conventional LIA in homodyne second harmonic generation measurements resulted in S/N enhancements consistent with theoretical models. SD-LIA provided notably larger S/N enhancements in the limit of low light intensities, through the smooth transition between photon counting and signal averaging developed in previous work. Rapid beam scanning instrumentation with up to video rate acquisition speeds minimized photo-induced sample damage. The corresponding increased allowance for higher lasermore » power without sample damage is advantageous for increasing the observed signal content.« less

  8. In-depth evaluation of software tools for data-independent acquisition based label-free quantification.

    PubMed

    Kuharev, Jörg; Navarro, Pedro; Distler, Ute; Jahn, Olaf; Tenzer, Stefan

    2015-09-01

    Label-free quantification (LFQ) based on data-independent acquisition workflows currently experiences increasing popularity. Several software tools have been recently published or are commercially available. The present study focuses on the evaluation of three different software packages (Progenesis, synapter, and ISOQuant) supporting ion mobility enhanced data-independent acquisition data. In order to benchmark the LFQ performance of the different tools, we generated two hybrid proteome samples of defined quantitative composition containing tryptically digested proteomes of three different species (mouse, yeast, Escherichia coli). This model dataset simulates complex biological samples containing large numbers of both unregulated (background) proteins as well as up- and downregulated proteins with exactly known ratios between samples. We determined the number and dynamic range of quantifiable proteins and analyzed the influence of applied algorithms (retention time alignment, clustering, normalization, etc.) on quantification results. Analysis of technical reproducibility revealed median coefficients of variation of reported protein abundances below 5% for MS(E) data for Progenesis and ISOQuant. Regarding accuracy of LFQ, evaluation with synapter and ISOQuant yielded superior results compared to Progenesis. In addition, we discuss reporting formats and user friendliness of the software packages. The data generated in this study have been deposited to the ProteomeXchange Consortium with identifier PXD001240 (http://proteomecentral.proteomexchange.org/dataset/PXD001240). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Does the Acquisition of Spatial Skill Involve a Shift from Algorithm to Memory Retrieval?

    ERIC Educational Resources Information Center

    Frank, David J.; Macnamara, Brooke N.

    2017-01-01

    Performance on verbal and mathematical tasks is enhanced when participants shift from using algorithms to retrieving information directly from memory (Siegler, 1988a). However, it is unknown whether a shift to retrieval is involved in dynamic spatial skill acquisition. For example, do athletes mentally extrapolate the trajectory of the ball, or do…

  10. Minnesota Innovation Research Program.

    DTIC Science & Technology

    1986-03-01

    Petroleum, Magnetic Controls, Farm Credit Services Corporations, Bush Foundation, and Hospital Corporation of America . .. Unc lassifijed RUNOT...Paper #47 (March, 1986). 7. David Bastien, " Sociolinguistic Studies of Mergers and Acquisitions," to be presented at the Minnesota Conference on...Applied Sociolinguistics , 1986. 8. David Bastien and Andrew Van de Ven, "Managerial and Organizational Dynamics of Mergers and Acquisitions," SNRC

  11. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolbitsch, Christoph, E-mail: christoph.1.kolbitsch@kcl.ac.uk; Prieto, Claudia; Schaeffter, Tobias

    Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracermore » uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than 10% with the proposed motion compensation approach. Conclusions: A MR acquisition scheme which yields both high resolution 3D anatomical data and highly accurate nonrigid motion information without an increase in scan time is presented. The proposed method leads to a strong improvement in both MR and PET image quality and ensures an accurate assessment of tracer uptake.« less

  12. Application of control theory to dynamic systems simulation

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    The application of control theory is applied to dynamic systems simulation. Theory and methodology applicable to controlled ecological life support systems are considered. Spatial effects on system stability, design of control systems with uncertain parameters, and an interactive computing language (PARASOL-II) designed for dynamic system simulation, report quality graphics, data acquisition, and simple real time control are discussed.

  13. Dynamics of Complexity and Accuracy: A Longitudinal Case Study of Advanced Untutored Development

    ERIC Educational Resources Information Center

    Polat, Brittany; Kim, Youjin

    2014-01-01

    This longitudinal case study follows a dynamic systems approach to investigate an under-studied research area in second language acquisition, the development of complexity and accuracy for an advanced untutored learner of English. Using the analytical tools of dynamic systems theory (Verspoor et al. 2011) within the framework of complexity,…

  14. Plenary Speech: Researching Complex Dynamic Systems--"Retrodictive Qualitative Modelling" in the Language Classroom

    ERIC Educational Resources Information Center

    Dörnyei, Zoltán

    2014-01-01

    While approaching second language acquisition from a complex dynamic systems perspective makes a lot of intuitive sense, it is difficult for a number of reasons to operationalise such a dynamic approach in research terms. For example, the most common research paradigms in the social sciences tend to examine variables in relative isolation rather…

  15. 48 CFR 48.105 - Relationship to other incentives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Relationship to other incentives. 48.105 Section 48.105 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION.... Contractors should be offered the fullest possible range of motivation, yet the benefits of an accepted VECP...

  16. SU-F-R-32: Evaluation of MRI Acquisition Parameter Variations On Texture Feature Extraction Using ACR Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Y; Wang, J; Wang, C

    Purpose: To investigate the sensitivity of classic texture features to variations of MRI acquisition parameters. Methods: This study was performed on American College of Radiology (ACR) MRI Accreditation Program Phantom. MR imaging was acquired on a GE 750 3T scanner with XRM explain gradient, employing a T1-weighted images (TR/TE=500/20ms) with the following parameters as the reference standard: number of signal average (NEX) = 1, matrix size = 256×256, flip angle = 90°, slice thickness = 5mm. The effect of the acquisition parameters on texture features with and without non-uniformity correction were investigated respectively, while all the other parameters were keptmore » as reference standard. Protocol parameters were set as follows: (a). NEX = 0.5, 2 and 4; (b).Phase encoding steps = 128, 160 and 192; (c). Matrix size = 128×128, 192×192 and 512×512. 32 classic texture features were generated using the classic gray level run length matrix (GLRLM) and gray level co-occurrence matrix (GLCOM) from each image data set. Normalized range ((maximum-minimum)/mean) was calculated to determine variation among the scans with different protocol parameters. Results: For different NEX, 31 out of 32 texture features’ range are within 10%. For different phase encoding steps, 31 out of 32 texture features’ range are within 10%. For different acquisition matrix size without non-uniformity correction, 14 out of 32 texture features’ range are within 10%; for different acquisition matrix size with non-uniformity correction, 16 out of 32 texture features’ range are within 10%. Conclusion: Initial results indicated that those texture features that range within 10% are less sensitive to variations in T1-weighted MRI acquisition parameters. This might suggest that certain texture features might be more reliable to be used as potential biomarkers in MR quantitative image analysis.« less

  17. Metastases to the Liver from Neuroendocrine Tumors: Effect of Duration of Scan Acquisition on CT Perfusion Values

    PubMed Central

    Hobbs, Brian P.; Chandler, Adam G.; Anderson, Ella F.; Herron, Delise H.; Charnsangavej, Chusilp; Yao, James

    2013-01-01

    Purpose To assess the effects of acquisition duration on computed tomographic (CT) perfusion parameter values in neuroendocrine liver metastases and normal liver tissue. Materials and Methods This retrospective study was institutional review board approved, with waiver of informed consent. CT perfusion studies in 16 patients (median age, 57.5 years; range, 42.0–69.7 years), including six men (median, 54.1 years; range, 42.0–69.7), and 10 women (median, 59.3 years; range 43.6–66.3), with neuroendocrine liver metastases were analyzed by means of distributed parametric modeling to determine tissue blood flow, blood volume, mean transit time, permeability, and hepatic arterial fraction for tumors and normal liver tissue. Analyses were undertaken with acquisition time of 12–590 seconds. Nonparameteric regression analyses were used to evaluate the functional relationships between CT perfusion parameters and acquisition duration. Evidence for time invariance was evaluated for each parameter at multiple time points by inferring the fitted derivative to assess its proximity to zero as a function of acquisition time by using equivalence tests with three levels of confidence (20%, 70%, and 90%). Results CT perfusion parameter values varied, approaching stable values with increasing acquisition duration. Acquisition duration greater than 160 seconds was required to obtain at least low confidence stability in any of the CT perfusion parameters. At 160 seconds of acquisition, all five CT perfusion parameters stabilized with low confidence in tumor and normal tissues, with the exception of hepatic arterial fraction in tumors. After 220 seconds of acquisition, there was stabilization with moderate confidence for blood flow, blood volume, and hepatic arterial fraction in tumors and normal tissue, and for mean transit time in tumors; however, permeability values did not satisfy the moderate stabilization criteria in both tumors and normal tissue until 360 seconds of acquisition. Blood flow, mean transit time, permeability, and hepatic arterial fraction were significantly different between tumor and normal tissue at 360 seconds (P < .001). Conclusion CT perfusion parameter values are affected by acquisition duration and approach progressively stable values with increasing acquisition times. © RSNA, 2013 Online supplemental material is available for this article. PMID:23824990

  18. Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction.

    PubMed

    Petrov, Andrii Y; Herbst, Michael; Andrew Stenger, V

    2017-08-15

    Rapid whole-brain dynamic Magnetic Resonance Imaging (MRI) is of particular interest in Blood Oxygen Level Dependent (BOLD) functional MRI (fMRI). Faster acquisitions with higher temporal sampling of the BOLD time-course provide several advantages including increased sensitivity in detecting functional activation, the possibility of filtering out physiological noise for improving temporal SNR, and freezing out head motion. Generally, faster acquisitions require undersampling of the data which results in aliasing artifacts in the object domain. A recently developed low-rank (L) plus sparse (S) matrix decomposition model (L+S) is one of the methods that has been introduced to reconstruct images from undersampled dynamic MRI data. The L+S approach assumes that the dynamic MRI data, represented as a space-time matrix M, is a linear superposition of L and S components, where L represents highly spatially and temporally correlated elements, such as the image background, while S captures dynamic information that is sparse in an appropriate transform domain. This suggests that L+S might be suited for undersampled task or slow event-related fMRI acquisitions because the periodic nature of the BOLD signal is sparse in the temporal Fourier transform domain and slowly varying low-rank brain background signals, such as physiological noise and drift, will be predominantly low-rank. In this work, as a proof of concept, we exploit the L+S method for accelerating block-design fMRI using a 3D stack of spirals (SoS) acquisition where undersampling is performed in the k z -t domain. We examined the feasibility of the L+S method to accurately separate temporally correlated brain background information in the L component while capturing periodic BOLD signals in the S component. We present results acquired in control human volunteers at 3T for both retrospective and prospectively acquired fMRI data for a visual activation block-design task. We show that a SoS fMRI acquisition with an acceleration of four and L+S reconstruction can achieve a brain coverage of 40 slices at 2mm isotropic resolution and 64 x 64 matrix size every 500ms. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Reflector automatic acquisition and pointing based on auto-collimation theodolite.

    PubMed

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  20. Reflector automatic acquisition and pointing based on auto-collimation theodolite

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  1. Trophic overlap between expanding and contracting fish predators in a range margin undergoing change.

    PubMed

    Westerbom, Mats; Lappalainen, Antti; Mustonen, Olli; Norkko, Alf

    2018-05-21

    Climate change is predicted to cause a freshening of the Baltic Sea, facilitating range expansions of freshwater species and contractions of marine. Resident marine flounders (Platichthys flesus) and expansive freshwater roach (Rutilus rutilus) are dominant consumers in the Baltic Sea sublittoral where they occur in partial sympatry. By comparing patterns of resource use by flounders and roach along a declining resource gradient of blue mussels (Mytilus trossulus) our aim was to explore predator functional responses and the degree of trophic overlap. Understanding the nature of density-dependent prey acquisition has important implications for predicting population dynamics of both predators and their shared prey. Results showed a highly specialized diet for both species, high reliance on blue mussels throughout the range, similar prey size preference and high trophic overlap. Highest overlap occurred where blue mussels were abundant but overlap was also high where they were scarce. Our results highlight the importance of a single food item - the blue mussel - for both species, likely promoting high population size and range expansion of roach. Findings also suggest that range expansion of roach may have a top-down structuring force on mussels that differ in severity and location from that originating from resident flounders.

  2. A system design of data acquisition and processing for side-scatter lidar

    NASA Astrophysics Data System (ADS)

    Zhang, ZhanYe; Xie, ChenBo; Wang, ZhenZhu; Kuang, ZhiQiang; Deng, Qian; Tao, ZongMing; Liu, Dong; Wang, Yingjian

    2018-03-01

    A system for collecting data of Side-Scatter lidar based on Charge Coupled Device (CCD),is designed and implemented. The system of data acquisition is based on Microsoft. Net structure and the language of C# is used to call dynamic link library (DLL) of CCD for realization of the real-time data acquisition and processing. The software stores data as txt file for post data acquisition and analysis. The system has ability to operate CCD device in all-day, automatic, continuous and high frequency data acquisition and processing conditions, which will catch 24-hour information of the atmospheric scatter's light intensity and retrieve the spatial and temporal properties of aerosol particles. The experimental result shows that the system is convenient to observe the aerosol optical characteristics near surface.

  3. DPLL implementation in carrier acquisition and tracking for burst DS-CDMA receivers.

    PubMed

    Guan, Yun-feng; Zhang, Zhao-yang; Lai, Li-feng

    2003-01-01

    This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.

  4. Six-minute magnetic resonance imaging protocol for evaluation of acute ischemic stroke: pushing the boundaries.

    PubMed

    Nael, Kambiz; Khan, Rihan; Choudhary, Gagandeep; Meshksar, Arash; Villablanca, Pablo; Tay, Jennifer; Drake, Kendra; Coull, Bruce M; Kidwell, Chelsea S

    2014-07-01

    If magnetic resonance imaging (MRI) is to compete with computed tomography for evaluation of patients with acute ischemic stroke, there is a need for further improvements in acquisition speed. Inclusion criteria for this prospective, single institutional study were symptoms of acute ischemic stroke within 24 hours onset, National Institutes of Health Stroke Scale ≥3, and absence of MRI contraindications. A combination of echo-planar imaging (EPI) and a parallel acquisition technique were used on a 3T magnetic resonance (MR) scanner to accelerate the acquisition time. Image analysis was performed independently by 2 neuroradiologists. A total of 62 patients met inclusion criteria. A repeat MRI scan was performed in 22 patients resulting in a total of 84 MRIs available for analysis. Diagnostic image quality was achieved in 100% of diffusion-weighted imaging, 100% EPI-fluid attenuation inversion recovery imaging, 98% EPI-gradient recalled echo, 90% neck MR angiography and 96% of brain MR angiography, and 94% of dynamic susceptibility contrast perfusion scans with interobserver agreements (k) ranging from 0.64 to 0.84. Fifty-nine patients (95%) had acute infarction. There was good interobserver agreement for EPI-fluid attenuation inversion recovery imaging findings (k=0.78; 95% confidence interval, 0.66-0.87) and for detection of mismatch classification using dynamic susceptibility contrast-Tmax (k=0.92; 95% confidence interval, 0.87-0.94). Thirteen acute intracranial hemorrhages were detected on EPI-gradient recalled echo by both observers. A total of 68 and 72 segmental arterial stenoses were detected on contrast-enhanced MR angiography of the neck and brain with k=0.93, 95% confidence interval, 0.84 to 0.96 and 0.87, 95% confidence interval, 0.80 to 0.90, respectively. A 6-minute multimodal MR protocol with good diagnostic quality is feasible for the evaluation of patients with acute ischemic stroke and can result in significant reduction in scan time rivaling that of the multimodal computed tomographic protocol. © 2014 American Heart Association, Inc.

  5. Department of Defense Weapon System Acquisition Policy: A System Dynamics Model and Analysis.

    DTIC Science & Technology

    1982-09-01

    dimensionless) PRPRD = Perceived Pressure for R&D (dimensionless) PU - Programs in Progress (programs) RPRD - Raw Pressure for R&D (dimensionless) TDPP - Time...ECAP) TH9 Pressure Ra Pressure_.- for Acquisition ( TDPP ) TH25 4for Acquisition (DPFAO) TH22D (DPPFAO) TH21 US Intelligence \\ - 7 Delay Time / efense...DIBP, DPPFAQ. K) TH22 A CPPFAG.K=DLINF3(RPFAG.KTCPP) TH23 A CPFAQ.K=MAX (DIBPCPPFAQ.K) TH24 C TDPP =12 TH25 C TCPP-24 TH26 CPFAQ Congressional Pressure

  6. The need for speed: informed land acquisitions for conservation in a dynamic property market.

    PubMed

    McDonald-Madden, Eve; Bode, Michael; Game, Edward T; Grantham, Hedley; Possingham, Hugh P

    2008-11-01

    Land acquisition is a common approach to biodiversity conservation but is typically subject to property availability on the public market. Consequently, conservation plans are often unable to be implemented as intended. When properties come on the market, conservation agencies must make a choice: purchase immediately, often without a detailed knowledge of its biodiversity value; survey the parcel and accept the risk that it may be removed from the market during this process; or not purchase and hope a better parcel comes on the market at a later date. We describe both an optimal method, using stochastic dynamic programming, and a simple rule of thumb for making such decisions. The solutions to this problem illustrate how optimal conservation is necessarily dynamic and requires explicit consideration of both the time period allowed for implementation and the availability of properties.

  7. Development of a Maintenance Advisor Expert System for the MK 92 MOD 2 Fire Control System: FC-1 Designation - Time, Range, Bearing FC-1 Acquisition, FC-1 Track - Range, Bearing, and FC-2 Designation - Time, Range, Bearing, FC-2 Acquisition, FC-2 Track - Range, Bearing, and FC-4 and FC-5

    DTIC Science & Technology

    1993-09-01

    is not present at output of the power amplifier- THEN replace train drive motor ELSE continue troubleshooting procedures. 30 Rules offer several...Type Body Type Tires Tires Engine Type Engine Type Battery Type Battery Type Figure 5-2 KOWLEDGE ACCESS BY FRAME AND SLOT 33 B. SEMANTIC NETWORKS A

  8. Dynamic Evolution of Pathogenicity Revealed by Sequencing and Comparative Genomics of 19 Pseudomonas syringae Isolates

    PubMed Central

    Romanchuk, Artur; Chang, Jeff H.; Mukhtar, M. Shahid; Cherkis, Karen; Roach, Jeff; Grant, Sarah R.; Jones, Corbin D.; Dangl, Jeffery L.

    2011-01-01

    Closely related pathogens may differ dramatically in host range, but the molecular, genetic, and evolutionary basis for these differences remains unclear. In many Gram- negative bacteria, including the phytopathogen Pseudomonas syringae, type III effectors (TTEs) are essential for pathogenicity, instrumental in structuring host range, and exhibit wide diversity between strains. To capture the dynamic nature of virulence gene repertoires across P. syringae, we screened 11 diverse strains for novel TTE families and coupled this nearly saturating screen with the sequencing and assembly of 14 phylogenetically diverse isolates from a broad collection of diseased host plants. TTE repertoires vary dramatically in size and content across all P. syringae clades; surprisingly few TTEs are conserved and present in all strains. Those that are likely provide basal requirements for pathogenicity. We demonstrate that functional divergence within one conserved locus, hopM1, leads to dramatic differences in pathogenicity, and we demonstrate that phylogenetics-informed mutagenesis can be used to identify functionally critical residues of TTEs. The dynamism of the TTE repertoire is mirrored by diversity in pathways affecting the synthesis of secreted phytotoxins, highlighting the likely role of both types of virulence factors in determination of host range. We used these 14 draft genome sequences, plus five additional genome sequences previously reported, to identify the core genome for P. syringae and we compared this core to that of two closely related non-pathogenic pseudomonad species. These data revealed the recent acquisition of a 1 Mb megaplasmid by a sub-clade of cucumber pathogens. This megaplasmid encodes a type IV secretion system and a diverse set of unknown proteins, which dramatically increases both the genomic content of these strains and the pan-genome of the species. PMID:21799664

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, Darren M.

    Sandia National Laboratories has tested and evaluated Geotech Smart24 data acquisition system with active Fortezza crypto card data signing and authentication. The test results included in this report were in response to static and tonal-dynamic input signals. Most test methodologies used were based on IEEE Standards 1057 for Digitizing Waveform Recorders and 1241 for Analog to Digital Converters; others were designed by Sandia specifically for infrasound application evaluation and for supplementary criteria not addressed in the IEEE standards. The objective of this work was to evaluate the overall technical performance of the Geotech Smart24 digitizer with a Fortezza PCMCIA cryptomore » card actively implementing the signing of data packets. The results of this evaluation were compared to relevant specifications provided within manufacturer's documentation notes. The tests performed were chosen to demonstrate different performance aspects of the digitizer under test. The performance aspects tested include determining noise floor, least significant bit (LSB), dynamic range, cross-talk, relative channel-to-channel timing, time-tag accuracy, analog bandwidth and calibrator performance.« less

  10. The Development of Point Doppler Velocimeter Data Acquisition and Processing Software

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.

    2008-01-01

    In order to develop efficient and quiet aircraft and validate Computational Fluid Dynamic predications, aerodynamic researchers require flow parameter measurements to characterize flow fields about wind tunnel models and jet flows. A one-component Point Doppler Velocimeter (pDv), a non-intrusive, laser-based instrument, was constructed using a design/develop/test/validate/deploy approach. A primary component of the instrument is software required for system control/management and data collection/reduction. This software along with evaluation algorithms, advanced pDv from a laboratory curiosity to a production level instrument. Simultaneous pDv and pitot probe velocity measurements obtained at the centerline of a flow exiting a two-inch jet, matched within 0.4%. Flow turbulence spectra obtained with pDv and a hot-wire detected the primary and secondary harmonics with equal dynamic range produced by the fan driving the flow. Novel,hardware and software methods were developed, tested and incorporated into the system to eliminate and/or minimize error sources and improve system reliability.

  11. Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells

    PubMed Central

    Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail

    2017-01-01

    Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells. DOI: http://dx.doi.org/10.7554/eLife.21926.001 PMID:28332981

  12. Amplified Sensitivity of Nitrogen-Vacancy Spins in Nanodiamonds Using All-Optical Charge Readout.

    PubMed

    Hopper, David A; Grote, Richard R; Parks, Samuel M; Bassett, Lee C

    2018-04-23

    Nanodiamonds containing nitrogen-vacancy (NV) centers offer a versatile platform for sensing applications spanning from nanomagnetism to in vivo monitoring of cellular processes. In many cases, however, weak optical signals and poor contrast demand long acquisition times that prevent the measurement of environmental dynamics. Here, we demonstrate the ability to perform fast, high-contrast optical measurements of charge distributions in ensembles of NV centers in nanodiamonds and use the technique to improve the spin-readout signal-to-noise ratio through spin-to-charge conversion. A study of 38 nanodiamonds with sizes ranging between 20 and 70 nm, each hosting a small ensemble of NV centers, uncovers complex, multiple time scale dynamics due to radiative and nonradiative ionization and recombination processes. Nonetheless, the NV-containing nanodiamonds universally exhibit charge-dependent photoluminescence contrasts and the potential for enhanced spin readout using spin-to-charge conversion. We use the technique to speed up a T 1 relaxometry measurement by a factor of 5.

  13. Respiratory motion correction in dynamic MRI using robust data decomposition registration - application to DCE-MRI.

    PubMed

    Hamy, Valentin; Dikaios, Nikolaos; Punwani, Shonit; Melbourne, Andrew; Latifoltojar, Arash; Makanyanga, Jesica; Chouhan, Manil; Helbren, Emma; Menys, Alex; Taylor, Stuart; Atkinson, David

    2014-02-01

    Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Dynamic Nuclear Polarization-Enhanced Biomolecular NMR Spectroscopy at High Magnetic Field with Fast Magic-Angle Spinning.

    PubMed

    Jaudzems, Kristaps; Bertarello, Andrea; Chaudhari, Sachin R; Pica, Andrea; Cala-De Paepe, Diane; Barbet-Massin, Emeline; Pell, Andrew J; Akopjana, Inara; Kotelovica, Svetlana; Gajan, David; Ouari, Olivier; Tars, Kaspars; Pintacuda, Guido; Lesage, Anne

    2018-06-18

    Dynamic nuclear polarization (DNP) is a powerful way to overcome the sensitivity limitation of magic-angle-spinning (MAS) NMR experiments. However, the resolution of the DNP NMR spectra of proteins is compromised by severe line broadening associated with the necessity to perform experiments at cryogenic temperatures and in the presence of paramagnetic radicals. High-quality DNP-enhanced NMR spectra of the Acinetobacter phage 205 (AP205) nucleocapsid can be obtained by combining high magnetic field (800 MHz) and fast MAS (40 kHz). These conditions yield enhanced resolution and long coherence lifetimes allowing the acquisition of resolved 2D correlation spectra and of previously unfeasible scalar-based experiments. This enables the assignment of aromatic resonances of the AP205 coat protein and its packaged RNA, as well as the detection of long-range contacts, which are not observed at room temperature, opening new possibilities for structure determination. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 77 FR 3752 - Commission Information Collection Activities (FERC-725I); Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-25

    ... the Bulk-Power System to system disturbances, including scheduled and unscheduled outages; requires each reliability coordinator to establish requirements for its area's dynamic disturbance recording... Retention--10.... 10 acquisition and installation of dynamic disturbance recorders. GO, TO, and RC to...

  16. Combined electromechanical impedance and fiber optic diagnosis of aerospace structures

    NASA Astrophysics Data System (ADS)

    Schlavin, Jon; Zagrai, Andrei; Clemens, Rebecca; Black, Richard J.; Costa, Joey; Moslehi, Behzad; Patel, Ronak; Sotoudeh, Vahid; Faridian, Fereydoun

    2014-03-01

    Electromechanical impedance is a popular diagnostic method for assessing structural conditions at high frequencies. It has been utilized, and shown utility, in aeronautic, space, naval, civil, mechanical, and other types of structures. By contrast, fiber optic sensing initially found its niche in static strain measurement and low frequency structural dynamic testing. Any low frequency limitations of the fiber optic sensing, however, are mainly governed by its hardware elements. As hardware improves, so does the bandwidth (frequency range * number of sensors) provided by the appropriate enabling fiber optic sensor interrogation system. In this contribution we demonstrate simultaneous high frequency measurements using fiber optic and electromechanical impedance structural health monitoring technologies. A laboratory specimen imitating an aircraft wing structure, incorporating surfaces with adjustable boundary conditions, was instrumented with piezoelectric and fiber optic sensors. Experiments were conducted at different structural boundary conditions associated with deterioration of structural health. High frequency dynamic responses were collected at multiple locations on a laboratory wing specimen and conclusions were drawn about correspondence between structural damage and dynamic signatures as well as correlation between electromechanical impedance and fiber optic sensors spectra. Theoretical investigation of the effect of boundary conditions on electromechanical impedance spectra is presented and connection to low frequency structural dynamics is suggested. It is envisioned that acquisition of high frequency structural dynamic responses with multiple fiber optic sensors may open new diagnostic capabilities for fiber optic sensing technologies.

  17. Working memory dynamics bias the generation of beliefs: the influence of data presentation rate on hypothesis generation.

    PubMed

    Lange, Nicholas D; Thomas, Rick P; Buttaccio, Daniel R; Illingworth, David A; Davelaar, Eddy J

    2013-02-01

    Although temporal dynamics are inherent aspects of diagnostic tasks, few studies have investigated how various aspects of time course influence hypothesis generation. An experiment is reported that demonstrates that working memory dynamics operating during serial data acquisition bias hypothesis generation. The presentation rate (and order) of a sequence of serially presented symptoms was manipulated to be either fast (180 ms per symptom) or slow (1,500 ms per symptom) in a simulated medical diagnosis task. When the presentation rate was slow, participants chose the disease hypothesis consistent with the symptoms appearing later in the sequence. When the presentation rate was fast, however, participants chose the disease hypothesis consistent with the symptoms appearing earlier in the sequence, therefore representing a novel primacy effect. We predicted and account for this effect through competitive working memory dynamics governing information acquisition and the contribution of maintained information to the retrieval of hypotheses from long-term memory.

  18. Dynamic Self-Organization and Early Lexical Development in Children

    ERIC Educational Resources Information Center

    Li, Ping; Zhao, Xiaowei; Whinney, Brian Mac

    2007-01-01

    In this study we present a self-organizing connectionist model of early lexical development. We call this model DevLex-II, based on the earlier DevLex model. DevLex-II can simulate a variety of empirical patterns in children's acquisition of words. These include a clear vocabulary spurt, effects of word frequency and length on age of acquisition,…

  19. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.

    PubMed

    Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H

    2007-01-01

    Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.

  20. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAB from The MathWorks. This paper will describe the design and development of the new data acquisition and analysis system.

  1. AKAPS Act in a Two-Step Mechanism of Memory Acquisition

    PubMed Central

    Scheunemann, Lisa; Skroblin, Philipp; Hundsrucker, Christian; Klussmann, Enno; Efetova, Marina

    2013-01-01

    Defining the molecular and neuronal basis of associative memories is based upon behavioral preparations that yield high performance due to selection of salient stimuli, strong reinforcement, and repeated conditioning trials. One of those preparations is the Drosophila aversive olfactory conditioning procedure where animals initiate multiple memory components after experience of a single cycle training procedure. Here, we explored the analysis of acquisition dynamics as a means to define memory components and revealed strong correlations between particular chronologies of shock impact and number experienced during the associative training situation and subsequent performance of conditioned avoidance. Analyzing acquisition dynamics in Drosophila memory mutants revealed that rutabaga (rut)-dependent cAMP signals couple in a divergent fashion for support of different memory components. In case of anesthesia-sensitive memory (ASM) we identified a characteristic two-step mechanism that links rut-AC1 to A-kinase anchoring proteins (AKAP)-sequestered protein kinase A at the level of Kenyon cells, a recognized center of olfactory learning within the fly brain. We propose that integration of rut-derived cAMP signals at level of AKAPs might serve as counting register that accounts for the two-step mechanism of ASM acquisition. PMID:24174675

  2. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAF3 from The Mathworks. This paper will describe the design and development of the new data acquisition and analysis system.

