Sample records for dynamic range streak

  1. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    DOE PAGES

    MacPhee, A. G.; Dymoke-Bradshaw, A. K. L.; Hares, J. D.; ...

    2016-08-08

    Here, we report simulationsand experiments that demonstrate an increasein spatial resolution ofthe NIF core diagnostic x-ray streak camerasby a factor of two, especially off axis. A designwas achieved by usinga corrector electron optic to flatten the field curvature at the detector planeand corroborated by measurement. In addition, particle in cell simulations were performed to identify theregions in the streak camera that contribute most to space charge blurring. Our simulations provide a tool for convolving syntheticpre-shot spectra with the instrument functionso signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  2. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    PubMed

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  3. Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation

    DOE PAGES

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...

    2017-08-17

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  5. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacPhee, A. G., E-mail: macphee2@llnl.gov; Hatch, B. W.; Bell, P. M.

    2016-11-15

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamicmore » range for the relevant part of the streak record.« less

  6. Performance of Laser Megajoule’s x-ray streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.

    2016-11-15

    A prototype of a picosecond x-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to provide plasma-diagnostic support for the Laser Megajoule. We report on the measured performance of this streak camera, which almost fulfills the requirements: 50-μm spatial resolution over a 15-mm field in the photocathode plane, 17-ps temporal resolution in a 2-ns timebase, a detection threshold lower than 625 nJ/cm{sup 2} in the 0.05–15 keV spectral range, and a dynamic range greater than 100.

  7. Retrieving plasmonic near-field information: A quantum-mechanical model for streaking photoelectron spectroscopy of gold nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2016-11-01

    Streaked photoemission from nanostructures is characterized by size- and material-dependent nanometer-scale variations of the induced nanoplasmonic response to the electronic field of the streaking pulse and thus holds promise of allowing photoelectron imaging with both subfemtosecond temporal and nanometer spatial resolution. In order to scrutinize the driven collective electronic dynamics in 10-200-nm-diameter gold nanospheres, we calculated the plasmonic field induced by streaking pulses in the infrared and visible spectral range and developed a quantum-mechanical model for streaked photoemission by extreme ultraviolet pulses. Our simulated photoelectron spectra reveal a significant amplitude enhancement and phase shift of the photoelectron streaking trace relative to calculations that exclude the induced plasmonic field. Both are most pronounced for streaking pulses tuned to the plasmon frequency and retrace the plasmonic electromagnetic field enhancement and phase shift near the nanosphere surface.

  8. Laser pulse sampler

    DOEpatents

    Vann, C.

    1998-03-24

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  9. Photographer: JPL P-21744 C Range: 4.2 million kilometers (2.6 million miles) In this image of

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer: JPL P-21744 C Range: 4.2 million kilometers (2.6 million miles) In this image of Europa acquired by Voyager 2, global scale dark streaks are becoming visible. Europa, the size of the earth's moon, is apparently covered by water ice as indicated by ground based spectrometers and its brightness. The central longitude of this view is 235 west. Bright rayed impact craters which are abundant on ancient Ganymede and Callisto would easily be visible at this range. The suggestion is that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes.

  10. Inertial focusing dynamics in spiral microchannels

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2012-01-01

    This report details a comprehensive study of inertial focusing dynamics and particle behavior in low aspect ratio (h/w ∼ 1/1 to 1/8) spiral microchannels. A continuum of particle streak behavior is shown with longitudinal, cross-sectional, and velocity resolution, yielding a large analyzed parameter space. The dataset is then summarized and compared to prior results from both straight microchannels and other low aspect ratio spiral microchannel designs. Breakdown of focusing into a primary and secondary fluorescent streak is observed in the lowest aspect ratio channels at high average downstream velocities. Streak movement away from the theoretically predicted near inner wall equilibrium position towards the center of the channel at high average downstream velocities is also detailed as a precursor to breakdown. State diagrams detail the overall performance of each device including values of the required channel lengths and the range of velocities over which quality focusing can be achieved. PMID:22454556

  11. ARC-1979-AC79-7078

    NASA Image and Video Library

    1979-07-04

    P-21744 C Range: 4.2 million kilometers (2.6 million miles) In this image of Europa acquired by Voyager 2, global scale dark streaks are becoming visible. Europa, the size of the earth's moon, is apparently covered by water ice as indicated by ground based spectrometers and its brightness. The central longitude of this view is 235° west. Bright rayed impact craters which are abundant on ancient Ganymede and Callisto would easily be visible at this range. The suggestion is that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes.

  12. Ultrahigh- and high-speed photography, videography, and photonics '91; Proceedings of the Meeting, San Diego, CA, July 24-26, 1991

    NASA Astrophysics Data System (ADS)

    Jaanimagi, Paul A.

    1992-01-01

    This volume presents papers grouped under the topics on advances in streak and framing camera technology, applications of ultrahigh-speed photography, characterizing high-speed instrumentation, high-speed electronic imaging technology and applications, new technology for high-speed photography, high-speed imaging and photonics in detonics, and high-speed velocimetry. The papers presented include those on a subpicosecond X-ray streak camera, photocathodes for ultrasoft X-ray region, streak tube dynamic range, high-speed TV cameras for streak tube readout, femtosecond light-in-flight holography, and electrooptical systems characterization techniques. Attention is also given to high-speed electronic memory video recording techniques, high-speed IR imaging of repetitive events using a standard RS-170 imager, use of a CCD array as a medium-speed streak camera, the photography of shock waves in explosive crystals, a single-frame camera based on the type LD-S-10 intensifier tube, and jitter diagnosis for pico- and femtosecond sources.

  13. Soft x-ray streak camera for laser fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stradling, G.L.

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV aremore » also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.« less

  14. The first satellite laser echoes recorded on the streak camera

    NASA Technical Reports Server (NTRS)

    Hamal, Karel; Prochazka, Ivan; Kirchner, Georg; Koidl, F.

    1993-01-01

    The application of the streak camera with the circular sweep for the satellite laser ranging is described. The Modular Streak Camera system employing the circular sweep option was integrated into the conventional Satellite Laser System. The experimental satellite tracking and ranging has been performed. The first satellite laser echo streak camera records are presented.

  15. Soft X-ray streak camera for laser fusion applications

    NASA Astrophysics Data System (ADS)

    Stradling, G. L.

    1981-04-01

    The development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development is reviewed as well as laser fusion and laser fusion diagnostics. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown.

  16. Sub-picosecond streak camera measurements at LLNL: From IR to x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Shepherd, R; Booth, R

    An ultra fast, sub-picosecond resolution streak camera has been recently developed at the LLNL. The camera is a versatile instrument with a wide operating wavelength range. The temporal resolution of up to 300 fs can be achieved, with routine operation at 500 fs. The streak camera has been operated in a wide wavelength range from IR to x-rays up to 2 keV. In this paper we briefly review the main design features that result in the unique properties of the streak camera and present its several scientific applications: (1) Streak camera characterization using a Michelson interferometer in visible range, (2)more » temporally resolved study of a transient x-ray laser at 14.7 nm, which enabled us to vary the x-ray laser pulse duration from {approx}2-6 ps by changing the pump laser parameters, and (3) an example of a time-resolved spectroscopy experiment with the streak camera.« less

  17. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    DOE PAGES

    Gregor, M. C.; Boni, R.; Sorce, A.; ...

    2016-11-29

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  18. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregor, M. C.; Boni, R.; Sorce, A.

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  19. Streak camera receiver definition study

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hunkler, L. T., Sr.; Letzring, S. A.; Jaanimagi, P.

    1990-01-01

    Detailed streak camera definition studies were made as a first step toward full flight qualification of a dual channel picosecond resolution streak camera receiver for the Geoscience Laser Altimeter and Ranging System (GLRS). The streak camera receiver requirements are discussed as they pertain specifically to the GLRS system, and estimates of the characteristics of the streak camera are given, based upon existing and near-term technological capabilities. Important problem areas are highlighted, and possible corresponding solutions are discussed.

  20. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  1. Crowd motion segmentation and behavior recognition fusing streak flow and collectiveness

    NASA Astrophysics Data System (ADS)

    Gao, Mingliang; Jiang, Jun; Shen, Jin; Zou, Guofeng; Fu, Guixia

    2018-04-01

    Crowd motion segmentation and crowd behavior recognition are two hot issues in computer vision. A number of methods have been proposed to tackle these two problems. Among the methods, flow dynamics is utilized to model the crowd motion, with little consideration of collective property. Moreover, the traditional crowd behavior recognition methods treat the local feature and dynamic feature separately and overlook the interconnection of topological and dynamical heterogeneity in complex crowd processes. A crowd motion segmentation method and a crowd behavior recognition method are proposed based on streak flow and crowd collectiveness. The streak flow is adopted to reveal the dynamical property of crowd motion, and the collectiveness is incorporated to reveal the structure property. Experimental results show that the proposed methods improve the crowd motion segmentation accuracy and the crowd recognition rates compared with the state-of-the-art methods.

  2. The calibration of read-out-streak photometry in the XMM-Newton Optical Monitor and the construction of a bright-source catalogue

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Chan, N.; Breeveld, A. A.; Talavera, A.; Yershov, V.; Kennedy, T.; Kuin, N. P. M.; Hancock, B.; Smith, P. J.; Carter, M.

    2017-04-01

    The dynamic range of the XMM-Newton Optical Monitor (XMM-OM) is limited at the bright end by coincidence loss, the superposition of multiple photons in the individual frames recorded from its micro-channel-plate (MCP) intensified charge-coupled device (CCD) detector. One way to overcome this limitation is to use photons that arrive during the frame transfer of the CCD, forming vertical read-out streaks for bright sources. We calibrate these read-out streaks for photometry of bright sources observed with XMM-OM. The bright-source limit for read-out-streak photometry is set by the recharge time of the MCPs. For XMM-OM, we find that the MCP recharge time is 5.5 × 10-4 s. We determine that the effective bright limits for read-out-streak photometry with XMM-OM are approximately 1.5 mag brighter than the bright-source limits for normal aperture photometry in full-frame images. This translates into bright-source limits in Vega magnitudes of UVW2=7.1, UVM2=8.0, UVW1=9.4, U=10.5, B=11.5, V=10.2, and White=12.5 for data taken early in the mission. The limits brighten by up to 0.2 mag, depending on filter, over the course of the mission as the detector ages. The method is demonstrated by deriving UVW1 photometry for the symbiotic nova RR Telescopii, and the new photometry is used to constrain the e-folding time of its decaying ultraviolet (UV) emission. Using the read-out-streak method, we obtain photometry for 50 per cent of the missing UV source measurements in version 2.1 of the XMM-Newton Serendipitous UV Source Survey catalogue.

  3. About plasma points' generation in Z-pinch

    NASA Astrophysics Data System (ADS)

    Afonin, V. I.; Potapov, A. V.; Lazarchuk, V. P.; Murugov, V. M.; Senik, A. V.

    1997-05-01

    The streak tube study results (at visible and x-ray ranges) of dynamics of fast Z-pinch formed at explosion of metal wire in diode of high current generator are presented. Amplitude of current in the load reached ˜180 kA at increase time ˜50 ns. The results' analysis points to capability of controlling hot plasma points generation process in Z-pinch.

  4. Robust reconstruction of time-resolved diffraction from ultrafast streak cameras

    PubMed Central

    Badali, Daniel S.; Dwayne Miller, R. J.

    2017-01-01

    In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data. PMID:28653022

  5. Research on a solid state-streak camera based on an electro-optic crystal

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Liu, Baiyu; Bai, Yonglin; Bai, Xiaohong; Tian, Jinshou; Yang, Wenzheng; Xian, Ouyang

    2006-06-01

    With excellent temporal resolution ranging from nanosecond to sub-picoseconds, a streak camera is widely utilized in measuring ultrafast light phenomena, such as detecting synchrotron radiation, examining inertial confinement fusion target, and making measurements of laser-induced discharge. In combination with appropriate optics or spectroscope, the streak camera delivers intensity vs. position (or wavelength) information on the ultrafast process. The current streak camera is based on a sweep electric pulse and an image converting tube with a wavelength-sensitive photocathode ranging from the x-ray to near infrared region. This kind of streak camera is comparatively costly and complex. This paper describes the design and performance of a new-style streak camera based on an electro-optic crystal with large electro-optic coefficient. Crystal streak camera accomplishes the goal of time resolution by direct photon beam deflection using the electro-optic effect which can replace the current streak camera from the visible to near infrared region. After computer-aided simulation, we design a crystal streak camera which has the potential of time resolution between 1ns and 10ns.Some further improvements in sweep electric circuits, a crystal with a larger electro-optic coefficient, for example LN (γ 33=33.6×10 -12m/v) and the optimal optic system may lead to better time resolution less than 1ns.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.E.; Roeske, F.

    We have successfully fielded a Fiber Optics Radiation Experiment system (FOREX) designed for measuring material properties at high temperatures and pressures in an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than anmore » equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.« less

  7. FOREX-A Fiber Optics Diagnostic System For Study Of Materials At High Temperatures And Pressures

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Roeske, F.

    1983-03-01

    We have successfully fielded a Fiber Optics Radiation EXperiment system (FOREX) designed for measuring material properties at high temperatures and pressures on an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than an equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.

  8. ARC-1979-A79-7103

    NASA Image and Video Library

    1979-07-04

    Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of earth's moon, is apparently covered by water ice, as indicated by ground spectrometers and its brightness. In this view, global scale dark sreaks discovered by Voyager 1 that criss-cross the the satelite are becoming visible. Bright rayed impact craters, which are abundant on Ganymede and Callisto, would be easily visible at this range, suggesting that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes.

  9. The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Smith, C. R.; Metzler, S. P.

    1983-04-01

    The discovery of an instantaneous spanwise velocity distribution consisting of alternative zones of high- and low-speed fluid which develop in the viscous sublayer and extend into the logarithmic region was one of the first clues to the existence of an ordered structure within a turbulent boundary layer. The present investigation is concerned with quantitative flow-visualization results obtained with the aid of a high-speed video flow visualization system which permits the detailed visual examination of both the statistics and characteristics of low-speed streaks over a much wider range of Reynolds numbers than has been possible before. Attention is given to streak appearance, mean streak spacing, the spanwise distribution of streaks, streak persistence, and aspects of streak merging and intermittency. The results indicate that the statistical characteristics of the spanwise spacing of low-speed streaks are essentially invariant with Reynolds number.

  10. Attosecond delay in the molecular photoionization of asymmetric molecules.

    PubMed

    Chacón, Alexis; Ruiz, Camilo

    2018-02-19

    We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process. For this we apply two techniques: The attosecond streak camera and the time of flight technique. Although they should provide the same results we have found large discrepancies of up to 36 in the case of HOMO, while for the HOMO-1 we obtain the same results with the two techniques. We have found that the large time delays observed in the HOMO orbital with the streaking technique are a consequence of the resonant transition triggered by the streaking field. This resonant transition produces a bound electron wavepacket that modifies the measurements of delay in photoionization. As a result of this observation, our technique allows us to reconstruct the bound wavepacket dynamics induced by the streaking field. By measuring the expected value of the electron momentum along the polarization direction after the streaking field has finished, we can recover the relative phase between the complex amplitudes of the HOMO and LUMO orbitals. These theoretical calculations pave the way for the measurement of ultrafast bound-bound electron transitionsand its crucial role for the delay in photoemission observation.

  11. Photographer : JPL Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of earth's moon, is apparently covered by water ice, as indicated by ground spectrometers and its brightness. In this view, global scale dark sreaks discovered by Voyager 1 that criss-cross the the satelite are becoming visible. Bright rayed impact craters, which are abundant on Ganymede and Callisto, would be easily visible at this range, suggesting that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes.

  12. Overview of studies and developments in cinematography, optoelectronic imaging, and photonics at CEA/DIF

    NASA Astrophysics Data System (ADS)

    Mens, Alain; Alozy, Eric; Aubert, Damien; Benier, Jacky; Bourgade, Jean-Luc; Boutin, Jean-Yves; Brunel, Patrick; Charles, Gilbert; Chollet, Clement; Desbat, Laurent; Gontier, Dominique; Jacquet, Henri-Patrick; Jasmin, Serge; Le Breton, Jean-Pierre; Marchet, Bruno; Masclet-Gobin, Isabelle; Mercier, Patrick; Millier, Philippe; Missault, Carole; Negre, Jean-Paul; Paul, Serge; Rosol, Rodolphe; Sommerlinck, Thierry; Veaux, Jacqueline; Veron, Laurent; Vincent de Araujo, Manuel; Jaanimagi, Paul; Pien, Greg

    2003-07-01

    This paper gives an overview of works undertaken at CEA/DIF in high speed cinematography, optoelectronic imaging and ultrafast photonics for the needs of the CEA/DAM experimental programs. We have developed a new multichannel velocimeter, and a new probe for shock breakout timing measurements in detonics experiments. A brief description and a recall of their main performances will be made. We have implemented three new optoelectronic imaging systems, in order to observe dynamic scenes in the ranges of 50 - 100 keV and 4 MeV. These systems are described, their main specifications and performances are given. Then we describe our contribution to the ICF program: after recalling the specifications of LIL plasma diagnostics, we describe the features and performances of visible streak tubes, X-ray streak tubes, visible and X-ray framing cameras and the associated systems developed to match these specifications. At last we introduce the subject of components and systems vulnerability in the LMJ target area, the principles identified to mitigate this problem and the first results of studies (image relay, response of streak tube phosphors, MCP image intensifiers and CCDs to fusion neutrons) related to this subject. Results obtained so far are presented.

  13. Gas-phase lifetimes of nucleobase analogues by picosecond pumpionization and streak techniques.

    PubMed

    Blaser, Susan; Frey, Hans-Martin; Heid, Cornelia G; Leutwyler, Samuel

    2014-01-01

    The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7-12 ns range.

  14. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stradling, G.L.

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolvedmore » x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.« less

  15. The sedimentology and dynamics of crater-affiliated wind streaks in western Arabia Terra, Mars and Patagonia, Argentina

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Yamamoto, A.; Berman, D.C.; Zimbelman, J.R.; Kargel, J.S.; Sasaki, S.; Jinguo, Y.; Miyamoto, H.

    2010-01-01

    Wind streaks comprise recent aeolian deposits that have been extensively documented on Venus, Earth and Mars. Martian wind streaks are among the most abundant surface features on the planet and commonly extend from the downwind margins of impact craters. Previous studies of wind streaks emerging from crater interior deposits suggested that the mode of emplacement was primarily related to the deposition of silt-sized particles as these settled from plumes. We have performed geologic investigations of two wind streaks clusters; one situated in western Arabia Terra, a region in the northern hemisphere of Mars, and another in an analogous terrestrial site located in southern Patagonia, Argentina, where occurrences of wind streaks emanate from playas within maar craters. In both these regions we have identified bedforms in sedimentary deposits on crater floors, along wind-facing interior crater margins, and along wind streaks. These observations indicate that these deposits contain sand-sized particles and that sediment migration has occurred via saltation from crater interior deposits to wind streaks. In Arabia Terra and in Patagonia wind streaks initiate from crater floors that contain lithic and evaporitic sedimentary deposits, suggesting that the composition of wind streak source materials has played an important role in development. Spatial and topographic analyses suggest that regional clustering of wind streaks in the studied regions directly correlates to the areal density of craters with interior deposits, the degree of proximity of these deposits, and the craters' rim-to-floor depths. In addition, some (but not all) wind streaks within the studied clusters have propagated at comparable yearly (Earth years) rates. Extensive saltation is inferred to have been involved in its propagation based on the studied terrestrial wind streak that shows ripples and dunes on its surface and the Martian counterpart changes orientation toward the downslope direction where it extends into an impact crater. ?? 2009 Elsevier B.V.

  16. A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control.

    PubMed

    Carpenter, Peter W; Kudar, Karen L; Ali, Reza; Sen, Pradeep K; Davies, Christopher

    2007-10-15

    We present a relatively simple, deterministic, theoretical model for the sublayer streaks in a turbulent boundary layer based on an analogy with Klebanoff modes. Our approach is to generate the streamwise vortices found in the buffer layer by means of a vorticity source in the form of a fictitious body force. It is found that the strongest streaks correspond to a spanwise wavelength that lies within the range of the experimentally observed values for the statistical mean streak spacing. We also present results showing the effect of streamwise pressure gradient, Reynolds number and wall compliance on the sublayer streaks. The theoretical predictions for the effects of wall compliance on the streak characteristics agree well with experimental data. Our proposed theoretical model for the quasi-periodic bursting cycle is also described, which places the streak modelling in context. The proposed bursting process is as follows: (i) streamwise vortices generate sublayer streaks and other vortical elements generate propagating plane waves, (ii) when the streaks reach a sufficient amplitude, they interact nonlinearly with the plane waves to produce oblique waves that exhibit transient growth, and (iii) the oblique waves interact nonlinearly with the plane wave to generate streamwise vortices; these in turn generate the sublayer streaks and so the cycle is renewed.

  17. Instability of the roll-streak structure induced by background turbulence in pretransitional Couette flow

    NASA Astrophysics Data System (ADS)

    Farrell, Brian F.; Ioannou, Petros J.; Nikolaidis, Marios-Andreas

    2017-03-01

    Although the roll-streak structure is ubiquitous in both observations and simulations of pretransitional wall-bounded shear flow, this structure is linearly stable if the idealization of laminar flow is made. Lacking an instability, the large transient growth of the roll-streak structure has been invoked to explain its appearance as resulting from chance occurrence in the background turbulence of perturbations configured to optimally excite it. However, there is an alternative interpretation for the role of free-stream turbulence in the genesis of the roll-streak structure, which is that the background turbulence interacts with the roll-streak structure to destabilize it. Statistical state dynamics (SSD) provides analysis methods for studying instabilities of this type that arise from interaction between the coherent and incoherent components of turbulence. SSD in the form of a closure at second order is used in this work to analyze the cooperative eigenmodes arising from interaction between the coherent streamwise invariant component and the incoherent background component of turbulence. In pretransitional Couette flow a manifold of stable modes with roll-streak form is found to exist in the presence of low-intensity background turbulence. The least stable mode of this manifold is destabilized at a critical value of a parameter controlling the background turbulence intensity and a finite-amplitude roll-streak structure arises from this instability through a bifurcation in this parameter. Although this bifurcation has analytical expression only in the infinite ensemble formulation of second order SSD, referred in this work as the S3T system, it is closely reflected in numerical simulations of both the dynamically similar quasilinear system, referred to as the restricted nonlinear (RNL) system, as well as in the full Navier-Stokes equations. This correspondence is verified using ensemble implementations of the RNL system and the Navier-Stokes equations. The S3T system also predicts a second bifurcation at a higher value of the turbulent excitation parameter that results in destabilization of the finite-amplitude roll-streak equilibria. This second bifurcation is shown to lead first to time dependence of the roll-streak structure in the S3T system and then to chaotic fluctuation corresponding to minimal channel turbulence. This transition scenario is also verified in simulations of the RNL system and of the Navier-Stokes equations. This bifurcation from a finite-amplitude roll-streak equilibrium provides a direct route to the turbulent state through the S3T roll-streak instability.

  18. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Cossu, Carlo; Hwang, Yongyun

    2017-03-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.

  19. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  20. Single-image-based Rain Detection and Removal via CNN

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Fu, Chengzhou

    2018-04-01

    The quality of the image is degraded by rain streaks, which have negative impact when we extract image features for many visual tasks, such as feature extraction for classification and recognition, tracking, surveillance and autonomous navigation. Hence, it is necessary to detect and remove rain streaks from single images, which is a challenging problem since we have no spatial-temporal information of rain streaks compared to the dynamic video stream. Inspired by the priori that the rain streaks have almost the same feature, such as the direction or the thickness, although they are in different types of real-world images. The paper aims at proposing an effective convolutional neural network (CNN) to detect and remove rain streaks from single image. Two models of synthesized rainy image, linear additive composite model (LACM model) and screen blend model (SCM model), are considered in this paper. The main idea is that it is easier for our CNN network to find the mapping between the rainy image and rain streaks than between the rainy image and clean image. The reason is that rain streaks have fixed features, but clean images have various features. The experiments show that the designed CNN network outperforms state-of-the-art approaches on both synthesized and real-world images, which indicates the effectiveness of our proposed framework.

  1. Aeolian Sediment Transport Pathways and Aerodynamics at Troughs on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, Mary C.; Bullard, Joanna E.; Barnouin-Jha, Olivier S.

    2004-01-01

    Interaction between wind regimes and topography can give rise to complex suites of aeolian landforms. This paper considers aeolian sediment associated wit11 troughs on Mars and identifies a wider range of deposit types than has previously been documented. These include wind streaks, falling dunes, "lateral" dunes, barchan dunes, linear dunes, transverse ridges, sand ramps, climbing dunes, sand streamers, and sand patches. The sediment incorporated into these deposits is supplied by wind streaks and ambient Planitia sources as well as originating within the trough itself, notably from the trough walls and floor. There is also transmission of sediment between dneTsh. e flow dynamics which account for the distribution of aeolian sediment have been modeled using two-dimensional computational fluid dynamics. The model predicts flow separation on the upwind side of the trough followed by reattachment and acceleration at the downwind margin. The inferred patterns of sediment transport compare well with the distribution of aeolian forms. Model data indicate an increase of wind velocity by approx. 30 % at the downwind trough margin. This suggests that the threshold wind speed necessary for sand mobilization on Mars will be more freqentmlye t in these inclined locations.

  2. Streak camera based SLR receiver for two color atmospheric measurements

    NASA Technical Reports Server (NTRS)

    Varghese, Thomas K.; Clarke, Christopher; Oldham, Thomas; Selden, Michael

    1993-01-01

    To realize accurate two-color differential measurements, an image digitizing system with variable spatial resolution was designed, built, and integrated to a photon-counting picosecond streak camera, yielding a temporal scan resolution better than 300 femtosecond/pixel. The streak camera is configured to operate with 3 spatial channels; two of these support green (532 nm) and uv (355 nm) while the third accommodates reference pulses (764 nm) for real-time calibration. Critical parameters affecting differential timing accuracy such as pulse width and shape, number of received photons, streak camera/imaging system nonlinearities, dynamic range, and noise characteristics were investigated to optimize the system for accurate differential delay measurements. The streak camera output image consists of three image fields, each field is 1024 pixels along the time axis and 16 pixels across the spatial axis. Each of the image fields may be independently positioned across the spatial axis. Two of the image fields are used for the two wavelengths used in the experiment; the third window measures the temporal separation of a pair of diode laser pulses which verify the streak camera sweep speed for each data frame. The sum of the 16 pixel intensities across each of the 1024 temporal positions for the three data windows is used to extract the three waveforms. The waveform data is processed using an iterative three-point running average filter (10 to 30 iterations are used) to remove high-frequency structure. The pulse pair separations are determined using the half-max and centroid type analysis. Rigorous experimental verification has demonstrated that this simplified process provides the best measurement accuracy. To calibrate the receiver system sweep, two laser pulses with precisely known temporal separation are scanned along the full length of the sweep axis. The experimental measurements are then modeled using polynomial regression to obtain a best fit to the data. Data aggregation using normal point approach has provided accurate data fitting techniques and is found to be much more convenient than using the full rate single shot data. The systematic errors from this model have been found to be less than 3 ps for normal points.

  3. Characterization results from several commercial soft X-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Stradling, G. L.; Studebaker, J. K.; Cavailler, C.; Launspach, J.; Planes, J.

    The spatio-temporal performance of four soft X-ray streak cameras has been characterized. The objective in evaluating the performance capability of these instruments is to enable us to optimize experiment designs, to encourage quantitative analysis of streak data and to educate the ultra high speed photography and photonics community about the X-ray detector performance which is available. These measurements have been made collaboratively over the space of two years at the Forge pulsed X-ray source at Los Alamos and at the Ketjak laser facility an CEA Limeil-Valenton. The X-ray pulse lengths used for these measurements at these facilities were 150 psec and 50 psec respectively. The results are presented as dynamically-measured modulation transfer functions. Limiting temporal resolution values were also calculated. Emphasis is placed upon shot noise statistical limitations in the analysis of the data. Space charge repulsion in the streak tube limits the peak flux at ultra short experiments duration times. This limit results in a reduction of total signal and a decrease in signal to no ise ratio in the streak image. The four cameras perform well with 20 1p/mm resolution discernable in data from the French C650X, the Hadland X-Chron 540 and the Hamamatsu C1936X streak cameras. The Kentech X-ray streak camera has lower modulation and does not resolve below 10 1p/mm but has a longer photocathode.

  4. A compact large-format streak tube for imaging lidar

    NASA Astrophysics Data System (ADS)

    Hui, Dandan; Luo, Duan; Tian, Liping; Lu, Yu; Chen, Ping; Wang, Junfeng; Sai, Xiaofeng; Wen, Wenlong; Wang, Xing; Xin, Liwei; Zhao, Wei; Tian, Jinshou

    2018-04-01

    The streak tubes with a large effective photocathode area, large effective phosphor screen area, and high photocathode radiant sensitivity are essential for improving the field of view, depth of field, and detectable range of the multiple-slit streak tube imaging lidar. In this paper, a high spatial resolution, large photocathode area, and compact meshless streak tube with a spherically curved cathode and screen is designed and tested. Its spatial resolution reaches 20 lp/mm over the entire Φ28 mm photocathode working area, and the simulated physical temporal resolution is better than 30 ps. The temporal distortion in our large-format streak tube, which is shown to be a non-negligible factor, has a minimum value as the radius of curvature of the photocathode varies. Furthermore, the photocathode radiant sensitivity and radiant power gain reach 41 mA/W and 18.4 at the wavelength of 550 nm, respectively. Most importantly, the external dimensions of our streak tube are no more than Φ60 mm × 110 mm.

  5. Variable features on Mars. II - Mariner 9 global results.

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Veverka, J.; Fox, P.; Dubisch, F.; French, R.; Gierasch, P.; Quam, L.; Lederberg, J.; Levinthal, E.; Pollack, J. B.

    1973-01-01

    Systematic Mariner 9 monitoring of the space and time distribution of Martian bright and dark markings, the streaks and splotches, indicates a range of global correlations. The time-variable classical dark markings owe their configurations and variability to their constituent streaks and splotches, produced by windblown dust. Streaks and splotches are consistent wind direction indicators. Correlation of global streak patterns with general circulation models shows that velocities of about 50 to 90 m/sec above the boundary layer are necessary to initiate grain motion on the surface and to produce streaks and splotches. Detailed examples of changes in Syrtis Major, Lunae Palus, and Promethei Sinus are generally consistent with removal of bright sand and dust and uncovering of darker underlying material as the active agent in such changes, although dark mobile material probably also exists on Mars. The generation of streaks and the progressive albedo changes observed require only threshold velocities of about 2 m/sec for about 1 day at the grain surface.

  6. Earth aeolian wind streaks: Comparison to wind data from model and stations

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, A. L.; Maman, S.; Blumberg, D. G.

    2017-05-01

    Wind streak is a collective term for a variety of aeolian features that display distinctive albedo surface patterns. Wind streaks have been used to map near-surface winds and to estimate atmospheric circulation patterns on Mars and Venus. However, because wind streaks have been studied mostly on Mars and Venus, much of the knowledge regarding the mechanism and time frame of their formation and their relationship to the atmospheric circulation cannot be verified. This study aims to validate previous studies' results by a comparison of real and modeled wind data with wind streak orientations as measured from remote-sensing images. Orientations of Earth wind streaks were statistically correlated to resultant drift direction (RDD) values calculated from reanalysis and wind data from 621 weather stations. The results showed good agreement between wind streak orientations and reanalysis RDD (r = 0.78). A moderate correlation was found between the wind streak orientations and the weather station data (r = 0.47); a similar trend was revealed on a regional scale when the analysis was performed by continent, with r ranging from 0.641 in North America to 0.922 in Antarctica. At sites where wind streak orientations did not correspond to the RDDs (i.e., a difference of 45°), seasonal and diurnal variations in the wind flow were found to be responsible for deviation from the global pattern. The study thus confirms that Earth wind streaks were formed by the present wind regime and they are indeed indicative of the long-term prevailing wind direction on global and regional scales.

  7. Plant host range and leafhopper transmission of Maize fine streak virus

    USDA-ARS?s Scientific Manuscript database

    Maize fine streak virus (MFSV), an emerging rhabdovirus species in the genus Nucleorhabdovirus, is persistently transmitted by the black-faced leafhopper, Graminella nigrifrons (Forbes). MFSV was transmitted to maize, wheat, oats, rye, barley, foxtail, annual ryegrass and quackgrass by G. nigrifron...

  8. Low Albedo Surfaces and Eolian Sediment: Mars Orbiter Camera Views of Western Arabia Terra Craters and Wind Streaks

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.

    2001-01-01

    High spatial resolution (1.5 to 12 m/pixel) Mars Global Surveyor Mars Orbiter Camera images obtained September 1997 through June 2001 indicate that the large, dark wind streaks of western Arabia Terra each originate at a barchan dune field on a crater floor. The streaks consist of a relatively thin coating of sediment deflated from the dune fields and their vicinity. This sediment drapes a previous mantle that more thickly covers nearly all of western Arabia Terra. No dunes or eolian bedforms are found within the dark wind streaks, nor do any of the intracrater dunes climb up crater walls to provide sand to the wind streaks. The relations between dunes, wind streak, and subjacent terrain imply that dark-toned grains finer than those which comprise the dunes are lifted into suspension and carried out of the craters to be deposited on the adjacent terrain. Such grains are most likely in the silt size range (3.9-62.5 micrometers). The streaks change in terms of extent, relative albedo, and surface pattern over periods measured in years, but very little evidence for recent eolian activity (dust plumes, storms, dune movement) has been observed.

  9. A high-resolving-power x-ray spectrometer for the OMEGA EP Laser (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilson, P. M., E-mail: pnil@lle.rochester.edu; Ehrne, F.; Mileham, C.

    A high-resolving-power x-ray spectrometer has been developed for the OMEGA EP Laser System based on a spherically bent Si [220] crystal with a radius of curvature of 330 mm and a Spectral Instruments (SI) 800 Series charge-coupled device. The instrument measures time-integrated x-ray emission spectra in the 7.97- to 8.11-keV range, centered on the Cu K{sub α1} line. To demonstrate the performance of the spectrometer under high-power conditions, K{sub α1,2} emission spectra were measured from Cu foils irradiated by the OMEGA EP laser with 100-J, 1-ps pulses at focused intensities above 10{sup 18} W/cm{sup 2}. The ultimate goal is tomore » couple the spectrometer to a picosecond x-ray streak camera and measure temperature-equilibration dynamics inside rapidly heated materials. The plan for these ultrafast streaked x-ray spectroscopy studies is discussed.« less

  10. Causal analysis of self-sustaining processes in the logarithmic layer of wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Bae, H. J.; Encinar, M. P.; Lozano-Durán, A.

    2018-04-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, their underlying dynamics remain elusive even in the most simple and canonical configurations. Most common approaches to investigate the turbulence phenomena do not provide a clear causal inference between events, which is essential to determine the dynamics of self-sustaining processes. In the present work, we examine the causal interactions between streaks, rolls and mean shear in the logarithmic layer of a minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. We choose to represent streaks by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocity modes. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear which controls the dynamics and time-scales. The well-known lift-up effect is also identified, but shown to be of secondary importance in the causal network between shear, streaks and rolls.

  11. Causal analysis of self-sustaining processes in the log-layer of wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Lozano-Duran, Adrian; Bae, Hyunji Jane

    2017-11-01

    Despite the large amount of information provided by direct numerical simulations of turbulent flows, the underlying dynamics remain elusive even in the most simple and canonical configurations. Most standard methods used to investigate turbulence do not provide a clear causal inference between events, which is necessary to determine this dynamics, particularly in self-sustaning processes. In the present work, we examine the causal interactions between streaks and rolls in the logarithmic layer of minimal turbulent channel flow. Causality between structures is assessed in a non-intrusive manner by transfer entropy, i.e., how much the uncertainty of one structure is reduced by knowing the past states of the others. Streaks are represented by the first Fourier modes of the streamwise velocity, while rolls are defined by the wall-normal and spanwise velocities. The results show that the process is mainly unidirectional rather than cyclic, and that the log-layer motions are sustained by extracting energy from the mean shear, which controls the dynamics and time-scales. The well-known lift-up effect is shown to be not a key ingredient in the causal network between shear, streaks and rolls. Funded by ERC Coturb Madrid Summer Program.

  12. An electron energy loss spectrometer based streak camera for time resolved TEM measurements.

    PubMed

    Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus

    2017-05-01

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Investigation of the fluid flow dynamic parameters for Newtonian and non-Newtonian materials: an approach to understanding the fluid flow-like structures within fault zones

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Shiomi, Y.; Ma, K.-F.

    2017-11-01

    To understand the fault zone fluid flow-like structure, namely the ductile deformation structure, often observed in the geological field (e.g., Ramsay and Huber The techniques of modern structure geology, vol. 1: strain analysis, Academia Press, London, 1983; Hobbs and Ord Structure geology: the mechanics of deforming metamorphic rocks, Vol. I: principles, Elsevier, Amsterdam, 2015), we applied a theoretical approach to estimate the rate of deformation, the shear stress and the time to form a streak-line pattern in the boundary layer of viscous fluids. We model the dynamics of streak lines in laminar boundary layers for Newtonian and pseudoplastic fluids and compare the results to those obtained via laboratory experiments. The structure of deformed streak lines obtained using our model is consistent with experimental observations, indicating that our model is appropriate for understanding the shear rate, flow time and shear stress based on the profile of deformed streak lines in the boundary layer in Newtonian and pseudoplastic viscous materials. This study improves our understanding of the transportation processes in fluids and of the transformation processes in fluid-like materials. Further application of this model could facilitate understanding the shear stress and time history of the fluid flow-like structure of fault zones observed in the field.[Figure not available: see fulltext.

  14. Frequency-Domain Tomography for Single-shot, Ultrafast Imaging of Evolving Laser-Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Downer, Michael

    2011-10-01

    Intense laser pulses propagating through plasma create plasma wakefields that often evolve significantly, e.g. by expanding and contracting. However, such dynamics are known in detail only through intensive simulations. Laboratory visualization of evolving plasma wakes in the ``bubble'' regime is important for optimizing and scaling laser-plasma accelerators. Recently snap-shots of quasi-static wakes were recorded using frequency-domain holography (FDH). To visualize the wake's evolution, we have generalized FDH to frequency-domain tomography (FDT), which uses multiple probes propagating at different angles with respect to the pump pulse. Each probe records a phase streak, imprinting a partial record of the evolution of pump-created structures. We then topographically reconstruct the full evolution from all phase streaks. To prove the concept, a prototype experiment visualizing nonlinear index evolution in glass is demonstrated. Four probes propagating at 0, 0.6, 2, 14 degrees to the index ``bubble'' are angularly and temporally multiplexed to a single spectrometer to achieve cost-effective FDT. From these four phase streaks, an FDT algorithm analogous to conventional CT yields a single-shot movie of the pump's self-focusing dynamics.

  15. Streak camera imaging of single photons at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine

    2018-01-01

    Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.

  16. Time-resolved fluorescence polarization spectroscopy of visible and near infrared dyes in picosecond dynamics

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Alfano, Robert R.

    2015-03-01

    Near-infrared (NIR) dyes absorb and emit light within the range from 700 to 900 nm have several benefits in biological studies for one- and/or two-photon excitation for deeper penetration of tissues. These molecules undergo vibrational and rotational motion in the relaxation of the excited electronic states, Due to the less than ideal anisotropy behavior of NIR dyes stemming from the fluorophores elongated structures and short fluorescence lifetime in picosecond range, no significant efforts have been made to recognize the theory of these dyes in time-resolved polarization dynamics. In this study, the depolarization of the fluorescence due to emission from rotational deactivation in solution will be measured with the excitation of a linearly polarized femtosecond laser pulse and a streak camera. The theory, experiment and application of the ultrafast fluorescence polarization dynamics and anisotropy are illustrated with examples of two of the most important medical based dyes. One is NIR dye, namely Indocyanine Green (ICG) and is compared with Fluorescein which is in visible range with much longer lifetime. A set of first-order linear differential equations was developed to model fluorescence polarization dynamics of NIR dye in picosecond range. Using this model, the important parameters of ultrafast polarization spectroscopy were identified: risetime, initial time, fluorescence lifetime, and rotation times.

  17. Station report on the Goddard Space Flight Center (GSFC) 1.2 meter telescope facility

    NASA Technical Reports Server (NTRS)

    Mcgarry, Jan F.; Zagwodzki, Thomas W.; Abbott, Arnold; Degnan, John J.; Cheek, Jack W.; Chabot, Richard S.; Grolemund, David A.; Fitzgerald, Jim D.

    1993-01-01

    The 1.2 meter telescope system was built for the Goddard Space Flight Center (GSFC) in 1973-74 by the Kollmorgen Corporation as a highly accurate tracking telescope. The telescope is an azimuth-elevation mounted six mirror Coude system. The facility has been used for a wide range of experimentation including helioseismology, two color refractometry, lunar laser ranging, satellite laser ranging, visual tracking of rocket launches, and most recently satellite and aircraft streak camera work. The telescope is a multi-user facility housed in a two story dome with the telescope located on the second floor above the experimenter's area. Up to six experiments can be accommodated at a given time, with actual use of the telescope being determined by the location of the final Coude mirror. The telescope facility is currently one of the primary test sites for the Crustal Dynamics Network's new UNIX based telescope controller software, and is also the site of the joint Crustal Dynamics Project / Photonics Branch two color research into atmospheric refraction.

  18. Small Near-Earth Asteroids in the Palomar Transient Factory Survey: A Real-Time Streak-detection System

    NASA Astrophysics Data System (ADS)

    Waszczak, Adam; Prince, Thomas A.; Laher, Russ; Masci, Frank; Bue, Brian; Rebbapragada, Umaa; Barlow, Tom; Surace, Jason; Helou, George; Kulkarni, Shrinivas

    2017-03-01

    Near-Earth asteroids (NEAs) in the 1-100 meter size range are estimated to be ˜1,000 times more numerous than the ˜15,000 currently cataloged NEAs, most of which are in the 0.5-10 kilometer size range. Impacts from 10-100 meter size NEAs are not statistically life-threatening, but may cause significant regional damage, while 1-10 meter size NEAs with low velocities relative to Earth are compelling targets for space missions. We describe the implementation and initial results of a real-time NEA-discovery system specialized for the detection of small, high angular rate (visually streaked) NEAs in Palomar Transient Factory (PTF) images. PTF is a 1.2-m aperture, 7.3 deg2 field of view (FOV) optical survey designed primarily for the discovery of extragalactic transients (e.g., supernovae) in 60-second exposures reaching ˜20.5 visual magnitude. Our real-time NEA discovery pipeline uses a machine-learned classifier to filter a large number of false-positive streak detections, permitting a human scanner to efficiently and remotely identify real asteroid streaks during the night. Upon recognition of a streaked NEA detection (typically within an hour of the discovery exposure), the scanner triggers follow-up with the same telescope and posts the observations to the Minor Planet Center for worldwide confirmation. We describe our 11 initial confirmed discoveries, all small NEAs that passed 0.3-15 lunar distances from Earth. Lastly, we derive useful scaling laws for comparing streaked-NEA-detection capabilities of different surveys as a function of their hardware and survey-pattern characteristics. This work most directly informs estimates of the streak-detection capabilities of the Zwicky Transient Facility (ZTF, planned to succeed PTF in 2017), which will apply PTF’s current resolution and sensitivity over a 47-deg2 FOV.

  19. Time-resolved spectra of dense plasma focus using spectrometer, streak camera, and CCD combination.

    PubMed

    Goldin, F J; Meehan, B T; Hagen, E C; Wilkins, P R

    2010-10-01

    A time-resolving spectrographic instrument has been assembled with the primary components of a spectrometer, image-converting streak camera, and CCD recording camera, for the primary purpose of diagnosing highly dynamic plasmas. A collection lens defines the sampled region and couples light from the plasma into a step index, multimode fiber which leads to the spectrometer. The output spectrum is focused onto the photocathode of the streak camera, the output of which is proximity-coupled to the CCD. The spectrometer configuration is essentially Czerny-Turner, but off-the-shelf Nikon refraction lenses, rather than mirrors, are used for practicality and flexibility. Only recently assembled, the instrument requires significant refinement, but has now taken data on both bridge wire and dense plasma focus experiments.

  20. Inactivation of the Huntington's disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo.

    PubMed

    Woda, Juliana M; Calzonetti, Teresa; Hilditch-Maguire, Paige; Duyao, Mabel P; Conlon, Ronald A; MacDonald, Marcy E

    2005-08-18

    Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdh(ex4/5) huntingtin deficient embryos. In the absence of huntingtin, expression of nutritive genes appears normal but E7.0-7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease.

  1. Hot streak characterization in serpentine exhaust nozzles

    NASA Astrophysics Data System (ADS)

    Crowe, Darrell S.

    Modern aircraft of the United States Air Force face increasingly demanding cost, weight, and survivability requirements. Serpentine exhaust nozzles within an embedded engine allow a weapon system to fulfill mission survivability requirements by providing denial of direct line-of-sight into the high-temperature components of the engine. Recently, aircraft have experienced material degradation and failure along the aft deck due to extreme thermal loading. Failure has occurred in specific regions along the aft deck where concentrations of hot gas have come in contact with the surface causing hot streaks. The prevention of these failures will be aided by the accurate prediction of hot streaks. Additionally, hot streak prediction will improve future designs by identifying areas of the nozzle and aft deck surfaces that require thermal management. To this end, the goal of this research is to observe and characterize the underlying flow physics of hot streak phenomena. The goal is accomplished by applying computational fluid dynamics to determine how hot streak phenomena is affected by changes in nozzle geometry. The present research first validates the computational methods using serpentine inlet experimental and computational studies. A design methodology is then established for creating six serpentine exhaust nozzles investigated in this research. A grid independent solution is obtained on a nozzle using several figures of merit and the grid-convergence index method. An investigation into the application of a second-order closure turbulence model is accomplished. Simulations are performed for all serpentine nozzles at two flow conditions. The research introduces a set of characterization and performance parameters based on the temperature distribution and flow conditions at the nozzle throat and exit. Examination of the temperature distribution on the upper and lower nozzle surfaces reveals critical information concerning changes in hot streak phenomena due to changes in nozzle geometry.

  2. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  3. StreakDet data processing and analysis pipeline for space debris optical observations

    NASA Astrophysics Data System (ADS)

    Virtanen, Jenni; Flohrer, Tim; Muinonen, Karri; Granvik, Mikael; Torppa, Johanna; Poikonen, Jonne; Lehti, Jussi; Santti, Tero; Komulainen, Tuomo; Naranen, Jyri

    We describe a novel data processing and analysis pipeline for optical observations of space debris. The monitoring of space object populations requires reliable acquisition of observational data, to support the development and validation of space debris environment models, the build-up and maintenance of a catalogue of orbital elements. In addition, data is needed for the assessment of conjunction events and for the support of contingency situations or launches. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a “track before detect” problem, resulting in streaks, i.e., object trails of arbitrary lengths, in the images. The scope of the ESA-funded StreakDet (Streak detection and astrometric reduction) project is to investigate solutions for detecting and reducing streaks from optical images, particularly in the low signal-to-noise ratio (SNR) domain, where algorithms are not readily available yet. For long streaks, the challenge is to extract precise position information and related registered epochs with sufficient precision. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, there is a need to discuss and compare these approaches for space debris analysis, in order to develop and evaluate prototype implementations. In the StreakDet project, we develop algorithms applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The proposed processing pipeline starts from the segmentation of the acquired image (i.e., the extraction of all sources), followed by the astrometric and photometric characterization of the candidate streaks, and ends with orbital validation of the detected streaks. A central concept of the pipeline is streak classification which guides the actual characterization process by aiming to identify the interesting sources and to filter out the uninteresting ones, as well as by allowing the tailoring of algorithms for specific streak classes (e.g. point-like vs. long, disintegrated streaks). To validate the single-image detections, the processing is finalized by orbital analysis, resulting in preliminary orbital classification (Earth-bound vs. non-Earth-bound orbit) for the detected streaks.

  4. Self-sustaining processes at all scales in wall-bounded turbulent shear flows

    PubMed Central

    Hwang, Yongyun

    2017-01-01

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167581

  5. Self-sustaining processes at all scales in wall-bounded turbulent shear flows.

    PubMed

    Cossu, Carlo; Hwang, Yongyun

    2017-03-13

    We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend's attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier-Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).

  6. Laminar-Turbulent Transition Behind Discrete Roughness Elements in a High-Speed Boundary Layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Wu, Minwei; Chang, Chau-Lyan; Edwards, Jack R., Jr.; Kegerise, Michael; King, Rudolph

    2010-01-01

    Computations are performed to study the flow past an isolated roughness element in a Mach 3.5, laminar, flat plate boundary layer. To determine the effects of the roughness element on the location of laminar-turbulent transition inside the boundary layer, the instability characteristics of the stationary wake behind the roughness element are investigated over a range of roughness heights. The wake flow adjacent to the spanwise plane of symmetry is characterized by a narrow region of increased boundary layer thickness. Beyond the near wake region, the centerline streak is surrounded by a pair of high-speed streaks with reduced boundary layer thickness and a secondary, outer pair of lower-speed streaks. Similar to the spanwise periodic pattern of streaks behind an array of regularly spaced roughness elements, the above wake structure persists over large distances and can sustain strong enough convective instabilities to cause an earlier onset of transition when the roughness height is sufficiently large. Time accurate computations are performed to clarify additional issues such as the role of the nearfield of the roughness element during the generation of streak instabilities, as well as to reveal selected details of their nonlinear evolution. Effects of roughness element shape on the streak amplitudes and the interactions between multiple roughness elements aligned along the flow direction are also investigated.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, A. S., E-mail: alastair.moore@physics.org; Ahmed, M. F.; Soufli, R.

    A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features inmore » the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.« less

  8. High speed photography, videography, and photonics III; Proceedings of the Meeting, San Diego, CA, August 22, 23, 1985

    NASA Technical Reports Server (NTRS)

    Ponseggi, B. G. (Editor); Johnson, H. C. (Editor)

    1985-01-01

    Papers are presented on the picosecond electronic framing camera, photogrammetric techniques using high-speed cineradiography, picosecond semiconductor lasers for characterizing high-speed image shutters, the measurement of dynamic strain by high-speed moire photography, the fast framing camera with independent frame adjustments, design considerations for a data recording system, and nanosecond optical shutters. Consideration is given to boundary-layer transition detectors, holographic imaging, laser holographic interferometry in wind tunnels, heterodyne holographic interferometry, a multispectral video imaging and analysis system, a gated intensified camera, a charge-injection-device profile camera, a gated silicon-intensified-target streak tube and nanosecond-gated photoemissive shutter tubes. Topics discussed include high time-space resolved photography of lasers, time-resolved X-ray spectrographic instrumentation for laser studies, a time-resolving X-ray spectrometer, a femtosecond streak camera, streak tubes and cameras, and a short pulse X-ray diagnostic development facility.

  9. Inactivation of the Huntington's disease gene (Hdh) impairs anterior streak formation and early patterning of the mouse embryo

    PubMed Central

    Woda, Juliana M; Calzonetti, Teresa; Hilditch-Maguire, Paige; Duyao, Mabel P; Conlon, Ronald A; MacDonald, Marcy E

    2005-01-01

    Background Huntingtin, the HD gene encoded protein mutated by polyglutamine expansion in Huntington's disease, is required in extraembryonic tissues for proper gastrulation, implicating its activities in nutrition or patterning of the developing embryo. To test these possibilities, we have used whole mount in situ hybridization to examine embryonic patterning and morphogenesis in homozygous Hdhex4/5 huntingtin deficient embryos. Results In the absence of huntingtin, expression of nutritive genes appears normal but E7.0–7.5 embryos exhibit a unique combination of patterning defects. Notable are a shortened primitive streak, absence of a proper node and diminished production of anterior streak derivatives. Reduced Wnt3a, Tbx6 and Dll1 expression signify decreased paraxial mesoderm and reduced Otx2 expression and lack of headfolds denote a failure of head development. In addition, genes initially broadly expressed are not properly restricted to the posterior, as evidenced by the ectopic expression of Nodal, Fgf8 and Gsc in the epiblast and T (Brachyury) and Evx1 in proximal mesoderm derivatives. Despite impaired posterior restriction and anterior streak deficits, overall anterior/posterior polarity is established. A single primitive streak forms and marker expression shows that the anterior epiblast and anterior visceral endoderm (AVE) are specified. Conclusion Huntingtin is essential in the early patterning of the embryo for formation of the anterior region of the primitive streak, and for down-regulation of a subset of dynamic growth and transcription factor genes. These findings provide fundamental starting points for identifying the novel cellular and molecular activities of huntingtin in the extraembryonic tissues that govern normal anterior streak development. This knowledge may prove to be important for understanding the mechanism by which the dominant polyglutamine expansion in huntingtin determines the loss of neurons in Huntington's disease. PMID:16109169

  10. Electro-optical design of a long slit streak tube

    NASA Astrophysics Data System (ADS)

    Tian, Liping; Tian, Jinshou; Wen, Wenlong; Chen, Ping; Wang, Xing; Hui, Dandan; Wang, Junfeng

    2017-11-01

    A small size and long slit streak tube with high spatial resolution was designed and optimized. Curved photocathode and screen were adopted to increase the photocathode working area and spatial resolution. High physical temporal resolution obtained by using a slit accelerating electrode. Deflection sensitivity of the streak tube was improved by adopting two-folded deflection plates. The simulations indicate that the photocathode effective working area can reach 30mm × 5mm. The static spatial resolution is higher than 40lp/mm and 12lp/mm along scanning and slit directions respectively while the physical temporal resolution is higher than 60ps. The magnification is 0.75 and 0.77 in scanning and slit directions. And also, the deflection sensitivity is as high as 37mm/kV. The external dimension of the streak tube are only ∅74mm×231mm. Thus, it can be applied to laser imaging radar system for large field of view and high range precision detection.

  11. Longitudinal bunch shaping of picosecond high-charge MeV electron beams

    DOE PAGES

    Beaudoin, B. L.; Thangaraj, J. C. T.; Edstrom, Jr., D.; ...

    2016-10-20

    With ever increasing demands for intensities in modern accelerators, the understanding of space-charge effects becomes crucial. Herein are presented measurements of optically shaped picosecond-long electron beams in a superconducting L-band linac over a wide range of charges, from 0.2 nC to 3.4 nC. At low charges, the shape of the electron beam is preserved, while at higher charge densities, modulations on the beam convert to energy modulations. Here, energy profile measurements using a spectrometer and time profile measurements using a streak camera reveal the dynamics of longitudinal space-charge on MeV-scale electron beams.

  12. GFP is Efficiently Expressed by Wheat Streak Mosaic Virus Using a Range of Tritimovirus NIa Cleavage Sites and Forms Dense Aggregates in Cereal Hosts

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV)-based transient expression vector was developed to express GFP as a marker protein. The GFP cistron was engineered between the P1 and HC-Pro cistrons in an infectious cDNA clone of WSMV. The cleavage sites, P3/6KI, 6KI/CI, NIa/NIb, or NIb/CP, from WSMV were fused to ...

  13. Variable features on Mars - Preliminary Mariner 9 television results.

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Veverka, J.; Fox, P.; Dubisch, R.; Lederberg, J.; Levinthal, E.; Quam, L.; Tucker, R.; Pollack, J. B.; Smith, B. A.

    1972-01-01

    Systematic Mariner 9 photography of a range of Martian surface features, observed with all three photometric angles approximately invariant, reveals three general categories of albedo variations: (1) an essentially uniform contrast enhancement due to the dissipation of the dust storm; (2) the appearance of splotches, irregular dark markings at least partially related to topography; and (3) the development of both bright and dark linear streaks, generally emanating from craters. Some splotches and streaks vary on characteristic timescales of about two weeks; they have characteristic dimensions of kilometers to tens of kilometers. The morphology and variability of streaks and splotches, and the resolution of at least one splotch into an extensive dune system, implicate windblown dust as the principal agent of Martian albedo differences and variability.

  14. Streak detection and analysis pipeline for optical images

    NASA Astrophysics Data System (ADS)

    Virtanen, J.; Granvik, M.; Torppa, J.; Muinonen, K.; Poikonen, J.; Lehti, J.; Säntti, T.; Komulainen, T.; Flohrer, T.

    2014-07-01

    We describe a novel data processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data to support the development and validation of population models, and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. We focus on the low signal-to-noise (SNR) detection of objects with high angular velocities, resulting in long and faint object trails, or streaks, in the optical images. The currently available, mature image processing algorithms for detection and astrometric reduction of optical data cover objects that cross the sensor field-of-view comparably slowly, and, particularly for satellites, within a rather narrow, predefined range of angular velocities. By applying specific tracking techniques, the objects appear point-like or as short trails in the exposures. However, the general survey scenario is always a 'track-before-detect' problem, resulting in streaks of arbitrary lengths. Although some considerations for low-SNR processing of streak-like features are available in the current image processing and computer vision literature, algorithms are not readily available yet. In the ESA-funded StreakDet (Streak detection and astrometric reduction) project, we develop and evaluate an automated processing pipeline applicable to single images (as compared to consecutive frames of the same field) obtained with any observing scenario, including space-based surveys and both low- and high-altitude populations. The algorithmic flow starts from the segmentation of the acquired image (i.e., the extraction of all sources), followed by the astrometric and photometric characterization of the candidate streaks, and ends with orbital validation of the detected streaks. For the low-SNR extraction of objects, we put forward an approach which does not rely on a priori information, such as the object velocities, a typical assumption in earlier implementations. Our algorithm is based on local grayscale mean difference evaluation, followed by a threshold operation and spatial filtering of black-and-white (1-bit) data to remove stars and other non-streak features. For long streaks, the challenge is to extract position information and related registered epochs with sufficient precision. Moreover, satellite streaks can show up in complex morphologies because of their fast, and often irregular lightcurve variations. A central concept of the pipeline is streak classification which guides the actual characterization process by aiming to identify the interesting sources and to filter out the uninteresting ones, as well as by allowing the tailoring of algorithms for specific streak classes (e.g. PSF fitting for point-like vs. long, disintegrated streaks). Finally, to validate the single-image detections, the processing is finalized by orbital analysis using our statistical inverse methods (see, Muinonen et al., this conference), resulting in preliminary orbital classification (e.g., Earth-bound vs. non-Earth-bound orbits) for the detected streaks.

