Sample records for dynamic response functions

  1. Dynamic Structure Factor: An Introduction

    NASA Astrophysics Data System (ADS)

    Sturm, K.

    1993-02-01

    The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.

  2. Population dynamics and mutualism: Functional responses of benefits and costs

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.; Bronstein, Judith L.

    2002-01-01

    We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density‐dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed‐eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.

  3. Strain-specific functional and numerical responses are required to evaluate impacts on predator-prey dynamics.

    PubMed

    Yang, Zhou; Lowe, Chris D; Crowther, Will; Fenton, Andy; Watts, Phillip C; Montagnes, David J S

    2013-02-01

    We use strains recently collected from the field to establish cultures; then, through laboratory studies we investigate how among strain variation in protozoan ingestion and growth rates influences population dynamics and intraspecific competition. We focused on the impact of changing temperature because of its well-established effects on protozoan rates and its ecological relevance, from daily fluctuations to climate change. We show, first, that there is considerable inter-strain variability in thermal sensitivity of maximum growth rate, revealing distinct differences among multiple strains of our model species Oxyrrhis marina. We then intensively examined two representative strains that exhibit distinctly different thermal responses and parameterised the influence of temperature on their functional and numerical responses. Finally, we assessed how these responses alter predator-prey population dynamics. We do this first considering a standard approach, which assumes that functional and numerical responses are directly coupled, and then compare these results with a novel framework that incorporates both functional and numerical responses in a fully parameterised model. We conclude that: (i) including functional diversity of protozoa at the sub-species level will alter model predictions and (ii) including directly measured, independent functional and numerical responses in a model can provide a more realistic account of predator-prey dynamics.

  4. Brain dynamics in ASD during movie-watching show idiosyncratic functional integration and segregation.

    PubMed

    Bolton, Thomas A W; Jochaut, Delphine; Giraud, Anne-Lise; Van De Ville, Dimitri

    2018-06-01

    To refine our understanding of autism spectrum disorders (ASD), studies of the brain in dynamic, multimodal and ecological experimental settings are required. One way to achieve this is to compare the neural responses of ASD and typically developing (TD) individuals when viewing a naturalistic movie, but the temporal complexity of the stimulus hampers this task, and the presence of intrinsic functional connectivity (FC) may overshadow movie-driven fluctuations. Here, we detected inter-subject functional correlation (ISFC) transients to disentangle movie-induced functional changes from underlying resting-state activity while probing FC dynamically. When considering the number of significant ISFC excursions triggered by the movie across the brain, connections between remote functional modules were more heterogeneously engaged in the ASD population. Dynamically tracking the temporal profiles of those ISFC changes and tying them to specific movie subparts, this idiosyncrasy in ASD responses was then shown to involve functional integration and segregation mechanisms such as response inhibition, background suppression, or multisensory integration, while low-level visual processing was spared. Through the application of a new framework for the study of dynamic experimental paradigms, our results reveal a temporally localized idiosyncrasy in ASD responses, specific to short-lived episodes of long-range functional interplays. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  5. Structural stability of nonlinear population dynamics.

    PubMed

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  6. Structural stability of nonlinear population dynamics

    NASA Astrophysics Data System (ADS)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  7. Dynamic current-current susceptibility in three-dimensional Dirac and Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Thakur, Anmol; Sadhukhan, Krishanu; Agarwal, Amit

    2018-01-01

    We study the linear response of doped three-dimensional Dirac and Weyl semimetals to vector potentials, by calculating the wave-vector- and frequency-dependent current-current response function analytically. The longitudinal part of the dynamic current-current response function is then used to study the plasmon dispersion and the optical conductivity. The transverse response in the static limit yields the orbital magnetic susceptibility. In a Weyl semimetal, along with the current-current response function, all these quantities are significantly impacted by the presence of parallel electric and magnetic fields (a finite E .B term) and can be used to experimentally explore the chiral anomaly.

  8. Field camera measurements of gradient and shim impulse responses using frequency sweeps.

    PubMed

    Vannesjo, S Johanna; Dietrich, Benjamin E; Pavan, Matteo; Brunner, David O; Wilm, Bertram J; Barmet, Christoph; Pruessmann, Klaas P

    2014-08-01

    Applications of dynamic shimming require high field fidelity, and characterizing the shim field dynamics is therefore necessary. Modeling the system as linear and time-invariant, the purpose of this work was to measure the impulse response function with optimal sensitivity. Frequency-swept pulses as inputs are analyzed theoretically, showing that the sweep speed is a key factor for the measurement sensitivity. By adjusting the sweep speed it is possible to achieve any prescribed noise profile in the measured system response. Impulse response functions were obtained for the third-order shim system of a 7 Tesla whole-body MR scanner. Measurements of the shim fields were done with a dynamic field camera, yielding also cross-term responses. The measured shim impulse response functions revealed system characteristics such as response bandwidth, eddy currents and specific resonances, possibly of mechanical origin. Field predictions based on the shim characterization were shown to agree well with directly measured fields, also in the cross-terms. Frequency sweeps provide a flexible tool for shim or gradient system characterization. This may prove useful for applications involving dynamic shimming by yielding accurate estimates of the shim fields and a basis for setting shim pre-emphasis. Copyright © 2013 Wiley Periodicals, Inc.

  9. A predator-prey model with a holling type I functional response including a predator mutual interference

    USGS Publications Warehouse

    Seo, G.; DeAngelis, D.L.

    2011-01-01

    The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

  10. The endoplasmic reticulum: structure, function and response to cellular signaling.

    PubMed

    Schwarz, Dianne S; Blower, Michael D

    2016-01-01

    The endoplasmic reticulum (ER) is a large, dynamic structure that serves many roles in the cell including calcium storage, protein synthesis and lipid metabolism. The diverse functions of the ER are performed by distinct domains; consisting of tubules, sheets and the nuclear envelope. Several proteins that contribute to the overall architecture and dynamics of the ER have been identified, but many questions remain as to how the ER changes shape in response to cellular cues, cell type, cell cycle state and during development of the organism. Here we discuss what is known about the dynamics of the ER, what questions remain, and how coordinated responses add to the layers of regulation in this dynamic organelle.

  11. Dynamic Response of Layered TiB/Ti Functionally Graded Material Specimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrd, Larry; Beberniss, Tim; Chapman, Ben

    2008-02-15

    This paper covers the dynamic response of rectangular (25.4x101.6x3.175 mm) specimens manufactured from layers of TiB/Ti. The layers contained volume fractions of TiB that varied from 0 to 85% and thus formed a functionally graded material. Witness samples of the 85% TiB material were also tested to provide a baseline for the statistical variability of the test techniques. Static and dynamic tests were performed to determine the in situ material properties and fundamental frequencies. Damping in the material/ fixture was also found from the dynamic response. These tests were simulated using composite beam theory which gave an analytical solution, andmore » using finite element analysis. The response of the 85% TiB specimens was found to be much more uniform than the functionally graded material and the dynamic response more uniform than the static response. A least squares analysis of the data using the analytical solutions were used to determine the elastic modulus and Poisson's ratio of each layer. These results were used to model the response in the finite element analysis. The results indicate that current analytical and numerical methods for modeling the material give similar and adequate predictions for natural frequencies if the measured property values were used. The models did not agree as well if the properties from the manufacturer or those of Hill and Linn were used.« less

  12. Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving harmonic load

    NASA Astrophysics Data System (ADS)

    Wang, Yuewu; Wu, Dafang

    2016-10-01

    Dynamic response of an axially functionally graded (AFG) beam under thermal environment subjected to a moving harmonic load is investigated within the frameworks of classical beam theory (CBT) and Timoshenko beam theory (TBT). The Lagrange method is employed to derive the equations of thermal buckling for AFG beam, and then with the critical buckling temperature as a parameter the Newmark-β method is adopted to evaluate the dynamic response of AFG beam under thermal environments. Admissible functions denoting transverse displacement are expressed in simple algebraic polynomial forms. Temperature-dependency of material constituent is considered. The rule of mixture (Voigt model) and Mori-Tanaka (MT) scheme are used to evaluate the beam's effective material properties. A ceramic-metal AFG beam with immovable boundary condition is considered as numerical illustration to show the thermal effects on the dynamic behaviors of the beam subjected to a moving harmonic load.

  13. Functional neural networks underlying response inhibition in adolescents and adults.

    PubMed

    Stevens, Michael C; Kiehl, Kent A; Pearlson, Godfrey D; Calhoun, Vince D

    2007-07-19

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by fronto-striatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development.

  14. Functional neural networks underlying response inhibition in adolescents and adults

    PubMed Central

    Stevens, Michael C.; Kiehl, Kent A.; Pearlson, Godfrey D.; Calhoun, Vince D.

    2008-01-01

    This study provides the first description of neural network dynamics associated with response inhibition in healthy adolescents and adults. Functional and effective connectivity analyses of whole brain hemodynamic activity elicited during performance of a Go/No-Go task were used to identify functionally-integrated neural networks and characterize their causal interactions. Three response inhibition circuits formed a hierarchical, inter-dependent system wherein thalamic modulation of input to premotor cortex by frontostriatal regions led to response suppression. Adolescents differed from adults in the degree of network engagement, regional fronto-striatal-thalamic connectivity, and network dynamics. We identify and characterize several age-related differences in the function of neural circuits that are associated with behavioral performance changes across adolescent development. PMID:17467816

  15. Frequency-response identification of XV-15 tilt-rotor aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1987-01-01

    The timely design and development of the next generation of tilt-rotor aircraft (JVX) depend heavily on the in-depth understanding of existing XV-15 dynamics and the availability of fully validated simulation models. Previous studies have considered aircraft and simulation trim characteristics, but analyses of basic flight vehicle dynamics were limited to qualitative pilot evaluation. The present study has the following objectives: documentation and evaluation of XV-15 bare-airframe dynamics; comparison of aircraft and simulation responses; and development of a validated transfer-function description of the XV-15 needed for future studies. A nonparametric frequency-response approach is used which does not depend on assumed model order or structure. Transfer-function representations are subsequently derived which fit the frequency responses in the bandwidth of greatest concern for piloted handling-qualities and control-system applications.

  16. Dynamic response and transfer function of social systems: A neuro-inspired model of collective human activity patterns.

    PubMed

    Lymperopoulos, Ilias N

    2017-10-01

    The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Regulation-Structured Dynamic Metabolic Model Provides a Potential Mechanism for Delayed Enzyme Response in Denitrification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hyun-Seob; Thomas, Dennis G.; Stegen, James C.

    In a recent study of denitrification dynamics in hyporheic zone sediments, we observed a significant time lag (up to several days) in enzymatic response to the changes in substrate concentration. To explore an underlying mechanism and understand the interactive dynamics between enzymes and nutrients, we developed a trait-based model that associates a community’s traits with functional enzymes, instead of typically used species guilds (or functional guilds). This enzyme-based formulation allows to collectively describe biogeochemical functions of microbial communities without directly parameterizing the dynamics of species guilds, therefore being scalable to complex communities. As a key component of modeling, we accountedmore » for microbial regulation occurring through transcriptional and translational processes, the dynamics of which was parameterized based on the temporal profiles of enzyme concentrations measured using a new signature peptide-based method. The simulation results using the resulting model showed several days of a time lag in enzymatic responses as observed in experiments. Further, the model showed that the delayed enzymatic reactions could be primarily controlled by transcriptional responses and that the dynamics of transcripts and enzymes are closely correlated. The developed model can serve as a useful tool for predicting biogeochemical processes in natural environments, either independently or through integration with hydrologic flow simulators.« less

  18. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  19. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    DTIC Science & Technology

    2010-08-18

    Spectral domain response calculated • Time domain response obtained through inverse transform Approach 4: WASABI Wavelet Analysis of Structural Anomalies...differences at unity scale! Time Function Transform Apply Spectral Domain Transfer Function Time Function Inverse Transform Transform Transform  mtP

  20. Simulating Vibrations in a Complex Loaded Structure

    NASA Technical Reports Server (NTRS)

    Cao, Tim T.

    2005-01-01

    The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.

  1. Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution.

    PubMed

    Müller, Karl-Heinz; Chow, Edith; Wieczorek, Lech; Raguse, Burkhard; Cooper, James S; Hubble, Lee J

    2011-10-28

    We investigate the response dynamics of 1-hexanethiol-functionalized gold nanoparticle chemiresistors exposed to the analyte octane in aqueous solution. The dynamic response is studied as a function of the analyte-water flow velocity, the thickness of the gold nanoparticle film and the analyte concentration. A theoretical model for analyte limited mass-transport is used to model the analyte diffusion into the film, the partitioning of the analyte into the 1-hexanethiol capping layers and the subsequent swelling of the film. The degree of swelling is then used to calculate the increase of the electron tunnel resistance between adjacent nanoparticles which determines the resistance change of the film. In particular, the effect of the nonlinear relationship between resistance and swelling on the dynamic response is investigated at high analyte concentration. Good agreement between experiment and the theoretical model is achieved. This journal is © the Owner Societies 2011

  2. Dynamic physiological modeling for functional diffuse optical tomography

    PubMed Central

    Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.

    2009-01-01

    Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967

  3. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative perfusion imaging with an acquisition strategy offering substantial radiation dose and computational complexity savings over dynamic CT.

  4. On the influence of dynamic stress variations on strain accumulation in fault zones

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. S.; Shilko, E. V.; Astafurov, S. V.; Dimaki, A. V.; Vysotsky, E. M.; Psakhie, S. G.

    2015-10-01

    In this paper, a numerical study of the influence of the stress state of interface of the block medium structural elements on the deformation response of interface to the dynamic impacts. It is shown that the basic characteristics of the stress state determining the deformation response of the interface are the values of shear stress and mean stress. It is found that the dependence of the irreversible displacement at the interface zone initiated by dynamic impact on the reduced shear stress is described by the logistic function. Herewith, the influence of the mean stress and dynamic impact energy on the value of displacement initiated by dynamic impact can be taken into account by dependence of the logistic function numerator on these parameters.

  5. Continuous functional magnetic resonance imaging reveals dynamic nonlinearities of "dose-response" curves for finger opposition.

    PubMed

    Berns, G S; Song, A W; Mao, H

    1999-07-15

    Linear experimental designs have dominated the field of functional neuroimaging, but although successful at mapping regions of relative brain activation, the technique assumes that both cognition and brain activation are linear processes. To test these assumptions, we performed a continuous functional magnetic resonance imaging (MRI) experiment of finger opposition. Subjects performed a visually paced bimanual finger-tapping task. The frequency of finger tapping was continuously varied between 1 and 5 Hz, without any rest blocks. After continuous acquisition of fMRI images, the task-related brain regions were identified with independent components analysis (ICA). When the time courses of the task-related components were plotted against tapping frequency, nonlinear "dose- response" curves were obtained for most subjects. Nonlinearities appeared in both the static and dynamic sense, with hysteresis being prominent in several subjects. The ICA decomposition also demonstrated the spatial dynamics with different components active at different times. These results suggest that the brain response to tapping frequency does not scale linearly, and that it is history-dependent even after accounting for the hemodynamic response function. This implies that finger tapping, as measured with fMRI, is a nonstationary process. When analyzed with a conventional general linear model, a strong correlation to tapping frequency was identified, but the spatiotemporal dynamics were not apparent.

  6. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    NASA Astrophysics Data System (ADS)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that distinct strategies for coping with seasonality underlie phenological diversity. Observed drought responses highlight the importance of non-linear community responses to climate. Community phenology exhibits scale-specific patterns highlighting the need for multi-scale approaches to community dynamics.

  7. Modelling and simulation of biased agonism dynamics at a G protein-coupled receptor.

    PubMed

    Bridge, L J; Mead, J; Frattini, E; Winfield, I; Ladds, G

    2018-04-07

    Theoretical models of G protein-coupled receptor (GPCR) concentration-response relationships often assume an agonist producing a single functional response via a single active state of the receptor. These models have largely been analysed assuming steady-state conditions. There is now much experimental evidence to suggest that many GPCRs can exist in multiple receptor conformations and elicit numerous functional responses, with ligands having the potential to activate different signalling pathways to varying extents-a concept referred to as biased agonism, functional selectivity or pluri-dimensional efficacy. Moreover, recent experimental results indicate a clear possibility for time-dependent bias, whereby an agonist's bias with respect to different pathways may vary dynamically. Efforts towards understanding the implications of temporal bias by characterising and quantifying ligand effects on multiple pathways will clearly be aided by extending current equilibrium binding and biased activation models to include G protein activation dynamics. Here, we present a new model of time-dependent biased agonism, based on ordinary differential equations for multiple cubic ternary complex activation models with G protein cycle dynamics. This model allows simulation and analysis of multi-pathway activation bias dynamics at a single receptor for the first time, at the level of active G protein (α GTP ), towards the analysis of dynamic functional responses. The model is generally applicable to systems with N G G proteins and N* active receptor states. Numerical simulations for N G =N * =2 reveal new insights into the effects of system parameters (including cooperativities, and ligand and receptor concentrations) on bias dynamics, highlighting new phenomena including the dynamic inter-conversion of bias direction. Further, we fit this model to 'wet' experimental data for two competing G proteins (G i and G s ) that become activated upon stimulation of the adenosine A 1 receptor with adenosine derivative compounds. Finally, we show that our model can qualitatively describe the temporal dynamics of this competing G protein activation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Amplitude, Latency, and Peak Velocity in Accommodation and Disaccommodation Dynamics

    PubMed Central

    Papadatou, Eleni; Ferrer-Blasco, Teresa; Montés-Micó, Robert

    2017-01-01

    The aim of this work was to ascertain whether there are differences in amplitude, latency, and peak velocity of accommodation and disaccommodation responses when different analysis strategies are used to compute them, such as fitting different functions to the responses or for smoothing them prior to computing the parameters. Accommodation and disaccommodation responses from four subjects to pulse changes in demand were recorded by means of aberrometry. Three different strategies were followed to analyze such responses: fitting an exponential function to the experimental data; fitting a Boltzmann sigmoid function to the data; and smoothing the data. Amplitude, latency, and peak velocity of the responses were extracted. Significant differences were found between the peak velocity in accommodation computed by fitting an exponential function and smoothing the experimental data (mean difference 2.36 D/s). Regarding disaccommodation, significant differences were found between latency and peak velocity, calculated with the two same strategies (mean difference of 0.15 s and −3.56 D/s, resp.). The strategy used to analyze accommodation and disaccommodation responses seems to affect the parameters that describe accommodation and disaccommodation dynamics. These results highlight the importance of choosing the most adequate analysis strategy in each individual to obtain the parameters that characterize accommodation and disaccommodation dynamics. PMID:29226128

  9. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  10. A Cross-Validation Approach to Approximate Basis Function Selection of the Stall Flutter Response of a Rectangular Wing in a Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Vio, Gareth A.; Andrianne, Thomas; azak, Norizham Abudl; Dimitriadis, Grigorios

    2012-01-01

    The stall flutter response of a rectangular wing in a low speed wind tunnel is modelled using a nonlinear difference equation description. Static and dynamic tests are used to select a suitable model structure and basis function. Bifurcation criteria such as the Hopf condition and vibration amplitude variation with airspeed were used to ensure the model was representative of experimentally measured stall flutter phenomena. Dynamic test data were used to estimate model parameters and estimate an approximate basis function.

  11. First-passage problems: A probabilistic dynamic analysis for degraded structures

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Chamis, Christos C.

    1990-01-01

    Structures subjected to random excitations with uncertain system parameters degraded by surrounding environments (a random time history) are studied. Methods are developed to determine the statistics of dynamic responses, such as the time-varying mean, the standard deviation, the autocorrelation functions, and the joint probability density function of any response and its derivative. Moreover, the first-passage problems with deterministic and stationary/evolutionary random barriers are evaluated. The time-varying (joint) mean crossing rate and the probability density function of the first-passage time for various random barriers are derived.

  12. Long range dynamic effects of point-mutations trap a response regulator in an active conformation

    PubMed Central

    Bobay, Benjamin G.; Thompson, Richele J.; Hoch, James A.; Cavanagh, John

    2010-01-01

    When a point-mutation in a protein elicits a functional change, it is most common to assign this change to local structural perturbations. Here we show that point-mutations, distant from an essential highly dynamic kinase recognition loop in the response regulator Spo0F, lock this loop in an active conformation. This ‘conformational trapping’ results in functionally hyperactive Spo0F. Consequently, point-mutations are seen to affect functionally critical motions both close to and far from the mutational site. PMID:20828564

  13. Dynamical influence processes on networks: general theory and applications to social contagion.

    PubMed

    Harris, Kameron Decker; Danforth, Christopher M; Dodds, Peter Sheridan

    2013-08-01

    We study binary state dynamics on a network where each node acts in response to the average state of its neighborhood. By allowing varying amounts of stochasticity in both the network and node responses, we find different outcomes in random and deterministic versions of the model. In the limit of a large, dense network, however, we show that these dynamics coincide. We construct a general mean-field theory for random networks and show this predicts that the dynamics on the network is a smoothed version of the average response function dynamics. Thus, the behavior of the system can range from steady state to chaotic depending on the response functions, network connectivity, and update synchronicity. As a specific example, we model the competing tendencies of imitation and nonconformity by incorporating an off-threshold into standard threshold models of social contagion. In this way, we attempt to capture important aspects of fashions and societal trends. We compare our theory to extensive simulations of this "limited imitation contagion" model on Poisson random graphs, finding agreement between the mean-field theory and stochastic simulations.

  14. Analysis of space vehicle structures using the transfer-function concept

    NASA Technical Reports Server (NTRS)

    Heer, E.; Trubert, M. R.

    1969-01-01

    Analysis of large complex systems is accomplished by dividing it into suitable subsystems and determining the individual dynamical and vibrational responses. Frequency transfer functions then determine the vibrational response of the whole system.

  15. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  16. Model for the dynamic responses of taste receptor cells to salty stimuli. I. Function of lipid bilayer membranes.

    PubMed Central

    Naito, M; Fuchikami, N; Sasaki, N; Kambara, T

    1991-01-01

    The dynamic response of the lipid bilayer membrane is studied theoretically using a microscopic model of the membrane. The time courses of membrane potential variations due to monovalent salt stimulation are calculated explicitly under various conditions. A set of equations describing the time evolution of membrane surface potential and diffusion potential is derived and solved numerically. It is shown that a rather simple membrane such as lipid bilayer has functions capable of reproducing the following properties of dynamic response observed in gustatory receptor potential. Initial transient depolarization does not occur under Ringer adaptation but does under water. It appears only for comparatively rapid flows of stimuli, the peak height of transient response is expressed by a power function of the flow rate, and the membrane potential gradually decreases after reaching its peak under long and strong stimulation. The dynamic responses in the present model arise from the differences between the time dependences in the surface potential phi s and the diffusion potential phi d across a membrane. Under salt stimulation phi d cannot immediately follow the variation in phi s because of the delay due to the charging up of membrane capacitance. It is suggested that lipid bilayer in the apical membrane is the most probable agency producing the initial phasic response to the stimulation. PMID:1873461

  17. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  18. The Dynamic Response and Vibration of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) Truncated Conical Shells Resting on Elastic Foundations

    PubMed Central

    Nguyen Dinh, Duc; Nguyen, Pham Dinh

    2017-01-01

    Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821

  19. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    PubMed

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  20. Oscillatory dynamics in the dorsal and ventral attention networks during the reorienting of attention.

    PubMed

    Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wiesman, Alex I; McDermott, Timothy J; Wilson, Tony W

    2018-05-01

    The ability to reorient attention within the visual field is central to daily functioning, and numerous fMRI studies have shown that the dorsal and ventral attention networks (DAN, VAN) are critical to such processes. However, despite the instantaneous nature of attentional shifts, the dynamics of oscillatory activity serving attentional reorientation remain poorly characterized. In this study, we utilized magnetoencephalography (MEG) and a Posner task to probe the dynamics of attentional reorienting in 29 healthy adults. MEG data were transformed into the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Voxel time series were then extracted from peak voxels in the functional beamformer images. These time series were used to quantify the dynamics of attentional reorienting, and to compute dynamic functional connectivity. Our results indicated strong increases in theta and decreases in alpha and beta activity across many nodes in the DAN and VAN. Interestingly, theta responses were generally stronger during trials that required attentional reorienting relative to those that did not, while alpha and beta oscillations were more dynamic, with many regions exhibiting significantly stronger responses during non-reorienting trials initially, and the opposite pattern during later processing. Finally, stronger functional connectivity was found following target presentation (575-700 ms) between bilateral superior parietal lobules during attentional reorienting. In sum, these data show that visual attention is served by multiple cortical regions within the DAN and VAN, and that attentional reorienting processes are often associated with spectrally-specific oscillations that have largely distinct spatiotemporal dynamics. © 2018 Wiley Periodicals, Inc.

  1. Sequence-specific backbone resonance assignments and microsecond timescale molecular dynamics simulation of human eosinophil-derived neurotoxin.

    PubMed

    Gagné, Donald; Narayanan, Chitra; Bafna, Khushboo; Charest, Laurie-Anne; Agarwal, Pratul K; Doucet, Nicolas

    2017-10-01

    Eight active canonical members of the pancreatic-like ribonuclease A (RNase A) superfamily have been identified in human. All structural homologs share similar RNA-degrading functions, while also cumulating other various biological activities in different tissues. The functional homologs eosinophil-derived neurotoxin (EDN, or RNase 2) and eosinophil cationic protein (ECP, or RNase 3) are known to be expressed and secreted by eosinophils in response to infection, and have thus been postulated to play an important role in host defense and inflammatory response. We recently initiated the biophysical and dynamical investigation of several vertebrate RNase homologs and observed that clustering residue dynamics appear to be linked with the phylogeny and biological specificity of several members. Here we report the 1 H, 13 C and 15 N backbone resonance assignments of human EDN (RNase 2) and its molecular dynamics simulation on the microsecond timescale, providing means to pursue this comparative atomic-scale functional and dynamical analysis by NMR and computation over multiple time frames.

  2. Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function.

    PubMed

    DiBona, Gerald F

    2005-03-01

    Methods of dynamic analysis are used to provide additional understanding of the renal sympathetic neural control of renal function. The concept of functionally specific subgroups of renal sympathetic nerve fibres conveying information encoded in the frequency domain is presented. Analog pulse modulation and pseudorandom binary sequence stimulation patterns are used for the determination of renal vascular frequency response. Transfer function analysis is used to determine the effects of non-renal vasoconstrictor and vasoconstrictor intensities of renal sympathetic nerve activity on dynamic autoregulation of renal blood flow.

  3. Dynamic Docking Test System (DDTS) active table computer program NASA Advanced Docking System (NADS)

    NASA Technical Reports Server (NTRS)

    Gates, R. M.; Jantz, R. E.

    1974-01-01

    A computer program was developed to describe the three-dimensional motion of the Dynamic Docking Test System active table. The input consists of inertia and geometry data, actuator structural data, forcing function data, hydraulics data, servo electronics data, and integration control data. The output consists of table responses, actuator bending responses, and actuator responses.

  4. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2016-06-14

    Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Carbon Dioxide and Fruit Odor Transduction in Drosophila Olfactory Neurons. What Controls their Dynamic Properties?

    PubMed Central

    French, Andrew S.; Meisner, Shannon; Su, Chih-Ying; Torkkeli, Päivi H.

    2014-01-01

    We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor. PMID:24466044

  6. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  7. Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

    NASA Astrophysics Data System (ADS)

    Savitri, D.

    2018-01-01

    This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results

  8. Dynamic response functions, helical gaps, and fractional charges in quantum wires

    NASA Astrophysics Data System (ADS)

    Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.

    We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.

  9. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    PubMed

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.

  10. Dose-response relationships for environmentally mediated infectious disease transmission models

    PubMed Central

    Eisenberg, Joseph N. S.

    2017-01-01

    Environmentally mediated infectious disease transmission models provide a mechanistic approach to examining environmental interventions for outbreaks, such as water treatment or surface decontamination. The shift from the classical SIR framework to one incorporating the environment requires codifying the relationship between exposure to environmental pathogens and infection, i.e. the dose–response relationship. Much of the work characterizing the functional forms of dose–response relationships has used statistical fit to experimental data. However, there has been little research examining the consequences of the choice of functional form in the context of transmission dynamics. To this end, we identify four properties of dose–response functions that should be considered when selecting a functional form: low-dose linearity, scalability, concavity, and whether it is a single-hit model. We find that i) middle- and high-dose data do not constrain the low-dose response, and different dose–response forms that are equally plausible given the data can lead to significant differences in simulated outbreak dynamics; ii) the choice of how to aggregate continuous exposure into discrete doses can impact the modeled force of infection; iii) low-dose linear, concave functions allow the basic reproduction number to control global dynamics; and iv) identifiability analysis offers a way to manage multiple sources of uncertainty and leverage environmental monitoring to make inference about infectivity. By applying an environmentally mediated infectious disease model to the 1993 Milwaukee Cryptosporidium outbreak, we demonstrate that environmental monitoring allows for inference regarding the infectivity of the pathogen and thus improves our ability to identify outbreak characteristics such as pathogen strain. PMID:28388665

  11. Vision-based flight control in the hawkmoth Hyles lineata

    PubMed Central

    Windsor, Shane P.; Bomphrey, Richard J.; Taylor, Graham K.

    2014-01-01

    Vision is a key sensory modality for flying insects, playing an important role in guidance, navigation and control. Here, we use a virtual-reality flight simulator to measure the optomotor responses of the hawkmoth Hyles lineata, and use a published linear-time invariant model of the flight dynamics to interpret the function of the measured responses in flight stabilization and control. We recorded the forces and moments produced during oscillation of the visual field in roll, pitch and yaw, varying the temporal frequency, amplitude or spatial frequency of the stimulus. The moths’ responses were strongly dependent upon contrast frequency, as expected if the optomotor system uses correlation-type motion detectors to sense self-motion. The flight dynamics model predicts that roll angle feedback is needed to stabilize the lateral dynamics, and that a combination of pitch angle and pitch rate feedback is most effective in stabilizing the longitudinal dynamics. The moths’ responses to roll and pitch stimuli coincided qualitatively with these functional predictions. The moths produced coupled roll and yaw moments in response to yaw stimuli, which could help to reduce the energetic cost of correcting heading. Our results emphasize the close relationship between physics and physiology in the stabilization of insect flight. PMID:24335557

  12. Vision-based flight control in the hawkmoth Hyles lineata.

    PubMed

    Windsor, Shane P; Bomphrey, Richard J; Taylor, Graham K

    2014-02-06

    Vision is a key sensory modality for flying insects, playing an important role in guidance, navigation and control. Here, we use a virtual-reality flight simulator to measure the optomotor responses of the hawkmoth Hyles lineata, and use a published linear-time invariant model of the flight dynamics to interpret the function of the measured responses in flight stabilization and control. We recorded the forces and moments produced during oscillation of the visual field in roll, pitch and yaw, varying the temporal frequency, amplitude or spatial frequency of the stimulus. The moths' responses were strongly dependent upon contrast frequency, as expected if the optomotor system uses correlation-type motion detectors to sense self-motion. The flight dynamics model predicts that roll angle feedback is needed to stabilize the lateral dynamics, and that a combination of pitch angle and pitch rate feedback is most effective in stabilizing the longitudinal dynamics. The moths' responses to roll and pitch stimuli coincided qualitatively with these functional predictions. The moths produced coupled roll and yaw moments in response to yaw stimuli, which could help to reduce the energetic cost of correcting heading. Our results emphasize the close relationship between physics and physiology in the stabilization of insect flight.

  13. Dynamic alterations of hepatocellular function by on-demand elasticity and roughness modulation.

    PubMed

    Uto, K; Aoyagi, T; DeForest, C A; Ebara, M

    2018-05-01

    Temperature-responsive cell culture substrates reported here can be dynamically programmed to induce bulk softening and surface roughness changes in the presence of living cells. Alterations in hepatocellular function following temporally controlled substrate softening depend on the extent of stiff mechanical priming prior to user-induced material transition.

  14. Modeling and parameter identification of impulse response matrix of mechanical systems

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni V.

    1998-12-01

    A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.

  15. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    PubMed

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Quasiclassical Theory of Spin Dynamics in Superfluid ^3He: Kinetic Equations in the Bulk and Spin Response of Surface Majorana States

    NASA Astrophysics Data System (ADS)

    Silaev, M. A.

    2018-06-01

    We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.

  17. Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration

    PubMed Central

    Bravo, Roberto; Parra, Valentina; Gatica, Damián; Rodriguez, Andrea E.; Torrealba, Natalia; Paredes, Felipe; Wang, Zhao V.; Zorzano, Antonio; Hill, Joseph A.; Jaimovich, Enrique; Quest, Andrew F.G.; Lavandero, Sergio

    2013-01-01

    The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of reestablishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies. PMID:23317820

  18. Finite-temperature dynamics of the Mott insulating Hubbard chain

    NASA Astrophysics Data System (ADS)

    Nocera, Alberto; Essler, Fabian H. L.; Feiguin, Adrian E.

    2018-01-01

    We study the dynamical response of the half-filled one-dimensional Hubbard model for a range of interaction strengths U and temperatures T by a combination of numerical and analytical techniques. Using time-dependent density matrix renormalization group computations we find that the single-particle spectral function undergoes a crossover to a spin-incoherent Luttinger liquid regime at temperatures T ˜J =4 t2/U for sufficiently large U >4 t . At smaller values of U and elevated temperatures the spectral function is found to exhibit two thermally broadened bands of excitations, reminiscent of what is found in the Hubbard-I approximation. The dynamical density-density response function is shown to exhibit a finite-temperature resonance at low frequencies inside the Mott gap, with a physical origin similar to the Villain mode in gapped quantum spin chains. We complement our numerical computations by developing an analytic strong-coupling approach to the low-temperature dynamics in the spin-incoherent regime.

  19. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders.

    PubMed

    Sato, Wataru; Toichi, Motomi; Uono, Shota; Kochiyama, Takanori

    2012-08-13

    Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD.We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI). Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG), fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex-MTG-IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD.

  20. Effects of Peripheral Vestibular Dysfunction on Dynamic Postural Stability Measured by the Functional Reach Test and Timed Up and Go Test.

    PubMed

    Nishi, Toshiko; Kamogashira, Teru; Fujimoto, Chisato; Kinoshita, Makoto; Egami, Naoya; Sugasawa, Keiko; Yamasoba, Tatsuya; Iwasaki, Shinichi

    2017-06-01

    To investigate the influence of vestibular function on dynamic postural stability assessed by the functional reach test (FRT) and the timed up and go test (TUG). Retrospective study. Tertiary referral center. The FRT and TUG were performed in 399 patients with dizziness. The effects of peripheral vestibular dysfunction assessed by the caloric test and cervical vestibular evoked myogenic potentials (cVEMPs) to air-conducted sound (500 Hz, tone burst) on the results of FRT and TUG were analyzed. Neither FRT nor TUG scores showed significant differences in relation to the results of the caloric test ( P > .3). The FRT scores in patients who showed abnormal cVEMP responses on both sides were significantly smaller than those in patients who showed normal cVEMP responses ( P < .01). The TUG scores in patients who showed abnormal cVEMP responses on both sides were significantly greater than those in patients who showed normal cVEMP responses ( P < .05). The vestibulo-spinal reflex mediated by the saccule and its afferents is one of the factors that influence the maintenance of dynamic postural stability as measured by FRT and TUG.

  1. Unsteady pressure and structural response measurements of an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1988-01-01

    Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjunction with the flow separating and reattaching in the trailing edge region.

  2. Unsteady pressure and structural response measurements on an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1988-01-01

    Results are presented which define unsteady flow conditions associated with high dynamic response experienced on a high aspect ratio elastic supercritical wing at transonic test conditions while being tested in the NASA Langley Transonic Dynamics Tunnel. The supercritical wing, designed for a cruise Mach number of 0.80, experienced the high dynamic response in the Mach number range from 0.90 to 0.94 with the maximum response occurring at a Mach number of approximately 0.92. At the maximum wing response condition the forcing function appears to be the oscillatory chordwise movement of strong shocks located on both the wing upper and lower surfaces in conjuction with the flow separating and reattaching in the trailing edge region.

  3. Equilibrium time correlation functions and the dynamics of fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luban, Marshall; Luscombe, James H.

    1999-12-01

    Equilibrium time correlation functions are of great importance because they probe the equilibrium dynamical response to external perturbations. We discuss the properties of time correlation functions for several systems that are simple enough to illustrate the calculational steps involved. The discussion underscores the need for avoiding language which misleadingly suggests that thermal equilibrium is associated with a quiescent or moribund state of the system. (c) 1999 American Association of Physics Teachers.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Zhang, Yuehong; Rios, Orlando

    The increasing demand for intelligent materials has driven the development of polymers with a variety of functionalities. However, combining multiple functionalities within one polymer is still challenging because of the difficulties encountered in coordinating different functional building blocks during fabrication. In this work, we demonstrate the fabrication of a multifunctional liquid crystalline epoxy network (LCEN) using the combination of thermotropic liquid crystals, photo-responsive azobenzene molecules, and exchangeable disulfide bonds. In addition to shape memory behavior enabled by the reversible liquid crystalline phase transition and photo-induced bending behavior resulting from the photo-responsive azobenzene molecules, the introduction of dynamic disulfide bonds intomore » the LCEN resulted in a structurally dynamic network, allowing the reshaping, repairing, and recycling of the material.« less

  5. Experimental dynamic response of a two-dimensional, Mach 2.7, mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.; Neiner, G. H.; Cole, G. L.

    1972-01-01

    A test program was conducted on a two-dimensional supersonic inlet. Internal disturbances in diffuser exit mass flow were produced by oscillating overboard bypass doors. Open-loop dynamic responses of shock position, throat exit and diffuser exit static pressures are presented. The steady-state and dynamic coupling between ducts were also obtained. The experimental results from the two-dimensional inlet are compared to results from a similar size axisymmetric inlet and also to a transfer function synthesis program.

  6. Mind over motor mapping: Driver response to changing vehicle dynamics.

    PubMed

    Bruno, Jennifer L; Baker, Joseph M; Gundran, Andrew; Harbott, Lene K; Stuart, Zachary; Piccirilli, Aaron M; Hosseini, S M Hadi; Gerdes, J Christian; Reiss, Allan L

    2018-06-08

    Improvements in vehicle safety require understanding of the neural systems that support the complex, dynamic task of real-world driving. We used functional near infrared spectroscopy (fNIRS) and pupilometry to quantify cortical and physiological responses during a realistic, simulated driving task in which vehicle dynamics were manipulated. Our results elucidate compensatory changes in driver behavior in response to changes in vehicle handling. We also describe associated neural and physiological responses under different levels of mental workload. The increased cortical activation we observed during the late phase of the experiment may indicate motor learning in prefrontal-parietal networks. Finally, relationships among cortical activation, steering control, and individual personality traits suggest that individual brain states and traits may be useful in predicting a driver's response to changes in vehicle dynamics. Results such as these will be useful for informing the design of automated safety systems that facilitate safe and supportive driver-car communication. © 2018 Wiley Periodicals, Inc.