  3. Estimating B1+ in the breast at 7 T using a generic template.

    PubMed

    van Rijssel, Michael J; Pluim, Josien P W; Luijten, Peter R; Gilhuijs, Kenneth G A; Raaijmakers, Alexander J E; Klomp, Dennis W J

    2018-05-01

    Dynamic contrast-enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 + ) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil-specific B 1 + template is proposed and tested. Finite-difference time-domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three-dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00-4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1-16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time-consuming B 1 + mapping protocol. © 2018 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  4. Estimating B 1 + in the breast at 7 T using a generic template

    PubMed Central

    Pluim, Josien P. W.; Luijten, Peter R.; Gilhuijs, Kenneth G. A.; Raaijmakers, Alexander J. E.; Klomp, Dennis W. J.

    2018-01-01

    Dynamic contrast‐enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B 1 +) field inhomogeneities. B 1 + field information is required in order to correct these. The use of a generic, coil‐specific B 1 + template is proposed and tested. Finite‐difference time‐domain simulations for B 1 + were performed for healthy female volunteers with a wide range of breast anatomies. A generic B 1 + template was constructed by averaging simulations based on four volunteers. Three‐dimensional B 1 + maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B 1 + mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00‐4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1‐16%, with mean 11.7%. The agreement between the proposed template approach and a B 1 + mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B 1 + template. With local RF transmit coils, intersubject differences in B 1 + fields of the breast are comparable to the accuracy of B 1 + mapping methods, even at 7 T. Consequently, a single generic B 1 + template suits subjects over a wide range of breast anatomies, eliminating the need for a time‐consuming B 1 + mapping protocol. PMID:29570887

  5. Molecular DYNAmics of Soil Organic carbon (DYNAMOS *): a project focusing on soils and carbon through data and modeling

    NASA Astrophysics Data System (ADS)

    Hatté, C.; Balesdent, J.; Derenne, S.; Derrien, D.; Dignac, M.; Egasse, C.; Ezat, U.; Gauthier, C.; Mendez-Millan, M.; Nguyen Tu, T.; Rumpel, C.; Sicre, M.; Zeller, B.

    2009-12-01

    Here we present the first results of the DynaMOS project whose main issue is the build-up of a new generation of soil carbon model. The modeling will describe together soil organic geochemistry and soil carbon dynamics in a generalized, quantitative representation. The carbon dynamics time scale envisaged here will cover the 1 to 1000 yr range and described molecules will be carbohydrate, peptide, amino acid, lignin, lipids, their products of biodegradation and uncharacterized carbonaceous species of biological origin. Three main characteristics define DYNAMOS model originalities: it will consider organic matter at the molecular scale, integrate back to global scale and account for component vertical movements. In a first step, specific data acquisition will concern the production, fate and age of carbon of individual organic compounds. Dynamic parameters will be acquired by compound-specific carbon isotope analysis of both 13C and 14C, by GC/C/IR-MS and AMS. Sites for data acquisition, model calibration and model validation will be chosen on the base of their isotopic history and environmental constraints: 13C natural labeling (with and without C3/C4 vegetation changes), 13C/15N-labelled litter application in both forest and cropland. They include some long-term experiments owned by the partners themselves plus a worldwide panel of sites. In a second step the depth distribution of organic species, isotopes and ages in soils (1D representation) will be modeled by coupling carbon dynamics and vertical movement. Besides the main objective of providing a robust soil carbon dynamics model, DYNAMOS will assess and model the alteration of the isotopic signature of molecules throughout decay and create a shared database of both already published and new data of compound specific information. Issues of the project will concern different scientific fields: global geochemical cycles by refining the description of the terrestrial carbon cycle and entering the chemical composition of organic matter in carbon models; forestry or agriculture by offering a chemical frame for the management of crop residues or organic wastes; geochronology, paleoecology and paleo climatology by modeling the alteration of isotope signature and the preservation of terrestrial biomarkers. (*) funded by the French National Agency of Research (ANR): ANR-07-Blan-0222-01, http://dynamos.lsce.ipsl.fr

  6. The Dynamics of Memory: Context-Dependent Updating

    ERIC Educational Resources Information Center

    Hupbach, Almut; Hardt, Oliver; Gomez, Rebecca; Nadel, Lynn

    2008-01-01

    Understanding the dynamics of memory change is one of the current challenges facing cognitive neuroscience. Recent animal work on memory reconsolidation shows that memories can be altered long after acquisition. When reactivated, memories can be modified and require a restabilization (reconsolidation) process. We recently extended this finding to…

  7. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus

    2016-08-01

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.

  8. A new myohaptic instrument to assess wrist motion dynamically.

    PubMed

    Manto, Mario; Van Den Braber, Niels; Grimaldi, Giuliana; Lammertse, Piet

    2010-01-01

    The pathophysiological assessment of joint properties and voluntary motion in neurological patients remains a challenge. This is typically the case in cerebellar patients, who exhibit dysmetric movements due to the dysfunction of cerebellar circuitry. Several tools have been developed, but so far most of these tools have remained confined to laboratories, with a lack of standardization. We report on a new device which combines the use of electromyographic (EMG) sensors with haptic technology for the dynamic investigation of wrist properties. The instrument is composed of a drivetrain, a haptic controller and a signal acquisition unit. Angular accuracy is 0.00611 rad, nominal torque is 6 N·m, maximal rotation velocity is 34.907 rad/sec, with a range of motion of -1.0472 to +1.0472 rad. The inertia of the motor and handgrip is 0.004 kg·m2. This is the first standardized myohaptic instrument allowing the dynamic characterization of wrist properties, including under the condition of artificial damping. We show that cerebellar patients are unable to adapt EMG activities when faced with an increase in damping while performing fast reversal movements. The instrument allows the extraction of an electrophysiological signature of a cerebellar deficit.

  9. Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition.

    PubMed

    Dyvorne, Hadrien; Knight-Greenfield, Ashley; Jajamovich, Guido; Besa, Cecilia; Cui, Yong; Stalder, Aurélien; Markl, Michael; Taouli, Bachir

    2015-04-01

    To develop a highly accelerated phase-contrast cardiac-gated volume flow measurement (four-dimensional [4D] flow) magnetic resonance (MR) imaging technique based on spiral sampling and dynamic compressed sensing and to compare this technique with established phase-contrast imaging techniques for the quantification of blood flow in abdominal vessels. This single-center prospective study was compliant with HIPAA and approved by the institutional review board. Ten subjects (nine men, one woman; mean age, 51 years; age range, 30-70 years) were enrolled. Seven patients had liver disease. Written informed consent was obtained from all participants. Two 4D flow acquisitions were performed in each subject, one with use of Cartesian sampling with respiratory tracking and the other with use of spiral sampling and a breath hold. Cartesian two-dimensional (2D) cine phase-contrast images were also acquired in the portal vein. Two observers independently assessed vessel conspicuity on phase-contrast three-dimensional angiograms. Quantitative flow parameters were measured by two independent observers in major abdominal vessels. Intertechnique concordance was quantified by using Bland-Altman and logistic regression analyses. There was moderate to substantial agreement in vessel conspicuity between 4D flow acquisitions in arteries and veins (κ = 0.71 and 0.61, respectively, for observer 1; κ = 0.71 and 0.44 for observer 2), whereas more artifacts were observed with spiral 4D flow (κ = 0.30 and 0.20). Quantitative measurements in abdominal vessels showed good equivalence between spiral and Cartesian 4D flow techniques (lower bound of the 95% confidence interval: 63%, 77%, 60%, and 64% for flow, area, average velocity, and peak velocity, respectively). For portal venous flow, spiral 4D flow was in better agreement with 2D cine phase-contrast flow (95% limits of agreement: -8.8 and 9.3 mL/sec, respectively) than was Cartesian 4D flow (95% limits of agreement: -10.6 and 14.6 mL/sec). The combination of highly efficient spiral sampling with dynamic compressed sensing results in major acceleration for 4D flow MR imaging, which allows comprehensive assessment of abdominal vessel hemodynamics in a single breath hold.

  10. The dynamic nature of group A streptococcal epidemiology in tropical communities with high rates of rheumatic heart disease

    PubMed Central

    McDONALD, M. I.; TOWERS, R. J.; ANDREWS, R.; BENGER, N.; FAGAN, P.; CURRIE, B. J.; CARAPETIS, J. R.

    2008-01-01

    SUMMARY Prospective surveillance was conducted in three remote Aboriginal communities with high rates of rheumatic heart disease in order to investigate the epidemiology of group A β-haemolytic streptococci (GAS). At each household visit, participants were asked about sore throat. Swabs were taken from all throats and any skin sores. GAS isolates were emm sequence and pattern-typed using standard laboratory methods. There were 531 household visits; 43 different emm types and subtypes (emmST) were recovered. Four epidemiological patterns were observed. Multiple emmST were present in the population at any one time and household acquisition rates were high. Household acquisition was most commonly via 5- to 9-year-olds. Following acquisition, there was a 1 in 5 chance of secondary detection in the household. Throat detection of emmST was brief, usually <2 months. The epidemiology of GAS in these remote Aboriginal communities is a highly dynamic process characterized by emmST diversity and turnover. PMID:17540052

  11. Dynamics of adaptive immunity against phage in bacterial populations

    NASA Astrophysics Data System (ADS)

    Bradde, Serena; Vucelja, Marija; Tesileanu, Tiberiu; Balasubramanian, Vijay

    The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations oscillate, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a ``winner-take-all'' scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition rate.

  12. An Ad-Hoc Adaptive Pilot Model for Pitch Axis Gross Acquisition Tasks

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2012-01-01

    An ad-hoc algorithm is presented for real-time adaptation of the well-known crossover pilot model and applied to pitch axis gross acquisition tasks in a generic fighter aircraft. Off-line tuning of the crossover model to human pilot data gathered in a fixed-based high fidelity simulation is first accomplished for a series of changes in aircraft dynamics to provide expected values for model parameters. It is shown that in most cases, for this application, the traditional crossover model can be reduced to a gain and a time delay. The ad-hoc adaptive pilot gain algorithm is shown to have desirable convergence properties for most types of changes in aircraft dynamics.

  13. The in-situ 3D measurement system combined with CNC machine tools

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Jiang, Hongzhi; Li, Xudong; Sui, Shaochun; Tang, Limin; Liang, Xiaoyue; Diao, Xiaochun; Dai, Jiliang

    2013-06-01

    With the development of manufacturing industry, the in-situ 3D measurement for the machining workpieces in CNC machine tools is regarded as the new trend of efficient measurement. We introduce a 3D measurement system based on the stereovision and phase-shifting method combined with CNC machine tools, which can measure 3D profile of the machining workpieces between the key machining processes. The measurement system utilizes the method of high dynamic range fringe acquisition to solve the problem of saturation induced by specular lights reflected from shiny surfaces such as aluminum alloy workpiece or titanium alloy workpiece. We measured two workpieces of aluminum alloy on the CNC machine tools to demonstrate the effectiveness of the developed measurement system.

  14. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  15. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics.

    PubMed

    Czarski, T; Chernyshova, M; Malinowski, K; Pozniak, K T; Kasprowicz, G; Kolasinski, P; Krawczyk, R; Wojenski, A; Zabolotny, W

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  16. Stress Measurements on Blair High School Gymnasium: A Demonstration of Space Technology Transfer

    NASA Technical Reports Server (NTRS)

    Kastel, Dean

    1966-01-01

    This Report describes an actual demonstration of transfer to non-space use of technologies developed for space programs applications. Techniques used in assessing static and dynamic characteristics of the Blair High School gymnasium involved data acquisition by continuous scanning of strain gauge data acquired over a time of wide-temperature range, and analysis by a computer routine developed by Jet Propulsion Laboratory five years ago. The advantage of this method over conventional structural testing of uniquely designed structures was proved. More importantly, the process of demonstration was shown to be of great assistance to, and extension of, normal methods of disseminating information of new technologies. It is felt that significant benefit will derive from this improved mode oi concept transfer.

  17. Inferring Biological Structures from Super-Resolution Single Molecule Images Using Generative Models

    PubMed Central

    Maji, Suvrajit; Bruchez, Marcel P.

    2012-01-01

    Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information. PMID:22629348

  18. A New High Channel-Count, High Scan-Rate, Data Acquisition System for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.

    2016-01-01

    A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.

  19. Volume 2: Compendium of Abstracts

    DTIC Science & Technology

    2017-06-01

    simulation work using a standard running model for legged systems, the Spring Loaded Inverted Pendulum (SLIP) Model. In this model, the dynamics of a single...bar SLIP model is analyzed using a basin of attraction analyses to determine the optimal configuration for running at different velocities and...acquisition, and the automatic target acquisition were then compared to each other. After running trials with the current system, it will be

  20. NASA's DESDynI in Alaska

    NASA Astrophysics Data System (ADS)

    Sauber, J. M.; Hofton, M. A.; Bruhn, R. L.; Forster, R. R.; Burgess, E. W.; Cotton, M. M.

    2010-12-01

    In 2007 the National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommended an integrated L-band InSAR and multibeam Lidar mission called DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice) and it is scheduled for launch in 2017. The NASA InSAR and Lidar mission is optimized for studying geohazards and global environmental change. The complex plate boundary in southern coastal Alaska provides an excellent setting for testing DESDynI capabilities to recover fundamental parameters of glacio-seismotectonic processes. Also, aircraft and satellites acquisitions of Lidar and L-band SAR have been made in this region in the last decade that can be used for DESDynI performance simulations. Since the Lidar observations would penetrate most vegetation, the accurate bald Earth elevation profiles will give new elevation information beyond the standard 30-m digital elevation models (DEM) and the Lidar-derived elevations will provide an accurate georeferenced surface for local and regional scale studies. In an earlier study we demonstrated how the Lidar observations could be used in combination with SAR to generate an improved InSAR derived DEM in the Barrow, Alaska region [Atwood et al., 2007]; here we discuss how Lidar could be fused with L-band SAR in more rugged, vegetated terrane. Based on simulations of multi-beam Lidar instrument performance over uplifted marine terraces, active faults and folds, uplift associated with the 1899 Yakataga seismic event (M=8), and elevation change on the glaciers in southern, coastal Alaska, we report on the significance of the DESDynI Lidar contiguous 25 m footprint elevation profiles for EarthScope related studies in Alaska. We are using the morphology and dynamics of glaciers derived from L-band SAR ice velocities to infer the large scale sub-ice structures that form the structural framework of the Seward-Bagley Basins. Using primarily winter acquisitions of L-band SAR data from ALOS/PALSAR (Mode: Fine beam, HH) we have been able to estimate ice velocities from offset-tracking in the Upper and Lower Seward Basin even though the acquisitions are 46 days apart. We anticipate with the shorter repeat time for DESDynI-SAR acquisitions that we will be able to estimate seasonal ice velocities over a larger range of regions within both the ablation and accumulation zones.

  1. Exploring Regularities and Dynamic Systems in L2 Development

    ERIC Educational Resources Information Center

    Lenzing, Anke

    2015-01-01

    This article focuses on a theoretical and empirical exploration of developmental trajectories and individual learner variation in second language (L2) acquisition. Taking a processability perspective, I view learner language as a dynamic system that includes predictable universal developmental trajectories as well as individual learner variation,…

  2. Fast aurora zone analysis

    NASA Technical Reports Server (NTRS)

    Booker, Mattie

    1992-01-01

    The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.

  3. Two and Two Make Zero: The Counting Numbers, Their Conceptualization, Symbolization, and Acquisition

    ERIC Educational Resources Information Center

    Yaseen, H. S.

    2011-01-01

    "Two and Two Make Zero" considers children's acquisition of numerical concepts from a wide range of perspectives including topics that are often overlooked, most notably: the principal properties of the counting numbers in and of themselves; the role that numerical symbols play in number acquisition; the underlying conceptual structure of number…

  4. A guide to LIDAR data acquisition and processing for the forests of the Pacific Northwest.

    Treesearch

    Demetrios Gatziolis; Hans-Erik Andersen

    2008-01-01

    Light detection and ranging (LIDAR) is an emerging remote-sensing technology with promising potential to assist in mapping, monitoring, and assessment of forest resources. Continuous technological advancement and substantial reductions in data acquisition cost have enabled acquisition of laser data over entire states and regions. These developments have triggered an...

  5. Television as a Talking Picture Book: A Prop for Language Acquisition.

    ERIC Educational Resources Information Center

    Lemish, Dafna; Rice, Mabel L.

    This study provides longitudinal observations of young children's behaviors while viewing television in their own homes, over a time when the children were actively involved in the process of language acquisition. A total of 16 children were observed for a period ranging from 6 to 8 months. At the beginning, their ages ranged from 6 and 1/2 to 29…

  6. Acquisition and Post-Processing of Immunohistochemical Images.

    PubMed

    Sedgewick, Jerry

    2017-01-01

    Augmentation of digital images is almost always a necessity in order to obtain a reproduction that matches the appearance of the original. However, that augmentation can mislead if it is done incorrectly and not within reasonable limits. When procedures are in place for insuring that originals are archived, and image manipulation steps reported, scientists not only follow good laboratory practices, but avoid ethical issues associated with post processing, and protect their labs from any future allegations of scientific misconduct. Also, when procedures are in place for correct acquisition of images, the extent of post processing is minimized or eliminated. These procedures include white balancing (for brightfield images), keeping tonal values within the dynamic range of the detector, frame averaging to eliminate noise (typically in fluorescence imaging), use of the highest bit depth when a choice is available, flatfield correction, and archiving of the image in a non-lossy format (not JPEG).When post-processing is necessary, the commonly used applications for correction include Photoshop, and ImageJ, but a free program (GIMP) can also be used. Corrections to images include scaling the bit depth to higher and lower ranges, removing color casts from brightfield images, setting brightness and contrast, reducing color noise, reducing "grainy" noise, conversion of pure colors to grayscale, conversion of grayscale to colors typically used in fluorescence imaging, correction of uneven illumination (flatfield correction), merging color images (fluorescence), and extending the depth of focus. These corrections are explained in step-by-step procedures in the chapter that follows.

  7. Integrated electronics for time-resolved array of single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.

    2013-12-01

    The Time Correlated Single Photon Counting (TCSPC) technique has reached a prominent position among analytical methods employed in a great variety of fields, from medicine and biology (fluorescence spectroscopy) to telemetry (laser ranging) and communication (quantum cryptography). Nevertheless the development of TCSPC acquisition systems featuring both a high number of parallel channels and very high performance is still an open challenge: to satisfy the tight requirements set by the applications, a fully parallel acquisition system requires not only high efficiency single photon detectors but also a read-out electronics specifically designed to obtain the highest performance in conjunction with these sensors. To this aim three main blocks have been designed: a gigahertz bandwidth front-end stage to directly read the custom technology SPAD array avalanche current, a reconfigurable logic to route the detectors output signals to the acquisition chain and an array of time measurement circuits capable of recording the photon arrival times with picoseconds time resolution and a very high linearity. An innovative architecture based on these three circuits will feature a very high number of detectors to perform a truly parallel spatial or spectral analysis and a smaller number of high performance time-to-amplitude converter offering very high performance and a very high conversion frequency while limiting the area occupation and power dissipation. The routing logic will make the dynamic connection between the two arrays possible in order to guarantee that no information gets lost.

  8. Wheelchair pushrim kinetics measurement: A method to cancel inaccuracies due to pushrim weight and wheel camber.

    PubMed

    Chénier, Félix; Aissaoui, Rachid; Gauthier, Cindy; Gagnon, Dany H

    2017-02-01

    The commercially available SmartWheel TM is largely used in research and increasingly used in clinical practice to measure the forces and moments applied on the wheelchair pushrims by the user. However, in some situations (i.e. cambered wheels or increased pushrim weight), the recorded kinetics may include dynamic offsets that affect the accuracy of the measurements. In this work, an automatic method to identify and cancel these offsets is proposed and tested. First, the method was tested on an experimental bench with different cambers and pushrim weights. Then, the method was generalized to wheelchair propulsion. Nine experienced wheelchair users propelled their own wheelchairs instrumented with two SmartWheels with anti-slip pushrim covers. The dynamic offsets were correctly identified using the propulsion acquisition, without needing a separate baseline acquisition. A kinetic analysis was performed with and without dynamic offset cancellation using the proposed method. The most altered kinetic variables during propulsion were the vertical and total forces, with errors of up to 9N (p<0.001, large effect size of 5). This method is simple to implement, fully automatic and requires no further acquisitions. Therefore, we advise to use it systematically to enhance the accuracy of existing and future kinetic measurements. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  9. Modulated Acquisition of Spatial Distortion Maps

    PubMed Central

    Volkov, Alexey; Gros, Jerneja Žganec; Žganec, Mario; Javornik, Tomaž; Švigelj, Aleš

    2013-01-01

    This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial. PMID:23966196

  10. Modulated acquisition of spatial distortion maps.

    PubMed

    Volkov, Alexey; Gros, Jerneja Zganec; Zganec, Mario; Javornik, Tomaž; Svigelj, Aleš

    2013-08-21

    This work discusses a novel approach to image acquisition which improves the robustness of captured data required for 3D range measurements. By applying a pseudo-random code modulation to sequential acquisition of projected patterns the impact of environmental factors such as ambient light and mutual interference is significantly reduced. The proposed concept has been proven with an experimental range sensor based on the laser triangulation principle. The proposed design can potentially enhance the use of this principle to a variety of outdoor applications, such as autonomous vehicles, pedestrians' safety, collision avoidance, and many other tasks, where robust real-time distance detection in real world environment is crucial.

  11. Assessment of offshore New Jersey sources of Beach replenishment sand by diversified application of geologic and geophysical methods

    USGS Publications Warehouse

    Waldner, J.S.; Hall, D.W.; Uptegrove, J.; Sheridan, R.E.; Ashley, G.M.; Esker, D.

    1999-01-01

    Beach replenishment serves the dual purpose of maintaining a source of tourism and recreation while protecting life and property. For New Jersey, sources for beach sand supply are increasingly found offshore. To meet present and future needs, geologic and geophysical techniques can be used to improve the identification, volume estimation, and determination of suitability, thereby making the mining and managing of this resource more effective. Current research has improved both data collection and interpretation of seismic surveys and vibracore analysis for projects investigating sand ridges offshore of New Jersey. The New Jersey Geological Survey in cooperation with Rutgers University is evaluating the capabilities of digital seismic data (in addition to analog data) to analyze sand ridges. The printing density of analog systems limits the dynamic range to about 24 dB. Digital acquisition systems with dynamic ranges above 100 dB can permit enhanced seismic profiles by trace static correction, deconvolution, automatic gain scaling, horizontal stacking and digital filtering. Problems common to analog data, such as wave-motion effects of surface sources, water-bottom reverberation, and bubble-pulse-width can be addressed by processing. More than 160 line miles of digital high-resolution continuous profiling seismic data have been collected at sand ridges off Avalon, Beach Haven, and Barnegat Inlet. Digital multichannel data collection has recently been employed to map sand resources within the Port of New York/New Jersey expanded dredge-spoil site located 3 mi offshore of Sandy Hook, New Jersey. Multichannel data processing can reduce multiples, improve signal-to-noise calculations, enable source deconvolution, and generate sediment acoustic velocities and acoustic impedance analysis. Synthetic seismograms based on empirical relationships among grain size distribution, density, and velocity from vibracores are used to calculate proxy values for density and velocity. The seismograms are then correlated to the digital seismic profile to confirm reflected events. They are particularly useful where individual reflection events cannot be detected but a waveform generated by several thin lithologic units can be recognized. Progress in application of geologic and geophysical methods provides advantages in detailed sediment analysis and volumetric estimation of offshore sand ridges. New techniques for current and ongoing beach replenishment projects not only expand our knowledge of the geologic processes involved in sand ridge origin and development, but also improve our assessment of these valuable resources. These reconnaissance studies provide extensive data to the engineer regarding the suitability and quantity of sand and can optimize placement and analysis of vibracore samples.Beach replenishment serves the dual purpose of maintaining a source of tourism and recreation while protecting life and property. Research has improved both data collection and interpretation of seismic surveys and vibracore analysis for projects investigating sand ridges offshore of New Jersey. The New Jersey Geological Survey in cooperation with Rutgers University is evaluating the capabilities of digital seismic data to analyze sand ridges. The printing density of analog systems limits the dynamic range to about 24 dB. Digital acquisition systems with dynamic ranges about 100 dB can permit enhanced seismic profiles by trace static correction, deconvolution, automatic gain scaling, horizontal stacking and digital filtering.

  12. Quantitative evaluation of contrast agent uptake in standard fat-suppressed dynamic contrast-enhanced MRI examinations of the breast.

    PubMed

    Kousi, Evanthia; Smith, Joely; Ledger, Araminta E; Scurr, Erica; Allen, Steven; Wilson, Robin M; O'Flynn, Elizabeth; Pope, Romney J E; Leach, Martin O; Schmidt, Maria A

    2018-01-01

    To propose a method to quantify T 1 and contrast agent uptake in breast dynamic contrast-enhanced (DCE) examinations undertaken with standard clinical fat-suppressed MRI sequences and to demonstrate the proposed approach by comparing the enhancement characteristics of lobular and ductal carcinomas. A standard fat-suppressed DCE of the breast was performed at 1.5 T (Siemens Aera), followed by the acquisition of a proton density (PD)-weighted sequence, also fat suppressed. Both sequences were characterized with test objects (T 1 ranging from 30 ms to 2,400 ms) and calibration curves were obtained to enable T 1 calculation. The reproducibility and accuracy of the calibration curves were also investigated. Healthy volunteers and patients were scanned with Ethics Committee approval. The effect of B 0 field inhomogeneity was assessed in test objects and healthy volunteers. The T 1 of breast tumors was calculated at different time points (pre-, peak-, and post-contrast agent administration) for 20 patients, pre-treatment (10 lobular and 10 ductal carcinomas) and the two cancer types were compared (Wilcoxon rank-sum test). The calibration curves proved to be highly reproducible (coefficient of variation under 10%). T 1 measurements were affected by B 0 field inhomogeneity, but frequency shifts below 50 Hz introduced only 3% change to fat-suppressed T 1 measurements of breast parenchyma in volunteers. The values of T 1 measured pre-, peak-, and post-contrast agent administration demonstrated that the dynamic range of the DCE sequence was correct, that is, image intensity is approximately directly proportional to 1/T 1 for that range. Significant differences were identified in the width of the distributions of the post-contrast T 1 values between lobular and ductal carcinomas (P < 0.05); lobular carcinomas demonstrated a wider range of post-contrast T 1 values, potentially related to their infiltrative growth pattern. This work has demonstrated the feasibility of fat-suppressed T 1 measurements as a tool for clinical studies. The proposed quantitative approach is practical, enabled the detection of differences between lobular and invasive ductal carcinomas, and further enables the optimization of DCE protocols by tailoring the dynamic range of the sequence to the values of T 1 measured. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  13. 8-Channel acquisition system for Time-Correlated Single-Photon Counting.

    PubMed

    Antonioli, S; Miari, L; Cuccato, A; Crotti, M; Rech, I; Ghioni, M

    2013-06-01

    Nowadays, an increasing number of applications require high-performance analytical instruments capable to detect the temporal trend of weak and fast light signals with picosecond time resolution. The Time-Correlated Single-Photon Counting (TCSPC) technique is currently one of the preferable solutions when such critical optical signals have to be analyzed and it is fully exploited in biomedical and chemical research fields, as well as in security and space applications. Recent progress in the field of single-photon detector arrays is pushing research towards the development of high performance multichannel TCSPC systems, opening the way to modern time-resolved multi-dimensional optical analysis. In this paper we describe a new 8-channel high-performance TCSPC acquisition system, designed to be compact and versatile, to be used in modern TCSPC measurement setups. We designed a novel integrated circuit including a multichannel Time-to-Amplitude Converter with variable full-scale range, a D∕A converter, and a parallel adder stage. The latter is used to adapt each converter output to the input dynamic range of a commercial 8-channel Analog-to-Digital Converter, while the integrated DAC implements the dithering technique with as small as possible area occupation. The use of this monolithic circuit made the design of a scalable system of very small dimensions (95 × 40 mm) and low power consumption (6 W) possible. Data acquired from the TCSPC measurement are digitally processed and stored inside an FPGA (Field-Programmable Gate Array), while a USB transceiver allows real-time transmission of up to eight TCSPC histograms to a remote PC. Eventually, the experimental results demonstrate that the acquisition system performs TCSPC measurements with high conversion rate (up to 5 MHz/channel), extremely low differential nonlinearity (<0.04 peak-to-peak of the time bin width), high time resolution (down to 20 ps Full-Width Half-Maximum), and very low crosstalk between channels.

  14. Development of 2D imaging of SXR plasma radiation by means of GEM detectors

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.

    2014-11-01

    Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.

  15. Four-dimensional optical coherence tomography imaging of total liquid ventilated rats

    NASA Astrophysics Data System (ADS)

    Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund

    2013-06-01

    Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.

  16. The genetic basis of the fitness costs of antimicrobial resistance: a meta-analysis approach.

    PubMed

    Vogwill, Tom; MacLean, R Craig

    2015-03-01

    The evolution of antibiotic resistance carries a fitness cost, expressed in terms of reduced competitive ability in the absence of antibiotics. This cost plays a key role in the dynamics of resistance by generating selection against resistance when bacteria encounter an antibiotic-free environment. Previous work has shown that the cost of resistance is highly variable, but the underlying causes remain poorly understood. Here, we use a meta-analysis of the published resistance literature to determine how the genetic basis of resistance influences its cost. We find that on average chromosomal resistance mutations carry a larger cost than acquiring resistance via a plasmid. This may explain why resistance often evolves by plasmid acquisition. Second, we find that the cost of plasmid acquisition increases with the breadth of its resistance range. This suggests a potentially important limit on the evolution of extensive multidrug resistance via plasmids. We also find that epistasis can significantly alter the cost of mutational resistance. Overall, our study shows that the cost of antimicrobial resistance can be partially explained by its genetic basis. It also highlights both the danger associated with plasmidborne resistance and the need to understand why resistance plasmids carry a relatively low cost.