  15. Effectiveness of several dosage formula of oil and nano emulsion of citronella against vascular streak dieback (VSD) disease on cocoa

    NASA Astrophysics Data System (ADS)

    Noveriza, R.; Trisno, J.; Rahma, H.; Yuliani, S.; Reflin; Martinius

    2018-02-01

    The disease of Vascular streak dieback (VSD) is a deadly disease of cocoa plants, because it attacks the vascular tissue of cocoa at growing point of the plant. In West Sumatra the disease was first reported in 2015 with an incidence of disease range 58.82% - 100% and an intensity of disease range 24.29% - 44.7%. The purpose of this study was to examine the effectiveness of dosage application of oil formula and nano emulsion of citronella formula against Vascular streak dieback (VSD) disease on cocoa plants in West Sumatra (in Padang Pariaman District and Limapuluh Kota District). The results showed that the percentage of VSD disease attacks in both testing sites was 100%. The oil and nano emulsion of citronella formulas can reduce the intensity of VSD disease on cocoa plants in West Sumatra, particularly in Padang Pariaman District and Limapuluh Kota District. The reduction of VSD intensity in Padang Pariaman district ranged from 8.32 to 21.13%; while in Limapuluh Kota district ranged from 4.33 to 11.80%. The nano emulsion of citronella formulation is effective to suppress the intensity of VSD disease on cocoa plants at doses 0.1% (≥ 30% of effectiveness level).

  16. A unified framework for physical print quality

    NASA Astrophysics Data System (ADS)

    Eid, Ahmed; Cooper, Brian; Rippetoe, Ed

    2007-01-01

    In this paper we present a unified framework for physical print quality. This framework includes a design for a testbed, testing methodologies and quality measures of physical print characteristics. An automatic belt-fed flatbed scanning system is calibrated to acquire L* data for a wide range of flat field imagery. Testing methodologies based on wavelet pre-processing and spectral/statistical analysis are designed. We apply the proposed framework to three common printing artifacts: banding, jitter, and streaking. Since these artifacts are directional, wavelet based approaches are used to extract one artifact at a time and filter out other artifacts. Banding is characterized as a medium-to-low frequency, vertical periodic variation down the page. The same definition is applied to the jitter artifact, except that the jitter signal is characterized as a high-frequency signal above the banding frequency range. However, streaking is characterized as a horizontal aperiodic variation in the high-to-medium frequency range. Wavelets at different levels are applied to the input images in different directions to extract each artifact within specified frequency bands. Following wavelet reconstruction, images are converted into 1-D signals describing the artifact under concern. Accurate spectral analysis using a DFT with Blackman-Harris windowing technique is used to extract the power (strength) of periodic signals (banding and jitter). Since streaking is an aperiodic signal, a statistical measure is used to quantify the streaking strength. Experiments on 100 print samples scanned at 600 dpi from 10 different printers show high correlation (75% to 88%) between the ranking of these samples by the proposed metrologies and experts' visual ranking.

  17. Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: Formation of dense fluorescent aggregates for sensitive virus tracking

    USDA-ARS?s Scientific Manuscript database

    A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic...

  18. Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Chernikov, A.; Wichmann, M.; Shakfa, M. K.; Scheller, M.; Moloney, J. V.; Koch, S. W.; Koch, M.

    2012-01-01

    The temporal stability of a two-color vertical-external-cavity surface-emitting laser is studied using single-shot streak-camera measurements. The collected data is evaluated via quantitative statistical analysis schemes. Dynamically stable and unstable regions for the two-color operation are identified and the dependence on the pump conditions is analyzed.

  19. Initial state with shear in peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Magas, V. K.; Gordillo, J.; Strottman, D.; Xie, Y. L.; Csernai, L. P.

    2018-06-01

    In the present work we propose a new way of constructing the initial state for further hydrodynamic simulation of relativistic heavy ion collisions based on Bjorken-like solution applied streak by streak in the transverse plane. Previous fluid dynamical calculations in Cartesian coordinates with an initial state based on a streak by streak Yang-Mills field led for peripheral higher energy collisions to large angular momentum, initial shear flow and significant local vorticity. Recent experiments verified the existence of this vorticity via the resulting polarization of emitted Λ and Λ ¯ particles. At the same time parton cascade models indicated the existence of more compact initial state configurations, which we are going to simulate in our approach. The proposed model satisfies all the conservation laws, including conservation of a strong initial angular momentum, which is present in noncentral collisions. As a consequence of this large initial angular momentum we observe the rotation of the whole system as well as the fluid shear in the initial state, which leads to large flow vorticity. Another advantage of the proposed model is that the initial state can be given in both [t,x,y,z] and [τ ,x ,y ,η ] coordinates and thus can be tested by all 3+1D hydrodynamical codes which exist in the field.

  20. Overdamped large-eddy simulations of turbulent pipe flow up to Reτ = 1500

    NASA Astrophysics Data System (ADS)

    Feldmann, Daniel; Avila, Marc

    2018-04-01

    We present results from large-eddy simulations (LES) of turbulent pipe flow in a computational domain of 42 radii in length. Wide ranges of shear the Reynolds number and Smagorinsky model parameter are covered, 180 ≤ Reτ ≤ 1500 and 0.05 ≤ Cs ≤ 1.2, respectively. The aim is to asses the effect of Cs on the resolved flow field and turbulence statistics as well as to test whether very large scale motions (VLSM) in pipe flow can be isolated from the near-wall cycle by enhancing the dissipative character of the static Smagorinsky model with elevated Cs values. We found that the optimal Cs to achieve best agreement with reference data varies with Reτ and further depends on the wall normal location and the quantity of interest. Furthermore, for increasing Reτ , the optimal Cs for pipe flow LES seems to approach the theoretically optimal value for LES of isotropic turbulence. In agreement with previous studies, we found that for increasing Cs small-scale streaks in simple flow field visualisations are gradually quenched and replaced by much larger smooth streaks. Our analysis of low-order turbulence statistics suggests, that these structures originate from an effective reduction of the Reynolds number and thus represent modified low-Reynolds number near-wall streaks rather than VLSM. We argue that overdamped LES with the static Smagorinsky model cannot be used to unambiguously determine the origin and the dynamics of VLSM in pipe flow. The approach might be salvaged by e.g. using more sophisticated LES models accounting for energy flux towards large scales or explicit anisotropic filter kernels.

  1. A new streaked soft x-ray imager for the National Ignition Facility

    DOE PAGES

    Benstead, J.; Moore, A. S.; Ahmed, M. F.; ...

    2016-05-27

    Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less

  2. Understanding baseball team standings and streaks

    NASA Astrophysics Data System (ADS)

    Sire, C.; Redner, S.

    2009-02-01

    Can one understand the statistics of wins and losses of baseball teams? Are their consecutive-game winning and losing streaks self-reinforcing or can they be described statistically? We apply the Bradley-Terry model, which incorporates the heterogeneity of team strengths in a minimalist way, to answer these questions. Excellent agreement is found between the predictions of the Bradley-Terry model and the rank dependence of the average number team wins and losses in major-league baseball over the past century when the distribution of team strengths is taken to be uniformly distributed over a finite range. Using this uniform strength distribution, we also find very good agreement between model predictions and the observed distribution of consecutive-game team winning and losing streaks over the last half-century; however, the agreement is less good for the previous half-century. The behavior of the last half-century supports the hypothesis that long streaks are primarily statistical in origin with little self-reinforcing component. The data further show that the past half-century of baseball has been more competitive than the preceding half-century.

  3. Jet Stream Analysis and Forecast Errors Using GADS Aircraft Observations in the DAO, ECMWF, and NCEP Models

    NASA Technical Reports Server (NTRS)

    Cardinali, Carla; Rukhovets, Leonid; Tenenbaum, Joel

    2003-01-01

    We have utilized an extensive set of independent British Airways flight data recording wind vector and temperature observations (the Global Aircraft Data Set [GADS] archive) in three ways: (a) as an independent check of operational analyses; (b) as an analysis observing system experiment (OSE) as if the GADS observations were available in real time; and (c) as the corresponding forecast simulation experiment applicable to future operational forecasts. Using a 31 day sample (0000 UTC 20 December 2000 through 0000 UTC 20 January 2000) from Winter 2000, we conclude that over the data-dense continental U. S. analyzed jet streaks are too weak by -2% to -5%. Over nearby data-sparse regions of Canada, analyzed jet streaks are too weak by -5% to -9%. The second range provides a limit on the accuracy of current jet streak analyses over the portions of the -85% of the earth's surface that are poorly covered by non-satellite observations. The -5% to -9% range is relevant for the pre-third generation satellite (AIRS, IASI, GIFTS) era.

  4. Viscous versus inviscid exact coherent states in high Reynolds number wall flows

    NASA Astrophysics Data System (ADS)

    Montemuro, Brandon; Klewicki, Joe; White, Chris; Chini, Greg

    2017-11-01

    Streamwise-averaged motions consisting of streamwise-oriented streaks and vortices are key components of exact coherent states (ECS) arising in incompressible wall-bounded shear flows. These invariant solutions are believed to provide a scaffold in phase space for the turbulent dynamics realized at large Reynolds number Re . Nevertheless, many ECS, including upper-branch states, have a large- Re asymptotic structure in which the effective Reynolds number governing the streak and roll dynamics is order unity. Although these viscous ECS very likely play a role in the dynamics of the near-wall region, they cannot be relevant to the inertial layer, where the leading-order mean dynamics are known to be inviscid. In particular, viscous ECS cannot account for the observed regions of quasi-uniform streamwise momentum and interlaced internal shear layers (or `vortical fissures') within the inertial layer. In this work, a large- Re asymptotic analysis is performed to extend the existing self-sustaining-process/vortex-wave-interaction theory to account for largely inviscid ECS. The analysis highlights feedback mechanisms between the fissures and uniform momentum zones that can enable their self-sustenance at extreme Reynolds number. NSF CBET Award 1437851.

  5. Attosecond Electron Correlation Dynamics in Double Ionization of Benzene Probed with Two-Electron Angular Streaking

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen

    2017-09-01

    With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.

  6. Picosecond Streaked K-Shell Spectroscopy of Near Solid-Density Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2016-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured. The targets were driven by high-contrast 1 ω or 2 ω laser pulses at focused intensities up to 1 ×1019W/Wcm2 cm2 . A streaked x-ray spectrometer recorded the Al Heα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E/E ΔE 700). Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Line widths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic model to provide the average plasma conditions in the buried layer as a function of time. It was observed that the resonance line tends toward lower photon energies at high electron densities. The measured shifts will be compared to predicted shifts from Stark-operator calculations at the inferred plasma conditions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the office of Fusion Energy Sciences Award Number DE-SC0012317, and the Stewardship Science Graduate Fellowship Grant Number DE-NA0002135.

  7. A pulse-front-tilt–compensated streaked optical spectrometer with high throughput and picosecond time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J., E-mail: jkat@lle.rochester.edu; Boni, R.; Rivlis, R.

    A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns themore » beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.« less

  8. The impact of dynamic data assimilation on the numerical simulations of the QE II cyclone and an analysis of the jet streak influencing the precyclogenetic environment

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Uccellini, Louis W.; Brill, Keith F.; Kuo, Ying-Hwa

    1992-01-01

    A mesoscale numerical model is combined with a dynamic data assimilation via Newtonian relaxation, or 'nudging', to provide initial conditions for subsequent simulations of the QE II cyclone. Both the nudging technique and the inclusion of supplementary data are shown to have a large positive impact on the simulation of the QE II cyclone during the initial phase of rapid cyclone development. Within the initial development period (from 1200 to 1800 UTC 9 September 1978), the dynamic assimilation of operational and bogus data yields a coherent two-layer divergence pattern that is not well defined in the model run using only the operational data and static initialization. Diagnostic analysis based on the simulations show that the initial development of the QE II storm between 0000 UTC 9 September and 0000 UTC 10 September was embedded within an indirect circulation of an intense 300-hPa jet streak, was related to baroclinic processes extending throughout a deep portion of the troposphere, and was associated with a classic two-layer mass-divergence profile expected for an extratropical cyclone.

  9. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1995-01-01

    Mesoscale model simulations provide insight into the complex jet streak adjustments on 11-12 July 1981 that preceded the first of two significant gravity wave events to have been generated over the Rocky Mountains in Montana. Simulations employing a variety of terrain treatments indicate that prior to wave formation, geostrophic adjustment processes modified the structure of the mid-upper tropospheric jet streak by creating secondary jetlets to the southeast of the polar jet streak in proximity to the gravity wave generation region. This simulated restructuring of the mid-upper tropospheric jet streak is the result of a four stage process. During stage 1, the wind adjusts to the mass field as the jet streak exit region propagates into the inflection point between the upstream trough and downstream ridge in the height field. Stage 2 is initiated as the mass field is forced to adjust to the new ageostrophic wind field created during stage 1. Stage 3 is defined by a second geostrophic adjustment process occurring in a similar manner but to the south and east of the adjustment which occurs during stage 1. A low-level mesoscale jetlet is formed during stage 4 in response to the low-level pressure falls that are established during stage 3. The perturbation of this jetlet, caused by orographically-induced adiabatic and diabatic physical processes, is the likely mechanism responsible for the generation of the first and second episode of observed gravity waves. The dynamics responsible for this wave episode are discussed as differential surface sensible heating inducing an orographically-forced mountain-plains solenoid, resulting in the formation of additional mesoscale jetlets and internal gravity waves. Also discussed is how convective latent heating modifies the numerically simulated terrain-induced internal gravity waves, especially their amplitude and phase velocities, which provide better agreement with those wave characteristics observed in nature. Finally, the three-dimensional linear response of a zonally uniform barotropic flow in a vertically unbounded, continuously stratified, Boussinesq atmosphere which is perturbed from geostrophic equilibrium is investigated.

  10. Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly

    NASA Astrophysics Data System (ADS)

    Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.

    2015-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This research was supported by The Aerospace Corporation's Technical Investment program

  11. Wind Streaks on Earth; Exploration and Interpretation

    NASA Astrophysics Data System (ADS)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit

    2015-04-01

    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in approximately 500 sites. Most terrestrial wind streaks are formed on a relatively young geological surface and are concentrated along the equator (± 30°). They are categorized by the combination of their planform and reflectance; with linear-bright and dark are the most common. A site-specific examination of remote-sensing effects on wind streaks identification has been conducted. The results thus far, indicate that in images with varying spatial and spectral specifications some wind streaks are actually composed of other aeolian bedforms, especially dunes. Specific regions of the Earth were then compared qualitatively to surface wind data extracted from a general circulation model. Understanding the mechanism and spatial and temporal distribution of wind streak formation is important not only for understanding surface modifications in the geomorphological context but also for shedding light on past and present climatic processes and atmospheric circulation on Earth. This study yields an explanation for wind streaks as a geomorphological feature. Moreover, it is in this planet-wide geomorphological research ability to lay down the foundations for comparative planetary research.

  12. Programmable 10 MHz optical fiducial system for hydrodiagnostic cameras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huen, T.

    1987-07-01

    A solid state light control system was designed and fabricated for use with hydrodiagnostic streak cameras of the electro-optic type. With its use, the film containing the streak images will have on it two time scales simultaneously exposed with the signal. This allows timing and cross timing. The latter is achieved with exposure modulation marking onto the time tick marks. The purpose of using two time scales will be discussed. The design is based on a microcomputer, resulting in a compact and easy to use instrument. The light source is a small red light emitting diode. Time marking can bemore » programmed in steps of 0.1 microseconds, with a range of 255 steps. The time accuracy is based on a precision 100 MHz quartz crystal, giving a divided down 10 MHz system frequency. The light is guided by two small 100 micron diameter optical fibers, which facilitates light coupling onto the input slit of an electro-optic streak camera. Three distinct groups of exposure modulation of the time tick marks can be independently set anywhere onto the streak duration. This system has been successfully used in Fabry-Perot laser velocimeters for over four years in our Laboratory. The microcomputer control section is also being used in providing optical fids to mechanical rotor cameras.« less

  13. Probing ultrafast proton induced dynamics in transparent dielectrics

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Coughlan, M.; Nersisyan, G.; Senje, L.; Jung, D.; Currell, F.; Riley, D.; Lewis, C. L. S.; Zepf, M.; Dromey, B.

    2018-05-01

    A scheme has been developed permitting the spatial and temporal characterisation of ultrafast dynamics induced by laser driven proton bursts in transparent dielectrics. Advantage is taken of the high degree of synchronicity between the proton bursts generated during laser-foil target interactions and the probing laser to provide the basis for streaking of the dynamics. Relaxation times of electrons (<10‑12 s) are measured following swift excitation across the optical band gap for various glass samples. A temporal resolution of <500 fs is achieved demonstrating that these ultrafast dynamics can be characterized on a single-shot basis.

  14. Simultaneous Spectral Temporal Adaptive Raman Spectrometer - SSTARS

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana

    2010-01-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis, which is structure and composition. However, large fluorescence return from many mineral samples under visible light excitation can render Raman spectra unattainable. Using the described approach, Raman and fluorescence, which occur on different time scales, can be simultaneously obtained from mineral samples using a compact instrument in a planetary environment. This new approach is taken based on the use of time-resolved spectroscopy for removing the fluorescence background from Raman spectra in the laboratory. In the SSTARS instrument, a visible excitation source (a green, pulsed laser) is used to generate Raman and fluorescence signals in a mineral sample. A spectral notch filter eliminates the directly reflected beam. A grating then disperses the signal spectrally, and a streak camera provides temporal resolution. The output of the streak camera is imaged on the CCD (charge-coupled device), and the data are read out electronically. By adjusting the sweep speed of the streak camera, anywhere from picoseconds to milliseconds, it is possible to resolve Raman spectra from numerous fluorescence spectra in the same sample. The key features of SSTARS include a compact streak tube capable of picosecond time resolution for collection of simultaneous spectral and temporal information, adaptive streak tube electronics that can rapidly change from one sweep rate to another over ranges of picoseconds to milliseconds, enabling collection of both Raman and fluorescence signatures versus time and wavelength, and Synchroscan integration that allows for a compact, low-power laser without compromising ultimate sensitivity.

  15. Molecular organization of the cholesteryl ester droplets in the fatty streaks of human aorta.

    PubMed Central

    Engelman, D M; Hillman, G M

    1976-01-01

    X-ray diffraction patterns from human arterial specimens containing atherosclerotic fatty streak lesions exhibited a single sharp reflection, corresponding to a structural spacing of about 35 A. Specimens without lesions did not. When specimens with fatty streaks were heated, an order-to-disorder phase transition was revealed by the disappearance of the sharp reflection. The transition was thermally reversible and its temperature varied from aorta to aorta over a range from 28 degrees to 42 degrees C. Since cholesteryl ester droplets are a major component of fatty streaks, comparison studies were made of the diffraction behavior from pure cholesteryl esters. We found that the diffraction patterns of the fatty streak material could be accounted for by the organization of the cholesteryl esters into a liquid-crystalline smectic phase that melts from the smectic to a less ordered phase upon heating. When combined with the conclusions of others from polarized light microscopy, our study shows that a droplet in the smectic phase has well-defined concentric layers of lipid molecules. In each layer, the long axes of the molecules have a net radial orientation with respect to the droplet, but the side-to-side organization is disordered. We suggest that the accessibility of portions of the lipids for specific binding to enzymes or transport proteins may be restricted when they are in the smectic state, and that exchange of lipids with surrounding membranes or other potential binding sites may likewise be inhibited. The restriction in the smectic phase should be greater than in the less ordered phases that exist at higher temperatures. Images PMID:965500

  16. Effects of Hot Streak Shape on Rotor Heating in a High-Subsonic Single-Stage Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Gundy-Burlet, Karen L.; Norvig, Peter (Technical Monitor)

    1999-01-01

    Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.

  17. Wind streaks: geological and botanical effects on surface albedo contrast

    NASA Astrophysics Data System (ADS)

    Zimbelman, James R.; Williams, Steven H.

    1996-09-01

    Two wind streaks in the eastern Mojave Desert of California were examined to gain insight into the origin of the surface brightness contrast that makes them visible, both on the ground and in remote sensing data. The two localities are: a 4-km-long dark streak oriented S43E from the Amboy cinder cone (34°32'N, 115°46'W), located on a Quaternary basalt flow covered with aeolian sand, and a 2-km-long dark streak oriented S22E from a low hill near the southwestern base of Sleeping Beauty Mountain (34°48'N, 116°20'W), located on a sand-covered alluvial surface. In both cases, the dark streaks have enhanced rock abundances on the streak surface, relative to the surroundings. At the Amboy streak, slope wash likely contributed to the rock concentration on the streak surface, shielded from burial under aeolian sand by the cinder cone. At the Sleeping Beauty streak, the relative albedo contrast is strongly emphasized by the presence of Big Galleta grass only outside of the streak. The albedo contrast of the Sleeping Beauty streak can be effectively eliminated by the seasonal presence of annual grass preferentially within the streak. Some plants may have reflectances that are strongly dependent upon viewing and illumination geometry, raising the possibility that certain terrestrial aeolian features may appear variable on a diurnal basis. Alluvial processes appear to have been important at both localities for redistributing surface materials, even given the infrequent rain conditions present in the Mojave Desert.

  18. Radar-visible wind streaks in the Altiplano of Bolivia

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Christensen, P.

    1984-01-01

    Isolated knobs that are erosional remnants of central volcanoes or of folded rocks occur in several areas of the Altiplano are visible on both optical and images. The optically visible streaks occur in the immediate lee of the knobs, whereas the radar visible streaks occur in the zone downwind between the knobs. Aerial reconnaissance and field studies showed that the optically visible streaks consist of a series of small ( 100 m wide) barchan and barchanoid dunes, intradune sand sheets, and sand hummocks (large shrub coppice dunes) up to 15 m across and 5 m high. On LANDSAT images these features are poorly resolved but combine to form a bright streak. On the radar image, this area also appears brighter than the zone of the radar dark streak; evidently, the dunes and hummocks serve as radar reflectors. The radar dark streak consists of a relatively flat, smooth sand sheet which lacks organized aerolian bedforms, other than occasional ripples. Wind velocity profiles show a greater U value in the optically bright streak zone than in the radar dark streak.

  19. Experimental constraints on impact-induced winds

    NASA Astrophysics Data System (ADS)

    Quintana, Stephanie N.; Schultz, Peter H.; Horowitz, Seth S.

    2018-05-01

    A new class of wind streaks on Mars uniquely associated with impact craters is most clearly detected in nighttime thermal infrared imaging. Thermally bright streaks radiate from some well-preserved impact craters and are related to the impact process. Using laboratory experiments performed at the NASA Ames Vertical Gun Range, we test the hypothesis that these streaks are formed from either the winds within an air-blast or winds set up by expanding impact vapor interacting with the atmosphere. The experiments use a variety of tracers and instruments to document three interrelated processes occurring in the impact of a Pyrex projectile into an easily vaporized powdered dolomite target: (1) a surface roughening spreading outward from the impact point, (2) an expanding vapor plume, and (3) outward winds made visible by dust trails from vertically placed, dusty pipe cleaners. The clear connection between the surface roughening, vapor expansion, and outward winds implicate an expanding vapor interacting with the atmosphere as the controlling process.

  20. The interactive role of subsynoptic scale jet streak and planetary boundary layer processes in organizing an isolated convective complex

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.

    1984-01-01

    Surface analyses and numerical simulation sensitivity studies are compared in order to determine the role played by deep, well-mixed, and well-heated boundary layers in perturbing a weak jet streak in proximity to the development of an isolated but intense convective complex associated with the Grand Island, Nebraska tornado outbreak of June 3-4, 1980. A brief description of the case is first presented, emphasizing three-hourly surface analyses, radar, and satellite data. The results of numerical experiments comparing differences in the runs with and without diurnal surface sensible heating are discussed and related to observations. The dynamical processes responsible for these simulation differences are discussed, and the significance of these differences are considered in terms of their effect on the preconvective environment.

  1. Streak instability as an initiating mechanism of the large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    de Giovanetti, Matteo; Sung, Hyung Jin; Hwang, Yongyun

    2016-11-01

    The large-scale motions (or bulges) have often been believed to be formed via merge and/or growth of the near-wall hairpin vortical structures. Here, we report our observation that they can be directly generated by an instability of the amplified streaky motions in the outer region (i.e. very-large-scale motions) through the self-sustaining process. We design a LES-based numerical experiment in turbulent channel flow for Reτ = 2000 where a body forcing is implemented to artificially drive an infinitely long streaky motion in the outer layer. As the forcing amplitude is increased, it is found that a new energetic structure emerges at λx 3 4 h of the streamwise length (h is the half height of channel) particularly in the wall-normal and spanwise velocities. A careful statistical examination reveals that this structure is likely to be linked with the sinuous-mode streak instability of the amplified streak, consistent with previous theoretical studies. Application of dynamic mode decomposition to this instability further shows that the phase speed of this structure scales with the outer velocity and it is initiated around the critical layer of the streaky flow.

  2. Wind Streaks on Venus: Clues to Atmospheric Circulation

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Schubert, Gerald; Limonadi, Daniel; Bender, Kelly C.; Newman, William I.; Thomas, Peggy E.; Weitz, Catherine M.; Wall, Stephen D.

    1994-01-01

    Magellan images reveal surface features on Venus attributed to wind processes. Sand dunes, wind-sculpted hills, and more than 5830 wind streaks have been identified. The streaks serve as local "wind vanes," representing wind direction at the time of streak formation and allowing the first global mapping of near-surface wind patterns on Venus. Wind streaks are oriented both toward the equator and toward the west. When streaks associated with local transient events, such as impact cratering, are deleted, the westward component is mostly lost but the equatorward component remains. This pattern is consistent with a Hadley circulation of the lower atmosphere.

  3. Microchannel plate streak camera

    DOEpatents

    Wang, Ching L.

    1989-01-01

    An improved streak camera in which a microchannel plate electron multiplier is used in place of or in combination with the photocathode used in prior streak cameras. The improved streak camera is far more sensitive to photons (UV to gamma-rays) than the conventional x-ray streak camera which uses a photocathode. The improved streak camera offers gamma-ray detection with high temporal resolution. It also offers low-energy x-ray detection without attenuation inside the cathode. Using the microchannel plate in the improved camera has resulted in a time resolution of about 150 ps, and has provided a sensitivity sufficient for 1000 KeV x-rays.

  4. Performances Of The New Streak Camera TSN 506

    NASA Astrophysics Data System (ADS)

    Nodenot, P.; Imhoff, C.; Bouchu, M.; Cavailler, C.; Fleurot, N.; Launspach, J.

    1985-02-01

    The number of streack cameras used in research laboratory has been continuously increased du-ring the past years. The increasing of this type of equipment is due to the development of various measurement techniques in the nanosecond and picosecond range. Among the many different applications, we would mention detonics chronometry measurement, measurement of the speed of matter by means of Doppler-laser interferometry, laser and plasma diagnostics associated with laser-matter interaction. The old range of cameras have been remodelled, in order to standardize and rationalize the production of ultrafast cinematography instruments, to produce a single camera known as TSN 506. Tne TSN 506 is composed of an electronic control unit, built around the image converter tube it can be fitted with a nanosecond sweep circuit covering the whole range from 1 ms to 200 ns or with a picosecond circuit providing streak durations from 1 to 100 ns. We shall describe the main electronic and opto-electronic performance of the TSN 506 operating in these two temporal fields.

  5. Dynamic large eddy simulation: Stability via realizability

    NASA Astrophysics Data System (ADS)

    Mokhtarpoor, Reza; Heinz, Stefan

    2017-10-01

    The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.

  6. Streaks and vortices in near-wall turbulence.

    PubMed

    Chernyshenko, S I; Baig, M F

    2005-05-15

    This paper presents evidence that organization of wall-normal motions plays almost no role in the creation of streaks. This evidence consists of the theory of streak generation not requiring the existence of organized vortices, extensive quantitative comparisons between the theory and direct numerical simulations, including examples of large variation in average spacing of the streaks of different scalars simultaneously present in the flow, and an example of the scalar streaks in an artificially created purely random flow.

  7. The mevalonate pathway regulates primitive streak formation via protein farnesylation

    PubMed Central

    Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi

    2016-01-01

    The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036

  8. MULTIMODAL IMAGING OF ANGIOID STREAKS ASSOCIATED WITH TURNER SYNDROME.

    PubMed

    Chiu, Bing Q; Tsui, Edmund; Hussnain, Syed Amal; Barbazetto, Irene A; Smith, R Theodore

    2018-02-13

    To report multimodal imaging in a novel case of angioid streaks in a patient with Turner syndrome with 10-year follow-up. Case report of a patient with Turner syndrome and angioid streaks followed at Bellevue Hospital Eye Clinic from 2007 to 2017. Fundus photography, fluorescein angiography, and optical coherence tomography angiography were obtained. Angioid streaks with choroidal neovascularization were noted in this patient with Turner syndrome without other systemic conditions previously correlated with angioid streaks. We report a case of angioid streaks with choroidal neovascularization in a patient with Turner syndrome. We demonstrate that angioid streaks, previously associated with pseudoxanthoma elasticum, Ehlers-Danlos syndrome, Paget disease of bone, and hemoglobinopathies, may also be associated with Turner syndrome, and may continue to develop choroidal neovascularization, suggesting the need for careful ophthalmic examination in these patients.

  9. Boundary-Layer Instability Measurements in a Mach-6 Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Berridge, Dennis C.; Ward, Christopher, A. C.; Luersen, Ryan P. K.; Chou, Amanda; Abney, Andrew D.; Schneider, Steven P.

    2012-01-01

    Several experiments have been performed in the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University. A 7 degree half angle cone at 6 degree angle of attack with temperature-sensitive paint (TSP) and PCB pressure transducers was tested under quiet flow. The stationary crossflow vortices appear to break down to turbulence near the lee ray for sufficiently high Reynolds numbers. Attempts to use roughness elements to control the spacing of hot streaks on a flared cone in quiet flow did not succeed. Roughness was observed to damp the second-mode waves in areas influenced by the roughness, and wide roughness spacing allowed hot streaks to form between the roughness elements. A forward-facing cavity was used for proof-of-concept studies for a laser perturber. The lowest density at which the freestream laser perturbations could be detected was 1.07 x 10(exp -2) kilograms per cubic meter. Experiments were conducted to determine the transition characteristics of a streamwise corner flow at hypersonic velocities. Quiet flow resulted in a delayed onset of hot streak spreading. Under low Reynolds number flow hot streak spreading did not occur along the model. A new shock tube has been built at Purdue. The shock tube is designed to create weak shocks suitable for calibrating sensors, particularly PCB-132 sensors. PCB-132 measurements in another shock tube show the shock response and a linear calibration over a moderate pressure range.

  10. Diving-related visual loss in the setting of angioid streaks: report of two cases.

    PubMed

    Angulo Bocco, Maria I; Spielberg, Leigh; Coppens, Greet; Catherine, Janet; Verougstraete, Claire; Leys, Anita M

    2012-01-01

    The purpose of this study was to report diving-related visual loss in the setting of angioid streaks. Observational case reports of two patients with angioid streaks suffering sudden visual loss immediately after diving. Two young adult male patients presented with visual loss after diving headfirst. Funduscopy revealed angioid streaks, peau d'orange, subretinal hemorrhages, and ruptures of Bruch membrane. Choroidal neovascularization developed during follow-up. Both patients had an otherwise uneventful personal and familial medical history. In patients with angioid streaks, diving headfirst can lead to subretinal hemorrhages and traumatic ruptures in Bruch membrane and increase the risk of maculopathy. Ophthalmologists should caution patients with angioid streaks against diving headfirst.

  11. Distributed Compressive Sensing vs. Dynamic Compressive Sensing: Improving the Compressive Line Sensing Imaging System through Their Integration

    DTIC Science & Technology

    2015-01-01

    streak tube imaging Lidar [15]. Nevertheless, instead of one- dimensional (1D) fan beam, a laser source modulates the digital micromirror device DMD and...Trans. Inform. Theory, vol. 52, pp. 1289-1306, 2006. [10] D. Dudley, W. Duncan and J. Slaughter, "Emerging Digital Micromirror Device (DMD) Applications

  12. Streaked x-ray spectrometer having a discrete selection of Bragg geometries for Omega

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millecchia, M.; Regan, S. P.; Bahr, R. E.

    2012-10-15

    The streaked x-ray spectrometer (SXS) is used with streak cameras [D. H. Kalantar, P. M. Bell, R. L. Costa, B. A. Hammel, O. L. Landen, T. J. Orzechowski, J. D. Hares, and A. K. L. Dymoke-Bradshaw, in 22nd International Congress on High-Speed Photography and Photonics, edited by D. L. Paisley and A. M. Frank (SPIE, Bellingham, WA, 1997), Vol. 2869, p. 680] positioned with a ten-inch manipulator on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] and OMEGA EP [L. J. Waxer et al., Presented at CLEO/QELS 2008, San Jose, CA, 4-9 May 2008 (Paper JThB1)] formore » time-resolved, x-ray spectroscopy of laser-produced plasmas in the 1.4- to 20-keV photon-energy range. These experiments require measuring a portion of this photon-energy range to monitor a particular emission or absorption feature of interest. The SXS relies on a pinned mechanical reference system to create a discrete set of Bragg reflection geometries for a variety of crystals. A wide selection of spectral windows is achieved accurately and efficiently using this technique. It replaces the previous spectrometer designs that had a continuous Bragg angle adjustment and required a tedious alignment calibration procedure. The number of spectral windows needed for the SXS was determined by studying the spectral ranges selected by OMEGA users over the last decade. These selections are easily configured in the SXS using one of the 25 discrete Bragg reflection geometries and one of the six types of Bragg crystals, including two curved crystals.« less

  13. Perception of Randomness: On the Time of Streaks

    ERIC Educational Resources Information Center

    Sun, Yanlong; Wang, Hongbin

    2010-01-01

    People tend to think that streaks in random sequential events are rare and remarkable. When they actually encounter streaks, they tend to consider the underlying process as non-random. The present paper examines the time of pattern occurrences in sequences of Bernoulli trials, and shows that among all patterns of the same length, a streak is the…

  14. Automatic streak endpoint localization from the cornerness metric

    NASA Astrophysics Data System (ADS)

    Sease, Brad; Flewelling, Brien; Black, Jonathan

    2017-05-01

    Streaked point sources are a common occurrence when imaging unresolved space objects from both ground- and space-based platforms. Effective localization of streak endpoints is a key component of traditional techniques in space situational awareness related to orbit estimation and attitude determination. To further that goal, this paper derives a general detection and localization method for streak endpoints based on the cornerness metric. Corners detection involves searching an image for strong bi-directional gradients. These locations typically correspond to robust structural features in an image. In the case of unresolved imagery, regions with a high cornerness score correspond directly to the endpoints of streaks. This paper explores three approaches for global extraction of streak endpoints and applies them to an attitude and rate estimation routine.

  15. Towards attosecond measurement in molecules and at surfaces

    NASA Astrophysics Data System (ADS)

    Marangos, Jonathan

    2015-05-01

    1) We will present a number of experimental approaches that are being developed at Imperial College to make attosecond timescale measurements of electronic dynamics in suddenly photoionized molecules and at surfaces. A brief overview will be given of some of the unanswered questions in ultrafast electron and hole dynamics in molecules and solids. These questions include the existence of electronic charge migration in molecules and how this process might couple to nuclear motion even on the few femtosecond timescale. How the timescale of photoemission from a surface may differ from that of an isolated atom, e.g. due to electron transport phenomena associated with the distance from the surface of the emitting atom and the electron dispersion relation, is also an open question. 2) The measurement techniques we are currently developing to answer these questions are HHG spectroscopy, attosecond pump-probe photoelectron/photoion studies, and attosecond pump-probe transient absorption as well as attosecond streaking for measuring surface emission. We will present recent advances in generating two synchronized isolated attosecond pulses at different colours for pump-probe measurements (at 20 eV and 90 eV respectively). Results on generation of isolated attosecond pulses at 300 eV and higher photon energy using a few-cycle 1800 nm OPG source will be presented. The use of these resources for making pump-probe measurements will be discussed. Finally we will present the results of streaking measurement of photoemission wavepackets from two types of surface (WO3 and a evaporated Au film) that show a temporal broadening of ~ 100 as compared to atomic streaks that is consistent with the electron mean free path in these materials. Work supported by ERC and EPSRC.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.

    A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were usedmore » to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benstead, J.; Moore, A. S.; Ahmed, M. F.

    Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less

  18. Streaking into Middle School Science: The Dell Streak Pilot Project

    ERIC Educational Resources Information Center

    Austin, Susan Eudy

    2012-01-01

    A case study is conducted implementing the Dell Streak seven-inch android device into eighth grade science classes of one teacher in a rural middle school in the Piedmont region of North Carolina. The purpose of the study is to determine if the use of the Dell Streaks would increase student achievement on standardized subject testing, if the…

  19. Retrieving plasmonic field information from metallic nanospheres using attosecond photoelectron streaking spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2017-04-01

    Streaked photoemission by attosecond extreme ultraviolet (XUV) pulses into an infrared (IR) or visible streaking pulse, holds promise for imaging with sub-fs time resolution the dielectric plasmonic response of metallic nanoparticles to the IR or visible streaking pulse. We calculated the plasmonic field induced by streaking pulses for 10 to 200 nm diameter Au, Ag, and Cu nanospheres and obtained streaked photoelectron spectra by employing our quantum-mechanical model. Our simulated spectra show significant oscillation-amplitude enhancements and phase shifts for all three metals (relative to spectra that are calculated without including the induced plasmonic field) and allow the reconstruction of the plasmonic field enhancements and phase shifts for each material. Supported by the US NSD-EPSCoR program, NSF, and DoE.

  20. High Speed Photographic Analysis Of Railgun Plasmas

    NASA Astrophysics Data System (ADS)

    Macintyre, I. B.

    1985-02-01

    Various experiments are underway at the Materials Research Laboratories, Australian Department of Defence, to develop a theory for the behaviour and propulsion action of plasmas in rail guns. Optical recording and imaging devices, with their low vulnerability to the effects of magnetic and electric fields present in the vicinity of electromagnetic launchers, have proven useful as diagnostic tools. This paper describes photoinstrumentation systems developed to provide visual qualitative assessment of the behaviour of plasma travelling along the bore of railgun launchers. In addition, a quantitative system is incorporated providing continuous data (on a microsecond time scale) of (a) Length of plasma during flight along the launcher bore. (b) Velocity of plasma. (c) Distribution of plasma with respect to time after creation. (d) Plasma intensity profile as it travels along the launcher bore. The evolution of the techniques used is discussed. Two systems were employed. The first utilized a modified high speed streak camera to record the light emitted from the plasma, through specially prepared fibre optic cables. The fibre faces external to the bore were then imaged onto moving film. The technique involved the insertion of fibres through the launcher body to enable the plasma to be viewed at discrete positions as it travelled along the launcher bore. Camera configuration, fibre optic preparation and experimental results are outlined. The second system utilized high speed streak and framing photography in conjunction with accurate sensitometric control procedures on the recording film. The two cameras recorded the plasma travelling along the bore of a specially designed transparent launcher. The streak camera, fitted with a precise slit size, recorded a streak image of the upper brightness range of the plasma as it travelled along the launcher's bore. The framing camera recorded an overall view of the launcher and the plasma path, to the maximum possible, governed by the film's ability to reproduce the plasma's brightness range. The instrumentation configuration, calibration, and film measurement using microdensitometer scanning techniques to evaluate inbore plasma behaviour, are also presented.

  1. Aeolian Processes and Features on Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly C.; Saunders, Stephen; Schubert, Gerald; Weitz, Catherine M.

    1997-01-01

    Aeolian features on Venus include dune fields, eroded hills (yardangs), wind streaks, (miniature dunes of 10 to 30 cm wavelength). Although and possibly microdunes (in repetitive imaging by Magellan did show changes in the appearance of the surface, these changes are attributed to radar artifacts as a consequence of look direction rather than to physical changes of the surface. Nonetheless, measurements of wind speeds near the surface of Venus and wind tunnel simulations suggest that aeolian processes could be currently active on Venus. Study of radar images of terrestrial analogs shows that radar wavelength, polarization, and viewing geometry, including look direction and incidence angle, all influence the detection of dunes, yardangs, and wind streaks. For best detection, dune crests and yardangs should be oriented perpendicular to look direction. Longer wavelength systems can penetrate sand sheets a meter or more thick, rendering them invisible, especially in arid regions. For wind streaks to be visible, there must be a contrast in surface properties between the streak and the background on which it occurs. Nonetheless, more than 6000 aeolian features have been found on Magellan images of Venus, the most common of which are various wind streaks. Mapping wind streak orientations enables near-surface wind patterns to be inferred for the time of their formation. Type P streaks are associated with parabolic ejecta crater deposits and are considered to have formed in association with the impact event. Most Type P streaks are oriented westward, indicative of the upper altitude superrotation winds of Venus. Non Type P streaks have occurrences and orientations consistent with Hadley circulation. Some streaks in the southern hemisphere are oriented to the northeast, suggesting a Coriolis effect.

  2. Time-diagnostics for improved dynamics experiments at XUV FELs

    NASA Astrophysics Data System (ADS)

    Drescher, Markus; Frühling, Ulrike; Krikunova, Maria; Maltezopoulos, Theophilos; Wieland, Marek

    2010-10-01

    Significantly structured and fluctuating temporal profiles of pulses from self-amplified spontaneous emission free electron lasers as well as their unstable timing require time diagnostics on a single-shot basis. The duration and structure of extreme-ultraviolet (XUV) pulses from the Free Electron Laser (FEL) in Hamburg (FLASH) are becoming accessible using a variation of the streak camera principle, where photoemitted electrons are energetically streaked in the electric field component of a terahertz electromagnetic wave. The timing with respect to an independently generated laser pulse can be measured in an XUV/laser cross-correlator, based on a non-collinear superposition of both pulses on a solid state surface and detection of XUV-induced modulations of its reflectivity for visible light. Sorting of data according to the measured timing dramatically improves the temporal resolution of an experiment sampling the relaxation of transient electronic states in xenon after linear- as well as nonlinear excitation with intense XUV pulses from FLASH.

  3. A 10MHz Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas

    2013-10-01

    HyperV Technologies has been developing an imaging diagnostic comprised of arrays of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers of 100 to 10,000 pixels can be constructed. By interfacing analog photodiode systems directly to commercial analog to digital convertors and modern memory chips, a prototype pixel with an extremely deep record length (128 k points at 40 Msamples/s) has been achieved for a 10 bit resolution system with signal bandwidths of at least 10 MHz. Progress on a prototype 100 Pixel streak camera employing this technique is discussed along with preliminary experimental results and plans for a 10,000 pixel imager. Work supported by USDOE Phase 1 SBIR Grant DE-SC0009492.

  4. POD analysis of the instability mode of a low-speed streak in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Deng, Si-Chao; Pan, Chong; Wang, Jin-Jun; Rinoshika, Akira

    2017-12-01

    The instability of one single low-speed streak in a zero-pressure-gradient laminar boundary layer is investigated experimentally via both hydrogen bubble visualization and planar particle image velocimetry (PIV) measurement. A single low-speed streak is generated and destabilized by the wake of an interference wire positioned normal to the wall and in the upstream. The downstream development of the streak includes secondary instability and self-reproduction process, which leads to the generation of two additional streaks appearing on either side of the primary one. A proper orthogonal decomposition (POD) analysis of PIV measured velocity field is used to identify the components of the streak instability in the POD mode space: for a sinuous/varicose type of POD mode, its basis functions present anti-symmetric/symmetric distributions about the streak centerline in the streamwise component, and the symmetry condition reverses in the spanwise component. It is further shown that sinuous mode dominates the turbulent kinematic energy (TKE) through the whole streak evolution process, the TKE content first increases along the streamwise direction to a saturation value and then decays slowly. In contrast, varicose mode exhibits a sustained growth of the TKE content, suggesting an increasing competition of varicose instability against sinuous instability.

  5. Unveiling Mars nightside mesosphere dynamics by IUVS/MAVEN global images of NO nightglow

    NASA Astrophysics Data System (ADS)

    Stiepen, A.; Jain, S. K.; Schneider, N. M.; Milby, Z.; Deighan, J. I.; Gonzàlez-Galindo, F.; Gérard, J.-C.; Forget, F.; Bougher, S.; Stewart, A. I. F.; Royer, E.; Stevens, M. H.; Evans, J. S.; Chaffin, M. S.; Crismani, M.; McClintock, W. E.; Clarke, J. T.; Holsclaw, G. W.; Montmessin, F.; Lo, D. Y.

    2017-09-01

    We analyze the morphology of the ultraviolet nightglow in the Martian upper atmosphere through Nitric Oxide (NO) δ and γ bands emissions observed by the Imaging Ultraviolet Spectrograph instrument on the Mars Atmosphere and Volatile EvolutioN spacecraft. The seasonal dynamics of the Martian thermosphere-mesosphere can be constrained based on the distribution of these emissions. We show evidence for local (emission streaks and splotches) and global (longitudinal and seasonal) variability in brightness of the emission and provide quantitative comparisons to GCM simulations.

  6. Triton's streaks as windblown dust

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Chyba, Christopher

    1990-01-01

    Explanations for the surface streaks observed by Voyager 2 on Triton's southern hemisphere are discussed. It is shown that, despite Triton's tenuous atmosphere, low-cohesion dust trains with diameters of about 5 micron or less may be carried into suspension by aeolian surface shear stress, given expected geostrophic wind speeds of about 10 m/s. For geyser-like erupting dust plumes, it is shown that dust-settling time scales and expected wind velocities can produce streaks with length scales in good agreement with those of the streaks. Thus, both geyserlike eruptions or direct lifting by surface winds appear to be viable mechanisms for the origin of the streaks.

  7. Dark Slope Streak

    NASA Image and Video Library

    2010-03-25

    Dark slope streaks, like the ones in this unnamed crater in Terra Sabaea, are believed to be formed when surface dust is displaced and the darker rock below is exposed. Rocks falling due to gravity likely formed these streaks.

  8. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  9. Microwave transient analyzer

    DOEpatents

    Gallegos, C.H.; Ogle, J.W.; Stokes, J.L.

    1992-11-24

    A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source and a Bragg cell for deflecting a light beam at a plurality of deflection angles dependent upon frequency content of the signal. A streak camera and a microchannel plate intensifier are used to project Bragg cell output onto either a photographic film or a charge coupled device (CCD) imager. Timing markers are provided by a comb generator and a one shot generator, the outputs of which are also routed through the streak camera onto the film or the CCD imager. Using the inventive method, the full range of the output of the Bragg cell can be recorded as a function of time. 5 figs.

  10. Feedbacks of Composition and Neutral Density Changes on the Structure of the Cusp Density Anomaly

    NASA Astrophysics Data System (ADS)

    Brinkman, D. G.; Walterscheid, R. L.; Clemmons, J. H.

    2016-12-01

    The Earth's magnetospheric cusp provides direct access of energetic particles to the thermosphere. These particles produce ionization and kinetic (particle) heating of the atmosphere. The increased ionization coupled with enhanced electric fields in the cusp produces increased Joule heating and ion drag forcing. These energy inputs cause large wind and temperature changes in the cusp region. Measurements by the CHAMP satellite (460-390- km altitude) have shown strongly enhanced density in the cusp region. The Streak mission (325-123 km), on the other hand, showed a relative depletion. The atmospheric response in the cusp can be sensitive to composition and neutral density changes. In response to heating in the cusp, air of heavier mean molecular weight is brought up from lower altitudes significantly affecting pressure gradients. This opposes the effects of temperature change due to heating and in-turn affects the density and winds produced in the cusp. Also changes in neutral density change the interaction between precipitating particles and the atmosphere and thus change heating rates and ionization in the region affected by cusp precipitation. In this study we assess the sensitivity of the wind and neutral density structure in the cusp region to changes in the mean molecular weight induced by neutral dynamics via advection, and the changes in particle heating rates and ionization which result from changes in neutral density. We use a high resolution two-dimensional time-dependent nonhydrostatic nonlinear dynamical model where inputs can be systematically altered. The resolution of the model allows us to examine the complete range of cusp widths. We compare the current simulations to observations by CHAMP and Streak. Acknowledgements: This material is based upon work supported by the National Aeronautics and Space Administration under Grant: NNX16AH46G issues through the Heliophysics Supporting Research Program. This research was also supported by The Aerospace Corporation's Technical Investment program

  11. Herringbone streaks in Taylor-Couette turbulence.

    PubMed

    Dong, S

    2008-03-01

    We study near-wall streaks that form herringbonelike patterns in Taylor-Couette turbulence and in counter-rotating Taylor-Couette turbulence through three-dimensional direct numerical simulations. The orientation, axial distribution, onset, and tilting angle of these streaks are characterized.

  12. Betting Decision Under Break-Streak Pattern: Evidence from Casino Gaming.

    PubMed

    Fong, Lawrence Hoc Nang; So, Amy Siu Ian; Law, Rob

    2016-03-01

    Cognitive bias is prevalent among gamblers, especially those with gambling problems. Grounded in the heuristics theories, this study contributes to the literature by examining a cognitive bias triggered by the break streak pattern in the casino setting. We postulate that gamblers tend to bet on the latest outcome when there is a break-streak pattern. Moreover, three determinants of the betting decision under break-streak pattern, including the streak length of the alternative outcome, the frequency of the latest outcome, and gender, were identified and examined in this study. A non-participatory observational study was conducted among the Cussec gamblers in a casino in Macao. An analysis of 1229 bets confirms our postulation, particularly when the streak of the alternative outcome is long, the latest outcome is frequent, and the gamblers are females. The findings provide meaningful implications for casino management and public policymakers regarding the minimization of gambling harm.

  13. Frosty Wind Streaks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-532, 2 November 2003

    As seasonal polar frosts sublime away each spring, winds may re-distribute some of the frost or move sediment exposed from beneath the frost. This action creates ephemeral wind streaks that can be used by scientists seeking to study the local circulation of the martian [missing text] surveyor (MGS) Mars Orbiter Camera (MOC) image shows a suite of wind streaks created in subliming carbon dioxide frost. These dark streaks appear to conform to the shape of the slopes on which they occur, suggesting that slope winds play a dominant role in creating and orienting these streaks. This picture is located near 73.8oS, 305.7oW. The image is illuminated by sunlight from the upper left and covers an area 3 km (1.9 mi) wide. Winds responsible for the streaks generally blew from the bottom/right (south/southeast) toward the top/upper left (north/northwest).

  14. Recent Movements: New Landslides in Less than 1 Martian Year

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Changes between 1 February 1998 and 18 November 1999--PIA02379 [figure removed for brevity, see original site]

    3-D Anaglyph View

    The picture on the left shows a comparison of the southeastern crater wall as it appeared on February 1, 1998, and again on November 18, 1999. (Note that the picture has been rotated relative to the context image at lower left). During the time between the two images, three new dark slope streaks formed (arrows, top right). The older streaks are lighter and fainter than these new, dark ones, suggesting that streaks fade with time. This means that, at least for the crater walls shown here, any streak that is dark is younger than any streak that is pale. The stereo anaglyph (requires red-blue '3-D glasses') at the lower right uses the two images of the crater rim to provide a 3-dimensional view. The anaglyph is helpful to see that the dark streaks really do occur on a slope. In addition, by viewing the anaglyph without 3-d glasses, one can easily identify the three new streaks because they appear as blue and have no red counterpart.

    These three new slope streaks formed sometime between February 1998 and November 1999. Similar streaks were observed in the highest-resolution images from the Viking orbiters in the late 1970s, but for more than 20 years no one has known how recent these features might be, or how often they might form. Now, MOC is providing some exciting answers.

  15. An investigation of streaking on highway traffic signs.

    DOT National Transportation Integrated Search

    1974-01-01

    During a night inspection, dark streaks were observed on the faces of many reflectorized highway signs. Although the streaks were not visible during daylight, they substantially reduced the reflectivity of the signs at night. This study was initiated...

  16. [Subretinal neovascular membrane in angioid streaks treated with intravitreal bevacizumab].

    PubMed

    García-López, A; González-Castaño, C

    2014-05-01

    Angioid streaks are breaks in Bruch's membrane that may be associated, among others, with pseudoxanthoma elasticum. Its most common complication is the development of subretinal neovascular membranes (SRNVM) and the decreased vision this entails. A 28 year old woman with angioid streaks and SRNVM in the left eye, who received 3 injections of intravitreal bevacizumab, with rapid improvement in vision and stability during 11 months follow up. The finding of angioid streaks led to the diagnosis of pseudoxanthoma elasticum. Intravitreal bevacizumab should be considered as an effective treatment option for choroidal neovascularization associated with angioid streaks. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  17. Atmospheric Dynamics of Sub-Tropical Dust Storms

    NASA Astrophysics Data System (ADS)

    Pokharel, Ashok Kumar

    Meso-alpha/beta scale observational and meso-beta/gamma scale numerical model analyses were performed to study the atmospheric dynamics responsible for generating Harmattan, Saudi Arabian, and Bodele Depression dust storms. For each dust storm case study, MERRA reanalysis datasets, WRF simulated very high resolution datasets, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, CALIPSO images, surface observations, and rawinsonde soundings were analyzed. The analysis of each dust storm carried out separately and an in-depth comparison of the events shows some similarities among the three case studies: (1) the presence of a well-organized baroclinic synoptic scale system, (2) small scale dust emission events which occurred prior to the formation of the primary large-scale dust storms, (3) cross mountain flows which produced a strong leeside inversion layer prior to the large scale dust storm, (4) the presence of thermal wind imbalance in the exit region of the mid-tropospheric jet streak in the lee of the mountains shortly after the time of the inversion formation, (5) major dust storm formation was accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-beta scale adjustment process, (6) substantial low-level turbulence kinetic energy (TKE), (7) formation in the lee of nearby mountains, and (8) the emission of the dust occurred initially in narrow meso-beta scale zones parallel to the mountains, and later reached the meso-alpha scale when suspended dust was transported away from the mountains. In addition to this there were additional meso-beta scale and meso-gamma scale adjustment processes resulting in Kelvin waves in the Harmattan and the Bodele Depression cases and the thermally-forced MPS circulation in all of these three cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. The Kelvin wave organized the major dust storm in a narrow zone parallel to the mountains before it expanded upscale. The thermally-forced meos-gamma scale adjustment processes, which occurred in the canyons/small valleys, resulted in the numerous dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and the TKE generation. This indicates that there were meso-beta to meso-gamma scale adjustment processes at the lower levels after the imbalance within the exit region of the upper level jet streaks and these processes were responsible for causing the large scale dust storms. Most notably, the sub-tropical jet streak caused the dust storm nearer to the equatorial region after its interaction with the thermally perturbed air mass on the lee of the Tibesti Mountains in the Bodele case study, which is different than the two other cases where the polar jet streaks played this same role at higher latitudes. This represents an original finding. Additionally, a climatological analysis of 15 years (1997-2011) of dust events over the NASA Dryden Flight Research Center (DFRC) in the desert of Southern California was performed to evaluate how the extratropical systems influenced the cause of dust storms over this region. This study indicates that dust events were associated with the development of a deep convective boundary layer, turbulent kinetic energy ≥3 J/kg, a lapse rate between dry adiabatic and moist adiabatic, wind speed above the frictional threshold wind speed necessary to ablate dust from the surface (≥7.3m/s), above the surface the presence of a cold trough, and strong cyclonic jet. These processes are similar in many ways to the dynamics in the other subtropical case studies. This also indicated that the annual mean number of dust events, their mean duration, and the unit duration per number of event were positively correlated with each of the visibility ranges, when binned for <11.2km, <8km, <4.8km, <1.6km, and <1km. The percentage of the dust events by season show that most of the dust events occurred in autumn (44.7%), followed by spring (38.3%) and equally in summer and winter with these seasons each accounting for 8.5% of events.

  18. Formation of ball streamers at a subnanosecond breakdown of gases at a high pressure in a nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.; Lomaev, M. I.

    2017-11-01

    The formation of a diffuse discharge plasma at a subnanosecond breakdown of a "cone-plane" gap filled with air, nitrogen, methane, hydrogen, argon, neon, and helium at various pressures has been studied. Nanosecond negative and positive voltage pulses have been applied to the conical electrode. The experimental data on the dynamics of plasma glow at the stage of formation and propagation of a streamer have been obtained with intensified charge-coupled device and streak cameras. It has been found that the formation of ball streamers is observed in all gases and at both polarities. A supershort avalanche electron beam has been detected behind the flat foil electrode in a wide range of pressures in the case of a negatively charged conical electrode. A mechanism of the formation of streamers at breakdown of various gases at high overvoltages has been discussed.