  7. Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems.

    PubMed

    Makni, Salima; Beckmann, Christian; Smith, Steve; Woolrich, Mark

    2008-10-01

    In Penny et al. [Penny, W., Ghahramani, Z., Friston, K.J. 2005. Bilinear dynamical systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457) 983-993], a particular case of the Linear Dynamical Systems (LDSs) was used to model the dynamic behavior of the BOLD response in functional MRI. This state-space model, called bilinear dynamical system (BDS), is used to deconvolve the fMRI time series in order to estimate the neuronal response induced by the different stimuli of the experimental paradigm. The BDS model parameters are estimated using an expectation-maximization (EM) algorithm proposed by Ghahramani and Hinton [Ghahramani, Z., Hinton, G.E. 1996. Parameter Estimation for Linear Dynamical Systems. Technical Report, Department of Computer Science, University of Toronto]. In this paper we introduce modifications to the BDS model in order to explicitly model the spatial variations of the haemodynamic response function (HRF) in the brain using a non-parametric approach. While in Penny et al. [Penny, W., Ghahramani, Z., Friston, K.J. 2005. Bilinear dynamical systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1457) 983-993] the relationship between neuronal activation and fMRI signals is formulated as a first-order convolution with a kernel expansion using basis functions (typically two or three), in this paper, we argue in favor of a spatially adaptive GLM in which a local non-parametric estimation of the HRF is performed. Furthermore, in order to overcome the overfitting problem typically associated with simple EM estimates, we propose a full Variational Bayes (VB) solution to infer the BDS model parameters. We demonstrate the usefulness of our model which is able to estimate both the neuronal activity and the haemodynamic response function in every voxel of the brain. We first examine the behavior of this approach when applied to simulated data with different temporal and noise features. As an example we will show how this method can be used to improve interpretability of estimates from an independent component analysis (ICA) analysis of fMRI data. We finally demonstrate its use on real fMRI data in one slice of the brain.

  8. Dynamic condensation of non-classically damped structures using the method of Maclaurin expansion of the frequency response function in Laplace domain

    NASA Astrophysics Data System (ADS)

    Esmaeilzad, Armin; Khanlari, Karen

    2018-07-01

    As the number of degrees of freedom (DOFs) in structural dynamic problems becomes larger, the analyzing complexity and CPU usage of computers increase drastically. Condensation (or reduction) method is an efficient technique to reduce the size of the full model or the dimension of the structural matrices by eliminating the unimportant DOFs. After the first presentation of condensation method by Guyan in 1965 for undamped structures, which ignores the dynamic effects of the mass term, various forms of dynamic condensation methods were presented to overcome this issue. Moreover, researchers have tried to expand the dynamic condensation method to non-classically damped structures. Dynamic reduction of such systems is far more complicated than undamped systems. The proposed non-iterative method in this paper is introduced as 'Maclaurin Expansion of the frequency response function in Laplace Domain' (MELD) applied for dynamic reduction of non-classically damped structures. The present approach is implemented in four numerical examples of 2D bending-shear-axial frames with various numbers of stories and spans and also a floating raft isolation system. The results of natural frequencies and dynamic responses of models are compared with each other before and after the dynamic reduction. It is shown that the result accuracy has acceptable convergence in both cases. In addition, it is indicated that the result of the proposed method is more accurate than the results of some other existing condensation methods.

  9. Flow cells for bioanalytical and bioprocess applications with optimized dynamic response and flow characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, V.R.; Modlin, D.N.

    1994-12-31

    In this study, the authors present a method for design and characterization of flow cells developed for minimum flow volume and optimal dynamic response with a given central observation area. The dynamic response of a circular shaped dual ported flow cell was compared to that obtained from a flow cell whose optimized shape was determined using this method. In the optimized flow cell design, the flow rate at the nominal operating pressure increased by 50% whereas the flow cell volume was reduced by 70%. In addition, the dynamic response of the new flow cell was found to be 200% fastermore » than the circular flow cell. The fluid dynamic analysis included simple graphical techniques utilizing free stream vorticity functions and Hagen-Poiseuille relationships. The flow cell dynamic response was measured using a fluorescence detection system. The fluoresce in emission from a 400{micro}m spot located at the exit port was measured as a function of time after switching the input to the flow cell between fluorescent and non-fluorescent solutions. Analysis of results revealed the system could be reasonably characterized as a first order dynamic system. Although some evidence of second order behavior was also observed, it is reasonable to assume that a first order model will provide adequate predictive capability for many real world applications. Given a set of flow cell requirements, the methods presented in this study can be used to design and characterize flow cells with lower reagent consumption and reduced purging times. These improvements can be readily translated into reduced process times and/or lower usage of high cost reagents.« less

  10. Pattern formation--A missing link in the study of ecosystem response to environmental changes.

    PubMed

    Meron, Ehud

    2016-01-01

    Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Calibration of a universal indicated turbulence system

    NASA Technical Reports Server (NTRS)

    Chapin, W. G.

    1977-01-01

    Theoretical and experimental work on a Universal Indicated Turbulence Meter is described. A mathematical transfer function from turbulence input to output indication was developed. A random ergodic process and a Gaussian turbulence distribution were assumed. A calibration technique based on this transfer function was developed. The computer contains a variable gain amplifier to make the system output independent of average velocity. The range over which this independence holds was determined. An optimum dynamic response was obtained for the tubulation between the system pitot tube and pressure transducer by making dynamic response measurements for orifices of various lengths and diameters at the source end.

  12. Frequency response function-based explicit framework for dynamic identification in human-structure systems

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Živanović, Stana

    2018-05-01

    The aim of this paper is to propose a novel theoretical framework for dynamic identification in a structure occupied by a single human. The framework enables the prediction of the dynamics of the human-structure system from the known properties of the individual system components, the identification of human body dynamics from the known dynamics of the empty structure and the human-structure system and the identification of the properties of the structure from the known dynamics of the human and the human-structure system. The novelty of the proposed framework is the provision of closed-form solutions in terms of frequency response functions obtained by curve fitting measured data. The advantages of the framework over existing methods are that there is neither need for nonlinear optimisation nor need for spatial/modal models of the empty structure and the human-structure system. In addition, the second-order perturbation method is employed to quantify the effect of uncertainties in human body dynamics on the dynamic identification of the empty structure and the human-structure system. The explicit formulation makes the method computationally efficient and straightforward to use. A series of numerical examples and experiments are provided to illustrate the working of the method.

  13. Closed-loop spontaneous baroreflex transfer function is inappropriate for system identification of neural arc but partly accurate for peripheral arc: predictability analysis

    PubMed Central

    Kamiya, Atsunori; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2011-01-01

    Abstract Although the dynamic characteristics of the baroreflex system have been described by baroreflex transfer functions obtained from open-loop analysis, the predictability of time-series output dynamics from input signals, which should confirm the accuracy of system identification, remains to be elucidated. Moreover, despite theoretical concerns over closed-loop system identification, the accuracy and the predictability of the closed-loop spontaneous baroreflex transfer function have not been evaluated compared with the open-loop transfer function. Using urethane and α-chloralose anaesthetized, vagotomized and aortic-denervated rabbits (n = 10), we identified open-loop baroreflex transfer functions by recording renal sympathetic nerve activity (SNA) while varying the vascularly isolated intracarotid sinus pressure (CSP) according to a binary random (white-noise) sequence (operating pressure ± 20 mmHg), and using a simplified equation to calculate closed-loop-spontaneous baroreflex transfer function while matching CSP with systemic arterial pressure (AP). Our results showed that the open-loop baroreflex transfer functions for the neural and peripheral arcs predicted the time-series SNA and AP outputs from measured CSP and SNA inputs, with r2 of 0.8 ± 0.1 and 0.8 ± 0.1, respectively. In contrast, the closed-loop-spontaneous baroreflex transfer function for the neural arc was markedly different from the open-loop transfer function (enhanced gain increase and a phase lead), and did not predict the time-series SNA dynamics (r2; 0.1 ± 0.1). However, the closed-loop-spontaneous baroreflex transfer function of the peripheral arc partially matched the open-loop transfer function in gain and phase functions, and had limited but reasonable predictability of the time-series AP dynamics (r2, 0.7 ± 0.1). A numerical simulation suggested that a noise predominantly in the neural arc under resting conditions might be a possible mechanism responsible for our findings. Furthermore, the predictabilities of the neural arc transfer functions obtained in open-loop and closed-loop conditions were validated by closed-loop pharmacological (phenylephrine and nitroprusside infusions) pressure interventions. Time-series SNA responses to drug-induced AP changes predicted by the open-loop transfer function matched closely the measured responses (r2, 0.9 ± 0.1), whereas SNA responses predicted by closed-loop-spontaneous transfer function deviated greatly and were the inverse of measured responses (r, −0.8 ± 0.2). These results indicate that although the spontaneous baroreflex transfer function obtained by closed-loop analysis has been believed to represent the neural arc function, it is inappropriate for system identification of the neural arc but is essentially appropriate for the peripheral arc under resting conditions, when compared with open-loop analysis. PMID:21486839

  14. Cole-Davidson dynamics of simple chain models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotson, Taylor C.; McCoy, John Dwane; Adolf, Douglas Brian

    2008-10-01

    Rotational relaxation functions of the end-to-end vector of short, freely jointed and freely rotating chains were determined from molecular dynamics simulations. The associated response functions were obtained from the one-sided Fourier transform of the relaxation functions. The Cole-Davidson function was used to fit the response functions with extensive use being made of Cole-Cole plots in the fitting procedure. For the systems studied, the Cole-Davidson function provided remarkably accurate fits [as compared to the transform of the Kohlrausch-Williams-Watts (KWW) function]. The only appreciable deviations from the simulation results were in the high frequency limit and were due to ballistic or freemore » rotation effects. The accuracy of the Cole-Davidson function appears to be the result of the transition in the time domain from stretched exponential behavior at intermediate time to single exponential behavior at long time. Such a transition can be explained in terms of a distribution of relaxation times with a well-defined longest relaxation time. Since the Cole-Davidson distribution has a sharp cutoff in relaxation time (while the KWW function does not), it makes sense that the Cole-Davidson would provide a better frequency-domain description of the associated response function than the KWW function does.« less

  15. Kinetic damping in the spectra of the spherical impedance probe

    NASA Astrophysics Data System (ADS)

    Oberrath, J.

    2018-04-01

    The impedance probe is a measurement device to measure plasma parameters, such as electron density. It consists of one electrode connected to a network analyzer via a coaxial cable and is immersed into a plasma. A bias potential superposed with an alternating potential is applied to the electrode and the response of the plasma is measured. Its dynamical interaction with the plasma in an electrostatic, kinetic description can be modeled in an abstract notation based on functional analytic methods. These methods provide the opportunity to derive a general solution, which is given as the response function of the probe–plasma system. It is defined by the matrix elements of the resolvent of an appropriate dynamical operator. Based on the general solution, a residual damping for vanishing pressure can be predicted and can only be explained by kinetic effects. In this paper, an explicit response function of the spherical impedance probe is derived. Therefore, the resolvent is determined by its algebraic representation based on an expansion in orthogonal basis functions. This allows one to compute an approximated response function and its corresponding spectra. These spectra show additional damping due to kinetic effects and are in good agreement with former kinetically determined spectra.

  16. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders

    PubMed Central

    2012-01-01

    Background Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD). However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD. We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI). Result Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG), fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG). Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex–MTG–IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. Conclusions These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD. PMID:22889284

  17. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  18. Athermal brittle-to-ductile transition in amorphous solids.

    PubMed

    Dauchot, Olivier; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2011-10-01

    Brittle materials exhibit sharp dynamical fractures when meeting Griffith's criterion, whereas ductile materials blunt a sharp crack by plastic responses. Upon continuous pulling, ductile materials exhibit a necking instability that is dominated by a plastic flow. Usually one discusses the brittle to ductile transition as a function of increasing temperature. We introduce an athermal brittle to ductile transition as a function of the cutoff length of the interparticle potential. On the basis of extensive numerical simulations of the response to pulling the material boundaries at a constant speed we offer an explanation of the onset of ductility via the increase in the density of plastic modes as a function of the potential cutoff length. Finally we can resolve an old riddle: In experiments brittle materials can be strained under grip boundary conditions and exhibit a dynamic crack when cut with a sufficiently long initial slot. Mysteriously, in molecular dynamics simulations it appeared that cracks refused to propagate dynamically under grip boundary conditions, and continuous pulling was necessary to achieve fracture. We argue that this mystery is removed when one understands the distinction between brittle and ductile athermal amorphous materials.

  19. Functional Dynamics of PDZ Binding Domains: A Normal-Mode Analysis

    PubMed Central

    De Los Rios, Paolo; Cecconi, Fabio; Pretre, Anna; Dietler, Giovanni; Michielin, Olivier; Piazza, Francesco; Juanico, Brice

    2005-01-01

    Postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domains are relatively small (80–120 residues) protein binding modules central in the organization of receptor clusters and in the association of cellular proteins. Their main function is to bind C-terminals of selected proteins that are recognized through specific amino acids in their carboxyl end. Binding is associated with a deformation of the PDZ native structure and is responsible for dynamical changes in regions not in direct contact with the target. We investigate how this deformation is related to the harmonic dynamics of the PDZ structure and show that one low-frequency collective normal mode, characterized by the concerted movements of different secondary structures, is involved in the binding process. Our results suggest that even minimal structural changes are responsible for communication between distant regions of the protein, in agreement with recent NMR experiments. Thus, PDZ domains are a very clear example of how collective normal modes are able to characterize the relation between function and dynamics of proteins, and to provide indications on the precursors of binding/unbinding events. PMID:15821164

  20. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  1. COMMUNICATION: Electrophysiological response dynamics during focal cortical infarction

    NASA Astrophysics Data System (ADS)

    Chiganos, Terry C., Jr.; Jensen, Winnie; Rousche, Patrick J.

    2006-12-01

    While the intracellular processes of hypoxia-induced necrosis and the intercellular mechanisms of post-ischemic neurotoxicity associated with stroke are well documented, the dynamic electrophysiological (EP) response of neurons within the core or periinfarct zone remains unclear. The present study validates a method for continuous measurement of the local EP responses during focal cortical infarction induced via photothrombosis. Single microwire electrodes were acutely implanted into the primary auditory cortex of eight rats. Multi-unit neural activity, evoked via a continuous 2 Hz click stimulus, was recorded before, during and after infarction to assess neuronal function in response to local, permanent ischemia. During sham infarction, the average stimulus-evoked peak firing rate over 20 min remained stable at 495.5 ± 14.5 spikes s-1, indicating temporal stability of neural function under normal conditions. Stimulus-evoked peak firing was reliably reduced to background levels (firing frequency in the absence of stimulus) following initiation of photothrombosis over a period of 439 ± 92 s. The post-infarction firing patterns exhibited unique temporal degradation of the peak firing rate, suggesting a variable response to ischemic challenge. Despite the inherent complexity of cerebral ischemia secondary to microvascular occlusion, complete loss of EP function consistently occurred 300-600 s after photothrombosis. The results suggest that microwire recording during photothrombosis provides a simple and highly efficacious strategy for assessing the electrophysiological dynamics of cortical infarction.

  2. Mathematical Model of Three Species Food Chain Interaction with Mixed Functional Response

    NASA Astrophysics Data System (ADS)

    Ws, Mada Sanjaya; Mohd, Ismail Bin; Mamat, Mustafa; Salleh, Zabidin

    In this paper, we study mathematical model of ecology with a tritrophic food chain composed of a classical Lotka-Volterra functional response for prey and predator, and a Holling type-III functional response for predator and super predator. There are two equilibrium points of the system. In the parameter space, there are passages from instability to stability, which are called Hopf bifurcation points. For the first equilibrium point, it is possible to find bifurcation points analytically and to prove that the system has periodic solutions around these points. Furthermore the dynamical behaviors of this model are investigated. Models for biologically reasonable parameter values, exhibits stable, unstable periodic and limit cycles. The dynamical behavior is found to be very sensitive to parameter values as well as the parameters of the practical life. Computer simulations are carried out to explain the analytical findings.

  3. Dynamic regulation of heart rate during acute hypotension: new insight into baroreflex function

    NASA Technical Reports Server (NTRS)

    Zhang, R.; Behbehani, K.; Crandall, C. G.; Zuckerman, J. H.; Levine, B. D.; Blomqvist, C. G. (Principal Investigator)

    2001-01-01

    To examine the dynamic properties of baroreflex function, we measured beat-to-beat changes in arterial blood pressure (ABP) and heart rate (HR) during acute hypotension induced by thigh cuff deflation in 10 healthy subjects under supine resting conditions and during progressive lower body negative pressure (LBNP). The quantitative, temporal relationship between ABP and HR was fitted by a second-order autoregressive (AR) model. The frequency response was evaluated by transfer function analysis. Results: HR changes during acute hypotension appear to be controlled by an ABP error signal between baseline and induced hypotension. The quantitative relationship between changes in ABP and HR is characterized by a second-order AR model with a pure time delay of 0.75 s containing low-pass filter properties. During LBNP, the change in HR/change in ABP during induced hypotension significantly decreased, as did the numerator coefficients of the AR model and transfer function gain. Conclusions: 1) Beat-to-beat HR responses to dynamic changes in ABP may be controlled by an error signal rather than directional changes in pressure, suggesting a "set point" mechanism in short-term ABP control. 2) The quantitative relationship between dynamic changes in ABP and HR can be described by a second-order AR model with a pure time delay. 3) The ability of the baroreflex to evoke a HR response to transient changes in pressure was reduced during LBNP, which was due primarily to a reduction of the static gain of the baroreflex.

  4. Modulation of hemoglobin dynamics by an allosteric effector

    DOE PAGES

    Lal, Jyotsana; Maccarini, Marco; Fouquet, Peter; ...

    2016-12-15

    Hemoglobin (Hb) is an extensively studied paradigm of proteins that alter their function in response to allosteric effectors. Models of its action have been used as prototypes for structure-function relationships in many proteins, and models for the molecular basis of its function have been deeply studied and extensively argued. Recent reports suggest that dynamics may play an important role in its function. Relatively little is known about the slow, correlated motions of hemoglobin subunits in various structural states because experimental and computational strategies for their characterization are challenging. Allosteric effectors such as inositol hexaphosphate (IHP) bind to both deoxy-Hb andmore » HbCO, albeit at different sites, leading to a lowered oxygen affinity. The manner in which these effectors impact oxygen binding is unclear and may involve changes in structure, dynamics or both. Here we use neutron spin echo (NSE) measurements accompanied by wideangle x-ray scattering (WAXS) to show that binding of IHP to HbCO results in an increase in the rate of coordinated motions of Hb subunits relative to one another with little if any change in large scale structure. This increase of large-scale dynamics seems to be coupled with a decrease in the average magnitude of higher frequency modes of individual residues. Furthermore, these observations indicate that enhanced dynamic motions contribute to the functional changes induced by IHP and suggest that they may be responsible for the lowered oxygen affinity triggered by these effectors.« less

  5. Enhanced Response Time of Electrowetting Lenses with Shaped Input Voltage Functions.

    PubMed

    Supekar, Omkar D; Zohrabi, Mo; Gopinath, Juliet T; Bright, Victor M

    2017-05-16

    Adaptive optical lenses based on the electrowetting principle are being rapidly implemented in many applications, such as microscopy, remote sensing, displays, and optical communication. To characterize the response of these electrowetting lenses, the dependence upon direct current (DC) driving voltage functions was investigated in a low-viscosity liquid system. Cylindrical lenses with inner diameters of 2.45 and 3.95 mm were used to characterize the dynamic behavior of the liquids under DC voltage electrowetting actuation. With the increase of the rise time of the input exponential driving voltage, the originally underdamped system response can be damped, enabling a smooth response from the lens. We experimentally determined the optimal rise times for the fastest response from the lenses. We have also performed numerical simulations of the lens actuation with input exponential driving voltage to understand the variation in the dynamics of the liquid-liquid interface with various input rise times. We further enhanced the response time of the devices by shaping the input voltage function with multiple exponential rise times. For the 3.95 mm inner diameter lens, we achieved a response time improvement of 29% when compared to the fastest response obtained using single-exponential driving voltage. The technique shows great promise for applications that require fast response times.

  6. Engineering responsive supramolecular biomaterials: Toward smart therapeutics.

    PubMed

    Webber, Matthew J

    2016-09-01

    Engineering materials using supramolecular principles enables generalizable and modular platforms that have tunable chemical, mechanical, and biological properties. Applying this bottom-up, molecular engineering-based approach to therapeutic design affords unmatched control of emergent properties and functionalities. In preparing responsive materials for biomedical applications, the dynamic character of typical supramolecular interactions facilitates systems that can more rapidly sense and respond to specific stimuli through a fundamental change in material properties or characteristics, as compared to cases where covalent bonds must be overcome. Several supramolecular motifs have been evaluated toward the preparation of "smart" materials capable of sensing and responding to stimuli. Triggers of interest in designing materials for therapeutic use include applied external fields, environmental changes, biological actuators, applied mechanical loading, and modulation of relative binding affinities. In addition, multistimuli-responsive routes can be realized that capture combinations of triggers for increased functionality. In sum, supramolecular engineering offers a highly functional strategy to prepare responsive materials. Future development and refinement of these approaches will improve precision in material formation and responsiveness, seek dynamic reciprocity in interactions with living biological systems, and improve spatiotemporal sensing of disease for better therapeutic deployment.

  7. Wavelet-based system identification of short-term dynamic characteristics of arterial baroreflex.

    PubMed

    Kashihara, Koji; Kawada, Toru; Sugimachi, Masaru; Sunagawa, Kenji

    2009-01-01

    The assessment of arterial baroreflex function in cardiovascular diseases requires quantitative evaluation of dynamic and static baroreflex properties because of the frequent modulation of baroreflex properties with unstable hemodynamics. The purpose of this study was to identify the dynamic baroreflex properties from transient changes of step pressure inputs with background noise during a short-duration baroreflex test in anesthetized rabbits with isolated carotid sinuses, using a modified wavelet-based time-frequency analysis. The proposed analysis was able to identify the transfer function of baroreflex as well as static properties from the transient input-output responses under normal [gain at 0.04 Hz from carotid sinus pressure (CSP) to arterial pressure (n = 8); 0.29 +/- 0.05 at low (40-60 mmHg), 1.28 +/- 0.12 at middle (80-100 mmHg), and 0.38 +/- 0.07 at high (120-140 mmHg) CSP changes] and pathophysiological [gain in control vs. phenylbiguanide (n = 8); 0.32 +/- 0.07 vs. 0.39 +/- 0.09 at low, 1.39 +/- 0.15 vs. 0.59 +/- 0.09 (p < 0.01) at middle, and 0.35 +/- 0.04 vs. 0.15 +/- 0.02 (p < 0.01) at high CSP changes] conditions. Subsequently, we tested the proposed wavelet-based method under closed-loop baroreflex responses; the simulation study indicates that it may be applicable to clinical situations for accurate assessment of dynamic baroreflex function. In conclusion, the dynamic baroreflex property to various pressure inputs could be simultaneously extracted from the step responses with background noise.

  8. Utility of Functional Hemodynamics and Echocardiography to Aid Diagnosis and Management of Shock.

    PubMed

    McGee, William T; Raghunathan, Karthik; Adler, Adam C

    2015-12-01

    The utility of functional hemodynamics and bedside ultrasonography is increasingly recognized as advantageous for both improved diagnosis and management of shock states. In contrast to conventional "static" measures, "dynamic" hemodynamic measures and bedside imaging modalities enhance pathophysiology-based comprehensive understanding of shock states and the response to therapy. The current editions of major textbooks in the primary specialties--in which clinicians routinely encounter patients in shock--including surgery, anesthesia, emergency medicine, and internal medicine continue to incorporate traditional (conventional) descriptions of shock that use well-described (but potentially misleading) intravascular pressures to classify shock states. Reliance on such intravascular pressure measurements is not as helpful as newer "dynamic" functional measures including ultrasonography to both better assess volume responsiveness and biventricular cardiac function. This review thus emphasizes the application of current functional hemodynamics and ultrasonography to the diagnosis and management of shock as a contrast to conventional "static" pressure-based measures.

  9. Dynamic prediction in functional concurrent regression with an application to child growth.

    PubMed

    Leroux, Andrew; Xiao, Luo; Crainiceanu, Ciprian; Checkley, William

    2018-04-15

    In many studies, it is of interest to predict the future trajectory of subjects based on their historical data, referred to as dynamic prediction. Mixed effects models have traditionally been used for dynamic prediction. However, the commonly used random intercept and slope model is often not sufficiently flexible for modeling subject-specific trajectories. In addition, there may be useful exposures/predictors of interest that are measured concurrently with the outcome, complicating dynamic prediction. To address these problems, we propose a dynamic functional concurrent regression model to handle the case where both the functional response and the functional predictors are irregularly measured. Currently, such a model cannot be fit by existing software. We apply the model to dynamically predict children's length conditional on prior length, weight, and baseline covariates. Inference on model parameters and subject-specific trajectories is conducted using the mixed effects representation of the proposed model. An extensive simulation study shows that the dynamic functional regression model provides more accurate estimation and inference than existing methods. Methods are supported by fast, flexible, open source software that uses heavily tested smoothing techniques. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  10. A Multi-Level Model of Moral Functioning Revisited

    ERIC Educational Resources Information Center

    Reed, Don Collins

    2009-01-01

    The model of moral functioning scaffolded in the 2008 "JME" Special Issue is here revisited in response to three papers criticising that volume. As guest editor of that Special Issue I have formulated the main body of this response, concerning the dynamic systems approach to moral development, the problem of moral relativism and the role of…

  11. A dynamic system analysis of dyadic flexibility and stability across the Face-to-Face Still-Face procedure: application of the State Space Grid.

    PubMed

    Provenzi, Livio; Borgatti, Renato; Menozzi, Giorgia; Montirosso, Rosario

    2015-02-01

    The Face-to-Face Still-Face (FFSF) paradigm allows to study the mother-infant dyad as a dynamic system coping with social stress perturbations. The State Space Grid (SSG) method is thought to depict both flexibility and stability of the dyad across perturbations, but previous SSG evidence for the FFSF is limited. The main aims were: (1) to investigate mother-infant dyadic flexibility and stability across the FFSF using the SSG; (2) to evaluate the influence of dyadic functioning during Play on infant Still-Face response and of infant stress response in affecting dyadic functioning during Reunion. Forty 4-month-old infants and their mothers were micro-analytically coded during a FFSF and eight SSG dyadic states were obtained. Dyadic flexibility and attractor states were assessed during Play and Reunion. Infants' stress response was coded as negative engagement during the Still-Face episode. Two dyadic states, "maternal hetero-regulation" and "affective mismatch", showed significant changes in the number of visits from Play to Reunion. During Play "maternal positive support to infant play" emerged as attractor state, whereas during Reunion a second attractor emerged, namely "affective mismatch". Dyadic affective mismatch during Play correlated with infants' negative engagement during Still-Face, whereas infants' response to Still-Face resulted in minor social matching during Reunion. Findings provide new insights into the flexible, yet stable, functioning of the mother-infant dyad as a dynamic system. Evidence of a reciprocal influence between dyadic functioning and infant social stress response are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Nonlinear dynamics of the human lumbar intervertebral disc.

    PubMed

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2015-02-05

    Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The Molecular Origin of the MMR-dependent Apoptosis Pathway from Dynamics Analysis of MutSα-DNA Complexes

    PubMed Central

    Negureanu, Lacramioara; Salsbury, Freddie R.

    2012-01-01

    The cellular response to DNA damage signaling by MMR proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study we investigate correlated motions in response to the binding of mismatched and PCL DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer causing mutations or deletions. This confirms MSH2's role in signaling DNA-damage induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin. PMID:22712459

  14. Hydrologic processes and nutrient dynamics in a pristine mountain catchment

    USGS Publications Warehouse

    F. Richard Hauer,; Fagre, Daniel B.; Stanford, Jack A.

    2002-01-01

    Nutrient dynamics in watersheds have been used as an ecosystem-level indicator of overall ecosystem function or response to disturbance (e.g. Borman.N et al. 1974, WEBSTER et al. 1992). The examination of nutrients has been evaluated to determine responses to logging practices or other changes in watershed land use. Nutrient dynamics have been related to changing physical and biological characteristics (Mulholl AND 1992, CHESTNUT & McDowell 2000). Herein, the concentrations and dynamics of nitrogen, phosphorus and particulate organic carbon were examined in a large pristine watershed because they are affected by changes in discharge directly from the catchment and after passage through a large oligotrophic lake. 

  15. Green's function and Bloch theory for the analysis of the dynamic response of a periodically supported beam to a moving load

    NASA Astrophysics Data System (ADS)

    Lassoued, R.; Lecheheb, M.; Bonnet, G.

    2012-08-01

    This paper describes an analytical method for the wave field induced by a moving load on a periodically supported beam. The Green's function for an Euler beam without support is evaluated by using the direct integration. Afterwards, it introduces the supports into the model established by using the superposition principle which states that the response from all the sleeper points and from the external point force add up linearly to give a total response. The periodicity of the supports is described by Bloch's theorem. The homogeneous system thus obtained represents a linear differential equation which governs rail response. It is initially solved in the homogeneous case, and it admits a no null solution if its determinant is null, this permits the establishment the dispersion equation to Bloch waves and wave bands. The Bloch waves and dispersion curves contain all the physics of the dynamic problem and the wave field induced by a dynamic load applied to the system is finally obtained by decomposition into Bloch waves, similarly to the usual decomposition into dynamic modes on a finite structure. The method is applied to obtain the field induced by a load moving at constant velocity on a thin beam supported by periodic elastic supports.

  16. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-07-24

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150-200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300-350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual-motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions.

  17. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions

    PubMed Central

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-01-01

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708

  18. Dynamic tuning of chemiresistor sensitivity using mechanical strain

    DOEpatents

    Martin, James E; Read, Douglas H

    2014-09-30

    The sensitivity of a chemiresistor sensor can be dynamically tuned using mechanical strain. The increase in sensitivity is a smooth, continuous function of the applied strain, and the effect can be reversible. Sensitivity tuning enables the response curve of the sensor to be dynamically optimized for sensing analytes, such as volatile organic compounds, over a wide concentration range.

  19. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  20. Measurements of unsteady pressure and structural response for an elastic supercritical wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Seidel, David A.; Sandford, Maynard C.

    1994-01-01

    Results are presented which define unsteady flow conditions associated with the high-dynamic structural response of a high-aspect-ratio, elastic, supercritical wing at transonic speeds. The wing was tested in the Langley Transonic Dynamics Tunnel with a heavy gas test medium. The supercritical wing, designed for a cruise lift coefficient of 0.53 at a Mach number of 0.80, experienced the high-dynamic structural response from Mach 0.90 to 0.94 with the maximum response occurring at about Mach 0.92. At the maximum response conditions of the wing, the forcing function appears to be the oscillatory chordwise movement of strong shocks located on the upper and lower surfaces of the wing in conjunction with the flow separation on the lower surface of the wing in the trailing-edge cove region.

  1. T Cell Dynamic Activation and Functional Analysis in Nanoliter Droplet Microarray.

    PubMed

    Sarkar, Saheli; Motwani, Vinny; Sabhachandani, Pooja; Cohen, Noa; Konry, Tania

    2015-06-01

    Characterization of the heterogeneity in immune reactions requires assessing dynamic single cell responses as well as interactions between the various immune cell subsets. Maturation and activation of effector cells is regulated by cell contact-dependent and soluble factor-mediated paracrine signalling. Currently there are few methods available that allow dynamic investigation of both processes simultaneously without physically constraining non-adherent cells and eliminating crosstalk from neighboring cell pairs. We describe here a microfluidic droplet microarray platform that permits rapid functional analysis of single cell responses and co-encapsulation of heterotypic cell pairs, thereby allowing us to evaluate the dynamic activation state of primary T cells. The microfluidic droplet platform enables generation and docking of monodisperse nanoliter volume (0.523 nl) droplets, with the capacity of monitoring a thousand droplets per experiment. Single human T cells were encapsulated in droplets and stimulated on-chip with the calcium ionophore ionomycin. T cells were also co-encapsulated with dendritic cells activated by ovalbumin peptide, followed by dynamic calcium signal monitoring. Ionomycin-stimulated cells depicted fluctuation in calcium signalling compared to control. Both cell populations demonstrated marked heterogeneity in responses. Calcium signalling was observed in T cells immediately following contact with DCs, suggesting an early activation signal. T cells further showed non-contact mediated increase in calcium level, although this response was delayed compared to contact-mediated signals. Our results suggest that this nanoliter droplet array-based microfluidic platform is a promising technique for assessment of heterogeneity in various types of cellular responses, detection of early/delayed signalling events and live cell phenotyping of immune cells.

  2. Look-ahead Dynamic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Look-ahead dynamic simulation software system incorporates the high performance parallel computing technologies, significantly reduces the solution time for each transient simulation case, and brings the dynamic simulation analysis into on-line applications to enable more transparency for better reliability and asset utilization. It takes the snapshot of the current power grid status, functions in parallel computing the system dynamic simulation, and outputs the transient response of the power system in real time.

  3. Interparental Relationship Dynamics and Cardiac Vagal Functioning in Infancy

    PubMed Central

    Graham, Alice M.; Ablow, Jennifer C.; Measelle, Jeffrey R.

    2010-01-01

    This study examined associations between interparental relationship dynamics and vagus system functioning in infancy. The functioning of the vagus system, part of the parasympathetic nervous system, indexes emotional reactivity and regulation. Interparental avoidance and dyadic adjustment constitute the focus of this study in order to bring attention to relationship dynamics not subsumed under overt conflict. Infants’ baseline vagal tone and change in vagal tone in response to a novel toy were assessed at five months in a sample of high-risk mother-infant dyads (n = 77). Maternal report of interparental avoidance demonstrated an association with infants’ baseline vagal tone, while interparental dyadic adjustment was associated with change in infants’ vagal tone from baseline to the novel toy. Infant gender moderated these associations. Maternal sensitivity did not mediate interparental relationship dynamics and infants’ vagal functioning. Results are discussed in the context of emotional security theory. PMID:20727595

  4. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films

    NASA Astrophysics Data System (ADS)

    Yau, Allison; Cha, Wonsuk; Kanan, Matthew W.; Stephenson, G. Brian; Ulvestad, Andrew

    2017-05-01

    Polycrystalline material properties depend on the distribution and interactions of their crystalline grains. In particular, grain boundaries and defects are crucial in determining their response to external stimuli. A long-standing challenge is thus to observe individual grains, defects, and strain dynamics inside functional materials. Here we report a technique capable of revealing grain heterogeneity, including strain fields and individual dislocations, that can be used under operando conditions in reactive environments: grain Bragg coherent diffractive imaging (gBCDI). Using a polycrystalline gold thin film subjected to heating, we show how gBCDI resolves grain boundary and dislocation dynamics in individual grains in three-dimensional detail with 10-nanometer spatial and subangstrom displacement field resolution. These results pave the way for understanding polycrystalline material response under external stimuli and, ideally, engineering particular functions.

  5. Bragg coherent diffractive imaging of single-grain defect dynamics in polycrystalline films

    DOE PAGES

    Yau, Allison; Cha, Wonsuk; Kanan, Matthew W.; ...

    2017-05-19

    Polycrystalline material properties depend on the distribution and interactions of their crystalline grains. In particular, grain boundaries and defects are crucial in determining their response to external stimuli. A long-standing challenge is thus to observe individual grains, defects, and strain dynamics inside functional materials. Here we report a technique capable of revealing grain heterogeneity, including strain fields and individual dislocations, that can be used under operando conditions in reactive environments: grain Bragg coherent diffractive imaging (gBCDI). Using a polycrystalline gold thin film subjected to heating, we show how gBCDI resolves grain boundary and dislocation dynamics in individual grains in three-dimensionalmore » detail with 10-nanometer spatial and subangstrom displacement field resolution. Finally, these results pave the way for understanding polycrystalline material response under external stimuli and, ideally, engineering particular functions.« less

  6. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  7. Modeling the hysteretic moisture and temperature responses of soil carbon decomposition resulting from organo-mineral interactions

    NASA Astrophysics Data System (ADS)

    Tang, J.; Riley, W. J.

    2017-12-01

    Most existing soil carbon cycle models have modeled the moisture and temperature dependence of soil respiration using deterministic response functions. However, empirical data suggest abundant variability in both of these dependencies. We here use the recently developed SUPECA (Synthesizing Unit and Equilibrium Chemistry Approximation) theory and a published dynamic energy budget based microbial model to investigate how soil carbon decomposition responds to changes in soil moisture and temperature under the influence of organo-mineral interactions. We found that both the temperature and moisture responses are hysteretic and cannot be represented by deterministic functions. We then evaluate how the multi-scale variability in temperature and moisture forcing affect soil carbon decomposition. Our results indicate that when the model is run in scenarios mimicking laboratory incubation experiments, the often-observed temperature and moisture response functions can be well reproduced. However, when such response functions are used for model extrapolation involving more transient variability in temperature and moisture forcing (as found in real ecosystems), the dynamic model that explicitly accounts for hysteresis in temperature and moisture dependency produces significantly different estimations of soil carbon decomposition, suggesting there are large biases in models that do not resolve such hysteresis. We call for more studies on organo-mineral interactions to improve modeling of such hysteresis.

  8. Field optimization method of a dual-axis atomic magnetometer based on frequency-response and dynamics

    NASA Astrophysics Data System (ADS)

    Xing, Li; Quan, Wei; Fan, Wenfeng; Li, Rujie; Jiang, Liwei; Fang, Jiancheng

    2018-05-01

    The frequency-response and dynamics of a dual-axis spin-exchange-relaxation-free (SERF) atomic magnetometer are investigated by means of transfer function analysis. The frequency-response at different bias magnetic fields is tested to demonstrate the effect of the residual magnetic field. The resonance frequency of alkali atoms and magnetic linewidth can be obtained simultaneously through our theoretical model. The coefficient of determination of the fitting results is superior to 0.995 with 95% confidence bounds. Additionally, step responses are applied to analyze the dynamics of the control system and the effect of imperfections. Finally, a noise-limited magnetic field resolution of 15 fT {{\\sqrt{Hz}}-1} has been achieved for our dual-axis SERF atomic magnetometer through magnetic field optimization.

  9. Regulation of C:N:P stoichiometry of microbes and soil organic matter by optimizing enzyme allocation: an omics-informed model study

    NASA Astrophysics Data System (ADS)

    Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.

    2017-12-01

    Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in Panama sites.The implementation of dynamic enzyme allocation in response to nutrient availability in the CoMEND model enables us to capture the varying microbial C/P ratio and soil carbon dynamics in response to shifting nutrient constraints over time in tropical soils.