  17. P04.19 Recommendations for computation of textural measures obtained from 3D brain tumor MRIs: A robustness analysis points out the need for standardization.

    PubMed Central

    Molina, D.; Pérez-Beteta, J.; Martínez-González, A.; Velásquez, C.; Martino, J.; Luque, B.; Revert, A.; Herruzo, I.; Arana, E.; Pérez-García, V. M.

    2017-01-01

    Abstract Introduction: Textural analysis refers to a variety of mathematical methods used to quantify the spatial variations in grey levels within images. In brain tumors, textural features have a great potential as imaging biomarkers having been shown to correlate with survival, tumor grade, tumor type, etc. However, these measures should be reproducible under dynamic range and matrix size changes for their clinical use. Our aim is to study this robustness in brain tumors with 3D magnetic resonance imaging, not previously reported in the literature. Materials and methods: 3D T1-weighted images of 20 patients with glioblastoma (64.80 ± 9.12 years-old) obtained from a 3T scanner were analyzed. Tumors were segmented using an in-house semi-automatic 3D procedure. A set of 16 3D textural features of the most common types (co-occurrence and run-length matrices) were selected, providing regional (run-length based measures) and local information (co-ocurrence matrices) on the tumor heterogeneity. Feature robustness was assessed by means of the coefficient of variation (CV) under both dynamic range (16, 32 and 64 gray levels) and/or matrix size (256x256 and 432x432) changes. Results: None of the textural features considered were robust under dynamic range changes. The textural co-occurrence matrix feature Entropy was the only textural feature robust (CV < 10%) under spatial resolution changes. Conclusions: In general, textural measures of three-dimensional brain tumor images are neither robust under dynamic range nor under matrix size changes. Thus, it becomes mandatory to fix standards for image rescaling after acquisition before the textural features are computed if they are to be used as imaging biomarkers. For T1-weighted images a dynamic range of 16 grey levels and a matrix size of 256x256 (and isotropic voxel) is found to provide reliable and comparable results and is feasible with current MRI scanners. The implications of this work go beyond the specific tumor type and MRI sequence studied here and pose the need for standardization in textural feature calculation of oncological images. FUNDING: James S. Mc. Donnell Foundation (USA) 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer [Collaborative award 220020450 and planning grant 220020420], MINECO/FEDER [MTM2015-71200-R], JCCM [PEII-2014-031-P].

  18. Kinetic Analysis of Benign and Malignant Breast Lesions With Ultrafast Dynamic Contrast-Enhanced MRI: Comparison With Standard Kinetic Assessment.

    PubMed

    Abe, Hiroyuki; Mori, Naoko; Tsuchiya, Keiko; Schacht, David V; Pineda, Federico D; Jiang, Yulei; Karczmar, Gregory S

    2016-11-01

    The purposes of this study were to evaluate diagnostic parameters measured with ultrafast MRI acquisition and with standard acquisition and to compare diagnostic utility for differentiating benign from malignant lesions. Ultrafast acquisition is a high-temporal-resolution (7 seconds) imaging technique for obtaining 3D whole-breast images. The dynamic contrast-enhanced 3-T MRI protocol consists of an unenhanced standard and an ultrafast acquisition that includes eight contrast-enhanced ultrafast images and four standard images. Retrospective assessment was performed for 60 patients with 33 malignant and 29 benign lesions. A computer-aided detection system was used to obtain initial enhancement rate and signal enhancement ratio (SER) by means of identification of a voxel showing the highest signal intensity in the first phase of standard imaging. From the same voxel, the enhancement rate at each time point of the ultrafast acquisition and the AUC of the kinetic curve from zero to each time point of ultrafast imaging were obtained. There was a statistically significant difference between benign and malignant lesions in enhancement rate and kinetic AUC for ultrafast imaging and also in initial enhancement rate and SER for standard imaging. ROC analysis showed no significant differences between enhancement rate in ultrafast imaging and SER or initial enhancement rate in standard imaging. Ultrafast imaging is useful for discriminating benign from malignant lesions. The differential utility of ultrafast imaging is comparable to that of standard kinetic assessment in a shorter study time.

  19. Video-rate or high-precision: a flexible range imaging camera

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  20. Animal Preparations to Assess Neurophysiological Effects of Bio-Dynamic Environments.

    DTIC Science & Technology

    1980-07-17

    deprivation in preventing the acquisition of visually-guided behaviors. The next study examined acquisition of visually-guided behaviors in six animals...Maffei, L. and Bisti, S. Binocular interaction in strabismic kittens deprived of vision. Science, 191, 579-580, 1976. Matin, L. A possible hybrid...function in cat visual cortex following prolonged deprivation . Exp. Brain Res., 25 (1976) 139-156. Hein, A. Visually controlled components of movement

  1. High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.

    2015-11-01

    Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.

  2. Differential Modifications of Synaptic Weights During Odor Rule Learning: Dynamics of Interaction Between the Piriform Cortex with Lower and Higher Brain Areas

    PubMed Central

    Cohen, Yaniv; Wilson, Donald A.; Barkai, Edi

    2015-01-01

    Learning of a complex olfactory discrimination (OD) task results in acquisition of rule learning after prolonged training. Previously, we demonstrated enhanced synaptic connectivity between the piriform cortex (PC) and its ascending and descending inputs from the olfactory bulb (OB) and orbitofrontal cortex (OFC) following OD rule learning. Here, using recordings of evoked field postsynaptic potentials in behaving animals, we examined the dynamics by which these synaptic pathways are modified during rule acquisition. We show profound differences in synaptic connectivity modulation between the 2 input sources. During rule acquisition, the ascending synaptic connectivity from the OB to the anterior and posterior PC is simultaneously enhanced. Furthermore, post-training stimulation of the OB enhanced learning rate dramatically. In sharp contrast, the synaptic input in the descending pathway from the OFC was significantly reduced until training completion. Once rule learning was established, the strength of synaptic connectivity in the 2 pathways resumed its pretraining values. We suggest that acquisition of olfactory rule learning requires a transient enhancement of ascending inputs to the PC, synchronized with a parallel decrease in the descending inputs. This combined short-lived modulation enables the PC network to reorganize in a manner that enables it to first acquire and then maintain the rule. PMID:23960200

  3. Pyramidal Wavefront Sensor Demonstrator at INO

    NASA Astrophysics Data System (ADS)

    Martin, Olivier; Véran, Jean-Pierre; Anctil, Geneviève; Bourqui, Pascal; Châteauneuf, François; Gauvin, Jonny; Goyette, Philippe; Lagacé, François; Turbide, Simon; Wang, Min

    2014-08-01

    Wavefront sensing is one of the key elements of an Adaptive Optics System. Although Shack-Hartmann WFS are the most commonly used whether for astronomical or biomedical applications, the high-sensitivity and large dynamic-range of the Pyramid-WFS (P-WFS) technology is promising and needs to be further investigated for proper justification in future Extremely Large Telescopes (ELT) applications. At INO, center for applied research in optics and technology transfer in Quebec City, Canada, we have recently set to develop a Pyramid wavefront sensor (P-WFS), an option for which no other research group in Canada had any experience. A first version had been built and tested in 2013 in collaboration with NRC-HIA Victoria. Here we present a second iteration of demonstrator with an extended spectral range, fast modulation capability and low-noise, fast-acquisition EMCCD sensor. The system has been designed with compactness and robustness in mind to allow on-sky testing at Mont Mégantic facility, in parallel with a Shack- Hartmann sensor so as to compare both options.

  4. CMOS Rad-Hard Front-End Electronics for Precise Sensors Measurements

    NASA Astrophysics Data System (ADS)

    Sordo-Ibáñez, Samuel; Piñero-García, Blanca; Muñoz-Díaz, Manuel; Ragel-Morales, Antonio; Ceballos-Cáceres, Joaquín; Carranza-González, Luis; Espejo-Meana, Servando; Arias-Drake, Alberto; Ramos-Martos, Juan; Mora-Gutiérrez, José Miguel; Lagos-Florido, Miguel Angel

    2016-08-01

    This paper reports a single-chip solution for the implementation of radiation-tolerant CMOS front-end electronics (FEE) for applications requiring the acquisition of base-band sensor signals. The FEE has been designed in a 0.35μm CMOS process, and implements a set of parallel conversion channels with high levels of configurability to adapt the resolution, conversion rate, as well as the dynamic input range for the required application. Each conversion channel has been designed with a fully-differential implementation of a configurable-gain instrumentation amplifier, followed by an also configurable dual-slope ADC (DS ADC) up to 16 bits. The ASIC also incorporates precise thermal monitoring, sensor conditioning and error detection functionalities to ensure proper operation in extreme environments. Experimental results confirm that the proposed topologies, in conjunction with the applied radiation-hardening techniques, are reliable enough to be used without loss in the performance in environments with an extended temperature range (between -25 and 125 °C) and a total dose beyond 300 krad.

  5. Forebody/Inlet of the Joint Strike Fighter Tested at Low Speeds

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.

    1998-01-01

    As part of a national cooperative effort to develop a multinational fighter aircraft, a model of a Joint Strike Fighter concept was tested in several NASA Lewis Research Center wind tunnels at low speeds over a range of headwind velocities and model attitudes. This Joint Strike Fighter concept, which is scheduled to go into production in 2005, will greatly improve the range, capability, maneuverability, and survivability of fighter aircraft, and the production program could ultimately be worth $100 billion. The test program was a team effort between Lewis and Lockheed Martin Tactical Aircraft Systems. Testing was completed in September 1997, several weeks ahead of schedule, allowing Lockheed additional time to review the results and analysis data before the next test and resulting in significant cost savings for Lockheed. Several major milestones related to dynamic and steady-state data acquisition and overall model performance were reached during this model test. Results from this program will contribute to both the concept demonstration phase and the production aircraft.

  6. A DST Model of Multilingualism and the Role of Metalinguistic Awareness

    ERIC Educational Resources Information Center

    Jessner, Ulrike

    2008-01-01

    This paper suggests that a dynamic systems theory (DST) provides an adequate conceptual metaphor for discussing multilingual development. Multilingual acquisition is a nonlinear and complex dynamic process depending on a number of interacting factors. Variability plays a crucial role in the multilingual system as it changes over time (Herdina &…

  7. Using Empirical Evidence in the Process of Proving: The Case of Dynamic Geometry

    ERIC Educational Resources Information Center

    Guven, Bulent; Cekmez, Erdem; Karatas, Ilhan

    2010-01-01

    With the emergence of Dynamic Geometry Software (DGS), a theoretical gap between the acquisition (inductive) and the justification (deductive) of a mathematical statement has started a debate. Some educators believe that deductive proof in geometry should be abandoned in favour of an experimental approach to mathematical justification. This…

  8. Effect of somatosensory and neurofeedback training on balance in older healthy adults: a preliminary investigation.

    PubMed

    Azarpaikan, Atefeh; Taheri Torbati, Hamidreza

    2017-10-23

    The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.

  9. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen

    Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as offer a promising approach to extend KPFM to solid-liquid interfaces.« less

  10. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space

    DOE PAGES

    Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen; ...

    2016-08-12

    Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as offer a promising approach to extend KPFM to solid-liquid interfaces.« less

  11. Automation software for a materials testing laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1990-01-01

    The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.

  12. Estimation of Spatiotemporal Sensitivity Using Band-limited Signals with No Additional Acquisitions for k-t Parallel Imaging.

    PubMed

    Takeshima, Hidenori; Saitoh, Kanako; Nitta, Shuhei; Shiodera, Taichiro; Takeguchi, Tomoyuki; Bannae, Shuhei; Kuhara, Shigehide

    2018-03-13

    Dynamic MR techniques, such as cardiac cine imaging, benefit from shorter acquisition times. The goal of the present study was to develop a method that achieves short acquisition times, while maintaining a cost-effective reconstruction, for dynamic MRI. k - t sensitivity encoding (SENSE) was identified as the base method to be enhanced meeting these two requirements. The proposed method achieves a reduction in acquisition time by estimating the spatiotemporal (x - f) sensitivity without requiring the acquisition of the alias-free signals, typical of the k - t SENSE technique. The cost-effective reconstruction, in turn, is achieved by a computationally efficient estimation of the x - f sensitivity from the band-limited signals of the aliased inputs. Such band-limited signals are suitable for sensitivity estimation because the strongly aliased signals have been removed. For the same reduction factor 4, the net reduction factor 4 for the proposed method was significantly higher than the factor 2.29 achieved by k - t SENSE. The processing time is reduced from 4.1 s for k - t SENSE to 1.7 s for the proposed method. The image quality obtained using the proposed method proved to be superior (mean squared error [MSE] ± standard deviation [SD] = 6.85 ± 2.73) compared to the k - t SENSE case (MSE ± SD = 12.73 ± 3.60) for the vertical long-axis (VLA) view, as well as other views. In the present study, k - t SENSE was identified as a suitable base method to be improved achieving both short acquisition times and a cost-effective reconstruction. To enhance these characteristics of base method, a novel implementation is proposed, estimating the x - f sensitivity without the need for an explicit scan of the reference signals. Experimental results showed that the acquisition, computational times and image quality for the proposed method were improved compared to the standard k - t SENSE method.

  13. New methods of data calibration for high power-aperture lidar.

    PubMed

    Guan, Sai; Yang, Guotao; Chang, Qihai; Cheng, Xuewu; Yang, Yong; Gong, Shaohua; Wang, Jihong

    2013-03-25

    For high power-aperture lidar sounding of wide atmospheric dynamic ranges, as in middle-upper atmospheric probing, photomultiplier tubes' (PMT) pulse pile-up effects and signal-induced noise (SIN) complicates the extraction of information from lidar return signal, especially from metal layers' fluorescence signal. Pursuit for sophisticated description of metal layers' characteristics at far range (80~130km) with one PMT of high quantum efficiency (QE) and good SNR, contradicts the requirements for signals of wide linear dynamic range (i.e. from approximate 10(2) to 10(8) counts/s). In this article, Substantial improvements on experimental simulation of Lidar signals affected by PMT are reported to evaluate the PMTs' distortions in our High Power-Aperture Sodium LIDAR system. A new method for pile-up calibration is proposed by taking into account PMT and High Speed Data Acquisition Card as an Integrated Black-Box, as well as a new experimental method for identifying and removing SIN from the raw Lidar signals. Contradiction between the limited linear dynamic range of raw signal (55~80km) and requirements for wider acceptable linearity has been effectively solved, without complicating the current lidar system. Validity of these methods was demonstrated by applying calibrated data to retrieve atmospheric parameters (i.e. atmospheric density, temperature and sodium absolutely number density), in comparison with measurements of TIMED satellite and atmosphere model. Good agreements are obtained between results derived from calibrated signal and reference measurements where differences of atmosphere density, temperature are less than 5% in the stratosphere and less than 10K from 30km to mesosphere, respectively. Additionally, approximate 30% changes are shown in sodium concentration at its peak value. By means of the proposed methods to revert the true signal independent of detectors, authors approach a new balance between maintaining the linearity of adequate signal (20-110km) and guaranteeing good SNR (i.e. 10(4):1 around 90km) without debasing QE, in one single detecting channel. For the first time, PMT in photon-counting mode is independently applied to subtract reliable information of atmospheric parameters with wide acceptable linearity over an altitude range from stratosphere up to lower thermosphere (20-110km).

  14. Mixotrophy and intraguild predation - dynamic consequences of shifts between food web motifs

    NASA Astrophysics Data System (ADS)

    Karnatak, Rajat; Wollrab, Sabine

    2017-06-01

    Mixotrophy is ubiquitous in microbial communities of aquatic systems with many flagellates being able to use autotroph as well as heterotroph pathways for energy acquisition. The usage of one over the other pathway is associated with resource availability and the coupling of alternative pathways has strong implications for system stability. We investigated the impact of dominance of different energy pathways related to relative resource availability on system dynamics in the setting of a tritrophic food web motif. This motif consists of a mixotroph feeding on a purely autotroph species while competing for a shared resource. In addition, the autotroph can use an additional exclusive food source. By changing the relative abundance of shared vs. exclusive food source, we shift the food web motif from an intraguild predation motif to a food chain motif. We analyzed the dependence of system dynamics on absolute and relative resource availability. In general, the system exhibits a transition from stable to oscillatory dynamics with increasing nutrient availability. However, this transition occurs at a much lower nutrient level for the food chain in comparison to the intraguild predation motif. A similar transition is also observed with variations in the relative abundance of food sources for a range of nutrient levels. We expect this shift in food web motifs to occur frequently in microbial communities and therefore the results from our study are highly relevant for natural systems.

  15. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2017-03-01

    PAC-3 MSE) 81 Warfighter Information Network-Tactical (WIN-T) Increment 2 83 Improved Turbine Engine Program (ITEP) 85 Long Range Precision Fires...incorporated certain 2010 acquisition reform initiatives. DOD and Congress have previously addressed some of the challenges and problems in the defense...additional quantities. While that does represent a cost increase, it does not necessarily indicate acquisition problems or a loss of buying power

  16. Using the Dreyfus Model of Skill Acquisition to Describe and Interpret Skill Acquisition and Clinical Judgment in Nursing Practice and Education

    ERIC Educational Resources Information Center

    Benner, Patricia

    2004-01-01

    Three studies using the Dreyfus model of skill acquisition were conducted over a period of 21 years. Nurses with a range of experience and reported skillfulness were interviewed. Each study used nurses' narrative accounts of actual clinical situations. A subsample of participants were observed and interviewed at work. These studies extend the…

  17. Diagnostic performance of a streamlined 18F-choline PET-CT protocol for the detection of prostate carcinoma recurrence in combination with appropriate-use criteria.

    PubMed

    Frood, R; Baren, J; McDermott, G; Bottomley, D; Patel, C; Scarsbrook, A

    2018-04-30

    To evaluate the efficacy of single time-point half-body (skull base to thighs) fluorine-18 choline positron emission tomography-computed tomography (PET-CT) compared to a triple-phase acquisition protocol in the detection of prostate carcinoma recurrence. Consecutive choline PET-CT studies performed at a single tertiary referral centre in patients with biochemical recurrence of prostate carcinoma between September 2012 and March 2017 were reviewed retrospectively. The indication for the study, imaging protocol used, imaging findings, whether management was influenced by the PET-CT, and subsequent patient outcome were recorded. Ninety-one examinations were performed during the study period; 42 were carried out using a triple-phase protocol (dynamic pelvic imaging for 20 minutes after tracer injection, half-body acquisition at 60 minutes and delayed pelvic scan at 90 minutes) between 2012 and August 2015. Subsequently following interim review of diagnostic performance, a streamlined protocol and appropriate-use criteria were introduced. Forty-nine examinations were carried out using the single-phase protocol between 2015 and 2017. Twenty-nine (69%) of the triple-phase studies were positive for recurrence compared to 38 (78%) of the single-phase studies. Only one patient who had a single-phase study would have benefited from a dynamic acquisition, they have required no further treatment or imaging and are currently under prostate-specific antigen (PSA) surveillance. Choline PET-CT remains a useful tool for the detection of prostate recurrence when used in combination with appropriate-use criteria. Removal of dynamic and delayed acquisition phases reduces study time without adversely affecting accuracy. Benefits include shorter imaging time which improves patient comfort, reduced cost, and improved scanner efficiency. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  18. High-resolution dynamic 31 P-MRSI using a low-rank tensor model.

    PubMed

    Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei

    2017-08-01

    To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. A pattern jitter free AFC scheme for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Yoshida, Shousei

    1993-01-01

    This paper describes a scheme for pattern jitter free automatic frequency control (AFC) with a wide frequency acquisition range. In this scheme, equalizing signals fed to the frequency discriminator allow pattern jitter free performance to be achieved for all roll-off factors. In order to define the acquisition range, frequency discrimination characateristics are analyzed on a newly derived frequency domain model. As a result, it is shown that a sufficiently wide acquisition range over a given system symbol rate can be achieved independent of symbol timing errors. Additionally, computer simulation demonstrates that frequency jitter performance improves in proportion to E(sub b)/N(sub 0) because pattern-dependent jitter is suppressed in the discriminator output. These results show significant promise for applciation to mobile satellite systems, which feature relatively low symbol rate transmission with an approximately 0.4-0.7 roll-off factor.

  20. A Fixed-Wing Aircraft Simulation Tool for Improving the efficiency of DoD Acquisition

    DTIC Science & Technology

    2015-10-05

    simulation tool , CREATETM-AV Helios [12-14], a high fidelity rotary wing vehicle simulation tool , and CREATETM-AV DaVinci [15-16], a conceptual through...05/2015 Oct 2008-Sep 2015 A Fixed-Wing Aircraft Simulation Tool for Improving the Efficiency of DoD Acquisition Scott A. Morton and David R...multi-disciplinary fixed-wing virtual aircraft simulation tool incorporating aerodynamics, structural dynamics, kinematics, and kinetics. Kestrel allows

  1. The Benefit of Being Naïve and Knowing It: The Unfavourable Impact of Perceived Context Familiarity on Learning in Complex Problem Solving Tasks

    ERIC Educational Resources Information Center

    Beckmann, Jens F.; Goode, Natassia

    2014-01-01

    Previous research has found that embedding a problem into a familiar context does not necessarily confer an advantage over a novel context in the acquisition of new knowledge about a complex, dynamic system. In fact, it has been shown that a semantically familiar context can be detrimental to knowledge acquisition. This has been described as the…

  2. Navy Ford (CVN-78) Class Aircraft Carrier Program: Background and Issues for Congress

    DTIC Science & Technology

    2016-03-08

    limited. Yet, it is not too late to examine the carrier’s acquisition history to illustrate the dynamics of shipbuilding—and weapon system—acquisition...rates and the investments needed by the shipbuilder to achieve these efficiencies.31 Later in the hearing, Stackley testified that the history in...for all work packages in accordance with the integrated master schedule;  zero delinquent engineering and planning products;  resolution of

  3. Whole left ventricular functional assessment from two minutes free breathing multi-slice CINE acquisition

    NASA Astrophysics Data System (ADS)

    Usman, M.; Atkinson, D.; Heathfield, E.; Greil, G.; Schaeffter, T.; Prieto, C.

    2015-04-01

    Two major challenges in cardiovascular MRI are long scan times due to slow MR acquisition and motion artefacts due to respiratory motion. Recently, a Motion Corrected-Compressed Sensing (MC-CS) technique has been proposed for free breathing 2D dynamic cardiac MRI that addresses these challenges by simultaneously accelerating MR acquisition and correcting for any arbitrary motion in a compressed sensing reconstruction. In this work, the MC-CS framework is combined with parallel imaging for further acceleration, and is termed Motion Corrected Sparse SENSE (MC-SS). Validation of the MC-SS framework is demonstrated in eight volunteers and three patients for left ventricular functional assessment and results are compared with the breath-hold acquisitions as reference. A non-significant difference (P > 0.05) was observed in the volumetric functional measurements (end diastolic volume, end systolic volume, ejection fraction) and myocardial border sharpness values obtained with the proposed and gold standard methods. The proposed method achieves whole heart multi-slice coverage in 2 min under free breathing acquisition eliminating the time needed between breath-holds for instructions and recovery. This results in two-fold speed up of the total acquisition time in comparison to the breath-hold acquisition.

  4. A low jitter PLL clock used for phase change memory

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li

    2013-02-01

    A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.

  5. Nd:YAG Laser-Based Dual-Line Detection Rayleigh Scattering and Current Efforts on UV, Filtered Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Otugen, M. Volkan; Popovic, Svetozar

    1996-01-01

    Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.

  6. Rad-hard Dual-threshold High-count-rate Silicon Pixel-array Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Adam

    In this program, a Voxtel-led team demonstrates a full-format (192 x 192, 100-µm pitch, VX-810) high-dynamic-range x-ray photon-counting sensor—the Dual Photon Resolved Energy Acquisition (DUPREA) sensor. Within the Phase II program the following tasks were completed: 1) system analysis and definition of the DUPREA sensor requirements; 2) design, simulation, and fabrication of the full-format VX-810 ROIC design; 3) design, optimization, and fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of the optically sensitive focal-plane array; 5) development of an evaluation camera; and 6)more » electrical and optical characterization of the sensor.« less

  7. User manual for NASA Lewis 10 by 10 foot supersonic wind tunnel. Revised

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1995-01-01

    This manual describes the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Lewis Research Center and provides information for users who wish to conduct experiments in this facility. Tunnel performance operating envelopes of altitude, dynamic pressure, Reynolds number, total pressure, and total temperature as a function of test section Mach number are presented. Operating envelopes are shown for both the aerodynamic (closed) cycle and the propulsion (open) cycle. The tunnel test section Mach number range is 2.0 to 3.5. General support systems, such as air systems, hydraulic system, hydrogen system, fuel system, and Schlieren system, are described. Instrumentation and data processing and acquisition systems are also described. Pretest meeting formats and schedules are outlined. Tunnel user responsibility and personnel safety are also discussed.

  8. A radar-enabled collaborative sensor network integrating COTS technology for surveillance and tracking.

    PubMed

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R; Demirer, R Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  9. Airborne UV photon-counting radiometer

    NASA Astrophysics Data System (ADS)

    Bauer, Marc C.; Wilcher, George; Banks, Calvin R.; Wood, Ronald L.

    2000-11-01

    The radiometric measurements group at the Arnold Engineering Development Center (AEDC) has developed new solar-blind radiometers for the SENSOR TALON flight test. These radiometers will be flown in an instrument pod by the 46th Test Wing at Eglin AFB. The radiometers are required to fit into a single quadrant of a 22-in.-diam sphere turret of the instrument pod. Because of minimal space requirements and photon-counting sensitivity needs, the radiometric measurements group used image intensifiers instead of the standard photomultiplier tubes (PMTs). The new design concept improved the photon-counting sensitivity, dynamic range, and uniformity of the field of view as compared to standard PMTs. A custom data acquisition system was required to miniaturize the electronics and generate a pulse code-modulated (PCM) data stream to the standard tape recording system.

  10. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  11. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K.

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals,more » and cluster charge values corresponding to the energy spectra.« less

  12. [Application of small remote sensing satellite constellations for environmental hazards in wetland landscape mapping: taking Liaohe Delta, Liaoning Province of Northeast China as a case].

    PubMed

    Yang, Yuan-Zheng; Chang, Yu; Hu, Yuan-Man; Liu, Miao; Li, Yue-Hui

    2011-06-01

    To timely and accurately acquire the spatial distribution pattern of wetlands is of significance for the dynamic monitoring, conservation, and sustainable utilization of wetlands. The small remote sensing satellite constellations A/B stars (HJ-1A/1B stars) for environmental hazards were launched by China for monitoring terrestrial resources, which could provide a new data source of remote sensing image acquisition for retrieving wetland types. Taking Liaohe Delta as a case, this paper compared the accuracy of wetland classification map and the area of each wetland type retrieved from CCD data (HJ CCD data) and TM5 data, and validated and explored the applicability and the applied potential of HJ CCD data in wetland resources dynamic monitoring. The results showed that HJ CCD data could completely replace Landsat TM5 data in feature extraction and remote sensing classification. In real-time monitoring, due to its 2 days of data acquisition cycle, HJ CCD data had the priority to Landsat TM5 data (16 days of data acquisition cycle).

  13. Development of remote data acquisition system based on OPC for brake test bench

    NASA Astrophysics Data System (ADS)

    Wang, Yiwei; Wu, Mengling; Tian, Chun; Ma, Tianhe

    2017-08-01

    The 1:1 train brake system test bench can be used to carry out brake-related adhesion-slid control, stability test, noise test and dynamic test. To collect data of the test bench, a data acquisition method is needed. In this paper, the remote data acquisition system of test bench is built by LabVIEW based on OPC technology. Unlike the traditional hardwire way connecting PLC acquisition module with sensors, the novel method is used to collect data and share them through the internal LAN built by Ethernet switches, which avoids the complex wiring interference in an easy, efficient and flexible way. The system has been successfully applied to the data acquisition activities of the comprehensive brake system test bench of CRRC Nanjing Puzhen Haitai Brake Equipment Co., Ltd., and the relationship test between the adhesion coefficient and the slip-ratio is realized. The speed signal, torque signal and brake disc temperature can be collected and displayed. The results show that the system is reliable, convenient, and efficient, and can meet the requirements of data acquisition.

  14. Can Dynamic Visualizations with Variable Control Enhance the Acquisition of Intuitive Knowledge?

    ERIC Educational Resources Information Center

    Wichmann, Astrid; Timpe, Sebastian

    2015-01-01

    An important feature of inquiry learning is to take part in science practices including exploring variables and testing hypotheses. Computer-based dynamic visualizations have the potential to open up various exploration possibilities depending on the level of learner control. It is assumed that variable control, e.g., by changing parameters of a…

  15. Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Kistenev, Yury V.; Larin, Kirill V.

    2016-03-01

    Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea.

  16. The X-33 range Operations Control Center

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Norman, Cynthia L.

    1998-01-01

    This paper describes the capabilities and features of the X-33 Range Operations Center at NASA Dryden Flight Research Center. All the unprocessed data will be collected and transmitted over fiber optic lines to the Lockheed Operations Control Center for real-time flight monitoring of the X-33 vehicle. By using the existing capabilities of the Western Aeronautical Test Range, the Range Operations Center will provide the ability to monitor all down-range tracking sites for the Extended Test Range systems. In addition to radar tracking and aircraft telemetry data, the Telemetry and Radar Acquisition and Processing System is being enhanced to acquire vehicle command data, differential Global Positioning System corrections and telemetry receiver signal level status. The Telemetry and Radar Acquisition Processing System provides the flexibility to satisfy all X-33 data processing requirements quickly and efficiently. Additionally, the Telemetry and Radar Acquisition Processing System will run a real-time link margin analysis program. The results of this model will be compared in real-time with actual flight data. The hardware and software concepts presented in this paper describe a method of merging all types of data into a common database for real-time display in the Range Operations Center in support of the X-33 program. All types of data will be processed for real-time analysis and display of the range system status to ensure public safety.