  19. Maize streak virus: an old and complex 'emerging' pathogen.

    PubMed

    Shepherd, Dionne N; Martin, Darren P; Van Der Walt, Eric; Dent, Kyle; Varsani, Arvind; Rybicki, Edward P

    2010-01-01

    Maize streak virus (MSV; Genus Mastrevirus, Family Geminiviridae) occurs throughout Africa, where it causes what is probably the most serious viral crop disease on the continent. It is obligately transmitted by as many as six leafhopper species in the Genus Cicadulina, but mainly by C. mbila Naudé and C. storeyi. In addition to maize, it can infect over 80 other species in the Family Poaceae. Whereas 11 strains of MSV are currently known, only the MSV-A strain is known to cause economically significant streak disease in maize. Severe maize streak disease (MSD) manifests as pronounced, continuous parallel chlorotic streaks on leaves, with severe stunting of the affected plant and, usuallly, a failure to produce complete cobs or seed. Natural resistance to MSV in maize, and/or maize infections caused by non-maize-adapted MSV strains, can result in narrow, interrupted streaks and no obvious yield losses. MSV epidemiology is primarily governed by environmental influences on its vector species, resulting in erratic epidemics every 3-10 years. Even in epidemic years, disease incidences can vary from a few infected plants per field, with little associated yield loss, to 100% infection rates and complete yield loss. The only virus species known to cause MSD is MSV, the type member of the Genus Mastrevirus in the Family Geminiviridae. In addition to the MSV-A strain, which causes the most severe form of streak disease in maize, 10 other MSV strains (MSV-B to MSV-K) are known to infect barley, wheat, oats, rye, sugarcane, millet and many wild, mostly annual, grass species. Seven other mastrevirus species, many with host and geographical ranges partially overlapping those of MSV, appear to infect primarily perennial grasses. MSV and all related grass mastreviruses have single-component, circular, single-stranded DNA genomes of approximately 2700 bases, encapsidated in 22 x 38-nm geminate particles comprising two incomplete T = 1 icosahedra, with 22 pentameric capsomers composed of a single 32-kDa capsid protein. Particles are generally stable in buffers of pH 4-8. In infected maize plants, streak disease initially manifests as minute, pale, circular spots on the lowest exposed portion of the youngest leaves. The only leaves that develop symptoms are those formed after infection, with older leaves remaining healthy. As the disease progresses, newer leaves emerge containing streaks up to several millimetres in length along the leaf veins, with primary veins being less affected than secondary or tertiary veins. The streaks are often fused laterally, appearing as narrow, broken, chlorotic stripes, which may extend over the entire length of severely affected leaves. Lesion colour generally varies from white to yellow, with some virus strains causing red pigmentation on maize leaves and abnormal shoot and flower bunching in grasses. Reduced photosynthesis and increased respiration usually lead to a reduction in leaf length and plant height; thus, maize plants infected at an early stage become severely stunted, producing undersized, misshapen cobs or giving no yield at all. Yield loss in susceptible maize is directly related to the time of infection: infected seedlings produce no yield or are killed, whereas plants infected at later times are proportionately less affected. Disease avoidance can be practised by only planting maize during the early season when viral inoculum loads are lowest. Leafhopper vectors can also be controlled with insecticides such as carbofuran. However, the development and use of streak-resistant cultivars is probably the most effective and economically viable means of preventing streak epidemics. Naturally occurring tolerance to MSV (meaning that, although plants become systemically infected, they do not suffer serious yield losses) has been found, which has primarily been attributed to a single gene, msv-1. However, other MSV resistance genes also exist and improved resistance has been achieved by concentrating these within individual maize genotypes. Whereas true MSV immunity (meaning that plants cannot be symptomatically infected by the virus) has been achieved in lines that include multiple small-effect resistance genes together with msv-1, it has proven difficult to transfer this immunity into commercial maize genotypes. An alternative resistance strategy using genetic engineering is currently being investigated in South Africa. http://www.mcb.uct.ac.za/MSV/mastrevirus.htm; http://www.danforthcenter.org/iltab/geminiviridae/geminiaccess/mastrevirus/Mastrevirus.htm.

  20. New observations of Bolivian wind streaks by JPL Airborne SAR: Preliminary results

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1995-01-01

    In 1993 NASA's Jet Propulsion Laboratory Airborne Synthetic Aperture Radar system (AIRSAR) was deployed to South America to collect multi-parameter radar data over pre-selected targets. Among the sites targeted was a series of wind streaks located in the Altiplano of Bolivia. The objective of this investigation is to study the effect of wavelength, polarization, and incidence angle on the visibility of wind streaks in radar data. Because this is a preliminary evaluation of the recently acquired data we will focus on one scene and, thus, only on the effects of wavelength and polarization. Wind streaks provide information on the near-surface prevailing winds and on the abundance of winderodible material, such as sand. The potential for a free-flyer radar system that could provide global radar images in multiple wavelengths, polarizations, and incidence angles requires definition of system parameters for mission planning. Furthermore, thousands of wind streaks were mapped from Magellan radar images of Venus; their interpretation requires an understanding of the interaction of radar with wind streaks and the surrounding terrain. Our experiment was conducted on wind streaks in the Altiplano of Bolivia to address these issues.

  1. Microprocessor-controlled, wide-range streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amy E. Lewis, Craig Hollabaugh

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storagemore » using flash-based storage media. The camera’s user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.« less

  2. Microprocessor-controlled wide-range streak camera

    NASA Astrophysics Data System (ADS)

    Lewis, Amy E.; Hollabaugh, Craig

    2006-08-01

    Bechtel Nevada/NSTec recently announced deployment of their fifth generation streak camera. This camera incorporates many advanced features beyond those currently available for streak cameras. The arc-resistant driver includes a trigger lockout mechanism, actively monitors input trigger levels, and incorporates a high-voltage fault interrupter for user safety and tube protection. The camera is completely modular and may deflect over a variable full-sweep time of 15 nanoseconds to 500 microseconds. The camera design is compatible with both large- and small-format commercial tubes from several vendors. The embedded microprocessor offers Ethernet connectivity, and XML [extensible markup language]-based configuration management with non-volatile parameter storage using flash-based storage media. The camera's user interface is platform-independent (Microsoft Windows, Unix, Linux, Macintosh OSX) and is accessible using an AJAX [asynchronous Javascript and XML]-equipped modem browser, such as Internet Explorer 6, Firefox, or Safari. User interface operation requires no installation of client software or browser plug-in technology. Automation software can also access the camera configuration and control using HTTP [hypertext transfer protocol]. The software architecture supports multiple-simultaneous clients, multiple cameras, and multiple module access with a standard browser. The entire user interface can be customized.

  3. Interaction between turbulent flow and sea breeze front over urban-like coast in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Jiang, Ping; Wen, Zhiping; Sha, Weiming; Chen, Guixing

    2017-05-01

    Turbulent flow and its interaction with a sea breeze front (SBF) over an urban-like coast with a regular block array were investigated using a building-resolving computational fluid dynamics model. It was found that during daytime with an offshore ambient flow, streaky turbulent structures tended to grow within the convective boundary layer (CBL) over a warm urban surface ahead of the SBF. The structures were organized as streamwise streaks at an interval of a few hundred meters, which initiated at the rooftop level with strong wind shear and strengthens in the CBL with moderate buoyancy. The streaks then interacted with the onshore-propagating SBF as it made landfall. The SBF, which was initially characterized as a shallow and quasi-linear feature over the sea, developed three-dimensional structures with intensified updrafts at an elevated frontal head after landfall. Frontal updrafts were locally enhanced at intersections where the streaks merged with the SBF, which greatly increased turbulent fluxes at the front. The frontal line was irregular because of merging, tilting, and transformation effects of vorticity associated with streaky structures. Inland penetration of the SBF was slowed by the frictional effect of urban-like surfaces and turbulent flow on land. The overall SBF intensity weakened after the interaction with turbulent flow. These findings aid understanding of local weather over coastal cities during typical sea breeze conditions.

  4. Wind-Related Features and Processes on Venus: Summary of Magellan Results

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly; Thomas, Peggy E.; Schubert, Gerald; Limonadi, Daniel; Weitz, Catherine M.

    1995-01-01

    A search of Magellan synthetic aperture radar images covering approximately 98% of the venusian surface shows that aeolian features occur at all longitudes and latitudes. A global data base for wind streaks, the most common type of aeolian feature, was developed. For each of the 5970 streaks in the data base, information was compiled on location, streak type, radar backscatter, dimensions, azimuth, orientation with respect to local slope, and type of landform with which it is associated. In addition, streaks occurring in association with parabolic ejecta deposits were designated type P streaks, which constitute about 31% of the data base. Wind streak azimuths were analyzed to assess wind patterns at the time of their formation. Both hemispheres show strong westward and equatorward trends in azimuths, consistent with Hadley circulation and inferred upper atmospheric westward zonal winds. When type P streaks (those considered to result from transient impact events) were removed, the westward component was greatly reduced, suggesting that the upper zonal winds do not extend to the surface. The presence of equator-oriented streaks at high latitudes suggests that Hadley circulation extends to the poles. A field of possible yardangs found southwest of Mead Crater strikes NE-SW and occupies plains situated in a shallow topographic depression. Analysis of non-type P streaks in the area suggests that equatorward winds are funneled through the depression and are responsible for the erosion of the terrain to form the yardangs. Dune deposits are limited on Venus. Two dune fields were identified (Aglonice and Fortuna-Meshkenet) which total in area about 18,300 sq km. Microdunes are proposed for some southern hemisphere areas which show distinctive radar reflectivities. Bragg scattering and/or subpixel reflections from the leeward faces of microdune bedforms could account for the unusual radar backscatter cross sections.

  5. Wind-Related Features and Processes on Venus Summary of Magellan Results

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Bender, Kelly; Thomas, Peggy E.; Schubert, Gerald; Limonadi, Daniel; Weitz, Catherine M.

    1995-01-01

    A search of Magellan synthetic aperture radar images covering about 98% of the venusian surface shows that aeolian features occur at all longitudes and latitudes. A global data base for wind streaks, the most common type of aeolian feature, was developed. For each of the 5970 streaks in the data base, information was compiled on location, streak type, radar backscatter, dimensions, azimuth, orientation with respect to local slope, and type of landform with which it is associated. In addition, streaks occurring in association with parabolic ejecta deposits were designated type P streaks, which constitute about 31% of the data base. Wind streak azimuths were analyzed to assess wind patterns at the time of their formation. Both hemispheres show strong westward and equatorward trends in azimuths, consistent with Hadley circulation and inferred upper atmospheric westward zonal winds. When type P streaks (those considered to result from transient impact events) were removed, the westward component was greatly reduced, suggesting that the upper zonal winds do not extend to the surface. The presence of equator-oriented streaks at high latitudes suggests that Hadley circulation extends to the poles. A field of possible yardangs found southwest of Mead Crater strikes NE-SW and occupies plains situated in a shallow topographic depression. Analysis of non-type P streaks in the area suggests that equatorward winds are funneled through the depression and are responsible for the erosion of the terrain to form the yardangs. Dune deposits are limited on Venus. Two dune fields were identified (Aglonice and Fortuna-Meshkenet) which total in area about 18,300 square km. Microdunes are proposed for some southern hemisphere areas which show distinctive radar reflectivities. Bragg scattering and/or subpixel reflections from the leeward faces of microdune bedforms could account for the unusual radar backscatter cross sections.

  6. Motivated reasoning in the prediction of sports outcomes and the belief in the "hot hand".

    PubMed

    Braga, João P N; Mata, André; Ferreira, Mário B; Sherman, Steven J

    2017-12-01

    The present paper explores the role of motivation to observe a certain outcome in people's predictions, causal attributions, and beliefs about a streak of binary outcomes (basketball scoring shots). In two studies we found that positive streaks (points scored by the participants' favourite team) lead participants to predict the streak's continuation (belief in the hot hand), but negative streaks lead to predictions of its end (gambler's fallacy). More importantly, these wishful predictions are supported by strategic attributions and beliefs about how and why a streak might unfold. Results suggest that the effect of motivation on predictions is mediated by a serial path via causal attributions to the teams at play and belief in the hot hand.

  7. SU-F-J-175: Evaluation of Metal Artifact Reduction Algorithms in Computed Tomography and Their Application to Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norris, H; Rangaraj, D; Kim, S

    Purpose: High-Z (metal) implants in CT scans cause significant streak-like artifacts in the reconstructed dataset. This results in both inaccurate CT Hounsfield units for the tissue as well as obscuration of the target and organs at risk (OARs) for radiation therapy planning. Herein we analyze two metal artifact reduction algorithms: GE’s Smart MAR and a Metal Deletion Technique (MDT) for geometric and Hounsfield Unit (HU) accuracy. Methods: A CT-to-electron density phantom, with multiple inserts of various densities and a custom Cerrobend insert (Zeff=76.8), is utilized in this continuing study. The phantom is scanned without metal (baseline) and again with themore » metal insert. Using one set of projection data, reconstructed CT volumes are created with filtered-back-projection (FBP) and the MAR and the MDT algorithms. Regions-of-Interest (ROIs) are evaluated for each insert for HU accuracy; the metal insert’s Full-Width-Half-Maximum (FWHM) is used to evaluate the geometric accuracy. Streak severity is quantified with an HU error metric over the phantom volume. Results: The original FBP reconstruction has a Root-Mean-Square-Error (RMSE) of 57.55 HU (STD=29.19, range=−145.8 to +79.2) compared to baseline. The MAR reconstruction has a RMSE of 20.98 HU (STD=13.92, range=−18.3 to +61.7). The MDT reconstruction has a RMSE of 10.05 HU (STD=10.5, range=−14.8 to +18.6). FWHM for baseline=162.05; FBP=161.84 (−0.13%); MAR=162.36 (+0.19%); MDT=162.99 (+0.58%). Streak severity metric for FBP=19.73 (22.659% bad pixels); MAR=8.743 (9.538% bad); MDT=4.899 (5.303% bad). Conclusion: Image quality, in terms of HU accuracy, in the presence of high-Z metal objects in CT scans is improved by metal artifact reduction reconstruction algorithms. The MDT algorithm had the highest HU value accuracy (RMSE=10.05 HU) and best streak severity metric, but scored the worst in terms of geometric accuracy. Qualitatively, the MAR and MDT algorithms increased detectability of inserts, although there is a loss of in-plane resolution near the metallic insert.« less

  8. Attosecond time-resolved streaked photoemission from Mg-covered W(110) surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Thumm, Uwe

    2015-05-01

    We formulate a quantum-mechanical model for infrared-streaked photoelectron emission by an ultrashort extreme ultraviolet pulse from adsorbate-covered metal surfaces. Applying this numerical model to ultrathin Mg adsorbates on W(110) substrates, we analyze streaked photoelectron spectra and attosecond streaking time delays for photoemission from the Mg/W(110) conduction band and Mg(2p) and W(4f) core levels. Based on this analysis, we propose the use of attosecond streaking spectroscopy on adsorbate-covered surfaces with variable adsorbate thickness as a method for investigating (a) electron transport in condensed-matter systems and (b) metal-adsorbate-interface properties at subatomic length and time scales. Our calculated streaked photoemission spectra and time delays agree with recently obtained experimental data. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant No. DE-FG02-86ER13491 and NSF Grant PHY-1068752.

  9. Large-Amplitude, High-Rate Roll Oscillations of a 65 deg Delta Wing at High Incidence

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Schiff, Lewis B.

    2000-01-01

    The IAR/WL 65 deg delta wing experimental results provide both detail pressure measurements and a wide range of flow conditions covering from simple attached flow, through fully developed vortex and vortex burst flow, up to fully-stalled flow at very high incidence. Thus, the Computational Unsteady Aerodynamics researchers can use it at different level of validating the corresponding code. In this section a range of CFD results are provided for the 65 deg delta wing at selected flow conditions. The time-dependent, three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate the unsteady vertical flow. Two sting angles and two large- amplitude, high-rate, forced-roll motions and a damped free-to-roll motion are presented. The free-to-roll motion is computed by coupling the time-dependent RANS equations to the flight dynamic equation of motion. The computed results are compared with experimental pressures, forces, moments and roll angle time history. In addition, surface and off-surface flow particle streaks are also presented.

  10. Dynamic frequency-domain interferometer for absolute distance measurements with high resolution

    NASA Astrophysics Data System (ADS)

    Weng, Jidong; Liu, Shenggang; Ma, Heli; Tao, Tianjiong; Wang, Xiang; Liu, Cangli; Tan, Hua

    2014-11-01

    A unique dynamic frequency-domain interferometer for absolute distance measurement has been developed recently. This paper presents the working principle of the new interferometric system, which uses a photonic crystal fiber to transmit the wide-spectrum light beams and a high-speed streak camera or frame camera to record the interference stripes. Preliminary measurements of harmonic vibrations of a speaker, driven by a radio, and the changes in the tip clearance of a rotating gear wheel show that this new type of interferometer has the ability to perform absolute distance measurements both with high time- and distance-resolution.

  11. On 3D flow-structures behind an inclined plate

    NASA Astrophysics Data System (ADS)

    Uruba, Václav; Pavlík, David; Procházka, Pavel; Skála, Vladislav; Kopecký, Václav

    Stereo PIV measurements has been performed behind the inclined plate, angle of attack 5 and 10 deg. Occurrence and dynamics of streamwise structures behind the plate trailing edge have been studied in details using POD method. The streamwise structures are represented by vortices and low- and highvelocity regions, probably streaks. The obtained results support the hypothesis of an airfoil-flow force interaction by Hoffman and Johnson [1,2].

  12. From few-cycle femtosecond pulse to single attosecond pulse-controlling and tracking electron dynamics with attosecond precision

    NASA Astrophysics Data System (ADS)

    Wang, He

    The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.

  13. Large-eddy simulations of the restricted nonlinear system

    NASA Astrophysics Data System (ADS)

    Bretheim, Joel; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    Wall-bounded shear flows often exhibit elongated flow structures with streamwise coherence (e.g. rolls/streaks), prompting the exploration of a streamwise-constant modeling framework to investigate wall-turbulence. Simulations of a streamwise-constant (2D/3C) model have been shown to produce the roll/streak structures and accurately reproduce the blunted turbulent mean velocity profile in plane Couette flow. The related restricted nonlinear (RNL) model captures these same features but also exhibits self-sustaining turbulent behavior. Direct numerical simulation (DNS) of the RNL system results in similar statistics for a number of flow quantities and a flow field that is consistent with DNS of the Navier-Stokes equations. Aiming to develop reduced-order models of wall-bounded turbulence at very high Reynolds numbers in which viscous near-wall dynamics cannot be resolved, this work presents the development of an RNL formulation of the filtered Navier-Stokes equations solved for in large-eddy simulations (LES). The proposed LES-RNL system is a computationally affordable reduced-order modeling tool that is of interest for studying the underlying dynamics of high-Reynolds wall-turbulence and for engineering applications where the flow field is dominated by streamwise-coherent motions. This work is supported by NSF (IGERT, SEP-1230788 and IIA-1243482).

  14. Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL) II: Improving Measurement of Lengths of Detected Streaks

    NASA Astrophysics Data System (ADS)

    Park, Sun-Youp; Choi, Jin; Roh, Dong-Goo; Park, Maru; Jo, Jung Hyun; Yim, Hong-Suh; Park, Young-Sik; Bae, Young-Ho; Park, Jang-Hyun; Moon, Hong-Kyu; Choi, Young-Jun; Cho, Sungki; Choi, Eun-Jung

    2016-09-01

    As described in the previous paper (Park et al. 2013), the detector subsystem of optical wide-field patrol (OWL) provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time) data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.

  15. Reconfigurable interactions and three-dimensional patterning of colloidal particles and defects in lamellar soft media

    PubMed Central

    Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.

    2012-01-01

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822

  16. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass and momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1994-01-01

    An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 11-12 July 1981 CCOPE case study indicated two episodes of coherent waves. While geostrophic adjustment, shearing instability, and terrain were all implicated separately or in combination as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to define the genesis processes from observations alone. The first part of this paper, 3D Numerical Modeling Studies of Terrain-Induced Mass/Momentum Perturbations, employs a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed gravity wave episode. The meso-beta scale numerical model is used to study various simulations of the role of multiple geostrophic adjustment processes in focusing a region for gravity wave genesis. The second part of this paper, Linear Theory and Theoretical Modeling, investigates the response of non-resting rotating homogeneous and continuously stratified Boussinesq models of the terrestrial atmosphere to temporally impulsive and uniformly propagating three-dimensional localized zonal momentum sources representative of midlatitude jet streaks. The methods of linear perturbation theory applied to the potential vorticity (PV) and wave field equations are used to study the geostrophic adjustment dynamics. The total zonal and meridional wind perturbations are separated into geostrophic and ageostrophic components in order to define and follow the evolution of both the primary and secondary mesocirculations accompanying midlatitude jetogenesis forced by geostrophic adjustment processes. This problem is addressed to help fill the gap in understanding the dynamics and structure of mesoscale inertia-gravity waves forced by geostrophic adjustment processes in simple two-dimensional quiescent current systems and those produced by mesoscale numerical models simulating the orographic and diabatic perturbation of three-dimensional quasi-geostrophically balanced synoptic scale jet streaks associated with complex baroclinic severe storm producing environments.

  17. Evaluation of the LLNL Spectrometer for Possible use with the NSTec Optical Streak Camera as a Light Gas Gun Diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, J., Cradick, J.

    In fiscal year 2012, it was desired to combine a visible spectrometer with a streak camera to form a diagnostic system for recording time-resolved spectra generated in light gas gun experiments. Acquiring a new spectrometer was an option, but it was possible to borrow an existing unit for a period of months, which would be sufficient to evaluate both “off-line” and in-gas gun shots. If it proved adequate for this application, it could be duplicated (with possible modifications); if not, such testing would help determine needed specifications for another model. This report describes the evaluation of the spectrometer (separately andmore » combined with the NSTec LO streak camera) for this purpose. Spectral and temporal resolutions were of primary interest. The first was measured with a monochromatic laser input. The second was ascertained by the combination of the spectrometer’s spatial resolution in the time-dispersive direction and the streak camera’s intrinsic temporal resolution. System responsivity was also important, and this was investigated by measuring the response of the spectrometer/camera system to black body input—the gas gun experiments are expected to be similar to a 3000K black body—as well as measuring the throughput of the spectrometer separately over a range of visible light provided by a monochromator. The flat field (in wavelength) was also measured and the final part of the evaluation was actual fielding on two gas gun shots. No firm specifications for spectral or temporal resolution were defined precisely, but these were desired to be in the 1–2 nm and 1–2 ns ranges, respectively, if possible. As seen below, these values were met or nearly met, depending on wavelength. Other performance parameters were also not given (threshold requirements) but the evaluations performed with laser, black body, and successful gas gun shots taken in aggregate indicate that the spectrometer is adequate for this purpose. Even still, some (relatively minor) opportunities for improvement were noticed and these were documented for incorporation into any near-duplicate spectrometer that might be fabricated in the future.« less

  18. Wind streaks in Tharsis and Elysium - Implications for sediment transport by slope winds

    NASA Astrophysics Data System (ADS)

    Lee, S. W.; Thomas, P. C.; Veverka, J.

    1982-11-01

    Detailed maps of wind streaks in Tharsis and Elysium have been compiled from Viking Orbiter observations spanning one complete Martian year. The streak pattern is controlled by slope winds on the central volcanoes and on the flanks of the Tharsis bulge, while the global circulation dominates in Elysium. Dust erosion by downslope winds occurs over much of Tharsis and in the vicinity of Elysium Mons; this process is effective even at the low atmospheric pressures found near the summits of the large volcanoes. Erosional streaks are largely absent in Elysium Planitia; net deposition of dust might have occurred during the period of the observations. Surface properties such as slope, thermal inertia, and roughness may influence the efficiency of slope wind production sufficiently to account for the pronounced differences in streak types and patterns present in these two regions.

  19. Participation in the Mars data analysis program: Global and regional studies of wind-indicators on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Veverka, J.; Thomas, P.

    1984-01-01

    Global and regional patterns on Mars were inferred from surface aeolian features, such as wind streaks and dune deposits, which were visible in Viking Orbiter images. Precise measurements of the dimensions of topographic obstacles, i.e., craters, hills, ridges, on Mars as well as their associated wind streaks were used to determine the aerodynamic shape of an obstacle affects near surface airflow. A classification of Martian wind streaks was developed on the basis of albedo contrast and the presence or absence of either topographic obstacles or sediment deposits at the point of origin of the wind streaks. It was concluded that local meteorological conditions, such as the stability of the atmospheric boundary layer, play a major role in determining why some Martian craters produce depositional wind streaks while others produce erosional ones.

  20. Slope Streaks or RSL?

    NASA Image and Video Library

    2016-12-14

    The image shows a region we see many slope streaks, typically dark features on slopes in the equatorial regions on Mars. They may extend for tens of meters in length and gradually fade away with time as new ones form. The most common hypothesis is that they are generated by dust avalanches that regularly occur on steep slopes exposing fresh dark materials from underneath the brighter dust. There are many types of slope streaks but one of the most recent and significant findings using HiRISE was the discovery of a new type called "recurring slope lineae," or RSL for short. Recent studies suggest that RSL may form through the flow of briny (extremely salty) liquid water that can be stable on the surface of Mars even under current climatic conditions for a limited time in summer when it is relatively warm. How can we distinguish between conventional slope streaks like the ones we see here and RSL? There are many criteria. For instance, RSL are usually smaller in size than regular slope streaks. However, one of the most important conditions is seasonal behavior, since RSL appear to be active only in summer while regular slope streaks can be active anytime of the year. This site is monitored regularly by HiRISE scientists because of the high density of slope streaks and their different sizes and orientations. If we look at a time-lapse sequence, we will see that a new slope streak has indeed formed in the period since April 2016 (and we can note how dark it is in comparison to the others indicating its freshness). However, this period corresponds mainly to the autumn season in this part of Mars, whereas we do not see any major changes in the summer season. This suggests that the feature that developed is a regular slope streak just like all the others in the area. http://photojournal.jpl.nasa.gov/catalog/PIA21272

  1. Streak detection and analysis pipeline for space-debris optical images

    NASA Astrophysics Data System (ADS)

    Virtanen, Jenni; Poikonen, Jonne; Säntti, Tero; Komulainen, Tuomo; Torppa, Johanna; Granvik, Mikael; Muinonen, Karri; Pentikäinen, Hanna; Martikainen, Julia; Näränen, Jyri; Lehti, Jussi; Flohrer, Tim

    2016-04-01

    We describe a novel data-processing and analysis pipeline for optical observations of moving objects, either of natural (asteroids, meteors) or artificial origin (satellites, space debris). The monitoring of the space object populations requires reliable acquisition of observational data, to support the development and validation of population models and to build and maintain catalogues of orbital elements. The orbital catalogues are, in turn, needed for the assessment of close approaches (for asteroids, with the Earth; for satellites, with each other) and for the support of contingency situations or launches. For both types of populations, there is also increasing interest to detect fainter objects corresponding to the small end of the size distribution. The ESA-funded StreakDet (streak detection and astrometric reduction) activity has aimed at formulating and discussing suitable approaches for the detection and astrometric reduction of object trails, or streaks, in optical observations. Our two main focuses are objects in lower altitudes and space-based observations (i.e., high angular velocities), resulting in long (potentially curved) and faint streaks in the optical images. In particular, we concentrate on single-image (as compared to consecutive frames of the same field) and low-SNR detection of objects. Particular attention has been paid to the process of extraction of all necessary information from one image (segmentation), and subsequently, to efficient reduction of the extracted data (classification). We have developed an automated streak detection and processing pipeline and demonstrated its performance with an extensive database of semisynthetic images simulating streak observations both from ground-based and space-based observing platforms. The average processing time per image is about 13 s for a typical 2k-by-2k image. For long streaks (length >100 pixels), primary targets of the pipeline, the detection sensitivity (true positives) is about 90% for both scenarios for the bright streaks (SNR > 1), while in the low-SNR regime, the sensitivity is still 50% at SNR = 0.5 .

  2. Relationships between early spring wheat streak mosaic severity levels and grain yield: Implications for management decisions

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic (WSM) caused by Wheat streak mosaic virus, which is transmitted by the wheat curl mite (Aceria tosichella), is a major yield-limiting disease in the Texas High Plains. In addition to its impact on grain production, the disease reduces water-use efficiency by affecting root develo...

  3. The ECM moves during primitive streak formation--computation of ECM versus cellular motion.

    PubMed

    Zamir, Evan A; Rongish, Brenda J; Little, Charles D

    2008-10-14

    Galileo described the concept of motion relativity--motion with respect to a reference frame--in 1632. He noted that a person below deck would be unable to discern whether the boat was moving. Embryologists, while recognizing that embryonic tissues undergo large-scale deformations, have failed to account for relative motion when analyzing cell motility data. A century of scientific articles has advanced the concept that embryonic cells move ("migrate") in an autonomous fashion such that, as time progresses, the cells and their progeny assemble an embryo. In sharp contrast, the motion of the surrounding extracellular matrix scaffold has been largely ignored/overlooked. We developed computational/optical methods that measure the extent embryonic cells move relative to the extracellular matrix. Our time-lapse data show that epiblastic cells largely move in concert with a sub-epiblastic extracellular matrix during stages 2 and 3 in primitive streak quail embryos. In other words, there is little cellular motion relative to the extracellular matrix scaffold--both components move together as a tissue. The extracellular matrix displacements exhibit bilateral vortical motion, convergence to the midline, and extension along the presumptive vertebral axis--all patterns previously attributed solely to cellular "migration." Our time-resolved data pose new challenges for understanding how extracellular chemical (morphogen) gradients, widely hypothesized to guide cellular trajectories at early gastrulation stages, are maintained in this dynamic extracellular environment. We conclude that models describing primitive streak cellular guidance mechanisms must be able to account for sub-epiblastic extracellular matrix displacements.

  4. Electron diffraction study of the sillenites Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39}: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scurti, Craig A.; Arenas, D. J.; Auvray, Nicolas

    We present an electron diffraction study of three sillenites, Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39}, and Bi{sub 25}InO{sub 39} synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39} show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi{sup 3+}, random and ordered oxygen-vacancies, and amore » frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.« less

  5. Microwave transient analyzer

    DOEpatents

    Gallegos, Cenobio H.; Ogle, James W.; Stokes, John L.

    1992-01-01

    A method and apparatus for capturing and recording indications of frequency content of electromagnetic signals and radiation is disclosed including a laser light source (12) and a Bragg cell (14) for deflecting a light beam (22) at a plurality of deflection angles (36) dependent upon frequency content of the signal. A streak camera (26) and a microchannel plate intensifier (28) are used to project Bragg cell (14) output onto either a photographic film (32) or a charge coupled device (CCD) imager (366). Timing markers are provided by a comb generator (50) and a one shot generator (52), the outputs of which are also routed through the streak camera (26) onto the film (32) or the CCD imager (366). Using the inventive method, the full range of the output of the Bragg cell (14) can be recorded as a function of time.

  6. Picosecond Time-Resolved Temperature and Density Measurements with K-Shell Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stillman, C. R.; Nilson, P. M.; Ivancic, S. T.; Mileham, C.; Froula, D. H.; Golovkin, I. E.

    2017-10-01

    The thermal x-ray emission from rapidly heated solid targets containing a buried-aluminum layer was measured to track the evolution of the bulk plasma conditions. The targets were driven by high-contrast 1 ω laser pulses at focused intensities up to 1 × 1019 W/cm2. A streaked x-ray spectrometer recorded the AlHeα and lithium-like satellite lines with 2-ps temporal resolution and moderate resolving power (E E ΔE 1000 ΔE 1000) . Time-integrated measurements over the same spectral range were used to correct the streaked data for variations in photocathode sensitivity. Linewidths and intensity ratios from the streaked data were interpreted using a collisional radiative atomic kinetics model to provide the average plasma conditions in the buried layer as a function of time. Experimental uncertainties in the measured plasma conditions are quantified within a consistent model-dependent framework. The data demonstrate the production of a 330 +/-56 eV, 0.9 +/-0.3 g/cm3 plasma that evolves slowly during peak Heα emission. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Correlated electronic decay in expanding clusters triggered by intense XUV pulses from a Free-Electron-Laser

    PubMed Central

    Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria

    2017-01-01

    Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas. PMID:28098175

  8. Performance of Copan WASP for Routine Urine Microbiology

    PubMed Central

    Quiblier, Chantal; Jetter, Marion; Rominski, Mark; Mouttet, Forouhar; Böttger, Erik C.; Keller, Peter M.

    2015-01-01

    This study compared a manual workup of urine clinical samples with fully automated WASPLab processing. As a first step, two different inocula (1 and 10 μl) and different streaking patterns were compared using WASP and InoqulA BT instrumentation. Significantly more single colonies were produced with the10-μl inoculum than with the 1-μl inoculum, and automated streaking yielded significantly more single colonies than manual streaking on whole plates (P < 0.001). In a second step, 379 clinical urine samples were evaluated using WASP and the manual workup. Average numbers of detected morphologies, recovered species, and CFUs per milliliter of all 379 urine samples showed excellent agreement between WASPLab and the manual workup. The percentage of urine samples clinically categorized as positive or negative did not differ between the automated and manual workflow, but within the positive samples, automated processing by WASPLab resulted in the detection of more potential pathogens. In summary, the present study demonstrates that (i) the streaking pattern, i.e., primarily the number of zigzags/length of streaking lines, is critical for optimizing the number of single colonies yielded from primary cultures of urine samples; (ii) automated streaking by the WASP instrument is superior to manual streaking regarding the number of single colonies yielded (for 32.2% of the samples); and (iii) automated streaking leads to higher numbers of detected morphologies (for 47.5% of the samples), species (for 17.4% of the samples), and pathogens (for 3.4% of the samples). The results of this study point to an improved quality of microbiological analyses and laboratory reports when using automated sample processing by WASP and WASPLab. PMID:26677255

  9. Streaks of Aftershocks Following the 2004 Sumatra-Andaman Earthquake

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.; Engdahl, E. R.; Diehl, T.

    2009-12-01

    Five years after the devastating 26 December, 2004 M 9.3 Sumatra-Andaman earthquake, regional and global seismic networks have recorded tens of thousands of aftershocks. We use bulletin data from the International Seismological Centre (ISC) and the National Earthquake Information Center (NEIC), and waveforms from IRIS, to relocate more than 20,000 hypocenters between 1964 and 2008 using teleseimic cross-correlation and double-difference methods. Relative location uncertainties of a few km or less allow for detailed analysis of the seismogenic faults activated as a result of the massive stress changes associated with the mega-thrust event. We focus our interest on an area of intense aftershock activity off-shore Banda Aceh in northern Sumatra, where the relocated epicenters reveal a pattern of northeast oriented streaks. The two most prominent streaks are ~70 km long with widths of only a few km. Some sections of the streaks are formed by what appear to be small, NNE striking sub-streaks. Hypocenter depths indicate that the events locate both on the plate interface and in the overriding Sunda plate, within a ~20 km wide band overlying the plate interface. Events on the plate interface indicate that the slab dip changes from ~20° to ~30° at around 50 km depth. Locations of the larger events in the overriding plate indicate an extension of the steeper dipping mega thrust fault to the surface, imaging what appears to be a major splay fault that reaches the surface somewhere near the western edge of the Aceh basin. Additional secondary splay faults, which branch off the plate interface at shallower depths, may explain the diffuse distribution of smaller events in the overriding plate, although their relative locations are less well constrained. Focal mechanisms support the relocation results. They show a narrowing range of fault dips with increasing distance from the trench. Specifically, they show reverse faulting on ~30° dipping faults above the shallow (20°) dipping plate interface. The observation of active splay faults associated with the mega thrust event is consistent with co- and post-seismic motion data, and may have significant implications on the generation and size of the tsunami that caused 300,000 deaths.

  10. The effect of wall temperature distribution on streaks in compressible turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Tao, Yang; Xiong, Neng; Qian, Fengxue

    2018-05-01

    The thermal boundary condition at wall is very important for the compressible flow due to the coupling of the energy equation, and a lot of research works about it were carried out in past decades. In most of these works, the wall was assumed as adiabatic or uniform isothermal surface; the flow over a thermal wall with some special temperature distribution was seldom studied. Lagha studied the effect of uniform isothermal wall on the streaks, and pointed out that higher the wall temperature is, the longer the streak (POF, 2011, 23, 015106). So, we designed streamwise stripes of wall temperature distribution on the compressible turbulent boundary layer at Mach 3.0 to learn the effect on the streaks by means of direct numerical simulation in this paper. The mean wall temperature is equal to the adiabatic case approximately, and the width of the temperature stripes is in the same order as the width of the streaks. The streak patterns in near-wall region with different temperature stripes are shown in the paper. Moreover, we find that there is a reduction of friction velocity with the wall temperature stripes when compared with the adiabatic case.

  11. The origin and structure of streak-like instabilities in laminar boundary layer flames

    NASA Astrophysics Data System (ADS)

    Gollner, Michael; Miller, Colin; Tang, Wei; Finney, Mark

    2017-11-01

    Streamwise streaks are consistently observed in wildland fires, at the base of pool fires, and in other heated flows within a boundary layer. This study examines both the origin of these structures and their role in influencing some of the macroscopic properties of the flow. Streaks were reproduced and characterized via experiments on stationary heated strips and liquid and gas-fueled burners in laminar boundary layer flows, providing a framework to develop theory based on both observed and measured physical phenomena. The incoming boundary layer was established as the controlling mechanism in forming streaks, which are generated by pre-existing coherent structures, while the amplification of streaks was determined to be compatible with quadratic growth of Rayleigh-Taylor Instabilities, providing credence to the idea that the downstream growth of streaks is strongly tied to buoyancy. These local instabilities were also found to affect macroscopic properties of the flow, including heat transfer to the surface, indicating that a two-dimensional assumption may fail to adequately describe heat and mass transfer during flame spread and other reacting boundary layer flows. This work was supported by NSF (CBET-1554026) and the USDA-FS (13-CS-11221637-124).

  12. The role of motion streaks in the perception of the kinetic Zollner illusion.

    PubMed

    Khuu, Sieu K

    2012-06-12

    In classic geometric illusions such as the Zollner illusion, vertical lines superimposed on oriented background lines appear tilted in the direction opposite to the background. In kinetic forms of this illusion, an object moving over oriented background lines appears to follow a titled path, again in the direction opposite to the background. Existing literature does not proffer a complete explanation of the effect. Here, it is suggested that motion streaks underpin the illusion; that the effect is a consequence of interactions between detectors tuned to the orientation of background lines and those sensing the motion streaks that arise from fast object motion. This account was examined in the present study by measuring motion-tilt induction under different conditions in which the strength or salience of motion streaks was attenuated: by varying object speed (Experiment 1), contrast (Experiment 2), and trajectory/length by changing the element life-time within the stimulus (Experiment 3). It was predicted that, as motion streaks become less available, background lines would less affect the perceived direction of motion. Consistent with this prediction, the results indicated that, with a reduction in object speed below that required to generate motion streaks (< 1.12°/s), Weber contrast (< 0.125) and motion streak length (two frames) reduced or extinguished the motion-tilt-induction effect. The findings of the present study are consistent with previous reports and computational models that directly combine form and motion information to provide an effective determinant of motion direction.

  13. Streaking into middle school science: The Dell Streak pilot project

    NASA Astrophysics Data System (ADS)

    Austin, Susan Eudy

    A case study is conducted implementing the Dell Streak seven-inch android device into eighth grade science classes of one teacher in a rural middle school in the Piedmont region of North Carolina. The purpose of the study is to determine if the use of the Dell Streaks would increase student achievement on standardized subject testing, if the Streak could be used as an effective instructional tool, and if it could be considered an effective instructional resource for reviewing and preparing for the science assessments. A mixed method research design was used for the study to analyze both quantitative and qualitative results to determine if the Dell Streaks' utilization could achieve the following: 1. instructional strategies would change, 2. it would be an effective instructional tool, and 3. a comparison of the students' test scores and benchmark assessments' scores would provide statistically significant difference. Through the use of an ANOVA it was determined a statistically significant difference had occurred. A Post Hoc analysis was conducted to identify where the difference occurred. Finally a T-test determined was there was no statistically significance difference between the mean End-of-Grade tests and four quarterly benchmark scores of the control and the experimental groups. Qualitative research methods were used to gather results to determine if the Streaks were an effective instructional tool. Classroom observations identified that the teacher's teaching styles and new instructional strategies were implemented throughout the pilot project. Students had an opportunity to complete a questionnaire three times during the pilot project. Results revealed what the students liked about using the devices and the challenges they were facing. The teacher completed a reflective questionnaire throughout the pilot project and offered valuable reflections about the use of the devices in an educational setting. The reflection data supporting the case study was drawn from the teacher's statements regarding the change in instructional delivery as a respect of using the students' device. The results section of the study will elaborate upon these findings. The study recommendations on the use of the Dell Streak device will address whether further actions as the use of the Streak technology in the classroom and summary section.

  14. Dynamic photoelasticity by TDI imaging

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Sajan, M. R.

    2001-06-01

    High speed photographic system like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for the recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording system requiring time consuming and tedious wet processing of the films. Digital cameras are replacing the conventional cameras, to certain extent in static experiments. Recently, there is lots of interest in development and modifying CCD architectures and recording arrangements for dynamic scenes analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration mode for digitally recording dynamic photoelastic stress patterns. Applications in strobe and streak photoelastic pattern recording and system limitations will be explained in the paper.

  15. The Role of Neutral Atmospheric Dynamics in Cusp Density - 2nd Campaign

    DTIC Science & Technology

    2013-12-30

    density enhancement at the CHAMP altitude of 400 km. Then Clemmons et al. (2008) presented observations from Distribution A: Approved for public release...250 km. This appeared to contradict the CHAMP observations, so Clemmons et al. proposed that heating occurred at an altitude above Streak, caused by...temperatures less than 1000 K. The ion temperatures can be related to the speed of the plasma as shown by St Maurice and Hanson (1982) using the assumption

  16. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  17. Unexpected diagnosis of stage IIA dysgerminoma in streak gonad in a patient with Swyer syndrome: a case report.

    PubMed

    Yada-Hashimoto, Namiko; Komura, Hiroko; Nagata, Shigenori; Kubo, Chiaki; Fujita, Masami; Kamiura, Shoji

    2018-06-01

    Patients with Swyer syndrome, which is also known as 46,XY pure gonadal dysgenesis, are at an increased risk of gonadoblastoma and germ cell tumor. Prophylactic gonadectomy is recommended for these patients. We report a case of stage IIA dysgerminoma arising in a streak gonad in a patient with Swyer syndrome, which was not diagnosable preoperatively and intraoperatively. The patient was primarily amenorrheic and identified as female phenotypically. She underwent gonadectomy at 27 years of age. Preoperative image analysis showed a relatively small uterus without adnexal masses. Laparoscopic findings showed bilateral streak gonads. Postoperatively, histopathological examination revealed that the patient had dysgerminoma in her left streak gonad. Preoperative and intraoperative diagnosis of dysgerminoma in normal size ovaries is thought to be difficult. Although it is rare, considering the occurrence of dysgerminoma in streak gonad with extension to the mesosalpinx, prompt prophylactic gonadectomy is strongly recommended for these patients regardless of the size of the ovaries.

  18. Standard design for National Ignition Facility x-ray streak and framing cameras.

    PubMed

    Kimbrough, J R; Bell, P M; Bradley, D K; Holder, J P; Kalantar, D K; MacPhee, A G; Telford, S

    2010-10-01

    The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

  19. Orientation tuning of contrast masking caused by motion streaks.

    PubMed

    Apthorp, Deborah; Cass, John; Alais, David

    2010-08-01

    We investigated whether the oriented trails of blur left by fast-moving dots (i.e., "motion streaks") effectively mask grating targets. Using a classic overlay masking paradigm, we varied mask contrast and target orientation to reveal underlying tuning. Fast-moving Gaussian blob arrays elevated thresholds for detection of static gratings, both monoptically and dichoptically. Monoptic masking at high mask (i.e., streak) contrasts is tuned for orientation and exhibits a similar bandwidth to masking functions obtained with grating stimuli (∼30 degrees). Dichoptic masking fails to show reliable orientation-tuned masking, but dichoptic masks at very low contrast produce a narrowly tuned facilitation (∼17 degrees). For iso-oriented streak masks and grating targets, we also explored masking as a function of mask contrast. Interestingly, dichoptic masking shows a classic "dipper"-like TVC function, whereas monoptic masking shows no dip and a steeper "handle". There is a very strong unoriented component to the masking, which we attribute to transiently biased temporal frequency masking. Fourier analysis of "motion streak" images shows interesting differences between dichoptic and monoptic functions and the information in the stimulus. Our data add weight to the growing body of evidence that the oriented blur of motion streaks contributes to the processing of fast motion signals.

  20. Aeolian Processes at the Mars Exploration Rover Opportunity Landing Site

    NASA Technical Reports Server (NTRS)

    Sullivan, R.; Bell, J. F., III; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.

    2005-01-01

    The traverse of the Mars Exploration Rover Opportunity across its Meridiani Planum landing site has shown that wind has affected regolith by creating drifts, dunes, and ubiquitous ripples, by sorting grains during aeolian transport, by forming bright wind streaks downwind from craters seen from orbit, and by eroding rock with abrading, wind-blown material. Pre-landing orbiter observations showed bright and dark streaks tapering away from craters on the Meridiani plains. Further analysis of orbiter images shows that major dust storms can cause bright streak orientations in the area to alternate between NW and SE, implying bright wind streak materials encountered by Opportunity are transient, potentially mobilized deposits. Opportunity performed the first in situ investigation of a martian wind streak, focusing on a bright patch of material just outside the rim of Eagle crater. Data from Pancam, the Miniature Thermal Emission Spectrometer (Mini-TES), the Alpha-Particle X-Ray Spectrometer (APXS), and the Mossbauer spectrometer either are consistent with or permit an air fall dust interpretation. We conclude that air fall dust, deposited in the partial wind shadow of Eagle crater, is responsible for the bright streak seen from orbit, consistent with models involving patchy, discontinuous deposits of air fall dust distributed behind obstacles during periods of atmospheric thermal stability during major dust storms.

  1. Slope Streaks on a Dusty Planet

    NASA Image and Video Library

    2015-05-06

    Mars is a dusty place and in some locations thick blankets of its characteristically red dust can slowly settle out of the atmosphere and accumulate on slopes. This dust is also a lot brighter than the dust-free terrain on Mars; so, if you scrape off the dust, you'll see a darker surface underneath. This particular image shows one of these dusty areas. The dark streaks on the slopes are locations where the dust has slumped downhill revealing a less dusty surface underneath. In some cases, these slope streaks might be triggered by Marsquakes or nearby meteorite impacts. Scientists think they form quickly: more like an avalanche than dust slowly creeping downhill. Look more closely and you'll notice that some streaks are darker than others. Dust is settling out of the atmosphere all the time and these dark streaks get slowly buried by fresh dust so that they fade back into their brighter redder surroundings. It's not certain how long this fading takes to happen, but it's probably close to a few decades. Dust is an important player in the weather and climate on Mars. Images like this are used to monitor slow changes in these streaks over time to better understand how much dust is settling on the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19456

  2. Motion streaks in fast motion rivalry cause orientation-selective suppression.

    PubMed

    Apthorp, Deborah; Wenderoth, Peter; Alais, David

    2009-05-14

    We studied binocular rivalry between orthogonally translating arrays of random Gaussian blobs and measured the strength of rivalry suppression for static oriented probes. Suppression depth was quantified by expressing monocular probe thresholds during dominance relative to thresholds during suppression. Rivalry between two fast motions or two slow motions was compared in order to test the suggestion that fast-moving objects leave oriented "motion streaks" due to temporal integration (W. S. Geisler, 1999). If fast motions do produce motion streaks, then fast motion rivalry might also entail rivalry between the orthogonal streak orientations. We tested this using a static oriented probe that was aligned either parallel to the motion trajectory (hence collinear with the "streaks") or was orthogonal to the trajectory, predicting that rivalry suppression would be greater for parallel probes, and only for rivalry between fast motions. Results confirmed that suppression depth did depend on probe orientation for fast motion but not for slow motion. Further experiments showed that threshold elevations for the oriented probe during suppression exhibited clear orientation tuning. However, orientation-tuned elevations were also present during dominance, suggesting within-channel masking as the basis of the extra-deep suppression. In sum, the presence of orientation-dependent suppression in fast motion rivalry is consistent with the "motion streaks" hypothesis.

  3. The minimal flow unit in near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Jimeez, Javier; Moin, Parviz

    1991-01-01

    Direct numerical simulations of unsteady channel flow were performed at low to moderate Reynolds numbers on computational boxes chosen small enough so that the flow consists of a doubly periodic (in x and z) array of identical structures. The goal is to isolate the basic flow unit, to study its morphology and dynamics, and to evaluate its contribution to turbulence in fully developed channels. For boxes wider than approximately 100 wall units in the spanwise direction, the flow is turbulent, and the low-order turbulence statistics are in good agreement with experiments in the near-wall region. For a narrow range of widths below that threshold, the flow near only one wall remains turbulent, but its statistics are still in fairly good agreement with experimental data when scaled with the local wall stress. For narrower boxes only laminar solutions are found. In all cases, the elementary box contains a single low-velocity streak, consisting of a longitudinal strip on which a thin layer of spanwise vorticity is lifted away from the wall.

  4. Mars Eolian Geology at Airphoto Scales: The Large Wind Streaks of Western Arabia Terra

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.

    2001-01-01

    More than 27,000 pictures at aerial photograph scales (1.5-12 m/pixel) have been acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) since September 1997. The pictures are valuable for testing hypotheses about geologic history and processes of Mars. Of particular interest are eolian features connected to surface albedo patterns. This work is focused on low-albedo wind streaks, some over 100 km long, in western Arabia Terra. Each streak is widest where it originates at an impact crater (typically 25-150 km diameter). The streaks taper downwind. Within the associated craters there is a lower-albedo surface that, in nearly all observed cases, includes barchan dunes indicative of transport in the same direction as the wind streaks. Upwind of the dunes there is usually an outcrop of layered material that might have served as a source for dune sand. MOC images show that the west Arabia streaks consist of a smooth-surfaced, multiple-meters-thick, mantle (smooth at 1.5 m/pixel) that appears to be superposed on local surfaces. No dunes are present, indicating that down-streak transport of sediment via saltation and traction have not occurred. Two models might explain the observed properties: (1) the streaks consist of dark silt- and clay-sized grains deflated from the adjacent crater interiors and deposited from suspension or (2) they are remnants (protected in the lee of impact crater rims) of a formerly much larger, regional covering of low albedo, smooth-surfaced mantle. The latter hypothesis is based on observation of low albedo mantled surfaces occurring south of west Arabia in Terra Meridiani. For reasons yet unknown, a large fraction of the martian equatorial regions are covered by low albedo, mesa-forming material that lies unconformably atop eroded layered and cratered terrain. Both hypotheses are being explored via continued selective targeting of new MOC images as well as analyses of the new data.

  5. Ultrafast Imaging of Electronic Motion in Atoms and Molecules

    DTIC Science & Technology

    2016-01-12

    pulses were measured with a home-made faraday cup and laser-triggered streak camera, respectively. Both are retractable and can measure the beam in...100 fs. The charge and duration of the electron pulses were measured with a home-made faraday cup and laser-triggered streak camera, respectively... faraday cup and laser-triggered streak camera, respectively. Both are retractable and can measure the beam in-situ. The gun was shown to generate pulses

  6. Qualification of a multi-diagnostic detonator-output characterization procedure utilizing PMMA witness blocks

    NASA Astrophysics Data System (ADS)

    Biss, Matthew; Murphy, Michael; Lieber, Mark

    2017-06-01

    Experiments were conducted in an effort to qualify a multi-diagnostic characterization procedure for the performance output of a detonator when fired into a poly(methyl methacrylate) (PMMA) witness block. A suite of optical diagnostics were utilized in combination to both bound the shock wave interaction state at the detonator/PMMA interface and characterize the nature of the shock wave decay in PMMA. The diagnostics included the Shock Wave Image Framing Technique (SWIFT), a photocathode tube streak camera, and photonic Doppler velocimetry (PDV). High-precision, optically clear witness blocks permitted dynamic flow visualization of the shock wave in PMMA via focused shadowgraphy. SWIFT- and streak-imaging diagnostics captured the spatiotemporally evolving shock wave, providing a two-dimensional temporally discrete image set and a one-dimensional temporally continuous image, respectively. PDV provided the temporal velocity history of the detonator output along the detonator axis. Through combination of the results obtained, a bound was able to be placed on the interface condition and a more-physical profile representing the shock wave decay in PMMA for an exploding-bridgewire detonator was achieved.

  7. X-Ray Diffuse Scattering Study of the Kinetics of Stacking Fault Growth and Annihilation in Boron-Implanted Silicon.

    NASA Astrophysics Data System (ADS)

    Patel, J. R.

    2002-06-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range 925 - 1025 C.

  8. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  9. ‘Put Your Money Where Your Mouth Is!’: Effects of Streaks on Confidence and Betting in a Binary Choice Task

    PubMed Central

    Studer, Bettina; Limbrick-Oldfield, Eve H; Clark, Luke

    2015-01-01

    Human choice under uncertainty is influenced by erroneous beliefs about randomness. In simple binary choice tasks, such as red/black predictions in roulette, long outcome runs (e.g. red, red, red) typically increase the tendency to predict the other outcome (i.e. black), an effect labeled the “gambler's fallacy.” In these settings, participants may also attend to streaks in their predictive performance. Winning and losing streaks are thought to affect decision confidence, although prior work indicates conflicting directions. Over three laboratory experiments involving red/black predictions in a sequential roulette task, we sought to identify the effects of outcome runs and winning/losing streaks upon color predictions, decision confidence and betting behavior. Experiments 1 (n = 40) and 3 (n = 40) obtained trial-by-trial confidence ratings, with a win/no win payoff and a no loss/loss payoff, respectively. Experiment 2 (n = 39) obtained a trial-by-trial bet amount on an equivalent scale. In each experiment, the gambler's fallacy was observed on choice behavior after color runs and, in experiment 2, on betting behavior after color runs. Feedback streaks exerted no reliable influence on confidence ratings, in either payoff condition. Betting behavior, on the other hand, increased as a function of losing streaks. The increase in betting on losing streaks is interpreted as a manifestation of loss chasing; these data help clarify the psychological mechanisms underlying loss chasing and caution against the use of betting measures (“post-decision wagering”) as a straightforward index of decision confidence. © 2014 The Authors. Journal of Behavioral Decision Making published by John Wiley & Sons Ltd. PMID:26236092

  10. System for photometric calibration of optoelectronic imaging devices especially streak cameras

    DOEpatents

    Boni, Robert; Jaanimagi, Paul

    2003-11-04

    A system for the photometric calibration of streak cameras and similar imaging devices provides a precise knowledge of the camera's flat-field response as well as a mapping of the geometric distortions. The system provides the flat-field response, representing the spatial variations in the sensitivity of the recorded output, with a signal-to-noise ratio (SNR) greater than can be achieved in a single submicrosecond streak record. The measurement of the flat-field response is carried out by illuminating the input slit of the streak camera with a signal that is uniform in space and constant in time. This signal is generated by passing a continuous wave source through an optical homogenizer made up of a light pipe or pipes in which the illumination typically makes several bounces before exiting as a spatially uniform source field. The rectangular cross-section of the homogenizer is matched to the usable photocathode area of the streak tube. The flat-field data set is obtained by using a slow streak ramp that may have a period from one millisecond (ms) to ten seconds (s), but may be nominally one second in duration. The system also provides a mapping of the geometric distortions, by spatially and temporarily modulating the output of the homogenizer and obtaining a data set using the slow streak ramps. All data sets are acquired using a CCD camera and stored on a computer, which is used to calculate all relevant corrections to the signal data sets. The signal and flat-field data sets are both corrected for geometric distortions prior to applying the flat-field correction. Absolute photometric calibration is obtained by measuring the output fluence of the homogenizer with a "standard-traceable" meter and relating that to the CCD pixel values for a self-corrected flat-field data set.

  11. Stabilization of Hypersonic Boundary Layers by Linear and Nonlinear Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2017-01-01

    The effect of stationary, finite-amplitude, linear and nonlinear optimal perturbations on the modal disturbance growth in a Mach 6 axisymmetric flow over a 7 deg. half-angle cone with 0:126 mm nose radius and 0:305 m length is investigated. The freestream parameters (M = 6, Re(exp 1) = 18 x 10(exp. 6) /m) are selected to match the flow conditions of a previous experiment in the VKI H3 hypersonic tunnel. Plane-marching parabolized stability equations are used in conjunction with a partial-differential equation based planar eigenvalue analysis to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode and first-mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone; however, subharmonic first-mode instabilities, which are destabilized by the presence of the streaks, do reach N = 6 near the end of the cone. The highest stabilization is observed at streak amplitudes of approximately 20 percent of the freestream velocity. Because the use of initial disturbance profiles based on linear optimal growth theory may yield suboptimal control in the context of nonlinear streaks, the computational predictions are extended to nonlinear optimal growth theory. Results show that by using nonlinearly optimal perturbation leads to slightly enhanced stabilization of plane Mack mode disturbances as well as reduced destabilization of subharmonic first-mode disturbances.

  12. 'Put Your Money Where Your Mouth Is!': Effects of Streaks on Confidence and Betting in a Binary Choice Task.

    PubMed

    Studer, Bettina; Limbrick-Oldfield, Eve H; Clark, Luke

    2015-07-01

    Human choice under uncertainty is influenced by erroneous beliefs about randomness. In simple binary choice tasks, such as red/black predictions in roulette, long outcome runs (e.g. red, red, red) typically increase the tendency to predict the other outcome (i.e. black), an effect labeled the "gambler's fallacy." In these settings, participants may also attend to streaks in their predictive performance. Winning and losing streaks are thought to affect decision confidence, although prior work indicates conflicting directions. Over three laboratory experiments involving red/black predictions in a sequential roulette task, we sought to identify the effects of outcome runs and winning/losing streaks upon color predictions, decision confidence and betting behavior. Experiments 1 ( n  = 40) and 3 ( n  = 40) obtained trial-by-trial confidence ratings, with a win/no win payoff and a no loss/loss payoff, respectively. Experiment 2 ( n  = 39) obtained a trial-by-trial bet amount on an equivalent scale. In each experiment, the gambler's fallacy was observed on choice behavior after color runs and, in experiment 2, on betting behavior after color runs. Feedback streaks exerted no reliable influence on confidence ratings, in either payoff condition. Betting behavior, on the other hand, increased as a function of losing streaks. The increase in betting on losing streaks is interpreted as a manifestation of loss chasing; these data help clarify the psychological mechanisms underlying loss chasing and caution against the use of betting measures ("post-decision wagering") as a straightforward index of decision confidence. © 2014 The Authors. Journal of Behavioral Decision Making published by John Wiley & Sons Ltd.