  10. Characterization and Comparison of Vibration Transfer Paths in a Helicopter Gearbox and a Fixture Mounted Gearbox

    NASA Technical Reports Server (NTRS)

    Islam, Akm Anwarul; Dempsey, Paula J.; Feldman, Jason; Larsen, Chris

    2014-01-01

    Health monitoring of rotorcraft components, currently being performed by Health and Usage Monitoring Systems through analyses of vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. HUMS analyze vibration signatures associated with faults and quantify them as condition indicators to predict component behavior. Vibration transfer paths are characterized by frequency response functions derived from the input/output relationship between applied force and dynamic response through a structure as a function of frequency. With an objective to investigate the differences in transfer paths, transfer path measurements were recorded under similar conditions in the left and right nose gearboxes of an AH-64 helicopter and in an isolated left nose gearbox in a test fixture at NASA Glenn Research Center. The test fixture enabled the application of measured torques-common during an actual operation. An impact hammer as well as commercial and lab piezo shakers, were used in conjunction with two types of commercially available accelerometers to collect the vibration response under various test conditions. The frequency response functions measured under comparable conditions of both systems were found to be consistent. Measurements made on the fixture indicated certain real-world installation and maintenance issues, such as sensor alignments, accelerometer locations and installation torques, had minimal effect. However, gear vibration transfer path dynamics appeared to be somewhat dependent on the presence of oil, and the transfer path dynamics were notably different if the force input was on the internal ring gear rather than on the external gearbox case.

  11. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  12. Representing perturbed dynamics in biological network models

    NASA Astrophysics Data System (ADS)

    Stoll, Gautier; Rougemont, Jacques; Naef, Felix

    2007-07-01

    We study the dynamics of gene activities in relatively small size biological networks (up to a few tens of nodes), e.g., the activities of cell-cycle proteins during the mitotic cell-cycle progression. Using the framework of deterministic discrete dynamical models, we characterize the dynamical modifications in response to structural perturbations in the network connectivities. In particular, we focus on how perturbations affect the set of fixed points and sizes of the basins of attraction. Our approach uses two analytical measures: the basin entropy H and the perturbation size Δ , a quantity that reflects the distance between the set of fixed points of the perturbed network and that of the unperturbed network. Applying our approach to the yeast-cell-cycle network introduced by Li [Proc. Natl. Acad. Sci. U.S.A. 101, 4781 (2004)] provides a low-dimensional and informative fingerprint of network behavior under large classes of perturbations. We identify interactions that are crucial for proper network function, and also pinpoint functionally redundant network connections. Selected perturbations exemplify the breadth of dynamical responses in this cell-cycle model.

  13. From powder to solution: hydration dependence of human hemoglobin dynamics correlated to body temperature.

    PubMed

    Stadler, A M; Digel, I; Embs, J P; Unruh, T; Tehei, M; Zaccai, G; Büldt, G; Artmann, G M

    2009-06-17

    A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. To focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data showed that amino acid side chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function.

  14. Functional response and population dynamics for fighting predator, based on activity distribution.

    PubMed

    Garay, József; Varga, Zoltán; Gámez, Manuel; Cabello, Tomás

    2015-03-07

    The classical Holling type II functional response, describing the per capita predation as a function of prey density, was modified by Beddington and de Angelis to include interference of predators that increases with predator density and decreases the number of killed prey. In the present paper we further generalize the Beddington-de Angelis functional response, considering that all predator activities (searching and handling prey, fight and recovery) have time duration, the probabilities of predator activities depend on the encounter probabilities, and hence on the prey and predator abundance, too. Under these conditions, the aim of the study is to introduce a functional response for fighting the predator and to analyse the corresponding dynamics, when predator-predator-prey encounters also occur. From this general approach, the Holling type functional responses can also be obtained as particular cases. In terms of the activity distribution, we give biologically interpretable sufficient conditions for stable coexistence. We consider two-individual (predator-prey) and three-individual (predator-predator-prey) encounters. In the three-individual encounter model there is a relatively higher fighting rate and a lower killing rate. Using numerical simulation, we surprisingly found that when the intrinsic prey growth rate and the conversion rate are small enough, the equilibrium predator abundance is higher in the three-individual encounter case. The above means that, when the equilibrium abundance of the predator is small, coexistence appears first in the three-individual encounter model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    PubMed

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  16. Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.

    PubMed

    Hahn, Andrew D; Rowe, Daniel B

    2012-02-01

    As more evidence is presented suggesting that the phase, as well as the magnitude, of functional MRI (fMRI) time series may contain important information and that there are theoretical drawbacks to modeling functional response in the magnitude alone, removing noise in the phase is becoming more important. Previous studies have shown that retrospective correction of noise from physiologic sources can remove significant phase variance and that dynamic main magnetic field correction and regression of estimated motion parameters also remove significant phase fluctuations. In this work, we investigate the performance of physiologic noise regression in a framework along with correction for dynamic main field fluctuations and motion regression. Our findings suggest that including physiologic regressors provides some benefit in terms of reduction in phase noise power, but it is small compared to the benefit of dynamic field corrections and use of estimated motion parameters as nuisance regressors. Additionally, we show that the use of all three techniques reduces phase variance substantially, removes undesirable spatial phase correlations and improves detection of the functional response in magnitude and phase. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.

    2015-09-28

    Two dimensional electronic spectroscopy has proven to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less

  18. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less

  19. A method for the direct measurement of electronic site populations in a molecular aggregate using two-dimensional electronic-vibrational spectroscopy.

    PubMed

    Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R

    2015-09-28

    Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.

  20. Componentry for lower extremity prostheses.

    PubMed

    Friel, Karen

    2005-09-01

    Prosthetic components for both transtibial and transfemoral amputations are available for patients of every level of ambulation. Most current suspension systems, knees, foot/ankle assemblies, and shock absorbers use endoskeletal construction that emphasizes total contact and weight distribution between bony structures and soft tissues. Different components offer varying benefits to energy expenditure, activity level, balance, and proprioception. Less dynamic ambulators may use fixed-cadence knees and non-dynamic response feet; higher functioning walkers benefit from dynamic response feet and variable-cadence knees. In addition, specific considerations must be kept in mind when fitting a patient with peripheral vascular disease or diabetes.

  1. Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test

    NASA Technical Reports Server (NTRS)

    Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert

    2005-01-01

    Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '

  2. Mitochondrial morphology transitions and functions: implications for retrograde signaling?

    PubMed Central

    Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.

    2013-01-01

    In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527

  3. Frontal Theta Dynamics during Response Conflict in Long-Term Mindfulness Meditators

    PubMed Central

    Jo, Han-Gue; Malinowski, Peter; Schmidt, Stefan

    2017-01-01

    Mindfulness meditators often show greater efficiency in resolving response conflicts than non-meditators. However, the neural mechanisms underlying the improved behavioral efficiency are unclear. Here, we investigated frontal theta dynamics—a neural mechanism involved in cognitive control processes—in long-term mindfulness meditators. The dynamics of EEG theta oscillations (4–8 Hz) recorded over the medial frontal cortex (MFC) were examined in terms of their power (MFC theta power) and their functional connectivity with other brain areas (the MFC-centered theta network). Using a flanker-type paradigm, EEG data were obtained from 22 long-term mindfulness meditators and compared to those from 23 matched controls without meditation experience. Meditators showed more efficient cognitive control after conflicts, evidenced by fewer error responses irrespective of response timing. Furthermore, meditators exhibited enhanced conflict modulations of the MFC-centered theta network shortly before the response, in particular for the functional connection between the MFC and the motor cortex. In contrast, MFC theta power was comparable between groups. These results suggest that the higher behavioral efficiency after conflicts in mindfulness meditators could be a function of increased engagement to control the motor system in association with the MFC-centered theta network. PMID:28638334

  4. Imaging via complete cantilever dynamic detection: General dynamic mode imaging and spectroscopy in scanning probe microscopy

    DOE PAGES

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.; ...

    2016-09-08

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify themore » findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.« less

  5. Attachment and Jealousy: Understanding the Dynamic Experience of Jealousy Using the Response Escalation Paradigm.

    PubMed

    Huelsnitz, Chloe O; Farrell, Allison K; Simpson, Jeffry A; Griskevicius, Vladas; Szepsenwol, Ohad

    2018-04-01

    Jealousy is a complex, dynamic experience that unfolds over time in relationship-threatening situations. Prior research has used retrospective reports that cannot disentangle initial levels and change in jealousy in response to escalating threat. In three studies, we examined responses to the Response Escalation Paradigm (REP)-a 5-stage hypothetical scenario in which individuals are exposed to increasing levels of relationship threat-as a function of attachment orientations. Highly anxious individuals exhibited hypervigilant, slow escalation response patterns, interfered earlier in the REP, felt more jealousy, sadness, and worry when they interfered, and wanted to engage in more vigilant, destructive, and passive behaviors aimed at their partner. Highly avoidant individuals felt more anger when they interfered in the REP and wanted to engage in more partner-focused, destructive behaviors. The REP offers a dynamic method for inducing and examining jealousy and introduces a novel approach to studying other emotional experiences.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somnath, Suhas; Collins, Liam; Matheson, Michael A.

    We develop and implement a multifrequency spectroscopy and spectroscopic imaging mode, referred to as general dynamic mode (GDM), that captures the complete spatially- and stimulus dependent information on nonlinear cantilever dynamics in scanning probe microscopy (SPM). GDM acquires the cantilever response including harmonics and mode mixing products across the entire broadband cantilever spectrum as a function of excitation frequency. GDM spectra substitute the classical measurements in SPM, e.g. amplitude and phase in lock-in detection. Here, GDM is used to investigate the response of a purely capacitively driven cantilever. We use information theory techniques to mine the data and verify themore » findings with governing equations and classical lock-in based approaches. We explore the dependence of the cantilever dynamics on the tip–sample distance, AC and DC driving bias. This approach can be applied to investigate the dynamic behavior of other systems within and beyond dynamic SPM. In conclusion, GDM is expected to be useful for separating the contribution of different physical phenomena in the cantilever response and understanding the role of cantilever dynamics in dynamic AFM techniques.« less

  8. Improving traditional balancing methods for high-speed rotors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ling, J.; Cao, Y.

    1996-01-01

    This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in thismore » paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.« less

  9. 76 FR 66057 - North American Electric Reliability Corporation; Order Approving Regional Reliability Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... system conditions when the system experiences dynamic events such as low frequency oscillations, or... R8 requires that dynamic disturbance recorders function continuously. To capture system disturbance... recording capability necessary to monitor the response of the Bulk-Power System to system disturbances...

  10. Handling times and saturating transmission functions in a snail-worm symbiosis.

    PubMed

    Hopkins, Skylar R; McGregor, Cari M; Belden, Lisa K; Wojdak, Jeremy M

    2018-06-16

    All dynamic species interaction models contain an assumption that describes how contact rates scale with population density. Choosing an appropriate contact-density function is important, because different functions have different implications for population dynamics and stability. However, this choice can be challenging, because there are many possible functions, and most are phenomenological and thus difficult to relate to underlying ecological processes. Using one such phenomenological function, we described a nonlinear relationship between field transmission rates and host density in a common snail-oligochaete symbiosis. We then used a well-known contact function from predator-prey models, the Holling Type II functional response, to describe and predict host snail contact rates in the laboratory. The Holling Type II functional response accurately described both the nonlinear contact-density relationship and the average contact duration that we observed. Therefore, we suggest that contact rates saturate with host density in this system because each snail contact requires a non-instantaneous handling time, and additional possible contacts do not occur during that handling time. Handling times and nonlinear contact rates might also explain the nonlinear relationship between symbiont transmission and snail density that we observed in the field, which could be confirmed by future work that controls for other potential sources of seasonal variation in transmission rates. Because most animal contacts are not instantaneous, the Holling Type II functional response might be broadly relevant to diverse host-symbiont systems.

  11. Evaluation of space shuttle main engine fluid dynamic frequency response characteristics

    NASA Technical Reports Server (NTRS)

    Gardner, T. G.

    1980-01-01

    In order to determine the POGO stability characteristics of the space shuttle main engine liquid oxygen (LOX) system, the fluid dynamic frequency response functions between elements in the SSME LOX system was evaluated, both analytically and experimentally. For the experimental data evaluation, a software package was written for the Hewlett-Packard 5451C Fourier analyzer. The POGO analysis software is documented and consists of five separate segments. Each segment is stored on the 5451C disc as an individual program and performs its own unique function. Two separate data reduction methods, a signal calibration, coherence or pulser signal based frequency response function blanking, and automatic plotting features are included in the program. The 5451C allows variable parameter transfer from program to program. This feature is used to advantage and requires only minimal user interface during the data reduction process. Experimental results are included and compared with the analytical predictions in order to adjust the general model and arrive at a realistic simulation of the POGO characteristics.

  12. Test procedures and performance measures sensitive to automobile steering dynamics. [considering operator/vehicle responses

    NASA Technical Reports Server (NTRS)

    Klein, R. H.; Mcruer, D. T.; Weir, D.

    1975-01-01

    A maneuver complex and related performance measures used to evaluate driver/vehicle system responses as effected by variations in the directional response characteristics of passenger cars are described. The complex consists of normal and emergency maneuvers (including random and discrete disturbances) which, taken as a whole, represent all classes of steering functions and all modes of driver response behavior. Measures of driver/vehicle system response and performance in regulation tasks included direct describing function measurements and rms yaw velocity. In transient maneuvers, measures such as steering activity and cone strikes were used.

  13. The Contribution of Mathematical Modeling to Understanding Dynamic Aspects of Rumen Metabolism

    PubMed Central

    Bannink, André; van Lingen, Henk J.; Ellis, Jennifer L.; France, James; Dijkstra, Jan

    2016-01-01

    All mechanistic rumen models cover the main drivers of variation in rumen function, which are feed intake, the differences between feedstuffs and feeds in their intrinsic rumen degradation characteristics, and fractional outflow rate of fluid and particulate matter. Dynamic modeling approaches are best suited to the prediction of more nuanced responses in rumen metabolism, and represent the dynamics of the interactions between substrates and micro-organisms and inter-microbial interactions. The concepts of dynamics are discussed for the case of rumen starch digestion as influenced by starch intake rate and frequency of feed intake, and for the case of fermentation of fiber in the large intestine. Adding representations of new functional classes of micro-organisms (i.e., with new characteristics from the perspective of whole rumen function) in rumen models only delivers new insights if complemented by the dynamics of their interactions with other functional classes. Rumen fermentation conditions have to be represented due to their profound impact on the dynamics of substrate degradation and microbial metabolism. Although the importance of rumen pH is generally acknowledged, more emphasis is needed on predicting its variation as well as variation in the processes that underlie rumen fluid dynamics. The rumen wall has an important role in adapting to rapid changes in the rumen environment, clearing of volatile fatty acids (VFA), and maintaining rumen pH within limits. Dynamics of rumen wall epithelia and their role in VFA absorption needs to be better represented in models that aim to predict rumen responses across nutritional or physiological states. For a detailed prediction of rumen N balance there is merit in a dynamic modeling approach compared to the static approaches adopted in current protein evaluation systems. Improvement is needed on previous attempts to predict rumen VFA profiles, and this should be pursued by introducing factors that relate more to microbial metabolism. For rumen model construction, data on rumen microbiomes are preferably coupled with knowledge consolidated in rumen models instead of relying on correlations with rather general aspects of treatment or animal. This helps to prevent the disregard of basic principles and underlying mechanisms of whole rumen function. PMID:27933039

  14. Thermospheric dynamics - A system theory approach

    NASA Technical Reports Server (NTRS)

    Codrescu, M.; Forbes, J. M.; Roble, R. G.

    1990-01-01

    A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.

  15. Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate

    NASA Astrophysics Data System (ADS)

    Mehar, Kulmani; Panda, Subrata Kumar

    2018-03-01

    In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.

  16. Generalized fluid impulse functions for oscillating marine structures

    NASA Astrophysics Data System (ADS)

    Janardhanan, K.; Price, W. G.; Wu, Y.

    1992-03-01

    A selection of generalized impulse response functions is presented for a variety of rigid and flexible marine structures (i.e. mono-hull, SWATH, floating drydock and twin dock, fixed flexible pile). These functions are determined from calculated and experimental frequency-dependent hydrodynamic data, and the characteristics of these data depend on the type of structure considered. This information is reflected in the shape and duration of the generalized impulse response functions which are pre-requisites for a generalized integro-differential mathematical model describing the dynamic behaviour of the structures to seaway excitation.

  17. On the Relationship Between Transfer Function-derived Response Times and Hydrograph Analysis Timing Parameters: Are there Similarities?

    NASA Astrophysics Data System (ADS)

    Bansah, S.; Ali, G.; Haque, M. A.; Tang, V.

    2017-12-01

    The proportion of precipitation that becomes streamflow is a function of internal catchment characteristics - which include geology, landscape characteristics and vegetation - and influence overall storage dynamics. The timing and quantity of water discharged by a catchment are indeed embedded in event hydrographs. Event hydrograph timing parameters, such as the response lag and time of concentration, are important descriptors of how long it takes the catchment to respond to input precipitation and how long it takes the latter to filter through the catchment. However, the extent to which hydrograph timing parameters relate to average response times derived from fitting transfer functions to annual hydrographs is unknown. In this study, we used a gamma transfer function to determine catchment average response times as well as event-specific hydrograph parameters across a network of eight nested watersheds ranging from 0.19 km2 to 74.6 km2 prairie catchments located in south central Manitoba (Canada). Various statistical analyses were then performed to correlate average response times - estimated using the parameters of the fitted gamma transfer function - to event-specific hydrograph parameters. Preliminary results show significant interannual variations in response times and hydrograph timing parameters: the former were in the order of a few hours to days, while the latter ranged from a few days to weeks. Some statistically significant relationships were detected between response times and event-specific hydrograph parameters. Future analyses will involve the comparison of statistical distributions of event-specific hydrograph parameters with that of runoff response times and baseflow transit times in order to quantity catchment storage dynamics across a range of temporal scales.

  18. Insights into distinct modulation of α7 and α7β2 nicotinic acetylcholine receptors by the volatile anesthetic isoflurane.

    PubMed

    Mowrey, David D; Liu, Qiang; Bondarenko, Vasyl; Chen, Qiang; Seyoum, Edom; Xu, Yan; Wu, Jie; Tang, Pei

    2013-12-13

    Nicotinic acetylcholine receptors (nAChRs) are targets of general anesthetics, but functional sensitivity to anesthetic inhibition varies dramatically among different subtypes of nAChRs. Potential causes underlying different functional responses to anesthetics remain elusive. Here we show that in contrast to the α7 nAChR, the α7β2 nAChR is highly susceptible to inhibition by the volatile anesthetic isoflurane in electrophysiology measurements. Isoflurane-binding sites in β2 and α7 were found at the extracellular and intracellular end of their respective transmembrane domains using NMR. Functional relevance of the identified β2 site was validated via point mutations and subsequent functional measurements. Consistent with their functional responses to isoflurane, β2 but not α7 showed pronounced dynamics changes, particularly for the channel gate residue Leu-249(9'). These results suggest that anesthetic binding alone is not sufficient to generate functional impact; only those sites that can modulate channel dynamics upon anesthetic binding will produce functional effects.

  19. High dynamic range image acquisition based on multiplex cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  20. Recent research and applications of numerical simulation for dynamic response of long-span bridges subjected to multiple loads.

    PubMed

    Chen, Zhiwei; Chen, Bo

    2014-01-01

    Many long-span bridges have been built throughout the world in recent years but they are often subject to multiple types of dynamic loads, especially those located in wind-prone regions and carrying both trains and road vehicles. To ensure the safety and functionality of these bridges, dynamic responses of long-span bridges are often required for bridge assessment. Given that there are several limitations for the assessment based on field measurement of dynamic responses, a promising approach is based on numerical simulation technologies. This paper provides a detailed review of key issues involved in dynamic response analysis of long-span multiload bridges based on numerical simulation technologies, including dynamic interactions between running trains and bridge, between running road vehicles and bridge, and between wind and bridge, and in the wind-vehicle-bridge coupled system. Then a comprehensive review is conducted for engineering applications of newly developed numerical simulation technologies to safety assessment of long-span bridges, such as assessment of fatigue damage and assessment under extreme events. Finally, the existing problems and promising research efforts for the numerical simulation technologies and their applications to assessment of long-span multiload bridges are explored.

  1. Recent Research and Applications of Numerical Simulation for Dynamic Response of Long-Span Bridges Subjected to Multiple Loads

    PubMed Central

    Chen, Zhiwei; Chen, Bo

    2014-01-01

    Many long-span bridges have been built throughout the world in recent years but they are often subject to multiple types of dynamic loads, especially those located in wind-prone regions and carrying both trains and road vehicles. To ensure the safety and functionality of these bridges, dynamic responses of long-span bridges are often required for bridge assessment. Given that there are several limitations for the assessment based on field measurement of dynamic responses, a promising approach is based on numerical simulation technologies. This paper provides a detailed review of key issues involved in dynamic response analysis of long-span multiload bridges based on numerical simulation technologies, including dynamic interactions between running trains and bridge, between running road vehicles and bridge, and between wind and bridge, and in the wind-vehicle-bridge coupled system. Then a comprehensive review is conducted for engineering applications of newly developed numerical simulation technologies to safety assessment of long-span bridges, such as assessment of fatigue damage and assessment under extreme events. Finally, the existing problems and promising research efforts for the numerical simulation technologies and their applications to assessment of long-span multiload bridges are explored. PMID:25006597

  2. A sensitivity study of fast outlet glaciers to short timescale cyclical perturbations

    NASA Astrophysics Data System (ADS)

    Aykutlug, E.; Dupont, T. K.

    2015-01-01

    The dynamic response of outlet glaciers on short (annual to decadal) timescales is affected by various external forcings, such as basal or oceanic conditions. Understanding the sensitivity of the dynamic response to such forcings can help assess more accurate ice volume projections. In this work, we investigate the spatiotemporal sensitivity of outlet glaciers to fast cyclical forcings using a one-dimensional depth and width-averaged heuristic model. Our results indicate that even on such short timescales, nonlinearities in ice dynamics may lead to an asymmetric response, despite the forcing functions being symmetric around each reference value. Results also show that such short-timescale effects become more pronounced as glaciers become closer to flotation. While being qualitatively similar for both downsloping and upsloping bed geometries, the results indicate higher sensitivity for upsloping ("West Antarctica-like") beds. The range in asymmetric response for different configurations motivate parameterizing or including short-timescale effects in models while investigating the dynamic behavior of outlet glaciers.

  3. Prescribed fire, soil nitrogen dynamics, and plant responses in a semiarid grassland

    USDA-ARS?s Scientific Manuscript database

    Fire is a key driver of the structure and function of grassland ecosystems. In arid and semiarid ecosystems, where moisture limits plant production more than light, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through ...

  4. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  5. Modelling and Simulation of the Dynamics of the Antigen-Specific T Cell Response Using Variable Structure Control Theory.

    PubMed

    Anelone, Anet J N; Spurgeon, Sarah K

    2016-01-01

    Experimental and mathematical studies in immunology have revealed that the dynamics of the programmed T cell response to vigorous infection can be conveniently modelled using a sigmoidal or a discontinuous immune response function. This paper hypothesizes strong synergies between this existing work and the dynamical behaviour of engineering systems with a variable structure control (VSC) law. These findings motivate the interpretation of the immune system as a variable structure control system. It is shown that dynamical properties as well as conditions to analytically assess the transition from health to disease can be developed for the specific T cell response from the theory of variable structure control. In particular, it is shown that the robustness properties of the specific T cell response as observed in experiments can be explained analytically using a VSC perspective. Further, the predictive capacity of the VSC framework to determine the T cell help required to overcome chronic Lymphocytic Choriomeningitis Virus (LCMV) infection is demonstrated. The findings demonstrate that studying the immune system using variable structure control theory provides a new framework for evaluating immunological dynamics and experimental observations. A modelling and simulation tool results with predictive capacity to determine how to modify the immune response to achieve healthy outcomes which may have application in drug development and vaccine design.

  6. Longitudinal Dynamics of 3-Dimensional Components of Selfhood After Severe Traumatic Brain Injury: A qEEG Case Study.

    PubMed

    Fingelkurts, Andrew A; Fingelkurts, Alexander A

    2017-09-01

    In this report, we describe the case of a patient who sustained extremely severe traumatic brain damage with diffuse axonal injury in a traffic accident and whose recovery was monitored during 6 years. Specifically, we were interested in the recovery dynamics of 3-dimensional components of selfhood (a 3-dimensional construct model for the complex experiential selfhood has been recently proposed based on the empirical findings on the functional-topographical specialization of 3 operational modules of brain functional network responsible for the self-consciousness processing) derived from the electroencephalographic (EEG) signal. The analysis revealed progressive (though not monotonous) restoration of EEG functional connectivity of 3 modules of brain functional network responsible for the self-consciousness processing, which was also paralleled by the clinically significant functional recovery. We propose that restoration of normal integrity of the operational modules of the self-referential brain network may underlie the positive dynamics of 3 aspects of selfhood and provide a neurobiological mechanism for their recovery. The results are discussed in the context of recent experimental studies that support this inference. Studies of ongoing recovery after severe brain injury utilizing knowledge about each separate aspect of complex selfhood will likely help to develop more efficient and targeted rehabilitation programs for patients with brain trauma.

  7. Impaired Overt Facial Mimicry in Response to Dynamic Facial Expressions in High-Functioning Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yoshimura, Sayaka; Sato, Wataru; Uono, Shota; Toichi, Motomi

    2015-01-01

    Previous electromyographic studies have reported that individuals with autism spectrum disorders (ASD) exhibited atypical patterns of facial muscle activity in response to facial expression stimuli. However, whether such activity is expressed in visible facial mimicry remains unknown. To investigate this issue, we videotaped facial responses in…

  8. Executive Functions and Prefrontal Cortex: A Matter of Persistence?

    PubMed Central

    Ball, Gareth; Stokes, Paul R.; Rhodes, Rebecca A.; Bose, Subrata K.; Rezek, Iead; Wink, Alle-Meije; Lord, Louis-David; Mehta, Mitul A.; Grasby, Paul M.; Turkheimer, Federico E.

    2011-01-01

    Executive function is thought to originates from the dynamics of frontal cortical networks. We examined the dynamic properties of the blood oxygen level dependent time-series measured with functional MRI (fMRI) within the prefrontal cortex (PFC) to test the hypothesis that temporally persistent neural activity underlies performance in three tasks of executive function. A numerical estimate of signal persistence, the Hurst exponent, postulated to represent the coherent firing of cortical networks, was determined and correlated with task performance. Increasing persistence in the lateral PFC was shown to correlate with improved performance during an n-back task. Conversely, we observed a correlation between persistence and increasing commission error – indicating a failure to inhibit a prepotent response – during a Go/No-Go task. We propose that persistence within the PFC reflects dynamic network formation and these findings underline the importance of frequency analysis of fMRI time-series in the study of executive functions. PMID:21286223

  9. Initial photoinduced dynamics of the photoactive yellow protein.

    PubMed

    Larsen, Delmar S; van Grondelle, Rienk

    2005-05-01

    The photoactive yellow protein (PYP) is the photoreceptor protein responsible for initiating the blue-light repellent response of the Halorhodospira halophila bacterium. Optical excitation of the intrinsic chromophore in PYP, p-coumaric acid, leads to the initiation of a photocycle that comprises several distinct intermediates. The dynamical processes responsible for the initiation of the PYP photocycle have been explored with several time-resolved techniques, which include ultrafast electronic and vibrational spectroscopies. Ultrafast electronic spectroscopies, such as pump-visible probe, pump-dump-visible probe, and fluorescence upconversion, are useful in identifying the timescales and connectivity of the transient intermediates, while ultrafast vibrational spectroscopies link these intermediates to dynamic structures. Herein, we present the use of these techniques for exploring the initial dynamics of PYP, and show how these techniques provide the basis for understanding the complex relationship between protein and chromophore, which ultimately results in biological function.

  10. Inferring neural activity from BOLD signals through nonlinear optimization.

    PubMed

    Vakorin, Vasily A; Krakovska, Olga O; Borowsky, Ron; Sarty, Gordon E

    2007-11-01

    The blood oxygen level-dependent (BOLD) fMRI signal does not measure neuronal activity directly. This fact is a key concern for interpreting functional imaging data based on BOLD. Mathematical models describing the path from neural activity to the BOLD response allow us to numerically solve the inverse problem of estimating the timing and amplitude of the neuronal activity underlying the BOLD signal. In fact, these models can be viewed as an advanced substitute for the impulse response function. In this work, the issue of estimating the dynamics of neuronal activity from the observed BOLD signal is considered within the framework of optimization problems. The model is based on the extended "balloon" model and describes the conversion of neuronal signals into the BOLD response through the transitional dynamics of the blood flow-inducing signal, cerebral blood flow, cerebral blood volume and deoxyhemoglobin concentration. Global optimization techniques are applied to find a control input (the neuronal activity and/or the biophysical parameters in the model) that causes the system to follow an admissible solution to minimize discrepancy between model and experimental data. As an alternative to a local linearization (LL) filtering scheme, the optimization method escapes the linearization of the transition system and provides a possibility to search for the global optimum, avoiding spurious local minima. We have found that the dynamics of the neural signals and the physiological variables as well as the biophysical parameters can be robustly reconstructed from the BOLD responses. Furthermore, it is shown that spiking off/on dynamics of the neural activity is the natural mathematical solution of the model. Incorporating, in addition, the expansion of the neural input by smooth basis functions, representing a low-pass filtering, allows us to model local field potential (LFP) solutions instead of spiking solutions.

  11. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study.

    PubMed

    Fu, Cynthia H Y; Williams, Steven C R; Cleare, Anthony J; Brammer, Michael J; Walsh, Nicholas D; Kim, Jieun; Andrew, Chris M; Pich, Emilio Merlo; Williams, Pauline M; Reed, Laurence J; Mitterschiffthaler, Martina T; Suckling, John; Bullmore, Edward T

    2004-09-01

    Depression is associated with interpersonal difficulties related to abnormalities in affective facial processing. To map brain systems activated by sad facial affect processing in patients with depression and to identify brain functional correlates of antidepressant treatment and symptomatic response. Two groups underwent scanning twice using functional magnetic resonance imaging (fMRI) during an 8-week period. The event-related fMRI paradigm entailed incidental affect recognition of facial stimuli morphed to express discriminable intensities of sadness. Participants were recruited by advertisement from the local population; depressed subjects were treated as outpatients. We matched 19 medication-free, acutely symptomatic patients satisfying DSM-IV criteria for unipolar major depressive disorder by age, sex, and IQ with 19 healthy volunteers. Intervention After the baseline assessment, patients received fluoxetine hydrochloride, 20 mg/d, for 8 weeks. Average activation (capacity) and differential response to variable affective intensity (dynamic range) were estimated in each fMRI time series. We used analysis of variance to identify brain regions that demonstrated a main effect of group (depressed vs healthy subjects) and a group x time interaction (attributable to antidepressant treatment). Change in brain activation associated with reduction of depressive symptoms in the patient group was identified by means of regression analysis. Permutation tests were used for inference. Over time, depressed subjects showed reduced capacity for activation in the left amygdala, ventral striatum, and frontoparietal cortex and a negatively correlated increase of dynamic range in the prefrontal cortex. Symptomatic improvement was associated with reduction of dynamic range in the pregenual cingulate cortex, ventral striatum, and cerebellum. Antidepressant treatment reduces left limbic, subcortical, and neocortical capacity for activation in depressed subjects and increases the dynamic range of the left prefrontal cortex. Changes in anterior cingulate function associated with symptomatic improvement indicate that fMRI may be a useful surrogate marker of antidepressant treatment response.

  12. The dynamic-response characteristics of a 35 degree swept-wing airplane as determined from flight measurements

    NASA Technical Reports Server (NTRS)

    Triplett, William C; Brown, Stuart C; Smith, G Allan

    1955-01-01

    The longitudinal and lateral-directional dynamic-response characteristics of a 35 degree swept-wing fighter-type airplane determined from flight measurements are presented and compared with predictions based on theoretical studies and wind-tunnel data. Flights were made at an altitude of 35,000 feet covering the Mach number range of 0.50 to 1.04. A limited amount of lateral-directional data were also obtained at 10,000 feet. The flight consisted essentially of recording transient responses to pilot-applied pulsed motions of each of the three primary control surfaces. These transient data were converted into frequency-response form by means of the Fourier transformation and compared with predicted responses calculated from the basic equations. Experimentally determined transfer functions were used for the evaluation of the stability derivatives that have the greatest effect on the dynamic response of the airplane. The values of these derivatives, in most cases, agreed favorably with predictions over the Mach number range of the test.

  13. Spectral functions of strongly correlated extended systems via an exact quantum embedding

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Chan, Garnet Kin-Lic

    2015-04-01

    Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.

  14. Scaling within the spectral function approach

    NASA Astrophysics Data System (ADS)

    Sobczyk, J. E.; Rocco, N.; Lovato, A.; Nieves, J.

    2018-03-01

    Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.

  15. Dynamic neural activity during stress signals resilient coping

    PubMed Central

    Sinha, Rajita; Lacadie, Cheryl M.; Constable, R. Todd; Seo, Dongju

    2016-01-01

    Active coping underlies a healthy stress response, but neural processes supporting such resilient coping are not well-known. Using a brief, sustained exposure paradigm contrasting highly stressful, threatening, and violent stimuli versus nonaversive neutral visual stimuli in a functional magnetic resonance imaging (fMRI) study, we show significant subjective, physiologic, and endocrine increases and temporally related dynamically distinct patterns of neural activation in brain circuits underlying the stress response. First, stress-specific sustained increases in the amygdala, striatum, hypothalamus, midbrain, right insula, and right dorsolateral prefrontal cortex (DLPFC) regions supported the stress processing and reactivity circuit. Second, dynamic neural activation during stress versus neutral runs, showing early increases followed by later reduced activation in the ventrolateral prefrontal cortex (VLPFC), dorsal anterior cingulate cortex (dACC), left DLPFC, hippocampus, and left insula, suggested a stress adaptation response network. Finally, dynamic stress-specific mobilization of the ventromedial prefrontal cortex (VmPFC), marked by initial hypoactivity followed by increased VmPFC activation, pointed to the VmPFC as a key locus of the emotional and behavioral control network. Consistent with this finding, greater neural flexibility signals in the VmPFC during stress correlated with active coping ratings whereas lower dynamic activity in the VmPFC also predicted a higher level of maladaptive coping behaviors in real life, including binge alcohol intake, emotional eating, and frequency of arguments and fights. These findings demonstrate acute functional neuroplasticity during stress, with distinct and separable brain networks that underlie critical components of the stress response, and a specific role for VmPFC neuroflexibility in stress-resilient coping. PMID:27432990

  16. Photomechanical Deformation of Azobenzene-Functionalized Polyimides Synthesized with Bulky Substituents (Postprint)

    DTIC Science & Technology

    2017-12-06

    mechanical response of the azobenzene- functionalized polyimide is correlated to the rotational freedom of the polyimide chains (resulting in extensive... correlated to the rotational freedom of the polyimide chains (resulting in extensive segmental mobility) and fractional free volume (FFV > 0.1...response has been described,34 and a recent simulation study on the stress relaxation dynamics of azo-polyimides has provided insights into the correlation

  17. Steady-state and dynamic analysis of a jet engine, gas lubricated shaft seal

    NASA Technical Reports Server (NTRS)

    Shapiro, W.; Colsher, R.

    1974-01-01

    Dynamic response of a gas-lubricated, jet-engine main shaft seal was analytically established as a function of collar misalignment and secondary seal friction. Response was obtained by a forward integration-in-time (time-transient) scheme, which traces a time history of seal motions in all its degrees of freedom. Results were summarized in the form of a seal tracking map which indicated regions of acceptable collar misalignments and secondary seal friction. Methodology, results and interpretations are comprehensively described.

  18. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    DOEpatents

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  19. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  20. Near-infrared light-responsive dynamic wrinkle patterns.

    PubMed

    Li, Fudong; Hou, Honghao; Yin, Jie; Jiang, Xuesong

    2018-04-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light-responsive dynamic wrinkles by using a carbon nanotube (CNT)-containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics.

  1. Stress and strain in the contractile and cytoskeletal filaments of airway smooth muscle.

    PubMed

    Deng, Linhong; Bosse, Ynuk; Brown, Nathan; Chin, Leslie Y M; Connolly, Sarah C; Fairbank, Nigel J; King, Greg G; Maksym, Geoffrey N; Paré, Peter D; Seow, Chun Y; Stephen, Newman L

    2009-10-01

    Stress and strain are omnipresent in the lung due to constant lung volume fluctuation associated with respiration, and they modulate the phenotype and function of all cells residing in the airways including the airway smooth muscle (ASM) cell. There is ample evidence that the ASM cell is very sensitive to its physical environment, and can alter its structure and/or function accordingly, resulting in either desired or undesired consequences. The forces that are either conferred to the ASM cell due to external stretching or generated inside the cell must be borne and transmitted inside the cytoskeleton (CSK). Thus, maintaining appropriate levels of stress and strain within the CSK is essential for maintaining normal function. Despite the importance, the mechanisms regulating/dysregulating ASM cytoskeletal filaments in response to stress and strain remained poorly understood until only recently. For example, it is now understood that ASM length and force are dynamically regulated, and both can adapt over a wide range of length, rendering ASM one of the most malleable living tissues. The malleability reflects the CSK's dynamic mechanical properties and plasticity, both of which strongly interact with the loading on the CSK, and all together ultimately determines airway narrowing in pathology. Here we review the latest advances in our understanding of stress and strain in ASM cells, including the organization of contractile and cytoskeletal filaments, range and adaptation of functional length, structural and functional changes of the cell in response to mechanical perturbation, ASM tone as a mediator of strain-induced responses, and the novel glassy dynamic behaviors of the CSK in relation to asthma pathophysiology.

  2. Objective and automated measurement of dynamic vision functions

    NASA Technical Reports Server (NTRS)

    Flom, M. C.; Adams, A. J.

    1976-01-01

    A phoria stimulus array and electro-oculographic (EOG) arrangements for measuring motor and sensory responses of subjects subjected to stress or drug conditions are described, along with experimental procedures. Heterophoria (as oculomotor function) and glare recovery time (time required for photochemical and neural recovery after exposure to a flash stimulus) are measured, in research aimed at developing automated objective measurement of dynamic vision functions. Onset of involuntary optokinetic nystagmus in subjects attempting to track moving stripes (while viewing through head-mounted binocular eyepieces) after exposure to glare serves as an objective measure of glare recovery time.