  17. Ultrafast optical ranging using microresonator soliton frequency combs

    NASA Astrophysics Data System (ADS)

    Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M. H. P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; Freude, W.; Kippenberg, T. J.; Koos, C.

    2018-02-01

    Light detection and ranging is widely used in science and industry. Over the past decade, optical frequency combs were shown to offer advantages in optical ranging, enabling fast distance acquisition with high accuracy. Driven by emerging high-volume applications such as industrial sensing, drone navigation, or autonomous driving, there is now a growing demand for compact ranging systems. Here, we show that soliton Kerr comb generation in integrated silicon nitride microresonators provides a route to high-performance chip-scale ranging systems. We demonstrate dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for in-flight sampling of gun projectiles moving at 150 meters per second. Combining integrated soliton-comb ranging systems with chip-scale nanophotonic phased arrays could enable compact ultrafast ranging systems for emerging mass applications.

  18. OSIRIS-REx Flight Dynamics and Navigation Design

    NASA Astrophysics Data System (ADS)

    Williams, B.; Antreasian, P.; Carranza, E.; Jackman, C.; Leonard, J.; Nelson, D.; Page, B.; Stanbridge, D.; Wibben, D.; Williams, K.; Moreau, M.; Berry, K.; Getzandanner, K.; Liounis, A.; Mashiku, A.; Highsmith, D.; Sutter, B.; Lauretta, D. S.

    2018-06-01

    OSIRIS-REx is the first NASA mission to return a sample of an asteroid to Earth. Navigation and flight dynamics for the mission to acquire and return a sample of asteroid 101955 Bennu establish many firsts for space exploration. These include relatively small orbital maneuvers that are precise to ˜1 mm/s, close-up operations in a captured orbit about an asteroid that is small in size and mass, and planning and orbit phasing to revisit the same spot on Bennu in similar lighting conditions. After preliminary surveys and close approach flyovers of Bennu, the sample site will be scientifically characterized and selected. A robotic shock-absorbing arm with an attached sample collection head mounted on the main spacecraft bus acquires the sample, requiring navigation to Bennu's surface. A touch-and-go sample acquisition maneuver will result in the retrieval of at least 60 grams of regolith, and up to several kilograms. The flight activity concludes with a return cruise to Earth and delivery of the sample return capsule (SRC) for landing and sample recovery at the Utah Test and Training Range (UTTR).

  19. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worden, Alexandra Z.; Lee, Jae-Hyeok; Mock, Thomas

    Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of modern oceans during climate change. These broadly distributed primary producers belong to an anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S ribosomal RNA gene identity, we found that genomes from two isolates shared only 90percent of their predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch arrangements as well as the discovery of intronicmore » repeat elements in one isolate, and in metagenomic data, but not in other genomes. Divergence appears to have been facilitated by selection and acquisition processes that actively shape the repertoire of genes that are mutually exclusive between the two isolates differently than the core genes. Analyses of the Micromonas genomes offer valuable insights into ecological differentiation and the dynamic nature of early plant evolution.« less

  20. High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Lai, Puxiang; Ma, Cheng; Xu, Xiao; Suzuki, Yuta; Grabar, Alexander A.; Wang, Lihong V.

    2014-03-01

    Time-reversed ultrasonically encoded (TRUE) optical focusing is an emerging technique that focuses light deep into scattering media by phase-conjugating ultrasonically encoded diffuse light. In previous work, the speed of TRUE focusing was limited to no faster than 1 Hz by the response time of the photorefractive phase conjugate mirror, or the data acquisition and streaming speed of the digital camera; photorefractive-crystal-based TRUE focusing was also limited to the visible spectral range. These time-consuming schemes prevent this technique from being applied in vivo, since living biological tissue has a speckle decorrelation time on the order of a millisecond. In this work, using a Tedoped Sn2P2S6 photorefractive crystal at a near-infrared wavelength of 793 nm, we achieved TRUE focusing inside dynamic scattering media having a speckle decorrelation time as short as 7.7 ms. As the achieved speed approaches the tissue decorrelation rate, this work is an important step forward toward in vivo applications of TRUE focusing in deep tissue imaging, photodynamic therapy, and optical manipulation.

  1. The development and evaluation of a novel repurposing of a peripheral gaming device for the acquisition of forces applied to a hydraulic treatment plinth.

    PubMed

    Cooper, Darren; Bevins, Joe; Corbett, Mark

    2018-01-13

    This technical note details the stages taken to create an instrumented hydraulic treatment plinth for the measurement of applied forces in the vertical axis. The modification used a widely available low-cost peripheral gaming device and required only basic construction and computer skills. The instrumented treatment plinth was validated against a laboratory grade force platform across a range of applied masses from 0.5-15 kg, mock Gr I-IV vertebral mobilisations and a dynamic response test. Intraclass correlation coefficients demonstrated poor reliability (0.46) for low masses of 0.5 kg improving to excellent for larger masses up to15 kg respectively; excellent to good reliability (0.97-0.86) for the mock mobilisations and moderate reliability (0.51) for the dynamic response test. The study demonstrates how a cheap peripheral gaming device can be repurposed so that forces applied to a hydraulic treatment plinth can be collected reliably when applied in a clinically reasoned manner. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Inter-satellite laser link acquisition with dual-way scanning for Space Advanced Gravity Measurements mission

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Yi; Ming, Min; Jiang, Yuan-Ze; Duan, Hui-Zong; Yeh, Hsien-Chi

    2018-06-01

    Laser link acquisition is a key technology for inter-satellite laser ranging and laser communication. In this paper, we present an acquisition scheme based on the differential power sensing method with dual-way scanning, which will be used in the next-generation gravity measurement mission proposed in China, called Space Advanced Gravity Measurements (SAGM). In this scheme, the laser beams emitted from two satellites are power-modulated at different frequencies to enable the signals of the two beams to be measured distinguishably, and their corresponding pointing angles are determined by using the differential power sensing method. As the master laser beam and the slave laser beam are decoupled, the dual-way scanning method, in which the laser beams of both the master and the slave satellites scan uncertainty cones simultaneously and independently, can be used, instead of the commonly used single-way scanning method, in which the laser beam of one satellite scans and that of the other one stares. Therefore, the acquisition time is reduced significantly. Numerical simulation and experiments of the acquisition process are performed using the design parameters of the SAGM mission. The results show that the average acquisition time is less than 10 s for a scanning range of 1-mrad radius with a success rate of more than 99%.

  3. Contrast Gradient-Based Blood Velocimetry With Computed Tomography: Theory, Simulations, and Proof of Principle in a Dynamic Flow Phantom.

    PubMed

    Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard

    2016-01-01

    The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.

  4. Dynamic Acquisition and Retrieval Tool (DART) for Comet Sample Return : Session: 2.06.Robotic Mobility and Sample Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas; hide

    2013-01-01

    The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen DART configuration, the efforts to identify a test simulant and the properties of these simulants, and the results of the preliminary testing will be described in this paper.

  5. AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-185 AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 23, 2016 16:04:24 UNCLASSIFIED AMRAAM December 2015 SAR March 23, 2016 16:04...2015 SAR March 23, 2016 16:04:24 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program Manager POE

  6. Note: Quasi-real-time analysis of dynamic near field scattering data using a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Cerchiari, G.; Croccolo, F.; Cardinaux, F.; Scheffold, F.

    2012-10-01

    We present an implementation of the analysis of dynamic near field scattering (NFS) data using a graphics processing unit. We introduce an optimized data management scheme thereby limiting the number of operations required. Overall, we reduce the processing time from hours to minutes, for typical experimental conditions. Previously the limiting step in such experiments, the processing time is now comparable to the data acquisition time. Our approach is applicable to various dynamic NFS methods, including shadowgraph, Schlieren and differential dynamic microscopy.

  7. View-sharing PROPELLER with pixel-based optimal blade selection: application on dynamic contrast-enhanced imaging.

    PubMed

    Chuang, Tzu-Chao; Huang, Hsuan-Hung; Chang, Hing-Chiu; Wu, Ming-Ting

    2014-06-01

    To achieve better spatial and temporal resolution of dynamic contrast-enhanced MR imaging, the concept of k-space data sharing, or view sharing, can be implemented for PROPELLER acquisition. As found in other view-sharing methods, the loss of high-resolution dynamics is possible for view-sharing PROPELLER (VS-Prop) due to the temporal smoothing effect. The degradation can be more severe when a narrow blade with less phase encoding steps is chosen in the acquisition for higher frame rate. In this study, an iterative algorithm termed pixel-based optimal blade selection (POBS) is proposed to allow spatially dependent selection of the rotating blades, to generate high-resolution dynamic images with minimal reconstruction artifacts. In the reconstruction of VS-Prop, the central k-space which dominates the image contrast is only provided by the target blade with the peripheral k-space contributed by a minimal number of consecutive rotating blades. To reduce the reconstruction artifacts, the set of neighboring blades exhibiting the closest image contrast with the target blade is picked by POBS algorithm. Numerical simulations and phantom experiments were conducted in this study to investigate the dynamic response and spatial profiles of images generated using our proposed method. In addition, dynamic contrast-enhanced cardiovascular imaging of healthy subjects was performed to demonstrate the feasibility and advantages. The simulation results show that POBS VS-Prop can provide timely dynamic response to rapid signal change, especially for a small region of interest or with the use of narrow blades. The POBS algorithm also demonstrates its capability to capture nonsimultaneous signal changes over the entire FOV. In addition, both phantom and in vivo experiments show that the temporal smoothing effect can be avoided by means of POBS, leading to higher wash-in slope of contrast enhancement after the bolus injection. With the satisfactory reconstruction quality provided by the POBS algorithm, VS-Prop acquisition technique may find useful clinical applications in DCE MR imaging studies where both spatial and temporal resolutions play important roles.

  8. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    PubMed

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  9. Real-time detection and data acquisition system for the left ventricular outline. Ph.D. Thesis - Stanford Univ.

    NASA Technical Reports Server (NTRS)

    Reiber, J. H. C.

    1976-01-01

    To automate the data acquisition procedure, a real-time contour detection and data acquisition system for the left ventricular outline was developed using video techniques. The X-ray image of the contrast-filled left ventricle is stored for subsequent processing on film (cineangiogram), video tape or disc. The cineangiogram is converted into video format using a television camera. The video signal from either the TV camera, video tape or disc is the input signal to the system. The contour detection is based on a dynamic thresholding technique. Since the left ventricular outline is a smooth continuous function, for each contour side a narrow expectation window is defined in which the next borderpoint will be detected. A computer interface was designed and built for the online acquisition of the coordinates using a PDP-12 computer. The advantage of this system over other available systems is its potential for online, real-time acquisition of the left ventricular size and shape during angiocardiography.

  10. The impact of database quality on keystroke dynamics authentication

    NASA Astrophysics Data System (ADS)

    Panasiuk, Piotr; Rybnik, Mariusz; Saeed, Khalid; Rogowski, Marcin

    2016-06-01

    This paper concerns keystroke dynamics, also partially in the context of touchscreen devices. The authors concentrate on the impact of database quality and propose their algorithm to test database quality issues. The algorithm is used on their own as well as the well-known . Following specific problems were researched: classification accuracy, development of user typing proficiency, time precision during sample acquisition, representativeness of training set, sample length.

  11. High-frame-rate full-vocal-tract 3D dynamic speech imaging.

    PubMed

    Fu, Maojing; Barlaz, Marissa S; Holtrop, Joseph L; Perry, Jamie L; Kuehn, David P; Shosted, Ryan K; Liang, Zhi-Pei; Sutton, Bradley P

    2017-04-01

    To achieve high temporal frame rate, high spatial resolution and full-vocal-tract coverage for three-dimensional dynamic speech MRI by using low-rank modeling and sparse sampling. Three-dimensional dynamic speech MRI is enabled by integrating a novel data acquisition strategy and an image reconstruction method with the partial separability model: (a) a self-navigated sparse sampling strategy that accelerates data acquisition by collecting high-nominal-frame-rate cone navigator sand imaging data within a single repetition time, and (b) are construction method that recovers high-quality speech dynamics from sparse (k,t)-space data by enforcing joint low-rank and spatiotemporal total variation constraints. The proposed method has been evaluated through in vivo experiments. A nominal temporal frame rate of 166 frames per second (defined based on a repetition time of 5.99 ms) was achieved for an imaging volume covering the entire vocal tract with a spatial resolution of 2.2 × 2.2 × 5.0 mm 3 . Practical utility of the proposed method was demonstrated via both validation experiments and a phonetics investigation. Three-dimensional dynamic speech imaging is possible with full-vocal-tract coverage, high spatial resolution and high nominal frame rate to provide dynamic speech data useful for phonetic studies. Magn Reson Med 77:1619-1629, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Dictionary learning and time sparsity in dynamic MRI.

    PubMed

    Caballero, Jose; Rueckert, Daniel; Hajnal, Joseph V

    2012-01-01

    Sparse representation methods have been shown to tackle adequately the inherent speed limits of magnetic resonance imaging (MRI) acquisition. Recently, learning-based techniques have been used to further accelerate the acquisition of 2D MRI. The extension of such algorithms to dynamic MRI (dMRI) requires careful examination of the signal sparsity distribution among the different dimensions of the data. Notably, the potential of temporal gradient (TG) sparsity in dMRI has not yet been explored. In this paper, a novel method for the acceleration of cardiac dMRI is presented which investigates the potential benefits of enforcing sparsity constraints on patch-based learned dictionaries and TG at the same time. We show that an algorithm exploiting sparsity on these two domains can outperform previous sparse reconstruction techniques.

  13. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-10-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  14. Measuring Dynamic Knowledge and Performance at the Tactical Edges of Organizations: Assessing Acquisition Workforce Quality

    DTIC Science & Technology

    2013-04-01

    report was supported by the Acquisition Research Program of the Graduate School of Business & Public Policy at the Naval Postgraduate School. To...in this report are those of the authors and do not reflect the official policy position of the Navy, the Department of Defense, or the federal...government. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average

  15. Validation of snow depth reconstruction from lapse-rate webcam images against terrestrial laser scanner measurements in centrel Pyrenees

    NASA Astrophysics Data System (ADS)

    Revuelto, Jesús; Jonas, Tobias; López-Moreno, Juan Ignacio

    2015-04-01

    Snow distribution in mountain areas plays a key role in many processes as runoff dynamics, ecological cycles or erosion rates. Nevertheless, the acquisition of high resolution snow depth data (SD) in space-time is a complex task that needs the application of remote sensing techniques as Terrestrial Laser Scanning (TLS). Such kind of techniques requires intense field work for obtaining high quality snowpack evolution during a specific time period. Combining TLS data with other remote sensing techniques (satellite images, photogrammetry…) and in-situ measurements could represent an improvement of the available information of a variable with rapid topographic changes. The aim of this study is to reconstruct daily SD distribution from lapse-rate images from a webcam and data from two to three TLS acquisitions during the snow melting periods of 2012, 2013 and 2014. This information is obtained at Izas Experimental catchment in Central Spanish Pyrenees; a catchment of 33ha, with an elevation ranging from 2050 to 2350m a.s.l. The lapse-rate images provide the Snow Covered Area (SCA) evolution at the study site, while TLS allows obtaining high resolution information of SD distribution. With ground control points, lapse-rate images are georrectified and their information is rasterized into a 1-meter resolution Digital Elevation Model. Subsequently, for each snow season, the Melt-Out Date (MOD) of each pixel is obtained. The reconstruction increases the estimated SD lose for each time step (day) in a distributed manner; starting the reconstruction for each grid cell at the MOD (note the reverse time evolution). To do so, the reconstruction has been previously adjusted in time and space as follows. Firstly, the degree day factor (SD lose/positive average temperatures) is calculated from the information measured at an automatic weather station (AWS) located in the catchment. Afterwards, comparing the SD lose at the AWS during a specific time period (i.e. between two TLS acquisitions) to that melted on each grid cell, a coefficient is obtained for spatially distributing the SD loses. For 2012 and 2013, three TLS acquisition campaigns were available during each melting period. This way the first acquisitions of both melting periods were reserved for validation while the other two were considered for adjusting the reconstruction. Validation has revealed a very good performance of the reconstructed SD distribution when compared with the TLS data (r2 values between 0.74 and 0.8 respectively). When no calibration with TLS data was applied for distributing melt rates; this is, using the distribution coefficients for reconstructing SD of precedent years, rather similar accuracy was reached. With the spatial calibration of 2012 and 2013, the reconstructions for the two TLS acquisition dates in 2014, obtained r2 values that ranged between 0.73 and 0.76. This shows the usefulness of lapse-rate images to estimate not only SCA but also the spatial distribution of the SD when combined with TLS acquisition and punctual information on temperature and SD. In such a way it is shown the effectiveness of combining two remote sensing techniques for obtaining distributed information on snow depth.

  16. NASA Tech Briefs, February 2011

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Topics covered include: Multi-Segment Radius Measurement Using an Absolute Distance Meter Through a Null Assembly; Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection; Photocatalytic Active Radiation Measurements and Use; Computer Generated Hologram System for Wavefront Measurement System Calibration; Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System; SpaceCube 2.0: An Advanced Hybrid Onboard Data Processor; CMOS Imager Has Better Cross-Talk and Full-Well Performance; High-Performance Wireless Telemetry; Telemetry-Based Ranging; JWST Wavefront Control Toolbox; Java Image I/O for VICAR, PDS, and ISIS; X-Band Acquisition Aid Software; Antimicrobial-Coated Granules for Disinfecting Water; Range 7 Scanner Integration with PaR Robot Scanning System; Methods of Antimicrobial Coating of Diverse Materials; High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength; A Model of Reduced Kinetics for Alkane Oxidation Using Constituents and Species for N-Heptane; Thermally Conductive Tape Based on Carbon Nanotube Arrays; Two Catalysts for Selective Oxidation of Contaminant Gases; Nanoscale Metal Oxide Semiconductors for Gas Sensing; Lightweight, Ultra-High-Temperature, CMC-Lined Carbon/Carbon Structures; Sample Acquisition and Handling System from a Remote Platform; Improved Rare-Earth Emitter Hollow Cathode; High-Temperature Smart Structures for Engine Noise Reduction and Performance Enhancement; Cryogenic Scan Mechanism for Fourier Transform Spectrometer; Piezoelectric Rotary Tube Motor; Thermoelectric Energy Conversion Technology for High-Altitude Airships; Combustor Computations for CO2-Neutral Aviation; Use of Dynamic Distortion to Predict and Alleviate Loss of Control; Cycle Time Reduction in Trapped Mercury Ion Atomic Frequency Standards; and A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks.

  17. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    PubMed

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Neuroimaging paradigms for tonotopic mapping (II): the influence of acquisition protocol.

    PubMed

    Langers, Dave R M; Sanchez-Panchuelo, Rosa M; Francis, Susan T; Krumbholz, Katrin; Hall, Deborah A

    2014-10-15

    Numerous studies on the tonotopic organisation of auditory cortex in humans have employed a wide range of neuroimaging protocols to assess cortical frequency tuning. In the present functional magnetic resonance imaging (fMRI) study, we made a systematic comparison between acquisition protocols with variable levels of interference from acoustic scanner noise. Using sweep stimuli to evoke travelling waves of activation, we measured sound-evoked response signals using sparse, clustered, and continuous imaging protocols that were characterised by inter-scan intervals of 8.8, 2.2, or 0.0 s, respectively. With regard to sensitivity to sound-evoked activation, the sparse and clustered protocols performed similarly, and both detected more activation than the continuous method. Qualitatively, tonotopic maps in activated areas proved highly similar, in the sense that the overall pattern of tonotopic gradients was reproducible across all three protocols. However, quantitatively, we observed substantial reductions in response amplitudes to moderately low stimulus frequencies that coincided with regions of strong energy in the scanner noise spectrum for the clustered and continuous protocols compared to the sparse protocol. At the same time, extreme frequencies became over-represented for these two protocols, and high best frequencies became relatively more abundant. Our results indicate that although all three scanning protocols are suitable to determine the layout of tonotopic fields, an exact quantitative assessment of the representation of various sound frequencies is substantially confounded by the presence of scanner noise. In addition, we noticed anomalous signal dynamics in response to our travelling wave paradigm that suggest that the assessment of frequency-dependent tuning is non-trivially influenced by time-dependent (hemo)dynamics when using sweep stimuli. Copyright © 2014. Published by Elsevier Inc.

  19. Heat Entrapment Effects Within Liquid Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Chato, D. J.; Doherty, M. P.

    2010-01-01

    We introduce a model problem to address heat entrapment effects or the local accumulation of thermal energy within liquid acquisition devices. We show that the parametric space consists of six parameters, namely the Rayleigh and Prandtl numbers, the aspect ratio, and heat flux ratios for the bottom, side, and top boundaries of the enclosure. For the range of Ra considered 1 to 10(sup 9), beyond Ra on the order of 10(sup 5), convective instability is the dominant mode of convection in comparison to natural convection. The flow field transitions to asymmetric modes at Ra on the order of 10(sup 7). Direct numerical simulation of a large geometric length scale prototype for Ra on the order of 10(sup 9) shows that the flow field evolves from small wavelength instability which gives rise to nonlinear growth of thermals, propagation of the instability occurs via growth of secondary and tertiary modes, and a travelling wave mode occurs prior to asymmetry. The effect of a large aspect ratio is to increase the number of modes in the vertical direction. Due to the slow diffusion of heat in the prototype, asymptotic states are not readily attained, we show that dynamical similarity can be used for a model which allows the attainment of asymptotic states and that transition to a chaotic state occurs for Ra on the order of 10(sup 9) via a broadband power spectrum. These dynamical events show that for the baseline condition in which heat is absorbed from background laboratory environment, higher heat flux is absorbed at the top and bottom boundaries of the enclosure than a nominal value of 34.9 ergs per square centimeter -second.

  20. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    NASA Astrophysics Data System (ADS)

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial results on observation of wildland fires using this system for prescribed fires in the pitch-pine scrub oak forest type and the use of the system to determine the differences between actual and remotely sensed measures of FRFD, which is of importance in quantifying the release of CO2 and other fire products from wildland fire combustion.

  1. The selective digital integrator: A new device for modulated polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Vrancic, Aljosa

    1998-12-01

    A new device, a selective digital integrator (SDI), for the acquisition of modulated polarization spectroscopy (MPS) signals is described. Special attention is given to the accurate measurement of very small (AC component of interest <10-3 x DC component), rapidly modulated (~50 kHz) signals at or below noise levels. Various data acquisition methods and problems associated with the collection of modulated signals are discussed. The SDI solves most of these problems and has the following advantages: it provides the average-time resolved profile of a modulated signal; it eliminates errors if the modulation is not sinusoidal; it enables separate measurements of the various phases of the signal modulation cycle; it permits simultaneous measurement of absorption, circular dichroism (CD) and linear dichroism (LD) spectra; it facilitates 3-D absorbance measurements; it has a wide gain-switching-free dynamic range (10 orders of magnitude or more); it offers a constant S/N ratio mode of operation; it eliminates the need for photomultiplier voltage feedback, and it has faster scanning speeds. The time-resolution, selectivity, wide dynamic range, and low-overhead on-the-fly data processing are useful for other modulated spectroscopy (MS) and non-MS experiments such as pulse height distribution and time-resolved pulse counting measurements. The advantages of the MPS-SDI method are tested on the first Rydberg electronic transitions of (+)-3- methylcyclopentanone. The experimental results validate the predicted SDI capabilities. However, they also point to two difficulties that had not been noted previously: the presence of LD in a gaseous sample and a pressure- dependence of the relative peak heights of the CD spectrum. Models for these anomalies are proposed. The presence of the oscillatory LD (but not an LD background) is explained with a sample cell model based on the observed polarization-dependent time-resolved profiles of transmitted light intensity. To obtain expressions for these intensities, a theoretical background, which provides a new approach to the treatment of light/matter interaction, is included as an Appendix. To explain the second anomaly, present only at high optical densities, a model based on the presence of scattered light is introduced and verified. The mode of correction for the scattering problem is outlined.

  2. Interaction between Brash Ice and Boat Propulsion Systems

    DTIC Science & Technology

    2014-02-01

    1 15 Data Acquisition/Instrumentation Data Acquisition An Astro -Med Inc. TMX portable Data recorder was used to capture all the data during the...Technology Inc. (AMTI) underwater MC37 transducer. The range for loads in Fx , Fy, and Fz was 1,112 N; the range for moment in My and Mz was 85 N-M and...mounting bracket. Positive force ( Fx ) is recorded as a load pushing on the bow of the boat towards the stern. Pitch and roll of the boat was measured

  3. Human target acquisition performance

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.; Du Bosq, Todd W.; Reynolds, Joseph P.; Thompson, Roger; Aghera, Sameer; Moyer, Steven K.; Flug, Eric; Espinola, Richard; Hixson, Jonathan

    2012-06-01

    The battlefield has shifted from armored vehicles to armed insurgents. Target acquisition (identification, recognition, and detection) range performance involving humans as targets is vital for modern warfare. The acquisition and neutralization of armed insurgents while at the same time minimizing fratricide and civilian casualties is a mounting concern. U.S. Army RDECOM CERDEC NVESD has conducted many experiments involving human targets for infrared and reflective band sensors. The target sets include human activities, hand-held objects, uniforms & armament, and other tactically relevant targets. This paper will define a set of standard task difficulty values for identification and recognition associated with human target acquisition performance.

  4. DART -- Data acquisition for the next generation of Fermilab fixed target experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oleynik, G.; Anderson, J.; Appleton, L.

    1994-02-01

    DART is the name of the data acquisition effort for Fermilab experiments taking data in the '94--'95 time frame and beyond. Its charge is to provide a common system of hardware and software, which can be easily configured and extended to meet the wide range of data acquisition requirements of the experiments. Its strategy is to provide incrementally functional data acquisition systems to the experiments at frequent intervals to support the ongoing DA activities of the experiments. DART is a collaborative development effort between the experimenters and the Fermilab Computing Division. Experiments collaborating in DART cover a range of requirementsmore » from 400 Kbytes/sec event readout using a single DA processor, to 200 Mbytes/sec event readout involving 10 parallel readout streams, 10 VME event building planes and greater than 1,000 MIPs of event filter processing. The authors describe the requirements, architecture, and plans for the project and report on its current status.« less

  5. Development and investigation of single-scan TV radiography for the acquisition of dynamic physiologic data

    NASA Technical Reports Server (NTRS)

    Baily, N. A.

    1974-01-01

    Research data obtained by the low dose electronic radiography system are reported. Data cover: (1) localization and tracking of Ta screws implanted in the inner wall of the right ventrical of the heart, (2) use of cross hairs to outline inner or outer heart wall contours, (3) quantitative measure of anatomical components which are stationary in size or change size dynamically, and (4) study of dynamic quantitative data from roentenologic or fluoroscopic procedures.

  6. Western blotting revisited: critical perusal of underappreciated technical issues.

    PubMed

    Gorr, Thomas A; Vogel, Johannes

    2015-04-01

    The most commonly used semiquantitative analysis of protein expression still employs protein separation by denaturing SDS-PAGE with subsequent Western blotting and quantification of the resulting ODs of bands visualized with specific antibodies. However, many questions regarding this procedure are usually ignored, although still in need of answering: Does isolation or separation procedure harm the integrity or affect modifications (e.g., phosphorylation) of the protein of interest? Does denaturation reduce binding of antibodies used for detection? Should denaturation be performed or should a native gel be run? How can artificial degradations or aggregations be distinguished from biological relevant ones? If the antibody detects multiple bands (which is not uncommon), which one(s) should be taken into account for quantification and why? Which loading control protein should be chosen and is it really "housekeeping" and how can this be verified? Is the image acquisition system linear and does it come with a sufficient dynamic range? How to account and control for background staining? This article is intended to address these questions and raise the readers awareness to possible Western blot alternatives in the attempt of minimizing possible pitfalls that might loom anywhere from protein isolation to acquisition of final quantitative data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Backpack-Mounted Omnidirectional Camera with Off-the-Shelf Navigation Sensors for Mobile Terrestrial Mapping: Development and Forest Application

    PubMed Central

    Prol, Fabricio dos Santos; El Issaoui, Aimad; Hakala, Teemu

    2018-01-01

    The use of Personal Mobile Terrestrial System (PMTS) has increased considerably for mobile mapping applications because these systems offer dynamic data acquisition with ground perspective in places where the use of wheeled platforms is unfeasible, such as forests and indoor buildings. PMTS has become more popular with emerging technologies, such as miniaturized navigation sensors and off-the-shelf omnidirectional cameras, which enable low-cost mobile mapping approaches. However, most of these sensors have not been developed for high-accuracy metric purposes and therefore require rigorous methods of data acquisition and data processing to obtain satisfactory results for some mapping applications. To contribute to the development of light, low-cost PMTS and potential applications of these off-the-shelf sensors for forest mapping, this paper presents a low-cost PMTS approach comprising an omnidirectional camera with off-the-shelf navigation systems and its evaluation in a forest environment. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information can increase the trajectory accuracy, especially in covered areas. The point cloud generated with the PMTS data had accuracy consistent with the Ground Sample Distance (GSD) range of omnidirectional images (3.5–7 cm). These results are consistent with those obtained for other PMTS approaches. PMID:29522467

  8. OPSO - The OpenGL based Field Acquisition and Telescope Guiding System

    NASA Astrophysics Data System (ADS)

    Škoda, P.; Fuchs, J.; Honsa, J.