  13. Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution

    PubMed Central

    Fabiańska, Justyna; Kassier, Günther; Feurer, Thomas

    2014-01-01

    Through combined three-dimensional electromagnetic and particle tracking simulations we demonstrate a THz driven electron streak camera featuring a temporal resolution on the order of a femtosecond. The ultrafast streaking field is generated in a resonant THz sub-wavelength antenna which is illuminated by an intense single-cycle THz pulse. Since electron bunches and THz pulses are generated with parts of the same laser system, synchronization between the two is inherently guaranteed. PMID:25010060

  14. Hitting Is Contagious in Baseball: Evidence from Long Hitting Streaks

    PubMed Central

    Bock, Joel R.; Maewal, Akhilesh; Gough, David A.

    2012-01-01

    Data analysis is used to test the hypothesis that “hitting is contagious”. A statistical model is described to study the effect of a hot hitter upon his teammates’ batting during a consecutive game hitting streak. Box score data for entire seasons comprising streaks of length games, including a total observations were compiled. Treatment and control sample groups () were constructed from core lineups of players on the streaking batter’s team. The percentile method bootstrap was used to calculate confidence intervals for statistics representing differences in the mean distributions of two batting statistics between groups. Batters in the treatment group (hot streak active) showed statistically significant improvements in hitting performance, as compared against the control. Mean for the treatment group was found to be to percentage points higher during hot streaks (mean difference increased points), while the batting heat index introduced here was observed to increase by points. For each performance statistic, the null hypothesis was rejected at the significance level. We conclude that the evidence suggests the potential existence of a “statistical contagion effect”. Psychological mechanisms essential to the empirical results are suggested, as several studies from the scientific literature lend credence to contagious phenomena in sports. Causal inference from these results is difficult, but we suggest and discuss several latent variables that may contribute to the observed results, and offer possible directions for future research. PMID:23251507

  15. Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams

    NASA Astrophysics Data System (ADS)

    Zhao, Lingrong; Wang, Zhe; Lu, Chao; Wang, Rui; Hu, Cheng; Wang, Peng; Qi, Jia; Jiang, Tao; Liu, Shengguang; Ma, Zhuoran; Qi, Fengfeng; Zhu, Pengfei; Cheng, Ya; Shi, Zhiwen; Shi, Yanchao; Song, Wei; Zhu, Xiaoxin; Shi, Jiaru; Wang, Yingxin; Yan, Lixin; Zhu, Liguo; Xiang, Dao; Zhang, Jie

    2018-04-01

    Streaking of photoelectrons with optical lasers has been widely used for temporal characterization of attosecond extreme ultraviolet pulses. Recently, this technique has been adapted to characterize femtosecond x-ray pulses in free-electron lasers with the streaking imprinted by far-infrared and terahertz (THz) pulses. Here, we report successful implementation of THz streaking for time stamping of an ultrashort relativistic electron beam, whose energy is several orders of magnitude higher than photoelectrons. Such an ability is especially important for MeV ultrafast electron diffraction (UED) applications, where electron beams with a few femtosecond pulse width may be obtained with longitudinal compression, while the arrival time may fluctuate at a much larger timescale. Using this laser-driven THz streaking technique, the arrival time of an ultrashort electron beam with a 6-fs (rms) pulse width has been determined with 1.5-fs (rms) accuracy. Furthermore, we have proposed and demonstrated a noninvasive method for correction of the timing jitter with femtosecond accuracy through measurement of the compressed beam energy, which may allow one to advance UED towards a sub-10-fs frontier, far beyond the approximate 100-fs (rms) jitter.

  16. The topography of primate retina: a study of the human, bushbaby, and new- and old-world monkeys.

    PubMed

    Stone, J; Johnston, E

    1981-02-20

    The distribution of ganglion cells has been studied in the retinas of four primates: the prosimian bushbaby, the New-World squirrel monkey, the Old-World crab-eating cynamolgous monkey, and the human. The sizes of ganglion cell somas were also measured at a number of retinal locations and compared with similar measurements in the cat retina to test for the presence in primates of retinal specializations such as the visual streak, and for gradients in retinal structure, such as that between temporal and nasal retina. In all four primates, ganglion cell somas in peripheral retina ranged considerably in diameter (6-16 micrometer in the bushbaby, 8-22 micrometer in the squirrel monkey, 8-23 micrometer in the cynamolgous monkey, 8-26 micrometer in the human). It seems likely that the strong physiological correlates of soma size which have been described among cat retinal ganglion cells and among the relay cells of the macaque lateral geniculate nucleus are generally present in primates. In all four primates, evidence was also obtained of a visual streak specialization; the isodensity lines in ganglion cell density maps were horizontally elongated, and small-bodied ganglion cells were relatively more common in the region of the proposed streak than in other areas of peripheral retina. However, the visual streak seems less well developed than in the cat; among the four primate species examined it was best developed in the bushbaby, at least as assessed by the shape of the isodensity lines. All four primates showed a clear foveal specialization, but this feature seemed least developed in the bushbaby. At the fovea, ganglion cells are smaller in soma size than in peripheral retina; they also seemed more uniform in size, although some distinctly larger cells persist in the human and bushbaby. Soma size measurements also provided evidence of a difference between nasal and temporal areas of peripheral retina comparable to that reported for the cat and other species. Thus the primate retinas examined show features, such as the foveal specialization, which seem unique to them among mammals. They also show features, such as nasal-temporal differences in ganglion cell size, and (though weakly developed) a visual streak, which they have in common with other mammals with widely different phylogenetic histories.

  17. Frequency-Domain Streak Camera and Tomography for Ultrafast Imaging of Evolving and Channeled Plasma Accelerator Structures

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Zgadzaj, Rafal; Wang, Xiaoming; Reed, Stephen; Dong, Peng; Downer, Michael C.

    2010-11-01

    We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index "bubble" in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the "bubble". Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the "bubble" from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporal Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.

  18. Impact of laser phase and amplitude noises on streak camera temporal resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlotzko, V., E-mail: wlotzko@optronis.com; Optronis GmbH, Ludwigstrasse 2, 77694 Kehl; Uhring, W.

    2015-09-15

    Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement withmore » a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.« less

  19. Surveillance of medium and high Earth orbits using large baseline stereovision

    NASA Astrophysics Data System (ADS)

    Danescu, Radu; Ciurte, Anca; Oniga, Florin; Cristea, Octavian; Dolea, Paul; Dascal, Vlad; Turcu, Vlad; Mircea, Liviu; Moldovan, Dan

    2014-11-01

    The Earth is surrounded by a swarm of satellites and associated debris known as Resident Space Objects (RSOs). All RSOs will orbit the Earth until they reentry into Earth's atmosphere. There are three main RSO categories: Low Earth Orbit (LEO), when the satellite orbits at an altitude below 1 500 km; a Medium Earth Orbit (MEO) for Global Navigation Satellite Systems (GNSS) at an altitude of around 20 000 km, and a Geostationary Earth Orbit (GEO) (also sometimes called the Clarke orbit), for geostationary satellites, at an altitude of 36 000 km. The Geostationary Earth Orbits and the orbits of higher altitude are also known as High Earth Orbits (HEO). Crucial for keeping an eye on RSOs, the Surveillance of Space (SofS) comprises detection, tracking, propagation of orbital parameters, cataloguing and analysis of these objects. This paper presents a large baseline stereovision based approach for detection and ranging of RSO orbiting at medium to high altitudes. Two identical observation systems, consisting of camera, telescope, control computer and GPS receiver are located 37 km apart, and set to observe the same region of the sky. The telescopes are placed on equatorial mounts able to compensate for the Earth's rotation, so that the stars appear stationary in the acquired images, and the satellites will appear as linear streaks. The two cameras are triggered simultaneously. The satellite streaks are detected in each image of the stereo pair using its streak-like appearance against point-like stars, the motion of the streaks between successive frames, and the stereo disparity. The detected satellite pixels are then put into correspondence using the epipolar geometry, and the 3D position of the satellite in the Earth Center, Earth Fixed (ECEF) reference frame is computed using stereo triangulation. Preliminary tests have been performed, for both MEO and HEO orbits. The preliminary results indicate a very high detection rate for MEO orbits, and good detection rate for HEO orbits, dependent on the satellite's rotation.

  20. Arabia Terra Streaks

    NASA Image and Video Library

    2003-02-12

    Accumulations of thick dust give way down slopes, crater walls, and other steep terrain in this image from NASA Mars Odyssey, leaving the dark streaks that are common in the dusty region of Arabia Terra.

  1. Recent Movements: New Landslides in Less than 1 Martian Year

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Changes between 1 February 1998 and 18 November 1999

    Crater at 6oS, 184oW on 01 FEB 1998 [figure removed for brevity, see original site]

    3-D Anaglyph View--PIA02380 [figure removed for brevity, see original site]

    What is happening on Mars right now? Pictures that show changes occurring from time to time give some clues as to what processes are shaping the modern martian landscape. Dust devils, dust storms, and polar frosts are all known to cause change sin the surface every martian year. But what about other geologic processes? How 'active' is Mars today? The Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) has been in orbit long enough that it is starting to provide some answers. MGS began orbiting Mars in September 1997. Since that time, it has seen the planet cycle through more than 1 of its 687-Earth-days-long years. The pictures shown here document changes observed by the MOC caused by small landslides.

    The picture at the lower left (above) shows a shallow crater located near Apollinaris Patera at 6oS, 184oW, that was photographed by MOC in February 1998. The walls of this crater exhibit approximately 100 dark streaks running down its slopes. These streaks have formed as small landslides or avalanches and are probably composed of sand and/or silt. The image is illuminated by sunlight from the lower left, and the crater is about 5 kilometers (3 miles) across. The white box shows the location of a section of the crater that was photographed again in mid-November 1999, about 92% of a Martian Year later.

    The top picture shows a comparison of the southeastern crater wall as it appeared on February 1, 1998, and again on November 18, 1999. (Note that the picture has been rotated relative to the context image at lower left). During the time between the two images, three new dark slope streaks formed (arrows, top right). The older streaks are lighter and fainter than these new, dark ones, suggesting that streaks fade with time. This means that, at least for the crater walls shown here, any streak that is dark is younger than any streak that is pale. The stereo anaglyph (requires red-blue '3-d glasses') at the lower right uses the two images of the crater rim to provide a 3-dimensional view. The anaglyph is helpful to see that the dark streaks really do occur on a slope. In addition, by viewing the anaglyph without 3-d glasses, one can easily identify the three new streaks because they appear as blue and have no red counterpart.

    These three new slope streaks formed sometime between February 1998 and November 1999. Similar streaks were observed in the highest-resolution images from the Viking orbiters in the late 1970s, but for more than 20 years no one has known how recent these features might be, or how often they might form. Now, MOC is providing some exciting answers.

  2. Fireball Streaking over Russia

    NASA Image and Video Library

    2013-02-16

    This photograph of the meteor streaking through the sky above Chelyabinsk, Russia, on Feb. 15, 2013, was taken by a local, M. Ahmetvaleev. The small asteroid was about 56 to 66 feet 17 to 20 meters wide.

  3. Ice fall streaks in a warm front . An S-band polarimetric radar study

    NASA Astrophysics Data System (ADS)

    Keppas, Stavros; Crosier, Jonathan; Choularton, Thomas; Bower, Keith

    2017-04-01

    On 21st January 2009, a maturing low pressure system approached the UK along with several associated systems. An observational research flight (part of the APPRAISE-Clouds project) took place in southern England, sampling the leading warm front of this system. During the flight, the Warm Conveyor Belt (WCB) was well depicted by the radar Doppler velocity parameter. Simultaneously, extensive ice fall streaks appeared on ZDR RHI scans as long slanted zones of high ZDR. It seems that there is a connection between the WCB activity and the formation and structure of the ice fall streaks. The Kelvin-Helmholtz instability caused by the WCB played a key role on their formation. Moreover, in-situ measurements showed that the ice fall streaks had a very specific substance and they can affect the surface precipitation.

  4. Frequency-Domain Streak Camera and Tomography for Ultrafast Imaging of Evolving and Channeled Plasma Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhengyan; Zgadzaj, Rafal; Wang Xiaoming

    2010-11-04

    We demonstrate a prototype Frequency Domain Streak Camera (FDSC) that can capture the picosecond time evolution of the plasma accelerator structure in a single shot. In our prototype Frequency-Domain Streak Camera, a probe pulse propagates obliquely to a sub-picosecond pump pulse that creates an evolving nonlinear index 'bubble' in fused silica glass, supplementing a conventional Frequency Domain Holographic (FDH) probe-reference pair that co-propagates with the 'bubble'. Frequency Domain Tomography (FDT) generalizes Frequency-Domain Streak Camera by probing the 'bubble' from multiple angles and reconstructing its morphology and evolution using algorithms similar to those used in medical CAT scans. Multiplexing methods (Temporalmore » Multiplexing and Angular Multiplexing) improve data storage and processing capability, demonstrating a compact Frequency Domain Tomography system with a single spectrometer.« less

  5. KSC-02PD1056

    NASA Image and Video Library

    2002-06-24

    VANDENBERG AIR FORCE BASE, CALIF. -- The National Oceanic and Atmospheric Administration (NOAA) spacecraft (NOAA-M) streaks above a cloud layer after a successful launch at 2:23 p.m. EDT aboard a Titan II rocket from Vandenberg Air Force Base, Calif. NOAA-M is another in a series of polar-orbiting Earth environmental observation satellites that provide global data to NOAA's short- and long-range weather forecasting systems

  6. Environmental Characterization of Mine Countermeasure Test Ranges: Hydrography and Water Column Optics

    DTIC Science & Technology

    2015-09-30

    changes in near-shore water columns and support companion laser imaging system tests. The physical, biological and optical oceanographic data...developed under this project will be used as input to optical and environmental models to assess the performance characteristics of laser imaging systems...OBJECTIVES We proposed to characterize the physical, biological and optical fields present during deployments of the Streak Tube Imaging Lidar

  7. Numerical Simulations of Thick Aluminum Wire Behavior Under Megampere Current Drive

    DTIC Science & Technology

    2009-06-01

    time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...simulated time dependences of the wire radii agree rather well with the experimental results obtained using laser diagnostics and light imaging. The...experiments involved a wide range of diagnostics , including current probes, streaked imaging of optical emission, 4-frame laser shadowgraphy, fast

  8. Low dose dynamic CT myocardial perfusion imaging using a statistical iterative reconstruction method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yinghua; Chen, Guang-Hong; Hacker, Timothy A.

    Purpose: Dynamic CT myocardial perfusion imaging has the potential to provide both functional and anatomical information regarding coronary artery stenosis. However, radiation dose can be potentially high due to repeated scanning of the same region. The purpose of this study is to investigate the use of statistical iterative reconstruction to improve parametric maps of myocardial perfusion derived from a low tube current dynamic CT acquisition. Methods: Four pigs underwent high (500 mA) and low (25 mA) dose dynamic CT myocardial perfusion scans with and without coronary occlusion. To delineate the affected myocardial territory, an N-13 ammonia PET perfusion scan wasmore » performed for each animal in each occlusion state. Filtered backprojection (FBP) reconstruction was first applied to all CT data sets. Then, a statistical iterative reconstruction (SIR) method was applied to data sets acquired at low dose. Image voxel noise was matched between the low dose SIR and high dose FBP reconstructions. CT perfusion maps were compared among the low dose FBP, low dose SIR and high dose FBP reconstructions. Numerical simulations of a dynamic CT scan at high and low dose (20:1 ratio) were performed to quantitatively evaluate SIR and FBP performance in terms of flow map accuracy, precision, dose efficiency, and spatial resolution. Results: Forin vivo studies, the 500 mA FBP maps gave −88.4%, −96.0%, −76.7%, and −65.8% flow change in the occluded anterior region compared to the open-coronary scans (four animals). The percent changes in the 25 mA SIR maps were in good agreement, measuring −94.7%, −81.6%, −84.0%, and −72.2%. The 25 mA FBP maps gave unreliable flow measurements due to streaks caused by photon starvation (percent changes of +137.4%, +71.0%, −11.8%, and −3.5%). Agreement between 25 mA SIR and 500 mA FBP global flow was −9.7%, 8.8%, −3.1%, and 26.4%. The average variability of flow measurements in a nonoccluded region was 16.3%, 24.1%, and 937.9% for the 500 mA FBP, 25 mA SIR, and 25 mA FBP, respectively. In numerical simulations, SIR mitigated streak artifacts in the low dose data and yielded flow maps with mean error <7% and standard deviation <9% of mean, for 30×30 pixel ROIs (12.9 × 12.9 mm{sup 2}). In comparison, low dose FBP flow errors were −38% to +258%, and standard deviation was 6%–93%. Additionally, low dose SIR achieved 4.6 times improvement in flow map CNR{sup 2} per unit input dose compared to low dose FBP. Conclusions: SIR reconstruction can reduce image noise and mitigate streaking artifacts caused by photon starvation in dynamic CT myocardial perfusion data sets acquired at low dose (low tube current), and improve perfusion map quality in comparison to FBP reconstruction at the same dose.« less

  9. Klebanoff (K-) modes in boundary layers (BLs) over compliant surfaces

    NASA Astrophysics Data System (ADS)

    Ali, Reza; Carpenter, Peter

    2002-11-01

    We investigate the effect of wall compliance on K-modes. These are associated with streaks observed in the transitional BL, generated by spanwise modulation of the streamwise velocity, and are thought to be the mechanism for bypass transition. They have been widely studied over flat-plate, rigid surfaces but not compliant surfaces. A novel velocity-vorticity formulation is adopted for the numerical simulations, and a freestream spanwise body force is used to generate the streaks. We find compliant walls are less receptive than rigid walls, i.e. freestream turbulence generates weaker disturbances over compliant walls. This effect intensifies with increasing compliance. Where a compliant panel is embedded into a rigid surface, the leading and trailing edges of the panel can introduce a stabilising or destabilising disturbance on the streaks depending on the Reynolds number. It is therefore possible to optimise the wall to suppress streaks and hence bypass. K-modes can also act as a theoretical model for the near-wall structures that generate the high skin-friction drag in turbulent BLs. In this scenario, increasing compliance increases the spanwise spacing and weakens the streak. This explains experimental observations that wall compliance reduces skin-friction drag and turbulence levels in turbulent BLs.

  10. Laparoscopic Removal of Streak Gonads in Turner Syndrome.

    PubMed

    Mandelberger, Adrienne; Mathews, Shyama; Andikyan, Vaagn; Chuang, Linus

    To demonstrate the skills necessary for complete resection of bilateral streak gonads in Turner syndrome. Video case presentation with narration highlighting the key techniques used. The video was deemed exempt from formal review by our institutional review board. Turner syndrome is a form of gonadal dysgenesis that affects 1 in 2500 live births. Patients often have streak gonads and may present with primary amenorrhea or premature ovarian failure. Patients with a mosaic karyotype that includes a Y chromosome are at increased risk for gonadoblastoma and subsequent transformation into malignancy. Gonadectomy is recommended for these patients, typically at adolescence. Streak gonads can be difficult to identify, and tissue margins are often in close proximity to critical retroperitoneal structures. Resection can be technically challenging and requires a thorough understanding of retroperitoneal anatomy and precise dissection techniques to ensure complete removal. Laparoscopic approach to bilateral salpingo-oophorectomy of streak gonads. Retroperitoneal dissection and ureterolysis are performed, with the aid of the Ethicon Harmonic Ace, to ensure complete gonadectomy. Careful and complete resection of gonadal tissue in the hands of a skilled laparoscopic surgeon is key for effective cancer risk reduction surgery in Turner syndrome mosaics. Copyright © 2016 AAGL. Published by Elsevier Inc. All rights reserved.

  11. Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data

    NASA Astrophysics Data System (ADS)

    Pfitzenmaier, Lukas; Unal, Christine M. H.; Dufournet, Yann; Russchenberg, Herman W. J.

    2018-06-01

    The growth of ice crystals in presence of supercooled liquid droplets represents the most important process for precipitation formation in the mid-latitudes. However, such mixed-phase interaction processes remain relatively unknown, as capturing the complexity in cloud dynamics and microphysical variabilities turns to be a real observational challenge. Ground-based radar systems equipped with fully polarimetric and Doppler capabilities in high temporal and spatial resolutions such as the S-band transportable atmospheric radar (TARA) are best suited to observe mixed-phase growth processes. In this paper, measurements are taken with the TARA radar during the ACCEPT campaign (analysis of the composition of clouds with extended polarization techniques). Besides the common radar observables, the 3-D wind field is also retrieved due to TARA unique three beam configuration. The novelty of this paper is to combine all these observations with a particle evolution detection algorithm based on a new fall streak retrieval technique in order to study ice particle growth within complex precipitating mixed-phased cloud systems. In the presented cases, three different growth processes of ice crystals, plate-like crystals, and needles are detected and related to the presence of supercooled liquid water. Moreover, TARA observed signatures are assessed with co-located measurements obtained from a cloud radar and radiosondes. This paper shows that it is possible to observe ice particle growth processes within complex systems taking advantage of adequate technology and state of the art retrieval algorithms. A significant improvement is made towards a conclusive interpretation of ice particle growth processes and their contribution to rain production using fall streak rearranged radar data.

  12. The Role of Jet Adjustment Processes in Subtropical Dust Storms

    NASA Astrophysics Data System (ADS)

    Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie

    2017-11-01

    Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-β scale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced meso-γ scale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to meso-γ scale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission.

  13. Syrtis Major

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 6 June 2002) The Science This image, located near the equator and 288W (72E), is near the southern edge of a low, broad volcanic feature called Syrtis Major. A close look at this image reveals a wrinkly texture that indicates a very rough surface that is associated with the lava flows that cover this region. On a larger scale, there are numerous bright streaks that trail topographic features such as craters. These bright streaks are in the wind shadows of the craters where dust that settles onto the surface is not as easily scoured away. It is important to note that these streaks are only bright in a relative sense to the surrounding image. Syrtis Major is one of the darkest regions on Mars and it is as dark as fresh basalt flows or dunes are on Earth. The Story Cool! It almost looks as if nature has 'painted' comets on the surface of Mars, using craters as comet cores and dust as streaky tails. Of course, that's just an illusion. As in many areas of Mars, the wind is behind the creation of such fantastic landforms. The natural phenomenon seen here gives this particular surface of Mars a very dynamic, fast-moving, almost luminous 'cosmic personality.' The bright, powdery-looking streaks of dust are in the 'wind shadows' of craters, where dust that settles onto the surface is not as easily scoured away. That's because the wind moves across the land in a particular direction, and a raised surface like the rim of a crater 'protects' dust from being completely blown away on the other side. The raised landforms basically act as a buffer. From the streaks seen above, you can tell the wind was blowing in a northeast to southwest direction. Why are the streaks so bright? Because they contrast with the really dark underlying terrain in this volcanic area of Mars. Syrtis Major is one of the darkest regions on Mars because it is made of basalt. Basalt is typically dark gray or black, and forms when a certain type of molten lava cools. The meaning of the word basalt has been traced back to an ancient Ethiopian word 'basal,' which means 'a rock from which you can obtain iron.' That must have made it a very desired material with ancient Earth civilizations long ago. Basalt is actually one of the most abundant types of rock found on Earth. Most of the volcanic islands in the ocean are made of basalt, including the large shield volcano of Mauna Loa, Hawaii, which is often compared to Martian shield volcanoes. Shield volcanoes don't have high, steep, mountain-like sides, but are instead low and broad humps upon the surface. They're created when highly fluid, molten-basalt flows spread out over wide areas. Over several millennia of basaltic layering upon layering, these volcanoes can reach massive sizes like the ones seen on Mars. You can see the wrinkly texture of dark lava flows (now hard and cool) in the above image beneath the brighter dust.

  14. Investigation of Hot Streak Migration and Film Cooling Effects on Heat Transfer in Rotor/Stator Interacting Flows. Report 1

    DTIC Science & Technology

    1992-04-01

    I Investigation of Hot Streak Migration and Film Cooling Effects on Heat Transfer in Rotor/Stator Interacting Flows £ N00140-88-C-0677 - Report 1 00...performed ld*ch addresses the Issuas of mlti-blade count ratio s&ad three-dimensionality effects on the prediction of combu tr hot str"k migration in a...demnstrates tbe capabilty of the thro-dirnsioual procedure to cApture most of the flow physics associated with hot streak migration including the

  15. Global map of eolian features on Mars.

    USGS Publications Warehouse

    Ward, A.W.; Doyle, K.B.; Helm, P.J.; Weisman, M.K.; Witbeck, N.E.

    1985-01-01

    Ten basic categories of eolian features on Mars were identified from a survey of Mariner 9 and Viking orbiter images. The ten features mapped are 1) light streaks (including frost streaks), 2) dark streaks, 3) sand sheets or splotches, 4) barchan dunes, 5) transverse dunes, 6) crescentic dunes, 7) anomalous dunes, 8) yardangs, 9) wind grooves, and 10) deflation pits. The features were mapped in groups, not as individual landforms, and recorded according to their geographic positions and orientations on maps of 1:12.5 million or 1:25 million scale. -from Authors

  16. Imaging Local Magnetic Domain Rearrangement in Strained LaCoO3 Thin Films Using Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Berg, Morgann; Leon, Neliza; Posadas, Agham; Lee, Alfred; Kim, Jeehoon; de Lozanne, Alex; Demkov, Alex

    2012-02-01

    Previous studies we have conducted on thin films of lanthanum cobaltate (LCO) under tensile strain have revealed a tendency toward local magnetic domain rearrangement into streak-like configurations near the ferromagnetic to paramagnetic phase transition. Moreover, the persistence of these streak-like characteristics to lower temperatures after field-cooling appears to be linked to the strength of the applied magnetic field in which these films are field-cooled. This tendency has not yet been verified for thin films of LCO under compressive strain which could indicate whether this magnetic domain rearrangement is intrinsic to thin film samples of LCO or is merely an effect of tensile strain. Using magnetic force microscopy, we investigate the microscale magnetic properties of a thin film of LCO under compressive strain, prepared by molecular beam epitaxy and deposited on a lanthanum aluminate substrate. We observe these properties across a wide temperature range and compare our results to global magnetic characteristics of this film as measured by a SQUID magnetometer.

  17. International Congress on High-Speed Photography and Photonics, 19th, Cambridge, England, Sept. 16-21, 1990, Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfield, B.R.; Rendell, J.T.

    1991-01-01

    The present conference discusses the application of schlieren photography in industry, laser fiber-optic high speed photography, holographic visualization of hypervelocity explosions, sub-100-picosec X-ray grating cameras, flash soft X-radiography, a novel approach to synchroballistic photography, a programmable image converter framing camera, high speed readout CCDs, an ultrafast optomechanical camera, a femtosec streak tube, a modular streak camera for laser ranging, and human-movement analysis with real-time imaging. Also discussed are high-speed photography of high-resolution moire patterns, a 2D electron-bombarded CCD readout for picosec electrooptical data, laser-generated plasma X-ray diagnostics, 3D shape restoration with virtual grating phase detection, Cu vapor lasers for highmore » speed photography, a two-frequency picosec laser with electrooptical feedback, the conversion of schlieren systems to high speed interferometers, laser-induced cavitation bubbles, stereo holographic cinematography, a gatable photonic detector, and laser generation of Stoneley waves at liquid-solid boundaries.« less

  18. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toftegaard, Jakob, E-mail: jaktofte@rm.dk; Fledelius, Walther; Worm, Esben S.

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of amore » marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans with severe streaking artifacts. The corresponding numbers for MAR were 8 (no streaks), 1 (1–4 streaks), and 20 (severe streaking artifacts). The MMAR method was superior to MAR in scans with more than 8 mm 3D marker motion and comparable to MAR for scans with less than 8 mm motion. In addition, the MMAR method was tested on a 4D CBCT reconstruction for which it worked equally well as for the 3D case. The markers in the 4D case had very low motion blur. Conclusions: An automatic method for MMAR in CBCT scans was proposed and shown to effectively remove almost all streaking artifacts in a large set of clinical CBCT scans with implanted gold markers in the liver. Residual streaking artifacts observed in three CBCT scans may be removed with better marker segmentation.« less

  19. Associations between a Genetic Risk Score for Clinical CAD and Early Stage Lesions in the Coronary Artery and the Aorta.

    PubMed

    Salfati, Elias L; Herrington, David M; Assimes, Themistocles L

    2016-01-01

    The correlation between the extent of fatty streaks, more advanced atherosclerotic lesions, and community rates of coronary artery disease (CAD) is substantially higher for the coronary artery compared to the aorta. We sought to determine whether a genetic basis contributes to these differences. We conducted a cluster analysis of 6 subclinical atherosclerosis phenotypes documented in 564 white participants of the Pathobiological Determinants of Atherosclerosis in Youth study including the extent of fatty streaks and raised lesions in the coronary artery (CF and CR), thoracic aorta (TF and TR), and abdominal aorta (AF and AR) followed by a genetic association analysis of the same phenotypes. Our cluster analysis grouped all raised lesions and fatty streaks in the coronary into one cluster (CF, CR, TR, and AR) and the fatty streaks in the aorta into a second cluster (TF and AF). We found a genetic risk score of high-risk alleles at 57 susceptibility loci for CAD to be variably associated with the phenotypes in the first cluster (OR: 1.30 p = 0.009 for being in top quartile of degree of involvement of CF, 1.34 p = 0.005 for CR, 1.25: p = 0.11 for TR, and 1.19 p = 0.08 for AR) but not at all with the phenotypes in the second cluster (OR: 1.01, p = 0.95 for TF and 0.98, p = 0.82 for AF). The genetic determinants of fatty streaks in the aorta do not appear to overlap substantially with the genetic determinants of fatty streaks in the coronary as well as raised lesions in both the coronary and the aorta. These findings may explain why a larger fraction of fatty streaks in the aorta are less likely to progress to raised lesions compared to the coronary artery.

  20. Associations between a Genetic Risk Score for Clinical CAD and Early Stage Lesions in the Coronary Artery and the Aorta

    PubMed Central

    Herrington, David M.

    2016-01-01

    Objective The correlation between the extent of fatty streaks, more advanced atherosclerotic lesions, and community rates of coronary artery disease (CAD) is substantially higher for the coronary artery compared to the aorta. We sought to determine whether a genetic basis contributes to these differences. Approach and Results We conducted a cluster analysis of 6 subclinical atherosclerosis phenotypes documented in 564 white participants of the Pathobiological Determinants of Atherosclerosis in Youth study including the extent of fatty streaks and raised lesions in the coronary artery (CF and CR), thoracic aorta (TF and TR), and abdominal aorta (AF and AR) followed by a genetic association analysis of the same phenotypes. Our cluster analysis grouped all raised lesions and fatty streaks in the coronary into one cluster (CF, CR, TR, and AR) and the fatty streaks in the aorta into a second cluster (TF and AF). We found a genetic risk score of high-risk alleles at 57 susceptibility loci for CAD to be variably associated with the phenotypes in the first cluster (OR: 1.30 p = 0.009 for being in top quartile of degree of involvement of CF, 1.34 p = 0.005 for CR, 1.25: p = 0.11 for TR, and 1.19 p = 0.08 for AR) but not at all with the phenotypes in the second cluster (OR: 1.01, p = 0.95 for TF and 0.98, p = 0.82 for AF). Conclusions The genetic determinants of fatty streaks in the aorta do not appear to overlap substantially with the genetic determinants of fatty streaks in the coronary as well as raised lesions in both the coronary and the aorta. These findings may explain why a larger fraction of fatty streaks in the aorta are less likely to progress to raised lesions compared to the coronary artery. PMID:27861582

  1. Thrips-transmitted Viruses Infect a Number of Florida Crops

    USDA-ARS?s Scientific Manuscript database

    The ilarviruses Tomato necrotic streak virus and Tobacco streak virus are present in south Florida. Both species cause economically significant disease in vegetable crop. Control of these viruses makes use of integrated pest management approaches....

  2. Diversionary Tactic

    NASA Image and Video Library

    2006-08-16

    This MOC image shows some dark slope streaks in the Phlegra Dorsa region of Mars. Of particular interest is the split streak near the center of the image, which diverted around a rounded hill as the material was sliding down the slope

  3. Personal computer (PC) based image processing applied to fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.

  4. Personal Computer (PC) based image processing applied to fluid mechanics

    NASA Technical Reports Server (NTRS)

    Cho, Y.-C.; Mclachlan, B. G.

    1987-01-01

    A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.

  5. A time-resolved image sensor for tubeless streak cameras

    NASA Astrophysics Data System (ADS)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  6. Wind vs. Dust Devil Streaks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    22 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presents a fine illustration of the difference between streaks made by dust devils and streaks made by wind gusts. Dust devils are usually solitary, spinning vortices. They resemble a tornado, or the swirling motion of a familiar, Tasmanian cartoon character. Wind gusts, on the other hand, can cover a larger area and affect more terrain at the same time. The dark, straight, and parallel features resembling scrape marks near the right/center of this image are thought to have been formed by a singular gust of wind, whereas the more haphazard dark streaks that crisscross the scene were formed by dozens of individual dust devils, acting at different times. This southern summer image is located in Noachis Terra near 67.0oS, 316.2oW. Sunlight illuminates the scene from the upper left; the picture covers an area 3 km (1.9 mi) wide.

  7. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.

    PubMed

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan

    2018-01-01

    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  8. LOCATING AND CHARACTERIZING ANGIOID STREAKS WITH EN FACE OPTICAL COHERENCE TOMOGRAPHY.

    PubMed

    Hanhart, Joel; Greifner, Hillel; Rozenman, Yaakov

    2017-01-01

    To characterize angioid streaks (AS) with en face optical coherence tomography (OCT). Case report of a patient with myopia presenting with choroidal neovascularization secondary to AS. Swept-source en face OCT ability to image the streaks was compared with spectral-domain and swept-source B-scans as well as color and red-free pictures. A 48-year-old man with myopia presented with sudden central visual loss. Choroidal neovascularization secondary to AS was diagnosed and intraocular anti-vascular endothelial growth factor given with clinical and OCT features improvement. Angioid streaks were visualized as less dark than the overlying retinal and the underlying choroidal vasculature. En face OCT located the changes at the level of Bruch membrane. An AS was found to be interrupted by the choroidal neovascularization, what was not captured by other modalities. En face OCT allows to assess the extent of changes in Bruch membrane and their spatial relationship to choroidal neovascularization.

  9. Prelaunch optical characterization of the Laser Geodynamic Satellite (LAGEOS 2)

    NASA Technical Reports Server (NTRS)

    Minott, Peter O.; Zagwodzki, Thomas W.; Varghese, Thomas; Seldon, Michael

    1993-01-01

    The optical range correction (the distance between the apparent retroreflective skin of the satellite and the center of mass) of the LAGEOS 2 was determined using computer analysis of theoretical and experimentally measured far field diffraction patterns, and with short pulse lasers using both streak camera-based range receivers and more conventional PMT-based range receivers. The three measurement techniques yielded range correction values from 248 to 253 millimeters dependent on laser wavelength, pulsewidth, and polarization, location of the receiver in the far field diffraction pattern and detection technique (peak, half maximum, centroid, or constant fraction). The Lidar cross section of LAGEOS 2 was measured at 4 to 10 million square meters, comparable to the LAGEOS 1.

  10. Correct Patterning of the Primitive Streak Requires the Anterior Visceral Endoderm

    PubMed Central

    Stuckey, Daniel W.; Di Gregorio, Aida; Clements, Melanie; Rodriguez, Tristan A.

    2011-01-01

    Anterior-posterior axis specification in the mouse requires signalling from a specialised extra-embryonic tissue called the anterior visceral endoderm (AVE). AVE precursors are induced at the distal tip of the embryo and move to the prospective anterior. Embryological and genetic analysis has demonstrated that the AVE is required for anterior patterning and for correctly positioning the site of primitive streak formation by inhibiting Nodal activity. We have carried out a genetic ablation of the Hex-expressing cells of the AVE (Hex-AVE) by knocking the Diphtheria toxin subunit A into the Hex locus in an inducible manner. Using this model we have identified that, in addition to its requirement in the anterior of the embryo, the Hex-AVE sub-population has a novel role between 5.5 and 6.5dpc in patterning the primitive streak. Embryos lacking the Hex-AVE display delayed initiation of primitive streak formation and miss-patterning of the anterior primitive streak. We demonstrate that in the absence of the Hex-AVE the restriction of Bmp2 expression to the proximal visceral endoderm is also defective and expression of Wnt3 and Nodal is not correctly restricted to the posterior epiblast. These results, coupled with the observation that reducing Nodal signalling in Hex-AVE ablated embryos increases the frequency of phenotypes observed, suggests that these primitive streak patterning defects are due to defective Nodal signalling. Together, our experiments demonstrate that the AVE is not only required for anterior patterning, but also that specific sub-populations of this tissue are required to pattern the posterior of the embryo. PMID:21445260

  11. Compact streak camera for the shock study of solids by using the high-pressure gas gun

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito; Mori, Yasuhito

    1993-01-01

    For the precise observation of high-speed impact phenomena, a compact high-speed streak camera recording system has been developed. The system consists of a high-pressure gas gun, a streak camera, and a long-pulse dye laser. The gas gun installed in our laboratory has a muzzle of 40 mm in diameter, and a launch tube of 2 m long. Projectile velocity is measured by the laser beam cut method. The gun is capable of accelerating a 27 g projectile up to 500 m/s, if helium gas is used as a driver. The system has been designed on the principal idea that the precise optical measurement methods developed in other areas of research can be applied to the gun study. The streak camera is 300 mm in diameter, with a rectangular rotating mirror which is driven by an air turbine spindle. The attainable streak velocity is 3 mm/microsecond(s) . The size of the camera is rather small aiming at the portability and economy. Therefore, the streak velocity is relatively slower than the fast cameras, but it is possible to use low-sensitivity but high-resolution film as a recording medium. We have also constructed a pulsed dye laser of 25 - 30 microsecond(s) in duration. The laser can be used as a light source of observation. The advantage for the use of the laser will be multi-fold, i.e., good directivity, almost single frequency, and so on. The feasibility of the system has been demonstrated by performing several experiments.

  12. Use of Video Goggles to Distract Patients During PET/CT Studies of School-Aged Children.

    PubMed

    Gelfand, Michael J; Harris, Jennifer M; Rich, Amanda C; Kist, Chelsea S

    2016-12-01

    This study was designed to evaluate the effectiveness of video goggles in distracting children undergoing PET/CT and to determine whether the goggles create CT and PET artifacts. Video goggles with small amounts of internal radioopaque material were used. During whole-body PET/CT imaging, 30 nonsedated patients aged 4-13 y watched videos of their choice using the goggles. Fifteen of the PET/CT studies were performed on a scanner installed in 2006, and the other 15 were performed on a scanner installed in 2013. The fused scans were reviewed for evidence of head movement, and the individual PET and CT scans of the head were reviewed for the presence and severity of streak artifact. The CT exposure settings were recorded for each scan at the anatomic level at which the goggles were worn. Only one of the 30 scans had evidence of significant head motion. Two of the 30 had minor coregistration problems due to motion, and 27 of the 30 had very good to excellent coregistration. For the 2006 scanner, 2 of the 14 evaluable localization CT scans of the head demonstrated no streak artifact in brain tissue, 6 of the 14 had mild streak artifact in brain tissue, and 6 of the 14 had moderate streak artifact in brain tissue. Mild streak artifact in bone was noted in 2 of the 14 studies. For the 2013 scanner, 7 of 15 studies had mild streak artifact in brain tissue and 8 of 15 had no streak artifact in brain tissue, whereas none of the 15 had streak artifact in bone. There were no artifacts attributable to the goggles on the 18 F-FDG PET brain images of any of the 29 evaluable studies. The average CT exposure parameters at the level of the orbits were 36% lower on the 2013 scanner than on the 2006 scanner. Video goggles may be used successfully to distract children undergoing PET with localization CT. The goggles cause no significant degradation of the PET brain images or the CT skull images. The degree of artifact on brain tissue images varies from none to moderate and depends on the CT equipment used. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. Basal streamline sprays for hardwood resprout control: herbicides, concentrations, and streaks per stem

    Treesearch

    James H. Miller

    1997-01-01

    Basal streamline sprays were tested to control sweetgum, water oak, and southern red oak that ranged from 0.5 to 2 inches groundline diameter. Primary test herbicides and mixtures were triclopyr (Garlon 4) at 20 and 40 percent mixed with 10 percent d-limonene (Cide-Kick) and the remainder diesel; and imazapyr (Chopper) at 5 and 10 percent mixed in only diesel. Primary...

  14. Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bons, Jeffrey; Ameri, Ali

    2016-01-08

    The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. Thesemore » studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling. The new deposition model was implemented into the CFD model as a wall boundary condition, with various particle sizes investigated in the simulation. Simulations utilizing a steady mixing plane formulation and an unsteady sliding mesh were conducted and the flow solution of each was validated against experimental data. Results from each of these simulations, including impact and capture distributions and efficiencies, were compared and potential reasons for differences discussed in detail. The inclusion of a large range of particle sizes allowed investigation of trends with particle size, such as increased radial migration and reduced sticking efficiency at the larger particle sizes. The unsteady simulation predicted lower sticking efficiencies on the rotor blades than the mixing plane simulation for the majority of particle sizes. This is postulated to be due to the preservation of the hot streak and cool vane wake through the vane-rotor interface (which are smeared out circumferentially in the mixing-plane simulation). The results reported here represent the successful implementation of a novel deposition model into validated vane-rotor flow solutions that include a non-uniform inlet temperature profile and simulated vane cooling.« less

  15. Time-resolved optical measurements of the post-detonation combustion of aluminized explosives

    NASA Astrophysics Data System (ADS)

    Carney, Joel R.; Miller, J. Scott; Gump, Jared C.; Pangilinan, G. I.

    2006-06-01

    The dynamic observation and characterization of light emission following the detonation and subsequent combustion of an aluminized explosive is described. The temporal, spatial, and spectral specificity of the light emission are achieved using a combination of optical diagnostics. Aluminum and aluminum monoxide emission peaks are monitored as a function of time and space using streak camera based spectroscopy in a number of light collection configurations. Peak areas of selected aluminum containing species are tracked as a function of time to ascertain the relative kinetics (growth and decay of emitting species) during the energetic event. At the chosen streak camera sensitivity, aluminum emission is observed for 10μs following the detonation of a confined 20g charge of PBXN-113, while aluminum monoxide emission persists longer than 20μs. A broadband optical emission gauge, shock velocity gauge, and fast digital framing camera are used as supplemental optical diagnostics. In-line, collimated detection is determined to be the optimum light collection geometry because it is independent of distance between the optics and the explosive charge. The chosen optical configuration also promotes a constant cylindrical collection volume that should facilitate future modeling efforts.

  16. Experimental and numerical investigation of low-drag intervals in turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Park, Jae Sung; Ryu, Sangjin; Lee, Jin

    2017-11-01

    It has been widely investigated that there is a substantial intermittency between high and low drag states in wall-bounded shear flows. Recent experimental and computational studies in a turbulent channel flow have identified low-drag time intervals based on wall shear stress measurements. These intervals are a weak turbulence state characterized by low-speed streaks and weak streamwise vortices. In this study, the spatiotemporal dynamics of low-drag intervals in a turbulent boundary layer is investigated using experiments and simulations. The low-drag intervals are monitored based on the wall shear stress measurement. We show that near the wall conditionally-sampled mean velocity profiles during low-drag intervals closely approach that of a low-drag nonlinear traveling wave solution as well as that of the so-called maximum drag reduction asymptote. This observation is consistent with the channel flow studies. Interestingly, the large spatial stretching of the streak is very evident in the wall-normal direction during low-drag intervals. Lastly, a possible connection between the mean velocity profile during the low-drag intervals and the Blasius profile will be discussed. This work was supported by startup funds from the University of Nebraska-Lincoln.

  17. Following the dynamics of matter with femtosecond precision using the X-ray streaking method

    DOE PAGES

    David, C.; Karvinen, P.; Sikorski, M.; ...

    2015-01-06

    X-ray Free Electron Lasers (FELs) can produce extremely intense and very short pulses, down to below 10 femtoseconds (fs). Among the key applications are ultrafast time-resolved studies of dynamics of matter by observing responses to fast excitation pulses in a pump-probe manner. Detectors with sufficient time resolution for observing these processes are not available. Therefore, such experiments typically measure a sample's full dynamics by repeating multiple pump-probe cycles at different delay times. This conventional method assumes that the sample returns to an identical or very similar state after each cycle. Here we describe a novel approach that can provide amore » time trace of responses following a single excitation pulse, jitter-free, with fs timing precision. We demonstrate, in an X-ray diffraction experiment, how it can be applied to the investigation of ultrafast irreversible processes.« less

  18. Streaked Craters in False-Color

    NASA Image and Video Library

    2010-03-29

    A false-color view of Saturn moon Mimas from NASA Cassini spacecraft accentuates terrain-dependent color differences and shows dark streaks running down the sides of some of the craters on the region of the moon that leads in its orbit around Saturn.

  19. Streaks on Opportunity Solar Panel After Uphill Drive

    NASA Image and Video Library

    2016-03-31

    This image from the navigation camera on the mast of NASA Mars Exploration Rover Opportunity shows streaks of dust or sand on the vehicle rear solar panel after a series of drives during which the rover was pointed steeply uphill.

  20. Dark Streaks Over-riding Inactive Dunes

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Not all sand dunes on Mars are active in the modern martian environment. This example from the Lycus Sulci (Olympus Mons'aureole') region shows a case where small windblown dunes at the base of a slope have been over-ridden by more recent dark streaks (arrows). The dark streaks are most likely caused by what geologists call mass wasting or mass movement (landslides and avalanches are mass movements). Dark slope streaks such as these are common in dustier regions of Mars, and they appear to result from movement of extremely dry dust or sand in an almost fluidlike manner down a slope. This movement disrupts the bright dust coating on the surface and thus appears darker than the surrounding terrain.

    In this case, the dark slope streaks have moved up and over the dunes at the bottom of the slope, indicating that the process that moves sediment down the slope is more active (that is, it has occurred more recently and hence is more likely to occur) in the modern environment than is the movement of dunes and ripples at this location on Mars. The dunes, in fact, are probably mantled by dust. This October 1997 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture is illuminated from the left and located near 31.6oN, 134.0oW.

  1. Efficacy of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) for shoulder magnetic resonance (MR) imaging.

    PubMed

    Nagatomo, Kazuya; Yabuuchi, Hidetake; Yamasaki, Yuzo; Narita, Hiroshi; Kumazawa, Seiji; Kojima, Tsukasa; Sakai, Noriyuki; Masaki, Masahumi; Kimura, Hiroshi

    2016-10-01

    To elucidate the utility of PROPELLER for motion artefact reduction on shoulder MRI and to examine the influence of streak artefacts on diagnosis of clinical images. 15 healthy volunteers and 48 patients underwent shoulder MRI with/without PROPELLER (coronal oblique proton density-fast spin echo [PD-FSE], sagittal oblique T2-FSE). In a volunteer study, all sequences were performed in both static and exercise-loaded conditions. Two radiologists graded artefacts and delineation of various anatomical structures in the volunteer study and motion and streak artefacts in the clinical study. Mean scores were compared between sequences with/without PROPELLER. In the clinical study, mean scores of motion artefacts were compared with mean scores of streak artefacts. Wilcoxon signed-rank test was used for all comparisons. In both studies, PROPELLER significantly reduced motion artefacts (P<0.05). In the volunteer study, it significantly improved delineations in sagittal oblique images in the exercise-loaded condition (P<0.05). In the clinical study, streak artefacts appeared dominantly on images with PROPELLER (P<0.05), but influenced diagnosis to a lesser extent than motion artefacts. PROPELLER can reduce motion artefacts in shoulder MRI. While it does cause streak artefacts, it affects diagnosis to a lesser extent. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. MHz-Rate NO PLIF Imaging in a Mach 10 Hypersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jiang, N.; Webster, M.; Lempert, Walter R.; Miller, J. D.; Meyer, T. R.; Danehy, Paul M.

    2010-01-01

    NO PLIF imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 inch Mach 10 hypersonic wind tunnel. Approximately two hundred time correlated image sequences, of between ten and twenty individual frames, were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The majority of the image sequences were obtained from the boundary layer of a 20 flat plate model, in which transition was induced using a variety of cylindrical and triangular shaped protuberances. The high speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. A series of image sequences were also obtained from a 20 compression ramp at a 10 angle of attack in which the temporal dynamics of the characteristic separated flow was captured in a time correlated manner.

  3. Modeling of a microchannel plate working in pulsed mode

    NASA Astrophysics Data System (ADS)

    Secroun, Aurelia; Mens, Alain; Segre, Jacques; Assous, Franck; Piault, Emmanuel; Rebuffie, Jean-Claude

    1997-05-01

    MicroChannel Plates (MCPs) are used in high speed cinematography systems such as MCP framing cameras and streak camera readouts. In order to know the dynamic range or the signal to noise ratio that are available in these devices, a good knowledge of the performances of the MCP is essential. The point of interest of our simulation is the working mode of the microchannel plate--that is light pulsed mode--, in which the signal level is relatively high and its duration can be shorter than the time needed to replenish the wall of the channel, when other papers mainly studied night vision applications with weak continuous and nearly single electron input signal. Also our method allows the simulation of saturation phenomena due to the large number of electrons involved, whereas the discrete models previously used for simulating pulsed mode might not be properly adapted. Here are presented the choices made in modeling the microchannel, more specifically as for the physics laws, the secondary emission parameters and the 3D- geometry. In a last part first results are shown.

  4. Measurements of Laser Imprint with High-Z Coated targets on Omega EP

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Oh, J.; Stoeckl, C.; Aglitskiy, Y.; Schmitt, A. J.; Bates, J. W.; Obenschain, S. P.

    2015-11-01

    Previous experiments on Nike KrF laser (λ = 248nm) at NRL found that a thin (400-800 Å) high-Z (Au or Pd) overcoat on the laser side of the target is effective in suppressing broadband imprint and reducing ablative Richtmyer-Meshkov growth. The overcoat initially absorbs the laser and emits soft x-rays that ablate the target, forming a large stand-off distance between laser absorption and ablation and driving the target at higher mass ablation rate. Implementation of this technique on the frequency-tripled Nd:glass (351 nm) NIF would enable a wider range direct drive experiments there. To this end, we are carrying out experiments using the NIF-like beams of Omega EP. Analogous to experiments on Nike, areal mass perturbations due to RT-amplified laser imprint are measured using curved crystal imaging coupled to a streak camera. High-Z coating dynamics and target trajectory are imaged side-on. First results indicate that imprint suppression is observed, albeit with thicker coatings. Work supported by the Department of Energy/NNSA.

  5. ARC-1989-AC89-7038

    NASA Image and Video Library

    1989-08-26

    P-34709 Range: 157,000 kilometers (98,000 miles) This Voyager 2 high resolution color image, taken 2 hours before closest approach, provides obvious evidence of vertical relief in Neptune's bright cloud streaks. These clouds were observed at a latitude of 29° N near Neptune's east terminator. The linear cloud forms are stretched approximately along lines of constant latitude and the sun is toward the lower left. The bright sides of the clouds that face the sun are brighter than the surrounding cloud deck because they are more directly exposed to the sun. Shadows can be seen on the side directly opposite the sun. These shadows are less distinct at short wavelengths (violet filter) and more distinct at long wavelengths (orange filter). This can be understood if the underlying cloud deck on which the shadow is cast is at a relatively great depth, in which case scattering by molecules in the overlying atmopsphere will diffuse light into the shadow. Because molecules scatter blue light much more efficiently than red light, the shadows will be darkest at the longest (reddest) wavelengths, and will appear blue under white illumination. The resolution of this image is 11 kilometers (6.8 miles per pixel). The width of the cloud streaks range from 50 to 200 kilometers (31 to 124 miles), and their shadow widths range from 30 to 50 kilometers (18 to 31 miles). Cloud heights appear to be of the order of 50 kilometers (31 miles). This corresponds to 2 scale heights.

  6. Picosecond Thermal Dynamics in an Underdense Plasma Measured with Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Haberberger, D.; Katz, J.; Bucht, S.; Davies, A.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2017-10-01

    Field-ionized underdense plasmas have many promising applications within the laser-plasma interaction field: nuclear fusion, particle accelerators, x-ray sources, and laser-plasma amplification. Having complete knowledge of the plasma dynamics is essential to establishing optimal parameters for a given application. Here picosecond-resolved Thomson scattering measurements have been used to determine the electron thermal dynamics of an underdense ( 1019/cm) H2 plasma irradiated by a 60-ps, 1053-nm laser pulse with an intensity of 2 × 1014 W/cm2. The picosecond-resolved spectra were obtained with a novel pulse-front tilt compensated streaked optical spectrometer. The electron temperature was observed to rise from an initial 5 eV to a density-dependent plateau in 23 ps. Simulation results indicate that inverse bremsstrahlung heating, radiative cooling, and radial conduction cooling all play an important role in modeling the thermal dynamics. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Surface and airborne evidence for plumes and winds on triton

    USGS Publications Warehouse

    Hansen, C.J.; McEwen, A.S.; Ingersoll, A.P.; Terrile, R.J.

    1990-01-01

    Aeolian features on Triton that were imaged during the Voyager Mission have been grouped. The term "aeolian feature" is broadly defined as features produced by or blown by the wind, including surface and airborne materials. Observations of the latitudinal distributions of the features probably associated with current activity (known plumes, crescent streaks, fixed terminator clouds, and limb haze with overshoot) all occur from latitude -37?? to latitude -62??. Likely indicators of previous activity (dark surface streaks) occur from latitude -5?? to -70??, but are most abundant from -15?? to -45??, generally north of currently active features. Those indicators which give information on wind direction and speed have been measured. Wind direction is a function of altitude. The predominant direction of the surface wind streaks is found to be between 40?? and 80?? measured clockwise from north. The average orientation of streaks in the northeast quadrant is 59??. Winds at 1- to 3-kilometer altitude are eastward, while those at >8 kilometers blow west.

  8. Flow around circular cylinder oscillating at low Keulegan-Carpenter number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunahara, Shunji; Kinoshita, Takeshi

    1994-12-31

    This paper shows experimental results of hydrodynamic forces acting on a vertical circular cylinder oscillating sinusoidally at low frequencies in the still water and results of the flow visualization, to examine the flow around a circular cylinder, particularly the lift forces at low Keulegan-Carpenter number Kc. The instability of streaked flow of which section is mushroom shape is observed by flow visualization, and the flows are asymmetrical in some cases. The asymmetrical streaked flow may have a close relationship to the lift force at low Kc, Kc {le} 4 or 5. Asymmetrical mushroom vortex ring is visible for Kc {le}more » 1. The mushroom vortex ring is symmetrical, or the streaks of the rings arrange themselves alternately for 1 {le} Kc {le} 1.5. A clear ring of mushroom vortices is not formed due to diffusion of dye sheets, though a flow streaked with mushroom vortices is visible for 1.5 {le} Kc {le} 2.5 and for Kc {ge} 2.5 the flow is almost turbulent.« less

  9. Perception of randomness: On the time of streaks.

    PubMed

    Sun, Yanlong; Wang, Hongbin

    2010-12-01

    People tend to think that streaks in random sequential events are rare and remarkable. When they actually encounter streaks, they tend to consider the underlying process as non-random. The present paper examines the time of pattern occurrences in sequences of Bernoulli trials, and shows that among all patterns of the same length, a streak is the most delayed pattern for its first occurrence. It is argued that when time is of essence, how often a pattern is to occur (mean time, or, frequency) and when a pattern is to first occur (waiting time) are different questions and bear different psychological relevance. The waiting time statistics may provide a quantitative measure to the psychological distance when people are expecting a probabilistic event, and such measure is consistent with both of the representativeness and availability heuristics in people's perception of randomness. We discuss some of the recent empirical findings and suggest that people's judgment and generation of random sequences may be guided by their actual experiences of the waiting time statistics. Published by Elsevier Inc.

  10. Slope streaks on Mars: A new “wet” mechanism

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.

    2009-06-01

    Slope steaks are one of the most intriguing modern phenomena observed on Mars. They have been mostly interpreted as some specific type of granular flow. We propose another mechanism for slope streak formation on Mars. It involves natural seasonal formation of a modest amount of highly concentrated chloride brines within a seasonal thermal skin, and runaway propagation of percolation fronts. Given the current state of knowledge of temperature regimes and the composition and structure of the surface layer in the slope streak regions, this mechanism is consistent with the observational constraints; it requires an assumption that a significant part of the observed chlorine to be in form of calcium and ferric chloride, and a small part of the observed hydrogen to be in form of water ice. This "wet" mechanism has a number of appealing advantages in comparison to the widely accepted "dry" granular flow mechanism. Potential tests for the "wet" mechanism include better modeling of the temperature regime and observations of the seasonality of streak formation.

  11. Fine structures of embryonic discs of in vivo post-hatching porcine blastocysts at the pre-primitive streak stage.

    PubMed

    Xia, P; Liu, Z; Qin, P

    2011-04-01

    To date, reports about the ultrastructure of porcine embryonic discs have not shown details of the primitive streak. The main objective of this study was to examine the ultrastructure of interior and exterior embryonic discs in porcine in vivo blastocysts with diameters of 1, 3 and 9 mm using scanning electron microscopy and transmission electron microscopy. For the first time, we revealed the ultrastructure of the unusual group of cells in the pre-primitive streak area of embryonic discs. The cells were 1-2 μm in diameter, had high electron density and contained abundant, free ribosomes and endoplasmic reticulum. These primitive streak cells could represent original embryonic stem cells or represent a stem cell niche. The results also showed three types of cells on the exterior surface of the embryonic discs. Moreover, our results provided morphological evidence of condensed nuclei in the smooth cells on the surface of the embryonic disc. © 2010 Blackwell Verlag GmbH.