  3. Effect of pH on the hinge region of influenza viral protein: a combined constant pH and well-tempered molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Pathak, Arup Kumar

    2018-05-01

    Despite the knowledge that the influenza protein, hemagglutinin, undergoes a large conformational change at low pH during the process of fusion with the host cell, its molecular mechanism remains elusive. The present constant pH molecular dynamics (CpHMD) study identifies the residues responsible for large conformational change in acidic condition. Based on the pKa calculations, it is predicted that His-106 is much more responsible for the large conformational change than any other residues in the hinge region of hemagglutinin protein. Potential of mean force profile from well-tempered meta-dynamics (WT-MtD) simulation is also generated along the folding pathway by considering radius of gyration (R gyr) as a collective variable (CV). It is very clear from the present WT-MtD study, that the initial bending starts at that hinge region, which may trigger other conformational changes. Both the protein–protein and protein–water HB time correlation functions are monitored along the folding pathway. The protein–protein (full or hinge region) HB time correlation functions are always found to be stronger than those of the protein–water time correlation functions. The dynamical balance between protein–protein and protein–water HB interactions favors the stabilization of the folded state.

  4. Dynamics of polymers: A mean-field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Glenn H.; Materials Research Laboratory, University of California, Santa Barbara, California 93106; Department of Materials, University of California, Santa Barbara, California 93106

    2014-02-28

    We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose (MSR) type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ and a conjugate MSR response field ϕ, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamicsmore » involving hybrid particle-field simulation techniques such as the single-chain in mean-field method.« less

  5. [Diagnosis and treatment of anxiety-depressive disorders in patients with myocardial infarction].

    PubMed

    Semiglazova, M V; Krasnov, V N; Dovzhenko, T V; Lebedev, A V

    2012-01-01

    The results of the study of psychopathological, somatic and functional characteristics of anxiety-depressive disorders in patients with acute myocardial infarction are presented. The authors confirmed the wide prevalence of these disorders in acute myocardial infarction and described the features of their diagnostics, dynamics and response to complex treatment. The impact of anxiety-depressive disorders on the clinical and functional state of the cardiovascular system and the dynamics of the patient's status due the concomitant anxiety-depressive disorder are considered.

  6. Steady-State Dynamic Behavior of a Flexible Rotor With Auxiliary Support From a Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Feng, Li; Lawrence, Charles T.

    1996-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.

  7. Software life cycle dynamic simulation model: The organizational performance submodel

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  8. Stability of Mixed-Strategy-Based Iterative Logit Quantal Response Dynamics in Game Theory

    PubMed Central

    Zhuang, Qian; Di, Zengru; Wu, Jinshan

    2014-01-01

    Using the Logit quantal response form as the response function in each step, the original definition of static quantal response equilibrium (QRE) is extended into an iterative evolution process. QREs remain as the fixed points of the dynamic process. However, depending on whether such fixed points are the long-term solutions of the dynamic process, they can be classified into stable (SQREs) and unstable (USQREs) equilibriums. This extension resembles the extension from static Nash equilibriums (NEs) to evolutionary stable solutions in the framework of evolutionary game theory. The relation between SQREs and other solution concepts of games, including NEs and QREs, is discussed. Using experimental data from other published papers, we perform a preliminary comparison between SQREs, NEs, QREs and the observed behavioral outcomes of those experiments. For certain games, we determine that SQREs have better predictive power than QREs and NEs. PMID:25157502

  9. Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions.

    PubMed

    Price, C J; Warburton, E A; Moore, C J; Frackowiak, R S; Friston, K J

    2001-05-15

    Functional neuroimaging was used to investigate how lesions to the Broca's area impair neuronal responses in remote undamaged cortical regions. Four patients with speech output problems, but relatively preserved comprehension, were scanned while viewing words relative to consonant letter strings. In normal subjects, this results in left lateralized activation in the posterior inferior frontal, middle temporal, and posterior inferior temporal cortices. Each patient activated normally in the middle temporal region but abnormally in the damaged posterior inferior frontal cortex and the undamaged posterior inferior temporal cortex. In the damaged frontal region, activity was insensitive to the presence of words but in the undamaged posterior inferior temporal region, activity decreased in the presence of words rather than increasing as it did in the normal individuals. The reversal of responses in the left posterior inferior temporal region illustrate the context-sensitive nature of the abnormality and that failure to activate the left posterior temporal region could not simply be accounted for by insufficient demands on the underlying function. We propose that, in normal individuals, visual word presentation changes the effective connectivity among reading areas and, in patients, posterior temporal responses are abnormal when they depend upon inputs from the damaged inferior frontal cortex. Our results serve to introduce the concept of dynamic diaschisis; the anatomically remote and context-sensitive effects of focal brain lesions. Dynamic diaschisis reveals abnormalities of functional integration that may have profound implications for neuropsychological inference, functional anatomy and, vicariously, cognitive rehabilitation.

  10. Sonic Hedgehog functions through dynamic changes in temporal competence in the developing ventral telencephalon

    PubMed Central

    Sousa, Vitor H.; Fishell, Gord

    2010-01-01

    Morphogens act during development to provide graded spatial information that controls patterning and cell lineage specification in the nervous system. The role of morphogen signaling in instructing the expression of downstream effector transcription factors has been well established. However, a key requirement for morphogen signaling is the existence of functional intracellular machinery able to mediate the appropriate response in target cells. Here we suggest that dynamic changes in the temporal responses to Shh in the developing ventral telencephalon occur through alterations in progenitor competence. We suggest these developmental changes in competence are mediated by a transcriptional mechanism that intrinsically integrates information from the distinct signaling pathways that act to pattern the telencephalic neuroepithelium. PMID:20466536

  11. Vibration of functionally graded plate resting on viscoelastic elastic foundation subjected to moving loads

    NASA Astrophysics Data System (ADS)

    Duy Hien, Ta; Lam, Nguyen Ngoc

    2018-04-01

    The dynamics of plates subjected to a moving load must be considered by engineering mechanics and design structures. This paper deals with the dynamic responses of functionally graded (FG) rectangular plates resting on a viscoelastic foundation under moving loads. It is assumed that material properties of the plate vary continuously in the thickness direction according to the power-law. The governing equations are derived by using Hamilton’s principle, which considers the effect of the higher-order shear deformation in the plate. Transient responses of simply supported FG rectangular plates are employed by using state-space methods. Several examples are given for displacement and stresses in the plates with various structural parameters, and the effects of these parameters are discussed.

  12. Experimental Investigation of Ultrafast Hydration Structure and Dynamics at Sub-Angstrom Lengthscales

    ERIC Educational Resources Information Center

    Coridan, Robert Henry

    2009-01-01

    This thesis outlines how meV-resolution inelastic x-ray scattering and causality-enforcing mathematics can be used to measure the dynamical density-density linear response function for liquid water with Angstrom spatial resolution and 50fs temporal resolution. The results are compared to high-resolution spectroscopic and scattering experiments and…

  13. The frequency response of dynamic friction: Enhanced rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  14. The habenula encodes negative motivational value associated with primary punishment in humans.

    PubMed

    Lawson, Rebecca P; Seymour, Ben; Loh, Eleanor; Lutti, Antoine; Dolan, Raymond J; Dayan, Peter; Weiskopf, Nikolaus; Roiser, Jonathan P

    2014-08-12

    Learning what to approach, and what to avoid, involves assigning value to environmental cues that predict positive and negative events. Studies in animals indicate that the lateral habenula encodes the previously learned negative motivational value of stimuli. However, involvement of the habenula in dynamic trial-by-trial aversive learning has not been assessed, and the functional role of this structure in humans remains poorly characterized, in part, due to its small size. Using high-resolution functional neuroimaging and computational modeling of reinforcement learning, we demonstrate positive habenula responses to the dynamically changing values of cues signaling painful electric shocks, which predict behavioral suppression of responses to those cues across individuals. By contrast, negative habenula responses to monetary reward cue values predict behavioral invigoration. Our findings show that the habenula plays a key role in an online aversive learning system and in generating associated motivated behavior in humans.

  15. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes

    PubMed Central

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang

    2016-01-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  16. Study on comparison of special moment frame steel structure (SMF) and base isolation special moment frame steel structure (BI-SMF) in Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, Jody; Nakazawa, Shoji

    2017-10-01

    This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.

  17. Cortical responses to dynamic emotional facial expressions generalize across stimuli, and are sensitive to task-relevance, in adults with and without Autism.

    PubMed

    Kliemann, Dorit; Richardson, Hilary; Anzellotti, Stefano; Ayyash, Dima; Haskins, Amanda J; Gabrieli, John D E; Saxe, Rebecca R

    2018-06-01

    Individuals with Autism Spectrum Disorders (ASD) report difficulties extracting meaningful information from dynamic and complex social cues, like facial expressions. The nature and mechanisms of these difficulties remain unclear. Here we tested whether that difficulty can be traced to the pattern of activity in "social brain" regions, when viewing dynamic facial expressions. In two studies, adult participants (male and female) watched brief videos of a range of positive and negative facial expressions, while undergoing functional magnetic resonance imaging (Study 1: ASD n = 16, control n = 21; Study 2: ASD n = 22, control n = 30). Patterns of hemodynamic activity differentiated among facial emotional expressions in left and right superior temporal sulcus, fusiform gyrus, and parts of medial prefrontal cortex. In both control participants and high-functioning individuals with ASD, we observed (i) similar responses to emotional valence that generalized across facial expressions and animated social events; (ii) similar flexibility of responses to emotional valence, when manipulating the task-relevance of perceived emotions; and (iii) similar responses to a range of emotions within valence. Altogether, the data indicate that there was little or no group difference in cortical responses to isolated dynamic emotional facial expressions, as measured with fMRI. Difficulties with real-world social communication and social interaction in ASD may instead reflect differences in initiating and maintaining contingent interactions, or in integrating social information over time or context. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Representing life in the Earth system with soil microbial functional traits in the MIMICS model

    NASA Astrophysics Data System (ADS)

    Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Taylor, P. G.; Bonan, G. B.

    2015-02-01

    Projecting biogeochemical responses to global environmental change requires multi-scaled perspectives that consider organismal diversity, ecosystem processes and global fluxes. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon cycle-climate feedbacks. We used a microbial trait-based soil carbon (C) model, with two physiologically distinct microbial communities to improve current estimates of soil C storage and their likely response to perturbations. Drawing from the application of functional traits used to model other ecosystems, we incorporate copiotrophic and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, which incorporates oligotrophic and copiotrophic functional groups, akin to "gleaner" vs. "opportunist" plankton in the ocean, or r vs. K strategists in plant and animals communities. Here we compare MIMICS to a conventional soil C model, DAYCENT, in cross-site comparisons of nitrogen (N) enrichment effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; moreover, it raises important hypotheses involving the roles of substrate availability, community-level enzyme induction, and microbial physiological responses in explaining various soil biogeochemical responses to N enrichment. In global-scale analyses, we show that current projections from Earth system models likely overestimate the strength of the land C sink in response to increasing C inputs with elevated carbon dioxide (CO2). Our findings illustrate that tradeoffs between theory and utility can be overcome to develop soil biogeochemistry models that evaluate and advance our theoretical understanding of microbial dynamics and soil biogeochemical responses to environmental change.

  19. Heterogeneity-induced large deviations in activity and (in some cases) entropy production

    NASA Astrophysics Data System (ADS)

    Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.

    2014-10-01

    We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.

  20. When can a single-species, density-dependent model capture the dynamics of a consumer-resource system?

    PubMed

    Reynolds, Sara A; Brassil, Chad E

    2013-12-21

    Single-species population models often include density-dependence phenomenologically in order to approximate higher order mechanisms. Here we consider the common scenario in which density-dependence acts via depletion of a renewed resource. When the response of the resource is very quick relative to that of the consumer, the consumer dynamics can be captured by a single-species, density-dependent model. Time scale separation is used to show analytically how the shape of the density-dependent relationship depends on the type of resource and the form of the functional response. Resource types of abiotic, biotic, and biotic with migration are considered, in combination with linear and saturating functional responses. In some cases, we derive familiar forms of single-species models, adding to the justification for their use. In other scenarios novel forms of density-dependence are derived, for example an abiotic resource and a saturating functional response can result in a nonlinear density-dependent relationship in the associated single-species model of the consumer. In this case, the per capita relationship has both concave-up and concave-down sections. © 2013 Published by Elsevier Ltd. All rights reserved.

  1. Interactions between Hillslope Hydraulic Response Function, Vegetation Organisation and Catchment Behaviour

    NASA Astrophysics Data System (ADS)

    Schymanski, Stanislaus J.; McDonnell, Jeffrey; Or, Dani

    2013-04-01

    The behaviour of a catchment is sensitive to the pattern and organisation of its components (hillslopes, land cover etc.). Explaining observed organisation and emergence of pattern requires understanding of key organising principles, recognising that albeit similarities, the larger scale behaviour is likely to differ from that of individual components. In other words, the whole does not necessarily behave like the sum of its parts, because the arrangement of the parts matters. For example, hillslopes involve complex and hydrologically interacting elements (rapid flow pathways, depression storage, slope, and variable soil thickness) that shape hillslope hydrologic response in ways that cannot be represented by a collection of pores as implied by standard hydraulic functions. Additionally, inherent spatial and temporal variability of vegetation prohibits detailed and mechanistic parameterisation of root water uptake and evapotranspiration. The interplay of hydrologic hillslope function, climatic forcing and vegetation dynamics translates into complex catchment behaviour at the outlet. Vegetation, one of the most dynamic determinants of catchment behaviour, may interact with its environment by varying different elements such as root system properties, foliage properties and spatial arrangement. These interactions span different temporal scales from minutes (stomatal conductance) to decades (spatial arrangement) all of which may shape evapotranspiration and hence catchment behaviour. Evidence suggests that vegetation adapts to its environment in a self-organised, predictable way, guided by some overarching goal function, such as maximum net carbon profit or maximum entropy production. Appropriate optimality considerations under prevailing constraints enabled predictions of spatial heterogeneity of vegetation cover, or temporal dynamics of root distribution, canopy properties and water use. The hydrologic hillslope behaviour (e.g., surface and subsurface water fluxes and storage) is a powerful ingredient that defines boundary conditions for vegetation self-organisation. To systematically evaluate the role of this element, we propose a Hillslope Hydraulic Response Function (HHRF) a standardised parameterisation framework based on simplified and analytical representation of a prototypic hillslope. The HHRF uses a few geometrical parameters and intrinsic parameters to represent hillslope response in terms of fluxes and storage dynamics. Such an approach has been instrumental in deducing hydrologic response of watersheds (Kirchner, 2009, WRR) but has not been used for systematic parameterisation of HHRF. Here we separate out the biotic and abiotic components of catchment behaviour and test the sensitivity of vegetation and the catchment water balance to different hypothetical parameterisations of the HHRF.

  2. Influence of spatial heterogeneity on the type of zooplankton functional response: A study based on field observations

    NASA Astrophysics Data System (ADS)

    Morozov, Andrew; Arashkevich, Elena; Reigstad, Marit; Falk-Petersen, Stig

    2008-10-01

    Mathematical models of plankton dynamics are sensitive to the choice of type of zooplankton functional response, i.e., to how the rate of intake of food varies with the food density. Conventionally, the conclusion on the actual type of functional response for a given zooplankton species is made based upon laboratory analysis on experimental feeding. In this paper, we show that such an approach can be too simplistic and misleading. Based on real ocean data obtained from three expeditions of R/V Jan Mayen in the Barents Sea in 2003-2005, we demonstrate that vertical heterogeneity in algal distribution as well as active vertical movement of herbivorous zooplankton can modify the type of trophic response completely. In particular, we found that the rate of average intake of algae by Calanus glacialis exhibits a Holling type III response, instead of Holling type I or II found previously in laboratory experiments. We argue that this conceptual discrepancy is due to the ability of the zooplankton to feed in layers with high algal density and to avoid depths with lower algal density. Since theoretical studies would predict enhancing in system stability in the case of Holling type III, our results may be of importance for understanding the main factors controlling plankton dynamics.

  3. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.

    PubMed

    Portugues, Ruben; Feierstein, Claudia E; Engert, Florian; Orger, Michael B

    2014-03-19

    Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate but ordered pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments systematically reveal the functional architecture of neural circuits underlying a sensorimotor behavior in a vertebrate brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior

    PubMed Central

    Portugues, Ruben; Feierstein, Claudia E.; Engert, Florian; Orger, Michael B.

    2014-01-01

    Summary Most behaviors, even simple innate reflexes, are mediated by circuits of neurons spanning areas throughout the brain. However, in most cases, the distribution and dynamics of firing patterns of these neurons during behavior are not known. We imaged activity, with cellular resolution, throughout the whole brains of zebrafish performing the optokinetic response. We found a sparse, broadly distributed network that has an elaborate, but ordered, pattern, with a bilaterally symmetrical organization. Activity patterns fell into distinct clusters reflecting sensory and motor processing. By correlating neuronal responses with an array of sensory and motor variables, we find that the network can be clearly divided into distinct functional modules. Comparing aligned data from multiple fish, we find that the spatiotemporal activity dynamics and functional organization are highly stereotyped across individuals. These experiments reveal, for the first time in a vertebrate, the comprehensive functional architecture of the neural circuits underlying a sensorimotor behavior. PMID:24656252

  5. Dynamic characteristics of heart rate control by the autonomic nervous system in rats.

    PubMed

    Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru

    2010-09-01

    We estimated the transfer function of autonomic heart rate (HR) control by using random binary sympathetic or vagal nerve stimulation in anaesthetized rats. The transfer function from sympathetic stimulation to HR response approximated a second-order, low-pass filter with a lag time (gain, 4.29 +/- 1.55 beats min(1) Hz(1); natural frequency, 0.07 +/- 0.03 Hz; damping coefficient, 1.96 +/- 0.64; and lag time, 0.73 +/- 0.12 s). The transfer function from vagal stimulation to HR response approximated a first-order, low-pass filter with a lag time (gain, 8.84 +/- 4.51 beats min(1) Hz(1); corner frequency, 0.12 +/- 0.06 Hz; and lag time, 0.12 +/- 0.08 s). These results suggest that the dynamic characteristics of HR control by the autonomic nervous system in rats are similar to those of larger mammals.

  6. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice

    PubMed Central

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-01-01

    Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli. PMID:24253232

  7. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-11-01

    Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli.

  8. Emergent dynamics of spiking neurons with fluctuating threshold

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Anindita; Das, M. K.

    2017-05-01

    Role of fluctuating threshold on neuronal dynamics is investigated. The threshold function is assumed to follow a normal probability distribution. Standard deviation of inter-spike interval of the response is computed as an indicator of irregularity in spike emission. It has been observed that, the irregularity in spiking is more if the threshold variation is more. A significant change in modal characteristics of Inter Spike Intervals (ISI) is seen to occur as a function of fluctuation parameter. Investigation is further carried out for coupled system of neurons. Cooperative dynamics of coupled neurons are discussed in view of synchronization. Total and partial synchronization regimes are depicted with the help of contour plots of synchrony measure under various conditions. Results of this investigation may provide a basis for exploring the complexities of neural communication and brain functioning.

  9. Temporal dynamics of lactate concentration in the human brain during acute inspiratory hypoxia

    PubMed Central

    Harris, Ashley D; Roberton, Victoria H; Huckle, Danielle L; Saxena, Neeraj; Evans, C John; Murphy, Kevin; Hall, Judith E; Bailey, Damian M; Mitsis, Georgios; Edden, Richard A E; Wise, Richard G

    2012-01-01

    Purpose To demonstrate the feasibility of measuring the temporal dynamics of cerebral lactate concentration and examine these dynamics in human subjects using MRS during hypoxia. Methods A respiratory protocol consisting of 10 min baseline normoxia, 20 min inspiratory hypoxia and ending with 10 min normoxic recovery was used, throughout which lactate-edited MRS was performed. This was repeated four times in three subjects. A separate session was performed to measure blood lactate. Impulse response functions using end-tidal oxygen and blood lactate as system inputs and cerebral lactate as the system output were examined to describe the dynamics of the cerebral lactate response to a hypoxic challenge. Results The average lactate increase was 20%±15% during the last half of the hypoxic challenge. Significant changes in cerebral lactate concentration were observed after 400s. The average relative increase in blood lactate was 188%±95%. The temporal dynamics of cerebral lactate concentration was reproducibly demonstrated with 200s time bins of MRS data (coefficient of variation 0.063±0.035 between time bins in normoxia). The across subject coefficient of variation was 0.333. Conclusions The methods for measuring the dynamics of the cerebral lactate response developed here would be useful to further investigate the brain’s response to hypoxia. PMID:23197421

  10. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  11. Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation

    DOE PAGES

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...

    2017-08-17

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  12. Construction and comparison of gene co-expression networks shows complex plant immune responses

    PubMed Central

    López, Camilo; López-Kleine, Liliana

    2014-01-01

    Gene co-expression networks (GCNs) are graphic representations that depict the coordinated transcription of genes in response to certain stimuli. GCNs provide functional annotations of genes whose function is unknown and are further used in studies of translational functional genomics among species. In this work, a methodology for the reconstruction and comparison of GCNs is presented. This approach was applied using gene expression data that were obtained from immunity experiments in Arabidopsis thaliana, rice, soybean, tomato and cassava. After the evaluation of diverse similarity metrics for the GCN reconstruction, we recommended the mutual information coefficient measurement and a clustering coefficient-based method for similarity threshold selection. To compare GCNs, we proposed a multivariate approach based on the Principal Component Analysis (PCA). Branches of plant immunity that were exemplified by each experiment were analyzed in conjunction with the PCA results, suggesting both the robustness and the dynamic nature of the cellular responses. The dynamic of molecular plant responses produced networks with different characteristics that are differentiable using our methodology. The comparison of GCNs from plant pathosystems, showed that in response to similar pathogens plants could activate conserved signaling pathways. The results confirmed that the closeness of GCNs projected on the principal component space is an indicative of similarity among GCNs. This also can be used to understand global patterns of events triggered during plant immune responses. PMID:25320678

  13. Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma.

    PubMed

    Gangeddula, Viswa; Ranchet, Maud; Akinwuntan, Abiodun E; Bollinger, Kathryn; Devos, Hannes

    2017-01-01

    Purpose: To investigate the effect of cognitive demand on functional visual field performance in drivers with glaucoma. Method: This study included 20 drivers with open-angle glaucoma and 13 age- and sex-matched controls. Visual field performance was evaluated under different degrees of cognitive demand: a static visual field condition (C1), dynamic visual field condition (C2), and dynamic visual field condition with active driving (C3) using an interactive, desktop driving simulator. The number of correct responses (accuracy) and response times on the visual field task were compared between groups and between conditions using Kruskal-Wallis tests. General linear models were employed to compare cognitive workload, recorded in real-time through pupillometry, between groups and conditions. Results: Adding cognitive demand (C2 and C3) to the static visual field test (C1) adversely affected accuracy and response times, in both groups ( p < 0.05). However, drivers with glaucoma performed worse than did control drivers when the static condition changed to a dynamic condition [C2 vs. C1 accuracy; glaucoma: median difference (Q1-Q3) 3 (2-6.50) vs. 2 (0.50-2.50); p = 0.05] and to a dynamic condition with active driving [C3 vs. C1 accuracy; glaucoma: 2 (2-6) vs. 1 (0.50-2); p = 0.02]. Overall, drivers with glaucoma exhibited greater cognitive workload than controls ( p = 0.02). Conclusion: Cognitive demand disproportionately affects functional visual field performance in drivers with glaucoma. Our results may inform the development of a performance-based visual field test for drivers with glaucoma.

  14. Engineered control of enzyme structural dynamics and function.

    PubMed

    Boehr, David D; D'Amico, Rebecca N; O'Rourke, Kathleen F

    2018-04-01

    Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine. © 2018 The Protein Society.

  15. Motifs, modules and games in bacteria.

    PubMed

    Wolf, Denise M; Arkin, Adam P

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  16. Motifs, modules and games in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment.more » Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.« less

  17. Dynamic kinetic energy potential for orbital-free density functional theory.

    PubMed

    Neuhauser, Daniel; Pistinner, Shlomo; Coomar, Arunima; Zhang, Xu; Lu, Gang

    2011-04-14

    A dynamic kinetic energy potential (DKEP) is developed for time-dependent orbital-free (TDOF) density function theory applications. This potential is constructed to affect only the dynamical (ω ≠ 0) response of an orbital-free electronic system. It aims at making the orbital-free simulation respond in the same way as that of a noninteracting homogenous electron gas (HEG), as required by a correct kinetic energy, therefore enabling extension of the success of orbital-free density functional theory in the static case (e.g., for embedding and description of processes in bulk materials) to dynamic processes. The potential is constructed by expansions of terms, each of which necessitates only simple time evolution (concurrent with the TDOF evolution) and a spatial convolution at each time-step. With 14 such terms a good fit is obtained to the response of the HEG at a large range of frequencies, wavevectors, and densities. The method is demonstrated for simple jellium spheres, approximating Na(9)(+) and Na(65)(+) clusters. It is applicable both to small and large (even ultralarge) excitations and the results converge (i.e., do not blow up) as a function of time. An extension to iterative frequency-resolved extraction is briefly outlined, as well as possibly numerically simpler expansions. The approach could also be extended to fit, instead of the HEG susceptibility, either an experimental susceptibility or a theoretically derived one for a non-HEG system. The DKEP potential should be a powerful tool for embedding a dynamical system described by a more accurate method (such as time-dependent density functional theory, TDDFT) in a large background described by TDOF with a DKEP potential. The type of expansions used and envisioned should be useful for other approaches, such as memory functionals in TDDFT. Finally, an appendix details the formal connection between TDOF and TDDFT.

  18. Oscillations during observations: Dynamic oscillatory networks serving visuospatial attention.

    PubMed

    Wiesman, Alex I; Heinrichs-Graham, Elizabeth; Proskovec, Amy L; McDermott, Timothy J; Wilson, Tony W

    2017-10-01

    The dynamic allocation of neural resources to discrete features within a visual scene enables us to react quickly and accurately to salient environmental circumstances. A network of bilateral cortical regions is known to subserve such visuospatial attention functions; however the oscillatory and functional connectivity dynamics of information coding within this network are not fully understood. Particularly, the coding of information within prototypical attention-network hubs and the subsecond functional connections formed between these hubs have not been adequately characterized. Herein, we use the precise temporal resolution of magnetoencephalography (MEG) to define spectrally specific functional nodes and connections that underlie the deployment of attention in visual space. Twenty-three healthy young adults completed a visuospatial discrimination task designed to elicit multispectral activity in visual cortex during MEG, and the resulting data were preprocessed and reconstructed in the time-frequency domain. Oscillatory responses were projected to the cortical surface using a beamformer, and time series were extracted from peak voxels to examine their temporal evolution. Dynamic functional connectivity was then computed between nodes within each frequency band of interest. We find that visual attention network nodes are defined functionally by oscillatory frequency, that the allocation of attention to the visual space dynamically modulates functional connectivity between these regions on a millisecond timescale, and that these modulations significantly correlate with performance on a spatial discrimination task. We conclude that functional hubs underlying visuospatial attention are segregated not only anatomically but also by oscillatory frequency, and importantly that these oscillatory signatures promote dynamic communication between these hubs. Hum Brain Mapp 38:5128-5140, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Delayed nonlinear cournot and bertrand dynamics with product differentiation.

    PubMed

    Matsumoto, Akio; Szidarovszky, Ferenc

    2007-07-01

    Dynamic duopolies will be examined with product differentiation and isoelastic price functions. We will first prove that under realistic conditions the equilibrium is always locally asymptotically stable. The stability can however be lost if the firms use delayed information in forming their best responses. Stability conditions are derived in special cases, and simulation results illustrate the complexity of the dynamism of the systems. Both price and quantity adjusting models are discussed.

  20. Decline of Tumor Vascular Function as Assessed by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Is Associated With Poor Responses to Radiation Therapy and Chemotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Fang-Hsin; Wang, Chun-Chieh; Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan

    Purpose: To investigate whether changes in the volume transfer coefficient (K{sup trans}) in a growing tumor could be used as a surrogate marker for predicting tumor responses to radiation therapy (RT) and chemotherapy (CT). Methods and Materials: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was consecutively performed on tumor-bearing mice, and temporal and spatial changes of K{sup trans} values were measured along with tumor growth. Tumor responses to RT and CT were studied before and after observed changes in K{sup trans} values with time. Results: Dynamic changes with an initial increase and subsequent decline in K{sup trans} values were found tomore » be associated with tumor growth. When each tumor was divided into core and peripheral regions, the K{sup trans} decline was greater in core, although neither vascular structure or necrosis could be linked to this spatial difference. Tumor responses to RT were worse if applied after the decline of K{sup trans}, and there was less drug distribution and cell death in the tumor core after CT. Conclusion: The K{sup trans} value in growing tumors, reflecting the changes of tumor microenvironment and vascular function, is strongly associated with tumor responses to RT and CT and could be a potential surrogate marker for predicting the tumor response to these treatments.« less

  1. What Information Theory Says about Bounded Rational Best Response

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2005-01-01

    Probability Collectives (PC) provides the information-theoretic extension of conventional full-rationality game theory to bounded rational games. Here an explicit solution to the equations giving the bounded rationality equilibrium of a game is presented. Then PC is used to investigate games in which the players use bounded rational best-response strategies. Next it is shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. It is then shown that for team (shared-payoff) games, this variant of replicator dynamics is identical to Newton-Raphson iterative optimization of the shared utility function.

  2. Clinical assessment of cerebrospinal fluid dynamics in hydrocephalus. Guide to interpretation based on observational study.

    PubMed

    Weerakkody, R A; Czosnyka, M; Schuhmann, M U; Schmidt, E; Keong, N; Santarius, T; Pickard, J D; Czosnyka, Z

    2011-08-01

    The term hydrocephalus encompasses a range of disorders characterised by clinical symptoms, abnormal brain imaging and derangement of cerebrospinal fluid (CSF) dynamics. The ability to elucidate which patients would benefit from CSF diversion (a shunt or third ventriculostomy) is often unclear. Similar difficulties are often encountered in shunted patients to predict the scope for improvement by shunt re-adjustment or revision. In this study we aimed to update our knowledge of how key quantitative parameters describing CSF dynamics may be used in diagnosis of shunt-responsive hydrocephalus and in the assessment of shunt function. A number of quantitative parameters [including resistance to CSF outflow (Rcsf), pulse amplitude of intracranial pressure waveform (AMP), RAP index and slow vasogenic waves] were studies in 1423 patients with 2665 CSF infusion tests and 305 overnight intracranial pressure (ICP)-monitoring sessions over a 17 year period. We demonstrate our observations for typical values of Pb, Rcsf, AMP, slow vasogenic waves derived from infusion studies or overnight ICP monitoring in differentiating atrophy from shunt-responsive normal pressure hydrocephalus or acute hydrocephalus. From the same variables tested on shunted patients we demonstrate a standardised approach to help differentiate a properly-functioning shunt from underdrainage or overdrainage. Quantitative variables derived from CSF dynamics allow differentiation between clinically overlapping entities such as shunt-responsive normal pressure hydrocephalus and brain atrophy (not shunt responsive) as well as allowing the detection of shunt malfunction (partial or complete blockage) or overdrainage. This observational study is intended to serve as an update for our understanding of quantitative testing of CSF dynamics. © 2011 John Wiley & Sons A/S.

  3. Active synchronization between two different chaotic dynamical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheri, M.; Arifin, N. Md; Ismail, F.

    2015-05-15

    In this paper we investigate on the synchronization problem between two different chaotic dynamical system based on the Lyapunov stability theorem by using nonlinear control functions. Active control schemes are used for synchronization Liu system as drive and Rossler system as response. Numerical simulation by using Maple software are used to show effectiveness of the proposed schemes.

  4. GABA[subscript A] Receptors Determine the Temporal Dynamics of Memory Retention

    ERIC Educational Resources Information Center

    McNally, Gavan P.; Augustyn, Katarzyna A.; Richardson, Rick

    2008-01-01

    Four experiments studied the role of GABA[subscript A] receptors in the temporal dynamics of memory retention. Memory for an active avoidance response was a nonmonotonic function of the retention interval. When rats were tested shortly (2 min) or some time (24 h) after training, retention was excellent, but when they were tested at intermediate…

  5. In vivo imaging of the neurovascular unit in CNS disease

    PubMed Central

    Merlini, Mario; Davalos, Dimitrios; Akassoglou, Katerina

    2014-01-01

    The neurovascular unit—comprised of glia, pericytes, neurons and cerebrovasculature—is a dynamic interface that ensures physiological central nervous system (CNS) functioning. In disease dynamic remodeling of the neurovascular interface triggers a cascade of responses that determine the extent of CNS degeneration and repair. The dynamics of these processes can be adequately captured by imaging in vivo, which allows the study of cellular responses to environmental stimuli and cell-cell interactions in the living brain in real time. This perspective focuses on intravital imaging studies of the neurovascular unit in stroke, multiple sclerosis (MS) and Alzheimer disease (AD) models and discusses their potential for identifying novel therapeutic targets. PMID:25197615

  6. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A.; Rossow, M. P.

    1984-01-01

    The optimal design of helicopter rotor blades is addressed. The forced response of an initial (i.e., non-optimized) blade to those of a final (optimized) blade are compared. Response of starting design and optimal designs for varying forcing frequencies, blade response to harmonics of rotor speed, and derivation of mass and stiffness matrices or functions of natural frequencies are discussed.

  7. Intraindividual dynamics of transcriptome and genome-wide stability of DNA methylation

    PubMed Central

    Furukawa, Ryohei; Hachiya, Tsuyoshi; Ohmomo, Hideki; Shiwa, Yuh; Ono, Kanako; Suzuki, Sadafumi; Satoh, Mamoru; Hitomi, Jiro; Sobue, Kenji; Shimizu, Atsushi

    2016-01-01

    Cytosine methylation at CpG dinucleotides is an epigenetic mechanism that affects the gene expression profiles responsible for the functional differences in various cells and tissues. Although gene expression patterns are dynamically altered in response to various stimuli, the intraindividual dynamics of DNA methylation in human cells are yet to be fully understood. Here, we investigated the extent to which DNA methylation contributes to the dynamics of gene expression by collecting 24 blood samples from two individuals over a period of 3 months. Transcriptome and methylome association analyses revealed that only ~2% of dynamic changes in gene expression could be explained by the intraindividual variation of DNA methylation levels in peripheral blood mononuclear cells and purified monocytes. These results showed that DNA methylation levels remain stable for at least several months, suggesting that disease-associated DNA methylation markers are useful for estimating the risk of disease manifestation. PMID:27192970

  8. Stat5 Signaling Specifies Basal versus Stress Erythropoietic Responses through Distinct Binary and Graded Dynamic Modalities

    PubMed Central

    Porpiglia, Ermelinda; Hidalgo, Daniel; Koulnis, Miroslav; Tzafriri, Abraham R.; Socolovsky, Merav

    2012-01-01

    Erythropoietin (Epo)-induced Stat5 phosphorylation (p-Stat5) is essential for both basal erythropoiesis and for its acceleration during hypoxic stress. A key challenge lies in understanding how Stat5 signaling elicits distinct functions during basal and stress erythropoiesis. Here we asked whether these distinct functions might be specified by the dynamic behavior of the Stat5 signal. We used flow cytometry to analyze Stat5 phosphorylation dynamics in primary erythropoietic tissue in vivo and in vitro, identifying two signaling modalities. In later (basophilic) erythroblasts, Epo stimulation triggers a low intensity but decisive, binary (digital) p-Stat5 signal. In early erythroblasts the binary signal is superseded by a high-intensity graded (analog) p-Stat5 response. We elucidated the biological functions of binary and graded Stat5 signaling using the EpoR-HM mice, which express a “knocked-in” EpoR mutant lacking cytoplasmic phosphotyrosines. Strikingly, EpoR-HM mice are restricted to the binary signaling mode, which rescues these mice from fatal perinatal anemia by promoting binary survival decisions in erythroblasts. However, the absence of the graded p-Stat5 response in the EpoR-HM mice prevents them from accelerating red cell production in response to stress, including a failure to upregulate the transferrin receptor, which we show is a novel stress target. We found that Stat5 protein levels decline with erythroblast differentiation, governing the transition from high-intensity graded signaling in early erythroblasts to low-intensity binary signaling in later erythroblasts. Thus, using exogenous Stat5, we converted later erythroblasts into high-intensity graded signal transducers capable of eliciting a downstream stress response. Unlike the Stat5 protein, EpoR expression in erythroblasts does not limit the Stat5 signaling response, a non-Michaelian paradigm with therapeutic implications in myeloproliferative disease. Our findings show how the binary and graded modalities combine to generate high-fidelity Stat5 signaling over the entire basal and stress Epo range. They suggest that dynamic behavior may encode information during STAT signal transduction. PMID:22969412

  9. Modeling and characterization of an electromagnetic system for the estimation of Frequency Response Function of spindle

    NASA Astrophysics Data System (ADS)

    Tlalolini, David; Ritou, Mathieu; Rabréau, Clément; Le Loch, Sébastien; Furet, Benoit

    2018-05-01

    The paper presents an electromagnetic system that has been developed to measure the quasi-static and dynamic behavior of machine-tool spindle, at different spindle speeds. This system consists in four Pulse Width Modulation amplifiers and four electromagnets to produce magnetic forces of ± 190 N for the static mode and ± 80 N for the dynamic mode up to 5 kHz. In order to measure the Frequency Response Function (FRF) of spindle, the applied force is required, which is a key issue. A dynamic force model is proposed in order to obtain the load from the measured current in the amplifiers. The model depends on the exciting frequency and on the magnetic characteristics of the system. The predicted force at high speed is validated with a specific experiment and the performance limits of the experimental device are investigated. The FRF obtained with the electromagnetic system is compared to a classical tap test measurement.

  10. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  11. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.

    1996-01-01

    1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED).