    2006-07-01

    We present OPSO, a modular pointing and auto-guiding system for the coudé spectrograph of the Ondřejov observatory 2m telescope. The current field and slit viewing CCD cameras with image intensifiers are giving only standard TV video output. To allow the acquisition and guiding of very faint targets, we have designed an image enhancing system working in real time on TV frames grabbed by BT878-based video capture card. Its basic capabilities include the sliding averaging of hundreds of frames with bad pixel masking and removal of outliers, display of median of set of frames, quick zooming, contrast and brightness adjustment, plotting of horizontal and vertical cross cuts of seeing disk within given intensity range and many more. From the programmer's point of view, the system consists of three tasks running in parallel on a Linux PC. One C task controls the video capturing over Video for Linux (v4l2) interface and feeds the frames into the large block of shared memory, where the core image processing is done by another C program calling the OpenGL library. The GUI is, however, dynamically built in Python from XML description of widgets prepared in Glade. All tasks are exchanging information by IPC calls using the shared memory segments.

  9. An intelligent data acquisition system for fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  10. Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method.

    PubMed

    Lee, Danny; Greer, Peter B; Pollock, Sean; Kim, Taeho; Keall, Paul

    2016-05-01

    The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale) respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole method, an average intensity difference of the dynamic keyhole reconstructed images (P < 0.0001) was minimal, and resulted in the accuracy of tumor motion within 99.6% (P < 0.0001) and the accuracy of tumor area within 98.0% (P < 0.0001) for lung tumor monitoring applications. This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by up to a factor of five compared with full k-space methods for real-time lung tumor MRI.

  11. Management of Risk and Uncertainty in Systems Acquisition: Proceedings of the 1983 Defense Risk and Uncertainty Workshop Held at Fort Belvoir, Virginia on 13-15 July 1983

    DTIC Science & Technology

    1983-07-15

    categories, however, represent the reality in major acquisition and are often overlooked. Although Figure 1 does not reflect tne dynamics and Interactions...networking and improved computer capabili- ties probabilistic network simulation became a reality . The Naval Sea Systems Command became involved in...reasons for using the WBS are plain: 1. Virtually all risk-prone activities are performed by the contractor, not Government. Government is responsible

  12. How much does the time lag between wildlife field-data collection and LiDAR-data acquisition matter for studies of animal distributions? A case study using bird communities

    Treesearch

    Kerri T. Vierling; Charles E. Swift; Andrew T. Hudak; Jody C. Vogeler; Lee A. Vierling

    2014-01-01

    Vegetation structure quantified by light detection and ranging (LiDAR) can improve understanding of wildlife occupancy and species-richness patterns. However, there is often a time lag between the collection of LiDAR data and wildlife data. We investigated whether a time lag between the LiDAR acquisition and field-data acquisition affected mapped wildlife distributions...

  13. WRATS Integrated Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Piatak, David J.

    2008-01-01

    The Wing and Rotor Aeroelastic Test System (WRATS) data acquisition system (DAS) is a 64-channel data acquisition display and analysis system specifically designed for use with the WRATS 1/5-scale V-22 tiltrotor model of the Bell Osprey. It is the primary data acquisition system for experimental aeroelastic testing of the WRATS model for the purpose of characterizing the aeromechanical and aeroelastic stability of prototype tiltrotor configurations. The WRATS DAS was also used during aeroelastic testing of Bell Helicopter Textron s Quad-Tiltrotor (QTR) design concept, a test which received international attention. The LabVIEW-based design is portable and capable of powering and conditioning over 64 channels of dynamic data at sampling rates up to 1,000 Hz. The system includes a 60-second circular data archive, an integrated model swashplate excitation system, a moving block damping application for calculation of whirl flutter mode subcritical damping, a loads and safety monitor, a pilot-control console display, data analysis capabilities, and instrumentation calibration functions. Three networked computers running custom-designed LabVIEW software acquire data through National Instruments data acquisition hardware. The aeroelastic model (see figure) was tested with the DAS at two facilities at NASA Langley, the Transonic Dynamics Tunnel (TDT) and the Rotorcraft Hover Test Facility (RHTF). Because of the need for seamless transition between testing at these facilities, DAS is portable. The software is capable of harmonic analysis of periodic time history data, Fast Fourier Transform calculations, power spectral density calculations, and on-line calibration of test instrumentation. DAS has a circular buffer archive to ensure critical data is not lost in event of model failure/incident, as well as a sample-and-hold capability for phase-correct time history data.

  14. For operation of the Computer Software Management and Information Center (COSMIC)

    NASA Technical Reports Server (NTRS)

    Carmon, J. L.

    1983-01-01

    Computer programs for degaussing, magnetic field calculation, low speed wing flap systems aerodynamics, structural panel analysis, dynamic stress/strain data acquisition, allocation and network scheduling, and digital filters are discussed.

  15. Learning and adaptation: neural and behavioural mechanisms behind behaviour change

    NASA Astrophysics Data System (ADS)

    Lowe, Robert; Sandamirskaya, Yulia

    2018-01-01

    This special issue presents perspectives on learning and adaptation as they apply to a number of cognitive phenomena including pupil dilation in humans and attention in robots, natural language acquisition and production in embodied agents (robots), human-robot game play and social interaction, neural-dynamic modelling of active perception and neural-dynamic modelling of infant development in the Piagetian A-not-B task. The aim of the special issue, through its contributions, is to highlight some of the critical neural-dynamic and behavioural aspects of learning as it grounds adaptive responses in robotic- and neural-dynamic systems.

  16. Live dynamic OCT imaging of cardiac structure and function in mouse embryos with 43 Hz direct volumetric data acquisition

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Singh, Manmohan; Lopez, Andrew L.; Wu, Chen; Raghunathan, Raksha; Schill, Alexander; Li, Jiasong; Larin, Kirill V.; Larina, Irina V.

    2016-03-01

    Efficient phenotyping of cardiac dynamics in live mouse embryos has significant implications on understanding of early mammalian heart development and congenital cardiac defects. Recent studies established optical coherence tomography (OCT) as a powerful tool for live embryonic heart imaging in various animal models. However, current four-dimensional (4D) OCT imaging of the beating embryonic heart largely relies on gated data acquisition or postacquisition synchronization, which brings errors when cardiac cycles lack perfect periodicity and is time consuming and computationally expensive. Here, we report direct 4D OCT imaging of the structure and function of cardiac dynamics in live mouse embryos achieved by employing a Fourier domain mode-locking swept laser source that enables ~1.5 MHz A-line rate. Through utilizing both forward and backward scans of a resonant mirror, we obtained a ~6.4 kHz frame rate, which allows for a direct volumetric data acquisition speed of ~43 Hz, around 20 times of the early-stage mouse embryonic heart rate. Our experiments were performed on mouse embryos at embryonic day 9.5. Time-resolved 3D cardiodynamics clearly shows the heart structure in motion. We present analysis of cardiac wall movement and its velocity from the primitive atrium and ventricle. Our results suggest that the combination of ultrahigh-speed OCT imaging with live embryo culture could be a useful embryonic heart phenotyping approach for mouse mutants modeling human congenital heart diseases.

  17. Application of ESPI techniques for the study of dynamic vibrations

    NASA Astrophysics Data System (ADS)

    Krupka, Rene

    2004-06-01

    Full field optical measurement techniques have already entered into various fields of industrial applications covering static as well as dynamic phenomena. The electronic speckle pattern interferometry (ESPI) allows the non contact, sensitive and three dimensional measurement of displacements in the sub micron range of objects with dimensions from mm2 to m2. For dynamic and transient phenomena, the use of pulsed laser have already been reported for various applications and successfully proven for the determination of the structural response of different components. In this paper we would like to present recent developments in the field of pulsed ESPI applications where emphasis is put onto the full field measurement result. The use of a completely computer controlled system allows easy access to mode shape characterization, deformation measurements and the characterization of transient events like shock wave propagation. Recent developments of the 3D-PulseESPI technique led to a very compact and complete system with improved characteristics regarding robustness and operation. The integrated design of the illumination laser and sensors for image acquisition allows easy aiming and adjustments with respect to the object of inspection. The laser is completely computer controlled which is advantageously used in a completely automatic brake squeal inspection system, which captures the squealing signal, automatically fires the laser and provides the complete deformation map of the component under test. Examples of recent applications in the field of dynamic structure response, with an emphasis in the field of automotive applications are given.

  18. Surface recombination velocity imaging of wet-cleaned silicon wafers using quantitative heterodyne lock-in carrierography

    NASA Astrophysics Data System (ADS)

    Sun, Qiming; Melnikov, Alexander; Mandelis, Andreas; Pagliaro, Robert H.

    2018-01-01

    InGaAs-camera based heterodyne lock-in carrierography (HeLIC) is developed for surface recombination velocity (SRV) imaging characterization of bare (oxide-free) hydrogen passivated Si wafer surfaces. Samples prepared using four different hydrofluoric special-solution etching conditions were tested, and a quantitative assessment of their surface quality vs. queue-time after the hydrogen passivation process was made. The data acquisition time for an SRV image was about 3 min. A "round-trip" frequency-scan mode was introduced to minimize the effects of signal transients on data self-consistency. Simultaneous best fitting of HeLIC amplitude-frequency dependencies at various queue-times was used to guarantee the reliability of resolving surface and bulk carrier recombination/transport properties. The dynamic range of the measured SRV values was established from 0.1 to 100 m/s.

  19. A Radar-Enabled Collaborative Sensor Network Integrating COTS Technology for Surveillance and Tracking

    PubMed Central

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R.; Demirer, R. Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios. PMID:22438713

  20. Optical deep space communication via relay satellite

    NASA Technical Reports Server (NTRS)

    Gagliardi, R. M.; Vilnrotter, V. A.; Dolinar, S. J., Jr.

    1981-01-01

    The possible use of an optical for high rate data transmission from a deep space vehicle to an Earth-orbiting relay satellite while RF links are envisioned for the relay to Earth link was studied. A preliminary link analysis is presented for initial sizing of optical components and power levels, in terms of achievable data rates and feasible range distances. Modulation formats are restricted to pulsed laser operation, involving bot coded and uncoded schemes. The advantage of an optical link over present RF deep space link capabilities is shown. The problems of acquisition, pointing and tracking with narrow optical beams are presented and discussed. Mathematical models of beam trackers are derived, aiding in the design of such systems for minimizing beam pointing errors. The expected orbital geometry between spacecraft and relay satellite, and its impact on beam pointing dynamics are discussed.

  1. A high-resolution full-field range imaging system

    NASA Astrophysics Data System (ADS)

    Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.

    2005-08-01

    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.

  2. A Theory of Eye Movements during Target Acquisition

    ERIC Educational Resources Information Center

    Zelinsky, Gregory J.

    2008-01-01

    The gaze movements accompanying target localization were examined via human observers and a computational model (target acquisition model [TAM]). Search contexts ranged from fully realistic scenes to toys in a crib to Os and Qs, and manipulations included set size, target eccentricity, and target-distractor similarity. Observers and the model…

  3. Inference of neuronal network spike dynamics and topology from calcium imaging data

    PubMed Central

    Lütcke, Henry; Gerhard, Felipe; Zenke, Friedemann; Gerstner, Wulfram; Helmchen, Fritjof

    2013-01-01

    Two-photon calcium imaging enables functional analysis of neuronal circuits by inferring action potential (AP) occurrence (“spike trains”) from cellular fluorescence signals. It remains unclear how experimental parameters such as signal-to-noise ratio (SNR) and acquisition rate affect spike inference and whether additional information about network structure can be extracted. Here we present a simulation framework for quantitatively assessing how well spike dynamics and network topology can be inferred from noisy calcium imaging data. For simulated AP-evoked calcium transients in neocortical pyramidal cells, we analyzed the quality of spike inference as a function of SNR and data acquisition rate using a recently introduced peeling algorithm. Given experimentally attainable values of SNR and acquisition rate, neural spike trains could be reconstructed accurately and with up to millisecond precision. We then applied statistical neuronal network models to explore how remaining uncertainties in spike inference affect estimates of network connectivity and topological features of network organization. We define the experimental conditions suitable for inferring whether the network has a scale-free structure and determine how well hub neurons can be identified. Our findings provide a benchmark for future calcium imaging studies that aim to reliably infer neuronal network properties. PMID:24399936

  4. Rapid Spacecraft Development: Results and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Watson, William A.

    2002-01-01

    The Rapid Spacecraft Development Office (RSDO) at NASA's Goddard Space Flight Center is responsible for the management and direction of a dynamic and versatile program for the definition, competition, and acquisition of multiple indefinite delivery and indefinite quantity contracts - resulting in a catalog of spacecraft buses. Five spacecraft delivery orders have been placed by the RSDO and one spacecraft has been launched. Numerous concept and design studies have been performed, most with the intent of leading to a future spacecraft acquisition. A collection of results and lessons learned is recorded to highlight management techniques, methods and processes employed in the conduct of spacecraft acquisition. Topics include working relationships under fixed price delivery orders, price and value, risk management, contingency reserves, and information restrictions.

  5. Instrumentation and data acquisition for full-scale aircraft crash testing

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E.; Fasanella, Edwin L.

    1993-01-01

    The Landing and Impact Dynamics Branch of the NASA Langley Research Center has been conducting full-scale aircraft crash tests since the 1970s. Using a pendulum method, aircraft are suspended by cables from a 240-ft high gantry and swung into the impact surface at various attitudes and velocities. Instrumentation for these tests include on-board high-speed cameras, strain gages, load cells, displacement transducers, and accelerometers. Transducers in the aircraft are hard-wired through a long umbilical cable to the data acquisition room. Up to 96 channels of data can be collected at a typical rate of 4000 samples per second. Data acquisition using an FM multiplexed analog system and a high-speed personal computer based digital system is described.

  6. AFFINE-CORRECTED PARADISE: FREE-BREATHING PATIENT-ADAPTIVE CARDIAC MRI WITH SENSITIVITY ENCODING

    PubMed Central

    Sharif, Behzad; Bresler, Yoram

    2013-01-01

    We propose a real-time cardiac imaging method with parallel MRI that allows for free breathing during imaging and does not require cardiac or respiratory gating. The method is based on the recently proposed PARADISE (Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding) scheme. The new acquisition method adapts the PARADISE k-t space sampling pattern according to an affine model of the respiratory motion. The reconstruction scheme involves multi-channel time-sequential imaging with time-varying channels. All model parameters are adapted to the imaged patient as part of the experiment and drive both data acquisition and cine reconstruction. Simulated cardiac MRI experiments using the realistic NCAT phantom show high quality cine reconstructions and robustness to modeling inaccuracies. PMID:24390159

  7. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon

    2015-01-15

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of variousmore » non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.« less

  8. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarin, P.; Haggerty, R; Yoon, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less

  9. Tests of PMT signal read-out of liquid argon scintillation with a new fast waveform digitizer

    NASA Astrophysics Data System (ADS)

    Acciarri, R.; Canci, N.; Cavanna, F.; Cortopassi, A.; D'Incecco, M.; Mini, G.; Pietropaolo, F.; Romboli, A.; Segreto, E.; Szelc, A. M.

    2012-07-01

    The CAEN V1751 is a new generation of Waveform Digitizer recently introduced by CAEN SpA. It features 8 Channels per board, 10 bit, 1 GS/s using Flash ADCs Waveform Digitizers (or 4 channels at 2 GS/s in Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities. This provides a good basis for data acquisition in Dark Matter searches using PMTs to detect scintillation light in liquid argon, as it matches the requirements for measuring the fast scintillation component. The board was tested by operating it in real experimental conditions and by comparing it with a state of the art digital oscilloscope. We find that the sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the scintillation light in argon (characteristic time of about 6-7 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

  10. Joint Test Project Report of Combat Air Support Target Acquisition Program. SEEKVAL. Project IA2. Direct Visual Imagery Experiments.

    DTIC Science & Technology

    1975-01-01

    Mission Zero Briefing Information ... ....... 1-A-8 Mission Zero Preflight Taped Coiments . . . 1-A-lO Mission Zero Inflight Events and Commentary . l-A...acquisitions between MAR and the target and zero range for non-acquisitions. AA 1 ... , ; "~...,, X0 ..o", xix S w...target from 35,000 feet to zero feet at nadir. If the inter-target interval was less than 35,000 feet, the device started counting on the new target

  11. Physical restraint produces rapid acquisition of the pigeon's key peck

    PubMed Central

    Locurto, C. M.; Travers, Tania; Terrace, H. S.; Gibbon, John

    1980-01-01

    The acquisition and maintenance of autoshaped key pecking in pigeons was studied as a function of intertrial interval. At each of six intervals, which ranged from 12 seconds to 384 seconds, four pigeons were physically restrained during training while four other pigeons were not restrained. Restrained subjects acquired key pecking faster and with less intragroup variability at each interval. The effects of restraint were specific to acquisition and were not evident in maintained responding after five postacquisition sessions. PMID:16812175

  12. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms.

    PubMed

    Antonietti, Alberto; Casellato, Claudia; Garrido, Jesús A; Luque, Niceto R; Naveros, Francisco; Ros, Eduardo; D' Angelo, Egidio; Pedrocchi, Alessandra

    2016-01-01

    In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction. By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level. First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving. We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes.  This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical applications.

  13. Robust dynamic myocardial perfusion CT deconvolution for accurate residue function estimation via adaptive-weighted tensor total variation regularization: a preclinical study.

    PubMed

    Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-11-21

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed 'MPD-AwTTV'. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.

  14. Robust dynamic myocardial perfusion CT deconvolution for accurate residue function estimation via adaptive-weighted tensor total variation regularization: a preclinical study

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Gong, Changfei; Bian, Zhaoying; Huang, Jing; Zhang, Xinyu; Zhang, Hua; Lu, Lijun; Niu, Shanzhou; Zhang, Zhang; Liang, Zhengrong; Feng, Qianjin; Chen, Wufan; Ma, Jianhua

    2016-11-01

    Dynamic myocardial perfusion computed tomography (MPCT) is a promising technique for quick diagnosis and risk stratification of coronary artery disease. However, one major drawback of dynamic MPCT imaging is the heavy radiation dose to patients due to its dynamic image acquisition protocol. In this work, to address this issue, we present a robust dynamic MPCT deconvolution algorithm via adaptive-weighted tensor total variation (AwTTV) regularization for accurate residue function estimation with low-mA s data acquisitions. For simplicity, the presented method is termed ‘MPD-AwTTV’. More specifically, the gains of the AwTTV regularization over the original tensor total variation regularization are from the anisotropic edge property of the sequential MPCT images. To minimize the associative objective function we propose an efficient iterative optimization strategy with fast convergence rate in the framework of an iterative shrinkage/thresholding algorithm. We validate and evaluate the presented algorithm using both digital XCAT phantom and preclinical porcine data. The preliminary experimental results have demonstrated that the presented MPD-AwTTV deconvolution algorithm can achieve remarkable gains in noise-induced artifact suppression, edge detail preservation, and accurate flow-scaled residue function and MPHM estimation as compared with the other existing deconvolution algorithms in digital phantom studies, and similar gains can be obtained in the porcine data experiment.

  15. An acquisition system for CMOS imagers with a genuine 10 Gbit/s bandwidth

    NASA Astrophysics Data System (ADS)

    Guérin, C.; Mahroug, J.; Tromeur, W.; Houles, J.; Calabria, P.; Barbier, R.

    2012-12-01

    This paper presents a high data throughput acquisition system for pixel detector readout such as CMOS imagers. This CMOS acquisition board offers a genuine 10 Gbit/s bandwidth to the workstation and can provide an on-line and continuous high frame rate imaging capability. On-line processing can be implemented either on the Data Acquisition Board or on the multi-cores workstation depending on the complexity of the algorithms. The different parts composing the acquisition board have been designed to be used first with a single-photon detector called LUSIPHER (800×800 pixels), developed in our laboratory for scientific applications ranging from nano-photonics to adaptive optics. The architecture of the acquisition board is presented and the performances achieved by the produced boards are described. The future developments (hardware and software) concerning the on-line implementation of algorithms dedicated to single-photon imaging are tackled.

  16. Image registration and analysis for quantitative myocardial perfusion: application to dynamic circular cardiac CT.

    PubMed

    Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M

    2011-09-21

    Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.

  17. High-speed polarized light microscopy for in situ, dynamic measurement of birefringence properties

    NASA Astrophysics Data System (ADS)

    Wu, Xianyu; Pankow, Mark; Shadow Huang, Hsiao-Ying; Peters, Kara

    2018-01-01

    A high-speed, quantitative polarized light microscopy (QPLM) instrument has been developed to monitor the optical slow axis spatial realignment during controlled medium to high strain rate experiments at acquisition rates up to 10 kHz. This high-speed QPLM instrument is implemented within a modified drop tower and demonstrated using polycarbonate specimens. By utilizing a rotating quarter wave plate and a high-speed camera, the minimum acquisition time to generate an alignment map of a birefringent specimen is 6.1 ms. A sequential analysis method allows the QPLM instrument to generate QPLM data at the high-speed camera imaging frequency 10 kHz. The obtained QPLM data is processed using a vector correlation technique to detect anomalous optical axis realignment and retardation changes throughout the loading event. The detected anomalous optical axis realignment is shown to be associated with crack initiation, propagation, and specimen failure in a dynamically loaded polycarbonate specimen. The work provides a foundation for detecting damage in biological tissues through local collagen fiber realignment and fracture during dynamic loading.

  18. Calibration of Helmholtz Coils for the characterization of MEMS magnetic sensor using fluxgate magnetometer with DAS1 magnetic range data acquisition system

    NASA Astrophysics Data System (ADS)

    Ahmad, Farooq; Dennis, John Ojur; Md Khir, Mohd Haris; Hamid, Nor Hisham

    2012-09-01

    This paper presents the calibration of Helmholtz coils for the characterization of MEMS Magnetic sensor using Fluxgate magnetometer with DAS1 Magnetic Range Data Acquisition System. The Helmholtz coils arrangement is often used to generate a uniform magnetic field in space. In the past, standard magnets were used to calibrate the Helmholtz coils. A method is presented here for calibrating these coils using a Fluxgate magnetometer and known current source, which is easier and results in greater accuracy.

  19. High-Resolution DCE-MRI of the Pituitary Gland Using Radial k-Space Acquisition with Compressed Sensing Reconstruction.

    PubMed

    Rossi Espagnet, M C; Bangiyev, L; Haber, M; Block, K T; Babb, J; Ruggiero, V; Boada, F; Gonen, O; Fatterpekar, G M

    2015-08-01

    The pituitary gland is located outside of the blood-brain barrier. Dynamic T1 weighted contrast enhanced sequence is considered to be the gold standard to evaluate this region. However, it does not allow assessment of intrinsic permeability properties of the gland. Our aim was to demonstrate the utility of radial volumetric interpolated brain examination with the golden-angle radial sparse parallel technique to evaluate permeability characteristics of the individual components (anterior and posterior gland and the median eminence) of the pituitary gland and areas of differential enhancement and to optimize the study acquisition time. A retrospective study was performed in 52 patients (group 1, 25 patients with normal pituitary glands; and group 2, 27 patients with a known diagnosis of microadenoma). Radial volumetric interpolated brain examination sequences with golden-angle radial sparse parallel technique were evaluated with an ROI-based method to obtain signal-time curves and permeability measures of individual normal structures within the pituitary gland and areas of differential enhancement. Statistical analyses were performed to assess differences in the permeability parameters of these individual regions and optimize the study acquisition time. Signal-time curves from the posterior pituitary gland and median eminence demonstrated a faster wash-in and time of maximum enhancement with a lower peak of enhancement compared with the anterior pituitary gland (P < .005). Time-optimization analysis demonstrated that 120 seconds is ideal for dynamic pituitary gland evaluation. In the absence of a clinical history, differences in the signal-time curves allow easy distinction between a simple cyst and a microadenoma. This retrospective study confirms the ability of the golden-angle radial sparse parallel technique to evaluate the permeability characteristics of the pituitary gland and establishes 120 seconds as the ideal acquisition time for dynamic pituitary gland imaging. © 2015 by American Journal of Neuroradiology.

  20. High-Resolution DCE-MRI of the Pituitary Gland Using Radial k-Space Acquisition with Compressed Sensing Reconstruction

    PubMed Central

    Rossi Espagnet, M.C.; Bangiyev, L.; Haber, M.; Block, K.T.; Babb, J.; Ruggiero, V.; Boada, F.; Gonen, O.; Fatterpekar, G.M.

    2015-01-01

    BACKGROUNDANDPURPOSE The pituitary gland is located outside of the blood-brain barrier. Dynamic T1 weighted contrast enhanced sequence is considered to be the gold standard to evaluate this region. However, it does not allow assessment of intrinsic permeability properties of the gland. Our aim was to demonstrate the utility of radial volumetric interpolated brain examination with the golden-angle radial sparse parallel technique to evaluate permeability characteristics of the individual components (anterior and posterior gland and the median eminence) of the pituitary gland and areas of differential enhancement and to optimize the study acquisition time. MATERIALS AND METHODS A retrospective study was performed in 52 patients (group 1, 25 patients with normal pituitary glands; and group 2, 27 patients with a known diagnosis of microadenoma). Radial volumetric interpolated brain examination sequences with golden-angle radial sparse parallel technique were evaluated with an ROI-based method to obtain signal-time curves and permeability measures of individual normal structures within the pituitary gland and areas of differential enhancement. Statistical analyses were performed to assess differences in the permeability parameters of these individual regions and optimize the study acquisition time. RESULTS Signal-time curves from the posterior pituitary gland and median eminence demonstrated a faster wash-in and time of maximum enhancement with a lower peak of enhancement compared with the anterior pituitary gland (P < .005). Time-optimization analysis demonstrated that 120 seconds is ideal for dynamic pituitary gland evaluation. In the absence of a clinical history, differences in the signal-time curves allow easy distinction between a simple cyst and a microadenoma. CONCLUSIONS This retrospective study confirms the ability of the golden-angle radial sparse parallel technique to evaluate the permeability characteristics of the pituitary gland and establishes 120 seconds as the ideal acquisition time for dynamic pituitary gland imaging. PMID:25953760

  1. Toward a Model of Human Information Processing for Decision-Making and Skill Acquisition in Laparoscopic Colorectal Surgery.

    PubMed

    White, Eoin J; McMahon, Muireann; Walsh, Michael T; Coffey, J Calvin; O Sullivan, Leonard

    To create a human information-processing model for laparoscopic surgery based on already established literature and primary research to enhance laparoscopic surgical education in this context. We reviewed the literature for information-processing models most relevant to laparoscopic surgery. Our review highlighted the necessity for a model that accounts for dynamic environments, perception, allocation of attention resources between the actions of both hands of an operator, and skill acquisition and retention. The results of the literature review were augmented through intraoperative observations of 7 colorectal surgical procedures, supported by laparoscopic video analysis of 12 colorectal procedures. The Wickens human information-processing model was selected as the most relevant theoretical model to which we make adaptions for this specific application. We expanded the perception subsystem of the model to involve all aspects of perception during laparoscopic surgery. We extended the decision-making system to include dynamic decision-making to account for case/patient-specific and surgeon-specific deviations. The response subsystem now includes dual-task performance and nontechnical skills, such as intraoperative communication. The memory subsystem is expanded to include skill acquisition and retention. Surgical decision-making during laparoscopic surgery is the result of a highly complex series of processes influenced not only by the operator's knowledge, but also patient anatomy and interaction with the surgical team. Newer developments in simulation-based education must focus on the theoretically supported elements and events that underpin skill acquisition and affect the cognitive abilities of novice surgeons. The proposed human information-processing model builds on established literature regarding information processing, accounting for a dynamic environment of laparoscopic surgery. This revised model may be used as a foundation for a model describing robotic surgery. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  2. Global navigation satellite system receiver for weak signals under all dynamic conditions

    NASA Astrophysics Data System (ADS)

    Ziedan, Nesreen Ibrahim

    The ability of the Global Navigation Satellite System (GNSS) receiver to work under weak signal and various dynamic conditions is required in some applications. For example, to provide a positioning capability in wireless devices, or orbit determination of Geostationary and high Earth orbit satellites. This dissertation develops Global Positioning System (GPS) receiver algorithms for such applications. Fifteen algorithms are developed for the GPS C/A signal. They cover all the receiver main functions, which include acquisition, fine acquisition, bit synchronization, code and carrier tracking, and navigation message decoding. They are integrated together, and they can be used in any software GPS receiver. They also can be modified to fit any other GPS or GNSS signals. The algorithms have new capabilities. The processing and memory requirements are considered in the design to allow the algorithms to fit the limited resources of some applications; they do not require any assisting information. Weak signals can be acquired in the presence of strong interfering signals and under high dynamic conditions. The fine acquisition, bit synchronization, and tracking algorithms are based on the Viterbi algorithm and Extended Kalman filter approaches. The tracking algorithms capabilities increase the time to lose lock. They have the ability to adaptively change the integration length and the code delay separation. More than one code delay separation can be used in the same time. Large tracking errors can be detected and then corrected by a re-initialization and an acquisition-like algorithms. Detecting the navigation message is needed to increase the coherent integration; decoding it is needed to calculate the navigation solution. The decoding algorithm utilizes the message structure to enable its decoding for signals with high Bit Error Rate. The algorithms are demonstrated using simulated GPS C/A code signals, and TCXO clocks. The results have shown the algorithms ability to reliably work with 15 dB-Hz signals and acceleration over 6 g.