  12. Experimental analysis of control mechanisms in somite segmentation in avian embryos. II. Reduction of material in the gastrula stages of the chick.

    PubMed

    Bellairs, R; Veini, M

    1984-02-01

    A new theory of control of somite segmentation in chick embryos is proposed. This supposses that tiny clusters of already programmed cells are present throughout the presumptive somite area at stage 4, but that in order to fulfill their destiny they probably depend on the addition of further cells from the primitive streak. Evidence is based on the two groups of experiments: a) Experiments involving transection across the primitive streak at various stages, (which results in a 'tail' which possesses mesodermal derivatives) and across the segmental plate (which results in a 'tail' lacking mesodermal derivatives). b) Experiments in which parts of embryos have been explanted with or without their primitive streak. It is suggested that the initial clusters of pre-programmed cells move further and further posteriorly, developing into somitomeres (the precursors of true somites) only as they receive re-inforcements from the primitive streak or, ultimately, from the tail bud.

  13. The role of Kenya in the trans-African spread of maize streak virus strain A.

    PubMed

    Pande, Daniel; Madzokere, Eugene; Hartnady, Penelope; Kraberger, Simona; Hadfield, James; Rosario, Karyna; Jäschke, Anja; Monjane, Adérito L; Owor, Betty E; Dida, Mathews M; Shepherd, Dionne N; Martin, Darren P; Varsani, Arvind; Harkins, Gordon W

    2017-03-15

    Maize streak virus (MSV), the causal agent of maize streak disease (MSD), is the most important viral pathogen of Africa's staple food crop, maize. Previous phylogeographic analyses have revealed that the most widely-distributed and common MSV variant, MSV-A 1 , has been repeatedly traversing Africa over the past fifty years with long-range movements departing from either the Lake Victoria region of East Africa, or the region around the convergence of Zimbabwe, South Africa and Mozambique in southern Africa. Despite Kenya being the second most important maize producing country in East Africa, little is known about the Kenyan MSV population and its contribution to the ongoing diversification and trans-continental dissemination of MSV-A 1 . We therefore undertook a sampling survey in this country between 2008 and 2011, collecting MSD prevalence data in 119 farmers' fields, symptom severity data for 170 maize plants and complete MSV genome sequence data for 159 MSV isolates. We then used phylogenetic and phylogeographic analyses to show that whereas the Kenyan MSV population is likely primarily derived from the MSV population in neighbouring Uganda, it displays considerably more geographical structure than the Ugandan population. Further, this geographical structure likely confounds apparent associations between virus genotypes and both symptom severity and MSD prevalence in Kenya. Finally, we find that Kenya is probably a sink rather than a source of MSV diversification and movement, and therefore, unlike Uganda, Kenya probably does not play a major role in the trans-continental dissemination of MSV-A 1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The importance of dermoscopy for the diagnosis of acquired bilateral telangiectatic macules: the angioid streak pattern reveals underlying chronic liver disease.

    PubMed

    Kim, G-W; Shin, K; Kim, T-W; You, H-S; Jin, H-J; Shim, W-H; Kim, H-S; Ko, H-C; Kim, B-S; Kim, M-B

    2017-11-08

    Acquired bilateral telangiectatic macules (ABTM) are a newly recognized disease entity, which manifest as multiple telangiectatic pigmented macules confined mostly to the upper arms. To evaluate clinical and dermoscopic features in a group of 50 patients with ABTM and to determine the diagnostic usefulness of dermoscopy in ABTM. Patients were selected from two tertiary teaching hospitals in Korea [Pusan National University Hospitals (Busan and Yangsan)]. Fifty patients (41 males and 9 females; mean age 48.1 years; range 26-78 years) with ABTM were included in the study. The dermoscopic findings were graded using a 4-point scale: none (0), mild (1), moderate (2) and severe (3). In addition, the results of 23 patients with and 27 patients without chronic liver disease (CLD) were compared to determine whether the presence of CLD affects dermoscopic findings. Three distinct dermoscopic patterns were observed; brown pigmentations, telangiectasia (linear-irregular vessels) and an angioid streak pattern. Brown pigmentation in the group without CLD had higher severity score than those in CLD group (mean score: 2.00 vs. 1.48, P = 0.033). However, mean telangiectasia severity score was higher in the CLD group (2.14 vs. 1.39, P < 0.001). The angioid streak pattern was more severe and more common in patients with CLD than in those without [1.37 vs. 0.35 (P < 0.001) and 63.0% vs. 26.1%, respectively]. Detailed observations with dermoscopy can provide first clues of the presence of ABTM and underlying chronic liver disease. © 2017 European Academy of Dermatology and Venereology.

  15. Meroe Patera

    NASA Image and Video Library

    2002-11-26

    This image is located in Meroe Patera (longitude: 292W/68E, latitude: 7.01), which is a small region within Syrtis Major Planitia. Syrtis Major is a low-relief shield volcano whose lava flows make up a plateau more than 1000 km across. These flows are of Hesperian age (Martian activity of intermediate age) and are believed to have originated from a series of volcanic depressions, called calderas. The caldera complex lies on extensions of the ring faults associated with the Isidis impact basin toward the northeast - thus Syrtis Major volcanism may be associated with post-impact adjustments of the Martian crust. The most striking feature in this image is the light streaks across the image that lead to dunes in the lower left region. Wind streaks are albedo markings interpreted to be formed by aeolian action on surface materials. Most are elongate and allow an interpretation of effective wind directions. Many streaks are time variable and thus provide information on seasonal or long-term changes in surface wind directions and strengths. The wind streaks in this image are lighter than their surroundings and are the most common type of wind streak found on Mars. These streaks are formed downwind from crater rims (as in this example), mesas, knobs, and other positive topographic features. The dune field in this image is a mixture of barchan dunes and transverse dunes. Dunes are among the most distinctive aeolian feature on Mars, and are similar in form to barchan and transverse dunes on Earth. This similarity is the best evidence to indicate that martian dunes are composed of sand-sized material, although the source and composition of the sand remain controversial. Both the observations of dunes and wind streaks indicate that this location has a windy environment - and these winds are persistent enough to product dunes, as sand-sized material accumulates in this region. These features also indicate that the winds in this region are originating from the right side of the image, and moving towards the left. http://photojournal.jpl.nasa.gov/catalog/PIA04012

  16. VENUS CLOUD MORPHOLOGY AND MOTIONS FROM GROUND-BASED IMAGES AT THE TIME OF THE AKATSUKI ORBIT INSERTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sánchez-Lavega, A.; Hueso, R.; Pérez-Hoyos, S.

    We report Venus image observations around the two maximum elongations of the planet at 2015 June and October. From these images we describe the global atmospheric dynamics and cloud morphology in the planet before the arrival of JAXA’s Akatsuki mission on 2015 December 7. The majority of the images were acquired at ultraviolet wavelengths (380–410 nm) using small telescopes. The Venus dayside was also observed with narrowband filters at other wavelengths (890 nm, 725–950 nm, 1.435 μ m CO{sub 2} band) using the instrument PlanetCam-UPV/EHU at the 2.2 m telescope in Calar Alto Observatory. In all cases, the lucky imagingmore » methodology was used to improve the spatial resolution of the images over the atmospheric seeing. During the April–June period, the morphology of the upper cloud showed an irregular and chaotic texture with a well-developed equatorial dark belt (afternoon hemisphere), whereas during October–December the dynamical regime was dominated by planetary-scale waves (Y-horizontal, C-reversed, and ψ -horizontal features) formed by long streaks, and banding suggesting more stable conditions. Measurements of the zonal wind velocity with cloud tracking in the latitude range from 50°N to 50°S shows agreement with retrievals from previous works.« less

  17. Effect of attochirp on attosecond streaking time delay in photoionization of atoms

    NASA Astrophysics Data System (ADS)

    Goldsmith, C.; Jaroń-Becker, A.; Becker, A.

    2018-01-01

    We present a theoretical analysis of the effect of the attochirp on the streaking time delay, intrinsic to photoionization of an atom by an attosecond laser pulse at extreme ultraviolet wavelengths superposed by a femtosecond streaking pulse. To this end, we determine the expectation value of the delay in a chirped pulse using a recently developed model formula. Results of our calculations show that the attochirp can be relevant for photoemission from the 3p shell in argon atom at frequencies near the Cooper minimum, while it is negligible if the photoionization cross section as a function of frequency varies smoothly.

  18. International Congress on High Speed Photography and Photonics, 17th, Pretoria, Republic of South Africa, Sept. 1-5, 1986, Proceedings. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    McDowell, M. W.; Hollingworth, D.

    1986-01-01

    The present conference discusses topics in mining applications of high speed photography, ballistic, shock wave and detonation studies employing high speed photography, laser and X-ray diagnostics, biomechanical photography, millisec-microsec-nanosec-picosec-femtosec photographic methods, holographic, schlieren, and interferometric techniques, and videography. Attention is given to such issues as the pulse-shaping of ultrashort optical pulses, the performance of soft X-ray streak cameras, multiple-frame image tube operation, moire-enlargement motion-raster photography, two-dimensional imaging with tomographic techniques, photochron TV streak cameras, and streak techniques in detonics.

  19. Wheat streak mosaic virus coat protein is a host-specific long-distance transport determinant in oat

    USDA-ARS?s Scientific Manuscript database

    Viral determinants involved in systemic infection of hosts by monocot-infecting plant viruses are poorly understood. Wheat streak mosaic virus (WSMV, genus Tritimovirus, family Potyviridae) exclusively infects monocotyledonous crops such as wheat, oat, barley, maize, triticale, and rye. Previously, ...

  20. Parallel Fault Strands at 9-km Depth Resolved on the Imperial Fault, Southern California

    NASA Astrophysics Data System (ADS)

    Shearer, P. M.

    2001-12-01

    The Imperial Fault is one of the most active faults in California with several M>6 events during the 20th century and geodetic results suggesting that it currently carries almost 80% of the total plate motion between the Pacific and North American plates. We apply waveform cross-correlation to a group of ~1500 microearthquakes along the Imperial Fault and find that about 25% of the events form similar event clusters. Event relocation based on precise differential times among events in these clusters reveals multiple streaks of seismicity up to 5 km in length that are at a nearly constant depth of ~9 km but are spaced about 0.5 km apart in map view. These multiples are unlikely to be a location artifact because they are spaced more widely than the computed location errors and different streaks can be resolved within individual similar event clusters. The streaks are parallel to the mapped surface rupture of the 1979 Mw=6.5 Imperial Valley earthquake. No obvious temporal migration of the event locations is observed. Limited focal mechanism data for the events within the streaks are consistent with right-lateral slip on vertical fault planes. The seismicity not contained in similar event clusters cannot be located as precisely; our locations for these events scatter between 7 and 11 km depth, but it is possible that their true locations could be much more tightly clustered. The observed streaks have some similarities to those previously observed in northern California along the San Andreas and Hayward faults (e.g., Rubin et al., 1999; Waldhauser et al., 1999); however those streaks were imaged within a single fault plane rather than the multiple faults resolved on the Imperial Fault. The apparent constant depth of the Imperial streaks is similar to that seen in Hawaii at much shallower depth by Gillard et al. (1996). Geodetic results (e.g., Lyons et al., 2001) suggest that the Imperial Fault is currently slipping at 45 mm/yr below a locked portion that extends to ~10 km depth. We interpret our observed seismicity streaks as representing activity on multiple fault strands at transition depths between the locked shallow part of the Imperial Fault and the slipping portion at greater depths. It is likely that these strands extend into the aseismic region below, suggesting that the lower crustal shear zone is at least 2 km wide.

  1. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI.

    PubMed

    Zhou, Ziwu; Han, Fei; Yan, Lirong; Wang, Danny J J; Hu, Peng

    2017-12-01

    To develop and evaluate an improved stack-of-stars radial sampling strategy for reducing streaking artifacts. The conventional stack-of-stars sampling strategy collects the same radial angle for every partition (slice) encoding. In an undersampled acquisition, such an aligned acquisition generates coherent aliasing patterns and introduces strong streaking artifacts. We show that by rotating the radial spokes in a golden-angle manner along the partition-encoding direction, the aliasing pattern is modified, resulting in improved image quality for gridding and more advanced reconstruction methods. Computer simulations were performed and phantom as well as in vivo images for three different applications were acquired. Simulation, phantom, and in vivo experiments confirmed that the proposed method was able to generate images with less streaking artifact and sharper structures based on undersampled acquisitions in comparison with the conventional aligned approach at the same acceleration factors. By combining parallel imaging and compressed sensing in the reconstruction, streaking artifacts were mostly removed with improved delineation of fine structures using the proposed strategy. We present a simple method to reduce streaking artifacts and improve image quality in 3D stack-of-stars acquisitions by re-arranging the radial spoke angles in the 3D partition direction, which can be used for rapid volumetric imaging. Magn Reson Med 78:2290-2298, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Stability Analysis of Roughness Array Wake in a High-Speed Boundary Layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Edwards, Jack

    2009-01-01

    Computations are performed to examine the effects of both an isolated and spanwise periodic array of trip elements on a high-speed laminar boundary layer, so as to identify the potential physical mechanisms underlying an earlier transition to turbulence as a result of the trip(s). In the context of a 0.333 scale model of the Hyper-X forebody configuration, the time accurate solution for an array of ramp shaped trips asymptotes to a stationary field at large times, indicating the likely absence of a strong absolute instability in the mildly separated flow due to the trips. A prominent feature of the wake flow behind the trip array corresponds to streamwise streaks that are further amplified in passing through the compression corner. Stability analysis of the streaks using a spatial, 2D eigenvalue approach reveals the potential for a strong convective instability that might explain the earlier onset of turbulence within the array wake. The dominant modes of streak instability are primarily sustained by the spanwise gradients associated with the streaks and lead to integrated logarithmic amplification factors (N factors) approaching 7 over the first ramp of the scaled Hyper-X forebody, and substantially higher over the second ramp. Additional computations are presented to shed further light on the effects of both trip geometry and the presence of a compression corner on the evolution of the streaks.

  3. Streaks Of Colored Water Indicate Surface Airflows

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1994-01-01

    Response faster and contamination less than in oil-flow technique. Flowing colored water provides accurate and clean way to reveal flows of air on surfaces of models in wind tunnels. Colored water flows from small orifices in model, forming streak lines under influence of air streaming over surface of model.

  4. Modified ecometric technique (four-quadrant sequential streak) to evaluate Campylobacter enrichment broth proficiency in suppressing background microflora

    USDA-ARS?s Scientific Manuscript database

    Ecometric technique is a semi-quantitative scoring method used for quality control of culture media in microbiological laboratories. The technique involves inoculation with defined populations of specific culture onto solid media via a standardized chronological streaking technique, leading to ever-...

  5. Resistance to Wheat streak mosaic virus identified in synthetic wheat lines

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) is a significant pathogen in wheat that causes economic loss each year. WSMV is typically controlled using cultural practices such as the removal of volunteer wheat. Genetic resistance is limited. Until recently, no varieties have been available with major resista...

  6. Environmental factors influencing the development of black leaf streak (Mycosphaerella fijiensis Morelet) on bananas in Puerto Rico.

    USDA-ARS?s Scientific Manuscript database

    The effects of environmental factors on the development of black leaf streak (BLS) were studied in Puerto Rico under field conditions. Environmental factors evaluated included temperature, relative humidity, rainfall and solar radiation. Their effect on BLS was determined by recording the youngest...

  7. Effect of temperature on wheat streak mosaic disease development in winter wheat

    USDA-ARS?s Scientific Manuscript database

    Temperature is one of the key factors that influence viral disease development in plants. In this study, temperature effect on Wheat streak mosaic virus (WSMV) replication and in planta movement was determined using a green fluorescent protein (GFP)-tagged virus in two winter wheat cultivars. Virus-...

  8. Wheat streak mosaic virus-encoded NIa-Pro and coat protein are involved in virus superinfection exclusion

    USDA-ARS?s Scientific Manuscript database

    Cross protection or superinfection exclusion (SE) is defined as the phenomenon whereby initial infection by one virus prevents subsequent infection by closely related viruses. The mechanisms of SE are just beginning to be understood. Wheat streak mosaic virus (WSMV; genus: Tritimovirus; family: Poty...

  9. Evaluation of banana hybrids for tolerance to black leaf streak (Mycosphaerella fijiensis Morelet) in Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    In Puerto Rico, bananas (including plantains) are important agricultural commodities; their combined production totaled 133,500 tons in 2008. Black leaf streak (BLS) and Sigatoka leaf spot diseases, caused by Mycosphaerella fijiensis and M. musicola, respectively, are responsible for significant los...

  10. Dynamic characteristics of far-field radiation of current modulated phase-locked diode laser arrays

    NASA Technical Reports Server (NTRS)

    Elliott, R. A.; Hartnett, K.

    1987-01-01

    A versatile and powerful streak camera/frame grabber system for studying the evolution of the near and far field radiation patterns of diode lasers was assembled and tested. Software needed to analyze and display the data acquired with the steak camera/frame grabber system was written and the total package used to record and perform preliminary analyses on the behavior of two types of laser, a ten emitter gain guided array and a flared waveguide Y-coupled array. Examples of the information which can be gathered with this system are presented.

  11. Application of the Regional Atmospheric Modeling System to the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Rafkin, Scot C. R.

    1998-01-01

    The core dynamics of the Regional Atmospheric Modeling System (RAMS), a widely used and powerful mesoscale Earth model, is adapted to the Martian Atmosphere and applied in the study of aeolian surface features. In particular, research efforts focused on the substitution of Martian planetary and atmospheric properties such as rotation rate, and thermodynamic constants in place of hard-wired Earth properties. Application of the model was restricted to three-dimensional flow impinging upon impact craters, and the search for plausible wind patterns that could produce the so-called light and dark streaks downwind of topographic barriers.

  12. Martian Dust Devils: 2 Mars Years of MGS MOC Observations

    NASA Astrophysics Data System (ADS)

    Cantor, B. A.; Edgett, K. S.

    2002-12-01

    Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide and narrow angle images have captured more than 1000 active dust devils over 2 Mars years. In the most recent Mars year, we repeatedly imaged (and are continuing to image) several areas to monitor dust devil occurrence. Some Mars dust devils are as small as a few to 10s of meters across, others are 100s of meters across and over 6 km high. Each Martian hemisphere has a "dust devil season" that generally follows the subsolar latitude. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer (probably every afternoon; observations are acquired 2-3 times a week). The Amazonis and other MOC observations show no evidence that dust devils cause, lead to, or have a systematic relationship with dust storms. However, dust devils sometimes do occur near small, localized storms; and one specific relation occurred during the onset of the global dust events of 2001: slightly elevated levels of atmospheric dust (an optically thin cloud) triggered a very short period of dust devil activity in NW Amazonis in early northern autumn. The redistribution of dust by the 2001 global events may have also affected subsequent spring and summer dust devil activity in Hellas, where considerably fewer dust devils occurred in 2001-2002 than 1999-2000. In SW Syria, frequent, large dust devils occurred after the 2001 global events and persisted through southern summer. While dust devils have no specific relation to dust storms, they might play a role in the seasonal "wave of darkening" at middle and high latitudes by removing or disrupting thin veneers of dust. Dust devils have been observed to create thin, filamentary streaks. Some streaks are darker than their surroundings, while others are lighter. Some dust devils do not create streaks. At mid-latitudes, surfaces darken in spring as 100s of crisscrossing streaks form on widely-varied terrain. Some rare streaks exhibit cycloidal patterns similar to those created on Earth by tornadoes with multiple sub-vortices. The streaks occur at nearly all latitudes and elevations, from north polar dunes to the south polar layered terrain, from the summit of Olympus Mons to the floor of Hellas. During "dust devil season" at a given latitude, tremendous changes in streak patterns occur in periods as short as 1 month. These observations, along with repeated imaging in NW Amazonis and SW Syria, provide some idea of the frequency of dust devils. Uncertain is whether dust devils are responsible for all thin, filamentary streaks: while active vortices have been seen creating the plethora of streaks at southern mid-latitudes, none have been observed on the northern plains, despite observation of similar streak patterns. Perhaps northern plains dust devils occur at a different time of day relative to the MGS 1400 LT orbit, or perhaps dust devils did not form them. We monitored removal of dust from surfaces after the 2001 global dust events in several locations. Of particular interest was western Syrtis Major, which had brightened considerably after the 2001 storms. We observed this area for several months while very little change occurred. Finally, in January 2002, the surface was swept clean of most of its 2001 veneer of dust in a period of about 1 week. Dust devils played no role in this process; instead, regional surface winds were responsible.

  13. New generation attosecond light sources

    NASA Astrophysics Data System (ADS)

    Chang, Zenghu

    2017-04-01

    Millijoule level, few-cycle, carrier-envelope phase (CEP) stable Ti:Sapphire lasers centered at 800 nm have been the workhorse for the first generation attosecond light sources in the last 16 years. The spectral range of isolated attosecond pulses with sufficient photon flux for time-resolved pump-probe experiments has been limited to extreme ultraviolet (10 to 150 eV). The shortest pulses achieved are 67 as. It was demonstrated in 2001 that the cutoff photon energy of the high harmonic spectrum could be extended by increasing the center wavelength of the driving lasers. In recent years, mJ level, two-cycle, carrier-envelope phase stabilized lasers at 1.6 to 2.1 micron have been developed by implementing Optical Parametric Chirped Pulse Amplification (OPCPA) techniques. Recently, when long wavelength driving was combined with polarization gating, isolated soft x-rays in the water window (280-530 eV) were generated in our laboratory. The number of x-ray photons in the 120-400 eV range is comparable to that generated with Ti:Sapphire lasers in the 50 to 150 eV range. The ultrabroadband isolated x-ray pulses with 53 as duration were characterized by attosecond streaking measurements. The new generation attosecond soft X-ray sources open the door for studying electron dynamics with element specificity through core to valence transitions. NSF (1068604), ARO (W911NF-14-1-0383), AFOSR (FA9550-15-1-0037, FA9550-16-1-0013), DARPA-PULSE (W31P4Q1310017).

  14. ARC-1989-A89-7006

    NASA Image and Video Library

    1989-08-21

    Range : 12 million km (7.5 million miles) Resolution 110 km (68 miles) per pixel. These 2 images of Neptune were taken by Voyager 2's narrow-angle camera. During the 17.6 hours between the left and right images, the Great Dark Spot, at 22 degrees south latitude (left of center), has completed a little less than one rotation of Neptune. The smaller dark spot, at 54 south, completed a little more than one rotation, as can be seen by comparing its relative positions in the two pictures. The Great Dark Spot and the smaller spot have a relative velocity of 100 meters per second (220 miles an hour). The light and dark bands circling Neptune indicate predominantly zonal (east-west) motion. The diffuse white feature north of the Great Dark Spot is near Neptune's equator, and rotates with about the same period as the Great Dark Spot. Streak of bright clouds at the south edge, and just east of the Great Dark Spot, are its constatnt companions, and change the details of their appearance, often within a few hours. Changing brightness of the cloud streaks could be a result of vertical mortions.

  15. Linear modeling of turbulent skin-friction reduction due to spanwise wall motion

    NASA Astrophysics Data System (ADS)

    Duque-Daza, Carlos; Baig, Mirza; Lockerby, Duncan; Chernyshenko, Sergei; Davies, Christopher; University of Warwick Team; Imperial College Team; Cardiff University Team

    2012-11-01

    We present a study on the effect of streamwise-travelling waves of spanwise wall velocity on the growth of near-wall turbulent streaks using a linearized formulation of the Navier-Stokes equations. The changes in streak amplification due to the travelling waves induced by the wall velocity are compared to published results of direct numerical simulation (DNS) predictions of the turbulent skin-friction reduction over a range of parameters; a clear correlation between these two sets of results is observed. Additional linearized simulations but at a much higher Reynolds numbers, more relevant to aerospace applications, produce results that show no marked differences to those obtained at low Reynolds number. It is also observed that a close correlation exists between DNS data of drag reduction and a very simple characteristic of the ``generalized'' Stokes layer generated by the streamwise-travelling waves. Carlos.Duque-Daza@warwick.ac.uk - School of Engineering, University of Warwick, Coventry CV4 7AL, UK caduqued@unal.edu.co - Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  16. Synchro-ballistic recording of detonation phenomena

    NASA Astrophysics Data System (ADS)

    Critchfield, Robert R.; Asay, Blaine W.; Bdzil, John B.; Davis, William C.; Ferm, Eric N.; Idar, Deanne J.

    1997-12-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic detonation shock dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film's spatial dimension and the phase velocity is adjusted to provide synchronization at the camera's maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to- diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric denotation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.

  17. Synchro-ballistic recording of detonation phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.

    1997-09-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of themore » events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.« less

  18. Cerberus Wind Streaks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 6 May 2002) The Science Cerberus is a dark region on Mars that has shrunk down from a continuous length of about 1000 km to roughly three discontinuous spots a few 100 kms in length in less than 20 years. There are two competing processes at work in the Cerberus region that produce the bright and dark features seen in this THEMIS image. Bright dust settles out of the atmosphere, especially after global dust storms, depositing a layer just thick enough to brighten the dark surfaces. Deposition occurs preferentially in the low wind 'shadow zones' within craters and downwind of crater rims, producing the bright streaks. The direction of the streaks clearly indicates that the dominant winds come from the northeast. Dust deposition would completely blot out the dark areas if it were not for the action of wind-blown sand grains scouring the surface and lifting the dust back into the atmosphere. Again, the shadow zones are protected from the blowing sand, preserving the bright layer of dust. Also visible in this image are lava flow features extending from the flanks of the huge Elysium volcanoes to the northwest. Two shallow channels and a raised flow lobe are just barely discernable. The lava channel in the middle of the image crosses the boundary of the bright and dark surfaces without any obvious change in its morphology. This demonstrates that the bright dust layer is very thin in this location, perhaps as little as a few millimeters. The Story Mars is an ever-changing land of spectacular contrasts. This THEMIS image shows the Cerberus region of Mars, a dark area located near the Elysium volcanoes and fittingly named after the three-headed, dragon-tailed dog who guards the door of the underworld. Two opposing processes are at work here: a thin layer of dust falling from the atmosphere and/or dust storms creating brighter surface areas (e.g. the top left portion of this image) and dust being scoured away by the action of the Martian wind disturbing the sand grains and freeing the lighter dust to fly away once more (the darker portions of this image). There are, however, some darker areas that are somewhat shielded and protected from the wind that have yielded bright, dusty crater floors and wind streaks that trail out behind the craters. These wind streaks tell a story all their own as to the prevailing wind direction coming from the northeast. This, added to the fact that this dark region was once 1000 km in length and has dwindled to just a few isolated dark splotches of 100 kilometers in the past 20 years, help us to see that the Martian environment is still quite dynamic and capable of changing. Finally, this being a volcanic region, a lobe of a lava flow from the immense Elysium volcanoes to the northwest is visible stretching across the bottom one-quarter of the image.

  19. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laloum, D., E-mail: david.laloum@cea.fr; CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  20. Streaked x-ray backlighting with twin-slit imager for study of density profile and trajectory of low-density foam target filled with deuterium liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraga, H.; Mahigashi, N.; Yamada, T.

    2008-10-15

    Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.

  1. Wheat streak mosaic virus resistance in eight wheat germplasm lines

    USDA-ARS?s Scientific Manuscript database

    Wheat Streak Mosaic Virus (WSMV) disease is an important disease in wheat. Use of resistant cultivars is the most effective approach to reduce the yield losses caused by the disease. To identify new sources of resistance to WSMV, eight resistant wheat lines that were selected based on the results fr...

  2. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of Maize fine streak rhabdovirus transmission

    USDA-ARS?s Scientific Manuscript database

    Background: Leafhoppers (Hemiptera:Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in...

  3. Wheat streak mosaic virus coat protein is a determinant for vector transmission by the wheat curl mite

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae), is transmitted by the wheat curl mite (Aceria tosichella Keifer). The requirement of coat protein (CP) for WSMV transmission by the wheat curl mite was examined using a series of viable deletion and point mutations. Mite trans...

  4. Efficient inoculation of rice black-streaked dwarf virus to maize using Laodelphax striatellus Fallen

    USDA-ARS?s Scientific Manuscript database

    Maize rough dwarf disease (MRDD) caused by Rice black-streaked dwarf virus (RBSDV) is the most important viral disease of maize in China. Although deploying disease resistant hybrids would be the most effective way to control the disease, development of resistant hybrids has been limited by virus t...

  5. Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance

    USDA-ARS?s Scientific Manuscript database

    Pyramiding of alien-derived Wheat streak mosaic virus (WSMV) resistance and resistance enhancing genes in wheat is a costeffective and environmentally safe strategy for disease control. PCR-based markers and cytogenetic analysis with genomic in situ hybridisation were applied to identify alien chrom...

  6. A four-quadrant sequential streak technique to evaluate Campylobacter selective broths for suppressing background flora in broiler carcass rinses

    USDA-ARS?s Scientific Manuscript database

    The ecometric technique is a semi-quantitative scoring method used in the quality control of culture media in microbiology laboratories. This technique involves inoculation with defined populations of a specific culture onto solid media via a standardized chronological streaking technique, leading ...

  7. Vascular Streak Dieback of cacao in Southeast Asia detection and Melanesia: in planta detection of the pathogen and a new taxonomy

    USDA-ARS?s Scientific Manuscript database

    Vascular Streak Dieback (VSD) disease of cacao (Theobroma cacao) in Southeast Asia and Melanesia is caused by a basidiomycete (Ceratobasidiales) fungus described in a monotypic genus as Oncobasidium theobromae (syn. =Thanatephorus theobromae). The symptoms of the disease include green-spotted chloro...

  8. Compositions of Low Albedo Intracrater Materials and Wind Streaks on Mars: Examination of MGS TES Data in Western Arabia Terra

    NASA Technical Reports Server (NTRS)

    Bandfield, J. L.; Wyatt, M. B.; Christensen, P.; McSween, H. Y., Jr.

    2001-01-01

    Basalt and andesite surface compositions are identified within individual low albedo intracrater features and adjacent dark wind streaks. High resolution mapping of compositional heterogeneities may help constrain origin hypotheses for these features. Additional information is contained in the original extended abstract.

  9. Design of microcontroller based system for automation of streak camera.

    PubMed

    Joshi, M J; Upadhyay, J; Deshpande, P P; Sharma, M L; Navathe, C P

    2010-08-01

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor. A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.

  10. Utilization of transient growth disturbances for drag reduction in boundary layers

    NASA Astrophysics Data System (ADS)

    Fransson, Jens H. M.

    2014-11-01

    Over the last decade wind tunnel experiments have shown that steady streamwise elongated streaks, produced by the lift-up mechanism, are able to reduce skin-friction drag by delaying transition to turbulence in flat plate boundary layers. Steady streaks may be generated by passive devices such as circular roughness elements or miniature vortex generators (MVGs), the latter being the more effective device. The optimal streak amplitude to accomplish the stabilizing boundary-layer effect is around 30% of the free-stream velocity (considering an integrated amplitude definition). On the basis of a parametrical study, by varying boundary layer as well as geometrical parameters of the MVGs, a streak amplitude scaling founded on empiricism has been proposed, which is necessary when applying the control strategy in new flow configurations. Different types of disturbances have successfully been damped and the possibility of extending the laminar boundary layer even further by mounting a second array of MVGs downstream of the first one has been accomplished. A review of the AFRODITE program results and future work will be presented. ERC is gratefully acknowledged for their financial support of the AFRODITE program.

  11. Design of microcontroller based system for automation of streak camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, M. J.; Upadhyay, J.; Deshpande, P. P.

    2010-08-15

    A microcontroller based system has been developed for automation of the S-20 optical streak camera, which is used as a diagnostic tool to measure ultrafast light phenomenon. An 8 bit MCS family microcontroller is employed to generate all control signals for the streak camera. All biasing voltages required for various electrodes of the tubes are generated using dc-to-dc converters. A high voltage ramp signal is generated through a step generator unit followed by an integrator circuit and is applied to the camera's deflecting plates. The slope of the ramp can be changed by varying values of the capacitor and inductor.more » A programmable digital delay generator has been developed for synchronization of ramp signal with the optical signal. An independent hardwired interlock circuit has been developed for machine safety. A LABVIEW based graphical user interface has been developed which enables the user to program the settings of the camera and capture the image. The image is displayed with intensity profiles along horizontal and vertical axes. The streak camera was calibrated using nanosecond and femtosecond lasers.« less

  12. Optical fiducial timing system for X-ray streak cameras with aluminum coated optical fiber ends

    DOEpatents

    Nilson, David G.; Campbell, E. Michael; MacGowan, Brian J.; Medecki, Hector

    1988-01-01

    An optical fiducial timing system is provided for use with interdependent groups of X-ray streak cameras (18). The aluminum coated (80) ends of optical fibers (78) are positioned with the photocathodes (20, 60, 70) of the X-ray streak cameras (18). The other ends of the optical fibers (78) are placed together in a bundled array (90). A fiducial optical signal (96), that is comprised of 2.omega. or 1.omega. laser light, after introduction to the bundled array (90), travels to the aluminum coated (82) optical fiber ends and ejects quantities of electrons (84) that are recorded on the data recording media (52) of the X-ray streak cameras (18). Since both 2.omega. and 1.omega. laser light can travel long distances in optical fiber with only a slight attenuation, the initial arial power density of the fiducial optical signal (96) is well below the damage threshold of the fused silica or other material that comprises the optical fibers (78, 90). Thus the fiducial timing system can be repeatably used over long durations of time.

  13. Cassava brown streak virus has a rapidly evolving genome: implications for virus speciation, variability, diagnosis and host resistance

    PubMed Central

    Alicai, Titus; Ndunguru, Joseph; Sseruwagi, Peter; Tairo, Fred; Okao-Okuja, Geoffrey; Nanvubya, Resty; Kiiza, Lilliane; Kubatko, Laura; Kehoe, Monica A.; Boykin, Laura M.

    2016-01-01

    Cassava is a major staple food for about 800 million people in the tropics and sub-tropical regions of the world. Production of cassava is significantly hampered by cassava brown streak disease (CBSD), caused by Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The disease is suppressing cassava yields in eastern Africa at an alarming rate. Previous studies have documented that CBSV is more devastating than UCBSV because it more readily infects both susceptible and tolerant cassava cultivars, resulting in greater yield losses. Using whole genome sequences from NGS data, we produced the first coalescent-based species tree estimate for CBSV and UCBSV. This species framework led to the finding that CBSV has a faster rate of evolution when compared with UCBSV. Furthermore, we have discovered that in CBSV, nonsynonymous substitutions are more predominant than synonymous substitution and occur across the entire genome. All comparative analyses between CBSV and UCBSV presented here suggest that CBSV may be outsmarting the cassava immune system, thus making it more devastating and harder to control. PMID:27808114

  14. Notochord morphogenesis in mice: Current understanding & open questions.

    PubMed

    Balmer, Sophie; Nowotschin, Sonja; Hadjantonakis, Anna-Katerina

    2016-05-01

    The notochord is a structure common to all chordates, and the feature that the phylum Chordata has been named after. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Yet, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary, we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. Developmental Dynamics 245:547-557, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  16. Hydrodynamic instabilities in laser pulse-produced melts of metal films

    NASA Astrophysics Data System (ADS)

    Bostanjoglo, O.; Nink, T.

    1996-06-01

    The dynamics of melts, as induced by 7 ns laser pulses in Al and Au films, were investigated by in situ time-resolved transmission electron microscopy. Melting, motion of the liquid, and crystallization were observed by tracing the image intensity with a photomultiplier (space/time resolution 100 nm/3 ns) and by streak imaging (streak times 15 ns-4 μs). Films with native oxides/adsorbed atmospheric contaminations and films purified by pulse melting were found to show a completely different behavior of their melts. The melts of purified films either remained almost flat (Al) or revealed a gradual pileup of liquid in cold regions within 500 ns (Au), caused by thermocapillarity with the negative thermal coefficient of the surface tension of pure metals. In contrast, contaminated films showed three distinctly different types of perturbations: (1) a fast expulsion of the melt from the center of the laser spot within 20 ns after the laser pulse; (2) a gradual contraction of liquid at the center within 0.5-1 μs; (3) thickness oscillations with frequencies of 5-10 MHz and time constants of 500 ns. These effects are explained by recoil from evaporating contaminations, by thermocapillary flow with a positive thermal coefficient of the surface tension, caused by surface active impurity atoms, and by thermocapillary waves.

  17. Neptune Clouds Showing Vertical Relief

    NASA Image and Video Library

    1996-01-29

    NASA's Voyager 2 high resolution color image, taken 2 hours before closest approach, provides obvious evidence of vertical relief in Neptune's bright cloud streaks. These clouds were observed at a latitude of 29 degrees north near Neptune's east terminator. The linear cloud forms are stretched approximately along lines of constant latitude and the sun is toward the lower left. The bright sides of the clouds which face the sun are brighter than the surrounding cloud deck because they are more directly exposed to the sun. Shadows can be seen on the side opposite the sun. These shadows are less distinct at short wavelengths (violet filter) and more distinct at long wavelengths (orange filter). This can be understood if the underlying cloud deck on which the shadow is cast is at a relatively great depth, in which case scattering by molecules in the overlying atmosphere will diffuse light into the shadow. Because molecules scatter blue light much more efficiently than red light, the shadows will be darkest at the longest (reddest) wavelengths, and will appear blue under white light illumination. The resolution of this image is 11 kilometers (6.8 miles per pixel) and the range is only 157,000 kilometers (98,000 miles). The width of the cloud streaks range from 50 to 200 kilometers (31 to 124 miles), and their shadow widths range from 30 to 50 kilometers (18 to 31 miles). Cloud heights appear to be of the order of 50 kilometers (31 miles). This corresponds to 2 scale heights. http://photojournal.jpl.nasa.gov/catalog/PIA00058

  18. Neptune Clouds Showing Vertical Relief

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This Voyager 2 high resolution color image, taken 2 hours before closest approach, provides obvious evidence of vertical relief in Neptune's bright cloud streaks. These clouds were observed at a latitude of 29 degrees north near Neptune's east terminator. The linear cloud forms are stretched approximately along lines of constant latitude and the sun is toward the lower left. The bright sides of the clouds which face the sun are brighter than the surrounding cloud deck because they are more directly exposed to the sun. Shadows can be seen on the side opposite the sun. These shadows are less distinct at short wavelengths (violet filter) and more distinct at long wavelengths (orange filter). This can be understood if the underlying cloud deck on which the shadow is cast is at a relatively great depth, in which case scattering by molecules in the overlying atmosphere will diffuse light into the shadow. Because molecules scatter blue light much more efficiently than red light, the shadows will be darkest at the longest (reddest) wavelengths, and will appear blue under white light illumination. The resolution of this image is 11 kilometers (6.8 miles per pixel) and the range is only 157,000 kilometers (98,000 miles). The width of the cloud streaks range from 50 to 200 kilometers (31 to 124 miles), and their shadow widths range from 30 to 50 kilometers (18 to 31 miles). Cloud heights appear to be of the order of 50 kilometers (31 miles). This corresponds to 2 scale heights. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  19. Genomic and phylogenetic evidence that Maize rough dwarf and Rice black-streaked dwarf fijiviruses should be classified as different geographic strains of a single species.

    PubMed

    Xie, L; Lv, M-F; Yang, J; Chen, J-P; Zhang, H-M

    Maize rough dwarf disease (MRDD) has long been known as one of the most devastating viral diseases of maize worldwide and is caused by single or complex infection by four fijiviruses: Maize rough dwarf virus (MRDV) in Europe and the Middle East, Mal de Rio Cuarto virus (MRCV) in South America, rice black-streaked dwarf virus (RBSDV), and Southern rice black-streaked dwarf virus (SRBSDV or Rice black-streaked dwarf virus 2, RBSDV-2) in East Asia. These are currently classified as four distinct species in the genus Fijivirus, family Reoviridae, but their taxonomic status has been questioned. To help resolve this, the nucleotide sequences of the ten genomic segments of an Italian isolate of MRDV have been determined, providing the first complete genomic sequence of this virus. Its genome has 29144 nucleotides and is similar in organization to those of RBSDV, SRBSDV, and MRCV. The 13 ORFs always share highest identities (81.3-97.2%) with the corresponding ORFs of RBSDV and phylogenetic analyses of the different genome segments and ORFs all confirm that MRDV clusters most closely with RBSDV and that MRCV and SRBSDV are slightly more distantly related. The results suggest that MRDV and RBSDV should be classified as different geographic strains of the same virus species and we suggest the name cereal black-streaked dwarf fijivirus (CBSDV) for consideration.

  20. Transitional–turbulent spots and turbulent–turbulent spots in boundary layers

    PubMed Central

    Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-01-01

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional–turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a Λ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional–turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional–turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional–turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent–turbulent spots. These turbulent–turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional–turbulent spots, these turbulent–turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent–turbulent spots. PMID:28630304

  1. Prior Image Constrained Compressed Sensing Metal Artifact Reduction (PICCS-MAR): 2D and 3D Image Quality Improvement with Hip Prostheses at CT Colonography.

    PubMed

    Bannas, Peter; Li, Yinsheng; Motosugi, Utaroh; Li, Ke; Lubner, Meghan; Chen, Guang-Hong; Pickhardt, Perry J

    2016-07-01

    To assess the effect of the prior-image-constrained-compressed-sensing-based metal-artefact-reduction (PICCS-MAR) algorithm on streak artefact reduction and 2D and 3D-image quality improvement in patients with total hip arthroplasty (THA) undergoing CT colonography (CTC). PICCS-MAR was applied to filtered-back-projection (FBP)-reconstructed DICOM CTC-images in 52 patients with THA (unilateral, n = 30; bilateral, n = 22). For FBP and PICCS-MAR series, ROI-measurements of CT-numbers were obtained at predefined levels for fat, muscle, air, and the most severe artefact. Two radiologists independently reviewed 2D and 3D CTC-images and graded artefacts and image quality using a five-point-scale (1 = severe streak/no-diagnostic confidence, 5 = no streak/excellent image-quality, high-confidence). Results were compared using paired and unpaired t-tests and Wilcoxon signed-rank and Mann-Whitney-tests. Streak artefacts and image quality scores for FBP versus PICCS-MAR 2D-images (median: 1 vs. 3 and 2 vs. 3, respectively) and 3D images (median: 2 vs. 4 and 3 vs. 4, respectively) showed significant improvement after PICCS-MAR (all P < 0.001). PICCS-MAR significantly improved the accuracy of mean CT numbers for fat, muscle and the area with the most severe artefact (all P < 0.001). PICCS-MAR substantially reduces streak artefacts related to THA on DICOM images, thereby enhancing visualization of anatomy on 2D and 3D CTC images and increasing diagnostic confidence. • PICCS-MAR significantly reduces streak artefacts associated with total hip arthroplasty on 2D and 3D CTC. • PICCS-MAR significantly improves 2D and 3D CTC image quality and diagnostic confidence. • PICCS-MAR can be applied retrospectively to DICOM images from single-kVp CT.

  2. Properties of small-scale interfacial turbulence from a novel thermography based approach

    NASA Astrophysics Data System (ADS)

    Schnieders, Jana; Garbe, Christoph

    2013-04-01

    Oceans cover nearly two thirds of the earth's surface and exchange processes between the Atmosphere and the Ocean are of fundamental environmental importance. At the air-sea interface, complex interaction processes take place on a multitude of scales. Turbulence plays a key role in the coupling of momentum, heat and mass transfer [2]. Here we use high resolution infrared imagery to visualize near surface aqueous turbulence. Thermographic data is analized from a range of laboratory facilities and experimental conditions with wind speeds ranging from 1ms-1 to 7ms-1 and various surface conditions. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: (1) The surface heat patterns show characteristic features of scales. (2) The structure of these patterns change with increasing wind stress and surface conditions. We present a new image processing based approach to the analysis of the spacing of cold streaks based on a machine learning approach [4, 1] to classify the thermal footprints of near surface turbulence. Our random forest classifier is based on classical features in image processing such as gray value gradients and edge detecting features. The result is a pixel-wise classification of the surface heat pattern with a subsequent analysis of the streak spacing. This approach has been presented in [3] and can be applied to a wide range of experimental data. In spite of entirely different boundary conditions, the spacing of turbulent cells near the air-water interface seems to match the expected turbulent cell size for flow near a no-slip wall. The analysis of the spacing of cold streaks shows consistent behavior in a range of laboratory facilities when expressed as a function of water sided friction velocity, u*. The scales systematically decrease until a point of saturation at u* = 0.7 cm/s. Results suggest a saturation in the tangential stress, anticipating that similar behavior will be observed in the open ocean. A comparison with studies of small-scale Langmuir circulations and Langmuir numbers shows that thermal footprints in infrared images are consistent with Langmuir circulations and depend strongly on wind wave conditions. Our approach is not limited to laboratory measurments. In the near future, we will deploy it on in-situ measurements and verify our findings in these more challenging conditions. References [1] L. Breimann. Random forests. Machine Learning, 45:5-32, 2001. [2] S. P. McKenna and W. R. McGillis. The role of free-surface turbulence and surfactants in air-water gas transfer. Int. J. Heat Mass Transfer, 47:539-553, 2004. [3] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013. [4] Christoph Sommer, Christoph Straehle, Ullrich Koethe, and Fred A. Hamprecht. ilastik: Interactive learning and segmentation toolkit. In 8th IEEE International Symposium on Biomedical Imaging (ISBI 2011), 2011. [5] W.-T. Tsai, S.-M. Chen, and C.-H. Moeng. A numerical study on the evolution and structure of a stress-driven free-surface turbulent shear flow. J. Fluid Mech., 545:163-192, 2005.

  3. Remote sensing of atmospheric pressure and sea state using laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1985-01-01

    Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.

  4. Photographer: JPL P-21740 BW Range: 2,318,000 kilometers (1,438,000 miles) This picture of Callisto

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer: JPL P-21740 BW Range: 2,318,000 kilometers (1,438,000 miles) This picture of Callisto taken by Voyager 2 shows the moon covered with bright spots which are metoerite impact craters--a fact originally discovered from the high resolution pictures taken by Voyager 1. Scientists believe that heavily cratered terrains like these on Callisto are indicative of ancient planetary surfaces. Voyager 2 mapped the side of Callisto not seen by Voyager 1. The obsure dark streaks in this area may be fault zones, but higher resolution pictures are needed for identification.

  5. Photographer: JPL P-21740 C Range: 2,318,000 kilometers (1,438,000 miles) This picture of Callisto

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer: JPL P-21740 C Range: 2,318,000 kilometers (1,438,000 miles) This picture of Callisto taken by Voyager 2 shows the moon covered with bright spots which are metoerite impact craters--a fact originally discovered from the high resolution pictures taken by Voyager 1. Scientists believe that heavily cratered terrains like these on Callisto are indicative of ancient planetary surfaces. Voyager 2 mapped the side of Callisto not seen by Voyager 1. The obsure dark streaks in this area may be fault zones, but higher resolution pictures are needed for identification.

  6. WE-G-18A-08: Axial Cone Beam DBPF Reconstruction with Three-Dimensional Weighting and Butterfly Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, S; Wang, W; Tang, X

    2014-06-15

    Purpose: With the major benefit in dealing with data truncation for ROI reconstruction, the algorithm of differentiated backprojection followed by Hilbert filtering (DBPF) is originally derived for image reconstruction from parallel- or fan-beam data. To extend its application for axial CB scan, we proposed the integration of the DBPF algorithm with 3-D weighting. In this work, we further propose the incorporation of Butterfly filtering into the 3-D weighted axial CB-DBPF algorithm and conduct an evaluation to verify its performance. Methods: Given an axial scan, tomographic images are reconstructed by the DBPF algorithm with 3-D weighting, in which streak artifacts existmore » along the direction of Hilbert filtering. Recognizing this orientation-specific behavior, a pair of orthogonal Butterfly filtering is applied on the reconstructed images with the horizontal and vertical Hilbert filtering correspondingly. In addition, the Butterfly filtering can also be utilized for streak artifact suppression in the scenarios wherein only partial scan data with an angular range as small as 270° are available. Results: Preliminary data show that, with the correspondingly applied Butterfly filtering, the streak artifacts existing in the images reconstructed by the 3-D weighted DBPF algorithm can be suppressed to an unnoticeable level. Moreover, the Butterfly filtering also works at the scenarios of partial scan, though the 3-D weighting scheme may have to be dropped because of no sufficient projection data are available. Conclusion: As an algorithmic step, the incorporation of Butterfly filtering enables the DBPF algorithm for CB image reconstruction from data acquired along either a full or partial axial scan.« less

  7. 78 FR 24199 - Streak Products, Inc. v. UTi, United States, Inc.; Notice of Filing of Complaint and Assignment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... FEDERAL MARITIME COMMISSION [Docket No. 13--04] Streak Products, Inc. v. UTi, United States, Inc...,'' against UTi, United States, Inc. (``UTi''), hereinafter ``Respondent.'' Complainant states that it is a... therefore, has violated 46 U.S.C. 41104(2). Complainant also alleges that ``UTi engaged in an unfair or...

  8. Imaging Plasmonic Fields with Atomic Spatiotemporal Resolution

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2018-06-01

    We propose a scheme for the reconstruction of plasmonic near fields at isolated nanoparticles from infrared-streaked extreme-ultraviolet photoemission spectra. Based on quantum-mechanically modeled spectra, we demonstrate and analyze the accurate imaging of the IR-streaking-pulse-induced transient plasmonic fields at the surface of gold nanospheres and nanoshells with subfemtosecond temporal and subnanometer spatial resolution.

  9. Development of VNTR Markers to Assess Genetic Diversity of Mycosphaerella Fijiensis, the Causal Agent of Black Leaf Streak Disease in Bananas (Musa spp.)

    USDA-ARS?s Scientific Manuscript database

    Mycosphaerella fijiensis is the causal agent of black leaf streak (BLS) disease in bananas. This pathogen threatens global banana production as the main export cultivars are highly susceptible. As a consequence, commercial banana plantations must be protected chemically with fungicides; up to 40 app...

  10. Comparison of dislocation content measured with transmission electron microscopy and micro-Laue diffraction based streak analysis

    DOE PAGES

    Zhang, C.; Balachandran, S.; Eisenlohr, P.; ...

    2017-10-04

    The subsurface dislocation content in a Ti-5Al-2.5Sn (wt%) uniaxial tension sample deformed at ambient temperature was characterized by peak streak analysis of micro-Laue diffraction patterns collected non-destructively by differential aperture X-raymicroscopy, and with focused ion beam transmission electron microscopy of material in the same volume. This comparison reveals that micro-Laue diffraction streak analysis based on an edge dislocation assumption can accurately identify the dominant dislocation slip system history (Burgers vector and plane observed by TEM), despite the fact that dislocations have predominantly screw character. As a result, other dislocations identified by TEM were not convincingly discernible from the peak streakmore » analysis.« less

  11. Study of magnetofluidic laser scattering under rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Pai, Chintamani; Shalini, M.; Varma, Vijaykumar B.; Radha, S.; Nagarajan, R.; Ramanujan, Raju V.

    2018-04-01

    Magnetic field driven self-assembly of magnetic nanoparticles provides wireless programmable approach for tunable magnetofluidic laser scattering. In this work, we study magnetofluidic laser scattering from a commercial aqueous magnetic fluid (EMG 707) under an external rotating magnetic field. A set-up is developed to generate rotating magnetic field for the purpose. Self-assembled magnetic nanoparticle structures in the form of chains and bundles are formed along the magnetic field. This creates a linear streak formation in the forward laser scattering. Rotating magnetic field produces rotating linear streak. We report our initial results of rotating linear streaks at 3 rpm, 6 rpm and 10 rpm and our analysis of the patterns. The studies are useful for developing magnetic fluid based optical devices.

  12. [Choroidal neovascularization secondary to angioid streaks: A familial case report].

    PubMed

    Benitez-Herreros, J; Camara-Gonzalez, C; Lopez-Guajardo, L; Beckford-Torngren, C; Pareja-Esteban, J

    2014-05-01

    We report a familial case of 2 brothers that suffered choroidal neovascularization (CNV) secondary to angioid streaks. They were both treated with a monthly intravitreal injection of ranibizumab (Lucentis(®)) for 3 months. Visual acuity was stabilized and fluorescein angiography revealed complete resolution of CNV. Neither recurrent CNV lesion nor new hemorrhages were reported during the follow-up period. The use of intravitreal ranibizumab for the treatment of CNV in patients with angioid streaks has shown favorable results. However, further studies with a longer follow-up and larger number of patients are necessary to more precisely determine the results of this therapy. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  13. Comparison of dislocation content measured with transmission electron microscopy and micro-Laue diffraction based streak analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, C.; Balachandran, S.; Eisenlohr, P.

    The subsurface dislocation content in a Ti-5Al-2.5Sn (wt%) uniaxial tension sample deformed at ambient temperature was characterized by peak streak analysis of micro-Laue diffraction patterns collected non-destructively by differential aperture X-raymicroscopy, and with focused ion beam transmission electron microscopy of material in the same volume. This comparison reveals that micro-Laue diffraction streak analysis based on an edge dislocation assumption can accurately identify the dominant dislocation slip system history (Burgers vector and plane observed by TEM), despite the fact that dislocations have predominantly screw character. As a result, other dislocations identified by TEM were not convincingly discernible from the peak streakmore » analysis.« less

  14. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum.

    DTIC Science & Technology

    1982-03-31

    A. Chandross in "The Exciplex ", M. Gordon and W. R. Ware, Ed., Academic Press, New York, 1975, p. 187. (5) K. Rotkiewicz, K. H. Grellmann, and Z. R...reaction of the end groups on the opposite sides of the chain. W_ -( 0 ) In our earlier studies (8 )’ (9 ) we determined that exciplex (excited charge...sandwich type structure. We have used picosecond laser excitation and streak camera-optical multi- channel detection of exciplex fluorescence at

  15. Scheduling for the National Hockey League Using a Multi-objective Evolutionary Algorithm

    NASA Astrophysics Data System (ADS)

    Craig, Sam; While, Lyndon; Barone, Luigi

    We describe a multi-objective evolutionary algorithm that derives schedules for the National Hockey League according to three objectives: minimising the teams' total travel, promoting equity in rest time between games, and minimising long streaks of home or away games. Experiments show that the system is able to derive schedules that beat the 2008-9 NHL schedule in all objectives simultaneously, and that it returns a set of schedules that offer a range of trade-offs across the objectives.

  16. Plasma-driven ultrashort bunch diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dornmair, I.; Schroeder, C. B.; Floettmann, K.

    2016-06-10

    Ultrashort electron bunches are crucial for an increasing number of applications, however, diagnosing their longitudinal phase space remains a challenge. We propose a new method that harnesses the strong electric fields present in a laser driven plasma wakefield. By transversely displacing driver laser and witness bunch, a streaking field is applied to the bunch. This field maps the time information to a transverse momentum change and, consequently, to a change of transverse position. We illustrate our method with simulations where we achieve a time resolution in the attosecond range.

  17. Attosecond Spectroscopy Probing Electron Correlation Dynamics

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.

    Electrons are the driving force behind every chemical reaction. The exchange, ionization, or even relaxation of electrons is behind every bond broken or formed. According to the Bohr model of the atom, it takes an electron 150 as to orbit a proton[6]. With this as a unit time scale for an electron, it is clear that a pulse duration of several femtoseconds will not be sufficient to understanding electron dynamics. Our work demonstrates both technical and scientific achievements that push the boundaries of attosecond dynamics. TDSE studies show that amplification the yield of high harmonic generation (HHG) may be possible with transverse confinement of the electron. XUV-pump-XUV-probe shows that the yield of APT train can be sufficient for 2-photon double ionization studies. A zero dead-time detection system allows for the measurement of state-resolved double ionization for the first time. Exploiting attosecond angular streaking[7] probes sequential and non-sequential double ionization via electron-electron correlations with attosecond time resolution. Finally, using recoil frame momentum correlation, the fast dissociation of CH 3I reveals important orbital ionization dynamics of non-dissociative & dissociative, single & double ionization.

  18. Molecular characterization of Banana streak virus isolate from Musa Acuminata in China.

    PubMed

    Zhuang, Jun; Wang, Jian-Hua; Zhang, Xin; Liu, Zhi-Xin

    2011-12-01

    Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and -95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.

  19. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-01

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a ΛΛ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  20. Cassava brown streak disease in Rwanda, the associated viruses and disease phenotypes.

    PubMed

    Munganyinka, E; Ateka, E M; Kihurani, A W; Kanyange, M C; Tairo, F; Sseruwagi, P; Ndunguru, J

    2018-02-01

    Cassava brown streak disease (CBSD) was first observed on cassava ( Manihot esculenta ) in Rwanda in 2009. In 2014 eight major cassava-growing districts in the country were surveyed to determine the distribution and variability of symptom phenotypes associated with CBSD, and the genetic diversity of cassava brown streak viruses. Distribution of the CBSD symptom phenotypes and their combinations varied greatly between districts, cultivars and their associated viruses. The symptoms on leaf alone recorded the highest (32.2%) incidence, followed by roots (25.7%), leaf + stem (20.3%), leaf + root (10.4%), leaf + stem + root (5.2%), stem + root (3.7%), and stem (2.5%) symptoms. Analysis by RT-PCR showed that single infections of Ugandan cassava brown streak virus (UCBSV) were most common (74.2% of total infections) and associated with all the seven phenotypes studied. Single infections of Cassava brown streak virus (CBSV) were predominant (15.3% of total infections) in CBSD-affected plants showing symptoms on stems alone. Mixed infections (CBSV + UCBSV) comprised 10.5% of total infections and predominated in the combinations of leaf + stem + root phenotypes. Phylogenetic analysis and the estimates of evolutionary divergence, using partial sequences (210 nt) of the coat protein gene, revealed that in Rwanda there is one type of CBSV and an indication of diverse UCBSV. This study is the first to report the occurrence and distribution of both CBSV and UCBSV based on molecular techniques in Rwanda.