  12. Exploration of Multi-State Conformational Dynamics and Underlying Global Functional Landscape of Maltose Binding Protein

    PubMed Central

    Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin

    2012-01-01

    An increasing number of biological machines have been revealed to have more than two macroscopic states. Quantifying the underlying multiple-basin functional landscape is essential for understanding their functions. However, the present models seem to be insufficient to describe such multiple-state systems. To meet this challenge, we have developed a coarse grained triple-basin structure-based model with implicit ligand. Based on our model, the constructed functional landscape is sufficiently sampled by the brute-force molecular dynamics simulation. We explored maltose-binding protein (MBP) which undergoes large-scale domain motion between open, apo-closed (partially closed) and holo-closed (fully closed) states responding to ligand binding. We revealed an underlying mechanism whereby major induced fit and minor population shift pathways co-exist by quantitative flux analysis. We found that the hinge regions play an important role in the functional dynamics as well as that increases in its flexibility promote population shifts. This finding provides a theoretical explanation of the mechanistic discrepancies in PBP protein family. We also found a functional “backtracking” behavior that favors conformational change. We further explored the underlying folding landscape in response to ligand binding. Consistent with earlier experimental findings, the presence of ligand increases the cooperativity and stability of MBP. This work provides the first study to explore the folding dynamics and functional dynamics under the same theoretical framework using our triple-basin functional model. PMID:22532792

  13. Joint action syntax in Japanese martial arts.

    PubMed

    Yamamoto, Yuji; Yokoyama, Keiko; Okumura, Motoki; Kijima, Akifumi; Kadota, Koji; Gohara, Kazutoshi

    2013-01-01

    Participation in interpersonal competitions, such as fencing or Japanese martial arts, requires players to make instantaneous decisions and execute appropriate motor behaviors in response to various situations. Such actions can be understood as complex phenomena emerging from simple principles. We examined the intentional switching dynamics associated with continuous movement during interpersonal competition in terms of their emergence from a simple syntax. Linear functions on return maps identified two attractors as well as the transitions between them. The effects of skill differences were evident in the second- and third-order state-transition diagrams for these two attractors. Our results suggest that abrupt switching between attractors is related to the diverse continuous movements resulting from quick responses to sudden changes in the environment. This abrupt-switching-quick-response behavior is characterized by a joint action syntax. The resulting hybrid dynamical system is composed of a higher module with discrete dynamics and a lower module with continuous dynamics. Our results suggest that intelligent human behavior and robust autonomy in real-life scenarios are based on this hybrid dynamical system, which connects interpersonal coordination and competition.

  14. Exploring tropical forest vegetation dynamics using the FATES model

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.

    2017-12-01

    Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.

  15. A fractional-order accumulative regularization filter for force reconstruction

    NASA Astrophysics Data System (ADS)

    Wensong, Jiang; Zhongyu, Wang; Jing, Lv

    2018-02-01

    The ill-posed inverse problem of the force reconstruction comes from the influence of noise to measured responses and results in an inaccurate or non-unique solution. To overcome this ill-posedness, in this paper, the transfer function of the reconstruction model is redefined by a Fractional order Accumulative Regularization Filter (FARF). First, the measured responses with noise are refined by a fractional-order accumulation filter based on a dynamic data refresh strategy. Second, a transfer function, generated by the filtering results of the measured responses, is manipulated by an iterative Tikhonov regularization with a serious of iterative Landweber filter factors. Third, the regularization parameter is optimized by the Generalized Cross-Validation (GCV) to improve the ill-posedness of the force reconstruction model. A Dynamic Force Measurement System (DFMS) for the force reconstruction is designed to illustrate the application advantages of our suggested FARF method. The experimental result shows that the FARF method with r = 0.1 and α = 20, has a PRE of 0.36% and an RE of 2.45%, is superior to other cases of the FARF method and the traditional regularization methods when it comes to the dynamic force reconstruction.

  16. An approximation technique for predicting the transient response of a second order nonlinear equation

    NASA Technical Reports Server (NTRS)

    Laurenson, R. M.; Baumgarten, J. R.

    1975-01-01

    An approximation technique has been developed for determining the transient response of a nonlinear dynamic system. The nonlinearities in the system which has been considered appear in the system's dissipation function. This function was expressed as a second order polynomial in the system's velocity. The developed approximation is an extension of the classic Kryloff-Bogoliuboff technique. Two examples of the developed approximation are presented for comparative purposes with other approximation methods.

  17. Responsibility modulates pain-matrix activation elicited by the expressions of others in pain

    PubMed Central

    Cui, Fang; Abdelgabar, Abdel-Rahman; Keysers, Christian; Gazzola, Valeria

    2015-01-01

    Here we examine whether brain responses to dynamic facial expressions of pain are influenced by our responsibility for the observed pain. Participants played a flanker task with a confederate. Whenever either erred, the confederate was seen to receive a noxious shock. Using functional magnetic resonance imaging, we found that regions of the functionally localized pain-matrix of the participants (the anterior insula in particular) were activated most strongly when seeing the confederate receive a noxious shock when only the participant had erred (and hence had full responsibility). When both or only the confederate had erred (i.e. participant's shared or no responsibility), significantly weaker vicarious pain-matrix activations were measured. PMID:25800210

  18. Vortex creep and the internal temperature of neutron stars - Linear and nonlinear response to a glitch

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Cheng, K. S.; Pines, D.

    1989-01-01

    The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.

  19. Measuring Dynamic Kidney Function in an Undergraduate Physiology Laboratory

    ERIC Educational Resources Information Center

    Medler, Scott; Harrington, Frederick

    2013-01-01

    Most undergraduate physiology laboratories are very limited in how they treat renal physiology. It is common to find teaching laboratories equipped with the capability for high-resolution digital recordings of physiological functions (muscle twitches, ECG, action potentials, respiratory responses, etc.), but most urinary laboratories still rely on…

  20. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  1. The Unfolded Protein Response: At the Intersection between Endoplasmic Reticulum Function and Mitochondrial Bioenergetics.

    PubMed

    Carreras-Sureda, Amado; Pihán, Philippe; Hetz, Claudio

    2017-01-01

    Endoplasmic reticulum (ER) to mitochondria communication has emerged in recent years as a signaling hub regulating cellular physiology with a relevant contribution to diseases including cancer and neurodegeneration. This functional integration is exerted through discrete interorganelle structures known as mitochondria-associated membranes (MAMs). At these domains, ER/mitochondria physically associate to dynamically adjust metabolic demands and the response to stress stimuli. Here, we provide a focused overview of how the ER shapes the function of the mitochondria, giving a special emphasis to the significance of local signaling of the unfolded protein response at MAMs. The implications to cell fate control and the progression of cancer are also discussed.

  2. Visual-motor response of crewmen during a simulated 90-day space mission as measured by the critical task battery

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Jex, H. R.

    1973-01-01

    In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.

  3. Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones

    PubMed Central

    Higgs, Matthew H; Spain, William J

    2011-01-01

    Abstract Previous studies showed that cortical pyramidal neurones (PNs) have a dynamic spike threshold that functions as a high-pass filter, enhancing spike timing in response to high-frequency input. While it is commonly assumed that Na+ channel inactivation is the primary mechanism of threshold accommodation, the possible role of K+ channel activation in fast threshold changes has not been well characterized. The present study tested the hypothesis that low-voltage activated Kv1 channels affect threshold dynamics in layer 2–3 PNs, using α-dendrotoxin (DTX) or 4-aminopyridine (4-AP) to block these conductances. We found that Kv1 blockade reduced the dynamic changes of spike threshold in response to a variety of stimuli, including stimulus-evoked synaptic input, current steps and ramps of varied duration, and noise. Analysis of the responses to noise showed that Kv1 channels increased the coherence of spike output with high-frequency components of the stimulus. A simple model demonstrates that a dynamic spike threshold can account for this effect. Our results show that the Kv1 conductance is a major mechanism that contributes to the dynamic spike threshold and precise spike timing of cortical PNs. PMID:21911608

  4. Representing life in the Earth system with soil microbial functional traits in the MIMICS model

    NASA Astrophysics Data System (ADS)

    Wieder, W. R.; Grandy, A. S.; Kallenbach, C. M.; Taylor, P. G.; Bonan, G. B.

    2015-06-01

    Projecting biogeochemical responses to global environmental change requires multi-scaled perspectives that consider organismal diversity, ecosystem processes, and global fluxes. However, microbes, the drivers of soil organic matter decomposition and stabilization, remain notably absent from models used to project carbon (C) cycle-climate feedbacks. We used a microbial trait-based soil C model with two physiologically distinct microbial communities, and evaluate how this model represents soil C storage and response to perturbations. Drawing from the application of functional traits used to model other ecosystems, we incorporate copiotrophic and oligotrophic microbial functional groups in the MIcrobial-MIneral Carbon Stabilization (MIMICS) model; these functional groups are akin to "gleaner" vs. "opportunist" plankton in the ocean, or r- vs. K-strategists in plant and animal communities. Here we compare MIMICS to a conventional soil C model, DAYCENT (the daily time-step version of the CENTURY model), in cross-site comparisons of nitrogen (N) enrichment effects on soil C dynamics. MIMICS more accurately simulates C responses to N enrichment; moreover, it raises important hypotheses involving the roles of substrate availability, community-level enzyme induction, and microbial physiological responses in explaining various soil biogeochemical responses to N enrichment. In global-scale analyses, we show that MIMICS projects much slower rates of soil C accumulation than a conventional soil biogeochemistry in response to increasing C inputs with elevated carbon dioxide (CO2) - a finding that would reduce the size of the land C sink estimated by the Earth system. Our findings illustrate that tradeoffs between theory and utility can be overcome to develop soil biogeochemistry models that evaluate and advance our theoretical understanding of microbial dynamics and soil biogeochemical responses to environmental change.

  5. Probabilistic Learning by Rodent Grid Cells

    PubMed Central

    Cheung, Allen

    2016-01-01

    Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723

  6. Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.

    PubMed

    Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng

    2017-01-01

    Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.

  7. Functional supramolecular polymers for biomedical applications.

    PubMed

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Maximal switchability of centralized networks

    NASA Astrophysics Data System (ADS)

    Vakulenko, Sergei; Morozov, Ivan; Radulescu, Ovidiu

    2016-08-01

    We consider continuous time Hopfield-like recurrent networks as dynamical models for gene regulation and neural networks. We are interested in networks that contain n high-degree nodes preferably connected to a large number of N s weakly connected satellites, a property that we call n/N s -centrality. If the hub dynamics is slow, we obtain that the large time network dynamics is completely defined by the hub dynamics. Moreover, such networks are maximally flexible and switchable, in the sense that they can switch from a globally attractive rest state to any structurally stable dynamics when the response time of a special controller hub is changed. In particular, we show that a decrease of the controller hub response time can lead to a sharp variation in the network attractor structure: we can obtain a set of new local attractors, whose number can increase exponentially with N, the total number of nodes of the nework. These new attractors can be periodic or even chaotic. We provide an algorithm, which allows us to design networks with the desired switching properties, or to learn them from time series, by adjusting the interactions between hubs and satellites. Such switchable networks could be used as models for context dependent adaptation in functional genetics or as models for cognitive functions in neuroscience.

  9. Coherent-fields, their responsive colloids, and life's origins.

    NASA Astrophysics Data System (ADS)

    Mitra-Delmotte, G.; Mitra, A. N.

    2015-10-01

    In living systems, evolvable sequence-encoded constraints control the incoming energy-matter flows, and are also sustained by their embedded flows/ processes. What's more, in such dynamic-organized liquid-state media, the flows can also produce novel materials/mechanisms. Thus, embedded processes of such media enable its spatiotemporal resilience via turnovers, as well as functional 'takeovers'. Further, the responsiveness of such constrained media to their environment enables adaptations, as they can mediate feedback between the changing environment & their embedded flows/processes. Now, the complexity of the constituent functional materials, make it very likely that they themselves emerged/got selected thanks to the creative properties of such dynamically constrained media. We have asked if such Maxwelldemon- like scenario could not be mimicked using other plausible ingredients to achieve similar ways of dissipative sustenance and coherent functioning. In particular, the potential of organizing coherent fields and their responsive anisotropic colloids to enhance the probability of life's emergence—akin to an adaptive transition—to a new way of evolving, seems promising. Note that pattern-sustenance in liquid state requires presence of the specific source that enabled it (c.f. spontaneously formed patterns). For example, external coherent heterogeneous fields (e.g. magnetic rocks) can act as sources both of 1) aperiodic information, and 2) useful energy, for inducing and sustaining (specific) structures of superparamagnetic mineral colloids (via their Brownianrotation) away-from-equilibrium, to access 3-way coupling between energy-information-matter in liquid-medium. Such dynamic functioning structures seem ideal for stable containment of bottom-up chemical systems; and similar scenario in the nanoscience engineering area can help in design/tests.

  10. Near-infrared light–responsive dynamic wrinkle patterns

    PubMed Central

    Hou, Honghao; Yin, Jie

    2018-01-01

    Dynamic micro/nanopatterns provide an effective approach for on-demand tuning of surface properties to realize a smart surface. We report a simple yet versatile strategy for the fabrication of near-infrared (NIR) light–responsive dynamic wrinkles by using a carbon nanotube (CNT)–containing poly(dimethylsiloxane) (PDMS) elastomer as the substrate for the bilayer systems, with various functional polymers serving as the top stiff layers. The high photon-to-thermal energy conversion of CNT leads to the NIR-controlled thermal expansion of the elastic CNT-PDMS substrate, resulting in dynamic regulation of the applied strain (ε) of the bilayer system by the NIR on/off cycle to obtain a reversible wrinkle pattern. The switchable surface topological structures can transfer between the wrinkled state and the wrinkle-free state within tens of seconds via NIR irradiation. As a proof-of-concept application, this type of NIR-driven dynamic wrinkle pattern was used in smart displays, dynamic gratings, and light control electronics. PMID:29740615

  11. Random Vibration Analysis of the Tip-tilt System in the GMT Fast Steering Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Don; Kim, Young-Soo; Kim, Ho-Sang; Lee, Chan-Hee; Lee, Won Gi

    2017-09-01

    A random vibration analysis was accomplished on the tip-tilt system of the fast steering secondary mirror (FSM) for the Giant Magellan Telescope (GMT). As the FSM was to be mounted on the top end of the secondary truss and disturbed by the winds, dynamic effects of the FSM disturbances on the tip-tilt correction performance was studied. The coupled dynamic responses of the FSM segments were evaluated with a suggested tip-tilt correction modeling. Dynamic equations for the tip-tilt system were derived from the force and moment equilibrium on the segment mirror and the geometric compatibility conditions with four design parameters. Statically stationary responses for the tip-tilt actuations to correct the wind-induced disturbances were studied with two design parameters based on the spectral density function of the star image errors in the frequency domain. Frequency response functions and root mean square values of the dynamic responses and the residual star image errors were numerically calculated for the off-axis and on-axis segments of the FSM. A prototype of on-axis segment of the FSM was developed for tip-tilt actuation tests to confirm the ratio of tip-tilt force to tip-tilt angle calculated from the suggested dynamic equations of the tip-tilt system. Tip-tilt actuation tests were executed at 4, 8 and 12 Hz by measuring displacements of piezoelectric actuators and reaction forces acting on the axial supports. The derived ratios of rms tip-tilt force to rms tip-tilt angle from tests showed a good correlation with the numerical results. The suggested process of random vibration analysis on the tip-tilt system to correct the wind-induced disturbances of the FSM segments would be useful to advance the FSM design and upgrade the capability to achieve the least residual star image errors by understanding the details of dynamics.

  12. Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Jiang, Daqing; Alsaedi, Ahmed; Hayat, Tasawar

    2018-07-01

    A stochastic HIV viral model with both logistic target cell growth and nonlinear immune response function is formulated to investigate the effect of white noise on each population. The existence of the global solution is verified. By employing a novel combination of Lyapunov functions, we obtain the existence of the unique stationary distribution for small white noises. We also derive the extinction of the virus for large white noises. Numerical simulations are performed to highlight the effect of white noises on model dynamic behaviour under the realistic parameters. It is found that the small intensities of white noises can keep the irregular blips of HIV virus and CTL immune response, while the larger ones force the virus infection and immune response to lose efficacy.

  13. Rapid estimation of frequency response functions by close-range photogrammetry

    NASA Technical Reports Server (NTRS)

    Tripp, J. S.

    1985-01-01

    The accuracy of a rapid method which estimates the frequency response function from stereoscopic dynamic data is computed. It is shown that reversal of the order of the operations of coordinate transformation and Fourier transformation, which provides a significant increase in computational speed, introduces error. A portion of the error, proportional to the perturbation components normal to the camera focal planes, cannot be eliminated. The remaining error may be eliminated by proper scaling of frequency data prior to coordinate transformation. Methods are developed for least squares estimation of the full 3x3 frequency response matrix for a three dimensional structure.

  14. An efficient formulation of Krylov's prediction model for train induced vibrations based on the dynamic reciprocity theorem.

    PubMed

    Degrande, G; Lombaert, G

    2001-09-01

    In Krylov's analytical prediction model, the free field vibration response during the passage of a train is written as the superposition of the effect of all sleeper forces, using Lamb's approximate solution for the Green's function of a halfspace. When this formulation is extended with the Green's functions of a layered soil, considerable computational effort is required if these Green's functions are needed in a wide range of source-receiver distances and frequencies. It is demonstrated in this paper how the free field response can alternatively be computed, using the dynamic reciprocity theorem, applied to moving loads. The formulation is based on the response of the soil due to the moving load distribution for a single axle load. The equations are written in the wave-number-frequency domain, accounting for the invariance of the geometry in the direction of the track. The approach allows for a very efficient calculation of the free field vibration response, distinguishing the quasistatic contribution from the effect of the sleeper passage frequency and its higher harmonics. The methodology is validated by means of in situ vibration measurements during the passage of a Thalys high-speed train on the track between Brussels and Paris. It is shown that the model has good predictive capabilities in the near field at low and high frequencies, but underestimates the response in the midfrequency band.

  15. Stochastic feeding dynamics arise from the need for information and energy.

    PubMed

    Scholz, Monika; Dinner, Aaron R; Levine, Erel; Biron, David

    2017-08-29

    Animals regulate their food intake in response to the available level of food. Recent observations of feeding dynamics in small animals showed feeding patterns of bursts and pauses, but their function is unknown. Here, we present a data-driven decision-theoretical model of feeding in Caenorhabditis elegans Our central assumption is that food intake serves a dual purpose: to gather information about the external food level and to ingest food when the conditions are good. The model recapitulates experimentally observed feeding patterns. It naturally implements trade-offs between speed versus accuracy and exploration versus exploitation in responding to a dynamic environment. We find that the model predicts three distinct regimes in responding to a dynamical environment, with a transition region where animals respond stochastically to periodic signals. This stochastic response accounts for previously unexplained experimental data.

  16. On the importance of excited state dynamic response electron correlation in polarizable embedding methods.

    PubMed

    Eriksen, Janus J; Sauer, Stephan P A; Mikkelsen, Kurt V; Jensen, Hans J Aa; Kongsted, Jacob

    2012-09-30

    We investigate the effect of including a dynamic reaction field at the lowest possible ab inito wave function level of theory, namely the Hartree-Fock (HF) self-consistent field level within the polarizable embedding (PE) formalism. We formulate HF based PE within the linear response theory picture leading to the PE-random-phase approximation (PE-RPA) and bridge the expressions to a second-order polarization propagator approximation (SOPPA) frame such that dynamic reaction field contributions are included at the RPA level in addition to the static response described at the SOPPA level but with HF induced dipole moments. We conduct calculations on para-nitro-aniline and para-nitro-phenolate using said model in addition to dynamic PE-RPA and PE-CAM-B3LYP. We compare the results to recently published PE-CCSD data and demonstrate how the cost effective SOPPA-based model successfully recovers a great portion of the inherent PE-RPA error when the observable is the solvatochromic shift. We furthermore demonstrate that whenever the change in density resulting from the ground state-excited state electronic transition in the solute is not associated with a significant change in the electric field, dynamic response contributions formulated at the HF level of theory manage to capture the majority of the system response originating from derivative densities. Copyright © 2012 Wiley Periodicals, Inc.

  17. Modeling Dynamic Regulatory Processes in Stroke.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Jarman, Kenneth D.; Taylor, Ronald C.

    2012-10-11

    The ability to examine in silico the behavior of biological systems can greatly accelerate the pace of discovery in disease pathologies, such as stroke, where in vivo experimentation is lengthy and costly. In this paper we describe an approach to in silico examination of blood genomic responses to neuroprotective agents and subsequent stroke through the development of dynamic models of the regulatory processes observed in the experimental gene expression data. First, we identified functional gene clusters from these data. Next, we derived ordinary differential equations (ODEs) relating regulators and functional clusters from the data. These ODEs were used to developmore » dynamic models that simulate the expression of regulated functional clusters using system dynamics as the modeling paradigm. The dynamic model has the considerable advantage of only requiring an initial starting state, and does not require measurement of regulatory influences at each time point in order to make accurate predictions. The manipulation of input model parameters, such as changing the magnitude of gene expression, made it possible to assess the behavior of the networks through time under varying conditions. We report that an optimized dynamic model can provide accurate predictions of overall system behavior under several different preconditioning paradigms.« less

  18. The AgroEcoSystem (AgES) response-function model simulates layered soil water dynamics in semi-arid Colorado: sensitivity and calibration

    USDA-ARS?s Scientific Manuscript database

    Simulation of vertical soil hydrology is a critical component of simulating even more complex soil water dynamics in space and time, including land-atmosphere and subsurface interactions. The AgroEcoSystem (AgES) model is defined here as a single land unit implementation of the full AgES-W (Watershe...

  19. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  20. Time series analysis of forest carbon dynamics: recovery of Pinus palustris physiology following a prescribed fire

    Treesearch

    G. Starr; C. L. Staudhammer; H. W. Loescher; R. Mitchell; A. Whelan; J. K. Hiers; J. J. O’Brien

    2015-01-01

    Frequency and intensity of fire determines the structure and regulates the function of savanna ecosystems worldwide, yet our understanding of prescribed fire impacts on carbon in these systems is rudimentary. We combined eddy covariance (EC) techniques and fuel consumption plots to examine the short-term response of longleaf pine forest carbon dynamics to one...

  1. Augmenting static and dynamic mechanical strength of carbon nanotube/epoxy soft nanocomposites via modulation of purification and functionalization routes.

    PubMed

    Billing, Beant Kaur; Dhar, Purbarun; Singh, Narinder; Agnihotri, Prabhat K

    2018-01-03

    A detailed experimental investigation was carried out to establish the relationship between CNT purification and functionalization routes and the average response of CNT/epoxy nanocomposites under static and dynamic loading. It was shown that the relative improvement in the mechanical properties of the epoxy matrix due to the addition of CNTs depends on the choice of purification and functionalization steps. A better dispersion of CNTs was recorded for the functionalized CNTs as compared to the oxidized and CVD grown CNTs. Moreover, tensile, 3-point bending and nanoDMA testing performed on nanocomposites processed with CVD-grown, oxidized and functionalized CNTs revealed that COOH functionalization after the oxidation of CNTs at 350 °C is the optimized processing route to harness the excellent properties of CNTs in CNT/epoxy nanocomposites.

  2. [Dynamics of hormone secretion during chronic emotional stress].

    PubMed

    Amiragova, M G; Kovalev, S V; Svirskaia, R I

    1979-05-01

    Study of spontaneous secretion of corticosteroids and thyroid hormones and the direct hormonal response to stress revealed the pathogenic effect of chronic combined emotional stress upon the hormonal function of adrenal glands. The hippocampus takes part in formation of the emotional tension in response to stress stimulus and of the following hormonal secretion.

  3. Impact of the variation in dynamic vehicle load on flexible pavement responses

    NASA Astrophysics Data System (ADS)

    Ahsanuzzaman, Md

    The purpose of this research was to evaluate the dynamic variation in asphalt pavement critical responses due to dynamic tire load variations. An attempt was also made to develop generalized regression equations to predict the dynamic response variation in flexible pavement under various dynamic load conditions. The study used an extensive database of computed pavement response histories for five different types of sites (smooth, rough, medium rough, very rough and severely rough), two different asphalt pavement structures (thin and thick) at two temperatures (70 °F and 104 °F), subjected to a tandem axle dual tire at three speeds 25, 37 and 50 mph (40, 60 and 80 km/h). All pavement responses were determined using the 3D-Move Analysis program (Version 1.2) developed by University of Nevada, Reno. A new term called Dynamic Response Coefficient (DRC) was introduced in this study to address the variation in critical pavement responses due to dynamic loads as traditionally measured by the Dynamic Load Coefficient (DLC). While DLC represents the additional varying component of the tire load, DRC represents the additional varying component of the response value (standard deviation divided by mean response). In this study, DRC was compared with DLC for five different sites based on the roughness condition of the sites. Previous studies showed that DLC varies with vehicle speed and suspension types, and assumes a constant value for the whole pavement structure (lateral and vertical directions). On the other hand, in this study, DRC was found to be significantly varied with the asphalt pavement and function of pavement structure, road roughness conditions, temperatures, vehicle speeds, suspension types, and locations of the point of interest in the pavement. A major contribution of the study is that the variation of pavement responses due to dynamic load in a flexible pavement system can be predicted with generalized regression equations. Fitting parameters (R2) in the rage of 0.60 to 0.87 were observed the DRC predictive equations. In addition, verification of those generalized equations was evaluated using different sets of asphalt pavement structures and pavement materials. The differences between calculated and predicted values were found to be within +/-20% for the maximum tensile strain and +/-30% for the maximum compressive strain in the asphalt layer.

  4. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (

  5. Ride quality flight testing

    NASA Technical Reports Server (NTRS)

    Swaim, R. L.

    1978-01-01

    The ride quality experienced by passengers is a function of airframe rigid-body, elastic dynamic responses, autopilot, and stability augmentation system control inputs. A frequency response method has been developed to select sinusoidal elevator input time histories yielding vertical load factor distributions, within a given limit, as a function of fuselage station. The numerical technique is illustrated by applying two-degree-of-freedom short-period and first symmetric mode equations of motion to a B-1 aircraft at Mach 0.85 during sea level flight conditions.

  6. Cardiorespiratory dynamics: sensitivity of the on-transition to endurance-training status.

    PubMed

    Taylor, N A; Osborne, M A; Bube, T L; Stocks, J M

    1999-10-01

    This project investigated the sensitivity of oxygen uptake (VO(2)) dynamics to training-induced physiological changes, across a broad spectrum of endurance-training histories. Forty subjects participated: sedentary (n = 10), active healthy (n = 10), regular runners (n = 10), and competitive distance runners (n = 10). Subjects completed a cycle step-function protocol, to elicit a steady state at 60% maximal work rate. Breath-by-breath data were collected for VO(2) and cardiac frequency (f(c)), and modelled mathematically, and used to determine the average response times to attain 20%, 40%, 60%, 80% and 100% of the respective steady states. The between-group comparisons for both VO(2) and f(c) revealed significantly faster response times to 40%, 60%, 80% and 100% of the induced response, for the better trained subjects (P < 0.05). In general, this technique permitted differentiation between the VO(2) and f(c) response dynamics of non-elite subjects from a broad range of endurance-training histories, with differences becoming more pronounced as subjects approached the steady state.

  7. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  8. Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma

    PubMed Central

    Gangeddula, Viswa; Ranchet, Maud; Akinwuntan, Abiodun E.; Bollinger, Kathryn; Devos, Hannes

    2017-01-01

    Purpose: To investigate the effect of cognitive demand on functional visual field performance in drivers with glaucoma. Method: This study included 20 drivers with open-angle glaucoma and 13 age- and sex-matched controls. Visual field performance was evaluated under different degrees of cognitive demand: a static visual field condition (C1), dynamic visual field condition (C2), and dynamic visual field condition with active driving (C3) using an interactive, desktop driving simulator. The number of correct responses (accuracy) and response times on the visual field task were compared between groups and between conditions using Kruskal–Wallis tests. General linear models were employed to compare cognitive workload, recorded in real-time through pupillometry, between groups and conditions. Results: Adding cognitive demand (C2 and C3) to the static visual field test (C1) adversely affected accuracy and response times, in both groups (p < 0.05). However, drivers with glaucoma performed worse than did control drivers when the static condition changed to a dynamic condition [C2 vs. C1 accuracy; glaucoma: median difference (Q1–Q3) 3 (2–6.50) vs. controls: 2 (0.50–2.50); p = 0.05] and to a dynamic condition with active driving [C3 vs. C1 accuracy; glaucoma: 2 (2–6) vs. controls: 1 (0.50–2); p = 0.02]. Overall, drivers with glaucoma exhibited greater cognitive workload than controls (p = 0.02). Conclusion: Cognitive demand disproportionately affects functional visual field performance in drivers with glaucoma. Our results may inform the development of a performance-based visual field test for drivers with glaucoma. PMID:28912712

  9. Network Dynamics Underlying Speed-Accuracy Trade-Offs in Response to Errors

    PubMed Central

    Agam, Yigal; Carey, Caitlin; Barton, Jason J. S.; Dyckman, Kara A.; Lee, Adrian K. C.; Vangel, Mark; Manoach, Dara S.

    2013-01-01

    The ability to dynamically and rapidly adjust task performance based on its outcome is fundamental to adaptive, flexible behavior. Over trials of a task, responses speed up until an error is committed and after the error responses slow down. These dynamic adjustments serve to optimize performance and are well-described by the speed-accuracy trade-off (SATO) function. We hypothesized that SATOs based on outcomes reflect reciprocal changes in the allocation of attention between the internal milieu and the task-at-hand, as indexed by reciprocal changes in activity between the default and dorsal attention brain networks. We tested this hypothesis using functional MRI to examine the pattern of network activation over a series of trials surrounding and including an error. We further hypothesized that these reciprocal changes in network activity are coordinated by the posterior cingulate cortex (PCC) and would rely on the structural integrity of its white matter connections. Using diffusion tensor imaging, we examined whether fractional anisotropy of the posterior cingulum bundle correlated with the magnitude of reciprocal changes in network activation around errors. As expected, reaction time (RT) in trials surrounding errors was consistent with predictions from the SATO function. Activation in the default network was: (i) inversely correlated with RT, (ii) greater on trials before than after an error and (iii) maximal at the error. In contrast, activation in the right intraparietal sulcus of the dorsal attention network was (i) positively correlated with RT and showed the opposite pattern: (ii) less activation before than after an error and (iii) the least activation on the error. Greater integrity of the posterior cingulum bundle was associated with greater reciprocity in network activation around errors. These findings suggest that dynamic changes in attention to the internal versus external milieu in response to errors underlie SATOs in RT and are mediated by the PCC. PMID:24069223

  10. Understanding original antigenic sin in influenza with a dynamical system.

    PubMed

    Pan, Keyao

    2011-01-01

    Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.

  11. Visual motor response of crewmen during a simulated 90 day space mission as measured by the critical task battery

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Jex, H. R.

    1972-01-01

    In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long-duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in space station simulator for 90 days. A tracking test battery was administered during the above experiment. The battery included a clinical test (critical instability task) related to the subject's dynamic time delay, and a conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The comprehensive data base on human operator tracking behavior obtained in this study demonstrate that sophisticated visual-motor response properties can be efficiently and reliably measured over extended periods of time.

  12. Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis.

    PubMed

    Righetti, Francesco; Nuss, Aaron M; Twittenhoff, Christian; Beele, Sascha; Urban, Kristina; Will, Sebastian; Bernhart, Stephan H; Stadler, Peter F; Dersch, Petra; Narberhaus, Franz

    2016-06-28

    RNA structures are fundamentally important for RNA function. Dynamic, condition-dependent structural changes are able to modulate gene expression as shown for riboswitches and RNA thermometers. By parallel analysis of RNA structures, we mapped the RNA structurome of Yersinia pseudotuberculosis at three different temperatures. This human pathogen is exquisitely responsive to host body temperature (37 °C), which induces a major metabolic transition. Our analysis profiles the structure of more than 1,750 RNAs at 25 °C, 37 °C, and 42 °C. Average mRNAs tend to be unstructured around the ribosome binding site. We searched for 5'-UTRs that are folded at low temperature and identified novel thermoresponsive RNA structures from diverse gene categories. The regulatory potential of 16 candidates was validated. In summary, we present a dynamic bacterial RNA structurome and find that the expression of virulence-relevant functions in Y. pseudotuberculosis and reprogramming of its metabolism in response to temperature is associated with a restructuring of numerous mRNAs.

  13. Efficient sensitivity analysis and optimization of a helicopter rotor

    NASA Technical Reports Server (NTRS)

    Lim, Joon W.; Chopra, Inderjit

    1989-01-01

    Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.

  14. Ab-initio molecular dynamics in electric fields via Wannier functions: Dielectric properties of liquid water.

    NASA Astrophysics Data System (ADS)

    Sharma, Manu; Resta, Raffaele; Car, Roberto

    2004-03-01

    We have implemented a modified Car-Parrinello molecular dynamics scheme in which maximally localized Wannier functions, instead of delocalized Bloch orbitals, are used to represent ``on the fly'' the electronic wavefunction of an insulating system. Within our scheme, we account for the effects of a finite homogeneous field applied to the simulation cell; we then use the ideas of the modern theory of polarization to investigate the system's response. The dielectric response (linear and nonlinear) of a given material is thus directly accessible at a reasonable computational cost. We have performed a thorough study of the behavior of a computational sample of liquid water under the effect of an electric field. We used norm-conserving pseudopotentials, the PBE exchange-correlation potential, and supercell containing water 64 molecules. Besides providing the static response of the liquid at a given temperature, our simulations yield microscopic insight into features wich are not easily measured in experiments, particularly regarding relaxation phenomena.

  15. Identifying the function of restored urban green space in sustainable environmental management: the ecological response, service, and function of amphibians

    EPA Science Inventory

    Over one-half of the United States population resides in urban areas and many of these areas are experiencing growth. Nevertheless, human land-use patterns are dynamic, and some locations within urban areas are experiencing declining populations and land abandonment. These abando...

  16. Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Elson, Elliot L.

    Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.

  17. Influence of tyre-road contact model on vehicle vibration response

    NASA Astrophysics Data System (ADS)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  18. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response.

    PubMed

    Blom, Kim; Braun, Monika; Ivarsson, Martin A; Gonzalez, Veronica D; Falconer, Karolin; Moll, Markus; Ljunggren, Hans-Gustaf; Michaëlsson, Jakob; Sandberg, Johan K

    2013-03-01

    The live attenuated yellow fever virus (YFV) 17D vaccine provides a good model to study immune responses to an acute viral infection in humans. We studied the temporal dynamics, composition, and character of the primary human T cell response to YFV. The acute YFV-specific effector CD8 T cell response was broad and complex; it was composed of dominant responses that persisted into the memory population, as well as of transient subdominant responses that were not detected at the memory stage. Furthermore, HLA-A2- and HLA-B7-restricted YFV epitope-specific effector cells predominantly displayed a CD45RA(-)CCR7(-)PD-1(+)CD27(high) phenotype, which transitioned into a CD45RA(+)CCR7(-)PD-1(-)CD27(low) memory population phenotype. The functional profile of the YFV-specific CD8 T cell response changed in composition as it matured from an effector- to a memory-type response, and it tended to become less polyfunctional during the course of this transition. Interestingly, activation of CD4 T cells, as well as FOXP3(+) T regulatory cells, in response to YFV vaccination preceded the kinetics of the CD8 T cell response. The present results contribute to our understanding of how immunodominance patterns develop, as well as the phenotypic and functional characteristics of the primary human T cell response to a viral infection as it evolves and matures into memory.

  19. Convergent properties of vestibular-related brain stem neurons in the gerbil

    NASA Technical Reports Server (NTRS)

    Kaufman, G. D.; Shinder, M. E.; Perachio, A. A.

    2000-01-01

    Three classes of vestibular-related neurons were found in and near the prepositus and medial vestibular nuclei of alert or decerebrate gerbils, those responding to: horizontal translational motion, horizontal head rotation, or both. Their distribution ratios were 1:2:2, respectively. Many cells responsive to translational motion exhibited spatiotemporal characteristics with both response gain and phase varying as a function of the stimulus vector angle. Rotationally sensitive neurons were distributed as Type I, II, or III responses (sensitive to ipsilateral, contralateral, or both directions, respectively) in the ratios of 4:6:1. Four tested factors shaped the response dynamics of the sampled neurons: canal-otolith convergence, oculomotor-related activity, rotational Type (I or II), and the phase of the maximum response. Type I nonconvergent cells displayed increasing gains with increasing rotational stimulus frequency (0.1-2.0 Hz, 60 degrees /s), whereas Type II neurons with convergent inputs had response gains that markedly decreased with increasing translational stimulus frequency (0.25-2.0 Hz, +/-0.1 g). Type I convergent and Type II nonconvergent neurons exhibited essentially flat gains across the stimulus frequency range. Oculomotor-related activity was noted in 30% of the cells across all functional types, appearing as burst/pause discharge patterns related to the fast phase of nystagmus during head rotation. Oculomotor-related activity was correlated with enhanced dynamic range compared with the same category that had no oculomotor-related response. Finally, responses that were in-phase with head velocity during rotation exhibited greater gains with stimulus frequency increments than neurons with out-of-phase responses. In contrast, for translational motion, neurons out of phase with head acceleration exhibited low-pass characteristics, whereas in-phase neurons did not. Data from decerebrate preparations revealed that although similar response types could be detected, the sampled cells generally had lower background discharge rates, on average one-third lower response gains, and convergent properties that differed from those found in the alert animals. On the basis of the dynamic response of identified cell types, we propose a pair of models in which inhibitory input from vestibular-related neurons converges on oculomotor neurons with excitatory inputs from the vestibular nuclei. Simple signal convergence and combinations of different types of vestibular labyrinth information can enrich the dynamic characteristics of the rotational and translational vestibuloocular responses.

  20. Dynamic NF-κB and E2F interactions control the priority and timing of inflammatory signalling and cell proliferation

    PubMed Central

    Ankers, John M; Awais, Raheela; Jones, Nicholas A; Boyd, James; Ryan, Sheila; Adamson, Antony D; Harper, Claire V; Bridge, Lloyd; Spiller, David G; Jackson, Dean A; Paszek, Pawel; Sée, Violaine; White, Michael RH

    2016-01-01

    Dynamic cellular systems reprogram gene expression to ensure appropriate cellular fate responses to specific extracellular cues. Here we demonstrate that the dynamics of Nuclear Factor kappa B (NF-κB) signalling and the cell cycle are prioritised differently depending on the timing of an inflammatory signal. Using iterative experimental and computational analyses, we show physical and functional interactions between NF-κB and the E2 Factor 1 (E2F-1) and E2 Factor 4 (E2F-4) cell cycle regulators. These interactions modulate the NF-κB response. In S-phase, the NF-κB response was delayed or repressed, while cell cycle progression was unimpeded. By contrast, activation of NF-κB at the G1/S boundary resulted in a longer cell cycle and more synchronous initial NF-κB responses between cells. These data identify new mechanisms by which the cellular response to stress is differentially controlled at different stages of the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.10473.001 PMID:27185527

  1. Piloting Changes to Changing Aircraft Dynamics: What Do Pilots Need to Know?

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Gregory, Irene M.

    2011-01-01

    An experiment was conducted to quantify the effects of changing dynamics on a subject s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. The data will be used to identify primary aircraft dynamics variables that influence changes in pilot s response and produce a simplified pilot model that incorporates this relationship. Each run incorporated a different set of second-order aircraft dynamics representing short period transfer function pitch attitude response: damping ratio, frequency, gain, zero location, and time delay. The subject s ability to conduct the tracking task was the greatest source of root mean square error tracking variability. As for the aircraft dynamics, the factors that affected the subjects ability to conduct the tracking were the time delay, frequency, and zero location. In addition to creating a simplified pilot model, the results of the experiment can be utilized in an advisory capacity. A situation awareness/prediction aid based on the pilot behavior and aircraft dynamics may help tailor pilot s inputs more quickly so that PIO or an upset condition can be avoided.