  3. Effective Transition Management: The Seamless System

    NASA Technical Reports Server (NTRS)

    Burke, Marty

    1995-01-01

    In this age of shrinking resources, cost avoidance has become as critical as direct cost savings. There is no doubt that Effective Transition Management (ETM) achieves this aim. What then, is ETM and how does it achieve its goal? It is the introduction and use of a hierarchical decision model and computerized tracking system which successfully integrates capital acquisition into the support base. You will discover that because this proven system is generic, compatible and flexible, its applications are virtually unlimited. It is this highly dynamic process which I would like to share with you. Skilled specialists are now rotated rapidly through acquisition programs on a requirements-driven basis. Managers continue their quest for inefficient areas to trim, slash or cut. However, there is one area of operations in every major corporation and government department that, as yet, has not received the attention it deserves. This essential element is Transition Management. Capital acquisitions, at some point, must be handed off to a support matrix for the 'in-service' phase of their life cycle. Most of us who have been on the receiving end can usually cite outrageous examples of adjustment, recovery or disaster. This means buying what amounts to a second initial sparing package, re-aligning the range and depth of inventory to match a changed maintenance concept, interpreting contractor-developed configuration control data or ensuring that the latest information is contained in the technical publications. This list is endless. For major purchases, this 'in-service' phase is often fifteen, twenty or more years. The least desirable, yet most common condition, is to suffer up to five years of recovering from errors or omissions after the transition to the support matrix occurs. Without ETM, making new equipment fully operational may thus become a long and costly process.

  4. Olympus propagation studies in the US: Receiver development and the data acquisition system

    NASA Technical Reports Server (NTRS)

    Mckeeman, John C.

    1990-01-01

    Virginia Tech has developed two types of receivers to monitor the Olympus beacons, as well as a custom data acquisition system to store and display propagation data. Each of the receiver designs uses new hybrid analog/digital techniques. The data acquisition system uses a stand alone processor to collect and format the data for display and subsequent processing. The launch of the Olympus satellite with its coherent beacons offers new opportunities to study propagation effects at 12.5, 20, and 30 GHz. At Virginia Tech, the satellite is at 14 degrees in elevation, which allows us to measure low elevation angle effects. However, to make these measurements, a very accurate and stable measurement system is required. Virginia Tech has constructed a complex receiving system which monitors the Olympus beacons and all parameters associated with propagation research. In the current configuration, researchers have developed a receiver which frequency locks to the less fade susceptible 12.5 GHz beacon. Since all beacons on the satellite are driven from a single master oscillator, drift in the 12.5 GHz beacon implies corresponding drifts in the 20, and 30 GHz beacons. The receivers for the 20 and 30 GHz systems derive their frequency locking information from the 12.5 GHz system. This widens the dynamic range of the receivers and allows the receivers to maintain lock in severe fade conditions. In addition to monitoring the beacons, the sky noise is monitored with radiometers at each frequency. The radiometer output is used to set the clear air level for each beacon measurement. Researchers also measure the rain rate with several tipping bucket rain gauges placed along the propagation path.

  5. Sci-Fri AM: MRI and Diagnostic Imaging - 05: Comparison of Input Function Measurements from DCE and MOLLI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majtenyi, Nicholas; Juma, Hanif; Klein, Ran

    Dynamic contrast-enhanced (DCE)-MRI is a technique for obtaining tissue hemodynamic information (e.g. tumours). Despite widespread clinical application of DCE-MRI, the technique suffers from a lack of standardization and accuracy, especially with respect to the concentration-versus-time of gadolinium (Gd) in feeding arteries (the input function, IF). MR phase has a linear quantitative relationship with Gd concentration ([Gd]), making it ideal for measuring the first-pass of the IF, but is not considered accurate in the steady-state washout. Modified Look-Locker Inversion Recovery (MOLLI) is a fast and accurate method to measure T1 and has been validated to quantify typical [Gd] ranges experienced inmore » the washout of the IF. Two different methods to measure the IF for DCE-MRI were compared: 1) conventional phase-versus-time (“Phase-only”) and 2) phase-versus-time combined with pre- and post-DCE MOLLI T1 measurements (“Phase+MOLLI”). The IF obtained from Phase+MOLLI was calculated from MOLLI T1 values and known relaxivity, then added to the Phase-only acquisition with the washout IF subtracted. A significant difference was observed between IF values for [Gd] between the Phase-only and Phase+MOLLI acquisitions (P = 0.03). To ensure the IFs from MOLLI T1s were accurate, it was compared to [Gd] obtained from “gold-standard” inversion recovery (IR). MOLLI showed excellent agreement with IR when imaged in static phantoms (r{sup 2} = 0.997, P = 0.001). The Phase+MOLLI IF was more accurate than the Phase-only IF in measuring the washout. The Phase+MOLLI acquisition may therefore provide a DCE-MRI reference standard that could lead to better clinical diagnoses.« less

  6. Mental Health Following Acquisition of Disability in Adulthood--The Impact of Wealth.

    PubMed

    Kavanagh, Anne Marie; Aitken, Zoe; Krnjacki, Lauren; LaMontagne, Anthony Daniel; Bentley, Rebecca; Milner, Allison

    2015-01-01

    Acquisition of a disability in adulthood has been associated with a reduction in mental health. We tested the hypothesis that low wealth prior to disability acquisition is associated with a greater deterioration in mental health than for people with high wealth. We assess whether level of wealth prior to disability acquisition modifies this association using 12 waves of data (2001-2012) from the Household, Income and Labour Dynamics in Australia survey--a population-based cohort study of working-age Australians. Eligible participants reported at least two consecutive waves of disability preceded by at least two consecutive waves without disability (1977 participants, 13,518 observations). Fixed-effects linear regression was conducted with a product term between wealth prior to disability (in tertiles) and disability acquisition with the mental health component score of the SF-36 as the outcome. In models adjusted for time-varying confounders, there was evidence of negative effect measure modification by prior wealth of the association between disability acquisition and mental health (interaction term for lowest wealth tertile: -2.2 points, 95% CI -3.1 points, -1.2, p<0.001); low wealth was associated with a greater decline in mental health following disability acquisition (-3.3 points, 95% CI -4.0, -2.5) than high wealth (-1.1 points, 95% CI -1.7, -0.5). The findings suggest that low wealth prior to disability acquisition in adulthood results in a greater deterioration in mental health than among those with high wealth.

  7. Mental Health Following Acquisition of Disability in Adulthood—The Impact of Wealth

    PubMed Central

    Kavanagh, Anne Marie; Aitken, Zoe; Krnjacki, Lauren; LaMontagne, Anthony Daniel; Bentley, Rebecca; Milner, Allison

    2015-01-01

    Background Acquisition of a disability in adulthood has been associated with a reduction in mental health. We tested the hypothesis that low wealth prior to disability acquisition is associated with a greater deterioration in mental health than for people with high wealth. Methods We assess whether level of wealth prior to disability acquisition modifies this association using 12 waves of data (2001–2012) from the Household, Income and Labour Dynamics in Australia survey–a population-based cohort study of working-age Australians. Eligible participants reported at least two consecutive waves of disability preceded by at least two consecutive waves without disability (1977 participants, 13,518 observations). Fixed-effects linear regression was conducted with a product term between wealth prior to disability (in tertiles) and disability acquisition with the mental health component score of the SF–36 as the outcome. Results In models adjusted for time-varying confounders, there was evidence of negative effect measure modification by prior wealth of the association between disability acquisition and mental health (interaction term for lowest wealth tertile: -2.2 points, 95% CI -3.1 points, -1.2, p<0.001); low wealth was associated with a greater decline in mental health following disability acquisition (-3.3 points, 95% CI -4.0, -2.5) than high wealth (-1.1 points, 95% CI -1.7, -0.5). Conclusion The findings suggest that low wealth prior to disability acquisition in adulthood results in a greater deterioration in mental health than among those with high wealth. PMID:26444990

  8. The Dynamics of Community Health Care Consolidation: Acquisition of Physician Practices

    PubMed Central

    Christianson, Jon B; Carlin, Caroline S; Warrick, Louise H

    2014-01-01

    Context Health care delivery systems are becoming increasingly consolidated in urban areas of the United States. While this consolidation could increase efficiency and improve quality, it also could raise the cost of health care for payers. This article traces the consolidation trajectory in a single community, focusing on factors influencing recent acquisitions of physician practices by integrated delivery systems. Methods We used key informant interviews, supplemented by document analysis. Findings The acquisition of physician practices is a process that will be difficult to reverse in the current health care environment. Provider revenue uncertainty is a key factor driving consolidation, with public and private attempts to control health care costs contributing to that uncertainty. As these efforts will likely continue, and possibly intensify, community health care systems now are less consolidated than they will be in the future. Acquisitions of multispecialty and primary care practices by integrated delivery systems follow a common process, with relatively predictable issues relating to purchase agreements, employment contracts, and compensation. Acquisitions of single-specialty practices are less common, with motivations for acquisitions likely to vary by specialty type, group size, and market structure. Total cost of care contracting could be an important catalyst for practice acquisitions in the future. Conclusions In the past, market and regulatory forces aimed at controlling costs have both encouraged and rewarded the consolidation of providers, with important new developments likely to create momentum for further consolidation, including acquisitions of physician practices. PMID:25199899

  9. The dynamics of community health care consolidation: acquisition of physician practices.

    PubMed

    Christianson, Jon B; Carlin, Caroline S; Warrick, Louise H

    2014-09-01

    Health care delivery systems are becoming increasingly consolidated in urban areas of the United States. While this consolidation could increase efficiency and improve quality, it also could raise the cost of health care for payers. This article traces the consolidation trajectory in a single community, focusing on factors influencing recent acquisitions of physician practices by integrated delivery systems. We used key informant interviews, supplemented by document analysis. The acquisition of physician practices is a process that will be difficult to reverse in the current health care environment. Provider revenue uncertainty is a key factor driving consolidation, with public and private attempts to control health care costs contributing to that uncertainty. As these efforts will likely continue, and possibly intensify, community health care systems now are less consolidated than they will be in the future. Acquisitions of multispecialty and primary care practices by integrated delivery systems follow a common process, with relatively predictable issues relating to purchase agreements, employment contracts, and compensation. Acquisitions of single-specialty practices are less common, with motivations for acquisitions likely to vary by specialty type, group size, and market structure. Total cost of care contracting could be an important catalyst for practice acquisitions in the future. In the past, market and regulatory forces aimed at controlling costs have both encouraged and rewarded the consolidation of providers, with important new developments likely to create momentum for further consolidation, including acquisitions of physician practices. © 2014 Milbank Memorial Fund.

  10. Does social support modify the effect of disability acquisition on mental health? A longitudinal study of Australian adults.

    PubMed

    Aitken, Zoe; Krnjacki, Lauren; Kavanagh, Anne Marie; LaMontagne, Anthony Daniel; Milner, Allison

    2017-10-01

    Disability acquisition in adulthood is associated with deterioration in mental health. Social support may act as a "buffer" against poor mental health following disability acquisition. We tested the hypothesis that women and men with low social support experienced larger declines in mental health on acquisition of a disability compared to women and men with high social support. We assessed whether social support, measured both prior and subsequent to disability acquisition, modified the association between disability acquisition and mental health using 14 annual waves of data from the Household, Income and Labour Dynamics in Australia Survey. Participants reported at least two consecutive waves of disability preceded by at least two consecutive waves without disability (2200 participants, 15,724 observations). Fixed-effects linear regression models were used to estimate average differences in mental health between waves with and without disability, for women and men separately. We tested for effect measure modification of the association by social support, including a three-way interaction between disability and social support prior and subsequent to disability acquisition. Though the effects of disability acquisition on mental health were much larger for women, for both women and men there was a consistent pattern of association with social support. There was evidence that social support modified the association between disability acquisition and mental health, with the largest effects for those experiencing a change from high to low social support subsequent to disability and for people with consistently low social support. These findings highlight the importance of developing new policy and practice strategies to improve the mental health of people with disabilities, including interventions to promote social support at the time of disability acquisition.

  11. A Proposed Model of Jazz Theory Knowledge Acquisition

    ERIC Educational Resources Information Center

    Ciorba, Charles R.; Russell, Brian E.

    2014-01-01

    The purpose of this study was to test a hypothesized model that proposes a causal relationship between motivation and academic achievement on the acquisition of jazz theory knowledge. A reliability analysis of the latent variables ranged from 0.92 to 0.94. Confirmatory factor analyses of the motivation (standardized root mean square residual…

  12. MRI dynamic range and its compatibility with signal transmission media

    PubMed Central

    Gabr, Refaat E.; Schär, Michael; Edelstein, Arthur D.; Kraitchman, Dara L.; Bottomley, Paul A.; Edelstein, William A.

    2010-01-01

    As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3 T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60–70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR ~90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable. PMID:19251444

  13. MRI dynamic range and its compatibility with signal transmission media.

    PubMed

    Gabr, Refaat E; Schär, Michael; Edelstein, Arthur D; Kraitchman, Dara L; Bottomley, Paul A; Edelstein, William A

    2009-06-01

    As the number of MRI phased array coil elements grows, interactions among cables connecting them to the system receiver become increasingly problematic. Fiber optic or wireless links would reduce electromagnetic interference, but their dynamic range (DR) is generally less than that of coaxial cables. Raw MRI signals, however, have a large DR because of the high signal amplitude near the center of k-space. Here, we study DR in MRI in order to determine the compatibility of MRI multicoil imaging with non-coaxial cable signal transmission. Since raw signal data are routinely discarded, we have developed an improved method for estimating the DR of MRI signals from conventional magnitude images. Our results indicate that the DR of typical surface coil signals at 3T for human subjects is less than 88 dB, even for three-dimensional acquisition protocols. Cardiac and spine coil arrays had a maximum DR of less than 75 dB and head coil arrays less than 88 dB. The DR derived from magnitude images is in good agreement with that measured from raw data. The results suggest that current analog fiber optic links, with a spurious-free DR of 60-70 dB at 500 kHz bandwidth, are not by themselves adequate for transmitting MRI data from volume or array coils with DR approximately 90 dB. However, combining analog links with signal compression might make non-coaxial cable signal transmission viable.

  14. Evaluation of a novel helium ionization detector within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography.

    PubMed

    Franchina, Flavio A; Maimone, Mariarosa; Sciarrone, Danilo; Purcaro, Giorgia; Tranchida, Peter Q; Mondello, Luigi

    2015-07-10

    The present research is focused on the use and evaluation of a novel helium ionization detector, defined as barrier discharge ionization detector (BID), within the context of (low-)flow modulation comprehensive two-dimensional gas chromatography (FM GC×GC). The performance of the BID device was compared to that of a flame ionization detector (FID), under similar FM GC×GC conditions. Following development and optimization of the FM GC×GC method, the BID was subjected to fine tuning in relation to acquisition frequency and discharge flow. Moreover, the BID performance was measured and compared to that of the FID, in terms of extra-column band broadening, sensitivity and dynamic range. The comparative study was carried out by using standard compounds belonging to different chemical classes, along with a sample of diesel fuel. Advantages and disadvantages of the BID system, also within the context of FM GC×GC, are critically discussed. In general, the BID system was characterized by a more limited dynamic range and increased sensitivity, compared to the FID. Additionally, BID and FID contribution to band broadening was found to be similar under the operational conditions applied. Particular attention was devoted to the behaviour of the FM GC×GC-BID system toward saturated and aromatic hydrocarbons, for a possible future use in the field of mineral-oil food contamination research. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dynamic baseline detection method for power data network service

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    2017-08-01

    This paper proposes a dynamic baseline Traffic detection Method which is based on the historical traffic data for the Power data network. The method uses Cisco's NetFlow acquisition tool to collect the original historical traffic data from network element at fixed intervals. This method uses three dimensions information including the communication port, time, traffic (number of bytes or number of packets) t. By filtering, removing the deviation value, calculating the dynamic baseline value, comparing the actual value with the baseline value, the method can detect whether the current network traffic is abnormal.

  16. Group dynamics for the acquisition of competences in Project Management

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Aguilar, M. C.; Castillo, C.; Polo, M. J.; Pérez, R.

    2012-04-01

    The Bologna Process promotes European citizens' employability from teaching fields in the University which implies the design of activities addressed to the development of skills for the labor market and engagement of employers. This work has been conceived for improving the formation of Engineering Project Management through group dynamics focused on: 1) the use of the creativity for solving problems; 2) promoting leadership capacities and social skills in multidisciplinary/multicultural work groups; 3) the ethical, social and environmental compromise; 4) the continuous learning. Different types of activities were designed: short activities of 15-30 minutes where fragments of books or songs are presented and discussed and long activities (2 h) where groups of students take different roles for solving common problems and situations within the Engineering Projects context. An electronic book with the content of the dynamics and the material for the students has been carried out. A sample of 20 students of Electronic Engineering degree which had participated at least in two dynamics, evaluated the utility for improving their formation in Engineering Project Management with a mark of 8.2 (scale 0-10, standard deviation equal to 0.9). On the other hand, the teachers observed how this type of work, promotes the interdisciplinary training and the acquisition of social skills, usually not-included in the objectives of the subjects.

  17. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    PubMed

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.

  18. High-performance holographic technologies for fluid-dynamics experiments

    PubMed Central

    Orlov, Sergei S.; Abarzhi, Snezhana I.; Oh, Se Baek; Barbastathis, George; Sreenivasan, Katepalli R.

    2010-01-01

    Modern technologies offer new opportunities for experimentalists in a variety of research areas of fluid dynamics. Improvements are now possible in the state-of-the-art in precision, dynamic range, reproducibility, motion-control accuracy, data-acquisition rate and information capacity. These improvements are required for understanding complex turbulent flows under realistic conditions, and for allowing unambiguous comparisons to be made with new theoretical approaches and large-scale numerical simulations. One of the new technologies is high-performance digital holography. State-of-the-art motion control, electronics and optical imaging allow for the realization of turbulent flows with very high Reynolds number (more than 107) on a relatively small laboratory scale, and quantification of their properties with high space–time resolutions and bandwidth. In-line digital holographic technology can provide complete three-dimensional mapping of the flow velocity and density fields at high data rates (over 1000 frames per second) over a relatively large spatial area with high spatial (1–10 μm) and temporal (better than a few nanoseconds) resolution, and can give accurate quantitative description of the fluid flows, including those of multi-phase and unsteady conditions. This technology can be applied in a variety of problems to study fundamental properties of flow–particle interactions, rotating flows, non-canonical boundary layers and Rayleigh–Taylor mixing. Some of these examples are discussed briefly. PMID:20211881

  19. Laser-Based Slam with Efficient Occupancy Likelihood Map Learning for Dynamic Indoor Scenes

    NASA Astrophysics Data System (ADS)

    Li, Li; Yao, Jian; Xie, Renping; Tu, Jinge; Feng, Chen

    2016-06-01

    Location-Based Services (LBS) have attracted growing attention in recent years, especially in indoor environments. The fundamental technique of LBS is the map building for unknown environments, this technique also named as simultaneous localization and mapping (SLAM) in robotic society. In this paper, we propose a novel approach for SLAMin dynamic indoor scenes based on a 2D laser scanner mounted on a mobile Unmanned Ground Vehicle (UGV) with the help of the grid-based occupancy likelihood map. Instead of applying scan matching in two adjacent scans, we propose to match current scan with the occupancy likelihood map learned from all previous scans in multiple scales to avoid the accumulation of matching errors. Due to that the acquisition of the points in a scan is sequential but not simultaneous, there unavoidably exists the scan distortion at different extents. To compensate the scan distortion caused by the motion of the UGV, we propose to integrate a velocity of a laser range finder (LRF) into the scan matching optimization framework. Besides, to reduce the effect of dynamic objects such as walking pedestrians often existed in indoor scenes as much as possible, we propose a new occupancy likelihood map learning strategy by increasing or decreasing the probability of each occupancy grid after each scan matching. Experimental results in several challenged indoor scenes demonstrate that our proposed approach is capable of providing high-precision SLAM results.

  20. A PRESTO-SENSE sequence with alternating partial-Fourier encoding for rapid susceptibility-weighted 3D MRI time series.

    PubMed

    Klarhöfer, Markus; Dilharreguy, Bixente; van Gelderen, Peter; Moonen, Chrit T W

    2003-10-01

    A 3D sequence for dynamic susceptibility imaging is proposed which combines echo-shifting principles (such as PRESTO), sensitivity encoding (SENSE), and partial-Fourier acquisition. The method uses a moderate SENSE factor of 2 and takes advantage of an alternating partial k-space acquisition in the "slow" phase encode direction allowing an iterative reconstruction using high-resolution phase estimates. Offering an isotropic spatial resolution of 4 x 4 x 4 mm(3), the novel sequence covers the whole brain including parts of the cerebellum in 0.5 sec. Its temporal signal stability is comparable to that of a full-Fourier, full-FOV EPI sequence having the same dynamic scan time but much less brain coverage. Initial functional MRI experiments showed consistent activation in the motor cortex with an average signal change slightly less than that of EPI. Copyright 2003 Wiley-Liss, Inc.

  1. The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results

    NASA Technical Reports Server (NTRS)

    Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad

    1992-01-01

    To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.

  2. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-05

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  3. A survey of keystroke dynamics biometrics.

    PubMed

    Teh, Pin Shen; Teoh, Andrew Beng Jin; Yue, Shigang

    2013-01-01

    Research on keystroke dynamics biometrics has been increasing, especially in the last decade. The main motivation behind this effort is due to the fact that keystroke dynamics biometrics is economical and can be easily integrated into the existing computer security systems with minimal alteration and user intervention. Numerous studies have been conducted in terms of data acquisition devices, feature representations, classification methods, experimental protocols, and evaluations. However, an up-to-date extensive survey and evaluation is not yet available. The objective of this paper is to provide an insightful survey and comparison on keystroke dynamics biometrics research performed throughout the last three decades, as well as offering suggestions and possible future research directions.

  4. Adaptive critics for dynamic optimization.

    PubMed

    Kulkarni, Raghavendra V; Venayagamoorthy, Ganesh Kumar

    2010-06-01

    A novel action-dependent adaptive critic design (ACD) is developed for dynamic optimization. The proposed combination of a particle swarm optimization-based actor and a neural network critic is demonstrated through dynamic sleep scheduling of wireless sensor motes for wildlife monitoring. The objective of the sleep scheduler is to dynamically adapt the sleep duration to node's battery capacity and movement pattern of animals in its environment in order to obtain snapshots of the animal on its trajectory uniformly. Simulation results show that the sleep time of the node determined by the actor critic yields superior quality of sensory data acquisition and enhanced node longevity. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less

  6. Fluorescence Fluctuation Approaches to the Study of Adhesion and Signaling

    PubMed Central

    Bachir, Alexia I.; Kubow, Kristopher E.; Horwitz, Alan R.

    2013-01-01

    Cell–matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm–µm) and time (ms–min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions. PMID:23280111

  7. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2001-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which con lead to a loss of engine power, large pressure transients in the inlet/nacelle, and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to control these events successfully. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to capture transient velocity and pressure measurements simultaneously in the nonstationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique that is ideally suited for studying transient flow phenomena in highspeed turbomachinery and has been used previously to map the stable operating point flow field in the diffuser of a high-speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  8. Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.

    PubMed

    Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido

    2012-07-10

    We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.

  9. An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Bright, Michelle M.; Skoch, Gary J.

    2002-01-01

    Compressor stall is a catastrophic breakdown of the flow in a compressor, which can lead to a loss of engine power, large pressure transients in the inlet/nacelle and engine flameout. The implementation of active or passive strategies for controlling rotating stall and surge can significantly extend the stable operating range of a compressor without substantially sacrificing performance. It is crucial to identify the dynamic changes occurring in the flow field prior to rotating stall and surge in order to successfully control these events. Generally, pressure transducer measurements are made to capture the transient response of a compressor prior to rotating stall. In this investigation, Digital Particle Imaging Velocimetry (DPIV) is used in conjunction with dynamic pressure transducers to simultaneously capture transient velocity and pressure measurements in the non-stationary flow field during compressor surge. DPIV is an instantaneous, planar measurement technique which is ideally suited for studying transient flow phenomena in high speed turbomachinery and has been used previously to successfully map the stable operating point flow field in the diffuser of a high speed centrifugal compressor. Through the acquisition of both DPIV images and transient pressure data, the time evolution of the unsteady flow during surge is revealed.

  10. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know.

    PubMed

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.

  11. Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Danny; Pollock, Sean; Keall, Paul, E-mail: paul.keall@sydney.edu.au

    2016-05-15

    Purpose: The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. Methods: The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale)more » respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. Results: For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole method, an average intensity difference of the dynamic keyhole reconstructed images (P < 0.0001) was minimal, and resulted in the accuracy of tumor motion within 99.6% (P < 0.0001) and the accuracy of tumor area within 98.0% (P < 0.0001) for lung tumor monitoring applications. Conclusions: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by up to a factor of five compared with full k-space methods for real-time lung tumor MRI.« less

  12. Extracting a respiratory signal from raw dynamic PET data that contain tracer kinetics.

    PubMed

    Schleyer, P J; Thielemans, K; Marsden, P K

    2014-08-07

    Data driven gating (DDG) methods provide an alternative to hardware based respiratory gating for PET imaging. Several existing DDG approaches obtain a respiratory signal by observing the change in PET-counts within specific regions of acquired PET data. Currently, these methods do not allow for tracer kinetics which can interfere with the respiratory signal and introduce error. In this work, we produced a DDG method for dynamic PET studies that exhibit tracer kinetics. Our method is based on an existing approach that uses frequency-domain analysis to locate regions within raw PET data that are subject to respiratory motion. In the new approach, an optimised non-stationary short-time Fourier transform was used to create a time-varying 4D map of motion affected regions. Additional processing was required to ensure that the relationship between the sign of the respiratory signal and the physical direction of movement remained consistent for each temporal segment of the 4D map. The change in PET-counts within the 4D map during the PET acquisition was then used to generate a respiratory curve. Using 26 min dynamic cardiac NH3 PET acquisitions which included a hardware derived respiratory measurement, we show that tracer kinetics can severely degrade the respiratory signal generated by the original DDG method. In some cases, the transition of tracer from the liver to the lungs caused the respiratory signal to invert. The new approach successfully compensated for tracer kinetics and improved the correlation between the data-driven and hardware based signals. On average, good correlation was maintained throughout the PET acquisitions.

  13. Dynamic phase-sensitive optical coherence elastography at a true kilohertz frame-rate

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Larin, Kirill V.

    2016-03-01

    Dynamic optical coherence elastography (OCE) techniques have rapidly emerged as a noninvasive way to characterize the biomechanical properties of tissue. However, clinical applications of the majority of these techniques have been unfeasible due to the extended acquisition time because of multiple temporal OCT acquisitions (M-B mode). Moreover, multiple excitations, large datasets, and prolonged laser exposure prohibit their translation to the clinic, where patient discomfort and safety are critical criteria. Here, we demonstrate the feasibility of noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system. The OCE system was based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz, and imaged the elastic wave propagation at a frame rate of ~7.3 kHz. Because the elastic wave directly imaged, only a single excitation was utilized for one line scan measurement. Rather than acquiring multiple temporal scans at successive spatial locations as with previous techniques, here, successive B-scans were acquired over the measurement region (B-M mode). Preliminary measurements were taken on tissue-mimicking agar phantoms of various concentrations, and the results showed good agreement with uniaxial mechanical compression testing. Then, the elasticity of an in situ porcine cornea in the whole eye-globe configuration at various intraocular pressures was measured. The results showed that this technique can acquire a depth-resolved elastogram in milliseconds. Furthermore, the ultra-fast acquisition ensured that the laser safety exposure limit for the cornea was not exceeded.

  14. Hopper on wheels: evolving the hopping robot concept

    NASA Technical Reports Server (NTRS)

    Schell, S.; Tretten, A.; Burdick, J.; Fuller, S. B.; Fiorini, P.

    2001-01-01

    This paper describes the evolution of our concept of hopping robot for planetary exploration, that combines coarse long range mobility achieved by hopping, with short range wheeled mobility for precision target acquisition.

  15. Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI.

    PubMed

    Ramskill, N P; Bush, I; Sederman, A J; Mantle, M D; Benning, M; Anger, B C; Appel, M; Gladden, L F

    2016-09-01

    Three-dimensional (3D) imaging of the fluid distributions within the rock is essential to enable the unambiguous interpretation of core flooding data. Magnetic resonance imaging (MRI) has been widely used to image fluid saturation in rock cores; however, conventional acquisition strategies are typically too slow to capture the dynamic nature of the displacement processes that are of interest. Using Compressed Sensing (CS), it is possible to reconstruct a near-perfect image from significantly fewer measurements than was previously thought necessary, and this can result in a significant reduction in the image acquisition times. In the present study, a method using the Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with CS to provide 3D images of the fluid saturation in rock core samples during laboratory core floods is demonstrated. An objective method using image quality metrics for the determination of the most suitable regularisation functional to be used in the CS reconstructions is reported. It is shown that for the present application, Total Variation outperforms the Haar and Daubechies3 wavelet families in terms of the agreement of their respective CS reconstructions with a fully-sampled reference image. Using the CS-RARE approach, 3D images of the fluid saturation in the rock core have been acquired in 16min. The CS-RARE technique has been applied to image the residual water saturation in the rock during a water-water displacement core flood. With a flow rate corresponding to an interstitial velocity of vi=1.89±0.03ftday(-1), 0.1 pore volumes were injected over the course of each image acquisition, a four-fold reduction when compared to a fully-sampled RARE acquisition. Finally, the 3D CS-RARE technique has been used to image the drainage of dodecane into the water-saturated rock in which the dynamics of the coalescence of discrete clusters of the non-wetting phase are clearly observed. The enhancement in the temporal resolution that has been achieved using the CS-RARE approach enables dynamic transport processes pertinent to laboratory core floods to be investigated in 3D on a time-scale and with a spatial resolution that, until now, has not been possible. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jansen, B. J., Jr.

    1998-01-01

    The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

  17. NOTE: A method for controlling image acquisition in electronic portal imaging devices

    NASA Astrophysics Data System (ADS)

    Glendinning, A. G.; Hunt, S. G.; Bonnett, D. E.