  1. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image s plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length "streak" meteor photome&y and two-station track determination. Meteor44 has been used to analyze data from the 2001.2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  2. Dynamic Deformation Properties of Energetic Composite Materials

    DTIC Science & Technology

    2005-04-01

    Whitley 189 (rotating mirror, 25 frames) up to 4 x 106 s-1 Hadland Imacon 792 (8 full or up to 24 half frames) up to 107 s-1 or streak IMCO Ultranac...CAVENDISH LABORATORY Material Density/kg m-3 Wave Speed/m s-1 Impedance/kgm-2 s-1 Magnesium 1798 4920 8.85x106 AZM Dural 2711 5040 13.7 x 106 Ti6Al4V 4418...4840 21.4 x 106 Stainless steel 7835 4842 37.9 x 106 Maraging steel 8080 4830 39.1 x 106 Inconel 718 8269 4980 41.3 x 106 Tungsten 16900 4406 75.3 x 106

  3. Factors Influencing the Production of MFSV Full-Length Clone: Maize Fine Streak Virus Proteins in Drosophila S2 Cells

    USDA-ARS?s Scientific Manuscript database

    Maize fine streak virus (MFSV) is negative-sense RNA virus member of the genus Nucleorhabdovirus. Our goal is to determine whether Drosophila S2 cells can support the production of a full-length clone of MFSV. We have previously demonstrated that the full-length MFSV nucleoprotein (N) and phosphopro...

  4. Development of a genetic linkage map of Mycosphaerella fijiensis, the causal agent of black leaf streak disease in bananas (Musa spp.) using SSR and DArT markers

    USDA-ARS?s Scientific Manuscript database

    Mycosphaerella fijiensis is the causal agent of black leaf streak (BLS) disease in bananas. This pathogen threatens global banana production as the main export cultivars are highly susceptible. As a consequence, commercial banana plantations must be protected chemically with fungicides; up to 40 app...

  5. Variable Number of Tandem Repeat Markers in the Genome Sequence of Mycosphaerella Fijiensis, the Causal Agent of Black Leaf Streak Disease of Banana (Musa spp.)

    USDA-ARS?s Scientific Manuscript database

    Mycosphaerella fijiensis, the causal agent of banana leaf streak disease (commonly known as black Sigatoka), is the most devastating pathogen attacking bananas (Musa spp). Recently the whole genome sequence of M. fijiensis became available. This sequence was screened for the presence of Variable Num...

  6. Molecular interactions and immune responses between maize fine streak virus and the leafhopper vector G. nigrifrons through differential expression and RNA interference

    USDA-ARS?s Scientific Manuscript database

    Maize fine streak virus (MFSV) is an emerging virus of maize that is transmitted by an insect vector, the leafhopper called Graminella nigrifrons. Virus transmission by the leafhopper requires that the virus enter into and multiply in insect cells, tissues and organs before being transmitted to a ne...

  7. Deep Sequencing Reveals a Divergent Ugandan cassava brown streak virus Isolate from Malawi

    PubMed Central

    Winter, Stephan; Mukasa, Settumba; Tairo, Fred; Sseruwagi, Peter; Ndunguru, Joseph; Duffy, Siobain

    2017-01-01

    ABSTRACT Illumina sequencing of RNA from a cassava cutting from northern Malawi produced a genome of Ugandan cassava brown streak virus (UCBSV-MW-NB7_2013). Sequence comparisons revealed stronger similarity to an isolate from nearby Tanzania (93.4% pairwise nucleotide identity) than to those previously reported from Malawi (86.9 to 87.0%). PMID:28818908

  8. Wheat streak mosaic virus P1: Defining the minimal region required for the suppression of RNA silencing activity

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) is the most economically important wheat virus in the Great Plains region of USA. WSMV is the type species of the genus Tritimovirus in the family Potyviridae, and is transmitted by the wheat curl mite, Aceria tosichella Keifer. Previously, we reported that WSMV P1 f...

  9. Strand-specific real-time RT-PCR quantitation of Maize fine streak virus genomic and positive-sense RNAs using high temperature reverse transcription

    USDA-ARS?s Scientific Manuscript database

    Efforts to analyze the replicative RNA produced by Maize fine streak virus (MVSF) within maize tissue was complicated by the lack of specificity during cDNA generation using standard reverse transcriptase protocols. Real-time qRT-PCR using cDNA generated by priming with random hexamers does not dist...

  10. A novel simultaneous streak and framing camera without principle errors

    NASA Astrophysics Data System (ADS)

    Jingzhen, L.; Fengshan, S.; Ningwen, L.; Xiangdong, G.; Bin, H.; Qingyang, W.; Hongyi, C.; Yi, C.; Xiaowei, L.

    2018-02-01

    A novel simultaneous streak and framing camera with continuous access, the perfect information of which is far more important for the exact interpretation and precise evaluation of many detonation events and shockwave phenomena, has been developed. The camera with the maximum imaging frequency of 2 × 106 fps and the maximum scanning velocity of 16.3 mm/μs has fine imaging properties which are the eigen resolution of over 40 lp/mm in the temporal direction and over 60 lp/mm in the spatial direction and the framing frequency principle error of zero for framing record, and the maximum time resolving power of 8 ns and the scanning velocity nonuniformity of 0.136%~-0.277% for streak record. The test data have verified the performance of the camera quantitatively. This camera, simultaneously gained frames and streak with parallax-free and identical time base, is characterized by the plane optical system at oblique incidence different from space system, the innovative camera obscura without principle errors, and the high velocity motor driven beryllium-like rotating mirror, made of high strength aluminum alloy with cellular lateral structure. Experiments demonstrate that the camera is very useful and reliable to take high quality pictures of the detonation events.

  11. Particle Streak Velocimetry of Supersonic Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  12. Omapatrilat, a dual angiotensin-converting enzyme and neutral endopeptidase inhibitor, prevents fatty streak deposit in apolipoprotein E-deficient mice.

    PubMed

    Arnal, J F; Castano, C; Maupas, E; Mugniot, A; Darblade, B; Gourdy, P; Michel, J B; Bayard, F

    2001-04-01

    Angiotensin-converting enzyme (ACE) is mainly responsible for converting angiotensin I (AI) to angiotensin II (AII), and ACE inhibitors prevent atherosclerosis in animal models. Neutral endopeptidase 24.11 (NEP) degrades substance P, kinins and atrial natriuretic peptide (ANP), and aortic wall NEP activity was found to be increased in atherosclerosis. In the present study, we have evaluated the effect of candoxatril, a NEP inhibitor, and of omapatrilat, a dual ACE and NEP inhibitor, on the development of fatty streak in apolipoprotein E (apoE)-deficient mice. Groups of ten male apoE-deficient mice were given either placebo, candoxatril 50 mg/kg per day, or omapatrilat 10, or 100 mg/kg per day for 4 months. None of the treatments influenced body weight, serum total or HDL-cholesterol. Compared with the placebo, candoxatril did not protect the mice from fatty streak deposit. In contrast, omapatrilat dose dependently inhibited the constitution of fatty streak in apoE-deficient mice. The precise advantages of the dual ACE and NEP inhibition versus the inhibition of only ACE should now be considered in the prevention of atherosclerosis as well as in the occurrence of its complications.

  13. Effects of Non-Uniform Inlet Temperature Distribution on High-Pressure Turbine Blade Loading

    NASA Astrophysics Data System (ADS)

    Smith, Craig I.; Chang, Dongil; Tavoularis, Stavros

    2012-09-01

    The effects of a non-uniform inlet field on the performance of a commercial, transonic, single-stage, high-pressure, axial turbine with a curved inlet duct have been investigated numerically by solving the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model. By adjusting the alignment of the experimentally-based inlet temperature field with respect to the stator vanes, two clocking configurations were generated: a Vane-Impinging (VI) case, in which each hot streak impinged on a vane and a Mid-Pitch (MP) case, in which each hot streak passed between two vanes. An additional case with a purely radial (PR) variation of inlet temperature was also investigated. In the VI case, it was observed that, as the hot streaks impinged on the stator vanes, they spread spanwise due to the actions of the casing passage vortices and the radial pressure gradient; this resulted in a stream entering the rotor with relatively low temperature variations. In the MP case, the hot streaks were convected undisturbed past the relatively cool vane section. Relatively high time-averaged enthalpy values were found to occur on the pressure side of the blades in the MP configuration.

  14. Venus Cloud Morphology and Motions from Ground-based Images at the Time of the Akatsuki Orbit Insertion

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Peralta, J.; Gomez-Forrellad, J. M.; Hueso, R.; Pérez-Hoyos, S.; Mendikoa, I.; Rojas, J. F.; Horinouchi, T.; Lee, Y. J.; Watanabe, S.

    2016-12-01

    We report Venus image observations around the two maximum elongations of the planet at 2015 June and October. From these images we describe the global atmospheric dynamics and cloud morphology in the planet before the arrival of JAXA’s Akatsuki mission on 2015 December 7. The majority of the images were acquired at ultraviolet wavelengths (380-410 nm) using small telescopes. The Venus dayside was also observed with narrowband filters at other wavelengths (890 nm, 725-950 nm, 1.435 μm CO2 band) using the instrument PlanetCam-UPV/EHU at the 2.2 m telescope in Calar Alto Observatory. In all cases, the lucky imaging methodology was used to improve the spatial resolution of the images over the atmospheric seeing. During the April-June period, the morphology of the upper cloud showed an irregular and chaotic texture with a well-developed equatorial dark belt (afternoon hemisphere), whereas during October-December the dynamical regime was dominated by planetary-scale waves (Y-horizontal, C-reversed, and ψ-horizontal features) formed by long streaks, and banding suggesting more stable conditions. Measurements of the zonal wind velocity with cloud tracking in the latitude range from 50°N to 50°S shows agreement with retrievals from previous works. Partially based on observations obtained at Centro Astronómico Hispano Alemán, Observatorio de Calar Alto MPIA-CSIC, Almería, Spain.

  15. Summertime Dust Devil

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-464, 26 August 2003

    Dust devils are spinning, columnar vortices of air that move across a landscape, picking up dust as they go. They are common occurrences during summer on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer, shows a dust devil in the Phlegra region of Mars near 32.0oN, 182.1oW. Sunlight illuminates the scene from the lower left; the dust devil is casting a columnar shadow toward the upper right. Some dust devils on Mars make streaks as they disrupt the fine coating of dust on the surface--but others do not make streaks. This one did not make a streak. The view shown here is 3 km (1.9 mi) wide.

  16. rf streak camera based ultrafast relativistic electron diffraction.

    PubMed

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  17. Single-Shot Visualization of Evolving Laser Wakefields Using an All-Optical Streak Camera

    NASA Astrophysics Data System (ADS)

    Li, Zhengyan; Tsai, Hai-En; Zhang, Xi; Pai, Chih-Hao; Chang, Yen-Yu; Zgadzaj, Rafal; Wang, Xiaoming; Khudik, V.; Shvets, G.; Downer, M. C.

    2014-08-01

    We visualize ps-time-scale evolution of an electron density bubble—a wake structure created in atmospheric density plasma by an intense ultrashort laser pulse—from the phase "streak" that the bubble imprints onto a probe pulse that crosses its path obliquely. Phase streaks, recovered in one shot using frequency-domain interferometric techniques, reveal the formation, propagation, and coalescence of the bubble within a 3 mm long ionized helium gas target. 3D particle-in-cell simulations validate the observed density-dependent bubble evolution, and correlate it with the generation of a quasimonoenergetic ˜100 MeV electron beam. The results provide a basis for understanding optimized electron acceleration at a plasma density ne≈2×1019 cm-3, inefficient acceleration at lower density, and dephasing limits at higher density.

  18. Studies on dynamic behavior of rotating mirrors

    NASA Astrophysics Data System (ADS)

    Li, Jingzhen; Sun, Fengshan; Gong, Xiangdong; Huang, Hongbin; Tian, Jie

    2005-02-01

    A rotating mirror is a kernel unit in a Miller-type high speed camera, which is both as an imaging element in optical path and as an element to implement ultrahigh speed photography. According to Schardin"s Principle, information capacity of an ultrahigh speed camera with rotating mirror depends on primary wavelength of lighting used by the camera and limit linear velocity on edge of the rotating-mirror: the latter is related to material (including specifications in technology), cross-section shape and lateral structure of rotating mirror. In this manuscript dynamic behavior of high strength aluminium alloy rotating mirrors is studied, from which it is preliminarily shown that an aluminium alloy rotating mirror can be absolutely used as replacement for a steel rotating-mirror or a titanium alloy rotating-mirror in framing photographic systems, and it could be also used as a substitute for a beryllium rotating-mirror in streak photographic systems.

  19. Vertebrate homologues of Frodo are dynamically expressed during embryonic development in tissues undergoing extensive morphogenetic movements.

    PubMed

    Hunter, Nina L; Hikasa, Hiroki; Dymecki, Susan M; Sokol, Sergei Y

    2006-01-01

    Frodo has been identified as a protein interacting with Dishevelled, an essential mediator of the Wnt signaling pathway, critical for the determination of cell fate and polarity in embryonic development. In this study, we use specific gene probes to characterize stage- and tissue-specific expression patterns of the mouse Frodo homologue and compare them with Frodo expression patterns in Xenopus embryos. In situ hybridization analysis of mouse Frodo transcripts demonstrates that, similar to Xenopus Frodo, mouse Frodo is expressed in primitive streak mesoderm, neuroectoderm, neural crest, presomitic mesoderm, and somites. In many cases, Frodo expression is confined to tissues undergoing extensive morphogenesis, suggesting that Frodo may be involved in the regulation of cell shape and motility. Highly conserved dynamic expression patterns of Frodo homologues indicate a similar function for these proteins in different vertebrates. 2005 Wiley-Liss, Inc.

  20. Simultaneous detection of wheat dwarf virus, northern cereal mosaic virus, barley yellow striate mosaic virus and rice black-streaked dwarf virus in wheat by multiplex RT-PCR.

    PubMed

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Massart, Sebastien; Wang, Xifeng

    2017-11-01

    Wheat dwarf virus (WDV), barley yellow striate mosaic virus (BYSMV), rice black-streaked dwarf virus (RBSDV) and northern cereal mosaic virus (NCMV) are four viruses infecting wheat and causing similar symptoms. In this paper, a multiplex reverse transcription polymerase chain reaction (m-RT-PCR) method has been developed for the simultaneous detection and discrimination of these viruses. The protocol uses specific primer set for each virus and produces four distinct fragments (273, 565, 783 and 1296bp), detecting the presence of RBSDV, BYSMV, WDV and NCMV, respectively. Annealing temperature, concentrations of dNTP, Taq polymerase and Mg 2+ were optimized for the m-RT-PCR. The detection limit of the assay was up to 10 -2 dilution. The amplification specificity of these primers was tested against a range of field samples from different regions of China, where RBSDV, BYSMV, WDV have been detected. This study fulfills the need for a rapid and specific wheat virus detection that also has the potential for investigating the epidemiology of these new viral diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Research on the underwater target imaging based on the streak tube laser lidar

    NASA Astrophysics Data System (ADS)

    Cui, Zihao; Tian, Zhaoshuo; Zhang, Yanchao; Bi, Zongjie; Yang, Gang; Gu, Erdan

    2018-03-01

    A high frame rate streak tube imaging lidar (STIL) for real-time 3D imaging of underwater targets is presented in this paper. The system uses 532nm pulse laser as the light source, the maximum repetition rate is 120Hz, and the pulse width is 8ns. LabVIEW platform is used in the system, the system control, synchronous image acquisition, 3D data processing and display are realized through PC. 3D imaging experiment of underwater target is carried out in a flume with attenuation coefficient of 0.2, and the images of different depth and different material targets are obtained, the imaging frame rate is 100Hz, and the maximum detection depth is 31m. For an underwater target with a distance of 22m, the high resolution 3D image real-time acquisition is realized with range resolution of 1cm and space resolution of 0.3cm, the spatial relationship of the targets can be clearly identified by the image. The experimental results show that STIL has a good application prospect in underwater terrain detection, underwater search and rescue, and other fields.

  2. ARC-1989-A89-7015

    NASA Image and Video Library

    1989-08-21

    Range : 4.8 million km. ( 3 million miles ) P-34648 This Voyager 2, sixty-one second exposure, shot through clear filters, of Neptunes rings. The Voyager cameras were programmed to make a systematic search of the entire ring system for new material. The previously ring arc is visible as a long bright streak at the bottom of the image. Extening beyond the bright arc is a much fainter component which follows the arc in its orbit. this faint material was also visible leading the ring arc and, in total, covers at least half of the orbit before it becomes too faint to identify. Also visible in this image, is a continuous ring of faint material previously identified as a possible ring arc by Voyager. this continuous ring is located just outside the orbit of the moon 1989N3, which was also discovered by Voyager. This moon is visible as a streak in the lower left. the smear of 1989N3 is due to its own orbital motion during the exposure. Extreme computer processing of this image was made to enhance the extremely faint features of Neptunes moon system. the dark area surrounding the moon as well as the bright corners are due to this special processing.

  3. Lucerne transient streak virus; a Recently Detected Virus Infecting Alfafa (Medicago sativa) in Central Saudi Arabia.

    PubMed

    Raza, Ahmed; Al-Shahwan, Ibrahim M; Abdalla, Omer A; Al-Saleh, Mohammed A; Amer, Mahmoud A

    2017-02-01

    A survey was conducted to determine the status of Lucerne transient streak virus (LTSV) in three high-yielding alfalfa regions in central Saudi Arabia (Riyadh, Qassim, and Hail) during 2014. Three hundred and eight symptomatic alfalfa, and seven Sonchus oleraceus samples were collected. DAS-ELISA indicated that 59 of these samples were positive to LTSV. Two isolates of LTSV from each region were selected for molecular studies. RT-PCR confirmed the presence of LTSV in the selected samples using a specific primer pair. Percentage identity and homology tree comparisons revealed that all Saudi isolates were more closely related to each other but also closely related to the Canadian isolate-JQ782213 (97.1-97.6%) and the New Zealand isolate-U31286 (95.8-97.1%). Comparing Saudi isolates of LTSV with ten other sobemoviruses based on the coat protein gene sequences confirmed the distant relationship between them. Eleven out of fourteen plant species used in host range study were positive to LTSV. This is the first time to document that Trifolium alexandrinum , Nicotiana occidentalis , Chenopodium glaucum , and Lathyrus sativus are new host plant species for LTSV and that N. occidentalis being a good propagative host for it.

  4. Optimizing 4DCBCT projection allocation to respiratory bins.

    PubMed

    O'Brien, Ricky T; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J

    2014-10-07

    4D cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a fiducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%-50% smaller than conventional phase based binning and 59%-76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%-90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images reconstructed using displacement binning and the optimized projection allocation algorithm were clearer, contained visibly fewer streak artefacts and produced more consistent marker segmentation than those reconstructed with either equispaced or equal-density binning. The optimized projection allocation algorithm significantly improves image quality in 4DCBCT images and provides, for the first time, a method to consistently generate high quality displacement binned 4DCBCT images in clinical applications.

  5. Instability waves and transition in adverse-pressure-gradient boundary layers

    NASA Astrophysics Data System (ADS)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  6. Use of the Coelomic Grafting Technique for Prolonged ex utero Cultivation of Late Preprimitive Streak-Stage Rabbit Embryos.

    PubMed

    Püschel, Bernd; Männer, Jörg

    2016-01-01

    Due to its morphological similarity with the early human embryo, the pregastrulation-stage rabbit may represent an appropriate mammalian model for studying processes involved in early human development. The usability of mammalian embryos for experimental studies depends on the availability of whole embryo culture methods facilitating prolonged ex utero development. While currently used culture methods yield high success rates for embryos from primitive streak stages onward, the success rate of extended cultivation of preprimitive streak-stage mammalian embryos is low for all previously established methods and for all studied species. This limits the usability of preprimitive streak-stage rabbit embryos in experimental embryology. We have tested whether the extraembryonic coelom of 4-day-old chick embryos may be used for prolonged ex utero culture of preprimitive streak-stage rabbit embryos (stage 2, 6.2 days post coitum). We found that, within this environment, stage 2 rabbit blastocysts can be cultured at decreasing success rates (55% after 1 day, 35% after 2 days, 15% after 3 days) up to a maximum of 72 h. Grafted blastocysts can continue development from the onset of gastrulation to early organogenesis and thereby form all structures characterizing age-matched controls (e.g. neural tube, somites, beating heart). Compared to normal controls, successfully cultured embryos developed at a slower rate and finally showed some structural and gross morphological anomalies. The method presented here was originally developed for whole embryo culture of mouse embryos by Gluecksohn-Schoenheimer in 1941. It is a simple and inexpensive method that may represent a useful extension to presently available ex utero culture systems for rabbit embryos. © 2016 S. Karger AG, Basel.

  7. Seepage phenomena on Mars at subzero temperature

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos; Möhlmann, Diedrich; Berczi, Szaniszlo; Ganti, Tibor; Horvath, Andras; Kuti, Adrienn; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    At the southern hemisphere of Mars seasonal slope structures emanating from Dark Dune Spots are visible on MGS MOC, and MRO HiRISE images. Based on their analysis two groups of streaks could be identified: diffuse and fan shaped ones forming in an earlier phase of local spring, probably by CO2 gas jets, and confined streaks forming only on steep slopes during a later seasonal phase. The dark color of the streaks may arise from the dark color of the dune grains where surface frost disappeared above them, or caused by the phase change of the water ice to liquid-like water, or even it may be influenced by the solutes of salts in the undercooled interfacial water The second group's morphology (meandering style, ponds at their end), morphometry, and related theoretical modelling suggest they may form by undercooled water that remains in liquid phase in a thin layer around solid grains. We analyzed sequence of images, temperature and topographic data of Russel (54S 12E), Richardson (72S 180E) and an unnamed crater (68S 2E) during southern spring. The dark streaks here show slow motion, with an average speed of meter/day, when the maximal daytime temperature is between 190 and 220 K. Based on thermophysical considerations a thin layer of interfacial water is inevitable on mineral surfaces under the present conditions of Mars. With 10 precipitable micrometer of atmospheric water vapor, liquid phase can be present down about 190 K. Under such conditions dark streaks may form by the movement of grains lubricatred by interfacial water. This possibility have various consequences on chemical, mechanical or even possible astrobiological processes on Mars. Acknowledgment: This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation.

  8. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    NASA Astrophysics Data System (ADS)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  9. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  10. Understanding the immune system architecture and transcriptome responses to southern rice black-streaked dwarf virus in Sogatella furcifera.

    PubMed

    Wang, Lin; Tang, Nan; Gao, Xinlei; Guo, Dongyang; Chang, Zhaoxia; Fu, Yating; Akinyemi, Ibukun A; Wu, Qingfa

    2016-11-02

    Sogatella furcifera, the white-backed planthopper (WBPH), has become one of the most destructive pests in rice production owing to its plant sap-sucking behavior and efficient transmission of Southern rice black-streaked dwarf virus (SRBSDV) in a circulative, propagative and persistent manner. The dynamic and complex SRBSDV-WBPH-rice plant interaction is still poorly understood. In this study, based on a homology-based genome-wide analysis, 348 immune-related genes belonging to 28 families were identified in WBPH. A transcriptome analysis of non-viruliferous (NVF) and viruliferous groups with high viral titers (HVT) and median viral titers (MVT) revealed that feeding on SRBSDV-infected rice plants has a significant impact on gene expression, regardless of viral titers in insects. We identified 278 up-regulated and 406 down-regulated genes shared among the NVF, MVT, and HVT groups and detected significant down-regulation of primary metabolism-related genes and oxidoreductase. In viruliferous WBPH with viral titer-specific transcriptome changes, 1,906 and 1,467 genes exhibited strict monotonically increasing and decreasing expression, respectively. The RNAi pathway was the major antiviral response to increasing viral titers among diverse immune responses. These results clarify the responses of immune genes and the transcriptome of WBPH to SRBSDV and improve our knowledge of the functional relationship between pathogen, vector, and host.

  11. Optical Diagnostic System For Observation Of Laser-Produced Shock Waves

    NASA Astrophysics Data System (ADS)

    Wilke, Mark D.; Stone, Sidney N.

    1980-11-01

    Several standard plasma and gas dynamic diagnostic techniques have been integrated into a system for observing the formation and propagation of high-power Nd:glass-laser generated one- and two-dimensional shockwaves in air from 0.1 torr to atmospheric pres-sures. Diagnostics include either single-frame, two-wavelength holographic ruby-laser interferometry or single-frame, single-wavelength interferometry with ten frames of shadow-graphy. Streaks or ten frames of the early luminous shocked region also are taken on all shots, as well as time-resolved luminosity measurements using high-speed biplanar vacuum photodiodes with various wavelength interference filters. Shadowgraphy frames are 200-ns long at 1-μs intervals, while emission frames are variable with a maximum 10-ns exposure and 50-ns interval. Both the streak mode and emission measurements with the vacuum diode allow subnanosecond time resolution. The interferometry provides 20-ns exposures from 500 ns to late times. Methods for reducing and interpreting the data have been, or are currently being, developed. Interactive computer programs for digitizing the fringe patterns provide fringe-shift profiles for Abel inversion. This has provided neutral gas and electron density information in the spherical, one-dimensional cases. Diagrams and photographs of the experiment will be shown as well as examples of the data that have been taken. Methods for data reduction will be outlined and some of the results shown.

  12. Time-resolved X-ray excited optical luminescence using an optical streak camera

    NASA Astrophysics Data System (ADS)

    Ward, M. J.; Regier, T. Z.; Vogt, J. M.; Gordon, R. A.; Han, W.-Q.; Sham, T. K.

    2013-03-01

    We report the development of a time-resolved XEOL (TR-XEOL) system that employs an optical streak camera. We have conducted TR-XEOL experiments at the Canadian Light Source (CLS) operating in single bunch mode with a 570 ns dark gap and 35 ps electron bunch pulse, and at the Advanced Photon Source (APS) operating in top-up mode with a 153 ns dark gap and 33.5 ps electron bunch pulse. To illustrate the power of this technique we measured the TR-XEOL of solid-solution nanopowders of gallium nitride - zinc oxide, and for the first time have been able to resolve near-band-gap (NBG) optical luminescence emission from these materials. Herein we will discuss the development of the streak camera TR-XEOL technique and its application to the study of these novel materials.

  13. Motion streaks do not influence the perceived position of stationary flashed objects.

    PubMed

    Pavan, Andrea; Bellacosa Marotti, Rosilari

    2012-01-01

    In the present study, we investigated whether motion streaks, produced by fast moving dots Geisler 1999, distort the positional map of stationary flashed objects producing the well-known motion-induced position shift illusion (MIPS). The illusion relies on motion-processing mechanisms that induce local distortions in the positional map of the stimulus which is derived by shape-processing mechanisms. To measure the MIPS, two horizontally offset Gaussian blobs, placed above and below a central fixation point, were flashed over two fields of dots moving in opposite directions. Subjects judged the position of the top Gaussian blob relative to the bottom one. The results showed that neither fast (motion streaks) nor slow moving dots influenced the perceived spatial position of the stationary flashed objects, suggesting that background motion does not interact with the shape-processing mechanisms involved in MIPS.

  14. The effect of the acceleration/deceleration trauma in angioid streaks: A pathogenic hypothesis.

    PubMed

    Fajardo Sánchez, J; Chau Ramos, C E; Mazagatos Used, P J; Aparicio Hernandez-Lastras, M J

    2016-09-01

    A 59-year-old male with acceleration/deceleration cranial trauma (ADT), caused by a car accident. After one month, he presented with loss of visual acuity in the right eye. A fluorescein angiography test was performed and it detected centrifugal hyperfluorescent lines from the optic nerve head, a characteristic compatible with the diagnosis of angioid streaks. The loss of visual acuity was demonstrated by the discovery of a juxtafoveal choroidal neovascular membrane (CNV). ADT can cause hyper-extension of the eyeball in its equator line, producing the rupture of fragile structures such as the Bruch membrane (MB) in patients with angioid streaks and the subsequent formation of CNV. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Rapid evolution of a jet streak circulation in a pre-convective environment

    NASA Technical Reports Server (NTRS)

    Kocin, P. J.; Uccellini, L. W.; Petersen, R. A.

    1986-01-01

    An analysis of the April 10, 1979 Red River Valley severe weather outbreak, using a three-hourly rawinsonde network, indicates that the preconvection environment is influenced by upper-level and lower-level tropospheric jet streaks (ULJs and LLJs) that act to destabilize the atmosphere, and contribute to low-level heat and moisture transports and convergence that act to initiate the storm system. Transformation of an indirect circulation noted within the exit region of the ULJ at 1200 and 1500 GMT is observed within a six-hour period. Dramatic changes are found in the jet streak circulations over a short period of time as the system deviates from that approximated by the geostrophic momentum approximation, and these deviations suggest that adjustments asssociated with ULJs in this case could not be resolved using a simplified two-dimensional approach.

  16. Temperature-dependent Wsm1 and Wsm2 gene-specific blockage of viral long-distance transport provides resistance to Wheat streak mosaic virus and Triticum mosaic virus in wheat

    USDA-ARS?s Scientific Manuscript database

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cultivars Mace with the resistance gene Wsm1 and Snowmass with the resistance gene Wsm2 are resistant to WSMV and TriMV, and WSMV, respectively. Viral resistance in both cult...

  17. Observations of Aircraft Dissipation Trails from GOES

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick

    2002-01-01

    Two cases of distrails (aircraft dissipation trails) with associated fall streak clouds were analyzed using multispectral geostationary satellite data. One distrail was observed on 23 July 2000 in a single cloud layer over southeastern Virginia and the Chesapeake Bay. Another set of trails developed on 6 January 2000 at the top of multilayer clouds off the coasts of Georgia and South Carolina. The distrails on both days formed in optically thin, midlevel stratified clouds with cloud-top heights between 7.6 and 9.1 km. The distrail features remained intact and easily visible from satellite images for 1-2 h in spite of winds near 50 km at cloud level. The width of the distrails spread as far as 20 km within 90 min or less. Differences between the optical properties of the clouds surrounding the trails and those of the fall streak particles inside the distrails allowed for easy identification of the fall streak clouds in either the 3.9-micrometer brightness temperature imagery, or the 10.7-micrometer - 12.0-micrometer brightness temperature difference. Although the three-channel infrared retrieval was better at retrieving cloud properties in the multilayer cloud case, two independent remote sensing retrievals of both distrail cases showed that the fall streaks had larger particle sizes than the clouds outside of the trails.

  18. A maize resistance gene functions against bacterial streak disease in rice

    PubMed Central

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-01-01

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease. PMID:16230639

  19. A maize resistance gene functions against bacterial streak disease in rice.

    PubMed

    Zhao, Bingyu; Lin, Xinghua; Poland, Jesse; Trick, Harold; Leach, Jan; Hulbert, Scot

    2005-10-25

    Although cereal crops all belong to the grass family (Poacea), most of their diseases are specific to a particular species. Thus, a given cereal species is typically resistant to diseases of other grasses, and this nonhost resistance is generally stable. To determine the feasibility of transferring nonhost resistance genes (R genes) between distantly related grasses to control specific diseases, we identified a maize R gene that recognizes a rice pathogen, Xanthomonas oryzae pv. oryzicola, which causes bacterial streak disease. Bacterial streak is an important disease of rice in Asia, and no simply inherited sources of resistance have been identified in rice. Although X. o. pv. oryzicola does not cause disease on maize, we identified a maize gene, Rxo1, that conditions a resistance reaction to a diverse collection of pathogen strains. Surprisingly, Rxo1 also controls resistance to the unrelated pathogen Burkholderia andropogonis, which causes bacterial stripe of sorghum and maize. The same gene thus controls resistance reactions to both pathogens and nonpathogens of maize. Rxo1 has a nucleotide-binding site-leucine-rich repeat structure, similar to many previously identified R genes. Most importantly, Rxo1 functions after transfer as a transgene to rice, demonstrating the feasibility of nonhost R gene transfer between cereals and providing a valuable tool for controlling bacterial streak disease.

  20. Suppression of motion-induced streak artifacts along chords in fan-beam BPF-reconstructions of motion-contaminated projection data

    NASA Astrophysics Data System (ADS)

    King, Martin; Xia, Dan; Yu, Lifeng; Pan, Xiaochuan; Giger, Maryellen

    2006-03-01

    Usage of the backprojection filtration (BPF) algorithm for reconstructing images from motion-contaminated fan-beam data may result in motion-induced streak artifacts, which appear in the direction of the chords on which images are reconstructed. These streak artifacts, which are most pronounced along chords tangent to the edges of the moving object, may be suppressed by use of the weighted BPF (WBPF) algorithm, which can exploit the inherent redundancies in fan-beam data. More specifically, reconstructions using full-scan and short-scan data can allow for substantial suppression of these streaks, whereas those using reduced-scan data can allow for partial suppression. Since multiple different reconstructions of the same chord can be obtained by varying the amount of redundant data used, we have laid the groundwork for a possible method to characterize the amount of motion encoded within the data used for reconstructing an image on a particular chord. Furthermore, since motion artifacts in WBPF reconstructions using full-scan and short-scan data appear similar to those in corresponding fan-beam filtered backprojection (FFBP) reconstructions for the cases performed in this study, the BPF and WBPF algorithms potentially may be used to arrive at a more fundamental characterization of how motion artifacts appear in FFBP reconstructions.

  1. A robust in-situ warp-correction algorithm for VISAR streak camera data at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.; Kalantar, Daniel H.

    2015-02-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high energy density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However, the camera nonlinearities drift over time affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.

  2. It's a Bird, It's a Plane, It's a... Spacecraft?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Observing the sky with the green filter of it panoramic camera, the Mars Exploration Rover Spirit came across a surprise: a streak across the sky. The streak, seen in the middle of this mosaic of images taken by the navigation and panoramic cameras, was probably the brightest object in the sky at the time. Scientists theorize that the mystery line could be either a meteorite or one of seven out-of-commission spacecraft still orbiting Mars. Because the object appeared to move 4 degrees of an arc in 15 seconds it is probably not the Russian probes Mars 2, Mars 3, Mars 5, or Phobos 2; or the American probes Mariner 9 or Viking 1. That leaves Viking 2, which has a polar orbit that would fit with the north-south orientation of the streak. In addition, only Viking 1 and 2 were left in orbits that could produce motion as fast as that seen by Spirit. Said Mark Lemmon, a rover team member from Texas A&M University, Texas, 'Is this the first image of a meteor on Mars, or an image of a spacecraft sent from another world during the dawn of our robotic space exploration program? We may never know, but we are still looking for clues'.

    The inset shows only the panoramic image of the streak.

  3. Target 3-D reconstruction of streak tube imaging lidar based on Gaussian fitting

    NASA Astrophysics Data System (ADS)

    Yuan, Qingyu; Niu, Lihong; Hu, Cuichun; Wu, Lei; Yang, Hongru; Yu, Bing

    2018-02-01

    Streak images obtained by the streak tube imaging lidar (STIL) contain the distance-azimuth-intensity information of a scanned target, and a 3-D reconstruction of the target can be carried out through extracting the characteristic data of multiple streak images. Significant errors will be caused in the reconstruction result by the peak detection method due to noise and other factors. So as to get a more precise 3-D reconstruction, a peak detection method based on Gaussian fitting of trust region is proposed in this work. Gaussian modeling is performed on the returned wave of single time channel of each frame, then the modeling result which can effectively reduce the noise interference and possesses a unique peak could be taken as the new returned waveform, lastly extracting its feature data through peak detection. The experimental data of aerial target is for verifying this method. This work shows that the peak detection method based on Gaussian fitting reduces the extraction error of the feature data to less than 10%; utilizing this method to extract the feature data and reconstruct the target make it possible to realize the spatial resolution with a minimum 30 cm in the depth direction, and improve the 3-D imaging accuracy of the STIL concurrently.

  4. Optimization of the first dimension for separation by two-dimensional gel electrophoresis of basic proteins from human brain tissue.

    PubMed

    Pennington, Kyla; McGregor, Emma; Beasley, Clare L; Everall, Ian; Cotter, David; Dunn, Michael J

    2004-01-01

    A major cause of poor resolution in the alkaline pH range of two-dimensional electrophoresis (2-DE) gels is unsatisfactory separation of basic proteins in the first dimension. We have compared methods for the separation of basic proteins in the isoelectric focusing dimension of human brain proteins. The combined use of anodic cup-loading and the hydroxyethyldisulphide containing solution (DeStreak) produced better resolution in both analytical and micropreparative protein loaded 2-DE gels than the other methods investigated.

  5. Advecting Procedural Textures for 2D Flow Animation

    NASA Technical Reports Server (NTRS)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  6. A numerical investigation of the President's Day storm of February 18-19, 1979

    NASA Technical Reports Server (NTRS)

    Nappi, A. J.; Warner, T. T.

    1983-01-01

    The reported investigation is based on the use of a three-dimensional, primitive equation model. The President's Day storm, formed in the Gulf of Mexico as a massive anticyclone, affected the northern states with record-breaking cold temperatures. Attention is given to the physical processes relevant to storm formation, the forecast model, a description of experiments and model forecasts, and model results. An attempt is made to determine the important dynamic processes at work during the evolution of the storm. The jet streak interactions which occurred in the cyclogenetic environment, the effects of cold air damming, and the formation of a strong mesoscale coastal front are found to be of particular interest.

  7. Time-varying Atmospheric Circulation Patterns Caused by N2 Condensation Flows on a Simulated Triton Atmosphere

    NASA Astrophysics Data System (ADS)

    Miller, C.; Chanover, N.; Murphy, J. R.; Zalucha, A. M.

    2011-12-01

    Triton and Pluto are two members of a possible class of bodies with an N2 frost covered surface in vapor-pressure equilibrium with a predominately N2 atmosphere. Modeling the dynamics of such an atmosphere is useful for several reasons. First, winds on Triton were inferred from images of surface streaks and active plumes visible at the time of the Voyager 2 flyby in August 1989. Dynamic atmospheric simulations can reveal the seasonal conditions under which such winds would arise and therefore how long before the Voyager 2 encounter the ground streaks may have been deposited. Second, atmospheric conditions on Pluto at the time of the New Horizons flyby are expected to be similar to those on Triton. Therefore, a dynamical model of a cold, thin N2 atmosphere can be used to predict wind speed and direction on Pluto during the New Horizons encounter with the Pluto/Charon system in July 2015. We used a modified version of the NASA Ames Mars General Circulation Model, version 2.0, to model an N2 atmosphere in contact with N2 surface frosts. We altered the Ames GCM to simulate conditions found on Triton. These alterations included changing the size, rotation rate, orbital inclination, surface gravity, and distance to the Sun of the parent body to model the proper time-varying insolation. We defined the gas properties for an N2 atmosphere, including values for latent heat, specific heat, and the vapor pressure-temperature relationship for N2 frosts. Our simulations assumed an N2 atmosphere with an initial average surface pressure of 18 microbars and we chose N2 frost albedo and emissivity values that resulted in a stable surface pressure over time. We incorporated a 190-meter deep ten-layer water-ice subsurface layer covered with a 20-centimeter global layer of N2 frost. Our simulations did not include atmospheric radiative heat transfer, but did include conduction, convection, and surface-boundary layer heating. We ran simulations of 100 Triton days at 10 points along Triton's orbit between the 1952 equinox and the 2000 southern summer solstice to examine seasonal changes in the condensation flow. We will present results from these simulations and discuss the interplay between sub-surface heat conduction, N2 frost phase changes, and atmospheric dynamics. We will also compare these results to those obtained under two other initial surface conditions - no N2 frost layer, and a global N2 frost layer with sublimation and condensation inhibited. These simulations provide a baseline for disentangling the respective roles of subsurface heating, local atmospheric mass change through surface frost sublimation and condensation, and the vapor pressure-temperature relationship for N2 frost. We will also present results of simulations incorporating a Newtonian thermal relaxation scheme with temperature-pressure profiles derived from a 2-D radiative-conductive model. Finally, we will compare our simulation results under conditions equivalent to those at the time of the Voyager 2 flyby to the wind field inferred by the pattern of ground streaks seen on Triton. This study was funded by a NASA Earth and Space Science Fellowship through grant number NNX09AQ96H.

  8. 9. VIEW OF 'BLUE STREAK' HAMMER MILL (Prater Pulverizer Co., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF 'BLUE STREAK' HAMMER MILL (Prater Pulverizer Co., Chicago, Illinois), LOCATED IN THE SOUTHEAST CORNER OF THE BASEMENT, WAS ADDED IN THE EARLY 1930s. THIS WAS THE MILL'S FIRST ELECTRIC-POWERED MACHINERY. THE HAMMER MILL WAS USED TO PULVERIZE OATS, ALFALFA MEAL, AND CORN. Photographer: Louise Taft Cawood, July 1986 - Alexander's Grist Mill, Lock 37 on Ohio & Erie Canal, South of Cleveland, Valley View, Cuyahoga County, OH

  9. Enhancing Ground Based Telescope Performance with Image Processing

    DTIC Science & Technology

    2013-11-13

    driven by the need to detect small faint objects with relatively short integration times to avoid streaking of the satellite image across multiple...the time right before the eclipse. The orbital elements of the satellite were entered into the SST’s tracking system, so that the SST could be...short integration times , thereby avoiding streaking of the satellite image across multiple CCD pixels so that the objects are suitably modeled as point

  10. Effects of diabatic heating on the ageostrophic circulation of an upper tropospheric jet streak

    NASA Technical Reports Server (NTRS)

    Keyser, D. A.; Johnson, D. R.

    1982-01-01

    Interaction between the mass circulation within a mesoscale convective complex (MCC) and a direct mass circulation in the entrance region of an upper tropospheric polar jet streak was examined within the isentropic structure to investigate mechanisms responsible for linking these two scales of motion. The results establish that latent heating in the MCC modifies the direct mass circulation in the jet streak entrance region through the diabatically induced components of ageostrophic motion analyzed within isentropic coordinates. Within the strong mesoscale mass circulation of each MCC, strong horizontal mass flux convergence into the MCC at low levels is balanced by strong horizontal mass flux divergence away from the convergence at upper levels. Locations of large diabatic heating rates correspond well to the MCC position for each case; diabatic heating forces the upward vertical branch for the mesoscale mass circulation.

  11. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, R.F.

    1983-10-18

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  12. Carry on winning: the gamblers' fallacy creates hot hand effects in online gambling.

    PubMed

    Xu, Juemin; Harvey, Nigel

    2014-05-01

    People suffering from the hot-hand fallacy unreasonably expect winning streaks to continue whereas those suffering from the gamblers' fallacy unreasonably expect losing streaks to reverse. We took 565,915 sports bets made by 776 online gamblers in 2010 and analyzed all winning and losing streaks up to a maximum length of six. People who won were more likely to win again (apparently because they chose safer odds than before) whereas those who lost were more likely to lose again (apparently because they chose riskier odds than before). However, selection of safer odds after winning and riskier ones after losing indicates that online sports gamblers expected their luck to reverse: they suffered from the gamblers' fallacy. By believing in the gamblers' fallacy, they created their own hot hands. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. New continuous recording procedure of holographic information on transient phenomena

    NASA Astrophysics Data System (ADS)

    Nagayama, Kunihito; Nishihara, H. Keith; Murakami, Terutoshi

    1992-09-01

    A new method for continuous recording of holographic information, 'streak holography,' is proposed. This kind of record can be useful for velocity and acceleration measurement as well as for observing a moving object whose trajectory cannot be predicted in advance. A very high speed camera system has been designed and constructed for streak holography. A ring-shaped 100-mm-diam film has been cut out from the high-resolution sheet film and mounted on a thin duralmin disk, which has been driven to rotate directly by an air-turbine spindle. Attainable streak velocity is 0.3 mm/microsecond(s) . A direct film drive mechanism makes it possible to use a relay lens system of extremely small f number. The feasibility of the camera system has been demonstrated by observing several transient events, such as the forced oscillation of a wire and the free fall of small glass particles, using an argon-ion laser as a light source.

  14. Attosecond Streaking in the Water Window: A New Regime of Attosecond Pulse Characterization

    NASA Astrophysics Data System (ADS)

    Cousin, Seth L.; Di Palo, Nicola; Buades, Bárbara; Teichmann, Stephan M.; Reduzzi, M.; Devetta, M.; Kheifets, A.; Sansone, G.; Biegert, Jens

    2017-10-01

    We report on the first streaking measurement of water-window attosecond pulses generated via high-harmonic generation, driven by sub-2-cycle, carrier-to-envelope-phase-stable, 1850-nm laser pulses. Both the central photon energy and the energy bandwidth far exceed what has been demonstrated thus far, warranting the investigation of the attosecond streaking technique for the soft-x-ray regime and the limits of the frogcrab retrieval algorithm under such conditions. We also discuss the problem of attochirp compensation and issues regarding much lower photoionization cross sections compared with the extreme ultraviolet in addition to the fact that several shells of target gases are accessed simultaneously. Based on our investigation, we caution that the vastly different conditions in the soft-x-ray regime warrant a diligent examination of the fidelity of the measurement and the retrieval procedure.

  15. Mach-zehnder based optical marker/comb generator for streak camera calibration

    DOEpatents

    Miller, Edward Kirk

    2015-03-03

    This disclosure is directed to a method and apparatus for generating marker and comb indicia in an optical environment using a Mach-Zehnder (M-Z) modulator. High speed recording devices are configured to record image or other data defining a high speed event. To calibrate and establish time reference, the markers or combs are indicia which serve as timing pulses (markers) or a constant-frequency train of optical pulses (comb) to be imaged on a streak camera for accurate time based calibration and time reference. The system includes a camera, an optic signal generator which provides an optic signal to an M-Z modulator and biasing and modulation signal generators configured to provide input to the M-Z modulator. An optical reference signal is provided to the M-Z modulator. The M-Z modulator modulates the reference signal to a higher frequency optical signal which is output through a fiber coupled link to the streak camera.

  16. 78 FR 61505 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Taylor's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ...We, the U.S. Fish and Wildlife Service, designate critical habitat for the Taylor's checkerspot butterfly (Euphydryas editha taylori) and streaked horned lark (Eremophila alpestris strigata) under the Endangered Species Act of 1973, as amended (Act). In total, approximately 1,941 acres (786 hectares) in Island, Clallam, and Thurston Counties in Washington, and in Benton County in Oregon, fall within the boundaries of the critical habitat designation for Taylor's checkerspot butterfly. Approximately 4,629 acres (1,873 hectares) in Grays Harbor, Pacific, and Wahkiakum Counties in Washington, and in Clatsop, Columbia, Marion, Polk, and Benton Counties in Oregon, fall within the boundaries of the critical habitat designation for streaked horned lark. The effect of this regulation is to designate critical habitat for the Taylor's checkerspot butterfly and streaked horned lark under the Act for the conservation of the species.

  17. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, Robert F.

    1987-01-01

    An apparatus for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously.

  18. Optical pin apparatus for measuring the arrival time and velocity of shock waves and particles

    DOEpatents

    Benjamin, R.F.

    1987-03-10

    An apparatus is disclosed for the detection of the arrival and for the determination of the velocity of disturbances such as shock-wave fronts and/or projectiles. Optical pins using fluid-filled microballoons as the light source and an optical fiber as a link to a photodetector have been used to investigate shock-waves and projectiles. A microballoon filled with a noble gas is affixed to one end of a fiber-optic cable, and the other end of the cable is attached to a high-speed streak camera. As the shock-front or projectile compresses the microballoon, the gas inside is heated and compressed producing a bright flash of light. The flash of light is transmitted via the optic cable to the streak camera where it is recorded. One image-converter streak camera is capable of recording information from more than 100 microballoon-cable combinations simultaneously. 3 figs.

  19. Recording the synchrotron radiation by a picosecond streak camera for bunch diagnostics in cyclic accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vereshchagin, A K; Vorob'ev, N S; Gornostaev, P B

    2016-02-28

    A PS-1/S1 picosecond streak camera with a linear sweep is used to measure temporal characteristics of synchrotron radiation pulses on a damping ring (DR) at the Budker Institute of Nuclear Physics (BINP) of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk). The data obtained allow a conclusion as to the formation processes of electron bunches and their 'quality' in the DR after injection from the linear accelerator. The expediency of employing the streak camera as a part of an optical diagnostic accelerator complex for adjusting the injection from a linear accelerator is shown. Discussed is the issue ofmore » designing a new-generation dissector with a time resolution up to a few picoseconds, which would allow implementation of a continuous bunch monitoring in the DR during mutual work with the electron-positron colliders at the BINP. (acoustooptics)« less

  20. Optimization of paper bridge loading for 2-DE analysis in the basic pH region: application to the mitochondrial subproteome.

    PubMed

    Kane, Lesley A; Yung, Christina K; Agnetti, Giulio; Neverova, Irina; Van Eyk, Jennifer E

    2006-11-01

    Separation of basic proteins with 2-DE presents technical challenges involving protein precipitation, load limitations, and streaking. Cardiac mitochondria are enriched in basic proteins and difficult to resolve by 2-DE. We investigated two methods, cup and paper bridge, for sample loading of this subproteome into the basic range (pH 6-11) gels. Paper bridge loading consistently produced improved resolution of both analytical and preparative protein loads. A unique benefit of this technique is that proteins retained in the paper bridge after loading basic gels can be reloaded onto lower pH gradients (pH 4-7), allowing valued samples to be analyzed on multiple pH ranges.

  1. 4D display of the outflow track of embryonic-chick hearts (HH 14-19) using a high speed streak mode OCT

    NASA Astrophysics Data System (ADS)

    Ma, Siyu; Wang, Rui; Goodwin, Richard L.; Markwald, Roger R.; Borg, Thomas K.; Runyan, Raymond B.; Gao, Zhi

    2013-02-01

    Congenital Heart Disease (CHD) is the most common congenital malformation in newborns in the US. Although knowledge of CHD is limited, altered hemodynamic conditions are suspected as the factor that stimulates cardiovascular cell response, resulting in the heart morphology remodeling that ultimately causes CHDs. Therefore, one of recent efforts in CHD study is to develop high-speed imaging tools to correlate the rapidly changing hemodynamic condition and the morphological adaptations of an embryonic heart in vivo. We have developed a high-speed streak mode OCT that works at the center wavelength of 830 nm and is capable of providing images (292x220 μm2) of the outflow tract of an embryonic chick heart at the rate of 1000 Hz. The modality can provide a voxel resolution in the range of 10 μm3, and the spectral resolution allows a depth range of 1.63 mm. In the study reported here, each of the 4D images of an outflow tract was recorded for 2 seconds. The recording was conducted every 2 hours (HH17 to HH18), 3 hours (HH14 to HH17), and 4 hours (HH18 to HH19). Because of the fast scan speed, there is no need for postacquisition processing such as use of gating techniques to provide a fine 3D structure. In addition, more details of the outflow tract are preserved in the recorded images. The 4D images can be used in the future to determine the role of blood flow in CHD development.

  2. Investigating the Effects of Motion Streaks on pQCT-Derived Leg Muscle Density and Its Association With Fractures.

    PubMed

    Chan, Adrian C H; Adachi, Jonathan D; Papaioannou, Alexandra; Wong, Andy Kin On

    Lower peripheral quantitative computed tomography (pQCT)-derived leg muscle density has been associated with fragility fractures in postmenopausal women. Limb movement during image acquisition may result in motion streaks in muscle that could dilute this relationship. This cross-sectional study examined a subset of women from the Canadian Multicentre Osteoporosis Study. pQCT leg scans were qualitatively graded (1-5) for motion severity. Muscle and motion streak were segmented using semi-automated (watershed) and fully automated (threshold-based) methods, computing area, and density. Binary logistic regression evaluated odds ratios (ORs) for fragility or all-cause fractures related to each of these measures with covariate adjustment. Among the 223 women examined (mean age: 72.7 ± 7.1 years, body mass index: 26.30 ± 4.97 kg/m 2 ), muscle density was significantly lower after removing motion (p < 0.001) for both methods. Motion streak areas segmented using the semi-automated method correlated better with visual motion grades (rho = 0.90, p < 0.01) compared to the fully automated method (rho = 0.65, p < 0.01). Although the analysis-reanalysis precision of motion streak area segmentation using the semi-automated method is above 5% error (6.44%), motion-corrected muscle density measures remained well within 2% analytical error. The effect of motion-correction on strengthening the association between muscle density and fragility fractures was significant when motion grade was ≥3 (p interaction <0.05). This observation was most dramatic for the semi-automated algorithm (OR: 1.62 [0.82,3.17] before to 2.19 [1.05,4.59] after correction). Although muscle density showed an overall association with all-cause fractures (OR: 1.49 [1.05,2.12]), the effect of motion-correction was again, most impactful within individuals with scans showing grade 3 or above motion. Correcting for motion in pQCT leg scans strengthened the relationship between muscle density and fragility fractures, particularly in scans with motion grades of 3 or above. Motion streaks are not confounders to the relationship between pQCT-derived leg muscle density and fractures, but may introduce heterogeneity in muscle density measurements, rendering associations with fractures to be weaker. Copyright © 2016. Published by Elsevier Inc.

  3. High speed photography, videography, and photonics V; Proceedings of the Meeting, San Diego, CA, Aug. 17-19, 1987

    NASA Technical Reports Server (NTRS)

    Johnson, Howard C. (Editor)

    1988-01-01

    Recent advances in high-speed optical and electrooptic devices are discussed in reviews and reports. Topics examined include data quantification and related technologies, high-speed photographic applications and instruments, flash and cine radiography, and novel ultrafast methods. Also considered are optical streak technology, high-speed videographic and photographic equipment, and X-ray streak cameras. Extensive diagrams, drawings, graphs, sample images, and tables of numerical data are provided.

  4. Distributed Blowing and Suction for the Purpose of Streak Control in a Boundary Layer Subjected to a Favorable Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Forgoston, Eric; Tumin, Anatoli; Ashpis, David E.

    2005-01-01

    An analysis of the optimal control by blowing and suction in order to generate stream- wise velocity streaks is presented. The problem is examined using an iterative process that employs the Parabolized Stability Equations for an incompressible uid along with its adjoint equations. In particular, distributions of blowing and suction are computed for both the normal and tangential velocity perturbations for various choices of parameters.

  5. Euschoengastia suzukii (Acari: Trombiculidae): A new species of chigger mite collected from soil samples in the nest burrows of streaked shearwater in Japan.

    PubMed

    Takahashi, Mamoru; Fukaya, Hajime; Takahashi, Hisae

    2005-07-01

    Euschoengastia suzukii Takahashi, Fukaya & Takahashi is described and illustrated. The type material was collected from soil samples in the nest burrows of the sea bird streaked shearwater, Calonectris leucomelas (Temminck), living on Mikurajima Island in Tokyo; Oomorijima Island, Oki, Shimane Prefecture; and Awashima Island, Niigata Prefecture, in Japan, indicating that C. leucomelas is the main parasitic host of E. suzukii new species.

  6. A Robust In-Situ Warp-Correction Algorithm For VISAR Streak Camera Data at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labaria, George R.; Warrick, Abbie L.; Celliers, Peter M.

    2015-01-12

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a 192-beam pulsed laser system for high-energy-density physics experiments. Sophisticated diagnostics have been designed around key performance metrics to achieve ignition. The Velocity Interferometer System for Any Reflector (VISAR) is the primary diagnostic for measuring the timing of shocks induced into an ignition capsule. The VISAR system utilizes three streak cameras; these streak cameras are inherently nonlinear and require warp corrections to remove these nonlinear effects. A detailed calibration procedure has been developed with National Security Technologies (NSTec) and applied to the camera correction analysis in production. However,more » the camera nonlinearities drift over time, affecting the performance of this method. An in-situ fiber array is used to inject a comb of pulses to generate a calibration correction in order to meet the timing accuracy requirements of VISAR. We develop a robust algorithm for the analysis of the comb calibration images to generate the warp correction that is then applied to the data images. Our algorithm utilizes the method of thin-plate splines (TPS) to model the complex nonlinear distortions in the streak camera data. In this paper, we focus on the theory and implementation of the TPS warp-correction algorithm for the use in a production environment.« less

  7. Streaked Thomson Scattering on Laboratory Plasma Jets

    NASA Astrophysics Data System (ADS)

    Banasek, Jacob; Byvank, Tom; Rocco, Sophia; Kusse, Bruce; Hammer, David

    2017-10-01

    Streaked Thomson scattering measurements have been performed on plasma jets created from a 15 μm thick radial Al or Ti foil load on COBRA, a 1 MA pulsed power machine. The goal was to measure the electron temperatures inside the center of the plasma jet created by the radial foil. The laser used for these measurements had a maximum energy of 10 J at 526.5 nm in a 3 ns duration pulse. Early experiments showed using the full energy significantly heats the 5 ×1018 cm-3 jet by inverse bremsstrahlung radiation. Here we used a streak camera to record the scattered spectrum and measure the evolving electron temperature of this laser heated jet. Analysis of the streak camera image showed that the electron temperature of the Al jet was increased from about 25 eV to 80-100 eV within about 2 ns. The Ti jets showed even stronger interaction with the laser, being heated to over 150 eV, and showed some heating even when only 1 J of laser energy was used. Also, the ion-acoustic peaks in the scattered spectrum from the Ti jets were significantly narrower than those from Al jets. Initial results will also be presented with scattered spectra taken at two different times within a single experiment by splitting the probe beam. This research is supported by the NNSA Stewardship Sciences Academic Programs under DOE Cooperative Agreement DE-NA0001836.

  8. Time-evolving of very large-scale motions in a turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Hwang, Jinyul; Lee, Jin; Sung, Hyung Jin; Zaki, Tamer A.