  2. Bioelectronic Sensors and Devices

    NASA Astrophysics Data System (ADS)

    Reed, Mark

    Nanoscale electronic devices have recently enabled the ability to controllably probe biological systems, from the molecular to the cellular level, opening up new applications and understanding of biological function and response. This talk reviews some of the advances in the field, ranging from diagnostic and therapeutic applications, to cellular manipulation and response, to the emulation of biological response. In diagnostics, integrated nanodevice biosensors compatible with CMOS technology have achieved unprecedented sensitivity, enabling a wide range of label-free biochemical and macromolecule sensing applications down to femtomolar concentrations. These systems have demonstrated integrated assays of biomarkers at clinically important concentrations for both diagnostics and as a quantitative tool for drug design and discovery. Cellular level response can also be observed, including immune response function and dynamics. Finally, the field is beginning to create devices that emulate function, and the demonstration of a solid state artificial ion channel will be discussed.

  3. Dynamic range of Nef-mediated evasion of HLA class II-restricted immune responses in early HIV-1 infection.

    PubMed

    Mahiti, Macdonald; Brumme, Zabrina L; Jessen, Heiko; Brockman, Mark A; Ueno, Takamasa

    2015-07-31

    HLA class II-restricted CD4(+) T lymphocytes play an important role in controlling HIV-1 replication, especially in the acute/early infection stage. But, HIV-1 Nef counteracts this immune response by down-regulating HLA-DR and up-regulating the invariant chain associated with immature HLA-II (Ii). Although functional heterogeneity of various Nef activities, including down-regulation of HLA class I (HLA-I), is well documented, our understanding of Nef-mediated evasion of HLA-II-restricted immune responses during acute/early infection remains limited. Here, we examined the ability of Nef clones from 47 subjects with acute/early progressive infection and 46 subjects with chronic progressive infection to up-regulate Ii and down-regulate HLA-DR and HLA-I from the surface of HIV-infected cells. HLA-I down-regulation function was preserved among acute/early Nef clones, whereas both HLA-DR down-regulation and Ii up-regulation functions displayed relatively broad dynamic ranges. Nef's ability to down-regulate HLA-DR and up-regulate Ii correlated positively at this stage, suggesting they are functionally linked in vivo. Acute/early Nef clones also exhibited higher HLA-DR down-regulation and lower Ii up-regulation functions compared to chronic Nef clones. Taken together, our results support enhanced Nef-mediated HLA class II immune evasion activities in acute/early compared to chronic infection, highlighting the potential importance of these functions following transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A Novel Ex Vivo Method for Visualizing Live-Cell Calcium Response Behavior in Intact Human Tumors.

    PubMed

    Koh, James; Hogue, Joyce A; Sosa, Julie A

    2016-01-01

    The functional impact of intratumoral heterogeneity has been difficult to assess in the absence of a means to interrogate dynamic, live-cell biochemical events in the native tissue context of a human tumor. Conventional histological methods can reveal morphology and static biomarker expression patterns but do not provide a means to probe and evaluate tumor functional behavior and live-cell responsiveness to experimentally controlled stimuli. Here, we describe an approach that couples vibratome-mediated viable tissue sectioning with live-cell confocal microscopy imaging to visualize human parathyroid adenoma tumor cell responsiveness to extracellular calcium challenge. Tumor sections prepared as 300 micron-thick tissue slices retain viability throughout a >24 hour observation period and retain the native architecture of the parental tumor. Live-cell observation of biochemical signaling in response to extracellular calcium challenge in the intact tissue slices reveals discrete, heterogeneous kinetic waveform categories of calcium agonist reactivity within each tumor. Plotting the proportion of maximally responsive tumor cells as a function of calcium concentration yields a sigmoid dose-response curve with a calculated calcium EC50 value significantly elevated above published reference values for wild-type calcium-sensing receptor (CASR) sensitivity. Subsequent fixation and immunofluorescence analysis of the functionally evaluated tissue specimens allows alignment and mapping of the physical characteristics of individual cells within the tumor to specific calcium response behaviors. Evaluation of the relative abundance of intracellular PTH in tissue slices challenged with variable calcium concentrations demonstrates that production of the hormone can be dynamically manipulated ex vivo. The capability of visualizing live human tumor tissue behavior in response to experimentally controlled conditions opens a wide range of possibilities for personalized ex vivo therapeutic testing. This highly adaptable system provides a unique platform for live-cell ex vivo provocative testing of human tumor responsiveness to a range of physiological agonists or candidate therapeutic compounds.

  5. Dynamic Interaction- and Phospho-Proteomics Reveal Lck as a Major Signaling Hub of CD147 in T Cells.

    PubMed

    Supper, Verena; Hartl, Ingrid; Boulègue, Cyril; Ohradanova-Repic, Anna; Stockinger, Hannes

    2017-03-15

    Numerous publications have addressed CD147 as a tumor marker and regulator of cytoskeleton, cell growth, stress response, or immune cell function; however, the molecular functionality of CD147 remains incompletely understood. Using affinity purification, mass spectrometry, and phosphopeptide enrichment of isotope-labeled peptides, we examined the dynamic of the CD147 microenvironment and the CD147-dependent phosphoproteome in the Jurkat T cell line upon treatment with T cell stimulating agents. We identified novel dynamic interaction partners of CD147 such as CD45, CD47, GNAI2, Lck, RAP1B, and VAT1 and, furthermore, found 76 CD147-dependent phosphorylation sites on 57 proteins. Using the STRING protein network database, a network between the CD147 microenvironment and the CD147-dependent phosphoproteins was generated and led to the identification of key signaling hubs around the G proteins RAP1B and GNB1, the kinases PKCβ, PAK2, Lck, and CDK1, and the chaperone HSPA5. Gene ontology biological process term analysis revealed that wound healing-, cytoskeleton-, immune system-, stress response-, phosphorylation- and protein modification-, defense response to virus-, and TNF production-associated terms are enriched within the microenvironment and the phosphoproteins of CD147. With the generated signaling network and gene ontology biological process term grouping, we identify potential signaling routes of CD147 affecting T cell growth and function. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  7. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    NASA Technical Reports Server (NTRS)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  8. Stability analysis and nonstandard Grünwald-Letnikov scheme for a fractional order predator-prey model with ratio-dependent functional response

    NASA Astrophysics Data System (ADS)

    Suryanto, Agus; Darti, Isnani

    2017-12-01

    In this paper we discuss a fractional order predator-prey model with ratio-dependent functional response. The dynamical properties of this model is analyzed. Here we determine all equilibrium points of this model including their existence conditions and their stability properties. It is found that the model has two type of equilibria, namely the predator-free point and the co-existence point. If there is no co-existence equilibrium, i.e. when the coefficient of conversion from the functional response into the growth rate of predator is less than the death rate of predator, then the predator-free point is asymptotically stable. On the other hand, if the co-existence point exists then this equilibrium is conditionally stable. We also construct a nonstandard Grnwald-Letnikov (NSGL) numerical scheme for the propose model. This scheme is a combination of the Grnwald-Letnikov approximation and the nonstandard finite difference scheme. This scheme is implemented in MATLAB and used to perform some simulations. It is shown that our numerical solutions are consistent with the dynamical properties of our fractional predator-prey model.

  9. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  10. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system.

    PubMed

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  11. Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem

    USGS Publications Warehouse

    Dale, B.W.; Adams, Layne G.; Bowyer, R.T.

    1994-01-01

    1. We investigated the functional response of wolves (Canis lupus) to varying abundance of ungulate prey to test the hypothesis that switching from alternate prey to preferred prey results in regulation of a caribou (Rangifer tarandus) population at low densities. 2. We determined prey selection, kill rates, and prey abundance for four wolf packs during three 30-day periods in March 1989, March 1990, November 1990, and created a simple discrete model to evaluate the potential for the expected numerical and observed functional responses of wolves to regulate caribou populations. 3. We observed a quickly decelerating type II functional response that, in the absence of numerical response, implicates an anti-regulatory effect of wolf predation on barren-ground caribou dynamics. 4. There was little potential for regulation caused by the multiplicative effect of increasing functional and numerical responses because of presence of alternative prey. This resulted in high wolf:caribou ratios at low prey densities which precluded the effects of an increasing functional response. 5. Inversely density-dependent predation by other predators, such as bears, reduces the potential for predators to regulate caribou populations at low densities, and small reductions in predation by one predator may have disproportionately large effects on the total predation rate.

  12. Mapping human temporal and parietal neuronal population activity and functional coupling during mathematical cognition

    PubMed Central

    Daitch, Amy L.; Foster, Brett L.; Schrouff, Jessica; Rangarajan, Vinitha; Kaşikçi, Itır; Gattas, Sandra; Parvizi, Josef

    2016-01-01

    Brain areas within the lateral parietal cortex (LPC) and ventral temporal cortex (VTC) have been shown to code for abstract quantity representations and for symbolic numerical representations, respectively. To explore the fast dynamics of activity within each region and the interaction between them, we used electrocorticography recordings from 16 neurosurgical subjects implanted with grids of electrodes over these two regions and tracked the activity within and between the regions as subjects performed three different numerical tasks. Although our results reconfirm the presence of math-selective hubs within the VTC and LPC, we report here a remarkable heterogeneity of neural responses within each region at both millimeter and millisecond scales. Moreover, we show that the heterogeneity of response profiles within each hub mirrors the distinct patterns of functional coupling between them. Our results support the existence of multiple bidirectional functional loops operating between discrete populations of neurons within the VTC and LPC during the visual processing of numerals and the performance of arithmetic functions. These findings reveal information about the dynamics of numerical processing in the brain and also provide insight into the fine-grained functional architecture and connectivity within the human brain. PMID:27821758

  13. Dynamic miRNA-mRNA regulations are essential for maintaining Drosophila immune homeostasis during Micrococcus luteus infection.

    PubMed

    Wei, Guanyun; Sun, Lianjie; Li, Ruimin; Li, Lei; Xu, Jiao; Ma, Fei

    2018-04-01

    Pathogen bacteria infections can lead to dynamic changes of microRNA (miRNA) and mRNA expression profiles, which may control synergistically the outcome of immune responses. To reveal the role of dynamic miRNA-mRNA regulation in Drosophila innate immune responses, we have detailedly analyzed the paired miRNA and mRNA expression profiles at three time points during Drosophila adult males with Micrococcus luteus (M. luteus) infection using RNA- and small RNA-seq data. Our results demonstrate that differentially expressed miRNAs and mRNAs represent extensively dynamic changes over three time points during Drosophila with M. luteus infection. The pathway enrichment analysis indicates that differentially expressed genes are involved in diverse signaling pathways, including Toll and Imd as well as orther signaling pathways at three time points during Drosophila with M. luteus infection. Remarkably, the dynamic change of miRNA expression is delayed by compared to mRNA expression change over three time points, implying that the "time" parameter should be considered when the function of miRNA/mRNA is further studied. In particular, the dynamic miRNA-mRNA regulatory networks have shown that miRNAs may synergistically regulate gene expressions of different signaling pathways to promote or inhibit innate immune responses and maintain homeostasis in Drosophila, and some new regulators involved in Drosophila innate immune response have been identified. Our findings strongly suggest that miRNA regulation is a key mechanism involved in fine-tuning cooperatively gene expressions of diverse signaling pathways to maintain innate immune response and homeostasis in Drosophila. Taken together, the present study reveals a novel role of dynamic miRNA-mRNA regulation in immune response to bacteria infection, and provides a new insight into the underlying molecular regulatory mechanism of Drosophila innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Determine the Dynamic Response to Androgen-Blockade Therapy in Circulating Tumor Cells of CRPC Patients by Transcription-Based Reporter Vectors

    DTIC Science & Technology

    2016-08-01

    green fluorescent reporter gene. Specific Aim 2: To evaluate the functional capability of Ad-mediated CTC detection and the response to AR...6 Specific Aim 3: To evaluate the therapeutic responses to AR antagonists in CTCs of CRPC patients before, during and after AR blockade...A., Mali, A., Khirade, M. & Bapat, S. A tumor deconstruction platform identifies definitive end points in the evaluation of drug responses. Oncogene

  15. Experimental Determination of Linear Dynamics of Two-Spool Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Novik, David; Heppler, Herbert

    1954-01-01

    Transfer functions descriptive of the response of most engine variables were determined from transient data that were obtained from approximate step inputs in fuel flow and in exhaust-nozzle area. The speed responses of both spools to fuel flow and to turbine-inlet temperature appeared as identical first-order lags. Response to exhaust-nozzle area was characterized by a first-order lag response of the outer-spool speed, accompanied by virtually no change in inner-spool speed.

  16. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  17. Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing.

    PubMed

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko; Toichi, Motomi

    2017-03-01

    Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  19. Time-dependent compressibility of poly (methyl methacrylate) (PMMA) : an experimental and molecular dynamics investigation

    NASA Astrophysics Data System (ADS)

    Sane, Sandeep Bhalchandra

    This thesis contains three chapters, which describe different aspects of an investigation of the bulk response of Poly(Methyl Methacrylate) (PMMA). The first chapter describes the physical measurements by means of a Belcher/McKinney-type apparatus. Used earlier for the measurement of the bulk response of Poly(Vinyl Acetate), it was now adapted for making measurements at higher temperatures commensurate with the glass transition temperature of PMMA. The dynamic bulk compliance of PMMA was measured at atmospheric pressure over a wide range of temperatures and frequencies, from which the master curves for the bulk compliance were generated by means of the time-temperature superposition principle. It was found that the extent of the transition ranges for the bulk and shear response were comparable. Comparison of the shift factors for bulk and shear responses supports the idea that different molecular mechanisms contribute to shear and bulk deformations. The second chapter delineates molecular dynamics computations for the bulk response for a range of pressures and temperatures. The model(s) consisted of 2256 atoms formed into three polymer chains with fifty monomer units per chain per unit cell. The time scales accessed were limited to tens of pico seconds. It was found that, in addition to the typical energy minimization and temperature annealing cycles for establishing equilibrium models, it is advantageous to subject the model samples to a cycle of relatively large pressures (GPa-range) for improving the equilibrium state. On comparing the computations with the experimentally determined "glassy" behavior, one finds that, although the computations were limited to small samples in a physical sense, the primary limitation rests in the very short times (pico seconds). The molecular dynamics computations do not model the physically observed temperature sensitivity of PMMA, even if one employs a hypothetical time-temperature shift to account for the large difference in time scales between experiment and computation. The values computed by the molecular dynamics method do agree with the values measured at the coldest temperature and at the highest frequency of one kiloHertz. The third chapter draws on measurements of uniaxial, shear and Poisson response conducted previously in our laboratory. With the availability of four time or frequency-dependent material functions for the same material, the process of interconversion between different material functions was investigated. Computed material functions were evaluated against the direct experimental measurements and the limitations imposed on successful interconversion due to the experimental errors in the underlying physical data were explored. Differences were observed that are larger than the experimental errors would suggest.

  20. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean.

    PubMed

    Alexander, Harriet; Rouco, Mónica; Haley, Sheean T; Wilson, Samuel T; Karl, David M; Dyhrman, Sonya T

    2015-11-03

    A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate.

  1. Altered inhibition-related frontolimbic connectivity in obsessive-compulsive disorder.

    PubMed

    van Velzen, Laura S; de Wit, Stella J; Ćurĉić-Blake, Branislava; Cath, Daniëlle C; de Vries, Froukje E; Veltman, Dick J; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2015-10-01

    Recent studies have shown that response inhibition is impaired in patients with obsessive-compulsive disorder and their unaffected siblings, suggesting that these deficits may be considered a cognitive endophenotype of obsessive-compulsive disorder. Structural and functional neural correlates of altered response inhibition have been identified in patients and siblings. This study aims to examine the functional integrity of the response inhibition network in patients with obsessive-compulsive disorder and their unaffected siblings. Forty-one unmedicated patients with obsessive-compulsive disorder, 17 of their unaffected siblings and 37 healthy controls performed a stop signal task during functional magnetic resonance imaging. Psycho-physiological interaction analysis was used to examine functional connectivity between the following regions of interest: the bilateral inferior frontal gyri, presupplementary motor area, subthalamic nuclei, inferior parietal lobes, anterior cingulate cortex, and amygdala. We then used dynamic causal modeling to investigate the directionality of the networks involved. Patients, and to a lesser extent also their unaffected siblings, show altered connectivity between the inferior frontal gyrus and the amygdala during response inhibition. The follow-up dynamic causal modeling suggests a bottom-up influence of the amygdala on the inferior frontal gyrus in healthy controls, whereas processing occurs top-down in patients with obsessive-compulsive, and in both directions in siblings. Our findings suggest that amygdala activation in obsessive-compulsive disorder interferes differently with the task-related recruitment of the inhibition network, underscoring the role of limbic disturbances in cognitive dysfunctions in obsessive-compulsive disorder. © 2015 Wiley Periodicals, Inc.

  2. Vegetation function and non-uniqueness of the hydrological response

    NASA Astrophysics Data System (ADS)

    Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.

    2012-04-01

    Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.

  3. Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean

    PubMed Central

    Alexander, Harriet; Rouco, Mónica; Haley, Sheean T.; Wilson, Samuel T.; Karl, David M.; Dyhrman, Sonya T.

    2015-01-01

    A diverse microbial assemblage in the ocean is responsible for nearly half of global primary production. It has been hypothesized and experimentally demonstrated that nutrient loading can stimulate blooms of large eukaryotic phytoplankton in oligotrophic systems. Although central to balancing biogeochemical models, knowledge of the metabolic traits that govern the dynamics of these bloom-forming phytoplankton is limited. We used eukaryotic metatranscriptomic techniques to identify the metabolic basis of functional group-specific traits that may drive the shift between net heterotrophy and autotrophy in the oligotrophic ocean. Replicated blooms were simulated by deep seawater (DSW) addition to mimic nutrient loading in the North Pacific Subtropical Gyre, and the transcriptional responses of phytoplankton functional groups were assayed. Responses of the diatom, haptophyte, and dinoflagellate functional groups in simulated blooms were unique, with diatoms and haptophytes significantly (95% confidence) shifting their quantitative metabolic fingerprint from the in situ condition, whereas dinoflagellates showed little response. Significantly differentially abundant genes identified the importance of colimitation by nutrients, metals, and vitamins in eukaryotic phytoplankton metabolism and bloom formation in this system. The variable transcript allocation ratio, used to quantify transcript reallocation following DSW amendment, differed for diatoms and haptophytes, reflecting the long-standing paradigm of phytoplankton r- and K-type growth strategies. Although the underlying metabolic potential of the large eukaryotic phytoplankton was consistently present, the lack of a bloom during the study period suggests a crucial dependence on physical and biogeochemical forcing, which are susceptible to alteration with changing climate. PMID:26460011

  4. Dispersion of response times reveals cognitive dynamics.

    PubMed

    Holden, John G; Van Orden, Guy C; Turvey, Michael T

    2009-04-01

    Trial-to-trial variation in word-pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes-interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and interdependence. Individual participant distributions of approximately 1,100 word-pronunciation times were successfully mimicked for each participant in combinations of lognormal and power-law behavior. Successful hazard function simulations generalized these results to establish interaction dominant dynamics, in contrast with component dominant dynamics, as a likely mechanism for cognitive activity. (c) 2009 APA, all rights reserved

  5. Dispersion of Response Times Reveals Cognitive Dynamics

    PubMed Central

    Holden, John G.; Van Orden, Guy C.; Turvey, Michael T.

    2013-01-01

    Trial to trial variation in word pronunciation times exhibits 1/f scaling. One explanation is that human performances are consequent on multiplicative interactions among interdependent processes – interaction dominant dynamics. This article describes simulated distributions of pronunciation times in a further test for multiplicative interactions and interdependence. Individual participant distributions of ≈1100 word pronunciation times are successfully mimicked for each participant in combinations of lognormal and power law behavior. Successful hazard function simulations generalize these results to establish interaction dominant dynamics, in contrast with component dominant dynamics, as a likely mechanism for cognitive activity. PMID:19348544

  6. Individual Functional ROI Optimization via Maximization of Group-wise Consistency of Structural and Functional Profiles

    PubMed Central

    Li, Kaiming; Guo, Lei; Zhu, Dajiang; Hu, Xintao; Han, Junwei; Liu, Tianming

    2013-01-01

    Studying connectivities among functional brain regions and the functional dynamics on brain networks has drawn increasing interest. A fundamental issue that affects functional connectivity and dynamics studies is how to determine the best possible functional brain regions or ROIs (regions of interest) for a group of individuals, since the connectivity measurements are heavily dependent on ROI locations. Essentially, identification of accurate, reliable and consistent corresponding ROIs is challenging due to the unclear boundaries between brain regions, variability across individuals, and nonlinearity of the ROIs. In response to these challenges, this paper presents a novel methodology to computationally optimize ROIs locations derived from task-based fMRI data for individuals so that the optimized ROIs are more consistent, reproducible and predictable across brains. Our computational strategy is to formulate the individual ROI location optimization as a group variance minimization problem, in which group-wise consistencies in functional/structural connectivity patterns and anatomic profiles are defined as optimization constraints. Our experimental results from multimodal fMRI and DTI data show that the optimized ROIs have significantly improved consistency in structural and functional profiles across individuals. These improved functional ROIs with better consistency could contribute to further study of functional interaction and dynamics in the human brain. PMID:22281931

  7. Uncertainty and operational considerations in mass prophylaxis workforce planning.

    PubMed

    Hupert, Nathaniel; Xiong, Wei; King, Kathleen; Castorena, Michelle; Hawkins, Caitlin; Wu, Cindie; Muckstadt, John A

    2009-12-01

    The public health response to an influenza pandemic or other large-scale health emergency may include mass prophylaxis using multiple points of dispensing (PODs) to deliver countermeasures rapidly to affected populations. Computer models created to date to determine "optimal" staffing levels at PODs typically assume stable patient demand for service. The authors investigated POD function under dynamic and uncertain operational environments. The authors constructed a Monte Carlo simulation model of mass prophylaxis (the Dynamic POD Simulator, or D-PODS) to assess the consequences of nonstationary patient arrival patterns on POD function under a variety of POD layouts and staffing plans. Compared are the performance of a standard POD layout under steady-state and variable patient arrival rates that may mimic real-life variation in patient demand. To achieve similar performance, PODs functioning under nonstationary patient arrival rates require higher staffing levels than would be predicted using the assumption of stationary arrival rates. Furthermore, PODs may develop severe bottlenecks unless staffing levels vary over time to meet changing patient arrival patterns. Efficient POD networks therefore require command and control systems capable of dynamically adjusting intra- and inter-POD staff levels to meet demand. In addition, under real-world operating conditions of heightened uncertainty, fewer large PODs will require a smaller total staff than many small PODs to achieve comparable performance. Modeling environments that capture the effects of fundamental uncertainties in public health disasters are essential for the realistic evaluation of response mechanisms and policies. D-PODS quantifies POD operational efficiency under more realistic conditions than have been modeled previously. The authors' experiments demonstrate that effective POD staffing plans must be responsive to variation and uncertainty in POD arrival patterns. These experiments highlight the need for command and control systems to be created to manage emergency response successfully.

  8. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control

    PubMed Central

    Biewener, Andrew A.; Daley, Monica A.

    2009-01-01

    Summary By integrating studies of muscle function with analysis of whole body and limb dynamics, broader appreciation of neuromuscular function can be achieved. Ultimately, such studies need to address non-steady locomotor behaviors relevant to animals in their natural environments. When animals move slowly they likely rely on voluntary coordination of movement involving higher brain centers. However, when moving fast, their movements depend more strongly on responses controlled at more local levels. Our focus here is on control of fast-running locomotion. A key observation emerging from studies of steady level locomotion is that simple spring-mass dynamics, which help to economize energy expenditure, also apply to stabilization of unsteady running. Spring-mass dynamics apply to conditions that involve lateral impulsive perturbations, sudden changes in terrain height, and sudden changes in substrate stiffness or damping. Experimental investigation of unsteady locomotion is challenging, however, due to the variability inherent in such behaviors. Another emerging principle is that initial conditions associated with postural changes following a perturbation define different context-dependent stabilization responses. Distinct stabilization modes following a perturbation likely result from proximo-distal differences in limb muscle architecture, function and control strategy. Proximal muscles may be less sensitive to sudden perturbations and appear to operate, in such circumstances, under feed-forward control. In contrast, multiarticular distal muscles operate, via their tendons, to distribute energy among limb joints in a manner that also depends on the initial conditions of limb contact with the ground. Intrinsic properties of these distal muscle–tendon elements, in combination with limb and body dynamics, appear to provide rapid initial stabilizing mechanisms that are often consistent with spring-mass dynamics. These intrinsic mechanisms likely help to simplify the neural control task, in addition to compensating for delays inherent to subsequent force- and length-dependent neural feedback. Future work will benefit from integrative biomechanical approaches that employ a combination of modeling and experimental techniques to understand how the elegant interplay of intrinsic muscle properties, body dynamics and neural control allows animals to achieve stability and agility over a variety of conditions. PMID:17704070

  9. Quantitative Nuclease Protection Assays (qNPA) as Windows into Chemical-Induced Adaptive Response in Cultures of Primary Human Hepatocytes (Concentration and Time-Response)

    EPA Science Inventory

    Cultures of primary human hepatocytes have been shown to be dynamic in vitro model systems that retain liver-like functionality (e.g. metabolism, transport, induction). We have utilized these culture models to interrogate 309 ToxCast chemicals. The study design characterized both...

  10. Periodontal Ligament Entheses and their Adaptive Role in the Context of Dentoalveolar Joint Function

    PubMed Central

    Lin, Jeremy D.; Jang, Andrew T.; Kurylo, Michael P.; Hurng, Jonathan; Yang, Feifei; Yang, Lynn; Pal, Arvin; Chen, Ling; Ho, Sunita P.

    2017-01-01

    Objectives The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. Methods Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. Results Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. Significance A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing “functional regeneration and adaptation” strategies with an emphasis on restoring physiologic joint function. PMID:28476202

  11. Response of a tethered aerostat to simulated turbulence

    NASA Astrophysics Data System (ADS)

    Stanney, Keith A.; Rahn, Christopher D.

    2006-09-01

    Aerostats are lighter-than-air vehicles tethered to the ground by a cable and used for broadcasting, communications, surveillance, and drug interdiction. The dynamic response of tethered aerostats subject to extreme atmospheric turbulence often dictates survivability. This paper develops a theoretical model that predicts the planar response of a tethered aerostat subject to atmospheric turbulence and simulates the response to 1000 simulated hurricane scale turbulent time histories. The aerostat dynamic model assumes the aerostat hull to be a rigid body with non-linear fluid loading, instantaneous weathervaning for planar response, and a continuous tether. Galerkin's method discretizes the coupled aerostat and tether partial differential equations to produce a non-linear initial value problem that is integrated numerically given initial conditions and wind inputs. The proper orthogonal decomposition theorem generates, based on Hurricane Georges wind data, turbulent time histories that possess the sequential behavior of actual turbulence, are spectrally accurate, and have non-Gaussian density functions. The generated turbulent time histories are simulated to predict the aerostat response to severe turbulence. The resulting probability distributions for the aerostat position, pitch angle, and confluence point tension predict the aerostat behavior in high gust environments. The dynamic results can be up to twice as large as a static analysis indicating the importance of dynamics in aerostat modeling. The results uncover a worst case wind input consisting of a two-pulse vertical gust.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Liem X.; Schenter, Gregory K.

    To enhance our understanding of the solvent exchange mechanism in liquid methanol, we report a systematic study of this process using molecular dynamics simulations. We use transition state theory, the Impey-Madden-McDonald method, the reactive flux method, and Grote-Hynes theory to compute the rate constants for this process. Solvent coupling was found to dominate, resulting in a significantly small transmission coefficient. We predict a positive activation volume for the methanol exchange process. The essential features of the dynamics of the system as well as the pressure dependence are recovered from a Generalized Langevin Equation description of the dynamics. We find thatmore » the dynamics and response to anharmonicity can be decomposed into two time regimes, one corresponding to short time response (< 0.1 ps) and long time response (> 5 ps). An effective characterization of the process results from launching dynamics from the planar hypersurface corresponding to Grote-Hynes theory. This results in improved numerical convergence of correlation functions. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  13. Comprehensive Forced Response Analysis of J2X Turbine Bladed-Discs with 360 Degree Variation in CFD Loading

    NASA Technical Reports Server (NTRS)

    Elrod, David; Christensen, Eric; Brown, Andrew

    2011-01-01

    The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.

  14. Effect of initial strain and material nonlinearity on the nonlinear static and dynamic response of graphene sheets

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep; Patel, B. P.

    2018-06-01

    Computationally efficient multiscale modelling based on Cauchy-Born rule in conjunction with finite element method is employed to study static and dynamic characteristics of graphene sheets, with/without considering initial strain, involving Green-Lagrange geometric and material nonlinearities. The strain energy density function at continuum level is established by coupling the deformation at continuum level to that at atomic level through Cauchy-Born rule. The atomic interactions between carbon atoms are modelled through Tersoff-Brenner potential. The governing equation of motion obtained using Hamilton's principle is solved through standard Newton-Raphson method for nonlinear static response and Newmark's time integration technique to obtain nonlinear transient response characteristics. Effect of initial strain on the linear free vibration frequencies, nonlinear static and dynamic response characteristics is investigated in detail. The present multiscale modelling based results are found to be in good agreement with those obtained through molecular mechanics simulation. Two different types of boundary constraints generally used in MM simulation are explored in detail and few interesting findings are brought out. The effect of initial strain is found to be greater in linear response when compared to that in nonlinear response.

  15. Dynamic tests on the NASA Langley CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Troidl, H.; Elliott, K. B.

    1993-01-01

    A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.

  16. Predicting Mountainous Watershed Biogeochemical Dynamics, Including Response to Droughts and Early Snowmelt

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Williams, K. H.; Long, P.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Bouskill, N.; Brodie, E.; Maxwell, R. M.; Nico, P. S.; Steefel, C. I.; Steltzer, H.; Tokunaga, T. K.; Wainwright, H. M.

    2016-12-01

    Climate change, extreme weather, land-use change, and other perturbations are significantly reshaping interactions with in watersheds throughout the world. While mountainous watersheds are recognized as the water towers for the world, hydrological processes in watersheds also mediate biogeochemical processes that support all terrestrial life. Developing predictive understanding of watershed hydrological and biogeochemical functioning is challenging, as complex interactions occurring within a heterogeneous watershed can lead to a cascade of effects on downstream water availability and quality. Although these interactions can have significant implications for energy production, agriculture, water quality, and other benefits valued by society, uncertainty associated with predicting watershed function is high. The Watershed Function project aims to substantially reduce this uncertainty through developing a predictive understanding of how mountainous watersheds retain and release downgradient water, nutrients, carbon, and metals. In particular, the project is exploring how early snowmelt, drought, and other disturbances will influence mountainous watershed dynamics at seasonal to decadal timescales. The Watershed Function project is being carried out in a headwater mountainous catchment of the Upper Colorado River Basin, within a watershed characterized by significant gradients in elevation, vegetation and hydrogeology. A system-within system project perspective posits that the integrated watershed response to disturbances can be adequately predicted through consideration of interactions and feedbacks occurring within a limited number of subsystems, each having distinct vegetation-subsurface biogeochemical-hydrological characteristics. A key technological goal is the development of scale-adaptive simulation capabilities that can incorporate genomic information where and when it is useful for predicting the overall watershed response to disturbance. Through developing and integrating new microbial ecology, geochemical, hydrological, ecohydrological, computational and geophysical approaches, the project is developing new insights about biogeochemical dynamics from genome to watershed scales.

  17. Geometric analysis of pathways dynamics: Application to versatility of TGF-β receptors.

    PubMed

    Samal, Satya Swarup; Naldi, Aurélien; Grigoriev, Dima; Weber, Andreas; Théret, Nathalie; Radulescu, Ovidiu

    2016-11-01

    We propose a new geometric approach to describe the qualitative dynamics of chemical reactions networks. By this method we identify metastable regimes, defined as low dimensional regions of the phase space close to which the dynamics is much slower compared to the rest of the phase space. These metastable regimes depend on the network topology and on the orders of magnitude of the kinetic parameters. Benchmarking of the method on a computational biology model repository suggests that the number of metastable regimes is sub-exponential in the number of variables and equations. The dynamics of the network can be described as a sequence of jumps from one metastable regime to another. We show that a geometrically computed connectivity graph restricts the set of possible jumps. We also provide finite state machine (Markov chain) models for such dynamic changes. Applied to signal transduction models, our approach unravels dynamical and functional capacities of signalling pathways, as well as parameters responsible for specificity of the pathway response. In particular, for a model of TGFβ signalling, we find that the ratio of TGFBR2 to TGFBR1 receptors concentrations can be used to discriminate between metastable regimes. Using expression data from the NCI60 panel of human tumor cell lines, we show that aggressive and non-aggressive tumour cell lines function in different metastable regimes and can be distinguished by measuring the relative concentrations of receptors of the two types. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-09-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics.

  19. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling

    PubMed Central

    Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.

    2016-01-01

    The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239

  20. OFMTutor: An operator function model intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Jones, Patricia M.

    1989-01-01

    The design, implementation, and evaluation of an Operator Function Model intelligent tutoring system (OFMTutor) is presented. OFMTutor is intended to provide intelligent tutoring in the context of complex dynamic systems for which an operator function model (OFM) can be constructed. The human operator's role in such complex, dynamic, and highly automated systems is that of a supervisory controller whose primary responsibilities are routine monitoring and fine-tuning of system parameters and occasional compensation for system abnormalities. The automated systems must support the human operator. One potentially useful form of support is the use of intelligent tutoring systems to teach the operator about the system and how to function within that system. Previous research on intelligent tutoring systems (ITS) is considered. The proposed design for OFMTutor is presented, and an experimental evaluation is described.

  1. The dynamics of a harvested predator-prey system with Holling type IV functional response.

    PubMed

    Liu, Xinxin; Huang, Qingdao

    2018-05-31

    The paper aims to investigate the dynamical behavior of a predator-prey system with Holling type IV functional response in which both the species are subject to capturing. We mainly consider how the harvesting affects equilibria, stability, limit cycles and bifurcations in this system. We adopt the method of qualitative and quantitative analysis, which is based on the dynamical theory, bifurcation theory and numerical simulation. The boundedness of solutions, the existence and stability of equilibrium points of the system are further studied. Based on the Sotomayor's theorem, the existence of transcritical bifurcation and saddle-node bifurcation are derived. We use the normal form theorem to analyze the Hopf bifurcation. Simulation results show that the first Lyapunov coefficient is negative and a stable limit cycle may bifurcate. Numerical simulations are performed to make analytical studies more complete. This work illustrates that using the harvesting effort as control parameter can change the behaviors of the system, which may be useful for the biological management. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in large mammalian herbivores.

    PubMed

    Mezzalira, Jean C; Bonnet, Olivier J F; Carvalho, Paulo C de F; Fonseca, Lidiane; Bremm, Carolina; Mezzalira, Carlos C; Laca, Emilio A

    2017-09-01

    The functional response (i.e. the relationship between consumers' intake rate and resource density) is central in plant-herbivore interactions. Its shape and the biological processes leading to it have significant implications for both foraging theory and ecology of grazing systems. A type IV functional response (i.e. dome-shaped relationship) of short-term intake rate of dry matter (intake while grazing) has rarely been reported for large herbivores and the conditions that can lead to it are poorly understood. We report a type IV functional response observed in heifers grazing monocultures of Cynodon sp. and Avena strigosa. The mechanisms and consequences of this type of functional response for grazed system dynamics are discussed. Intake rate was higher at intermediate than at short or tall sward heights in both grass species. The type IV functional response resulted from changes in bite mass instead of a longer time needed to encounter and process bites. Thus, the decrease of intake rate of dry matter in tall swards is not explained by a shift from process 3 (potential bites are concentrated and apparent) to process 2 (potential bites are apparent but dispersed, Spalinger & Hobbs 1992). Bite mass was smaller in tall than in intermediate swards due to a reduction of bite volume possibly caused by the greater proportion of stem and sheath acting as a physical barrier to bite formation. It is generally accepted that potential bites are abundant and apparent in most grassland and meadow systems, as they were in the present experiments. Therefore, a type IV response of intake rate not directly related to digestive constraints may determine the dynamics of intake and defoliation under a much larger set of conditions than previously thought. These results have implications for foraging theory and stability of grazing systems. For example, if animals prefer patches of intermediate stature that yield the highest intake rate, grazing should lead to the widely observed bimodal distribution of plant mass per unit area, even when tall patches are not of significantly lower digestive quality than the pasture average. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  3. The Response of Ω-Loop D Dynamics to Truncation of Trimethyllysine 72 of Yeast Iso-1-cytochrome c Depends on the Nature of Loop Deformation

    PubMed Central

    McClelland, Levi J.; Seagraves, Sean M.; Khan, Khurshid Alam; Cherney, Melisa M.; Bandi, Swati; Culbertson, Justin E.; Bowler, Bruce E.

    2015-01-01

    Trimethyllysine 72 (tmK72) has been suggested to play a role in sterically constraining the heme crevice dynamics of yeast iso-1-cytochrome c mediated by the Ω-loop D cooperative substructure (residues 70 to 85). A tmK72A mutation causes a gain in peroxidase activity, a function of cytochrome c that is important early in apoptosis. More than one higher energy state is accessible for the Ω-loop D substructure via tier 0 dynamics. Two of these are alkaline conformers mediated by Lys73 and Lys79. In the current work, the effect of the tmK72A mutation on the thermodynamic and kinetic properties of wild type iso-1-cytochrome c (yWT versus WT*) and on variants carrying a K73H mutation (yWT/K73H versus WT*/K73H) is studied. Whereas the tmK72A mutation confers increased peroxidase activity in wild type yeast iso-1-cytochrome c and increased dynamics for formation of a previously studied His79-heme alkaline conformer, the tmK72A mutation speeds return of the His73-heme alkaline conformer to the native state through destabilization of the His73-heme alkaline conformer relative to the native conformer. These opposing behaviors demonstrate that the response of the dynamics of a protein substructure to mutation depends on the nature of the perturbation to the substructure. For a protein substructure which mediates more than one function of a protein through multiple non-native structures, a mutation could change the partitioning between these functions. The current results suggest that the tier 0 dynamics of Ω-loop D that mediates peroxidase activity has similarities to the tier 0 dynamics required to form the His79-heme alkaline conformer. PMID:25948392

  4. Dissipative particle dynamics: Effects of thermostating schemes on nano-colloid electrophoresis

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Moshfegh, Abouzar; Farhadi, Mousa; Sedighi, Kurosh

    2018-05-01

    A novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced in the present study to model the electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Performance of various thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field (0 . 072 < E < 0 . 361 v/nm) covering linear to non-linear response regime, and ionic salt concentration (0.049 < SC < 0 . 69 [M]) covering weak to strong Debye screening of the colloid. System temperature and electrophoretic mobility both show a direct and inverse relationships respectively with electric field and colloidal repulsion; although they each respectively behave direct and inverse trends with salt concentration under various thermostats. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0 . 145[v/nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the system radial distribution function with available EW3D modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  5. Estradiol selectively enhances auditory function in avian forebrain neurons

    PubMed Central

    Caras, Melissa L.; O’Brien, Matthew; Brenowitz, Eliot A.; Rubel, Edwin W

    2012-01-01

    Sex steroids modulate vertebrate sensory processing, but the impact of circulating hormone levels on forebrain function remains unclear. We tested the hypothesis that circulating sex steroids modulate single-unit responses in the avian telencephalic auditory nucleus, field L. We mimicked breeding or non-breeding conditions by manipulating plasma 17β-estradiol levels in wild-caught female Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Extracellular responses of single neurons to tones and conspecific songs presented over a range of intensities revealed that estradiol selectively enhanced auditory function in cells that exhibited monotonic rate-level functions to pure tones. In these cells, estradiol treatment increased spontaneous and maximum evoked firing rates, increased pure tone response strengths and sensitivity, and expanded the range of intensities over which conspecific song stimuli elicited significant responses. Estradiol did not significantly alter the sensitivity or dynamic ranges of cells that exhibited non-monotonic rate-level functions. Notably, there was a robust correlation between plasma estradiol concentrations in individual birds and physiological response properties in monotonic, but not non-monotonic neurons. These findings demonstrate that functionally distinct classes of anatomically overlapping forebrain neurons are differentially regulated by sex steroid hormones in a dose-dependent manner. PMID:23223283

  6. On the formulation of the aerodynamic characteristics in aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Schiff, L. B.