    2001-02-01

    Certain types of camera-based electronic portal imaging devices (EPIDs) which initiate image acquisition based on sensing a change in video level have been observed to trigger unreliably at the beginning of dynamic multileaf collimation sequences. A simple, novel means of controlling image acquisition with an Elekta linear accelerator (Elekta Oncology Systems, Crawley, UK) is proposed which is based on illumination of a photodetector (ORP-12, Silonex Inc., Plattsburgh, NY, USA) by the electron gun of the accelerator. By incorporating a simple trigger circuit it is possible to derive a beam on/off status signal which changes at least 100 ms before any dose is measured by the accelerator. The status signal does not return to the beam-off state until all dose has been delivered and is suitable for accelerator pulse repetition frequencies of 50-400 Hz. The status signal is thus a reliable means of indicating the initiation and termination of radiation exposure, and thus controlling image acquisition of such EPIDs for this application.

  18. UTOFIA: an underwater time-of-flight image acquisition system

    NASA Astrophysics Data System (ADS)

    Driewer, Adrian; Abrosimov, Igor; Alexander, Jonathan; Benger, Marc; O'Farrell, Marion; Haugholt, Karl Henrik; Softley, Chris; Thielemann, Jens T.; Thorstensen, Jostein; Yates, Chris

    2017-10-01

    In this article the development of a newly designed Time-of-Flight (ToF) image sensor for underwater applications is described. The sensor is developed as part of the project UTOFIA (underwater time-of-flight image acquisition) funded by the EU within the Horizon 2020 framework. This project aims to develop a camera based on range gating that extends the visible range compared to conventional cameras by a factor of 2 to 3 and delivers real-time range information by means of a 3D video stream. The principle of underwater range gating as well as the concept of the image sensor are presented. Based on measurements on a test image sensor a pixel structure that suits best to the requirements has been selected. Within an extensive characterization underwater the capability of distance measurements in turbid environments is demonstrated.

  19. Predicting Mood Changes in Bipolar Disorder through Heartbeat Nonlinear Dynamics.

    PubMed

    Valenza, Gaetano; Nardelli, Mimma; Lanata', Antonio; Gentili, Claudio; Bertschy, Gilles; Kosel, Markus; Scilingo, Enzo Pasquale

    2016-04-20

    Bipolar Disorder (BD) is characterized by an alternation of mood states from depression to (hypo)mania. Mixed states, i.e., a combination of depression and mania symptoms at the same time, can also be present. The diagnosis of this disorder in the current clinical practice is based only on subjective interviews and questionnaires, while no reliable objective psychophysiological markers are available. Furthermore, there are no biological markers predicting BD outcomes, or providing information about the future clinical course of the phenomenon. To overcome this limitation, here we propose a methodology predicting mood changes in BD using heartbeat nonlinear dynamics exclusively, derived from the ECG. Mood changes are here intended as transitioning between two mental states: euthymic state (EUT), i.e., the good affective balance, and non-euthymic (non-EUT) states. Heart Rate Variability (HRV) series from 14 bipolar spectrum patients (age: 33.439.76, age range: 23-54; 6 females) involved in the European project PSYCHE, undergoing whole night ECG monitoring were analyzed. Data were gathered from a wearable system comprised of a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire ECGs. Each patient was monitored twice a week, for 14 weeks, being able to perform normal (unstructured) activities. From each acquisition, the longest artifact-free segment of heartbeat dynamics was selected for further analyses. Sub-segments of 5 minutes of this segment were used to estimate trends of HRV linear and nonlinear dynamics. Considering data from a current observation at day t0, and past observations at days (t1, t2,...,), personalized prediction accuracies in forecasting a mood state (EUT/non-EUT) at day t+1 were 69% on average, reaching values as high as 83.3%. This approach opens to the possibility of predicting mood states in bipolar patients through heartbeat nonlinear dynamics exclusively.

  20. Dynamic Information and Library Processing.

    ERIC Educational Resources Information Center

    Salton, Gerard

    This book provides an introduction to automated information services: collection, analysis, classification, storage, retrieval, transmission, and dissemination. An introductory chapter is followed by an overview of mechanized processes for acquisitions, cataloging, and circulation. Automatic indexing and abstracting methods are covered, followed…

  1. Unattended Dual Current Monitor (UDCM) FY17 Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newell, Matthew R.

    The UDCM is a low current measurement device designed to record pico-amp to micro-amp currents from radiation detectors. The UDCM is the planned replacement for the IAEA’s obsolete MiniGRAND data acquisition module. Preliminary testing of the UDCM at the IAEA facilities lead to the following recommendations from the IAEA: Increase the measurement range. Lower range by a factor of 5 and upper range by 2 orders of magnitude; Modifications to the web interface; Increase programmable acquisition time to 3600s; Develop a method to handle current offsets and negative current; Error checking when writing data to the uSD card; and Writingmore » BID files along with the currently stored BI0 files.« less

  2. Engineering Research Teams: The Role of Social Networks in the Formation of Research Skills for Postgraduate Students

    ERIC Educational Resources Information Center

    Sampson, Kaylene; Comer, Keith

    2011-01-01

    This study explores learner experiences regarding skills acquisition of a cohort of engineering doctoral students enrolled in a New Zealand university. Employing a qualitative methodology, we interviewed 28 PhD students about the range of experiences and exchanges that comprised their pathways to skill acquisition. Students reported that research…

  3. Discrete return lidar in natural resources: Recommendations for project planning, data processing, and deliverables

    Treesearch

    Jeffrey S. Evans; Andrew T. Hudak; Russ Faux; Alistair M. S. Smith

    2009-01-01

    Recent years have seen the progression of light detection and ranging (lidar) from the realm of research to operational use in natural resource management. Numerous government agencies, private industries, and public/private stakeholder consortiums are planning or have recently acquired large-scale acquisitions, and a national U.S. lidar acquisition is likely before...

  4. Input Consistency in the Acquisition of Questions in Bulgarian and English: A Hypothesis Testing Model

    ERIC Educational Resources Information Center

    Tornyova, Lidiya

    2011-01-01

    The goal of this dissertation is to address several major empirical and theoretical issues related to English-speaking children's difficulties with auxiliary use and inversion in questions. The empirical data on English question acquisition are inconsistent due to differences in methods and techniques used. A range of proposals about the source of…

  5. Natural Environment Illumination: Coherent Interactive Augmented Reality for Mobile and Non-Mobile Devices.

    PubMed

    Rohmer, Kai; Jendersie, Johannes; Grosch, Thorsten

    2017-11-01

    Augmented Reality offers many applications today, especially on mobile devices. Due to the lack of mobile hardware for illumination measurements, photorealistic rendering with consistent appearance of virtual objects is still an area of active research. In this paper, we present a full two-stage pipeline for environment acquisition and augmentation of live camera images using a mobile device with a depth sensor. We show how to directly work on a recorded 3D point cloud of the real environment containing high dynamic range color values. For unknown and automatically changing camera settings, a color compensation method is introduced. Based on this, we show photorealistic augmentations using variants of differential light simulation techniques. The presented methods are tailored for mobile devices and run at interactive frame rates. However, our methods are scalable to trade performance for quality and can produce quality renderings on desktop hardware.

  6. Chip-to-Chip Half Duplex Spiking Data Communication over Power Supply Rails

    NASA Astrophysics Data System (ADS)

    Hashida, Takushi; Nagata, Makoto

    Chip-to-chip serial data communication is superposed on power supply over common Vdd/Vss connections through chip, package, and board traces. A power line transceiver demonstrates half duplex spiking communication at more than 100Mbps. A pair of transceivers consumes 1.35mA from 3.3V, at 130Mbps. On-chip power line LC low pass filter attenuates pseudo-differential communication spikes by 30dB, purifying power supply current for internal circuits. Bi-directional spiking communication was successfully examined in a 90-nm CMOS prototype setup of on-chip waveform capturing. A micro controller forwards clock pulses to and receives data streams from a comparator based waveform capturer formed on a different chip, through a single pair of power and ground traces. The bit error rate is small enough not to degrade waveform acquisition capability, maintaining the spurious free dynamic range of higher than 50dB.

  7. Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface

    PubMed Central

    Blakely, Tim M.; Miller, Kai J.; Rao, Rajesh P. N.; Ojemann, Jeffrey G.

    2014-01-01

    Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75–200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms. PMID:25599079

  8. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  9. V/STOLAND digital avionics system for XV-15 tilt rotor

    NASA Technical Reports Server (NTRS)

    Liden, S.

    1980-01-01

    A digital flight control system for the tilt rotor research aircraft provides sophisticated navigation, guidance, control, display and data acquisition capabilities for performing terminal area navigation, guidance and control research. All functions of the XV-15 V/STOLAND system were demonstrated on the NASA-ARC S-19 simulation facility under a comprehensive dynamic acceptance test. The most noteworthy accomplishments of the system are: (1) automatic configuration control of a tilt-rotor aircraft over the total operating range; (2) total hands-off landing to touchdown on various selectable straight-in glide slopes and on a flight path that includes a two-revolution helix; (3) automatic guidance along a programmed three-dimensional reference flight path; (4) navigation data for the automatic guidance computed on board, based on VOR/DME, TACAN, or MLS navid data; and (5) integration of a large set of functions in a single computer, utilizing 16k words of storage for programs and data.

  10. Wearable photoplethysmography device prototype for wireless cardiovascular monitoring

    NASA Astrophysics Data System (ADS)

    Kviesis-Kipge, E.; Grabovskis, A.; Marcinkevics, Z.; Mecnika, V.; Rubenis, O.

    2014-05-01

    The aim of the study was to develop a prototype system of the smart garment for real time telemetric monitoring of human cardiovascular activity. Two types of photoplethysmography (PPG) sensors for low noise and artefact free signal recording from various sites of the human body that were suitable for integration into smart textile were investigated. The reflectance sensors with single and multiple photodiodes based on "pulse-duration-based signal conversion" signal acquisition principle were designed and evaluated. The technical parameters of the system were measured both on bench and in vivo. Overall, both types of PPG sensors showed acceptable signal quality SNR 86.56±3.00 dB, dynamic range 89.84 dB. However, in-vivo condition tests revealed lower noise and higher accuracy achieved by applying the multiple photodiodes sensor. We concluded that the proposed PPG device prototype is simple and reliable, and therefore, can be utilized in low-cost smart garments.

  11. Light field imaging and application analysis in THz

    NASA Astrophysics Data System (ADS)

    Zhang, Hongfei; Su, Bo; He, Jingsuo; Zhang, Cong; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The light field includes the direction information and location information. Light field imaging can capture the whole light field by single exposure. The four-dimensional light field function model represented by two-plane parameter, which is proposed by Levoy, is adopted in the light field. Acquisition of light field is based on the microlens array, camera array and the mask. We calculate the dates of light-field to synthetize light field image. The processing techniques of light field data include technology of refocusing rendering, technology of synthetic aperture and technology of microscopic imaging. Introducing the technology of light field imaging into THz, the efficiency of 3D imaging is higher than that of conventional THz 3D imaging technology. The advantages compared with visible light field imaging include large depth of field, wide dynamic range and true three-dimensional. It has broad application prospects.

  12. Micro pulse lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering has been demonstrated. The transmitter of the micropulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited by optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that systems built on the micropulse lidar concept are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  13. Optimization and comparison of simultaneous and separate acquisition protocols for dual isotope myocardial perfusion SPECT.

    PubMed

    Ghaly, Michael; Links, Jonathan M; Frey, Eric C

    2015-07-07

    Dual-isotope simultaneous-acquisition (DISA) rest-stress myocardial perfusion SPECT (MPS) protocols offer a number of advantages over separate acquisition. However, crosstalk contamination due to scatter in the patient and interactions in the collimator degrade image quality. Compensation can reduce the effects of crosstalk, but does not entirely eliminate image degradations. Optimizing acquisition parameters could further reduce the impact of crosstalk. In this paper we investigate the optimization of the rest Tl-201 energy window width and relative injected activities using the ideal observer (IO), a realistic digital phantom population and Monte Carlo (MC) simulated Tc-99m and Tl-201 projections as a means to improve image quality. We compared performance on a perfusion defect detection task for Tl-201 acquisition energy window widths varying from 4 to 40 keV centered at 72 keV for a camera with a 9% energy resolution. We also investigated 7 different relative injected activities, defined as the ratio of Tc-99m and Tl-201 activities, while keeping the total effective dose constant at 13.5 mSv. For each energy window and relative injected activity, we computed the IO test statistics using a Markov chain Monte Carlo (MCMC) method for an ensemble of 1,620 triplets of fixed and reversible defect-present, and defect-absent noisy images modeling realistic background variations. The volume under the 3-class receiver operating characteristic (ROC) surface (VUS) was estimated and served as the figure of merit. For simultaneous acquisition, the IO suggested that relative Tc-to-Tl injected activity ratios of 2.6-5 and acquisition energy window widths of 16-22% were optimal. For separate acquisition, we observed a broad range of optimal relative injected activities from 2.6 to 12.1 and acquisition energy window of widths 16-22%. A negative correlation between Tl-201 injected activity and the width of the Tl-201 energy window was observed in these ranges. The results also suggested that DISA methods could potentially provide image quality as good as that obtained with separate acquisition protocols. We compared observer performance for the optimized protocols and the current clinical protocol using separate acquisition. The current clinical protocols provided better performance at a cost of injecting the patient with approximately double the injected activity of Tc-99m and Tl-201, resulting in substantially increased radiation dose.

  14. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  15. Improvements in Diagnostic Accuracy with Quantitative Dynamic Contrast-Enhanced MRI

    DTIC Science & Technology

    2011-12-01

    Magnetic   Resonance   Imaging  during  the  Menstrual  Cylce:  Perfusion   Imaging  Signal   Enhanceent,  and  Influence  of...acquisition of quantitative images displaying the concentration of contrast media as well as MRI -detectable proton density. To date 21 patients have...truly  quantitative   images  of  a  dynamic  contrast-­‐enhanced  (DCE)   MRI  of  the

  16. Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials

    PubMed Central

    Mollazadeh, Mohsen; Murari, Kartikeya; Cauwenberghs, Gert; Thakor, Nitish

    2009-01-01

    Electrical activity in the brain spans a wide range of spatial and temporal scales, requiring simultaneous recording of multiple modalities of neurophysiological signals in order to capture various aspects of brain state dynamics. Here, we present a 16-channel neural interface integrated circuit fabricated in a 0.5 μm 3M2P CMOS process for selective digital acquisition of biopotentials across the spectrum of neural signal modalities in the brain, ranging from single spike action potentials to local field potentials (LFP), electrocorticograms (ECoG), and electroencephalograms (EEG). Each channel is composed of a tunable bandwidth, fixed gain front-end amplifier and a programmable gain/resolution continuous-time incremental ΔΣ analog-to-digital converter (ADC). A two-stage topology for the front-end voltage amplifier with capacitive feedback offers independent tuning of the amplifier bandpass frequency corners, and attains a noise efficiency factor (NEF) of 2.9 at 8.2 kHz bandwidth for spike recording, and a NEF of 3.2 at 140 Hz bandwidth for EEG recording. The amplifier has a measured midband gain of 39.6 dB, frequency response from 0.2 Hz to 8.2 kHz, and an input-referred noise of 1.94 μVrms while drawing 12.2 μA of current from a 3.3 V supply. The lower and higher cutoff frequencies of the bandpass filter are adjustable from 0.2 to 94 Hz and 140 Hz to 8.2 kHz, respectively. At 10-bit resolution, the ADC has an SNDR of 56 dB while consuming 76 μW power. Time-modulation feedback in the ADC offers programmable digital gain (1–4096) for auto-ranging, further improving the dynamic range and linearity of the ADC. Experimental recordings with the system show spike signals in rat somatosensory cortex as well as alpha EEG activity in a human subject. PMID:20046962

  17. Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition.

    PubMed

    Yin, Liming; Dijkstra, Feike A; Wang, Peng; Zhu, Biao; Cheng, Weixin

    2018-05-01

    Rhizosphere priming effects (RPEs) play a central role in modifying soil organic matter mineralization. However, effects of tree species and intraspecific competition on RPEs are poorly understood. We investigated RPEs of three tree species (larch, ash and Chinese fir) and the impact of intraspecific competition of these species on the RPE by growing them at two planting densities for 140 d. We determined the RPE on soil organic carbon (C) decomposition, gross and net nitrogen (N) mineralization and net plant N acquisition. Differences in the RPE among species were associated with differences in plant biomass. Gross N mineralization and net plant N acquisition increased, but net N mineralization decreased, as the RPE on soil organic C decomposition increased. Intraspecific competition reduced the RPE on soil organic C decomposition, gross and net N mineralization, and net plant N acquisition, especially for ash and Chinese fir. Microbial N mining may explain the overall positive RPEs across species, whereas intensified plant-microbe competition for N may have reduced the RPE with intraspecific competition. Overall, the species-specific effects of tree species play an important role in modulating the magnitude and mechanisms of RPEs and the intraspecific competition on soil C and N dynamics. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Nonlinear dynamic range transformation in visual communication channels.

    PubMed

    Alter-Gartenberg, R

    1996-01-01

    The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.

  19. Radiation dose reduction using a neck detection algorithm for single spiral brain and cervical spine CT acquisition in the trauma setting.

    PubMed

    Ardley, Nicholas D; Lau, Ken K; Buchan, Kevin

    2013-12-01

    Cervical spine injuries occur in 4-8 % of adults with head trauma. Dual acquisition technique has been traditionally used for the CT scanning of brain and cervical spine. The purpose of this study was to determine the efficacy of radiation dose reduction by using a single acquisition technique that incorporated both anatomical regions with a dedicated neck detection algorithm. Thirty trauma patients for brain and cervical spine CT were included and were scanned with the single acquisition technique. The radiation doses from the single CT acquisition technique with the neck detection algorithm, which allowed appropriate independent dose administration relevant to brain and cervical spine regions, were recorded. Comparison was made both to the doses calculated from the simulation of the traditional dual acquisitions with matching parameters, and to the doses of retrospective dual acquisition legacy technique with the same sample size. The mean simulated dose for the traditional dual acquisition technique was 3.99 mSv, comparable to the average dose of 4.2 mSv from 30 previous patients who had CT of brain and cervical spine as dual acquisitions. The mean dose from the single acquisition technique was 3.35 mSv, resulting in a 16 % overall dose reduction. The images from the single acquisition technique were of excellent diagnostic quality. The new single acquisition CT technique incorporating the neck detection algorithm for brain and cervical spine significantly reduces the overall radiation dose by eliminating the unavoidable overlapping range between 2 anatomical regions which occurs with the traditional dual acquisition technique.

  20. A Dual-Channel Acquisition Method Based on Extended Replica Folding Algorithm for Long Pseudo-Noise Code in Inter-Satellite Links.

    PubMed

    Zhao, Hongbo; Chen, Yuying; Feng, Wenquan; Zhuang, Chen

    2018-05-25

    Inter-satellite links are an important component of the new generation of satellite navigation systems, characterized by low signal-to-noise ratio (SNR), complex electromagnetic interference and the short time slot of each satellite, which brings difficulties to the acquisition stage. The inter-satellite link in both Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) adopt the long code spread spectrum system. However, long code acquisition is a difficult and time-consuming task due to the long code period. Traditional folding methods such as extended replica folding acquisition search technique (XFAST) and direct average are largely restricted because of code Doppler and additional SNR loss caused by replica folding. The dual folding method (DF-XFAST) and dual-channel method have been proposed to achieve long code acquisition in low SNR and high dynamic situations, respectively, but the former is easily affected by code Doppler and the latter is not fast enough. Considering the environment of inter-satellite links and the problems of existing algorithms, this paper proposes a new long code acquisition algorithm named dual-channel acquisition method based on the extended replica folding algorithm (DC-XFAST). This method employs dual channels for verification. Each channel contains an incoming signal block. Local code samples are folded and zero-padded to the length of the incoming signal block. After a circular FFT operation, the correlation results contain two peaks of the same magnitude and specified relative position. The detection process is eased through finding the two largest values. The verification takes all the full and partial peaks into account. Numerical results reveal that the DC-XFAST method can improve acquisition performance while acquisition speed is guaranteed. The method has a significantly higher acquisition probability than folding methods XFAST and DF-XFAST. Moreover, with the advantage of higher detection probability and lower false alarm probability, it has a lower mean acquisition time than traditional XFAST, DF-XFAST and zero-padding.

  1. A painless and constraint-free method to estimate viscoelastic passive dynamics of limbs' joints to support diagnosis of neuromuscular diseases.

    PubMed

    Venture, Gentiane; Nakamura, Yoshihiko; Yamane, Katsu; Hirashima, Masaya

    2007-01-01

    Though seldom identified, the human joints dynamics is important in the fields of medical robotics and medical research. We present a general solution to estimate in-vivo and simultaneously the passive dynamics of the human limbs' joints. It is based on the use of the multi-body description of the human body and its kinematics and dynamics computations. The linear passive joint dynamics of the shoulders and the elbows: stiffness, viscosity and friction, is estimated simultaneously using the linear least squares method. Acquisition of movements is achieved with an optical motion capture studio on one examinee during the clinical diagnosis of neuromuscular diseases. Experimental results are given and discussed.

  2. An Automated Platform for High-Resolution Tissue Imaging Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanekoff, Ingela T.; Heath, Brandi S.; Liyu, Andrey V.

    2012-10-02

    An automated platform has been developed for acquisition and visualization of mass spectrometry imaging (MSI) data using nanospray desorption electrospray ionization (nano-DESI). The new system enables robust operation of the nano-DESI imaging source over many hours. This is achieved by controlling the distance between the sample and the probe by mounting the sample holder onto an automated XYZ stage and defining the tilt of the sample plane. This approach is useful for imaging of relatively flat samples such as thin tissue sections. Custom software called MSI QuickView was developed for visualization of large data sets generated in imaging experiments. MSImore » QuickView enables fast visualization of the imaging data during data acquisition and detailed processing after the entire image is acquired. The performance of the system is demonstrated by imaging rat brain tissue sections. High resolution mass analysis combined with MS/MS experiments enabled identification of lipids and metabolites in the tissue section. In addition, high dynamic range and sensitivity of the technique allowed us to generate ion images of low-abundance isobaric lipids. High-spatial resolution image acquired over a small region of the tissue section revealed the spatial distribution of an abundant brain metabolite, creatine, in the white and gray matter that is consistent with the literature data obtained using magnetic resonance spectroscopy.« less

  3. Correlated Imaging – A Grand Challenge in Chemical Analysis

    PubMed Central

    Masyuko, Rachel; Lanni, Eric; Sweedler, Jonathan V.; Bohn, Paul W.

    2013-01-01

    Correlated chemical imaging is an emerging strategy for acquisition of images by combining information from multiplexed measurement platforms to track, visualize, and interpret in situ changes in the structure, organization, and activities of interesting chemical systems, frequently spanning multiple decades in space and time. Acquiring and correlating information from complementary imaging experiments has the potential to expose complex chemical behavior in ways that are simply not available from single methods applied in isolation, thereby greatly amplifying the information gathering power of imaging experiments. However, in order to correlate image information across platforms, a number of issues must be addressed. First, signals are obtained from disparate experiments with fundamentally different figures of merit, including pixel size, spatial resolution, dynamic range, and acquisition rates. In addition, images are often acquired on different instruments in different locations, so the sample must be registered spatially so that the same area of the sample landscape is addressed. The signals acquired must be correlated in both spatial and temporal domains, and the resulting information has to be presented in a way that is readily understood. These requirements pose special challenges for image cross-correlation that go well beyond those posed in single technique imaging approaches. The special opportunities and challenges that attend correlated imaging are explored by specific reference to correlated mass spectrometric and Raman imaging, a topic of substantial and growing interest. PMID:23431559

  4. High angle of attack flying qualities criteria for longitudinal rate command systems

    NASA Technical Reports Server (NTRS)

    Wilson, David J.; Citurs, Kevin D.; Davidson, John B.

    1994-01-01

    This study was designed to investigate flying qualities requirements of alternate pitch command systems for fighter aircraft at high angle of attack. Flying qualities design guidelines have already been developed for angle of attack command systems at 30, 45, and 60 degrees angle of attack, so this research fills a similar need for rate command systems. Flying qualities tasks that require post-stall maneuvering were tested during piloted simulations in the McDonnell Douglas Aerospace Manned Air Combat Simulation facility. A generic fighter aircraft model was used to test angle of attack rate and pitch rate command systems for longitudinal gross acquisition and tracking tasks at high angle of attack. A wide range of longitudinal dynamic variations were tested at 30, 45, and 60 degrees angle of attack. Pilot comments, Cooper-Harper ratings, and pilot induced oscillation ratings were taken from five pilots from NASA, USN, CAF, and McDonnell Douglas Aerospace. This data was used to form longitudinal design guidelines for rate command systems at high angle of attack. These criteria provide control law design guidance for fighter aircraft at high angle of attack, low speed flight conditions. Additional time history analyses were conducted using the longitudinal gross acquisition data to look at potential agility measures of merit and correlate agility usage to flying qualities boundaries. This paper presents an overview of this research.

  5. Single-photon counting multicolor multiphoton fluorescence microscope.

    PubMed

    Buehler, Christof; Kim, Ki H; Greuter, Urs; Schlumpf, Nick; So, Peter T C

    2005-01-01

    We present a multicolor multiphoton fluorescence microscope with single-photon counting sensitivity. The system integrates a standard multiphoton fluorescence microscope, an optical grating spectrograph operating in the UV-Vis wavelength region, and a 16-anode photomultiplier tube (PMT). The major technical innovation is in the development of a multichannel photon counting card (mC-PhCC) for direct signal collection from multi-anode PMTs. The electronic design of the mC-PhCC employs a high-throughput, fully-parallel, single-photon counting scheme along with a high-speed electrical or fiber-optical link interface to the data acquisition computer. There is no electronic crosstalk among the detection channels of the mC-PhCC. The collected signal remains linear up to an incident photon rate of 10(8) counts per second. The high-speed data interface offers ample bandwidth for real-time readout: 2 MByte lambda-stacks composed of 16 spectral channels, 256 x 256 pixel image with 12-bit dynamic range can be transferred at 30 frames per second. The modular design of the mC-PhCC can be readily extended to accommodate PMTs of more anodes. Data acquisition from a 64-anode PMT has been verified. As a demonstration of system performance, spectrally resolved images of fluorescent latex spheres and ex-vivo human skin are reported. The multicolor multiphoton microscope is suitable for highly sensitive, real-time, spectrally-resolved three-dimensional imaging in biomedical applications.

  6. Trilateration range and range rate system. Volume 1: CDA system manual

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This document is one of a series of manuals designed to provide the information required to operate and maintain the Command and Data Acquisition (CDA) equipment of the Trilateration Range and Range Rate (TRRR) System. Information pertaining to the equipment in the Trilateration Range and Range Rate System which is designed to interface with existing NASA equipment located at Wallops Island, Virginia is presented.

  7. Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird.

    PubMed

    Adelman, James S; Moyers, Sahnzi C; Farine, Damien R; Hawley, Dana M

    2015-09-22

    Individual heterogeneity can influence the dynamics of infectious diseases in wildlife and humans alike. Thus, recent work has sought to identify behavioural characteristics that contribute disproportionately to individual variation in pathogen acquisition (super-receiving) or transmission (super-spreading). However, it remains unknown whether the same behaviours enhance both acquisition and transmission, a scenario likely to result in explosive epidemics. Here, we examined this possibility in an ecologically relevant host-pathogen system: house finches and their bacterial pathogen, Mycoplasma gallisepticum, which causes severe conjunctivitis. We examined behaviours likely to influence disease acquisition (feeder use, aggression, social network affiliations) in an observational field study, finding that the time an individual spends on bird feeders best predicted the risk of conjunctivitis. To test whether this behaviour also influences the likelihood of transmitting M. gallisepticum, we experimentally inoculated individuals based on feeding behaviour and tracked epidemics within captive flocks. As predicted, transmission was fastest when birds that spent the most time on feeders initiated the epidemic. Our results suggest that the same behaviour underlies both pathogen acquisition and transmission in this system and potentially others. Identifying individuals that exhibit such behaviours is critical for disease management. © 2015 The Author(s).

  8. Arabinogalactan-protein secretion is associated with the acquisition of stigmatic receptivity in the apple flower

    PubMed Central

    Losada, Juan M.; Herrero, María

    2012-01-01

    Background and Aims Stigmatic receptivity plays a clear role in pollination dynamics; however, little is known about the factors that confer to a stigma the competence to be receptive for the germination of pollen grains. In this work, a developmental approach is used to evaluate the acquisition of stigmatic receptivity and its relationship with a possible change in arabinogalactan-proteins (AGPs). Methods Flowers of the domestic apple, Malus × domestica, were assessed for their capacity to support pollen germination at different developmental stages. Stigmas from these same stages were characterized morphologically and different AGP epitopes detected by immunocytochemistry. Key Results Acquisition of stigmatic receptivity and the secretion of classical AGPs from stigmatic cells occurred concurrently and following the same spatial distribution. While in unpollinated stigmas AGPs appeared unaltered, in cross-pollinated stigmas AGPs epitopes vanished as pollen tubes passed by. Conclusions The concurrent secretion of AGPs with the acquisition of stigmatic receptivity, together with the differential response in unpollinated and cross-pollinated pistils point out a role of AGPs in supporting pollen tube germination and strongly suggest that secretion of AGPs is associated with the acquisition of stigma receptivity. PMID:22652420

  9. The Influence of Information Acquisition on the Complex Dynamics of Market Competition

    NASA Astrophysics Data System (ADS)

    Guo, Zhanbing; Ma, Junhai

    In this paper, we build a dynamical game model with three bounded rational players (firms) to study the influence of information on the complex dynamics of market competition, where useful information is about rival’s real decision. In this dynamical game model, one information-sharing team is composed of two firms, they acquire and share the information about their common competitor, however, they make their own decisions separately, where the amount of information acquired by this information-sharing team will determine the estimation accuracy about the rival’s real decision. Based on this dynamical game model and some creative 3D diagrams, the influence of the amount of information on the complex dynamics of market competition such as local dynamics, global dynamics and profits is studied. These results have significant theoretical and practical values to realize the influence of information.