    2014-11-01

    Direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 930 was scrutinized to investigate the formation of very large-scale motions (VLSMs) by merging of two large-scale motions (LSMs), aligned in the streamwise direction. We mainly focused on the supportive motions by the near-wall streaks during the merging of the outer LSMs. From visualization of the instantaneous flow fields, several low-speed streaks in the near-wall region were collected in the spanwise direction, when LSMs were concatenated in the outer region. The magnitude of the streamwise velocity fluctuations in the streaks was intensified during the spanwise merging of the near-wall streaks. Conditionally-averaged velocity fields around the merging of the outer LSMs showed that the intensified near-wall motions were induced by the outer LSMs and extended over the near-wall regions. The intense near-wall motions influence the formation of the outer low-speed regions as well as the reduction of the convection velocity of the downstream LSMs. The interaction between the near-wall and the outer motions is the essential origin of the different convection velocities of the upstream and downstream LSMs for the formation process of VLSMs by merging. This work was supported by the Creative Research Initiatives (No. 2014-001493) program of the National Research Foundation of Korea (MSIP) and partially supported by KISTI under the Strategic Supercomputing Support Program.

  9. Analysis of dark albedo features on a southern polar dune field of Mars.

    PubMed

    Horváth, András; Kereszturi, Akos; Bérczi, Szaniszló; Sik, András; Pócs, Tamás; Gánti, Tibor; Szathmáry, Eörs

    2009-01-01

    We observed 20-200 m sized low-albedo seepage-like streaks and their annual change on defrosting polar dunes in the southern hemisphere of Mars, based on the Mars Orbiter Camera (MOC), High Resolution Stereo Camera (HRSC), and High Resolution Imaging Science Experiment (HiRISE) images. The structures originate from dark spots and can be described as elongated or flowlike and, at places, branching streaks. They frequently have another spotlike structure at their end. Their overall appearance and the correlation between their morphometric parameters suggest that some material is transported downward from the spots and accumulates at the bottom of the dune's slopes. Here, we present possible scenarios for the origin of such streaks, including dry avalanche, liquid CO(2), liquid H(2)O, and gas-phase CO(2). Based on their morphology and the currently known surface conditions of Mars, no model interprets the streaks satisfactorily. The best interpretation of only the morphology and morphometric characteristics is only given by the model that implies some liquid water. The latest HiRISE images are also promising and suggest liquid flow. We suggest, with better knowledge of sub-ice temperatures that result from extended polar solar insolation and the heat insulator capacity of water vapor and water ice, future models and measurements may show that ephemeral water could appear and flow under the surface ice layer on the dunes today.

  10. Automatic cable artifact removal for cardiac C-arm CT imaging

    NASA Astrophysics Data System (ADS)

    Haase, C.; Schäfer, D.; Kim, M.; Chen, S. J.; Carroll, J.; Eshuis, P.; Dössel, O.; Grass, M.

    2014-03-01

    Cardiac C-arm computed tomography (CT) imaging using interventional C-arm systems can be applied in various areas of interventional cardiology ranging from structural heart disease and electrophysiology interventions to valve procedures in hybrid operating rooms. In contrast to conventional CT systems, the reconstruction field of view (FOV) of C-arm systems is limited to a region of interest in cone-beam (along the patient axis) and fan-beam (in the transaxial plane) direction. Hence, highly X-ray opaque objects (e.g. cables from the interventional setup) outside the reconstruction field of view, yield streak artifacts in the reconstruction volume. To decrease the impact of these streaks a cable tracking approach on the 2D projection sequences with subsequent interpolation is applied. The proposed approach uses the fact that the projected position of objects outside the reconstruction volume depends strongly on the projection perspective. By tracking candidate points over multiple projections only objects outside the reconstruction volume are segmented in the projections. The method is quantitatively evaluated based on 30 simulated CT data sets. The 3D root mean square deviation to a reference image could be reduced for all cases by an average of 50 % (min 16 %, max 76 %). Image quality improvement is shown for clinical whole heart data sets acquired on an interventional C-arm system.

  11. Lucerne transient streak virus; a Recently Detected Virus Infecting Alfafa (Medicago sativa) in Central Saudi Arabia

    PubMed Central

    Raza, Ahmed; Al-Shahwan, Ibrahim M.; Abdalla, Omer A.; Al-Saleh, Mohammed A.; Amer, Mahmoud A.

    2017-01-01

    A survey was conducted to determine the status of Lucerne transient streak virus (LTSV) in three high-yielding alfalfa regions in central Saudi Arabia (Riyadh, Qassim, and Hail) during 2014. Three hundred and eight symptomatic alfalfa, and seven Sonchus oleraceus samples were collected. DAS-ELISA indicated that 59 of these samples were positive to LTSV. Two isolates of LTSV from each region were selected for molecular studies. RT-PCR confirmed the presence of LTSV in the selected samples using a specific primer pair. Percentage identity and homology tree comparisons revealed that all Saudi isolates were more closely related to each other but also closely related to the Canadian isolate-JQ782213 (97.1–97.6%) and the New Zealand isolate-U31286 (95.8–97.1%). Comparing Saudi isolates of LTSV with ten other sobemoviruses based on the coat protein gene sequences confirmed the distant relationship between them. Eleven out of fourteen plant species used in host range study were positive to LTSV. This is the first time to document that Trifolium alexandrinum, Nicotiana occidentalis, Chenopodium glaucum, and Lathyrus sativus are new host plant species for LTSV and that N. occidentalis being a good propagative host for it. PMID:28167887

  12. Particle Streak Anemometry: A New Method for Proximal Flow Sensing from Aircraft

    NASA Astrophysics Data System (ADS)

    Nichols, T. W.

    Accurate sensing of relative air flow direction from fixed-wing small unmanned aircraft (sUAS) is challenging with existing multi-hole pitot-static and vane systems. Sub-degree direction accuracy is generally not available on such systems and disturbances to the local flow field, induced by the airframe, introduce an additional error source. An optical imaging approach to make a relative air velocity measurement with high-directional accuracy is presented. Optical methods offer the capability to make a proximal measurement in undisturbed air outside of the local flow field without the need to place sensors on vulnerable probes extended ahead of the aircraft. Current imaging flow analysis techniques for laboratory use rely on relatively thin imaged volumes and sophisticated hardware and intensity thresholding in low-background conditions. A new method is derived and assessed using a particle streak imaging technique that can be implemented with low-cost commercial cameras and illumination systems, and can function in imaged volumes of arbitrary depth with complex background signal. The new technique, referred to as particle streak anemometry (PSA) (to differentiate from particle streak velocimetry which makes a field measurement rather than a single bulk flow measurement) utilizes a modified Canny Edge detection algorithm with a connected component analysis and principle component analysis to detect streak ends in complex imaging conditions. A linear solution for the air velocity direction is then implemented with a random sample consensus (RANSAC) solution approach. A single DOF non-linear, non-convex optimization problem is then solved for the air speed through an iterative approach. The technique was tested through simulation and wind tunnel tests yielding angular accuracies under 0.2 degrees, superior to the performance of existing commercial systems. Air speed error standard deviations varied from 1.6 to 2.2 m/s depending on the techniques of implementation. While air speed sensing is secondary to accurate flow direction measurement, the air speed results were in line with commercial pitot static systems at low speeds.

  13. Investigation of the moving structures in a coronal bright point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ning, Zongjun; Guo, Yang, E-mail: ningzongjun@pmo.ac.cn

    2014-10-10

    We have explored the moving structures in a coronal bright point (CBP) observed by the Solar Dynamic Observatory Atmospheric Imaging Assembly (AIA) on 2011 March 5. This CBP event has a lifetime of ∼20 minutes and is bright with a curved shape along a magnetic loop connecting a pair of negative and positive fields. AIA imaging observations show that a lot of bright structures are moving intermittently along the loop legs toward the two footpoints from the CBP brightness core. Such moving bright structures are clearly seen at AIA 304 Å. In order to analyze their features, the CBP ismore » cut along the motion direction with a curved slit which is wide enough to cover the bulk of the CBP. After integrating the flux along the slit width, we get the spacetime slices at nine AIA wavelengths. The oblique streaks starting from the edge of the CBP brightness core are identified as moving bright structures, especially on the derivative images of the brightness spacetime slices. They seem to originate from the same position near the loop top. We find that these oblique streaks are bi-directional, simultaneous, symmetrical, and periodic. The average speed is about 380 km s{sup –1}, and the period is typically between 80 and 100 s. Nonlinear force-free field extrapolation shows the possibility that magnetic reconnection takes place during the CBP, and our findings indicate that these moving bright structures could be the observational outflows after magnetic reconnection in the CBP.« less

  14. Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft

    NASA Technical Reports Server (NTRS)

    Mcardle, Jack G.; Smith, C. Frederic

    1990-01-01

    Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.

  15. Inference of Antibiotic Resistance and Virulence Among Diverse Group A Streptococcus Strains Using emm Sequencing and Multilocus Genotyping Methods

    DTIC Science & Technology

    2009-09-04

    apparent GAS-associated conditions were sampled by oropharyn- geal swab. Swabs were streaked on blood agar plates using Table 3. Isolate properties by...testing, samples were re-streaked on blood agar plates (5% sheep blood in TSA base) (Hardy Diagnostics, Santa Maria, CA), and incubated at 35–37uC with 5–10...sensitivity (A-disk method, Hardy Diagnostics) and positive GAS latex agglutination reaction (Hardy Diagnostics). Confirmed GAS isolates were then

  16. Picosecond x-ray streak cameras

    NASA Astrophysics Data System (ADS)

    Averin, V. I.; Bryukhnevich, Gennadii I.; Kolesov, G. V.; Lebedev, Vitaly B.; Miller, V. A.; Saulevich, S. V.; Shulika, A. N.

    1991-04-01

    The first multistage image converter with an X-ray photocathode (UMI-93 SR) was designed in VNIIOFI in 1974 [1]. The experiments carried out in IOFAN pointed out that X-ray electron-optical cameras using the tube provided temporal resolution up to 12 picoseconds [2]. The later work has developed into the creation of the separate streak and intensifying tubes. Thus, PV-003R tube has been built on base of UMI-93SR design, fibre optically connected to PMU-2V image intensifier carrying microchannel plate.

  17. Oil Slicks, Gulf of Aden

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this view of the Gulf of Aden, and the coast of north Yemen (13.5N, 48.0E) the sunglint pattern clearly delineates oil on the water surface as bright streaks relative to the surrounding water. The oil is most likely the result of oil tanker ships flushing their tanks as they transit the gulf. Once formed, the oil slicks are pushed around by the combined effects of wind and currents as can be seen in the deformations of the long offshore oil streak.

  18. Defrosting Polar Dunes--Dark Spots and Wind Streaks

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The first time that the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC)team saw dark spots on defrosting dune surfaces was in August and September of 1998. At that time, it was the north polar seasonal frost cap that was subliming away (more recent images from 1999 have shown the south polar frosts). This picture (above) shows a small portion of the giant dune field that surrounds the north polar region, as it appeared on August 23, 1998. At the time, it was early northern spring and the dunes were still covered with winter frost.

    Dark spots had appeared on the north polar dunes, and many of them exhibited a radial or semi-radial pattern of dark streaks and streamers. At first, there was speculation that the streaks indicated that the defrosting process might somehow involve explosions! The dark spots seemed to resemble small craters with dark, radial ejecta. It seemed possible that frozen carbon dioxide trapped beneath water ice might somehow heat up, turn to gas, expand, and then 'explode' in either a small blast or at least a 'puff' of air similar to that which comes from the blowhole of a surfacing whale or seal.

    The image shown here changed the earlier impression. The dark spots and streaks do not result from explosions. The spots--though not well understood--represent the earliest stages of defrosting on the sand dunes. The streaks, instead of being caused by small explosions, are instead the result of wind. In this picture, the fine, dark streaks show essentially identical orientations from spot to spot (e.g., compare the spots seen in boxes (a) and (b)). Each ray of dark material must result from wind blowing from a particular direction--for example, all of the spots in this picture exhibit a ray that points toward the upper left corner of the image, and each of these rays indicates the same wind regime. Each spot also has a ray pointing toward the lower right and top/upper-right. These, too, must indicate periods when the wind was strong enough to move materials, consistently, in only one direction.

    The sand that makes up the north polar dunes is dark. Each spot and streak is composed of the dune sand. The bright surfaces are all covered with frost. This picture is located near 76.9oN, 271.2oW, in the north polar sand sea. Illumination is from the lower left. The 200 meter scale also indicates a distance of 656 feet.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  19. Dynamics of Laser-Driven Shock Waves in Solid Targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J.; Schmitt, A. J.; Obenschain, S. P.; Grun, J.; Metzler, N.; Zalesak, S. T.; Gardner, J. H.; Oh, J.; Harding, E. C.

    2009-11-01

    Accurate shock timing is a key issue of both indirect- and direct-drive laser fusions. The experiments on the Nike laser at NRL presented here were made possible by improvements in the imaging capability of our monochromatic x-ray diagnostics based on Bragg reflection from spherically curved crystals. Side-on imaging implemented on Nike makes it possible to observe dynamics of the shock wave and ablation front in laser-driven solid targets. We can choose to observe a sequence of 2D images or a continuous time evolution of an image resolved in one spatial dimension. A sequence of 300 ps snapshots taken using vanadium backlighter at 5.2 keV reveals propagation of a shock wave in a solid plastic target. The shape of the shock wave reflects the intensity distribution in the Nike beam. The streak records with continuous time resolution show the x-t trajectory of a laser-driven shock wave in a 10% solid density DVB foam.

  20. Dunes on Pluto

    NASA Astrophysics Data System (ADS)

    Telfer, Matt W.; Parteli, Eric J. R.; Radebaugh, Jani; Beyer, Ross A.; Bertrand, Tanguy; Forget, François; Nimmo, Francis; Grundy, Will M.; Moore, Jeffrey M.; Stern, S. Alan; Spencer, John; Lauer, Tod R.; Earle, Alissa M.; Binzel, Richard P.; Weaver, Hal A.; Olkin, Cathy B.; Young, Leslie A.; Ennico, Kimberly; Runyon, Kirby; aff12

    2018-06-01

    The surface of Pluto is more geologically diverse and dynamic than had been expected, but the role of its tenuous atmosphere in shaping the landscape remains unclear. We describe observations from the New Horizons spacecraft of regularly spaced, linear ridges whose morphology, distribution, and orientation are consistent with being transverse dunes. These are located close to mountainous regions and are orthogonal to nearby wind streaks. We demonstrate that the wavelength of the dunes (~0.4 to 1 kilometer) is best explained by the deposition of sand-sized (~200 to ~300 micrometer) particles of methane ice in moderate winds (<10 meters per second). The undisturbed morphology of the dunes, and relationships with the underlying convective glacial ice, imply that the dunes have formed in the very recent geological past.

  1. Modeling of a Sequential Two-Stage Combustor

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Liu, N.-S.; Gallagher, J. R.; Ryder, R. C.; Brankovic, A.; Hendricks, J. A.

    2005-01-01

    A sequential two-stage, natural gas fueled power generation combustion system is modeled to examine the fundamental aerodynamic and combustion characteristics of the system. The modeling methodology includes CAD-based geometry definition, and combustion computational fluid dynamics analysis. Graphical analysis is used to examine the complex vortical patterns in each component, identifying sources of pressure loss. The simulations demonstrate the importance of including the rotating high-pressure turbine blades in the computation, as this results in direct computation of combustion within the first turbine stage, and accurate simulation of the flow in the second combustion stage. The direct computation of hot-streaks through the rotating high-pressure turbine stage leads to improved understanding of the aerodynamic relationships between the primary and secondary combustors and the turbomachinery.

  2. Why the New Gully Deposits are Not Dry Dust Slope Streaks

    NASA Image and Video Library

    2006-12-06

    The light-toned deposits that formed in two gully sites on Mars during the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) mission in the 1999 to 2005 period are considered to be the result of sediment transport by a fluid with the physical properties of liquid water. The young, light-toned gully deposits were found in a crater in Terra Sirenum (see PIA09027 or MOC2-1618) and in a crater east of the Hellas basin in the Centauri Montes region (see PIA09028 or MOC2-1619). In their study of how the light-toned gully deposits may have formed, the MOC team considered their resemblance to light- and dark-toned slope streaks found elsewhere on Mars. Slope streaks are most commonly believed to have formed by downslope movement of extremely dry, very fine-grained dust, through processes thought by some to be analogous to terrestrial snow avalanche formation. http://photojournal.jpl.nasa.gov/catalog/PIA09030

  3. Dark, Recurring Streaks on Walls of Garni Crater

    NASA Image and Video Library

    2015-09-28

    Dark narrow streaks, called "recurring slope lineae," emanate from the walls of Garni Crater on Mars, in this view constructed from observations by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The dark streaks here are up to few hundred yards, or meters, long. They are hypothesized to be formed by flow of briny liquid water on Mars. The image was produced by first creating a 3-D computer model (a digital terrain map) of the area based on stereo information from two HiRISE observations, and then draping an image over the land-shape model. The vertical dimension is exaggerated by a factor of 1.5 compared to horizontal dimensions. The draped image is a red waveband (monochrome) product from HiRISE observation ESP_031059_1685, taken on March 12, 2013 at 11.5 degrees south latitude, 290.3 degrees east longitude. Other image products from this observation are at http://hirise.lpl.arizona.edu/ESP_031059_1685. http://photojournal.jpl.nasa.gov/catalog/PIA19917

  4. On hairpin vortex generation from near-wall streamwise vortices

    NASA Astrophysics Data System (ADS)

    Wang, Yinshan; Huang, Weixi; Xu, Chunxiao

    2015-04-01

    The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation (DNS) of the streak transient growth in the minimal channel flow at . The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number. The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity. It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker, opposite-signed streamwise vortex in their overlap region, forming a complete individual hairpin structure. The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector, respectively. The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.

  5. The President's Day cyclone 17-19 February 1979: An analysis of jet streak interactions prior to cyclogenesis

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.; Kocin, P. J.; Walsh, C. H.

    1981-01-01

    The President's Day cyclone, produced record breaking snowfall along the East Coast of the United States in February 1979. Conventional radiosonde data, SMS GOES infrared imagery and LFM 2 model diagnostics were used to analyze the interaction of upper and lower tropospheric jet streaks prior to cyclogenesis. The analysis reveals that a series of complex scale interactive processes is responsible for the development of the intense cyclone. The evolution of the subsynoptic scale mass and momentum fields prior to and during the period of rapid development of the President's Day cyclone utilizing conventional data and SMS GOES imagery is documented. The interaction between upper and lower tropospheric jet streaks which occurred prior to the onset of cyclogenesis is discussed as well as the possible effects of terrain modified airflow within the precyclogenesis environment. Possible deficiencies in the LFM-2 initial wind fields that could have been responsible, in part, for the poor numerical forecast are examined.

  6. Statistical iterative reconstruction for streak artefact reduction when using multidetector CT to image the dento-alveolar structures.

    PubMed

    Dong, J; Hayakawa, Y; Kober, C

    2014-01-01

    When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood-expectation maximization algorithm was applied. Next, the ordered subset-expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset-expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset-expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction.

  7. Time-resolved lidar fluorosensor for sea pollution detection

    NASA Technical Reports Server (NTRS)

    Ferrario, A.; Pizzolati, P. L.; Zanzottera, E.

    1986-01-01

    A contemporary time and spectral analysis of oil fluorescence is useful for the detection and the characterization of oil spills on the sea surface. Nevertheless the fluorosensor lidars, which were realized up to now, have only partial capability to perform this double analysis. The main difficulties are the high resolution required (of the order of 1 nanosecond) and the complexity of the detection system for the recording of a two-dimensional matrix of data for each laser pulse. An airborne system whose major specifications were: time range, 30 to 75 ns; time resolution, 1 ns; spectral range, 350 to 700 nm; and spectral resolution, 10 nm was designed and constructed. The designed system of a short pulse ultraviolet laser source and a streak camera based detector are described.

  8. Development of a Near Real-Time Hail Damage Swath Identification Algorithm for Vegetation

    NASA Technical Reports Server (NTRS)

    Bell, Jordan R.; Molthan, Andrew L.; Schultz, Kori A.; McGrath, Kevin M.; Burks, Jason E.

    2015-01-01

    Every year in the Midwest and Great Plains, widespread greenness forms in conjunction with the latter part of the spring-summer growing season. This prevalent greenness forms as a result of the high concentration of agricultural areas having their crops reach their maturity before the fall harvest. This time of year also coincides with an enhanced hail frequency for the Great Plains (Cintineo et al. 2012). These severe thunderstorms can bring damaging winds and large hail that can result in damage to the surface vegetation. The spatial extent of the damage can relatively small concentrated area or be a vast swath of damage that is visible from space. These large areas of damage have been well documented over the years. In the late 1960s aerial photography was used to evaluate crop damage caused by hail. As satellite remote sensing technology has evolved, the identification of these hail damage streaks has increased. Satellites have made it possible to view these streaks in additional spectrums. Parker et al. (2005) documented two streaks using the Moderate Resolution Imaging Spectroradiometer (MODIS) that occurred in South Dakota. He noted the potential impact that these streaks had on the surface temperature and associated surface fluxes that are impacted by a change in temperature. Gallo et al. (2012) examined at the correlation between radar signatures and ground observations from storms that produced a hail damage swath in Central Iowa also using MODIS. Finally, Molthan et al. (2013) identified hail damage streaks through MODIS, Landsat-7, and SPOT observations of different resolutions for the development of a potential near-real time applications. The manual analysis of hail damage streaks in satellite imagery is both tedious and time consuming, and may be inconsistent from event to event. This study focuses on development of an objective and automatic algorithm to detect these areas of damage in a more efficient and timely manner. This study utilizes the MODIS sensor aboard the NASA Aqua satellite. Aqua was chosen due to an afternoon orbit over the United States when land surface temperatures are relatively warm and improve the contrast between damaged and undamaged areas. This orbit is also similar to the orbit of the Suomi-National Polar-orbiting Partnership (NPP) satellite. The Suomi NPP satellite hosts the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which is the next generation of a MODIS-like sensor in polar orbit.

  9. Devilish Details

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small, springtime dust devil creating a dark streak on the plains of Argyre. The small, bright dot is the dust devil. Many other dark streaks on the plains indicate the areas where other dust devils had passed within the past several weeks before this July 2005 image was acquired.

    Location near: 44.6oS, 40.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  10. STS-93 orbiter Columbia streaks across Houston sky

    NASA Image and Video Library

    1999-07-27

    S99-08357 (27 July 1999) --- The fly-over of Space Shuttle Columbia's STS-93 re-entry is seen above the Johnson Space Center's Rocket Park. The Saturn V is below the streak that was left by Columbia re-entering the atmosphere. The image was captured with a Hasselblad 503cx medium format camera with a 30mm Hasselblad lens using an 8-second exposure and an aperture setting of f/8. The film was Kodak PMZ 1000 color negative film. The photographer was Mark Sowa of the NASA Johnson Space Center's photography group.

  11. Apparatus for recording emissions from a rapidly generated plasma from a single plasma producing event

    DOEpatents

    Tan, Tai Ho; Williams, Arthur H.

    1985-01-01

    An optical fiber-coupled detector visible streak camera plasma diagnostic apparatus. Arrays of optical fiber-coupled detectors are placed on the film plane of several types of particle, x-ray and visible spectrometers or directly in the path of the emissions to be measured and the output is imaged by a visible streak camera. Time and spatial dependence of the emission from plasmas generated from a single pulse of electromagnetic radiation or from a single particle beam burst can be recorded.

  12. Apparatus for recording emissions from a rapidly generated plasma from a single plasma producing event

    DOEpatents

    Tan, T.H.; Williams, A.H.

    An optical fiber-coupled detector visible streak camera plasma diagnostic apparatus. Arrays of optical fiber-coupled detectors are placed on the film plane of several types of particle, x-ray and visible spectrometers or directly in the path of the emissions to be measured and the output is imaged by a visible streak camera. Time and spatial dependence of the emission from plasma generated from a single pulse of electromagnetic radiation or from a single particle beam burst can be recorded.

  13. Observation of GEO Satellite Above Thailand’s Sky

    NASA Astrophysics Data System (ADS)

    Kasonsuwan, K.; Wannawichian, S.; Kirdkao, T.

    2017-09-01

    The direct observations of Geostationary Orbit (GEO) satellites above Thailand’s sky by 0.7-meters telescope were proceeded at Inthanon Mt., Chiang Mai, Thailand. The observation took place at night with Sidereal Stare Mode (SSM). With this observing mode, the moving object will appear as a streak. The star identification for image calibration is based on (1) a star catalogue, (2) the streak detection of the satellite using the software and (3) the extraction of the celestial coordinate of the satellite as a predicted position. Finally, the orbital elements for GEO satellites were calculated.

  14. Intellectual streaking: The value of teachers exposing minds (and hearts).

    PubMed

    Bearman, Margaret; Molloy, Elizabeth

    2017-12-01

    As teachers we often ask learners to be vulnerable and yet present ourselves as high status, knowledgeable experts, often with pre-prepared scripts. This paper investigates the metaphoric notion of "intellectual streaking" - the nimble exposure of a teacher's thought processes, dilemmas, or failures - as a way of modeling both reflection-in-action and resilience. While there is a tension between credibility and vulnerability, both of which are necessary for trust, we argue that taking a few risks and revealing deficits in knowledge or performance can be illuminating and valuable for all parties.

  15. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren't the Alps, you will find quite a few avalanches. Avalanches of dust, however, not snow. Martian dust can become so thick in this area that it eventually slides down the steep slopes, creating runaway avalanches of dust. No dedicated, Swiss-like avalanche rescue teams would be needed much on Mars, however. Unlike snow, the dust doesn't pile up and accumulate at the bottom. Instead, dust particles are so small that they get launched into the atmosphere where they remain suspended until . . . poof! They are blown away and distributed lightly elsewhere. For evidence of past avalanches, check out the dark streaks running down the bright, sunlit slopes (western side of the peaks about 1/3 of the way down the image). These avalanche scars are dark because the underlying surface is not as bright as the removed dust. Eventually, new dust will settle over these scars, and the streaks will brighten until they fade into the background. The neat thing is that we'll be able to see all of these changes happening over time. Our current two Mars orbiters (called Mars Global Surveyor and 2001 Mars Odyssey) are showing that avalanche action is happening right now, all of the time on Mars. For example, the camera on Mars Global Surveyor has already taken pictures of the Martian surface in some areas that showed no avalanches - the first time the picture was snapped, that is. The next time around, the camera took a picture of the same area, only voila! New streaks, meaning new avalanches! That's why it can be so exciting to look at the Martian landscape over time to see how it changes. The THEMIS camera on Odyssey will continue to map out the places where the avalanches occur and how often. This information will really help scientists understand how dust is works to shape the terrain and to influence the Martian climate as it constantly swings into the atmosphere, falls down to the ground, and rises back up again. Stay tuned to see if you too can pick out the changes over time!

  16. Hairpin exact coherent states in channel flow

    NASA Astrophysics Data System (ADS)

    Graham, Michael; Shekar, Ashwin

    2017-11-01

    Questions remain over the role of hairpin vortices in fully developed turbulent flows. Studies have shown that hairpins play a role in the dynamics away from the wall but the question still persists if they play any part in (near wall) fully developed turbulent dynamics. In addition, the robustness of the hairpin vortex regeneration mechanism is still under investigation. Recent studies have shown the existence of nonlinear traveling wave solutions to the Navier-Stokes equations, also known as exact coherent states (ECS), that capture many aspects of near-wall turbulent structures. Previously discovered ECS in channel flow have a quasi-streamwise vortex structure, with no indication of hairpin formation. Here we present a family of traveling wave solutions for channel flow that displays hairpin vortices. They have a streamwise vortex-streak structure near the wall with a spatially localized hairpin head near the channel centerline, attached to and sustained by the near wall structures. This family of solutions emerges through a transcritical bifurcation from a branch of traveling wave solutions with y and z reflectional symmetry. We also look into the instabilities that lead to the development of hairpins also explore its connection to turbulent dynamics.

  17. Meroe Patera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image is located in Meroe Patera (longitude: 292W/68E, latitude: 7.01), which is a small region within Syrtis Major Planitia. Syrtis Major is a low-relief shield volcano whose lava flows make up a plateau more than 1000 km across. These flows are of Hesperian age (Martian activity of intermediate age) and are believed to have originated from a series of volcanic depressions, called calderas. The caldera complex lies on extensions of the ring faults associated with the Isidis impact basin toward the northeast - thus Syrtis Major volcanism may be associated with post-impact adjustments of the Martian crust.

    The most striking feature in this image is the light streaks across the image that lead to dunes in the lower left region. Wind streaks are albedo markings interpreted to be formed by aeolian action on surface materials. Most are elongate and allow an interpretation of effective wind directions. Many streaks are time variable and thus provide information on seasonal or long-term changes in surface wind directions and strengths. The wind streaks in this image are lighter than their surroundings and are the most common type of wind streak found on Mars. These streaks are formed downwind from crater rims (as in this example), mesas, knobs, and other positive topographic features.

    The dune field in this image is a mixture of barchan dunes and transverse dunes. Dunes are among the most distinctive aeolian feature on Mars, and are similar in form to barchan and transverse dunes on Earth. This similarity is the best evidence to indicate that martian dunes are composed of sand-sized material, although the source and composition of the sand remain controversial. Both the observations of dunes and wind streaks indicate that this location has a windy environment - and these winds are persistent enough to product dunes, as sand-sized material accumulates in this region. These features also indicate that the winds in this region are originating from the right side of the image, and moving towards the left.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from below and the wave resistance parameterization from above. The available field data (Powell et al., 2003; Black et al., 2007) fall between these two parameterizations, for wind speeds of up to 50 m/s. A few points from the dropsonde data from Powell et al. (2003), obtained at very high wind speeds, are below the theoretical lower limit on the drag coefficient. We also conducted a numerical experiment with imposed short wavelets. Streamwise coherent structures were observed on the water surface, which were especially prominent on the top of wave crests. These intermittent streamwise structures on the top of wavelets, with periodicity in the transverse direction, presumably were a result of the Tollmien-Schlichting (TS) instability. Similar processes take place at the atomization of liquid fuels in cryogenic and diesel engines (Yecko et al., 2002). According to McNaughton and Brunet (2002), the nonlinear stage of the TS instability results in streamwise streaks followed by fluid ejections. This mechanism can contribute to the generation of spume in the form of streaks. Foam streaks are an observable feature on photographic images of the ocean surface under hurricane conditions. The mechanism of the TS instability can also contribute to dispersion of oil spills and other pollutants in hurricane conditions.

  19. TH-C-18A-01: Is Automatic Tube Current Modulation Still Necessary with Statistical Iterative Reconstruction?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K; Zhao, W; Gomez-Cardona, D

    Purpose: Automatic tube current modulation (TCM) has been widely used in modern multi-detector CT to reduce noise spatial nonuniformity and streaks to improve dose efficiency. With the advent of statistical iterative reconstruction (SIR), it is expected that the importance of TCM may diminish, since SIR incorporates statistical weighting factors to reduce the negative influence of photon-starved rays. The purpose of this work is to address the following questions: Does SIR offer the same benefits as TCM? If yes, are there still any clinical benefits to using TCM? Methods: An anthropomorphic CIRS chest phantom was scanned using a state-of-the-art clinical CTmore » system equipped with an SIR engine (Veo™, GE Healthcare). The phantom was first scanned with TCM using a routine protocol and a low-dose (LD) protocol. It was then scanned without TCM using the same protocols. For each acquisition, both FBP and Veo reconstructions were performed. All scans were repeated 50 times to generate an image ensemble from which noise spatial nonuniformity (NSN) and streak artifact levels were quantified. Monte-Carlo experiments were performed to estimate skin dose. Results: For FBP, noise streaks were reduced by 4% using TCM for both routine and LD scans. NSN values were actually slightly higher with TCM (0.25) than without TCM (0.24) for both routine and LD scans. In contrast, for Veo, noise streaks became negligible (<1%) with or without TCM for both routine and LD scans, and the NSN was reduced to 0.10 (low dose) or 0.08 (routine). The overall skin dose was 2% lower at the shoulders and more uniformly distributed across the skin without TCM. Conclusion: SIR without TCM offers superior reduction in noise nonuniformity and streaks relative to FBP with TCM. For some clinical applications in which skin dose may be a concern, SIR without TCM may be a better option. K. Li, W. Zhao, D. Gomez-Cardona: Nothing to disclose; G.-H. Chen: Research funded, General Electric Company Research funded, Siemens AG Research funded, Varian Medical Systems, Research funded, Hologic, Inc.« less

  20. New Experimental Hosts of Tobacco streak virus and Absence of True Seed Transmission in Leguminous Hosts.

    PubMed

    Vemana, K; Jain, R K

    2010-10-01

    Of 70 plant species tested, 50 species were susceptible to Tobacco streak virus (TSV) on sap inoculation. Both localized (necrotic and chlorotic spots) and systemic (necrotic spots, axillary shoot proliferation, stunting, total necrosis and wilt) symptoms are observed by majority of plant species. Eleven new experimental hosts were identified viz., Amaranthus blitum var. oleracea (Chaulai sag), Celosia cristata (Cocks comb), Beta vulgaris var. bengalensis (Palak/Indian spinach), Calendula officinalis (Pot marigold), Chrysanthemum indicum, Cosmos sulphurens (Yellow cosmos), Citrullus lunatus (Watermelon), Lagenaria siceraria (Bottle gourd), Coriandrum sativum (Coriander), Hibiscus subderiffa var. subderiffa (Roselle) and Portulaca oleraceae (Little hogweed). Detected groundnut seed infection with TSV for the first time by Direct antigen coated immunosorbent assay (DAC-ELISA) using whole seed. The seed infection ranged from 18.9 to 28.9% among the seeds collected from naturally infected and sap inoculated groundnut varieties (JL 24, TMV 2, Prasuna, Kadiri 6, Kadiri 9, Anantha and Kadiri 7 Bold) belonging to spanish and virginia types. Further, TSV was detected both in pod shell and seed testa and none of the samples showed the presence of TSV either in cotyledon or embryo. Grow-out and bio-assay tests proved the absence of seed transmission in groundnut and other legume crops. Hence, TSV isolate was not a true seed transmission case under Indian conditions in legumes.

  1. Star of Condor - A strontium critical velocity experiment, Peru, 1983

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.

    1986-01-01

    'Star of Condor' was a critical velocity experiment using Sr vapor produced in a radial shaped charge, which was carried to 571.11 km altitude on a Taurus-Tomahawk rocket launched from Punto Lobos, Peru, and detonated in the plane of the magnetic field lines so that all ranges of pitch angles from parallel to B to perpendicular to B were covered. Sr has a critical velocity of 3.3 km/s, and from observation, 42.5 percent of the neutral Sr gas had a velocity component perpendicular to B exceeding that value. No Sr ion emissions were detected shortly after the burst with usual TV integration times. However, about 10 min after the detonation a faint field-aligned streak was discovered with long TV integration times. The brightness is estimated as 5 R, which, combined with the streak geometry, implies an ion production of 2.4 x 10 to the 19th ions. This is only 0.0036 percent ionization of the Sr vapor. All the ions could easily have been produced by thermal ionization from the original detonation thermal distribution. The breakup of the Sr gas into small bloblike structures may have allowed the high-energy electrons to escape before an ionization cascade could be produced. For whatever reason, the Alfven mechanism proposed for space plasmas in the absence of laboratory walls did not produce an ionization cascade in the experiment.

  2. Streak instability and generation of hairpin-vortices by a slotted jet in channel crossflow: Experiments and linear stability analysis

    NASA Astrophysics Data System (ADS)

    Philip, Jimmy; Karp, Michael; Cohen, Jacob

    2016-01-01

    Streaks and hairpin-vortices are experimentally generated in a laminar plane Poiseuille crossflow by injecting a continuous jet through a streamwise slot normal to the crossflow, with air as the working media. Small disturbances form stable streaks, however, higher disturbances cause the formation of streaks which undergo instability leading to the generation of hairpin vortices. Particular emphasis is placed on the flow conditions close to the generation of hairpin-vortices. Measurements are carried out in the cases of natural and phase-locked disturbance employing smoke visualisation, particle image velocimetry, and hot-wire anemometry, which include, the dominant frequency, wavelength, and the disturbance shape (or eigenfunctions) associated with the coherent part of the velocity field. A linear stability analysis for both one- and two-dimensional base-flows is carried out to understand the mechanism of instability and good agreement of wavelength and eigenfunctions are obtained when compared to the experimental data, and a slight under-prediction of the growth-rates by the linear stability analysis consistent with the final nonlinear stages in transitional flows. Furthermore, an energy analysis for both the temporal and spatial stability analysis revels the dominance of the symmetric varicose mode, again, in agreement with the experiments, which is found to be governed by the balance of the wallnormal shear and dissipative effects rather than the spanwise shear. In all cases the anti-symmetric sinuous modes governed by the spanwise shear are found to be damped both in analysis and in our experiments.

  3. Space Radar Image of Oil Slicks

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of an offshore drilling field about 150 km (93 miles) west of Bombay, India, in the Arabian Sea. The dark streaks are extensive oil slicks surrounding many of the drilling platforms, which appear as bright white spots. Radar images are useful for detecting and measuring the extent of oil seepages on the ocean surface, from both natural and industrial sources. The long, thin streaks extending from many of the platforms are spreading across the sea surface, pushed by local winds. The larger dark patches are dispersed slicks that were likely discharged earlier than the longer streaks, when the winds were probably from a different direction. The dispersed oil will eventually spread out over the more dense water and become a layer which is a single molecule thick. Many forms of oil, both from biological and from petroleum sources, smooth out the ocean surface, causing the area to appear dark in radar images. There are also two forms of ocean waves shown in this image. The dominant group of large waves (upper center) are called internal waves. These waves are formed below the ocean surface at the boundary between layers of warm and cold water and they appear in the radar image because of the way they change the ocean surface. Ocean swells, which are waves generated by winds, are shown throughout the image but are most distinct in the blue area adjacent to the internal waves. Identification of waves provide oceanographers with information about the smaller scale dynamic processes of the ocean. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 9, 1994. The colors are assigned to different frequencies and polarizations of the radar as follows: Red is L-band vertically transmitted, vertically received; green is the average of L-band vertically transmitted, vertically received and C-band vertically transmitted, vertically received; blue is C-band vertically transmitted, vertically received. The image is located at 19.25 degrees north latitude and 71.34 degrees east longitude and covers an area 20 km by 45 km (12.4 miles by 27.9 miles). SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth.

  4. Contribution of the channel electron multiplier to the race of vacuum tubes towards picosecond resolution time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietri, G.

    1977-02-01

    The ability to tightly pack millions of microscopic secondary emitting channels into a two-dimensional, very thin, array known as a microchannel plate (MCP) provides excellent electrical charge or current amplification associated with an extremely short response time as well as very good spatial resolution. The ultimate performances in spatial and temporal resolutions achieved by MCP-based vacuum devices are discussed and illustrated by the description of a large range of experimental prototypes (photomultipliers, oscilloscope tubes, streak camera tubes, etc.) designed and produced at LEP, then tested in cooperation with Nuclear Research and Plasma Physics Centers in Europe and USA.

  5. Reduced aliasing artifacts using shaking projection k-space sampling trajectory

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-Chun; Du, Jiang; Yang, Wen-Chao; Duan, Chai-Jie; Wang, Hao-Yu; Gao, Song; Bao, Shang-Lian

    2014-03-01

    Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. A SP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling reconstruction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.

  6. Comparative analysis of hierarchical triangulated irregular networks to represent 3D elevation in terrain databases

    NASA Astrophysics Data System (ADS)

    Abdelguerfi, Mahdi; Wynne, Chris; Cooper, Edgar; Ladner, Roy V.; Shaw, Kevin B.

    1997-08-01

    Three-dimensional terrain representation plays an important role in a number of terrain database applications. Hierarchical triangulated irregular networks (TINs) provide a variable-resolution terrain representation that is based on a nested triangulation of the terrain. This paper compares and analyzes existing hierarchical triangulation techniques. The comparative analysis takes into account how aesthetically appealing and accurate the resulting terrain representation is. Parameters, such as adjacency, slivers, and streaks, are used to provide a measure on how aesthetically appealing the terrain representation is. Slivers occur when the triangulation produces thin and slivery triangles. Streaks appear when there are too many triangulations done at a given vertex. Simple mathematical expressions are derived for these parameters, thereby providing a fairer and a more easily duplicated comparison. In addition to meeting the adjacency requirement, an aesthetically pleasant hierarchical TINs generation algorithm is expected to reduce both slivers and streaks while maintaining accuracy. A comparative analysis of a number of existing approaches shows that a variant of a method originally proposed by Scarlatos exhibits better overall performance.

  7. A survey of major east coast snowstorms, 1960-1983. Part 2. Summary of surface and upperlevel characteristics

    NASA Technical Reports Server (NTRS)

    Kocin, P. J.; Uccellini, L. W.

    1985-01-01

    Surface and upper-level characteristics of selected meteorological fields are summarized. Two major types of sea level development are described and applied to the cases at hand, with a few storm systems showing characteristics of both types. Aspects such as rapid sea level deepening, coastal frontogenesis, cold air damming, low level jet formation, the development of an S-shaped isotherm pattern, diffluence downwind of a negatively tilted upper level trough axis, upper level confluence and an increase of geopotential heights at the base of the upper level trough characterized the pre-cyclogenetic and cyclogenetic periods of many of the storm systems. Large variability was also observed, especially with regard to the spatial dimensions of the surface and upper level systems, as well as variations in trough/ridge amplification and the evolution of upper level jet streak systems. The influence of transverse circulations associated with a confluent jet streak entrance region and the diffluent exit region of a jet streak/trough system on the production of snowfall is also discussed.

  8. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Elder, E; Roper, J

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less

  9. Visco-capillarity in Sparkling Fireworks

    NASA Astrophysics Data System (ADS)

    Inoue, Chihiro; Villermaux, Emmanuel; Utokyo Team; Irphe Team

    2015-11-01

    A unique toy firework called sparkling fireworks is popular in Japan for 400 years, but the physics behind the beauty remains a hidden mystery. Sparkling fireworks are made by a twisted paper simply wrapping 0.1g of black powder at the lower end. Ignited there, the powder melts in a fireball of molten salts, and streaks of light are ejected. The beautiful fragile streaks are visible from the black body radiation of the hot surface of the ejected droplets. The droplets suddenly fragment up to ten times successively and their light streaks traces are like pine needles. We have already clarified why the droplets are ejected through the bursting of a gas bubble on the mother fireball, leading to successive fragmentations by micro explosions. To quantify phenomenon, we measure the diameter and the ejection velocity of the droplets. It is found that not only inertia and capillarity of the liquid matter, but also its viscosity is important (the Ohnesorge number is about 0.1). The droplets ejection velocity is determined by the liquid surface tension and viscosity, and separate from the mother drop on a visco-capillarity time scale.

  10. Automatic Reacquisition of Satellite Positions by Detecting Their Expected Streaks in Astronomical Images

    NASA Astrophysics Data System (ADS)

    Levesque, M.

    Artificial satellites, and particularly space junk, drift continuously from their known orbits. In the surveillance-of-space context, they must be observed frequently to ensure that the corresponding orbital parameter database entries are up-to-date. Autonomous ground-based optical systems are periodically tasked to observe these objects, calculate the difference between their predicted and real positions and update object orbital parameters. The real satellite positions are provided by the detection of the satellite streaks in the astronomical images specifically acquired for this purpose. This paper presents the image processing techniques used to detect and extract the satellite positions. The methodology includes several processing steps including: image background estimation and removal, star detection and removal, an iterative matched filter for streak detection, and finally false alarm rejection algorithms. This detection methodology is able to detect very faint objects. Simulated data were used to evaluate the methodology's performance and determine the sensitivity limits where the algorithm can perform detection without false alarm, which is essential to avoid corruption of the orbital parameter database.

  11. Capability and opportunity in hot shooting performance: Evidence from top-scoring NBA leaders

    PubMed Central

    2018-01-01

    In basketball games, whenever players successfully shoot in streaks, they are expected to demonstrate heightened performance for a stretch of time. Streak shooting in basketball has been debated for more than three decades, but most studies have provided little significant statistical evidence and have labeled random subjective judgments the “hot hand fallacy.” To obtain a broader perspective of the hot hand phenomenon and its accompanying influences on the court, this study uses field goal records and optical tracking data from the official NBA database for the entire 2015–2016 season to analyze top-scoring leaders’ shooting performances. We first reflect on the meaning of “hot hand” and the “Matthew effect” in actual basketball competition. Second, this study employs statistical models to integrate three different shooting perspectives (field goal percentage, points scored, and attempts). This study’s findings shed new light not only on the existence or nonexistence of streaks, but on the roles of capability and opportunity in NBA hot shooting. Furthermore, we show how hot shooting performances resulting from capability and opportunity lead to actual differences for teams. PMID:29432458

  12. Capability and opportunity in hot shooting performance: Evidence from top-scoring NBA leaders.

    PubMed

    Chang, Shun-Chuan

    2018-01-01

    In basketball games, whenever players successfully shoot in streaks, they are expected to demonstrate heightened performance for a stretch of time. Streak shooting in basketball has been debated for more than three decades, but most studies have provided little significant statistical evidence and have labeled random subjective judgments the "hot hand fallacy." To obtain a broader perspective of the hot hand phenomenon and its accompanying influences on the court, this study uses field goal records and optical tracking data from the official NBA database for the entire 2015-2016 season to analyze top-scoring leaders' shooting performances. We first reflect on the meaning of "hot hand" and the "Matthew effect" in actual basketball competition. Second, this study employs statistical models to integrate three different shooting perspectives (field goal percentage, points scored, and attempts). This study's findings shed new light not only on the existence or nonexistence of streaks, but on the roles of capability and opportunity in NBA hot shooting. Furthermore, we show how hot shooting performances resulting from capability and opportunity lead to actual differences for teams.

  13. STREAK CAMERA MEASUREMENTS OF THE APS PC GUN DRIVE LASER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooling, J. C.; Lumpkin, A. H.

    We report recent pulse-duration measurements of the APS PC Gun drive laser at both second harmonic and fourth harmonic wavelengths. The drive laser is a Nd:Glass-based chirped pulsed amplifier (CPA) operating at an IR wavelength of 1053 nm, twice frequency-doubled to obtain UV output for the gun. A Hamamatsu C5680 streak camera and an M5675 synchroscan unit are used for these measurements; the synchroscan unit is tuned to 119 MHz, the 24th subharmonic of the linac s-band operating frequency. Calibration is accomplished both electronically and optically. Electronic calibration utilizes a programmable delay line in the 119 MHz rf path. Themore » optical delay uses an etalon with known spacing between reflecting surfaces and is coated for the visible, SH wavelength. IR pulse duration is monitored with an autocorrelator. Fitting the streak camera image projected profiles with Gaussians, UV rms pulse durations are found to vary from 2.1 ps to 3.5 ps as the IR varies from 2.2 ps to 5.2 ps.« less

  14. Animation of Site of Seasonal Flows in Hale Crater, Mars

    NASA Image and Video Library

    2015-09-28

    This frame from an animation simulates a fly-around look at one of the places on Mars where dark streaks advance down slopes during warm seasons, possibly involving liquid water. The streaks are roughly the length of a football field. The imaging and topographical information used in this false-color animation come from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. These dark features on the slopes are called "recurring slope lineae" or RSL. Planetary scientists using observations with the Compact Reconnaissance Imaging Spectrometer on the same orbiter detected hydrated salts on these slopes at Hale Crater, corroborating the hypothesis that the streaks are formed by briny liquid water. The image was produced by first creating a 3-D computer model (a digital terrain map) of the area based on stereo information from two HiRISE observations, and then draping a false-color image over the land-shape model. The vertical dimension is exaggerated by a factor of 1.5 compared to horizontal dimensions. http://photojournal.jpl.nasa.gov/catalog/PIA19919

  15. Cinemicrographic study of the cell movement in the primitive-streak-stage mouse embryo.

    PubMed

    Nakatsuji, N; Snow, M H; Wylie, C C

    1986-07-01

    Migration of the mesoderm cells in the primitive-streak-stage mouse embryo was directly studied by cinemicrography using whole embryo culture and Nomarski differential interference contrast optics. Relative transparency and small size of the early mouse embryos enabled direct observation of the individual cells and their cell processes. Seven-day-old mouse embryos were isolated and cultured in a small chamber in a medium consisting of 50% rat serum and 50% Dulbecco's modified minimum essential medium. The mesoderm cells move away from the primitive streak in both anterior and antimesometrial (distal) directions at a mean velocity of 46 micron h-1. They extend cell processes and constantly change cell shape. They do not translocate extensively as isolated single cells, but usually maintain attachment to other mesoderm cells. They show frequent cell division preceded by rounding up of the cell bodies, and accompanied by vigorous blebbing before and after cytokinesis. This study shows that it is possible to examine the motility of embryonic cells inside the mammalian embryo by direct observation if the embryo is small and transparent enough for the use of the Nomarski optics.

  16. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    PubMed

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  17. Beam measurements using visible synchrotron light at NSLS2 storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Weixing, E-mail: chengwx@bnl.gov; Bacha, Bel; Singh, Om

    2016-07-27

    Visible Synchrotron Light Monitor (SLM) diagnostic beamline has been designed and constructed at NSLS2 storage ring, to characterize the electron beam profile at various machine conditions. Due to the excellent alignment, SLM beamline was able to see the first visible light when beam was circulating the ring for the first turn. The beamline has been commissioned for the past year. Besides a normal CCD camera to monitor the beam profile, streak camera and gated camera are used to measure the longitudinal and transverse profile to understand the beam dynamics. Measurement results from these cameras will be presented in this paper.more » A time correlated single photon counting system (TCSPC) has also been setup to measure the single bunch purity.« less

  18. Adapting High Brightness Relativistic Electron Beams for Ultrafast Science

    NASA Astrophysics Data System (ADS)

    Scoby, Cheyne Matthew

    This thesis explores the use of ultrashort bunches generated by a radiofrequency electron photoinjector driven by a femtosecond laser. Rf photoinjector technology has been developed to generate ultra high brightness beams for advanced accelerators and to drive advanced light source applications. The extremely good quality of the beams generated by this source has played a key role in the development of 4th generation light sources such as the Linac Coherent Light Source, thus opening the way to studies of materials science and biological systems with high temporal and spatial resolution. At the Pegasus Photoinjector Lab, we have developed the application of a BNL/SLAC/UCLA 1.6-cell rf photoinjector as a tool for ultrafast science in its own right. It is the aim of this work to explore the generation of ultrashort electron bunches, give descriptions of the novel ultrafast diagnostics developed to be able to characterize the electron bunch and synchronize it with a pump laser, and share some of the scientific results that were obtained with this technology at the UCLA Pegasus laboratory. This dissertation explains the requirements of the drive laser source and describes the principles of rf photoinjector design and operation necessary to produce electron bunches with an rms longitudinal length < 100 femtoseconds containing 107 - 108 electrons per bunch. In this condition, when the laser intensity is sufficiently high, multiphoton photoemission is demonstrated to be more efficient in terms of charge yield than single photon photoemission. When a short laser pulse hits the cathode the resulting beam dynamics are dominated by a strong space charge driven longitudinal expansion which leads to the creation of a nearly ideal uniformly filled ellipsoidal distribution. These beam distributions are characterized by linear space charge forces and hence by high peak brightness and small transverse emittances. This regime of operation of the RF photoinjector is also termed the “blow-out regime.” When the beam charge is maintained low, ultrashort electron bunches can be obtained enabling novel applications such as single shot Femtosecond Relativistic Electron Diffraction (FRED). High precision temporal diagnostic and synchronization techniques are integral to the use of femtosecond electron bunches for ultrafast science. An x-band rf streak camera provides measurements of the longitudinal profiles of sub-ps electron bunches. Spatial encoded electro-optic timestamping is developed to overcome the inherent rf-laser synchronization errors in rf photoinjectors. The ultrafast electron beams generated with the RF photoenjector are employed in pump-probe experiments wherein a target is illuminated with an intense pump laser to induce a transient behavior in the sample. FRED is used to study the melting of gold after heating with an intense femtosecond laser pulse. In a first experiment we study the process by taking different single-shot diffraction patterns at varying delays between the pump an probe beams. In a second experiment a variation of the technique is employed using the rf streak camera to time-stretch the beam after it has diffraction from the sample in order to capture the full melting dynamics in a single shot. Finally, relativistic ultrashort electron bunches are used as a probe of plasma dynamics in electron radiography/shadowgraphy experiments. This technique is used to study photoemission with intense laser pulses and the evolution of electromagnetic fields in a photoinduced dense plasma. This experiment is also performed in two different modes: one where different pictures are acquired at different time delays, and the other where a single streak image is used to obtain visualization of the propagation electromagnetic fields with an unprecedented 35 femtosecond resolution.

  19. Active Processes: Bright Streaks and Dark Fans

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    In a region of the south pole known informally as 'Ithaca' numerous fans of dark frost form every spring. HiRISE collected a time lapse series of these images, starting at Ls = 185 and culminating at Ls = 294. 'Ls' is the way we measure time on Mars: at Ls = 180 the sun passes the equator on its way south; at Ls = 270 it reaches its maximum subsolar latitude and summer begins.

    In the earliest image (figure 1) fans are dark, but small narrow bright streaks can be detected. In the next image (figure 2), acquired at Ls = 187, just 106 hours later, dramatic differences are apparent. The dark fans are larger and the bright fans are more pronounced and easily detectable. The third image in the sequence shows no bright fans at all.

    We believe that the bright streaks are fine frost condensed from the gas exiting the vent. The conditions must be just right for the bright frost to condense.

    Observation Geometry Image PSP_002622_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 16-Feb-2007. The complete image is centered at -85.2 degrees latitude, 181.5 degrees East longitude. The range to the target site was 246.9 km (154.3 miles). At this distance the image scale is 49.4 cm/pixel (with 2 x 2 binning) so objects 148 cm across are resolved. The image shown here has been map-projected to 50 cm/pixel . The image was taken at a local Mars time of 05:46 PM and the scene is illuminated from the west with a solar incidence angle of 88 degrees, thus the sun was about 2 degrees above the horizon. At a solar longitude of 185.1 degrees, the season on Mars is Northern Autumn.

  20. a View of the Marble-Cake Mantle from the Southeast Indian Ridge

    NASA Astrophysics Data System (ADS)

    Hanan, B. B.; Graham, D. W.; Hemond, C.; Blichert-Toft, J.; Albarede, F.

    2014-12-01

    Along the Southeast Indian Ridge, variations in axial depth, crustal thickness, hydrothermal venting [1], basaltic major elements and U-series disequilibria [2] all indicate a west-to-east decrease in magma supply and mantle temperature from the Amsterdam-St. Paul hotspot to the Australian-Antarctic Discordance. Paired Hf-Pb isotopes in closely spaced glasses (5-10 km) from 81-100°E define two populations revealing compositional streaks in the upper mantle [3]. The number density of the streaks follows a Poisson distribution with a characteristic thickness of ~20 km. K/Ti and Na8 do not correlate with Pb or Hf isotopes, and both isotopic domains encompass N- and E-MORB types indicating the variations represent mantle source heterogeneities. 3He/4He varies from 7.5 - 10.2 RA, more than half the range in global MORB away from hotspot influence [4]. No systematic relationship exists between 3He/4He and Pb or Hf isotopes. A general negative correlation between K/Ti and Fe8 for the SEIR resembles that for MORBs globally, with higher K/Ti associated with lower 3He/4He. Collectively the observations suggest the presence of lithologically heterogeneous mantle. Lower 3He/4He derives from a source containing a few percent pyroxenite or ecologite, while 3He/4He > 9 RA arises from peridotite. Mantle convection has folded together distinct composite reservoirs of heterogeneous mantle, and stretched them into streaks that remain discernible units. The mantle 'unit' giving rise to each MORB sample represents a 'mixture of mixtures' with a multi-stage mixing history. Spectral analysis of the length scales of Hf, Pb and He isotopic variability allows a visual representation of this upper mantle 'texture'. The dominant length scales reflect large (1000, 500 km) and regional scale (100-150 km) structures in mantle flow, and sampling of heterogeneities during partial melting (20-30 km). 1-Baker et al., doi:10.1002/2014GC005344; 2-Russo et al., doi:10.1016/j.epsl.2008.11.016; 3-Hanan et al., doi:10.1016/j.epsl.2013.05.028; 4-Graham et al., doi:10.1002/2014GC005264

  1. Evaluation of electrical conductivity of Cu and Al through sub microsecond underwater electrical wire explosion

    NASA Astrophysics Data System (ADS)

    Sheftman, D.; Shafer, D.; Efimov, S.; Krasik, Ya. E.

    2012-03-01

    Sub-microsecond timescale underwater electrical wire explosions using Cu and Al materials have been conducted. Current and voltage waveforms and time-resolved streak images of the discharge channel, coupled to 1D magneto-hydrodynamic simulations, have been used to determine the electrical conductivity of the metals for the range of conditions between hot liquid metal and strongly coupled non-ideal plasma, in the temperature range of 10-60 KK. The results of these studies showed that the conductivity values obtained are typically lower than those corresponding to modern theoretical electrical conductivity models and provide a transition between the conductivity values obtained in microsecond time scale explosions and those obtained in nanosecond time scale wire explosions. In addition, the measured wire expansion shows good agreement with equation of state tables.

  2. Resolving the shape of a sonoluminescence pulse in sulfuric acid by the use of streak camera.

    PubMed

    Huang, Wei; Chen, Weizhong; Cui, Weicheng

    2009-06-01

    A streak camera is used to measure the shape of sonoluminescence pulses from a cavitation bubble levitated stably in a sulfuric acid solution. The shape and response to an acoustic pressure field of the sonoluminescence pulse in 85% by weight sulfuric acid are qualitatively similar to those in water. However, the pulse width in sulfuric acid is wider than that in water by over one order of magnitude. The width of the sonoluminescence pulse is strongly dependent on the concentration of the sulfuric acid solution, while the skewed distribution of the shape remains unchanged.

  3. North-south comparison of springtime dark slope structures on Mars, and the possibility of liquid water

    NASA Astrophysics Data System (ADS)

    Kereszturi, A.; Berczi, Sz.; Horvath, A.; Ganti, T.; Kuti, A.; Pocs, T.; Sik, A.; Szathmary, E.