    1976-01-01

    The theory of functionals is used to reformulate the notions of aerodynamic indicial functions and superposition. Integral forms for the aerodynamic response to arbitrary motions are derived that are free of dependence on a linearity assumption. Simplifications of the integral forms lead to practicable nonlinear generalizations of the linear superpositions and stability derivative formulations. Applied to arbitrary nonplanar motions, the generalization yields a form for the aerodynamic response that can be compounded of the contributions from a limited number of well-defined characteristic motions, in principle reproducible in the wind tunnel. Further generalizations that would enable the consideration of random fluctuations and multivalued aerodynamic responses are indicated.

  7. DVA as a Diagnostic Test for Vestibulo-Ocular Reflex Function

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Appelbaum, Meghan

    2010-01-01

    The vestibulo-ocular reflex (VOR) stabilizes vision on earth-fixed targets by eliciting eyes movements in response to changes in head position. How well the eyes perform this task can be functionally measured by the dynamic visual acuity (DVA) test. We designed a passive, horizontal DVA test to specifically study the acuity and reaction time when looking in different target locations. Visual acuity was compared among 12 subjects using a standard Landolt C wall chart, a computerized static (no rotation) acuity test and dynamic acuity test while oscillating at 0.8 Hz (+/-60 deg/s). In addition, five trials with yaw oscillation randomly presented a visual target in one of nine different locations with the size and presentation duration of the visual target varying across trials. The results showed a significant difference between the static and dynamic threshold acuities as well as a significant difference between the visual targets presented in the horizontal plane versus those in the vertical plane when comparing accuracy of vision and reaction time of the response. Visual acuity increased proportional to the size of the visual target and increased between 150 and 300 msec duration. We conclude that dynamic visual acuity varies with target location, with acuity optimized for targets in the plane of rotation. This DVA test could be used as a functional diagnostic test for visual-vestibular and neuro-cognitive impairments by assessing both accuracy and reaction time to acquire visual targets.

  8. Exploring streamflow response to effective rainfall across event magnitude scale

    Treesearch

    Teemu Kokkonen; Harri Koivusalo; Tuomo Karvonen; Barry Croke; Anthony Jakeman

    2004-01-01

    Sets of flow events from four catchments were selected to study how dynamics in the conversion of effective rainfall into streamflow depends on the event size. The approach taken was to optimize parameters of a linear delay function and effective rainfall series concurrently from precipitation streamflow data without imposing a functional form of the precipitation...

  9. CERT Resiliency Engineering Framework

    DTIC Science & Technology

    2007-03-01

    Heightened threat level and increasing uncertainty Shorter-lived skills 5 Operational risk management problems Poor planning and execution No asset...increasingly effective & efficient Today’s operational environment No operational boundaries Pervasive & rapidly changing technology Dynamic & expanding risks ...management function Seen as a technical function or responsibility Searching for magic bullet: CobiT , ITIL, ISO17799, NFP1600 Poorly defined and measured

  10. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    NASA Technical Reports Server (NTRS)

    Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.

    2017-01-01

    This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.

  11. An optimal strategy for functional mapping of dynamic trait loci.

    PubMed

    Jin, Tianbo; Li, Jiahan; Guo, Ying; Zhou, Xiaojing; Yang, Runqing; Wu, Rongling

    2010-02-01

    As an emerging powerful approach for mapping quantitative trait loci (QTLs) responsible for dynamic traits, functional mapping models the time-dependent mean vector with biologically meaningful equations and are likely to generate biologically relevant and interpretable results. Given the autocorrelation nature of a dynamic trait, functional mapping needs the implementation of the models for the structure of the covariance matrix. In this article, we have provided a comprehensive set of approaches for modelling the covariance structure and incorporated each of these approaches into the framework of functional mapping. The Bayesian information criterion (BIC) values are used as a model selection criterion to choose the optimal combination of the submodels for the mean vector and covariance structure. In an example for leaf age growth from a rice molecular genetic project, the best submodel combination was found between the Gaussian model for the correlation structure, power equation of order 1 for the variance and the power curve for the mean vector. Under this combination, several significant QTLs for leaf age growth trajectories were detected on different chromosomes. Our model can be well used to study the genetic architecture of dynamic traits of agricultural values.

  12. Biological conservation law as an emerging functionality in dynamical neuronal networks.

    PubMed

    Podobnik, Boris; Jusup, Marko; Tiganj, Zoran; Wang, Wen-Xu; Buldú, Javier M; Stanley, H Eugene

    2017-11-07

    Scientists strive to understand how functionalities, such as conservation laws, emerge in complex systems. Living complex systems in particular create high-ordered functionalities by pairing up low-ordered complementary processes, e.g., one process to build and the other to correct. We propose a network mechanism that demonstrates how collective statistical laws can emerge at a macro (i.e., whole-network) level even when they do not exist at a unit (i.e., network-node) level. Drawing inspiration from neuroscience, we model a highly stylized dynamical neuronal network in which neurons fire either randomly or in response to the firing of neighboring neurons. A synapse connecting two neighboring neurons strengthens when both of these neurons are excited and weakens otherwise. We demonstrate that during this interplay between the synaptic and neuronal dynamics, when the network is near a critical point, both recurrent spontaneous and stimulated phase transitions enable the phase-dependent processes to replace each other and spontaneously generate a statistical conservation law-the conservation of synaptic strength. This conservation law is an emerging functionality selected by evolution and is thus a form of biological self-organized criticality in which the key dynamical modes are collective.

  13. Biological conservation law as an emerging functionality in dynamical neuronal networks

    PubMed Central

    Podobnik, Boris; Tiganj, Zoran; Wang, Wen-Xu; Buldú, Javier M.

    2017-01-01

    Scientists strive to understand how functionalities, such as conservation laws, emerge in complex systems. Living complex systems in particular create high-ordered functionalities by pairing up low-ordered complementary processes, e.g., one process to build and the other to correct. We propose a network mechanism that demonstrates how collective statistical laws can emerge at a macro (i.e., whole-network) level even when they do not exist at a unit (i.e., network-node) level. Drawing inspiration from neuroscience, we model a highly stylized dynamical neuronal network in which neurons fire either randomly or in response to the firing of neighboring neurons. A synapse connecting two neighboring neurons strengthens when both of these neurons are excited and weakens otherwise. We demonstrate that during this interplay between the synaptic and neuronal dynamics, when the network is near a critical point, both recurrent spontaneous and stimulated phase transitions enable the phase-dependent processes to replace each other and spontaneously generate a statistical conservation law—the conservation of synaptic strength. This conservation law is an emerging functionality selected by evolution and is thus a form of biological self-organized criticality in which the key dynamical modes are collective. PMID:29078286

  14. Brain Responses to Dynamic Facial Expressions: A Normative Meta-Analysis.

    PubMed

    Zinchenko, Oksana; Yaple, Zachary A; Arsalidou, Marie

    2018-01-01

    Identifying facial expressions is crucial for social interactions. Functional neuroimaging studies show that a set of brain areas, such as the fusiform gyrus and amygdala, become active when viewing emotional facial expressions. The majority of functional magnetic resonance imaging (fMRI) studies investigating face perception typically employ static images of faces. However, studies that use dynamic facial expressions (e.g., videos) are accumulating and suggest that a dynamic presentation may be more sensitive and ecologically valid for investigating faces. By using quantitative fMRI meta-analysis the present study examined concordance of brain regions associated with viewing dynamic facial expressions. We analyzed data from 216 participants that participated in 14 studies, which reported coordinates for 28 experiments. Our analysis revealed bilateral fusiform and middle temporal gyri, left amygdala, left declive of the cerebellum and the right inferior frontal gyrus. These regions are discussed in terms of their relation to models of face processing.

  15. Priming alters soil carbon dynamics during forest succession

    NASA Astrophysics Data System (ADS)

    Qiao, Na; Xu, Xingliang; Wang, Juan; Kuzyakov, Yakov

    2017-04-01

    The mechanisms underlying soil carbon (C) dynamics during forest succession remain challenged. We examined priming of soil organic matter (SOM) decomposition along a vegetation succession: grassland, young and old-growth forests. Soil C was primed much more strongly in young secondary forest than in grassland or old-growth forest. Priming resulted in large C losses (negative net C balance) in young-forest soil, whereas C stocks increased in grassland and old-growth forest. Microbial composition assessed by phospholipid fatty acids (PLFA) and utilization of easily available organics (13C-PLFA) indicate that fungi were responsible for priming in young-forest soils. Consequently, labile C inputs released by litter decomposition and root exudation determine microbial functional groups that decompose SOM during forest succession. These findings provide novel insights into connections between SOM dynamics and stabilization with microbial functioning during forest succession and show that priming is an important mechanism for contrasting soil C dynamics in young and old-growth forests.

  16. Acoustic dynamics of supercooled indomethacin probed by Brillouin light scattering.

    PubMed

    De Panfilis, S; Pogna, E A A; Virga, A; Scopigno, T

    2014-07-21

    Acoustics dynamics of the molecular glass-former indomethacin (IMC) have been investigated by Brillouin light scattering (BLS) at GHz frequencies. Elastic response of the system has been tracked from the melting temperature down to the glass transition through the supercooled liquid. Both the structural arrest and the vibrational dynamics are described by modeling the experimentally determined dynamic structure factor within the framework of the Langevin equation, through a simplified choice of memory function which allows one to determine sound velocity and the acoustic attenuation coefficient as a function of temperature. The density fluctuation spectra in the glassy phase, as probed by BLS, are compared with time-domain results from photoacoustics experiments. The arising scenario is discussed in the context of current literature reporting inelastic X-ray scattering and BLS in platelet geometry. The link between the probed elastic properties and the non-ergodicity factor of the glass phase is finally scrutinized.

  17. Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons

    PubMed Central

    Wilson, Hugh R.; Cowan, Jack D.

    1972-01-01

    Coupled nonlinear differential equations are derived for the dynamics of spatially localized populations containing both excitatory and inhibitory model neurons. Phase plane methods and numerical solutions are then used to investigate population responses to various types of stimuli. The results obtained show simple and multiple hysteresis phenomena and limit cycle activity. The latter is particularly interesting since the frequency of the limit cycle oscillation is found to be a monotonic function of stimulus intensity. Finally, it is proved that the existence of limit cycle dynamics in response to one class of stimuli implies the existence of multiple stable states and hysteresis in response to a different class of stimuli. The relation between these findings and a number of experiments is discussed. PMID:4332108

  18. Shear banding leads to accelerated aging dynamics in a metallic glass

    NASA Astrophysics Data System (ADS)

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.; Shin, Jeremy; Maaß, Robert

    2018-01-01

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. Using site-specific x-ray photon correlation spectroscopy, we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretched exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. These insights highlight how a ubiquitous nanoscale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.

  19. Shear banding leads to accelerated aging dynamics in a metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. In this study, using site-specific x-ray photon correlation spectroscopy (XPCS), we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten-times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretchedmore » exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. Finally, these insights highlight how an ubiquitous nano-scale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.« less

  20. Shear banding leads to accelerated aging dynamics in a metallic glass

    DOE PAGES

    Küchemann, Stefan; Liu, Chaoyang; Dufresne, Eric M.; ...

    2018-01-11

    Traditionally, strain localization in metallic glasses is related to the thickness of the shear defect, which is confined to the nanometer scale. In this study, using site-specific x-ray photon correlation spectroscopy (XPCS), we reveal significantly accelerated relaxation dynamics around a shear band in a metallic glass at a length scale that is orders of magnitude larger than the defect itself. The relaxation time in the shear-band vicinity is up to ten-times smaller compared to the as-cast matrix, and the relaxation dynamics occurs in a characteristic three-stage aging response that manifests itself in the temperature-dependent shape parameter known from classical stretchedmore » exponential relaxation dynamics of disordered materials. We demonstrate that the time-dependent correlation functions describing the aging at different temperatures can be captured and collapsed using simple scaling functions. Finally, these insights highlight how an ubiquitous nano-scale strain-localization mechanism in metallic glasses leads to a fundamental change of the relaxation dynamics at the mesoscale.« less

  1. Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling

    PubMed Central

    Zhao, Jian

    2015-01-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant–microbe interaction. The molecular diversities and redundant functions make PLD–PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein–protein and protein–lipid interactions or hormone signalling. Different PLD–PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD–PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD–PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD–PA in a broader context in order to guide future research. PMID:25680793

  2. Reconfigurable and responsive droplet-based compound micro-lenses.

    PubMed

    Nagelberg, Sara; Zarzar, Lauren D; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M; Kolle, Mathias

    2017-03-07

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications-integral micro-scale imaging devices and light field display technology-thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses.

  3. Reconfigurable and responsive droplet-based compound micro-lenses

    PubMed Central

    Nagelberg, Sara; Zarzar, Lauren D.; Nicolas, Natalie; Subramanian, Kaushikaram; Kalow, Julia A.; Sresht, Vishnu; Blankschtein, Daniel; Barbastathis, George; Kreysing, Moritz; Swager, Timothy M.; Kolle, Mathias

    2017-01-01

    Micro-scale optical components play a crucial role in imaging and display technology, biosensing, beam shaping, optical switching, wavefront-analysis, and device miniaturization. Herein, we demonstrate liquid compound micro-lenses with dynamically tunable focal lengths. We employ bi-phase emulsion droplets fabricated from immiscible hydrocarbon and fluorocarbon liquids to form responsive micro-lenses that can be reconfigured to focus or scatter light, form real or virtual images, and display variable focal lengths. Experimental demonstrations of dynamic refractive control are complemented by theoretical analysis and wave-optical modelling. Additionally, we provide evidence of the micro-lenses' functionality for two potential applications—integral micro-scale imaging devices and light field display technology—thereby demonstrating both the fundamental characteristics and the promising opportunities for fluid-based dynamic refractive micro-scale compound lenses. PMID:28266505

  4. Scaling of Directed Dynamical Small-World Networks with Random Responses

    NASA Astrophysics Data System (ADS)

    Zhu, Chen-Ping; Xiong, Shi-Jie; Tian, Ying-Jie; Li, Nan; Jiang, Ke-Sheng

    2004-05-01

    A dynamical model of small-world networks, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of sites to the input message are introduced to simulate real systems. The interplay of these ingredients results in the collective dynamical evolution of a spinlike variable S(t) of the whole network. The global average spreading length s and average spreading time s are found to scale as p-αln(N with different exponents. Meanwhile, S(t) behaves in a duple scaling form for N≫N*: S˜f(p-βqγt˜), where p and q are rewiring and external parameters, α, β, and γ are scaling exponents, and f(t˜) is a universal function. Possible applications of the model are discussed.

  5. Dynamic contrast-enhanced optical imaging of in vivo organ function

    NASA Astrophysics Data System (ADS)

    Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-09-01

    Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ's response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

  6. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  7. The notion of motion: covariational reasoning and the limit concept

    NASA Astrophysics Data System (ADS)

    Nagle, Courtney; Tracy, Tyler; Adams, Gregory; Scutella, Daniel

    2017-05-01

    This paper investigates outcomes of building students' intuitive understanding of a limit as a function's predicted value by examining introductory calculus students' conceptions of limit both before and after instruction. Students' responses suggest that while this approach is successful at reducing the common limit equals function value misconception of a limit, new misconceptions emerged in students' responses. Analysis of students' reasoning indicates a lack of covariational reasoning that coordinates changes in both x and y may be at the root of the emerging limit reached near x = c misconception. These results suggest that although dynamic interpretations of limit may be intuitive for many students, care must be taken to foster a dynamic conception that is both useful at the introductory calculus level and is in line with the formal notion of limit learned in advanced mathematics. In light of the findings, suggestions for adapting the pedagogical approach used in this study are provided.

  8. Stability and Bifurcation of a Fishery Model with Crowley-Martin Functional Response

    NASA Astrophysics Data System (ADS)

    Maiti, Atasi Patra; Dubey, B.

    To understand the dynamics of a fishery system, a nonlinear mathematical model is proposed and analyzed. In an aquatic environment, we considered two populations: one is prey and another is predator. Here both the fish populations grow logistically and interaction between them is of Crowley-Martin type functional response. It is assumed that both the populations are harvested and the harvesting effort is assumed to be dynamical variable and tax is considered as a control variable. The existence of equilibrium points and their local stability are examined. The existence of Hopf-bifurcation, stability and direction of Hopf-bifurcation are also analyzed with the help of Center Manifold theorem and normal form theory. The global stability behavior of the positive equilibrium point is also discussed. In order to find the value of optimal tax, the optimal harvesting policy is used. To verify our analytical findings, an extensive numerical simulation is carried out for this model system.

  9. Analysis of a predator-prey model with Holling II functional response concerning impulsive control strategy

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Teng, Zhidong; Chen, Lansun

    2006-08-01

    According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator-prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.

  10. Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior

    PubMed Central

    Grosenick, Logan; Warden, Melissa R.; Amatya, Debha; Katovich, Kiefer; Mehta, Hershel; Patenaude, Brian; Ramakrishnan, Charu; Kalanithi, Paul; Etkin, Amit; Knutson, Brian; Glover, Gary H.; Deisseroth, Karl

    2016-01-01

    Motivation for reward drives adaptive behaviors, whereas impairment of reward perception and experience (anhedonia) can contribute to psychiatric diseases, including depression and schizophrenia. We sought to test the hypothesis that the medial prefrontal cortex (mPFC) controls interactions among specific subcortical regions that govern hedonic responses. By using optogenetic functional magnetic resonance imaging to locally manipulate but globally visualize neural activity in rats, we found that dopamine neuron stimulation drives striatal activity, whereas locally increased mPFC excitability reduces this striatal response and inhibits the behavioral drive for dopaminergic stimulation. This chronic mPFC overactivity also stably suppresses natural reward-motivated behaviors and induces specific new brainwide functional interactions, which predict the degree of anhedonia in individuals. These findings describe a mechanism by which mPFC modulates expression of reward-seeking behavior, by regulating the dynamical interactions between specific distant subcortical regions. PMID:26722001

  11. Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function

    PubMed Central

    Beigi, Farideh; Gonzalez, Daniel R.; Minhas, Khalid M.; Sun, Qi-An; Foster, Matthew W.; Khan, Shakil A.; Treuer, Adriana V.; Dulce, Raul A.; Harrison, Robert W.; Saraiva, Roberto M.; Premer, Courtney; Schulman, Ivonne Hernandez; Stamler, Jonathan S.; Hare, Joshua M.

    2012-01-01

    Although protein S-nitrosylation is increasingly recognized as mediating nitric oxide (NO) signaling, roles for protein denitrosylation in physiology remain unknown. Here, we show that S-nitrosoglutathione reductase (GSNOR), an enzyme that governs levels of S-nitrosylation by promoting protein denitrosylation, regulates both peripheral vascular tone and β-adrenergic agonist-stimulated cardiac contractility, previously ascribed exclusively to NO/cGMP. GSNOR-deficient mice exhibited reduced peripheral vascular tone and depressed β-adrenergic inotropic responses that were associated with impaired β-agonist–induced denitrosylation of cardiac ryanodine receptor 2 (RyR2), resulting in calcium leak. These results indicate that systemic hemodynamic responses (vascular tone and cardiac contractility), both under basal conditions and after adrenergic activation, are regulated through concerted actions of NO synthase/GSNOR and that aberrant denitrosylation impairs cardiovascular function. Our findings support the notion that dynamic S-nitrosylation/denitrosylation reactions are essential in cardiovascular regulation. PMID:22366318

  12. Diffusion of molecules and macromolecules in thylakoid membranes.

    PubMed

    Kirchhoff, Helmut

    2014-04-01

    The survival and fitness of photosynthetic organisms is critically dependent on the flexible response of the photosynthetic machinery, harbored in thylakoid membranes, to environmental changes. A central element of this flexibility is the lateral diffusion of membrane components along the membrane plane. As demonstrated, almost all functions of photosynthetic energy conversion are dependent on lateral diffusion. The mobility of both small molecules (plastoquinone, xanthophylls) as well as large protein supercomplexes is very sensitive to changes in structural boundary conditions. Knowledge about the design principles that govern the mobility of photosynthetic membrane components is essential to understand the dynamic response of the photosynthetic machinery. This review summarizes our knowledge about the factors that control diffusion in thylakoid membranes and bridges structural membrane alterations to changes in mobility and function. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  14. Frequency domain system identification of helicopter rotor dynamics incorporating models with time periodic coefficients

    NASA Astrophysics Data System (ADS)

    Hwang, Sunghwan

    1997-08-01

    One of the most prominent features of helicopter rotor dynamics in forward flight is the periodic coefficients in the equations of motion introduced by the rotor rotation. The frequency response characteristics of such a linear time periodic system exhibits sideband behavior, which is not the case for linear time invariant systems. Therefore, a frequency domain identification methodology for linear systems with time periodic coefficients was developed, because the linear time invariant theory cannot account for sideband behavior. The modulated complex Fourier series was introduced to eliminate the smearing effect of Fourier series expansions of exponentially modulated periodic signals. A system identification theory was then developed using modulated complex Fourier series expansion. Correlation and spectral density functions were derived using the modulated complex Fourier series expansion for linear time periodic systems. Expressions of the identified harmonic transfer function were then formulated using the spectral density functions both with and without additive noise processes at input and/or output. A procedure was developed to identify parameters of a model to match the frequency response characteristics between measured and estimated harmonic transfer functions by minimizing an objective function defined in terms of the trace of the squared frequency response error matrix. Feasibility was demonstrated by the identification of the harmonic transfer function and parameters for helicopter rigid blade flapping dynamics in forward flight. This technique is envisioned to satisfy the needs of system identification in the rotating frame, especially in the context of individual blade control. The technique was applied to the coupled flap-lag-inflow dynamics of a rigid blade excited by an active pitch link. The linear time periodic technique results were compared with the linear time invariant technique results. Also, the effect of noise processes and initial parameter guess on the identification procedure were investigated. To study the effect of elastic modes, a rigid blade with a trailing edge flap excited by a smart actuator was selected and system parameters were successfully identified, but with some expense of computational storage and time. Conclusively, the linear time periodic technique substantially improved the identified parameter accuracy compared to the linear time invariant technique. Also, the linear time periodic technique was robust to noises and initial guess of parameters. However, an elastic mode of higher frequency relative to the system pumping frequency tends to increase the computer storage requirement and computing time.

  15. Protein displacements under external forces: An atomistic Langevin dynamics approach.

    PubMed

    Gnandt, David; Utz, Nadine; Blumen, Alexander; Koslowski, Thorsten

    2009-02-28

    We present a fully atomistic Langevin dynamics approach as a method to simulate biopolymers under external forces. In the harmonic regime, this approach permits the computation of the long-term dynamics using only the eigenvalues and eigenvectors of the Hessian matrix of second derivatives. We apply this scheme to identify polymorphs of model proteins by their mechanical response fingerprint, and we relate the averaged dynamics of proteins to their biological functionality, with the ion channel gramicidin A, a phosphorylase, and neuropeptide Y as examples. In an environment akin to dilute solutions, even small proteins show relaxation times up to 50 ns. Atomically resolved Langevin dynamics computations have been performed for the stretched gramicidin A ion channel.

  16. Dynamics of Female Pelvic Floor Function Using Urodynamics, Ultrasound and Magnetic Resonance Imaging (MRI)

    PubMed Central

    Constantinou, Christos E.

    2009-01-01

    In this review the diagnostic potential of evaluating female pelvic floor muscle (PFM)) function using magnetic and ultrasound imaging in the context of urodynamic observations is considered in terms of determining the mechanisms of urinary continence. A new approach is used to consider the dynamics of PFM activity by introducing new parameters derived from imaging. Novel image processing techniques are applied to illustrate the static anatomy and dynamics PFM function of stress incontinent women pre and post operatively as compared to asymptomatic subjects. Function was evaluated from the dynamics of organ displacement produced during voluntary and reflex activation. Technical innovations include the use of ultrasound analysis of movement of structures during maneuvers that are associated with external stimuli. Enabling this approach is the development of criteria and fresh and unique parameters that define the kinematics of PFM function. Principal among these parameters, are displacement, velocity, acceleration and the trajectory of pelvic floor landmarks. To accomplish this objective, movement detection, including motion tracking algorithms and segmentation algorithms were developed to derive new parameters of trajectory, displacement, velocity and acceleration, and strain of pelvic structures during different maneuvers. Results highlight the importance of timing the movement and deformation to fast and stressful maneuvers, which are important for understanding the neuromuscular control and function of PFM. Furthermore, observations suggest that timing of responses is a significant factor separating the continent from the incontinent subjects. PMID:19303690

  17. Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: relativity, correlation, and dynamics.

    PubMed

    Straka, Michal; Lantto, Perttu; Vaara, Juha

    2008-03-27

    We calculate the 129Xe chemical shift in endohedral Xe@C60 with systematic inclusion of the contributing physical effects to model the real experimental conditions. These are relativistic effects, electron correlation, the temperature-dependent dynamics, and solvent effects. The ultimate task is to obtain the right result for the right reason and to develop a physically justified methodological model for calculations and simulations of endohedral Xe fullerenes and other confined Xe systems. We use the smaller Xe...C6H6 model to calibrate density functional theory approaches against accurate correlated wave function methods. Relativistic effects as well as the coupling of relativity and electron correlation are evaluated using the leading-order Breit-Pauli perturbation theory. The dynamic effects are treated in two ways. In the first approximation, quantum dynamics of the Xe atom in a rigid cage takes advantage of the centrosymmetric potential for Xe within the thermally accessible distance range from the center of the cage. This reduces the problem of obtaining the solution of a diatomic rovibrational problem. In the second approach, first-principles classical molecular dynamics on the density functional potential energy hypersurface is used to produce the dynamical trajectory for the whole system, including the dynamic cage. Snapshots from the trajectory are used for calculations of the dynamic contribution to the absorption 129Xe chemical shift. The calculated nonrelativistic Xe shift is found to be highly sensitive to the optimized molecular structure and to the choice of the exchange-correlation functional. Relativistic and dynamic effects are significant and represent each about 10% of the nonrelativistic static shift at the minimum structure. While the role of the Xe dynamics inside of the rigid cage is negligible, the cage dynamics turns out to be responsible for most of the dynamical correction to the 129Xe shift. Solvent effects evaluated with a polarized continuum model are found to be very small.

  18. Inferring Toxicological Responses of HepG2 Cells from ...

    EPA Pesticide Factsheets

    Understanding the dynamic perturbation of cell states by chemicals can aid in for predicting their adverse effects. High-content imaging (HCI) was used to measure the state of HepG2 cells over three time points (1, 24, and 72 h) in response to 976 ToxCast chemicals for 10 different concentrations (0.39-200µM). Cell state was characterized by p53 activation (p53), c-Jun activation (SK), phospho-Histone H2A.x (OS), phospho-Histone H3 (MA), alpha tubulin (Mt), mitochondrial membrane potential (MMP), mitochondrial mass (MM), cell cycle arrest (CCA), nuclear size (NS) and cell number (CN). Dynamic cell state perturbations due to each chemical concentration were utilized to infer coarse-grained dependencies between cellular functions as Boolean networks (BNs). BNs were inferred from data in two steps. First, the data for each state variable were discretized into changed/active (> 1 standard deviation), and unchanged/inactive values. Second, the discretized data were used to learn Boolean relationships between variables. In our case, a BN is a wiring diagram between nodes that represent 10 previously described observable phenotypes. Functional relationships between nodes were represented as Boolean functions. We found that inferred BN show that HepG2 cell response is chemical and concentration specific. We observed presence of both point and cycle BN attractors. In addition, there are instances where Boolean functions were not found. We believe that this may be either

  19. Response surface method in geotechnical/structural analysis, phase 1

    NASA Astrophysics Data System (ADS)

    Wong, F. S.

    1981-02-01

    In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.

  20. E-Index for Differentiating Complex Dynamic Traits

    PubMed Central

    Qi, Jiandong; Sun, Jianfeng; Wang, Jianxin

    2016-01-01

    While it is a daunting challenge in current biology to understand how the underlying network of genes regulates complex dynamic traits, functional mapping, a tool for mapping quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs), has been applied in a variety of cases to tackle this challenge. Though useful and powerful, functional mapping performs well only when one or more model parameters are clearly responsible for the developmental trajectory, typically being a logistic curve. Moreover, it does not work when the curves are more complex than that, especially when they are not monotonic. To overcome this inadaptability, we therefore propose a mathematical-biological concept and measurement, E-index (earliness-index), which cumulatively measures the earliness degree to which a variable (or a dynamic trait) increases or decreases its value. Theoretical proofs and simulation studies show that E-index is more general than functional mapping and can be applied to any complex dynamic traits, including those with logistic curves and those with nonmonotonic curves. Meanwhile, E-index vector is proposed as well to capture more subtle differences of developmental patterns. PMID:27064292

  1. Rapid Neocortical Dynamics: Cellular and Network Mechanisms

    PubMed Central

    Haider, Bilal; McCormick, David A.

    2011-01-01

    The highly interconnected local and large-scale networks of the neocortical sheet rapidly and dynamically modulate their functional connectivity according to behavioral demands. This basic operating principle of the neocortex is mediated by the continuously changing flow of excitatory and inhibitory synaptic barrages that not only control participation of neurons in networks but also define the networks themselves. The rapid control of neuronal responsiveness via synaptic bombardment is a fundamental property of cortical dynamics that may provide the basis of diverse behaviors, including sensory perception, motor integration, working memory, and attention. PMID:19409263

  2. Dynamical Crossovers in Prethermal Critical States.

    PubMed

    Chiocchetta, Alessio; Gambassi, Andrea; Diehl, Sebastian; Marino, Jamir

    2017-03-31

    We study the prethermal dynamics of an interacting quantum field theory with an N-component order parameter and O(N) symmetry, suddenly quenched in the vicinity of a dynamical critical point. Depending on the initial conditions, the evolution of the order parameter, and of the response and correlation functions, can exhibit a temporal crossover between universal dynamical scaling regimes governed, respectively, by a quantum and a classical prethermal fixed point, as well as a crossover from a Gaussian to a non-Gaussian prethermal dynamical scaling. Together with a recent experiment, this suggests that quenches may be used in order to explore the rich variety of dynamical critical points occurring in the nonequilibrium dynamics of a quantum many-body system. We illustrate this fact by using a combination of renormalization group techniques and a nonperturbative large-N limit.

  3. Dynamics of biological systems: role of systems biology in medical research.

    PubMed

    Assmus, Heike E; Herwig, Ralf; Cho, Kwang-Hyun; Wolkenhauer, Olaf

    2006-11-01

    Cellular systems are networks of interacting components that change with time in response to external and internal events. Studying the dynamic behavior of these networks is the basis for an understanding of cellular functions and disease mechanisms. Quantitative time-series data leading to meaningful models can improve our knowledge of human physiology in health and disease, and aid the search for earlier diagnoses, better therapies and a healthier life. The advent of systems biology is about to take the leap into clinical research and medical applications. This review emphasizes the importance of a dynamic view and understanding of cell function. We discuss the potential for computer-aided mathematical modeling of biological systems in medical research with examples from some of the major therapeutic areas: cancer, cardiovascular, diabetic and neurodegenerative medicine.

  4. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.

    2012-08-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  5. The dynamic regulation of NAD metabolism in mitochondria

    PubMed Central

    Stein, Liana Roberts; Imai, Shin-ichiro

    2012-01-01

    Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213

  6. Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1

    PubMed Central

    Lima, Bruss; Singer, Wolf; Chen, Nan-Hui

    2010-01-01

    Gamma synchronization has generally been associated with grouping processes in the visual system. Here, we examine in monkey V1 whether gamma oscillations play a functional role in segmenting surfaces of plaid stimuli. Local field potentials (LFPs) and spiking activity were recorded simultaneously from multiple sites in the opercular and calcarine regions while the monkeys were presented with sequences of single and superimposed components of plaid stimuli. In accord with the previous studies, responses to the single components (gratings) exhibited strong and sustained gamma-band oscillations (30–65 Hz). The superposition of the second component, however, led to profound changes in the temporal structure of the responses, characterized by a drastic reduction of gamma oscillations in the spiking activity and systematic shifts to higher frequencies in the LFP (∼10% increase). Comparisons between cerebral hemispheres and across monkeys revealed robust subject-specific spectral signatures. A possible interpretation of our results may be that single gratings induce strong cooperative interactions among populations of cells that share similar response properties, whereas plaids lead to competition. Overall, our results suggest that the functional architecture of the cortex is a major determinant of the neuronal synchronization dynamics in V1. PMID:19812238

  7. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.

    PubMed

    Metzger, F Luise; Auer, Tibor; Helms, Gunther; Paulus, Walter; Frahm, Jens; Sommer, Martin; Neef, Nicole E

    2018-01-01

    Persistent developmental stuttering is associated with basal ganglia dysfunction or dopamine dysregulation. Here, we studied whole-brain functional connectivity to test how basal ganglia structures coordinate and reorganize sensorimotor brain networks in stuttering. To this end, adults who stutter and fluent speakers (control participants) performed a response anticipation paradigm in the MRI scanner. The preparation of a manual Go/No-Go response reliably produced activity in the basal ganglia and thalamus and particularly in the substantia nigra. Strikingly, in adults who stutter, substantia nigra activity correlated positively with stuttering severity. Furthermore, functional connectivity analyses yielded altered task-related network formations in adults who stutter compared to fluent speakers. Specifically, in adults who stutter, the globus pallidus and the thalamus showed increased network synchronization with the inferior frontal gyrus. This implies dynamic shifts in the response preparation-related network organization through the basal ganglia in the context of a non-speech motor task in stuttering. Here we discuss current findings in the traditional framework of how D1 and D2 receptor activity shapes focused movement selection, thereby suggesting a disproportional involvement of the direct and the indirect pathway in stuttering.

  8. Comparison of the electromagnetic responses of C 12 obtained from the Green's function Monte Carlo and spectral function approaches

    DOE PAGES

    Rocco, Noemi; Lovato, Alessandro; Benhar, Omar

    2016-12-23

    Here, the electromagnetic responses of carbon obtained from the Green's function Monte Carlo and spectral function approaches using the same dynamical input are compared in the kinematical region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis, aimed at pinning down the limits of applicability of the approximations involved in the two schemes, indicate that the factorization ansatz underlying the spectral function formalism provides remarkably accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears that at 570 MeV relativistic corrections to the electromagnetic current not included inmore » the Monte Carlo calculations may play a significant role in the transverse channel.« less

  9. Comparison of the electromagnetic responses of C 12 obtained from the Green's function Monte Carlo and spectral function approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, Noemi; Lovato, Alessandro; Benhar, Omar

    Here, the electromagnetic responses of carbon obtained from the Green's function Monte Carlo and spectral function approaches using the same dynamical input are compared in the kinematical region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis, aimed at pinning down the limits of applicability of the approximations involved in the two schemes, indicate that the factorization ansatz underlying the spectral function formalism provides remarkably accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears that at 570 MeV relativistic corrections to the electromagnetic current not included inmore » the Monte Carlo calculations may play a significant role in the transverse channel.« less

  10. Investigating the sources of variability in the dynamic response of built-up structures through a linear analytical model

    NASA Astrophysics Data System (ADS)

    Abolfathi, Ali; O'Boy, Dan J.; Walsh, Stephen J.; Fisher, Stephen A.

    2017-01-01

    It is well established that the dynamic response of a number of nominally identical built-up structures are often different and the variability increases with increasing complexity of the structure. Furthermore, the effects of the different parameters, for example the variation in joint locations or the range of the Young's modulus, on the dynamic response of the system are not the same. In this paper, the effects of different material and geometric parameters on the variability of a vibration transfer function are compared using an analytical model of a simple linear built-up structure that consist of two plates connected by a single mount. Similar results can be obtained if multiple mounts are used. The scope of this paper is limited to a low and medium frequency range where usually deterministic models are used for vibrational analysis. The effect of the mount position and also the global variation in the properties of the plate, such as modulus of elasticity or thickness, is higher on the variability of vibration transfer function than the effect of the mount properties. It is shown that the vibration transfer function between the plates is independent of the mount property if a stiff enough mount with a small mass is implemented. For a soft mount, there is a direct relationship between the mount impedance and the variation in the vibration transfer function. Furthermore, there are a range of mount stiffnesses between these two extreme cases at which the vibration transfer function is more sensitive to changes in the stiffness of the mount than when compared to a soft mount. It is found that the effect of variation in the mount damping and the mount mass on the variability is negligible. Similarly, the effect of the plate damping on the variability is not significant.