  10. Geomorphometry in coastal morphodynamics

    NASA Astrophysics Data System (ADS)

    Guisado-Pintado, Emilia; Jackson, Derek

    2017-04-01

    Geomorphometry is a cross-cutting discipline that has interwoven itself into multiple research themes due to its ability to encompass topographic quantification on many fronts. Its operational focus is largely defined as the extraction of land-surface parameters and earth surface characterisation. In particular, the coastal sciences have been enriched by the use of digital terrain production techniques both on land and in the nearshore/marine area. Numerous examples exist in which the utilisation of field instrumentation (e.g. LIDAR, GPS, Terrestrial Laser Scanning, multi-beam echo-sounders) are used for surface sampling and development of Digital Terrain Models, monitoring topographic change and creation of nearshore bathymetry, and have become central elements in modern investigations of coastal morphodynamics. The coastal zone is a highly dynamic system that embraces variable and at times, inter-related environments (sand dunes, sandy beaches, shoreline and nearshore) all of which require accurate and integrated monitoring. Although coastal studies can be widely diverse (with interconnected links to other related disciplines such as geology or biology), the characterisation of the landforms (coastal geomorphology) and associated processes (morphodynamics, hydrodynamics, aeolian processes) is perhaps where geomorphometry (topo-bathymetry quantification) is best highlighted. In this respect, many tools have been developed (or improved upon) for the acquisition of topographic data that now commands a high degree of accuracy, simplicity, and ultimately acquisition cost reduction. We present a series of field data acquisitions examples that have produced land surface characterisation using a range of techniques including traditional GPS surveys to more recent Terrestrial Laser Scanning and airborne LIDAR. These have been conducted within beach and dune environments and have helped describe erosion and depositional processes driven by wind and wave energy (high-energy events). Other examples include long-term monitoring of beach dynamics and evolution, examining the impact of natural hazards (surges, storms, sea-level rise) on coastal areas using GPS-linked drones to acquire repeat topographic (point clouds) surveys over inter-tidal and dune edge/back beach zones. Nearshore 3D bathymetric information generated from navigation charts, echo-sonar instruments or more recently from Satellite (LANDSAT) imagery is also highlighted as a key dataset in geomorphometry. The recent technological developments in 3D data acquisition within the coastal and marine environment now offers exciting opportunities in which to reveal how these systems function across multiple time and space scales. Whilst this can offer new insights, it also presents significant analytical challenges due to the sheer volume of data generated, the necessity of specialist personnel and software to process the data. Geomorphometry can help play a key role in this progression and take analysis within coastal science to new levels.

  11. A cochlear implant phantom for evaluating CT acquisition parameters

    NASA Astrophysics Data System (ADS)

    Chakravorti, Srijata; Bussey, Brian J.; Zhao, Yiyuan; Dawant, Benoit M.; Labadie, Robert F.; Noble, Jack H.

    2017-03-01

    Cochlear Implants (CIs) are surgically implantable neural prosthetic devices used to treat profound hearing loss. Recent literature indicates that there is a correlation between the positioning of the electrode array within the cochlea and the ultimate hearing outcome of the patient, indicating that further studies aimed at better understanding the relationship between electrode position and outcomes could have significant implications for future surgical techniques, array design, and processor programming methods. Post-implantation high resolution CT imaging is the best modality for localizing electrodes and provides the resolution necessary to visually identify electrode position, albeit with an unknown degree of accuracy depending on image acquisition parameters, like the HU range of reconstruction, radiation dose, and resolution of the image. In this paper, we report on the development of a phantom that will both permit studying which CT acquisition parameters are best for accurately identifying electrode position and serve as a ground truth for evaluating how different electrode localization methods perform when using different CT scanners and acquisition parameters. We conclude based on our tests that image resolution and HU range of reconstruction strongly affect how accurately the true position of the electrode array can be found by both experts and automatic analysis techniques. The results presented in this paper demonstrate that our phantom is a versatile tool for assessing how CT acquisition parameters affect the localization of CIs.

  12. Influence of mental practice on development of voluntary control of a novel motor acquisition task.

    PubMed

    Creelman, Jim

    2003-08-01

    The purpose of this investigation was to assess whether mental practice facilitates the development of voluntary control over the recruitment of the abductor hallucis muscle to produce isolated big toe abduction. A sample of convenience of 15 women and 20 men with a mean age of 28.8 yr. (SD=5.7) and healthy feet, who were unable voluntarily to abduct the big toe, were randomly assigned to one of three groups, a mental practice group, a physical practice group, and a group who performed a control movement during practice. Each subject received neuromuscular electrical stimulation to introduce the desired movement prior to each of five practice bouts over a single session lasting 2 hr. Big toe abduction active range of motion and surface electromyographic (EMG) output of the abductor hallucis and extensor digitorum brevis muscles were measured prior to the first practice bout and following each practice bout, yielding seven acquisition trials. Acquisition is defined as an improvement in both active range of motion and in the difference between the integrated EMG of the abductor hallucis and extensor digitorum brevis muscles during successive acquisition trials. Seven members of both the mental and physical practice groups and one member of the control group met the acquisition criteria. Chi-square analysis indicated the group difference was statistically significant, suggesting mental practice was effective for this task.

  13. Comprehensive studies of the dynamics of geosystems with the use of remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Vasilev, L. N.; Kaczyński, R.; Ney, B. I.

    The described research programme for comprehensive studies of changes occuring within geosystems is a part of scientific activity of INTERKOSMOS, which will be executed mainly with the use of remote sensing methods and techniques. The main aim of the programme is to get an insight into the seasonal rithm of environmental changes on both regional and global level. The work will consist of gathering systematized information concerning quantitative and qualitative relations between various components of the environment. The application of remote sensing methods enables the acquisition of such environmental data in dynamic setting. Research will be conducted for areas comprising distinct geosystems and will lead to the detection of diurnal, seasonal and yearly dynamics of geosystems as well as long-term trends. Except cognitive, the programme will also serve the methodological purpose. The first aim will be realized with respect to individual geosystems; the resulting sets of data will consist of matrixes of statistical data characterizing relations between various components of geosystems. The methodological aim will be achieved through the process of practical verification of the preliminary assumptions. Information will be collected from different data acquisition levels namely from satellite and aerial platforms and through ground measurements. Different types of data, such as multispectral photography (SALYUT, KOSMOS), multispectral scanner images (LANDSAT THEMATIC MAPPER, SPOT), infrared photography, radar imagery and spectrometric measurements will be gathered during simultaneous data acquisition projects. All types of observations will be timed in accordance with the natural rithm of the observed phenomena. The paper contains the description of geosystems under anthropogenic stress based on the previous research of the authors. The presented multifactor characteristics of soil and crops is a part of completed studies on agricultural geosystems. The results of comprehensive remote sensing experiments already completed within the framework of INTERKOSMOS programme on test sites in member countries fully support the approved programme for studying the dynamics of geosystems with the use of remote sensing.

  14. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT.

    PubMed

    Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim

    2011-06-21

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  15. Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig

    PubMed Central

    Meyerspeer, M.; Krššák, M.; Kemp, G.J.; Roden, M.; Moser, E.

    2016-01-01

    1 Objective To develop a measurement method for interleaved acquisition of 1H and 31P STEAM localised spectra of exercising human calf muscle. 2 Materials and Methods A nonmagnetic exercise rig with a pneumatic piston and sensors for force and pedal angle was constructed to enable plantar flexion measured in the 3 Tesla MR scanner, which holds the dual tuned (1H,31P) surface coil used for signal transmission and reception. 3 Results 31P spectra acquired in interleaved mode benefit from higher SNR (factor of 1.34± 0.06 for PCr) compared to standard acquisition due to the Nuclear Overhauser effect (NOE) and substantial PCr/Pi changes during exercise can be observed in 31P spectra. 1H spectral quality is equal to that in single mode experiments and allows Cr2 changes to be monitored. 4 Conclusion The feasibility of dynamic interleaved localised 1H and 31P spectroscopy during plantar flexion exercise has been demonstrated using a custom-built pneumatic system for muscle activation. This opens the possibility of studying the dynamics of metabolism with multi nuclear MRS in a single run. PMID:16320091

  16. Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development

    PubMed Central

    Ayaz, Hasan; Onaral, Banu; Izzetoglu, Kurtulus; Shewokis, Patricia A.; McKendrick, Ryan; Parasuraman, Raja

    2013-01-01

    Functional near infrared spectroscopy (fNIRS) is a non-invasive, safe, and portable optical neuroimaging method that can be used to assess brain dynamics during skill acquisition and performance of complex work and everyday tasks. In this paper we describe neuroergonomic studies that illustrate the use of fNIRS in the examination of training-related brain dynamics and human performance assessment. We describe results of studies investigating cognitive workload in air traffic controllers, acquisition of dual verbal-spatial working memory skill, and development of expertise in piloting unmanned vehicles. These studies used conventional fNIRS devices in which the participants were tethered to the device while seated at a workstation. Consistent with the aims of mobile brain imaging (MoBI), we also describe a compact and battery-operated wireless fNIRS system that performs with similar accuracy as other established fNIRS devices. Our results indicate that both wired and wireless fNIRS systems allow for the examination of brain function in naturalistic settings, and thus are suitable for reliable human performance monitoring and training assessment. PMID:24385959

  17. Onboard Science Insights and Vehicle Dynamics from Scale-Model Trials of the Titan Mare Explorer (TiME) Capsule at Laguna Negra, Chile.

    PubMed

    Lorenz, Ralph D; Cabrol, Nathalie A

    2018-05-01

    A scale model of the proposed Titan Mare Explorer capsule was deployed at the Planetary Lake Lander field site at Laguna Negra, Chile. The tests served to calibrate models of wind-driven drift of the capsule and to understand its attitude motion in the wave field, as well as to identify dynamic and acoustic signatures of shoreline approach. This information enables formulation of onboard trigger criteria for near-shore science data acquisition. Key Words: Titan-Vehicle dynamics-Science autonomy-Lake. Astrobiology 18, 607-618.

  18. Epid cine acquisition mode for in vivo dosimetry in dynamic arc radiation therapy

    NASA Astrophysics Data System (ADS)

    Fidanzio, Andrea; Mameli, Alessandra; Placidi, Elisa; Greco, Francesca; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando; Cellini, Francesco; Trodella, Lucio; Cilla, Savino; Grimaldi, Luca; D'Onofrio, Guido; Azario, Luigi; Piermattei, Angelo

    2008-02-01

    In this paper the cine acquisition mode of an electronic portal imaging device (EPID) has been calibrated and tested to determine the in vivo dose for dynamic conformal arc radiation therapy (DCAT). The EPID cine acquisition mode, that allows a frame acquisition rate of one image every 1.66 s, was studied with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during three months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, St, (due to the transmitted beam below the phantom) measured by the EPID cine acquisition mode was used to determine, (i) a set of correlation functions, F(w,L), defined as the ratio between St and the dose at half thickness, Dm, measured in solid water phantoms of different thicknesses, w and with square fields of side L, (ii) a set of factors, f(d,L), that take into account the different X-ray scatter contribution from the phantom to the St signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, Diso, for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was tested with cylindrical and anthropomorphic phantoms and the results show that the reconstructed Diso values can be obtained with an accuracy within ±2.5% in cylindrical phantom and within ±3.4% for anthropomorphic phantom. In conclusion, the transit dosimetry by EPID was assessed to be adequate to perform DCAT in vivo dosimetry, that is not realizable with the other traditional techniques. Moreover, the method proposed here could be implemented to supply in vivo dose values in real time.

  19. Age of First Words Predicts Cognitive Ability and Adaptive Skills in Children with ASD

    ERIC Educational Resources Information Center

    Mayo, Jessica; Chlebowski, Colby; Fein, Deborah A.; Eigsti, Inge-Marie

    2013-01-01

    Acquiring useful language by age 5 has been identified as a strong predictor of positive outcomes in individuals with Autism Spectrum Disorders (ASD). This study examined the relationship between age of language acquisition and later functioning in children with ASD (n = 119). First word acquisition at a range of ages was probed for its…

  20. A Survey of Keystroke Dynamics Biometrics

    PubMed Central

    Yue, Shigang

    2013-01-01

    Research on keystroke dynamics biometrics has been increasing, especially in the last decade. The main motivation behind this effort is due to the fact that keystroke dynamics biometrics is economical and can be easily integrated into the existing computer security systems with minimal alteration and user intervention. Numerous studies have been conducted in terms of data acquisition devices, feature representations, classification methods, experimental protocols, and evaluations. However, an up-to-date extensive survey and evaluation is not yet available. The objective of this paper is to provide an insightful survey and comparison on keystroke dynamics biometrics research performed throughout the last three decades, as well as offering suggestions and possible future research directions. PMID:24298216

  1. Acquisition and production of skilled behavior in dynamic decision-making tasks

    NASA Technical Reports Server (NTRS)

    Kirlik, Alex

    1993-01-01

    Summaries of the four projects completed during the performance of this research are included. The four projects described are: Perceptual Augmentation Aiding for Situation Assessment, Perceptual Augmentation Aiding for Dynamic Decision-Making and Control, Action Advisory Aiding for Dynamic Decision-Making and Control, and Display Design to Support Time-Constrained Route Optimization. Papers based on each of these projects are currently in preparation. The theoretical framework upon which the first three projects are based, Ecological Task Analysis, was also developed during the performance of this research, and is described in a previous report. A project concerned with modeling strategies in human control of a dynamic system was also completed during the performance of this research.

  2. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  3. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    NASA Astrophysics Data System (ADS)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets with the lowest level of external interference. Similar testing was performed on the telescope enclosure during the factory test campaign. The vibration of the enclosure altitude and azimuth mechanisms were characterized. This paper details jitter tests using accelerometers placed in locations that allowed the motion of the assemblies to be measured while the control system performed various moves typical of on-sky observations. The measurements were converted into the rigid body motion of the structures and mapped into image motion using the telescope's optical sensitivity analysis.

  4. SU-D-207A-05: Investigating Sparse-Sampled MRI for Motion Management in Thoracic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabouri, P; Sawant, A; Arai, T

    Purpose: Sparse sampling and reconstruction-based MRI techniques represent an attractive strategy to achieve sufficiently high image acquisition speed while maintaining image quality for the task of radiotherapy guidance. In this study, we examine rapid dynamic MRI using a sparse sampling sequence k-t BLAST in capturing motion-induced, cycle-to-cycle variations in tumor position. We investigate the utility of long-term MRI-based motion monitoring as a means of better characterizing respiration-induced tumor motion compared to a single-cycle 4DCT. Methods: An MRI-compatible, programmable, deformable lung motion phantom with eleven 1.5 ml water marker tubes was placed inside a 3.0 T whole-body MR scanner (Philips Ingenia).more » The phantom was programmed with 10 lung tumor motion traces previously recorded using the Synchrony system. 2D+t image sequences of a coronal slice were acquired using a balanced-SSFP sequence combined with k-t BLAST (accn=3, resolution=0.66×0.66×5 mm3; acquisition time = 110 ms/slice). kV fluoroscopic (ground truth) and 4DCT imaging was performed with the same phantom setup and motion trajectories. Marker positions in all three modalities were segmented and tracked using an opensource deformable image registration package, NiftyReg. Results: Marker trajectories obtained from rapid MRI exhibited <1 mm error compared to kv Fluoro trajectories in the presence of complex motion including baseline shifts and changes in respiratory amplitude, indicating the ability of MRI to monitor motion with adequate geometric fidelity for the purpose of radiotherapy guidance. In contrast, the trajectory derived from 4DCT exhibited significant errors up to 6 mm due to cycle-to-cycle variations and baseline shifts. Consequently, 4DCT was found to underestimate the range of marker motion by as much as 50%. Conclusion: Dynamic MRI is a promising tool for radiotherapy motion management as it permits for longterm, dose-free, soft-tissue-based monitoring of motion, yielding richer and more accurate information about tumor position and motion range compared to the current state-of-the-art, 4DCT. This work was partially supported through research funding from National Institutes of Health (R01CA169102).« less

  5. NASA experiments onboard the controlled impact demonstration

    NASA Technical Reports Server (NTRS)

    Hayduk, R. J.; Alfaro-Bou, E.; Fasanella, E. L.

    1985-01-01

    The structural crashworthiness tests conducted by NASA on the December 1, 1984 controlled impact demonstration are discussed. The components and locations of the data acquisition and photographic systems developed by NASA to evaluate impact loads throughout the aircraft structure and the transmission of loads into the dummies are described. The effectiveness of the NASA designed absorbing seats and the vertical, longitudinal, and transverse impact loads are measured. Data that is extremely applicable to crash dynamics structural research was obtained by the data acquisition system and very low load levels were measured for the NASA energy absorbing seats.

  6. Videogrammetric Model Deformation Measurement Technique

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Liu, Tian-Shu

    2001-01-01

    The theory, methods, and applications of the videogrammetric model deformation (VMD) measurement technique used at NASA for wind tunnel testing are presented. The VMD technique, based on non-topographic photogrammetry, can determine static and dynamic aeroelastic deformation and attitude of a wind-tunnel model. Hardware of the system includes a video-rate CCD camera, a computer with an image acquisition frame grabber board, illumination lights, and retroreflective or painted targets on a wind tunnel model. Custom software includes routines for image acquisition, target-tracking/identification, target centroid calculation, camera calibration, and deformation calculations. Applications of the VMD technique at five large NASA wind tunnels are discussed.

  7. Research developing closed loop roll control for magnetic balance systems

    NASA Technical Reports Server (NTRS)

    Covert, E. E.; Haldeman, C. W.

    1981-01-01

    Computer inputs were interfaced to the magnetic balance outputs to provide computer position control and data acquisition. The use of parameter identification of a means of determining dynamic characteristics was investigated. The thyraton and motor generator power supplies for the pitch and yaw degrees of freedom were repaired. Topics covered include: choice of a method for handling dynamic system data; applications to the magnetic balance; the computer interface; and wind tunnel tests, results, and error analysis.

  8. Littoral Combat Ship and Frigate: Congress Faced with Critical Acquisition Decisions

    DTIC Science & Technology

    2016-12-01

    D.C.: Mar. 1, 2005). 3Lockheed Martin is the prime contractor for LCS 1 and the odd numbered seaframes. For LCS 2 and LCS 4, General Dynamics was...the prime contractor for the Austal USA built ships. General Dynamics and Austal USA ended their teaming arrangement in 2010. Austal USA is the...prime contractor for the remaining even-numbered seaframes. The Course of the LCS Program Has Changed Significantly over Time Page 3 GAO

  9. The Wireless Data Acquisition System for the Vibration Table

    NASA Astrophysics Data System (ADS)

    Teng, Y. T.; Hu, X.

    2014-12-01

    The vibration table is a large-scaled tool used for inspecting the performance of seismometers. The output from a seismometer on the table can be directly monitored when the vibration table moves in certain pattern. Compared with other inspection methods, inspecting seismometers' performance indicators (frequency response, degree of linearity, sensitivity, lateral inhibition and dynamic range etc). using vibration tables is more intuitive. Therefore, the vibration tables are an essential testing part in developing new seismometers and seismometer quality control. Whereas, in practice, a cable is needed to connect the seismometer to the ground equipments for its signal outputs and power supply, that means adding a time-varying nonlinear spring between the vibration table and ground. The cable adds nonlinear feature to the table, distorts the table-board movement and bring extra errors to the inspecting work and affected the testing accuracy and precision. In face of this problem, we developed a wireless acquiring system for the vibration table. The system is consisted of a three-channel analog-to-digital conversion, an acquisition control part, local data storage, network interface, wireless router and power management, etc. The analog-to-digital conversion part uses a 24-digit high-precision converter, which has a programmable amplifier at the front end of its artificial circuit, with the function of matching outputs with different amplifier from the vibration table. The acquisition control part uses a 32 bit ARM processor, with low-power dissipation, minute extension and high performance. The application software platform is written in Linux to make the system convenient for multitasking work. Large volume local digital storage is achieved by a 32G SD card, which is used for saving real time acquired data. Data transmission is achieved by network interface and wireless router, which can simplify the application software by the supported TCP/IP protocol. Besides, the acquisition system uses built-in power supply, which provides power to the system with Li-On rechargeable battery with high capacity, then all the cable link between the vibration table and the ground equipment have been removed. With all these changes, the whole system is immobilized on board of the vibration table after being packaged.

  10. Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.

    PubMed

    Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C

    2010-08-01

    The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.

  11. Enhanced Application of 18F-FDG PET/CT in Bladder Cancer by Adding Early Dynamic Acquisition to a Standard Delayed PET Protocol.

    PubMed

    Yoon, Hai-Jeon; Yoo, Jang; Kim, Yemi; Lee, Dong Hyeon; Kim, Bom Sahn

    2017-10-01

    We investigated the value of early dynamic (ED) PET for the detection and characterization of bladder cancer. Fifty-two bladder cancer patients were prospectively enrolled. The study protocol was composed of ED, whole-body (WB, 60 minutes after injection), and additional delayed (AD, 120 minutes after injection) PET acquisition. Early dynamic PET was acquired for 10 minutes and reconstructed as 5 frames at 2-minute intervals. A focal radiotracer accumulation confined to the bladder wall was considered as PET positive and referred for further quantitative measurement. SUVmax on ED (SUVmax, SUVmax, SUVmax, SUVmax, and SUVmax for 5 frames), WB (SUVmax), and AD PET (SUVmax) were measured. PET results were correlated with bladder cancer pathology variables. The sensitivities of ED, WB, and AD PET for bladder cancer were 84.6%, 57.7%, and 61.2%, respectively. The sensitivity of ED PET was significantly higher than that of WB (P = 0.002) and AD PET (P = 0.008). On ED PET, SUVmax was significantly correlated with muscle invasiveness, histological grade, and pathological tumor size (P = 0.018, P = 0.030, and P = 0.030). On WB and AD PET, only pathological tumor size showed significant positive correlation with SUVmax and SUVmax (P = 0.043 and P = 0.007). Early dynamic PET can help to detect and characterize bladder cancer.

  12. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters.

    PubMed

    Galavis, Paulina E; Hollensen, Christian; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert

    2010-10-01

    Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [(18)F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation.

  13. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters

    PubMed Central

    GALAVIS, PAULINA E.; HOLLENSEN, CHRISTIAN; JALLOW, NGONEH; PALIWAL, BHUDATT; JERAJ, ROBERT

    2014-01-01

    Background Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Material and methods Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45–60 minutes post-injection of 10 mCi of [18F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Conclusion Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation. PMID:20831489

  14. Automatic dynamic range adjustment for ultrasound B-mode imaging.

    PubMed

    Lee, Yeonhwa; Kang, Jinbum; Yoo, Yangmo

    2015-02-01

    In medical ultrasound imaging, dynamic range (DR) is defined as the difference between the maximum and minimum values of the displayed signal to display and it is one of the most essential parameters that determine its image quality. Typically, DR is given with a fixed value and adjusted manually by operators, which leads to low clinical productivity and high user dependency. Furthermore, in 3D ultrasound imaging, DR values are unable to be adjusted during 3D data acquisition. A histogram matching method, which equalizes the histogram of an input image based on that from a reference image, can be applied to determine the DR value. However, it could be lead to an over contrasted image. In this paper, a new Automatic Dynamic Range Adjustment (ADRA) method is presented that adaptively adjusts the DR value by manipulating input images similar to a reference image. The proposed ADRA method uses the distance ratio between the log average and each extreme value of a reference image. To evaluate the performance of the ADRA method, the similarity between the reference and input images was measured by computing a correlation coefficient (CC). In in vivo experiments, the CC values were increased by applying the ADRA method from 0.6872 to 0.9870 and from 0.9274 to 0.9939 for kidney and liver data, respectively, compared to the fixed DR case. In addition, the proposed ADRA method showed to outperform the histogram matching method with in vivo liver and kidney data. When using 3D abdominal data with 70 frames, while the CC value from the ADRA method is slightly increased (i.e., 0.6%), the proposed method showed improved image quality in the c-plane compared to its fixed counterpart, which suffered from a shadow artifact. These results indicate that the proposed method can enhance image quality in 2D and 3D ultrasound B-mode imaging by improving the similarity between the reference and input images while eliminating unnecessary manual interaction by the user. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Performance Analysis of Ranging Techniques for the KPLO Mission

    NASA Astrophysics Data System (ADS)

    Park, Sungjoon; Moon, Sangman

    2018-03-01

    In this study, the performance of ranging techniques for the Korea Pathfinder Lunar Orbiter (KPLO) space communication system is investigated. KPLO is the first lunar mission of Korea, and pseudo-noise (PN) ranging will be used to support the mission along with sequential ranging. We compared the performance of both ranging techniques using the criteria of accuracy, acquisition probability, and measurement time. First, we investigated the end-to-end accuracy error of a ranging technique incorporating all sources of errors such as from ground stations and the spacecraft communication system. This study demonstrates that increasing the clock frequency of the ranging system is not required when the dominant factor of accuracy error is independent of the thermal noise of the ranging technique being used in the system. Based on the understanding of ranging accuracy, the measurement time of PN and sequential ranging are further investigated and compared, while both techniques satisfied the accuracy and acquisition requirements. We demonstrated that PN ranging performed better than sequential ranging in the signal-to-noise ratio (SNR) regime where KPLO will be operating, and we found that the T2B (weighted-voting balanced Tausworthe, voting v = 2) code is the best choice among the PN codes available for the KPLO mission.

  16. Monitoring intracellular oxidative events using dynamic spectral unmixing microscopy

    EPA Science Inventory

    There is increasing interest in using live-cell imaging to monitor not just individual intracellular endpoints, but to investigate the interplay between multiple molecular events as they unfold in real time within the cell. A major impediment to simultaneous acquisition of multip...

  17. 78 FR 38539 - Federal Acquisition Regulation; Applicability of the Senior Executive Compensation Benchmark

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... 808 breached contracts awarded before the statutory date of enactment (General Dynamics Corp. v. U.S... 51 U.S.C. 20115. PART 31--CONTRACT COST PRINCIPLES AND PROCEDURES 0 2. Amend section 31.205-6 by-- 0... 38539

  18. A high speed data acquisition and analysis system for transonic velocity, density, and total temperature fluctuations

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1988-01-01

    The high speed Dynamic Data Acquisition System (DDAS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAS replaces both a recording mechanism and a separate data processing system. The data acquisition and data reduction process has been combined within DDAS. DDAS receives input from hot wires and anemometers, amplifies and filters the signals with computer controlled modules, and converts the analog signals to digital with real-time simultaneous digitization followed by digital recording on disk or tape. Automatic acquisition (either from a computer link to an existing wind tunnel acquisition system, or from data acquisition facilities within DDAS) collects necessary calibration and environment data. The generation of hot wire sensitivities is done in DDAS, as is the application of sensitivities to the hot wire data to generate turbulence quantities. The presentation of the raw and processed data, in terms of root mean square values of velocity, density and temperature, and the processing of the spectral data is accomplished on demand in near-real-time- with DDAS. A comprehensive description of the interface to the DDAS and of the internal mechanisms will be prosented. A summary of operations relevant to the use of the DDAS will be provided.

  19. Romantic Relationship Dynamics of Urban African American Adolescents: Patterns of Monogamy, Commitment, and Trust.

    PubMed

    Towner, Senna L; Dolcini, M Margaret; Harper, Gary W

    2015-05-01

    Relationship dynamics develop early in life and are influenced by social environments. STI/HIV prevention programs need to consider romantic relationship dynamics that contribute to sexual health. The aim of this study was to examine monogamous patterns, commitment, and trust in African American adolescent romantic relationships. The authors also focused on the differences in these dynamics between and within gender. The way that such dynamics interplay in romantic relationships has the potential to influence STI/HIV acquisition risk. In-depth interviews were conducted with 28 African American adolescents aged 14 to 21 living in San Francisco. Our results discuss data related to monogamous behaviors, expectations, and values; trust and respect in romantic relationships; commitment to romantic relationships; and outcomes of mismatched relationship expectations. Incorporating gender-specific romantic relationships dynamics can enhance the effectiveness of prevention programs.

  20. Fetal cardiac cine imaging using highly accelerated dynamic MRI with retrospective motion correction and outlier rejection

    PubMed Central

    Lloyd, David F.A.; Price, Anthony N.; Kuklisova Murgasova, Maria; Aljabar, Paul; Malik, Shaihan J.; Lohezic, Maelene; Rutherford, Mary A.; Pushparajah, Kuberan; Razavi, Reza; Hajnal, Joseph V.

    2017-01-01

    Purpose Development of a MRI acquisition and reconstruction strategy to depict fetal cardiac anatomy in the presence of maternal and fetal motion. Methods The proposed strategy involves i) acquisition and reconstruction of highly accelerated dynamic MRI, followed by image‐based ii) cardiac synchronization, iii) motion correction, iv) outlier rejection, and finally v) cardiac cine reconstruction. Postprocessing entirely was automated, aside from a user‐defined region of interest delineating the fetal heart. The method was evaluated in 30 mid‐ to late gestational age singleton pregnancies scanned without maternal breath‐hold. Results The combination of complementary acquisition/reconstruction and correction/rejection steps in the pipeline served to improve the quality of the reconstructed 2D cine images, resulting in increased visibility of small, dynamic anatomical features. Artifact‐free cine images successfully were produced in 36 of 39 acquired data sets; prolonged general fetal movements precluded processing of the remaining three data sets. Conclusions The proposed method shows promise as a motion‐tolerant framework to enable further detail in MRI studies of the fetal heart and great vessels. Processing data in image‐space allowed for spatial and temporal operations to be applied to the fetal heart in isolation, separate from extraneous changes elsewhere in the field of view. Magn Reson Med 79:327–338, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28370252

Top