    2008-09-01

    Introduction Various polar seasonal surface albedo structures were analyzed by several authors in the past [1, 2, 3, 4, 5, 6, 7, 8, 8, 9], partly in connection with the possibility of liquid water. In our previous work [10] we identified two groups of slope streaks emanating form Dark Dune Spots of polar dunes, which grow in size and number during spring with the advancement of the season. The diffuse shaped group appears earlier and formed probably by CO2 geysers [8]. The confine shaped group appears in a later seasonal phase, when the temperature is higher. They are probably connected with exposed water-ice on the surface, and may formed by the seepage of undercooled interfacial water on microscopic scale [11]. Methods For the analysis of northern slope structures we used MGS MOC, MRO HiRISE images, and MRG TES data [12] using the "vanilla" software. Temperature data show annual trend, and were derived for daytime. Note that the surface temperature values have spatial resolution around 3 km, and they can be taken only as a rough approach of the surface temperature of the whole dune complex, and not different parts of it. Discussion The target area of the analysis was (84N 233E) in the northern circumpolar sand sea, with 300-500 m diameter overlapping dunes. We searched for springtime confined and elongated dark slope streaks, similar to those, which we observed at south. Basic similarities between northern and southern structures are: 1. streaks always emanate from Dark Dune Spots in downward direction, 2. streaks are present in local spring, when the temperature is above the CO2 buffered level, suggesting there are parts of the surface without CO2 ice, where possibly H2O ice is exposed (Fig. 1.), 4. the streaks show branching pattern (Fig. 2.). Basic differences between the northern and southern structures: 1. at north there is a dark annulus around the Dark Dune Spots, which is absent at south, 2. there are fewer and fainter diffuse streaks of gas jet activity at north, 3. there are fewer pond-like accumulated structures at the streaks' end at north. Conclusion The branching dark pattern suggests the movement of liquid-like material, while the temperature data suggest these dark features are formed possibly in connection with H2O ice. The moving material may be composed of dry or adsorbed water [13] lubricated grains also. Based on the probably presence of waterice, and the model of adsorbed water, northern DDSslope structures may be the result of seepage by interfacial water around solar heated dune grains, as well as the southern ones. This situation may have astrobiological consequences [14] too. Acknowledgment This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation. References [1] Kieffer H. et al. (2000) 2nd Conf. Mars Pol. Sci. 93., [2] Ness & Orme JBIS (2002) 55, 85-109. [3] Piqueux S. et al. (2003) JGR 108, 5084. [4] Christensen et al. (2005) AGU, Fall Meeting #P23C- 04. [5] Malin M.C. et al., (1998) Science 279, 1681-1685. [6] Malin M.C. and Edgett K.S. (2000) XXXIth LPSC #1056. [7] Zuber T.M. (2003) Science 302, 1694-1695. [8] Kieffer H.H. et al.

  4. Convolutional auto-encoder for image denoising of ultra-low-dose CT.

    PubMed

    Nishio, Mizuho; Nagashima, Chihiro; Hirabayashi, Saori; Ohnishi, Akinori; Sasaki, Kaori; Sagawa, Tomoyuki; Hamada, Masayuki; Yamashita, Tatsuo

    2017-08-01

    The purpose of this study was to validate a patch-based image denoising method for ultra-low-dose CT images. Neural network with convolutional auto-encoder and pairs of standard-dose CT and ultra-low-dose CT image patches were used for image denoising. The performance of the proposed method was measured by using a chest phantom. Standard-dose and ultra-low-dose CT images of the chest phantom were acquired. The tube currents for standard-dose and ultra-low-dose CT were 300 and 10 mA, respectively. Ultra-low-dose CT images were denoised with our proposed method using neural network, large-scale nonlocal mean, and block-matching and 3D filtering. Five radiologists and three technologists assessed the denoised ultra-low-dose CT images visually and recorded their subjective impressions of streak artifacts, noise other than streak artifacts, visualization of pulmonary vessels, and overall image quality. For the streak artifacts, noise other than streak artifacts, and visualization of pulmonary vessels, the results of our proposed method were statistically better than those of block-matching and 3D filtering (p-values < 0.05). On the other hand, the difference in the overall image quality between our proposed method and block-matching and 3D filtering was not statistically significant (p-value = 0.07272). The p-values obtained between our proposed method and large-scale nonlocal mean were all less than 0.05. Neural network with convolutional auto-encoder could be trained using pairs of standard-dose and ultra-low-dose CT image patches. According to the visual assessment by radiologists and technologists, the performance of our proposed method was superior to that of large-scale nonlocal mean and block-matching and 3D filtering.

  5. Dermoscopic features of thin melanomas: a comparative study of melanoma in situ and invasive melanomas smaller than or equal to 1mm*

    PubMed Central

    da Silva, Vanessa Priscilla Martins; Ikino, Juliana Kida; Sens, Mariana Mazzochi; Nunes, Daniel Holthausen; Di Giunta, Gabriella

    2013-01-01

    BACKGROUND Dermoscopy allows the early detection of melanomas. The preoperative determination of Breslow index by dermoscopy could be useful in planning the surgical approach and in selecting patients for sentinel lymph node biopsy. OBJECTIVES This study aims at describing the dermoscopic features of thin melanomas and comparing melanomas in situ with invasive melanomas less than or equal to 1 mm thick. METHODS This was an observational retrospective study in which the dermoscopy photographs of 41 thin melanomas were evaluated. Three observers evaluated together 14 dermoscopic criteria. RESULTS Among thin melanomas, the most frequent criteria were presence of asymmetry in two axes in 95% of cases (39 cases), 3 or more colors in 80.4% of cases (33 cases), atypical dots or globules in 58.5% of cases (24 cases) and atypical network or streaks in 53.6% of cases (22 cases). The group of invasive melanomas presented with a higher frequency and statistical significance (p <0.05) 3 or more colors (OR: 16.1), milky red areas (OR: 4.8) and blue-white veil (OR: 20.4), and a greater tendency to have streaks or atypical network (OR: 3.66). CONCLUSIONS Thin melanomas tend to have asymmetry in the two axes, 3 or more colors, atypical dots or globules and atypical network or streaks. Melanomas in situ tend to have up to 2 colors, no blue-white veil and no milky red area. Invasive melanomas tend to have 3 or more colors, a milky red area, blue-white veil, and atypical network or streaks. Further studies are needed to confirm these findings. PMID:24173175

  6. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses.

    PubMed

    Maruthi, Midatharahally N; Jeremiah, Simon C; Mohammed, Ibrahim U; Legg, James P

    2017-12-01

    Cassava brown streak disease (CBSD) is arguably the most dangerous current threat to cassava, which is Africa's most important food security crop. CBSD is caused by two RNA viruses: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). The roles of the whitefly Bemisia tabaci (Gennadius) and farmer practices in the spread of CBSD were investigated in a set of field and laboratory experiments. The virus was acquired and transmitted by B. tabaci within a short time (5-10 min each for virus acquisition and inoculation), and was retained for up to 48 hr. Highest virus transmission (60%) was achieved using 20-25 suspected viruliferous whiteflies per plant that were given acquisition and inoculation periods of 24 and 48 hr, respectively. Experiments mimicking the agronomic practices of cassava leaf picking or the use of contaminated tools for making cassava stem cuttings did not show the transmission of CBSV or UCBSV. Screenhouse and field experiments in Tanzania showed that the spread of CBSD next to spreader rows was high, and that the rate of spread decreased with increasing distance from the source of inoculum. The disease spread in the field up to a maximum of 17 m in a cropping season. These results collectively confirm that CBSV and UCBSV are transmitted by B. tabaci semipersistently, but for only short distances in the field. This implies that spread over longer distances is due to movements of infected stem cuttings used for planting material. These findings have important implications for developing appropriate management strategies for CBSD.

  7. Candida krusei form mycelia along agar surfaces towards each other and other Candida species.

    PubMed

    Fleischmann, Jacob; Broeckling, Corey D; Lyons, Sarah

    2017-03-11

    Candida krusei has been known to exhibit communal interactions such as pellicle formation and crawling out of nutritional broth. We noticed another possible interaction on agar surfaces, where C. krusei yeast cells formed mycelia along agar surfaces toward each other. We report here the results of experiments to study this interaction. When C.krusei yeast cells are plated in parallel streaks, they form mycelia along agar surfaces toward other yeasts. They also detect the presence of Candida albicans and Candida glabrata across agar surfaces, while the latter two react neither to their own kind, nor to C. krusei. Secreted molecule(s) are likely involved as C.krusei does not react to heat killed C. krusei. Timing and rate of mycelia formation across distances suggests that mycelia start forming when a secreted molecule(s) on agar surface reaches a certain concentration. We detected farnesol, tyrosol and tryptophol molecules that may be involved with mycelial formation, on the agar surfaces between yeast streaks. Unexpectedly the amounts detected between streaks were significantly higher than would have expected from additive amounts of two streaks. All three Candida species secreted these molecules. When tested on agar surface however, none of these molecules individually or combined induced mycelia formation by C. krusei. Our data confirms another communal interaction by C. krusei, manifested by formation of mycelia by yeast cells toward their own kind and other yeasts on agar surfaces. We detected secretion of farnesol, tyrosol and tryptophol by C. krusei but none of these molecules induced this activity on agar surface making it unlikely that they are the ones utilized by this yeast for this activity.

  8. Imaging of Arthroplasties: Improved Image Quality and Lesion Detection With Iterative Metal Artifact Reduction, a New CT Metal Artifact Reduction Technique.

    PubMed

    Subhas, Naveen; Polster, Joshua M; Obuchowski, Nancy A; Primak, Andrew N; Dong, Frank F; Herts, Brian R; Iannotti, Joseph P

    2016-08-01

    The purpose of this study was to compare iterative metal artifact reduction (iMAR), a new single-energy metal artifact reduction technique, with filtered back projection (FBP) in terms of attenuation values, qualitative image quality, and streak artifacts near shoulder and hip arthroplasties and observer ability with these techniques to detect pathologic lesions near an arthroplasty in a phantom model. Preoperative and postoperative CT scans of 40 shoulder and 21 hip arthroplasties were reviewed. All postoperative scans were obtained using the same technique (140 kVp, 300 quality reference mAs, 128 × 0.6 mm detector collimation) on one of three CT scanners and reconstructed with FBP and iMAR. The attenuation differences in bones and soft tissues between preoperative and postoperative scans at the same location were compared; image quality and streak artifact for both reconstructions were qualitatively graded by two blinded readers. Observer ability and confidence to detect lesions near an arthroplasty in a phantom model were graded. For both readers, iMAR had more accurate attenuation values (p < 0.001), qualitatively better image quality (p < 0.001), and less streak artifact (p < 0.001) in all locations near arthroplasties compared with FBP. Both readers detected more lesions (p ≤ 0.04) with higher confidence (p ≤ 0.01) with iMAR than with FBP in the phantom model. The iMAR technique provided more accurate attenuation values, better image quality, and less streak artifact near hip and shoulder arthroplasties than FBP; iMAR also increased observer ability and confidence to detect pathologic lesions near arthroplasties in a phantom model.

  9. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat.

    PubMed

    Danilova, Tatiana V; Zhang, Guorong; Liu, Wenxuan; Friebe, Bernd; Gill, Bikram S

    2017-03-01

    Here, we report the production of a wheat- Thinopyrum intermedium recombinant stock conferring resistance to wheat streak mosaic virus and Triticum mosaic virus. Wheat streak mosaic caused by the wheat streak mosaic virus (WSMV) is an important disease of bread wheat (Triticum aestivum) worldwide. To date, only three genes conferring resistance to WSMV have been named and two, Wsm1 and Wsm3, were derived from the distantly related wild relative Thinopyrum intermedium. Wsm3 is only available in the form of a compensating wheat-Th. intermedium whole-arm Robertsonian translocation T7BS·7S#3L. Whole-arm alien transfers usually suffer from linkage drag, which prevents their use in cultivar improvement. Here, we report ph1b-induced homoeologous recombination to shorten the Th. intermedium segment and recover a recombinant chromosome consisting of the short arm of wheat chromosome 7B, part of the long arm of 7B, and the distal 43% of the long arm derived from the Th. intermedium chromosome arm 7S#3L. The recombinant chromosome T7BS·7BL-7S#3L confers resistance to WSMV at 18 and 24 °C and also confers resistance to Triticum mosaic virus, but only at 18 °C. Wsm3 is the only gene conferring resistance to WSMV at a high temperature level of 24 °C. We also developed a user-friendly molecular marker that will allow to monitor the transfer of Wsm3 in breeding programs. Wsm3 is presently being transferred to adapted hard red winter wheat cultivars and can be used directly in wheat improvement.

  10. The mesoscale forcing of a midlatitude upper-tropospheric jet streak by a simulated convective system. 1: Mass circulation and ageostrophic processes

    NASA Technical Reports Server (NTRS)

    Wolf, Bart J.; Johnson, D. R.

    1995-01-01

    The mutual forcing of a midlatitude upper-tropospheric jet streak by organized mesoscale adiabatic and diabatic processes within a simulated convective system (SCS) is investigated. Using isentropic diagnostics, results from a three-dimensional numerical simulation of an SCS are examined to study the isallobaric flow field, modes of dominant ageostrophic motion, and stability changes in relation to the mutual interdependence of adiabatic processes and latent heat release. Isentropic analysis affords an explicit isolation of a component of isallobaric flow associated with diabatic processes within the SCS. Prior to convective development within the simulations, atmospheric destabilization occurs through adiabatic ageostrophic mass adjustment and low-level convergence in association with the preexisting synoptic-scale upper-tropospheric jet streak. The SCS develops in a baroclinic zone and quickly initiates a vigorous mass circulation. By the mature stage, a pronounced vertical couplet of low-level convergence and upper-level mass divergence is established, linked by intense midtropospoheric diabatic heating. Significant divergence persists aloft for several hours subsequent to SCS decay. The dominant role of ageostrophic motion within which the low-level mass convergence develops is the adiabatic isallobaric component, while the mass divergence aloft develops principally through the diabatic isallobaric component. Both compnents are intrinsically linked to the convectively forced vertical mass transport. The inertial diabatic ageostrophic component is largest near the level of maximum heating and is responsible for the development of inertial instability to the north of SCS, resulting in this quadrant being preferred for outflow. The inertial advective component, the dominant term that produces the new downstream wind maximum, rapidly develops north of the SCS and through mutual adjustment creates the baroclinic support for the new jet streak.

  11. Dynamic intensity-weighted region of interest imaging for conebeam CT

    PubMed Central

    Pearson, Erik; Pan, Xiaochuan; Pelizzari, Charles

    2017-01-01

    BACKGROUND Patient dose from image guidance in radiotherapy is small compared to the treatment dose. However, the imaging beam is untargeted and deposits dose equally in tumor and healthy tissues. It is desirable to minimize imaging dose while maintaining efficacy. OBJECTIVE Image guidance typically does not require full image quality throughout the patient. Dynamic filtration of the kV beam allows local control of CT image noise for high quality around the target volume and lower quality elsewhere, with substantial dose sparing and reduced scatter fluence on the detector. METHODS The dynamic Intensity-Weighted Region of Interest (dIWROI) technique spatially varies beam intensity during acquisition with copper filter collimation. Fluence is reduced by 95% under the filters with the aperture conformed dynamically to the ROI during cone-beam CT scanning. Preprocessing to account for physical effects of the collimator before reconstruction is described. RESULTS Reconstructions show image quality comparable to a standard scan in the ROI, with higher noise and streak artifacts in the outer region but still adequate quality for patient localization. Monte Carlo modeling shows dose reduction by 10–15% in the ROI due to reduced scatter, and up to 75% outside. CONCLUSIONS The presented technique offers a method to reduce imaging dose by accepting increased image noise outside the ROI, while maintaining full image quality inside the ROI. PMID:27257875

  12. An Investigation of the Sub-Microsecond Features of Dynamic Crack Propagation in PMMA and the Rdx-Based Explosive PBX 9205

    NASA Astrophysics Data System (ADS)

    Washabaugh, P. D.; Hill, L. G.

    2007-12-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for ˜10 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm×3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.24 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  13. An initial investigation of the sub-microsecond features of dynamic crack propagation in PMMA and the RDX-based explosive PBX 9205

    NASA Astrophysics Data System (ADS)

    Washabaugh, Peter; Hill, Larry

    2007-06-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for 20 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm x 3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.2 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  14. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.

    2012-10-15

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirrormore » and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.« less

  15. Geoscience Laser Ranging System design and performance predictions

    NASA Technical Reports Server (NTRS)

    Anderson, Kent L.

    1991-01-01

    The Geoscience Laser System (GLRS) will be a high-precision distance-measuring instrument planned for deployment on the EOS-B platform. Its primary objectives are to perform ranging measurements to ground targets to monitor crustal deformation and tectonic plate motions, and nadir-looking altimetry to determine ice sheet thicknesses, surface topography, and vertical profiles of clouds and aerosols. The system uses a mode-locked, 3-color Nd:YAG laser source, a Microchannel Plate-PMT for absolute time-of-flight (TOF) measurement (at 532 nm), a streak camera for TOF 2-color dispersion measurement (532 nm and 355 nm), and a Si avalanche photodiode for altimeter waveform detection (1064 nm). The performance goals are to make ranging measurements to ground targets with about 1 cm accuracy, and altimetry height measurements over ice with 10 cm accuracy. This paper presents an overview of the design concept developed during a phase B study. System engineering issues and trade studies are discussed, with particular attention to error budgets and performance predictions.

  16. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility.

    PubMed

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M; Bastiani-Ceccotti, S; Blenski, T; Caillaud, T; Ducret, J E; Foelsner, W; Gilles, D; Gilleron, F; Pain, J C; Poirier, M; Serres, F; Silvert, V; Soullie, G; Turck-Chieze, S; Villette, B

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  17. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    NASA Astrophysics Data System (ADS)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along <100> directions.

  18. Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Edstrom Jr., D.; Ruan, J.

    2016-10-09

    We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.

  19. Gusev Dust Devil, sol 532

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a dust devil seen by NASA's Mars Exploration Rover Spirit during the rover's 532nd martian day, or sol (July 2, 2005). The dust-carrying whirlwind is moving across a plain inside Gusev Crater and viewed from Spirit's vantage point on hills rising from the plain. The clip consists of frames taken by Spirit's navigation camera, processed to enhance contrast for anything in the images that changes from frame to frame. The total elapsed time during the taking of these frames was 8 minutes, 48 seconds.

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.

  20. Extremely high wall-shear stress events in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Kwon, Yongseok

    2018-04-01

    The present work studies the fluctuating characteristics of the streamwise wall-shear stress in a DNS of a turbulent boundary layer at Re τ =1500 from a structural view. The two-dimensional field of the fluctuating friction velocity u‧ τ (x,z) is decomposed into the large- and small-scale components via a recently proposed scale separation algorithm, Quasi-bivariate Variational Mode Decomposition (QB-VMD). Both components are found to be dominated by streak-like structures, which can be regarded as the wall signature of the inner-layer streaks and the outer-layer LSMs, respectively. Extreme positive/negative wall-shear stress fluctuation events are detected in the large-scale component. The former’s occurrence frequency is nearly one order of magnitude higher than the latter; therefore, they contribute a significant portion of the long tail of the wall-shear stress distribution. Both two-point correlations and conditional averages show that these extreme positive wall-shear stress events are embedded in the large-scale positive u‧ τ streaks. They seem to be formed by near-wall ‘splatting’ process, which are related to strong finger-like sweeping (Q4) events originated from the outer-layer positive LSMs.

  1. Recurring Lineae on Slopes at Hale Crater, Mars

    NASA Image and Video Library

    2015-09-28

    Dark, narrow streaks on Martian slopes such as these at Hale Crater are inferred to be formed by seasonal flow of water on contemporary Mars. The streaks are roughly the length of a football field. The imaging and topographical information in this processed, false-color view come from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. These dark features on the slopes are called "recurring slope lineae" or RSL. Planetary scientists using observations with the Compact Reconnaissance Imaging Spectrometer on the same orbiter detected hydrated salts on these slopes at Hale Crater, corroborating the hypothesis that the streaks are formed by briny liquid water. The image was produced by first creating a 3-D computer model (a digital terrain map) of the area based on stereo information from two HiRISE observations, and then draping a false-color image over the land-shape model. The vertical dimension is exaggerated by a factor of 1.5 compared to horizontal dimensions. The camera records brightness in three wavelength bands: infrared, red and blue-green. The draped image is one product from HiRISE observation ESP_03070_1440. http://photojournal.jpl.nasa.gov/catalog/PIA19916

  2. Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective.

    PubMed

    Xi, Li; Bai, Xue

    2016-04-01

    The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.

  3. Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective

    NASA Astrophysics Data System (ADS)

    Xi, Li; Bai, Xue

    2016-04-01

    The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.

  4. Comparative study of INPIStron and spark gap

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Lee, Ja H.

    1993-01-01

    An inverse pinch plasma switch, INPIStron, was studied in comparison to a conventional spark gap. The INPIStron is under development for high power switching applications. The INPIStron has an inverse pinch dynamics, opposed to Z-pinch dynamics in the spark gap. The electrical, plasma dynamics and radiative properties of the closing plasmas have been studied. Recently the high-voltage pulse transfer capabilities or both the INPIStron and the spark gap were also compared. The INPIStron with a low impedance Z = 9 ohms transfers 87 percent of an input pulse with a halfwidth of 2 mu s. For the same input pulse the spark gap of Z = 100 ohms transfers 68 percent. Fast framing and streak photography, taken with an TRW image converter camera, was used to observe the discharge uniformity and closing plasma speed in both switches. In order to assess the effects of closing plasmas on erosion of electrode material, emission spectra of two switches were studied with a spectrometer-optical multi channel analyzer (OMA) system. The typical emission spectra of the closing plasmas in the INPIStron and the spark gap showed that there were comparatively weak carbon line emission in 658.7 nm and copper (electrode material) line emissions in the INPIStron, indicating low erosion of materials in the INPIStron.

  5. Bidirectional reflectance distribution function effects in ladar-based reflection tomography.

    PubMed

    Jin, Xuemin; Levine, Robert Y

    2009-07-20

    Light reflection from a surface is described by the bidirectional reflectance distribution function (BRDF). In this paper, BRDF effects in reflection tomography are studied using modeled range-resolved reflection from well-characterized geometrical surfaces. It is demonstrated that BRDF effects can cause a darkening at the interior boundary of the reconstructed surface analogous to the well-known beam hardening artifact in x-ray transmission computed tomography (CT). This artifact arises from reduced reflection at glancing incidence angles to the surface. It is shown that a purely Lambertian surface without shadowed components is perfectly reconstructed from range-resolved measurements. This result is relevant to newly fabricated carbon nanotube materials. Shadowing is shown to cause crossed streak artifacts similar to limited-angle effects in CT reconstruction. In tomographic reconstruction, these effects can overwhelm highly diffuse components in proximity to specularly reflecting elements. Diffuse components can be recovered by specialized processing, such as reducing glints via thresholded measurements.

  6. Interaction Between a Steady Detonation Wave in Nitromethane and Geometrical Complex Confinement Defects

    NASA Astrophysics Data System (ADS)

    Crouzet, B.; Soulard, L.; Carion, N.; Manczur, P.

    2007-12-01

    Two copper cylinder expansion tests were carried out on nitromethane. They differ from the classical cylinder test in that the liner includes evenly-spaced protruding circular defects. The aim is to study how a detonation front propagating in the liquid explosive interacts with the confining material defects. The subsequent motion of the metal, accelerated by the expanding detonation products, is measured using a range of diagnostic techniques: electrical probes, a rapid framing camera, a glass block associated with a streak camera and velocity laser interferometers. The different experimental records have been examined in the light of previous classical cylinder test measurements, simple 2D theoretical shock polar analysis results and 2D numerical simulations.

  7. Time-resolved x-ray spectra from laser-generated high-density plasmas

    NASA Astrophysics Data System (ADS)

    Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen

    2001-04-01

    We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.

  8. Turbulent structures in wall-bounded shear flows observed via three-dimensional numerical simulators. [using the Illiac 4 computer

    NASA Technical Reports Server (NTRS)

    Leonard, A.

    1980-01-01

    Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.

  9. PIA01492

    NASA Image and Video Library

    1998-10-30

    This picture of Neptune was produced from the last whole planet images taken through the green and orange filters on NASA's Voyager 2 narrow angle camera. The images were taken at a range of 4.4 million miles from the planet, 4 days and 20 hours before closest approach. The picture shows the Great Dark Spot and its companion bright smudge; on the west limb the fast moving bright feature called Scooter and the little dark spot are visible. These clouds were seen to persist for as long as Voyager's cameras could resolve them. North of these, a bright cloud band similar to the south polar streak may be seen. http://photojournal.jpl.nasa.gov/catalog/PIA01492

  10. X-ray diffuse scattering study of the kinetics of stacking fault growth and annihilation in boron-implanted silicon

    NASA Astrophysics Data System (ADS)

    Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.

    2002-10-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.

  11. Extracting attosecond delays from spectrally overlapping interferograms

    NASA Astrophysics Data System (ADS)

    Jordan, Inga; Wörner, Hans Jakob

    2018-02-01

    Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.

  12. A new look at the near-wall turbulence structure

    NASA Astrophysics Data System (ADS)

    Choi, Kwing-So

    An experiment was carried out in the BMT environmental wind tunnel (4.8 m x 2.4 m x 15 m) in order to study the near-wall structure of the turbulent boundary layer, particular attention being given to the dynamics of the 'near-wall bursts'. Conditional sampling of the wall-shear stress fluctuations was extensively used along with a simultaneous application of flow visualization using a streak-smoke wire and a sheet of laser light. The results suggested that a 'near-wall burst' was taking place between a pair of smoke tubes, which was interpreted as a pair of stretched legs of neighboring hairpin loops. The spanwise spacing of the 'near-wall bursts' determined from a conditional space correlation of skin-friction signals was found to be a function of the threshold value used in burst detection.

  13. Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Kaplan, Michael L.

    1994-01-01

    An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 1981 CCOPE case study indicates that there were two episodes of coherent internal gravity waves. One of the fundamental unanswered questions from this research, however, concerns the dynamical processes which generated the observed waves, all of which originated from the region encompassing the borders of Montana, Idaho, and Wyoming. While geostrophic adjustment, shearing instability, and terrain where all implicated separately or in concert as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to rigorously define the genesis processes from observations alone. In this report we employ a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed wave episode.

  14. Autonomous motion of metallic microrods propelled by ultrasound.

    PubMed

    Wang, Wei; Castro, Luz Angelica; Hoyos, Mauricio; Mallouk, Thomas E

    2012-07-24

    Autonomously moving micro-objects, or micromotors, have attracted the attention of the scientific community over the past decade, but the incompatibility of phoretic motors with solutions of high ionic strength and the use of toxic fuels have limited their applications in biologically relevant media. In this letter we demonstrate that ultrasonic standing waves in the MHz frequency range can levitate, propel, rotate, align, and assemble metallic microrods (2 μm long and 330 nm diameter) in water as well as in solutions of high ionic strength. Metallic rods levitated to the midpoint plane of a cylindrical cell when the ultrasonic frequency was tuned to create a vertical standing wave. Fast axial motion of metallic microrods at ~200 μm/s was observed at the resonant frequency using continuous or pulsed ultrasound. Segmented metal rods (AuRu or AuPt) were propelled unidirectionally with one end (Ru or Pt, respectively) consistently forward. A self-acoustophoresis mechanism based on the shape asymmetry of the metallic rods is proposed to explain this axial propulsion. Metallic rods also aligned and self-assembled into long spinning chains, which in the case of bimetallic rods had a head-to-tail alternating structure. These chains formed ring or streak patterns in the levitation plane. The diameter or distance between streaks was roughly half the wavelength of the ultrasonic excitation. The ultrasonically driven movement of metallic rods was insensitive to the addition of salt to the solution, opening the possibility of driving and controlling metallic micromotors in biologically relevant media using ultrasound.

  15. Plasma studies of a linear magnetron operating in the range from DC to HiPIMS

    NASA Astrophysics Data System (ADS)

    Anders, André; Yang, Yuchen

    2018-01-01

    Plasma properties of magnetrons have been extensively studied in the past with the focus on small, research-style magnetrons with planar disk targets. In this contribution, we report on plasma diagnostics of a linear magnetron because the linear geometry is widely used in industry and, more importantly here, it provides the unique opportunity to align a linear racetrack section with a streak camera's entrance slit. This allows us to follow the evolution of plasma instabilities, i.e., localized ionization zones or spokes, as they travel along the racetrack. This report greatly extends our more limited and focused study on the structure and velocity of spokes [Anders and Yang, Appl. Phys. Lett. 111, 064103 (2017)]. Following recent plasma potential measurements [Panjan and Anders, J. Appl. Phys. 121, 063302 (2017)], we interpret optical emission information with localized electron heating. We confirm that for low direct current operation, spokes move in the -E ×B direction, and in the opposite direction in the high current mode. Streak images indicate slower spoke velocities near corners compared to spoke velocities in the straight sections of the racetrack. Spoke splitting and merging are observed supporting the interpretation that spoke motion represents a phase velocity of the region of greatest ionization and is not a motion of plasma. Fast camera investigations are supplemented by measurements of the energy distribution functions of ions emitted from the straight and curved regions of the racetrack, showing notable and reproducible differences.

  16. Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. The room-temperature polymorphs of the drug benzocaine.

    PubMed

    Chan, E J; Welberry, T R; Goossens, D J; Heerdegen, A P; Beasley, A G; Chupas, P J

    2009-06-01

    The drug benzocaine (ethyl 4-aminobenzoate), commonly used as a local anaesthetic, is a bimorphic solid at room temperature. Form (I) is monoclinic P2(1)/c, while the metastable form (II) is orthorhombic P2(1)2(1)2(1). Three-dimensional diffuse X-ray scattering data have been collected for the two forms on the 11-ID-B beamline at the Advanced Photon Source (APS). Both forms show strong and highly structured diffuse scattering. The data have been interpreted and analysed using Monte Carlo (MC) modelling on the basis that the scattering is purely thermal in origin and indicates the presence of highly correlated molecular motions. In both forms (I) and (II) broad diffuse streaks are observed in the 0kl section which indicate strong longitudinal displacement correlations between molecules in the 031 directions, extending over distances of up to 50 A. Streaks extending between Bragg peaks in the hk0 section normal to [100] correspond to correlated motions of chains of molecules extending along a that are linked by N-H...O=C hydrogen bonds and which occur together as coplanar ribbon pairs. The main difference between the two forms is in the dynamical behaviour of the ribbon pairs and in particular how they are able to slide relative to each other. While for form (I) a model involving harmonic springs is able to describe the motion satisfactorily, as simple excursions away from the average structure, there is evidence in form (II) of anharmonic effects that are precursors of a phase transition to a new low-temperature phase, form (III), that was subsequently found.

  17. MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice.

    PubMed

    Xu, Donglin; Mou, Guiping; Wang, Kang; Zhou, Guohui

    2014-09-22

    Southern rice black-streaked dwarf virus (SRBSDV) is a recently emerged rice virus that has spread across Asia. This devastating virus causes rice plants to produce a variety of symptoms during different growth stages. MicroRNAs (miRNAs) comprise a large group of 21-24-nt RNA molecules that are important regulators of plant development processes and stress responses. In this study, we used microarray profiling to investigate rice miRNAs responding to SRBSDV infection at 3, 9, 15, and 20 days post-inoculation (dpi). Expression levels of 56 miRNAs were altered in SRBSDV-infected rice plants, with these changes classified into eight different regulation patterns according to their temporal expression dynamics. Fourteen miRNAs belonging to six families (miR164, R396, R530, R1846, R1858, and R2097) were significantly regulated at 20 dpi. We used RT-qPCR to search for expression level correlations between members of these families and their putative targets at 3, 9, and 15 dpi. Some members of the miR164, R396, R530, and R1846 families were found to be positively or negatively correlated with their respective targets during 3-15 days after SRBSDV infection, whereas in more cases the rice miRNAs were not in correlation with their targets along the post-inoculation period, suggesting that some additional factors may be involved in rice miRNA-target interactions. The reported functions of rice genes targeted by the miR164, R396, R530, R1846, and R1858 families indicated that these genes are associated with symptom development. These results provide insights into miRNA-mediated SRBSDV-rice interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2017-04-01

    Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of <100m resolution). The overall area mapped from orbital imagery is approximately 6 times the overall surface of Mars [1]. The multi-temporal coverage of Martian surface allows a visual inspection of the surface to identify dynamic phenomena, i.e. surface features that change over time, such as slope streaks [2], recurring slope lineae [3], new impact craters [4], etc. However, visual inspection for change detection is a limited approach, since it requires extensive use of human resources, which is very difficult to achieve when dealing with a rapidly increasing volume of data. Although citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planetary and Space Science, 126: 93-138.

  19. "One-Stop Shop": Free-Breathing Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Kidney Using Iterative Reconstruction and Continuous Golden-Angle Radial Sampling.

    PubMed

    Riffel, Philipp; Zoellner, Frank G; Budjan, Johannes; Grimm, Robert; Block, Tobias K; Schoenberg, Stefan O; Hausmann, Daniel

    2016-11-01

    The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the patients. Streak artifacts were present in all of the patients, but did not compromise diagnostic image quality.The estimated renal plasma flow was slightly higher (295 ± 78 mL/100 mL per minute) than reported in previous MRI-based studies, but also closer to the physiologically expected value. Dynamic, motion-suppressed contrast-enhanced renal MRI can be performed in high diagnostic quality during free breathing using a combination of golden-angle radial sampling, parallel imaging, and compressed sensing. Both morphologic and quantitative functional information can be acquired within a single acquisition.

  20. Long-term follow-up of patients with choroidal neovascularization due to angioid streaks.

    PubMed

    Martinez-Serrano, Maria Guadalupe; Rodriguez-Reyes, Abelardo; Guerrero-Naranjo, Jose Luis; Salcedo-Villanueva, Guillermo; Fromow-Guerra, Jans; García-Aguirre, Gerardo; Morales-Canton, Virgilio; Velez-Montoya, Raul

    2017-01-01

    The following case series describes the long-term anatomical and functional outcome of a group of seven patients with choroidal neovascularization (CNV), secondary to angioid streaks (AS), who were treated with antiangiogenic drugs in a pro re nata (PRN) regimen. After the 4-year mark, visual acuity tends to return to pretreatment level. Treatment delays and lack of awareness and self-referral by the patients are believed to be the cause of the PRN regimen failure. To assess the long-term outcomes (>4 years) of patients with CNV due to AS treated with a PRN regimen of antiangiogenic. This was a retrospective, case series, single-center study. We reviewed the electronic medical records from patients with CNV due to AS. From each record, we noted general demographic data and relevant medical history; clinical presentation, changes in best-corrected visual acuity (BCVA) over time, optical coherent tomography parameters, treatment and retreatment details, and systemic associations. Changes in BCVA and central macular thickness were assessed with a Wilcoxon two-sample test, with an alpha value of ≤0.05 for statistical significance. The mean follow-up time was 53.8±26.8 months. BCVA at baseline was: 1.001±0.62 logMAR; at the end of follow-up: 0.996±0.56 logMAR ( P =0.9). Central macular thickness at baseline was: 360.85±173.82 μm; at the end of follow-up: 323.85±100.34 μm ( P =0.6). Mean number of intravitreal angiogenic drugs: 6±4.16 injections (range 4-15). Mean time between injections was 3.8±2.7 months (range 1.9-5.8 months). Despite initial anatomical and functional improvement, patients at the end of the follow-up had no visual improvement after a pro re nata regimen of antiangiogenic drugs. The amount of retreatments, number of recurrences, and time between intravitreal injections were similar to previous reports with shorter follow-up.

  1. Mesoscale aspects of jet streak coupling and implications for the short term forecasting of severe convective storms. [severe environmental storms and mesoscale experiment (SESAME)

    NASA Technical Reports Server (NTRS)

    Uccellini, L. W.; Kocin, P. J.

    1981-01-01

    An analysis of a tornado outbreak in Wichita Falls, Texas was analyzed. The coupling of upper and lower tropospheric jet streaks, leading to severe storm outbreaks is illustrated. The high resolution SESAME data sets indicate that mass and momentum adjustments which couple upper and lower tropospheric jets occur within a 3 to 6 hr time frame over a 100 to 500 km domain, and establish the role of isallobaric forcing in the storm development. It is suggested that the output rate of data from the existing 12 hr network be increased to provide better temporal resolution of wind, mass and moisture data.

  2. Capsule Ablator Inflight Performance Measurements Via Streaked Radiography Of ICF Implosions On The NIF*

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Tommasini, R.; Mackinnon, A.; MacPhee, A.; Meezan, N.; Olson, R.; Hicks, D.; LePape, S.; Izumi, N.; Fournier, K.; Barrios, M. A.; Ross, S.; Pak, A.; Döppner, T.; Kalantar, D.; Opachich, K.; Rygg, R.; Bradley, D.; Bell, P.; Hamza, A.; Dzenitis, B.; Landen, O. L.; MacGowan, B.; LaFortune, K.; Widmayer, C.; Van Wonterghem, B.; Kilkenny, J.; Edwards, M. J.; Atherton, J.; Moses, E. I.

    2016-03-01

    Streaked 1-dimensional (slit imaging) radiography of 1.1 mm radius capsules in ignition hohlraums was recently introduced on the National Ignition Facility (NIF) and gives an inflight continuous record of capsule ablator implosion velocities, shell thickness and remaining mass in the last 3-5 ns before peak implosion time. The high quality data delivers good accuracy in implosion metrics that meets our requirements for ignition and agrees with recently introduced 2-dimensional pinhole radiography. Calculations match measured trajectory across various capsule designs and laser drives when the peak laser power is reduced by 20%. Furthermore, calculations matching measured trajectories give also good agreement in ablator shell thickness and remaining mass.

  3. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  4. Implosion dynamics of condensed Z-pinch at the Angara-5-1 facility

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. V.; Grabovski, E. V.; Gritsuk, A. N.; Volobuev, I. V.; Kazakov, E. D.; Kalinin, Yu. G.; Korolev, V. D.; Laukhin, Ya. I.; Medovshchikov, S. F.; Mitrofanov, K. N.; Oleinik, G. M.; Pimenov, V. G.; Smirnova, E. A.; Ustroev, G. I.; Frolov, I. N.

    2017-08-01

    The implosion dynamics of a condensed Z-pinch at load currents of up to 3.5 MA and a current rise time of 100 ns was studied experimentally at the Angara-5-1 facility. To increase the energy density, 1- to 3-mm-diameter cylinders made of a deuterated polyethylene-agar-agar mixture or microporous deuterated polyethylene with a mass density of 0.03-0.5 g/cm3 were installed in the central region of the loads. The plasma spatiotemporal characteristics were studied using the diagnostic complex of the Angara-5-1 facility, including electron-optical streak and frame imaging, time-integrated X-ray imaging, soft X-ray (SXR) measurements, and vacuum UV spectroscopy. Most information on the plasma dynamics was obtained using a ten-frame X-ray camera ( E > 100 eV) with an exposure of 4 ns. SXR pulses were recorded using photoemissive vacuum X-ray detectors. The energy characteristics of neutron emission were measured using the time-offlight method with the help of scintillation detectors arranged along and across the pinch axis. The neutron yield was measured by activation detectors. The experimental results indicate that the plasma dynamics depends weakly on the load density. As a rule, two stages of plasma implosion were observed. The formation of hot plasma spots in the initial stage of plasma expansion from the pinch axis was accompanied by short pulses of SXR and neutron emission. The neutron yield reached (0.4-3) × 1010 neutrons/shot and was almost independent of the load density due to specific features of Z-pinch dynamics.

  5. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

    PubMed

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-01

    Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts.

  6. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy

    PubMed Central

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-01-01

    Purpose: Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4–6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. Methods: The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Results: Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3–8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. Conclusions: 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts. PMID:21992381

  7. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.

    PubMed

    Kasparek, Maximilian F; Töpker, Michael; Lazar, Mathias; Weber, Michael; Kasparek, Michael; Mang, Thomas; Apfaltrer, Paul; Kubista, Bernd; Windhager, Reinhard; Ringl, Helmut

    2018-06-07

    To evaluate the influence of different scan parameters for single-energy CT and dual-energy CT, as well as the impact of different material used in a TKA prosthesis on image quality and the extent of metal artifacts. Eight pairs of TKA prostheses from different vendors were examined in a phantom set-up. Each pair consisted of a conventional CoCr prosthesis and the corresponding anti-allergic prosthesis (full titanium, ceramic, or ceramic-coated) from the same vendor. Nine different (seven dual-energy CT and two single-energy CT) scan protocols with different characteristics were used to determine the most suitable CT protocol for TKA imaging. Quantitative image analysis included assessment of blooming artifacts (metal implants appear thicker on CT than they are, given as virtual growth in mm in this paper) and streak artifacts (thick dark lines around metal). Qualitative image analysis was used to investigate the bone-prosthesis interface. The full titanium prosthesis and full ceramic knee showed significantly fewer blooming artifacts compared to the standard CoCr prosthesis (mean virtual growth 0.6-2.2 mm compared to 2.9-4.6 mm, p < 0.001). Dual-energy CT protocols showed less blooming (range 3.3-3.8 mm) compared to single-energy protocols (4.6-5.5 mm). The full titanium and full ceramic prostheses showed significantly fewer streak artifacts (mean standard deviation 77-86 Hounsfield unit (HU)) compared to the standard CoCr prosthesis (277-334 HU, p < 0.001). All dual-energy CT protocols had fewer metal streak artifacts (215-296 HU compared to single-energy CT protocols (392-497 HU)). Full titanium and ceramic prostheses were ranked superior with regard to the image quality at the bone/prosthesis interface compared to a standard CoCr prosthesis, and all dual-energy CT protocols were ranked better than single-energy protocols. Dual-energy CT and ceramic or titanium prostheses reduce CT artifacts and provide superior image quality of total knee arthroplasty at the bone/prosthesis interface. These findings support the use of dual-energy CT as a solid imaging base for clinical decision-making and the use of full-titanium or ceramic prostheses to allow for better CT visualization of the bone-prosthesis interface.

  8. Improving thoracic four-dimensional cone-beam CT reconstruction with anatomical-adaptive image regularization (AAIR)

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T; Cooper, Benjamin J; Kuncic, Zdenka; Keall, Paul J

    2015-01-01

    Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan, and was compared to FDK, ASD-POCS, and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS, and did not suffer from residual noise/streaking and motion blur migrated from the prior image as in PICCS. AAIR was also found to be more computationally efficient than both ASD-POCS and PICCS, with a reduction in computation time of over 50% compared to ASD-POCS. The use of anatomy segmentation was, for the first time, demonstrated to significantly improve image quality and computational efficiency for thoracic 4D CBCT reconstruction. Further developments are required to facilitate AAIR for practical use. PMID:25565244

  9. Directional sinogram interpolation for sparse angular acquisition in cone-beam computed tomography.

    PubMed

    Zhang, Hua; Sonke, Jan-Jakob

    2013-01-01

    Cone-beam (CB) computed tomography (CT) is widely used in the field of medical imaging for guidance. Inspired by Betram's directional interpolation (BDI) methods, directional sinogram interpolation (DSI) was implemented to generate more CB projections by optimized (iterative) double-orientation estimation in sinogram space and directional interpolation. A new CBCT was subsequently reconstructed with the Feldkamp algorithm using both the original and interpolated CB projections. The proposed method was evaluated on both phantom and clinical data, and image quality was assessed by correlation ratio (CR) between the interpolated image and a gold standard obtained from full measured projections. Additionally, streak artifact reduction and image blur were assessed. In a CBCT reconstructed by 40 acquired projections over an arc of 360 degree, streak artifacts dropped 20.7% and 6.7% in a thorax phantom, when our method was compared to linear interpolation (LI) and BDI methods. Meanwhile, image blur was assessed by a head-and-neck phantom, where image blur of DSI was 20.1% and 24.3% less than LI and BDI. When our method was compared to LI and DI methods, CR increased by 4.4% and 3.1%. Streak artifacts of sparsely acquired CBCT were decreased by our method and image blur induced by interpolation was constrained to below other interpolation methods.

  10. Sol 568 Dust Devil in Gusev, Unenhanced

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows several dust devils moving from right to left across a plain inside Mars' Gusev Crater, as seen from the vantage point of NASA's Mars Exploration Rover Spirit in hills rising from the plain. The clip consists of frames taken by Spirit's navigation camera during the rover's 543rd martian day, or sol (July 13, 2005). Unlike some other movie clips of dust devils seen by Spirit, the images in this clip have not been processed to enhance contrast of the dust devils. The total time elapsed during the taking of these frames was 12 minutes, 17 seconds.

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.

  11. Monte Carlo dose calculation in dental amalgam phantom

    PubMed Central

    Aziz, Mohd. Zahri Abdul; Yusoff, A. L.; Osman, N. D.; Abdullah, R.; Rabaie, N. A.; Salikin, M. S.

    2015-01-01

    It has become a great challenge in the modern radiation treatment to ensure the accuracy of treatment delivery in electron beam therapy. Tissue inhomogeneity has become one of the factors for accurate dose calculation, and this requires complex algorithm calculation like Monte Carlo (MC). On the other hand, computed tomography (CT) images used in treatment planning system need to be trustful as they are the input in radiotherapy treatment. However, with the presence of metal amalgam in treatment volume, the CT images input showed prominent streak artefact, thus, contributed sources of error. Hence, metal amalgam phantom often creates streak artifacts, which cause an error in the dose calculation. Thus, a streak artifact reduction technique was applied to correct the images, and as a result, better images were observed in terms of structure delineation and density assigning. Furthermore, the amalgam density data were corrected to provide amalgam voxel with accurate density value. As for the errors of dose uncertainties due to metal amalgam, they were reduced from 46% to as low as 2% at d80 (depth of the 80% dose beyond Zmax) using the presented strategies. Considering the number of vital and radiosensitive organs in the head and the neck regions, this correction strategy is suggested in reducing calculation uncertainties through MC calculation. PMID:26500401

  12. Numerical simulation of hydrodynamic processes beneath a wind-driven water surface

    NASA Astrophysics Data System (ADS)

    Tsai, Wu-ting

    Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.

  13. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody.

    PubMed Central

    Kume, S.; Takeya, M.; Mori, T.; Araki, N.; Suzuki, H.; Horiuchi, S.; Kodama, T.; Miyauchi, Y.; Takahashi, K.

    1995-01-01

    To elucidate the deposition of advanced glycation end products (AGEs) in aortic atherosclerosis, aortic walls were obtained from 25 autopsy cases and examined immunohistochemically and immunoelectron microscopically with a monoclonal antibody specific for AGEs, 6D12. Among the autopsy cases, atherosclerotic lesions were found in the aortas of 22 cases and were composed of diffuse intimal thickening, fatty streaks, atherosclerotic plaques, and/or complicated lesions. In these cases, intracellular AGE accumulation was demonstrated in the intimal lesions of aortic atherosclerosis in 12 cases. Compared with the diffuse intimal thickening, intracellular AGE accumulation was marked in the fatty streaks and atherosclerotic plaques. Immunohistochemical double staining with 6D12 and monoclonal antibodies for macrophages or muscle actin or a polyclonal antibody for scavenger receptors demonstrated that the AGE accumulation in macrophages or their related foam cells was marked in the diffuse intimal thickening and fatty streak lesions and that almost all macrophages and macrophage-derived foam cells possessed scavenger receptors. Immunoelectron microscopic observation revealed the localization of 6D12-positive reaction in lysosomal lipid vacuoles or electron-dense granules of the foam cells. These results indicate that AGE accumulation occurs in macrophages, smooth muscle cells, and their related foam cells. Images Figure 2 Figure 3 Figure 6 PMID:7545874

  14. Reconstructing the flight kinematics of swarming and mating in wild mosquitoes

    PubMed Central

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Ribeiro, José M.; Lehmann, Tovi; Paley, Derek A.

    2012-01-01

    We describe a novel tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, low frame-rate (25 frames per second) video streams from a stereo camera system. Because flying A. gambiae move at 1–4 m s−1, they appear as faded streaks in the images or sometimes do not appear at all. We provide an adaptive algorithm to search for missing streaks and a likelihood function that uses streak endpoints to extract velocity information. A modified multi-hypothesis tracker probabilistically addresses occlusions and a particle filter estimates the trajectories. The output of the tracking algorithm is a set of track segments with an average length of 0.6–1 s. The segments are verified and combined under human supervision to create individual tracks up to the duration of the video (90 s). We evaluate tracking performance using an established metric for multi-target tracking and validate the accuracy using independent stereo measurements of a single swarm. Three-dimensional reconstructions of A. gambiae swarming and mating events are presented. PMID:22628212

  15. Role of heparanase on hepatic uptake of intestinal derived lipoprotein and fatty streak formation in mice.

    PubMed

    Planer, David; Metzger, Shulamit; Zcharia, Eyal; Wexler, Isaiah D; Vlodavsky, Israel; Chajek-Shaul, Tova

    2011-04-04

    Heparanase modulates the level of heparan sulfate proteoglycans (HSPGs) which have an important role in multiple cellular processes. Recent studies indicate that HSPGs have an important function in hepatic lipoprotein handling and processes involving removal of lipoprotein particles. To determine the effects of decreased HSPGs chain length on lipoprotein metabolism and atherosclerosis, transgenic mice over-expressing the human heparanase gene were studied. Hepatic lipid uptake in hpa-Tg mice were evaluated by giving transgenic mice oral fat loads and labeled retinol. Sections of aorta from mice over-expressing heparanase (hpa-Tg) and controls (C57/BL6) fed an atherogenic diet were examined for evidence of atherosclerosis. Heparanase over-expression results in reduced hepatic clearance of postprandial lipoproteins and higher levels of fasting and postprandial serum triglycerides. Heparanase over-expression also induces formation of fatty streaks in the aorta. The mean lesion cross-sectional area in heparanase over-expressing mice was almost 6 times higher when compared to control mice (23,984 µm(2)±5,922 vs. 4,189 µm(2)±1,130, p<0.001). Over-expression of heparanase demonstrates the importance of HSPGs for the uptake of intestinal derived lipoproteins and its role in the formation of fatty streaks.

  16. Role of Heparanase on Hepatic Uptake of Intestinal Derived Lipoprotein and Fatty Streak Formation in Mice

    PubMed Central

    Planer, David; Metzger, Shulamit; Zcharia, Eyal; Wexler, Isaiah D.; Vlodavsky, Israel; Chajek-Shaul, Tova

    2011-01-01

    Background Heparanase modulates the level of heparan sulfate proteoglycans (HSPGs) which have an important role in multiple cellular processes. Recent studies indicate that HSPGs have an important function in hepatic lipoprotein handling and processes involving removal of lipoprotein particles. Principal Findings To determine the effects of decreased HSPGs chain length on lipoprotein metabolism and atherosclerosis, transgenic mice over-expressing the human heparanase gene were studied. Hepatic lipid uptake in hpa-Tg mice were evaluated by giving transgenic mice oral fat loads and labeled retinol. Sections of aorta from mice over-expressing heparanase (hpa-Tg) and controls (C57/BL6) fed an atherogenic diet were examined for evidence of atherosclerosis. Heparanase over-expression results in reduced hepatic clearance of postprandial lipoproteins and higher levels of fasting and postprandial serum triglycerides. Heparanase over-expression also induces formation of fatty streaks in the aorta. The mean lesion cross-sectional area in heparanase over-expressing mice was almost 6 times higher when compared to control mice (23,984 µm2±5,922 vs. 4,189 µm2±1,130, p<0.001). Conclusions Over-expression of heparanase demonstrates the importance of HSPGs for the uptake of intestinal derived lipoproteins and its role in the formation of fatty streaks. PMID:21483695

  17. A method for the rapid detection of urinary tract infections.

    PubMed

    Olsson, Carl; Kapoor, Deepak; Howard, Glenn

    2012-04-01

    To determine the reliability of a rapid detection method compared with the reference standard streaked agar plate in diagnosing the presence of urinary tract infection (UTI). De-identified clean catch urine specimens from 980 office visit patients were processed during a 30-day period. Classic 1-μL and 10-μL streaked agar plates were used in parallel with the new CultureStat Rapid UTI Detection System (CSRUDS). Urine results were evaluated using the CSRUDS at 30 and 90 minutes after collection. A comparative analysis of the subsequent plate results versus the CSRUDS results was achieved for 973 of these samples. Positive UTI conditions were accurately identified by both CSRUDS and agar streak plate methods. CSRUDS accurately identified UTI negative conditions with 99.3% reliability at 90 minutes. The negative predictive value of CSRUDS was 99.2% at 30 minutes. Current agar plating for first-round UTI screening has substantial documented problems that can negatively affect an accurate and timely UTI diagnosis. A novel rapid detection system, the CSRUDS provides UTI negative/positive same-day results in ≤ 90 minutes from the start of test. Such rapidly available results will enable more accurate and timely clinical decisions to be made in the urology office, particularly regarding infection status before urologic instrumentation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. VIIRS day-night band (DNB) electronic hysteresis: characterization and correction

    NASA Astrophysics Data System (ADS)

    Mills, Stephen

    2016-09-01

    The VIIRS Day-Night Band (DNB) offers measurements over a dynamic range from full daylight to the dimmest nighttime. This makes radiometric calibration difficult because effects that are otherwise negligible become significant for the DNB. One of these effects is electronic hysteresis and this paper evaluates this effect and its impact on calibration. It also considers possible correction algorithms. The cause of this hysteresis is uncertain, but since the DNB uses a charge-coupled device (CCD) detector array, it is likely the result of residual charge or charge depletion. The effects of hysteresis are evident in DNB imagery. Steaks are visible in the cross-track direction around very bright objects such as gas flares. Dark streaks are also visible after lightning flashes. Each VIIRS scan is a sequence of 4 sectors: space view (SV); Earth-view (EV); blackbody (BB) view; and solar diffuser (SD) view. There are differences among these sectors in offset that can only be explained as being the result of hysteresis from one sector to the next. The most dramatic hysteresis effect is when the sun illuminates the SD and hysteresis is then observed in the SV and EV. Previously this was hypothesized to be due to stray light leaking from the SD chamber, but more careful evaluation shows that this can only be the result of hysteresis. There is a stray light correction algorithm that treats this as stray light, but there are problems with this that could be remedied by instead using the characterization presented here.

  19. The balance of dynamic vorticity for the Presidents' Day storm

    NASA Astrophysics Data System (ADS)

    Zapotocny, Tom Harmon

    1990-06-01

    The maintenance of isentropic dynamic vorticity, defined as the vertical component of the curl of momentum, is examined for the life cycle of the Presidents'Day storm. Dynamic vorticity and its tendency are also compared to the more commonly used kinematic vorticity and its tendency. Diagnostics are first performed on an inviscid numerical simulation of an amplifying baroclinic disturbance by a hybrid isentropic-sigma coordinate channel model. The main purpose for studying a simulation with the channel model is to examine the first-order balance of dynamic vorticity during development under simplified conditions. A more in-depth evaluation of dynamic vorticity is presented for an excellent numerical simulation of the Presidents' Day storm of 18 to 20 February 1979. Dynamic vorticity diagnostics for the Presidents' Day storm reveal the importance of mass asymmetries within an isentropic layer and also document the effect of weak static stability. Prior to cyclogenesis, a strong cyclonic circulation tendency exists from both the vertical advection of vorticity and tilting terms. Another important feature is the merging of two synoptic scale short waves; one propagating southeast from the Great Lakes states, the other moving northeast from the Gulf of Mexico. Cyclogenesis is initiated by the latter of these two short waves, while rapid development occurs when the Great Lakes short waves reaches the Middle Atlantic states. During rapid development, an assessment of the ageostrophic component on spin-up is obtained from a balance of the divergence term and pressure stresses. Spin-up from the ageostrophic component is largest ahead of the lower tropospheric warm front. The impact of an 80 m/s subtropical jet streak, which enhances upper tropospheric processes during development, is also examined.

  20. A Virus-Derived Stacked RNAi Construct Confers Robust Resistance to Cassava Brown Streak Disease

    PubMed Central

    Beyene, Getu; Chauhan, Raj Deepika; Ilyas, Muhammad; Wagaba, Henry; Fauquet, Claude M.; Miano, Douglas; Alicai, Titus; Taylor, Nigel J.

    2017-01-01

    Cassava brown streak disease (CBSD) threatens food and economic security for smallholder farmers throughout East and Central Africa, and poses a threat to cassava production in West Africa. CBSD is caused by two whitefly-transmitted virus species: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) (Genus: Ipomovirus, Family Potyviridae). Although varying levels of tolerance have been achieved through conventional breeding, to date, effective resistance to CBSD within East African cassava germplasm has not been identified. RNAi technology was utilized to integrate CBSD resistance into the Ugandan farmer-preferred cassava cultivar TME 204. Transgenic plant lines were generated expressing an inverted repeat construct (p5001) derived from coat-protein (CP) sequences of CBSV and UCBSV fused in tandem. Northern blots using probes specific for each CP sequence were performed to characterize 169 independent transgenic lines for accumulation of CP-derived siRNAs. Transgenic plant lines accumulating low, medium and high levels of siRNAs were bud graft challenged with the virulent CBSV Naliendele isolate alone or in combination with UCBSV. Resistance to CBSD in the greenhouse directly correlated to levels of CP-derived siRNAs as determined by visual assessment of leaf and storage root symptoms, and RT-PCR diagnosis for presence of the pathogens. Low expressing lines were found to be susceptible to CBSV and UCBSV, while medium to high accumulating plant lines were resistant to both virus species. Absence of detectable virus in the best performing p5001 transgenic lines was further confirmed by back-inoculation via sap or graft challenge to CBSD susceptible Nicotiana benthamiana and cassava cultivar 60444, respectively. Data presented shows robust resistance of transgenic p5001 TME 204 lines to both CBSV and UCBSV under greenhouse conditions. Levels of resistance correlated directly with levels of transgene derived siRNA expression such that the latter can be used as predictor of resistance to CBSD. PMID:28149300

Top