  11. Dynamic covalent polymers

    PubMed Central

    García, Fátima

    2016-01-01

    ABSTRACT This Highlight presents an overview of the rapidly growing field of dynamic covalent polymers. This class of polymers combines intrinsic reversibility with the robustness of covalent bonds, thus enabling formation of mechanically stable, polymer‐based materials that are responsive to external stimuli. It will be discussed how the inherent dynamic nature of the dynamic covalent bonds on the molecular level can be translated to the macroscopic level of the polymer, giving access to a range of applications, such as stimuli‐responsive or self‐healing materials. A primary distinction will be made based on the type of dynamic covalent bond employed, while a secondary distinction will be based on the consideration whether the dynamic covalent bond is used in the main chain of the polymer or whether it is used to allow side chain modification of the polymer. Emphasis will be on the chemistry of the dynamic covalent bonds present in the polymer, in particular in relation to how the specific (dynamic) features of the bond impart functionality to the polymer material, and to the conditions under which this dynamic behavior is manifested. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3551–3577. PMID:27917019

  12. Right mesial temporal lobe epilepsy impairs empathy-related brain responses to dynamic fearful faces.

    PubMed

    Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; Kurthen, Martin; Rankin, Katherine P; Jokeit, Hennric

    2015-03-01

    Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with reduced amygdala responsiveness to fearful faces. However, the effect of unilateral MTLE on empathy-related brain responses in extra-amygdalar regions has not been investigated. Using functional magnetic resonance imaging, we measured empathy-related brain responses to dynamic fearful faces in 34 patients with unilateral MTLE (18 right sided), in an epilepsy (extra-MTLE; n = 16) and in a healthy control group (n = 30). The primary finding was that right MTLE (RMTLE) was associated with decreased activity predominantly in the right amygdala and also in bilateral periaqueductal gray (PAG) but normal activity in the right anterior insula. The results of the extra-MTLE group demonstrate that these reduced amygdala and PAG responses go beyond the attenuation caused by antiepileptic and antidepressant medication. These findings clearly indicate that RMTLE affects the function of mesial temporal and midbrain structures that mediate basic interoceptive input necessary for the emotional awareness of empathic experiences of fear. Together with the decreased empathic concern found in the RMTLE group, this study provides neurobehavioral evidence that patients with RMTLE are at increased risk for reduced empathy towards others' internal states and sheds new light on the nature of social-cognitive impairments frequently accompanying MTLE.

  13. Effect of endogenous angiotensin II on the frequency response of the renal vasculature.

    PubMed

    Dibona, Gerald F; Sawin, Linda L

    2004-12-01

    The renal vasculature functions as an efficient low-pass filter of the multiple frequencies contained within renal sympathetic nerve activity. This study examined the effect of angiotensin II on the frequency response of the renal vasculature. Physiological changes in the activity of the endogenous renin-angiotensin system were produced by alterations in dietary sodium intake. The frequency response of the renal vasculature was evaluated using pseudorandom binary sequence renal nerve stimulation, and the role of angiotensin II was evaluated by the administration of the angiotensin II AT(1)-receptor antagonist losartan. In low-sodium-diet rats with increased renin-angiotensin system activity, losartan steepened the renal vascular frequency response (i.e., greater attenuation); this was not seen in normal- or high-sodium-diet rats with normal or decreased renin-angiotensin system activity. Analysis of the transfer function from arterial pressure to renal blood flow, i.e., dynamic autoregulation, showed that the tubuloglomerular feedback but not the myogenic component was enhanced in low- and normal- but not in high-sodium-diet rats and that this was reversed by losartan administration. Thus physiological increases in endogenous renin-angiotensin activity inhibit the renal vascular frequency response to renal nerve stimulation while selectively enhancing the tubuloglomerular feedback component of dynamic autoregulation of renal blood flow.

  14. Dynamic modeling of GMA fillet welding using cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellinga, M.; Huissoon, J.; Kerr, H.

    1996-12-31

    The feasibility of employing the cross-correlation system identification technique as a dynamic modeling method for the GMAW process was examined. This approach has the advantages of modeling speed, the ability to operate in low signal to noise environments, the ease of digital implementation, and the lack of model order assumption, making it ideal in a welding application. The width of the weld pool was the parameter investigated as a function of torch travel speed. Both on-line and off-line width measurements were used to identify the impulse response. Experimental results are presented and comparisons made with both step and ramp response.

  15. Dynamic gas temperature measurement system. Volume 2: Operation and program manual

    NASA Technical Reports Server (NTRS)

    Purpura, P. T.

    1983-01-01

    The hot section technology (HOST) dynamic gas temperature measurement system computer program acquires data from two type B thermocouples of different diameters. The analysis method determines the in situ value of an aerodynamic parameter T, containing the heat transfer coefficient from the transfer function of the two thermocouples. This aerodynamic parameter is used to compute a fequency response spectrum and compensate the dynamic portion of the signal of the smaller thermocouple. The calculations for the aerodynamic parameter and the data compensation technique are discussed. Compensated data are presented in either the time or frequency domain, time domain data as dynamic temperature vs time, or frequency domain data.

  16. Penalized nonparametric scalar-on-function regression via principal coordinates

    PubMed Central

    Reiss, Philip T.; Miller, David L.; Wu, Pei-Shien; Hua, Wen-Yu

    2016-01-01

    A number of classical approaches to nonparametric regression have recently been extended to the case of functional predictors. This paper introduces a new method of this type, which extends intermediate-rank penalized smoothing to scalar-on-function regression. In the proposed method, which we call principal coordinate ridge regression, one regresses the response on leading principal coordinates defined by a relevant distance among the functional predictors, while applying a ridge penalty. Our publicly available implementation, based on generalized additive modeling software, allows for fast optimal tuning parameter selection and for extensions to multiple functional predictors, exponential family-valued responses, and mixed-effects models. In an application to signature verification data, principal coordinate ridge regression, with dynamic time warping distance used to define the principal coordinates, is shown to outperform a functional generalized linear model. PMID:29217963

  17. Invited Paper - Density functional theory: coverage of dynamic and non-dynamic electron correlation effects

    NASA Astrophysics Data System (ADS)

    Cremer, Dieter

    The electron correlation effects covered by density functional theory (DFT) can be assessed qualitatively by comparing DFT densities ρ(r) with suitable reference densities obtained with wavefunction theory (WFT) methods that cover typical electron correlation effects. The analysis of difference densities ρ(DFT)-ρ(WFT) reveals that LDA and GGA exchange (X) functionals mimic non-dynamic correlation effects in an unspecified way. It is shown that these long range correlation effects are caused by the self-interaction error (SIE) of standard X functionals. Self-interaction corrected (SIC) DFT exchange gives, similar to exact exchange, for the bonding region a delocalized exchange hole, and does not cover any correlation effects. Hence, the exchange SIE is responsible for the fact that DFT densities often resemble MP4 or MP2 densities. The correlation functional changes X-only DFT densities in a manner observed when higher order coupling effects between lower order N-electron correlation effects are included. Hybrid functionals lead to changes in the density similar to those caused by SICDFT, which simply reflects the fact that hybrid functionals have been developed to cover part of the SIE and its long range correlation effects in a balanced manner. In the case of spin-unrestricted DFT (UDFT), non-dynamic electron correlation effects enter the calculation both via the X functional and via the wavefunction, which may cause a double-counting of correlation effects. The use of UDFT in the form of permuted orbital and broken-symmetry DFT (PO-UDFT, BS-UDFT) can lead to reasonable descriptions of multireference systems provided certain conditions are fulfilled. More reliable, however, is a combination of DFT and WFT methods, which makes the routine description of multireference systems possible. The development of such methods implies a separation of dynamic and non-dynamic correlation effects. Strategies for accomplishing this goal are discussed in general and tested in practice for CAS (complete active space)-DFT.

  18. System identification methods for aircraft flight control development and validation

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.

    1995-01-01

    System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.

  19. Environmental Systems Microbiology of Contaminated Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, Gary; Hazen, Terry C.

    Environmental Systems Microbiology is well positioned to move forward in dynamic complex system analysis probing new questions and developing new insight into the function, robustness and resilience in response to anthropogenic perturbations. Recent studies have demonstrated that natural bacterial communities can be used as quantitative biosensors in both groundwater and deep ocean water, predicting oil concentration from the Gulf of Mexico Deep Water Horizon spill and from groundwater at nuclear production waste sites (16, 17, 25). Since the first demonstration of catabolic gene expression in soil remediation (34) it has been clear that extension beyond organismal abundance to process andmore » function of microbial communities as a whole using the whole suite of omic tools available to the post genomic era. Metatranscriptomics have been highlighted as a prime vehicle for understanding responses to environmental drivers (35) in complex systems and with rapidly developing metabolomics, full functional understanding of complex community biogeochemical cycling is an achievable goal. Perhaps more exciting is the dynamic nature of these systems and their complex adaptive strategies that may lead to new control paradigms and emergence of new states and function in the course of a changing environment.« less

  20. SystemSketch Poster

    EPA Science Inventory

    SystemSketch is a dynamic, graphic visualization tool to help stakeholders better understand system context and access information resources.  It is constructed using the Driver-Pressure-State-Impact-Response framework, and functions both as a stand-alone tool and as a component ...

  1. Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.

    PubMed

    Liepold, Christopher; Zarcone, Ryan; Heumann, Tibor; Rice, Stuart A; Lin, Binhua

    2017-07-01

    We report a study of how a bend in a quasi-one-dimensional (q1D) channel containing a colloid suspension at equilibrium that exhibits single-file particle motion affects the hydrodynamic coupling between colloid particles. We observe both structural and dynamical responses as the bend angle becomes more acute. The structural response is an increasing depletion of particles in the vicinity of the bend and an increase in the nearest-neighbor separation in the pair correlation function for particles on opposite sides of the bend. The dynamical response monitored by the change in the self-diffusion [D_{11}(x)] and coupling [D_{12}(x)] terms of the pair diffusion tensor reveals that the pair separation dependence of D_{12} mimics that of the pair correlation function just as in a straight q1D channel. We show that the observed behavior is a consequence of the boundary conditions imposed on the q1D channel: both the single-file motion and the hydrodynamic flow must follow the channel around the bend.

  2. Multi-period response management to contaminated water distribution networks: dynamic programming versus genetic algorithms

    NASA Astrophysics Data System (ADS)

    Bashi-Azghadi, Seyyed Nasser; Afshar, Abbas; Afshar, Mohammad Hadi

    2018-03-01

    Previous studies on consequence management assume that the selected response action including valve closure and/or hydrant opening remains unchanged during the entire management period. This study presents a new embedded simulation-optimization methodology for deriving time-varying operational response actions in which the network topology may change from one stage to another. Dynamic programming (DP) and genetic algorithm (GA) are used in order to minimize selected objective functions. Two networks of small and large sizes are used in order to illustrate the performance of the proposed modelling schemes if a time-dependent consequence management strategy is to be implemented. The results show that for a small number of decision variables even in large-scale networks, DP is superior in terms of accuracy and computer runtime. However, as the number of potential actions grows, DP loses its merit over the GA approach. This study clearly proves the priority of the proposed dynamic operation strategy over the commonly used static strategy.

  3. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurburg, Stephanie D.; Nunes, Inês; Stegen, James C.

    The response of bacterial communities to environmental change may affect local to global nutrient cycles; however the dynamics of these communities following disturbance are poorly understood, and are generally attributed to abiotic factors. Here, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days of recovery. Phylogenetic turnover patterns indicated that biotic interactions shaped the community during recovery, and that the disturbance imposed a strong selective pressure that persisted for up to 10 days, after which the importance of stochastic processes increased. Three successional stages were detected: a primary response (1-4more » days after disturbance) in which surviving taxa increased in abundance; a secondary response phase (10-29 days), during which community dynamics slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Soil bacterial communities, despite their extreme diversity and functional redundancy, respond to disturbances like many macroecological systems and exhibit path-dependent, autogenic dynamics during secondary succession.« less

  4. New activity pattern in human interactive dynamics

    NASA Astrophysics Data System (ADS)

    Formentin, Marco; Lovison, Alberto; Maritan, Amos; Zanzotto, Giovanni

    2015-09-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new pattern for how the reactive dynamics of individuals is distributed across the set of each agent’s contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this new behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one’s environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be universal, being present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.

  5. Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas

    PubMed Central

    Sellers, Kristin K.; Bennett, Davis V.; Hutt, Axel; Williams, James H.

    2015-01-01

    During general anesthesia, global brain activity and behavioral state are profoundly altered. Yet it remains mostly unknown how anesthetics alter sensory processing across cortical layers and modulate functional cortico-cortical connectivity. To address this gap in knowledge of the micro- and mesoscale effects of anesthetics on sensory processing in the cortical microcircuit, we recorded multiunit activity and local field potential in awake and anesthetized ferrets (Mustela putoris furo) during sensory stimulation. To understand how anesthetics alter sensory processing in a primary sensory area and the representation of sensory input in higher-order association areas, we studied the local sensory responses and long-range functional connectivity of primary visual cortex (V1) and prefrontal cortex (PFC). Isoflurane combined with xylazine provided general anesthesia for all anesthetized recordings. We found that anesthetics altered the duration of sensory-evoked responses, disrupted the response dynamics across cortical layers, suppressed both multimodal interactions in V1 and sensory responses in PFC, and reduced functional cortico-cortical connectivity between V1 and PFC. Together, the present findings demonstrate altered sensory responses and impaired functional network connectivity during anesthesia at the level of multiunit activity and local field potential across cortical layers. PMID:25833839

  6. Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements

    NASA Astrophysics Data System (ADS)

    Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.

    2004-05-01

    Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.

  7. Unsymmetric Lanczos model reduction and linear state function observer for flexible structures

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1991-01-01

    This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.

  8. Dynamic characterization of AFM probes by laser Doppler vibrometry and stroboscopic holographic methodologies

    NASA Astrophysics Data System (ADS)

    Kuppers, J. D.; Gouverneur, I. M.; Rodgers, M. T.; Wenger, J.; Furlong, C.

    2006-08-01

    In atomic probe microscopy, micro-probes of various sizes, geometries, and materials are used to define the interface between the samples under investigation and the measuring detectors and instrumentation. Therefore, measuring resolution in atomic probe microscopy is highly dependent on the transfer function characterizing the micro-probes used. In this paper, characterization of the dynamic transfer function of specific micro-cantilever probes used in an Atomic Force Microscope (AFM) operating in the tapping mode is presented. Characterization is based on the combined application of laser Doppler vibrometry (LDV) and real-time stroboscopic optoelectronic holographic microscopy (OEHM) methodologies. LDV is used for the rapid measurement of the frequency response of the probes due to an excitation function containing multiple frequency components. Data obtained from the measured frequency response is used to identify the principal harmonics. In order to identify mode shapes corresponding to the harmonics, full-field of view OEHM is applied. This is accomplished by measurements of motion at various points on the excitation curve surrounding the identified harmonics. It is shown that the combined application of LDV and OEHM enables the high-resolution characterization of mode shapes of vibration, damping characteristics, as well as transient response of the micro-cantilever probes. Such characterization is necessary in high-resolution AFM measurements.

  9. Functional ecology of aquatic phagotrophic protists - Concepts, limitations, and perspectives.

    PubMed

    Weisse, Thomas; Anderson, Ruth; Arndt, Hartmut; Calbet, Albert; Hansen, Per Juel; Montagnes, David J S

    2016-08-01

    Functional ecology is a subdiscipline that aims to enable a mechanistic understanding of patterns and processes from the organismic to the ecosystem level. This paper addresses some main aspects of the process-oriented current knowledge on phagotrophic, i.e. heterotrophic and mixotrophic, protists in aquatic food webs. This is not an exhaustive review; rather, we focus on conceptual issues, in particular on the numerical and functional response of these organisms. We discuss the evolution of concepts and define parameters to evaluate predator-prey dynamics ranging from Lotka-Volterra to the Independent Response Model. Since protists have extremely versatile feeding modes, we explore if there are systematic differences related to their taxonomic affiliation and life strategies. We differentiate between intrinsic factors (nutritional history, acclimatisation) and extrinsic factors (temperature, food, turbulence) affecting feeding, growth, and survival of protist populations. We briefly consider intraspecific variability of some key parameters and constraints inherent in laboratory microcosm experiments. We then upscale the significance of phagotrophic protists in food webs to the ocean level. Finally, we discuss limitations of the mechanistic understanding of protist functional ecology resulting from principal unpredictability of nonlinear dynamics. We conclude by defining open questions and identifying perspectives for future research on functional ecology of aquatic phagotrophic protists. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. Effect of Water Chemistry and Hydrodynamics on Nitrogen Transformation Activity and Microbial Community Functional Potential in Hyporheic Zone Sediment Columns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuanyuan; Liu, Chongxuan; Nelson, William C.

    Nitrogen (N) transformation in hyporheic zone (HZ) is an important component in N-cycling in ecosystems. A column study was conducted to investigate N transformation in a HZ sediment with a focus on how characteristic HZ properties including water chemistry, fluid residence time, and dynamic groundwater and surface water exchange affect on N transformation. Metagenomic and quantitative polymerase chain reaction (qPCR) analyses were performed to evaluate the dynamic changes in microbial community structure and its function in response to N transformation. The results indicated that N transformation in the HZ sediment was collectively controlled by microbial community functions including: denitrification, dissimilatorymore » nitrate reduction to ammonium (DNRA), nitrification, and anaerobic ammonium oxidation (anammox). However, the spatial distribution of the microbial community functions and associated biogeochemical reaction rates and products changed quickly in response to experimental perturbation, and was influenced by various factors including water chemistry (dissolved O2 and N species), desorption of sediment associated organic carbon, ion exchange reactions of NH4+, and fluid residence time. The results of this study implied that the microbial community in the HZ would exhibit strong function zonation along N and O gradients, which in turn would control the rates and products of N transformation.« less

  11. [Comparisons and analysis of the spectral response functions' difference between FY-2E's and FY2C's split window channels].

    PubMed

    Zhang, Yong; Li, Yuan; Rong, Zhi-Guo

    2010-06-01

    Remote sensors' channel spectral response function (SRF) was one of the key factors to influence the quantitative products' inversion algorithm, accuracy and the geophysical characteristics. Aiming at the adjustments of FY-2E's split window channels' SRF, detailed comparisons between the FY-2E and FY-2C corresponding channels' SRF differences were carried out based on three data collections: the NOAA AVHRR corresponding channels' calibration look up tables, field measured water surface radiance and atmospheric profiles at Lake Qinghai and radiance calculated from the PLANK function within all dynamic range of FY-2E/C. The results showed that the adjustments of FY-2E's split window channels' SRF would result in the spectral range's movements and influence the inversion algorithms of some ground quantitative products. On the other hand, these adjustments of FY-2E SRFs would increase the brightness temperature differences between FY-2E's two split window channels within all dynamic range relative to FY-2C's. This would improve the inversion ability of FY-2E's split window channels.

  12. Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs.

    PubMed

    Ledoux, Erwan; Brunel, Nicolas

    2011-01-01

    We investigate the dynamics of recurrent networks of excitatory (E) and inhibitory (I) neurons in the presence of time-dependent inputs. The dynamics is characterized by the network dynamical transfer function, i.e., how the population firing rate is modulated by sinusoidal inputs at arbitrary frequencies. Two types of networks are studied and compared: (i) a Wilson-Cowan type firing rate model; and (ii) a fully connected network of leaky integrate-and-fire (LIF) neurons, in a strong noise regime. We first characterize the region of stability of the "asynchronous state" (a state in which population activity is constant in time when external inputs are constant) in the space of parameters characterizing the connectivity of the network. We then systematically characterize the qualitative behaviors of the dynamical transfer function, as a function of the connectivity. We find that the transfer function can be either low-pass, or with a single or double resonance, depending on the connection strengths and synaptic time constants. Resonances appear when the system is close to Hopf bifurcations, that can be induced by two separate mechanisms: the I-I connectivity and the E-I connectivity. Double resonances can appear when excitatory delays are larger than inhibitory delays, due to the fact that two distinct instabilities exist with a finite gap between the corresponding frequencies. In networks of LIF neurons, changes in external inputs and external noise are shown to be able to change qualitatively the network transfer function. Firing rate models are shown to exhibit the same diversity of transfer functions as the LIF network, provided delays are present. They can also exhibit input-dependent changes of the transfer function, provided a suitable static non-linearity is incorporated.

  13. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction.

    PubMed

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W; Watson, David; Jardine, Phil; Criddle, Craig S; Brooks, Scott; Marsh, Terence L; Tiedje, James M; Arkin, Adam P; Zhou, Jizhong

    2015-06-15

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    PubMed Central

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W.; Watson, David; Jardine, Phil; Criddle, Craig S.; Brooks, Scott; Marsh, Terence L.; Tiedje, James M.; Arkin, Adam P.

    2015-01-01

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3−, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3−, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. PMID:25862231

  15. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    DOE PAGES

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; ...

    2015-04-10

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less

  16. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this paper, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using amore » comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO 3 -, Mn(IV), Fe(III), U(VI), and SO 4 2- significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO 3 -, Mn(II), Fe(II), U(VI), and SO 4 2-. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. Finally, this study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.« less

  17. Pilot dynamics for instrument approach tasks: Full panel multiloop and flight director operations

    NASA Technical Reports Server (NTRS)

    Weir, D. H.; Mcruer, D. T.

    1972-01-01

    Measurements and interpretations of single and mutiloop pilot response properties during simulated instrument approach are presented. Pilot subjects flew Category 2-like ILS approaches in a fixed base DC-8 simulaton. A conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Reduced and interpreted pilot describing functions and remmant are given for pitch attitude, flight director, and multiloop (longitudinal) control tasks. The response data are correlated with simultaneously recorded eye scanning statistics, previously reported in NASA CR-1535. The resulting combined response and scanning data and their interpretations provide a basis for validating and extending the theory of manual control displays.

  18. Coupling Field Theory with Mesoscopic Dynamical Simulations of Multicomponent Lipid Bilayers

    PubMed Central

    McWhirter, J. Liam; Ayton, Gary; Voth, Gregory A.

    2004-01-01

    A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations. PMID:15347594

  19. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits

    PubMed Central

    Wahlstrom-Helgren, Sarah

    2016-01-01

    Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits. PMID:27605532

  20. Compounding effects of fluid confinement and surface strain on the wet–dry transition, thermodynamic response, and dynamics of water–graphene systems

    DOE PAGES

    Chialvo, Ariel A.; Vlcek, Lukas; Cummings, Peter T.

    2014-10-17

    We studied the link between the water-mediated (tensile or compressive) strain-driven hydration free energy changes in the association process involving finite-size graphene surfaces, the resulting water-graphene interfacial behavior, and the combined effect of surface strain and fluid confinement on the thermodynamic response functions and the dynamics of water. In this study, we found that either small surface corrugation (compressive strain) or surface stretching (tensile strain) is able to enhance significantly the water-graphene hydrophobicity relative to that of the unstrained surface, an effect that exacerbates the confinement impact on the isothermal compressibility and isobaric thermal expansivity of confined water, as wellmore » as on the slowing down of its dynamics that gives rise to anomalous diffusivity.« less

  1. Effects of dynamic long-period ocean tides on changes in earth's rotation rate

    NASA Technical Reports Server (NTRS)

    Nam, Young; Dickman, S. R.

    1990-01-01

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.

  2. Defining and quantifying the resilience of responses to disturbance: a conceptual and modelling approach from soil science

    PubMed Central

    Todman, L. C.; Fraser, F. C.; Corstanje, R.; Deeks, L. K.; Harris, J. A.; Pawlett, M.; Ritz, K.; Whitmore, A. P.

    2016-01-01

    There are several conceptual definitions of resilience pertaining to environmental systems and, even if resilience is clearly defined in a particular context, it is challenging to quantify. We identify four characteristics of the response of a system function to disturbance that relate to “resilience”: (1) degree of return of the function to a reference level; (2) time taken to reach a new quasi-stable state; (3) rate (i.e. gradient) at which the function reaches the new state; (4) cumulative magnitude of the function (i.e. area under the curve) before a new state is reached. We develop metrics to quantify these characteristics based on an analogy with a mechanical spring and damper system. Using the example of the response of a soil function (respiration) to disturbance, we demonstrate that these metrics effectively discriminate key features of the dynamic response. Although any one of these characteristics could define resilience, each may lead to different insights and conclusions. The salient properties of a resilient response must thus be identified for different contexts. Because the temporal resolution of data affects the accurate determination of these metrics, we recommend that at least twelve measurements are made over the temporal range for which the response is expected. PMID:27329053

  3. Terahertz absorption of lysozyme in solution

    NASA Astrophysics Data System (ADS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2017-08-01

    Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.

  4. Dynamics and design principles of a basic regulatory architecture controlling metabolic pathways.

    PubMed

    Chin, Chen-Shan; Chubukov, Victor; Jolly, Emmitt R; DeRisi, Joe; Li, Hao

    2008-06-17

    The dynamic features of a genetic network's response to environmental fluctuations represent essential functional specifications and thus may constrain the possible choices of network architecture and kinetic parameters. To explore the connection between dynamics and network design, we have analyzed a general regulatory architecture that is commonly found in many metabolic pathways. Such architecture is characterized by a dual control mechanism, with end product feedback inhibition and transcriptional regulation mediated by an intermediate metabolite. As a case study, we measured with high temporal resolution the induction profiles of the enzymes in the leucine biosynthetic pathway in response to leucine depletion, using an automated system for monitoring protein expression levels in single cells. All the genes in the pathway are known to be coregulated by the same transcription factors, but we observed drastically different dynamic responses for enzymes upstream and immediately downstream of the key control point-the intermediate metabolite alpha-isopropylmalate (alphaIPM), which couples metabolic activity to transcriptional regulation. Analysis based on genetic perturbations suggests that the observed dynamics are due to differential regulation by the leucine branch-specific transcription factor Leu3, and that the downstream enzymes are strictly controlled and highly expressed only when alphaIPM is available. These observations allow us to build a simplified mathematical model that accounts for the observed dynamics and can correctly predict the pathway's response to new perturbations. Our model also suggests that transient dynamics and steady state can be separately tuned and that the high induction levels of the downstream enzymes are necessary for fast leucine recovery. It is likely that principles emerging from this work can reveal how gene regulation has evolved to optimize performance in other metabolic pathways with similar architecture.

  5. Partitioning strategy for efficient nonlinear finite element dynamic analysis on multiprocessor computers

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1989-01-01

    A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.

  6. Germination responses to temperature and soil moisture in three species of the subfamily Caragana and their implications toward restoration in Loess-gully Region, China

    Treesearch

    Zhao Xiaoying; Ren Jizhou

    2007-01-01

    The leguminous Caragana species are important components of vegetation in the semi-arid Loess-gully region, China. These shrub species are important for maintaining the dynamics and function of the ecosystem in the region. They are potential plant resources for restoration of degraded ecosystems. The germination responses to temperatures in two...

  7. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing.

    PubMed

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E; Conolly, Rory B

    2010-02-01

    The new paradigm envisioned for toxicity testing in the 21st century advocates shifting from the current animal-based testing process to a combination of in vitro cell-based studies, high-throughput techniques, and in silico modeling. A strategic component of the vision is the adoption of the systems biology approach to acquire, analyze, and interpret toxicity pathway data. As key toxicity pathways are identified and their wiring details elucidated using traditional and high-throughput techniques, there is a pressing need to understand their qualitative and quantitative behaviors in response to perturbation by both physiological signals and exogenous stressors. The complexity of these molecular networks makes the task of understanding cellular responses merely by human intuition challenging, if not impossible. This process can be aided by mathematical modeling and computer simulation of the networks and their dynamic behaviors. A number of theoretical frameworks were developed in the last century for understanding dynamical systems in science and engineering disciplines. These frameworks, which include metabolic control analysis, biochemical systems theory, nonlinear dynamics, and control theory, can greatly facilitate the process of organizing, analyzing, and understanding toxicity pathways. Such analysis will require a comprehensive examination of the dynamic properties of "network motifs"--the basic building blocks of molecular circuits. Network motifs like feedback and feedforward loops appear repeatedly in various molecular circuits across cell types and enable vital cellular functions like homeostasis, all-or-none response, memory, and biological rhythm. These functional motifs and associated qualitative and quantitative properties are the predominant source of nonlinearities observed in cellular dose response data. Complex response behaviors can arise from toxicity pathways built upon combinations of network motifs. While the field of computational cell biology has advanced rapidly with increasing availability of new data and powerful simulation techniques, a quantitative orientation is still lacking in life sciences education to make efficient use of these new tools to implement the new toxicity testing paradigm. A revamped undergraduate curriculum in the biological sciences including compulsory courses in mathematics and analysis of dynamical systems is required to address this gap. In parallel, dissemination of computational systems biology techniques and other analytical tools among practicing toxicologists and risk assessment professionals will help accelerate implementation of the new toxicity testing vision.

  8. Disentangling α and β relaxation in orientationally disordered crystals with theory and experiments

    NASA Astrophysics Data System (ADS)

    Cui, Bingyu; Gebbia, Jonathan F.; Tamarit, Josep-Lluis; Zaccone, Alessio

    2018-05-01

    We use a microscopically motivated generalized Langevin equation (GLE) approach to link the vibrational density of states (VDOS) to the dielectric response of orientational glasses (OGs). The dielectric function calculated based on the GLE is compared with experimental data for the paradigmatic case of two OGs: freon-112 and freon-113, around and just above Tg. The memory function is related to the integral of the VDOS times a spectral coupling function γ (ωp) , which tells the degree of dynamical coupling between molecular degrees of freedom at different eigenfrequencies. The comparative analysis of the two freons reveals that the appearance of a secondary β relaxation in freon-112 is due to cooperative dynamical coupling in the regime of mesoscopic motions caused by stronger anharmonicity (absent in freon-113) and is associated with the comparatively lower boson peak in the VDOS. The proposed framework brings together all the key aspects of glassy physics (VDOS with the boson peak, dynamical heterogeneity, dissipation, and anharmonicity) into a single model.

  9. Epidural anaesthesia and analgesia - effects on surgical stress responses and implications for postoperative nutrition.

    PubMed

    Holte, K; Kehlet, H

    2002-06-01

    Surgical injury leads to an endocrine-metabolic and inflammatory response with protein catabolism, increased cardiovascular demands, impaired pulmonary function and paralytic ileus, the most important release mechanisms being afferent neural stimuli and inflammatory mediators. Epidural local anaesthetic blockade of afferent stimuli reduces endocrine metabolic responses, and improve postoperative catabolism. Furthermore, dynamic pain relief is achieved with improved pulmonary function and a pronounced reduction of postoperative ileus, thereby providing optimal conditions for improved mobilization and oral nutrition, and preservation of body composition and muscle function. Studies integrating continuous epidural local anaesthetics with enforced early nutrition and mobilization uniformly suggest an improved recovery, decreased hospital stay and convalescence. Epidural local anaesthetics should be included in a multi-modal rehabilitation programme after major surgical procedures in order to facilitate oral nutrition, improve recovery and reduce morbidity.

  10. Cross-continental comparison of the functional composition and carbon allocation of two altitudinal forest transects in Ecuador and Rwanda.

    NASA Astrophysics Data System (ADS)

    Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Boeckx, Pascal; Kearsley, Elizabeth; Cizungu, Landry; Verbeeck, Hans

    2016-04-01

    Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Africa, focussing on shifts in carbon allocation, forest structure and functional composition. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed adaption mechanisms are.

  11. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.

    PubMed

    A Mitrou, Nicholas G; Cupples, William A

    2014-01-01

    Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.

  12. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions.

    PubMed

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-03-27

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.

  13. Memory-less response and violation of the fluctuation-dissipation theorem in colloids suspended in an active bath.

    PubMed

    Maggi, Claudio; Paoluzzi, Matteo; Angelani, Luca; Di Leonardo, Roberto

    2017-12-14

    We investigate experimentally and numerically the stochastic dynamics and the time-dependent response of colloids subject to a small external perturbation in a dense bath of motile E. coli bacteria. The external field is a magnetic field acting on a superparamagnetic microbead suspended in an active medium. The measured linear response reveals an instantaneous friction kernel despite the complexity of the bacterial bath. By comparing the mean squared displacement and the response function we detect a clear violation of the fluctuation dissipation theorem.

  14. Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions.

    PubMed

    Duan, Lingfeng; Han, Jiwan; Guo, Zilong; Tu, Haifu; Yang, Peng; Zhang, Dong; Fan, Yuan; Chen, Guoxing; Xiong, Lizhong; Dai, Mingqiu; Williams, Kevin; Corke, Fiona; Doonan, John H; Yang, Wanneng

    2018-01-01

    Dynamic quantification of drought response is a key issue both for variety selection and for functional genetic study of rice drought resistance. Traditional assessment of drought resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements, that are often subjective, error-prone, poorly quantified and time consuming. To relieve this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive method that dynamically quantifies response to drought, under both controlled and field conditions. Firstly, RGB images of individual rice plants at different growth points were analyzed to derive 4 features that were influenced by imposition of drought. These include a feature related to the ability to stay green, which we termed greenness plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio (TCR)]. Experiments showed that these 4 features were capable of discriminating reliably between drought resistant and drought sensitive accessions, and dynamically quantifying the drought response under controlled conditions across time (at either daily or half hourly time intervals). We compared the 3 shape descriptors and concluded that PAR was more robust and sensitive to leaf-rolling than the other shape descriptors. In addition, PAR and GPAR proved to be effective in quantification of drought response in the field. Moreover, the values obtained in field experiments using the collection of rice varieties were correlated with those derived from pot-based experiments. The general applicability of the algorithms is demonstrated by their ability to probe archival Miscanthus data previously collected on an independent platform. In conclusion, this image-based technology is robust providing a platform-independent tool for quantifying drought response that should be of general utility for breeding and functional genomics in future.

  15. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    PubMed

    Zhao, Jian

    2015-04-01

    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Children’s dynamic RSA change during anger and its relations with parenting, temperament, and control of aggression☆

    PubMed Central

    Miller, Jonas G.; Chocol, Caroline; Nuselovici, Jacob N.; Utendale, William T.; Simard, Melissa; Hastings, Paul D.

    2014-01-01

    This study examined the moderating effects of child temperament on the association between maternal socialization and 4–6-year-old children’s dynamic respiratory sinus arrhythmia (RSA) change in response to anger-themed emotional materials (N = 180). We used latent growth curve modeling to explore adaptive patterns of dynamic RSA change in response to anger. Greater change in RSA during anger-induction, characterized by more initial RSA suppression and a subsequent return to baseline, was related to children’s better regulation of aggression. For anger-themed materials, low levels of authoritarian parenting predicted more RSA suppression and recovery for more anger-prone children, whereas more authoritative parenting predicted more RSA suppression and recovery for less anger-prone children. These findings suggest that children’s adaptive patterns of dynamic RSA change can be characterized by latent growth curve modeling, and that these patterns may be differentially shaped by parent socialization experiences as a function of child temperament. PMID:23274169

  17. Children's dynamic RSA change during anger and its relations with parenting, temperament, and control of aggression.

    PubMed

    Miller, Jonas G; Chocol, Caroline; Nuselovici, Jacob N; Utendale, William T; Simard, Melissa; Hastings, Paul D

    2013-02-01

    This study examined the moderating effects of child temperament on the association between maternal socialization and 4-6-year-old children's dynamic respiratory sinus arrhythmia (RSA) change in response to anger-themed emotional materials (N=180). We used latent growth curve modeling to explore adaptive patterns of dynamic RSA change in response to anger. Greater change in RSA during anger-induction, characterized by more initial RSA suppression and a subsequent return to baseline, was related to children's better regulation of aggression. For anger-themed materials, low levels of authoritarian parenting predicted more RSA suppression and recovery for more anger-prone children, whereas more authoritative parenting predicted more RSA suppression and recovery for less anger-prone children. These findings suggest that children's adaptive patterns of dynamic RSA change can be characterized by latent growth curve modeling, and that these patterns may be differentially shaped by parent socialization experiences as a function of child temperament. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Dynamical properties of nematic liquid crystals subjected to shear flow and magnetic fields: tumbling instability and nonequilibrium fluctuations.

    PubMed

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2013-07-01

    We investigate the dynamical properties of monodomain nematic liquid crystals under shear flow and magnetic fields on the basis of the Ericksen-Leslie theory. Stable and unstable states appear depending on the magnetic field and the shear rate. The trajectory of the unstable state shows tumbling motion. The phase diagram of these states is plotted as a function of the three components of the magnetic field at a constant shear rate. The phase diagram changes depending on the viscous properties of different types of nematic liquid crystals. In this nonequilibrium steady state, we calculate the correlation function of director fluctuations and the response function, and discuss the nonequilibrium fluctuations and the modified fluctuation-dissipation relation in connection with nonconservative forces due to shear flow.

  19. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation.

    PubMed

    Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki

    2011-10-01

    The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.

  20. Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway.

    PubMed

    Pennanen, Christian; Parra, Valentina; López-Crisosto, Camila; Morales, Pablo E; Del Campo, Andrea; Gutierrez, Tomás; Rivera-Mejías, Pablo; Kuzmicic, Jovan; Chiong, Mario; Zorzano, Antonio; Rothermel, Beverly A; Lavandero, Sergio

    2014-06-15

    Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca(2+), activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling. © 2014. Published by The Company of Biologists Ltd.

  1. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    NASA Astrophysics Data System (ADS)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  2. Application of numerical optimization techniques to control system design for nonlinear dynamic models of aircraft

    NASA Technical Reports Server (NTRS)

    Lan, C. Edward; Ge, Fuying

    1989-01-01

    Control system design for general nonlinear flight dynamic models is considered through numerical simulation. The design is accomplished through a numerical optimizer coupled with analysis of flight dynamic equations. The general flight dynamic equations are numerically integrated and dynamic characteristics are then identified from the dynamic response. The design variables are determined iteratively by the optimizer to optimize a prescribed objective function which is related to desired dynamic characteristics. Generality of the method allows nonlinear effects to aerodynamics and dynamic coupling to be considered in the design process. To demonstrate the method, nonlinear simulation models for an F-5A and an F-16 configurations are used to design dampers to satisfy specifications on flying qualities and control systems to prevent departure. The results indicate that the present method is simple in formulation and effective in satisfying the design objectives.

  3. Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Whittaker, A. C.; Cowie, P. A.; Roberts, G. P.

    2008-09-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width depends on a number of parameters, including channel slope, and is not solely a function of drainage area as is commonly assumed. The present work represents the first attempt to investigate the consequences of dynamic, gradient-sensitive channel adjustment for drainage-basin evolution. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic perturbation, using, as a template, the topography of a well-documented catchment in the footwall of an active normal fault in the Apennines (Italy) that is known to be undergoing a transient response to tectonic forcing. We show that the observed transient response can be reproduced to first order with a simple detachment-limited fluvial incision law. Transient landscape is characterized by gentler gradients and a shorter response time when dynamic channel adjustment is allowed. The differences in predicted channel geometry between the static case (width dependent solely on upstream area) and dynamic case (width dependent on both drainage area and channel slope) lead to contrasting landscape morphologies when integrated at the scale of a whole catchment, particularly in presence of strong tilting and/or pronounced slip-rate acceleration. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the relative uplift field is nonuniform.

  4. Distributed collaborative response surface method for mechanical dynamic assembly reliability design

    NASA Astrophysics Data System (ADS)

    Bai, Guangchen; Fei, Chengwei

    2013-11-01

    Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40˜4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.

  5. Quantitative Analysis of Cellular Metabolic Dissipative, Self-Organized Structures

    PubMed Central

    de la Fuente, Ildefonso Martínez

    2010-01-01

    One of the most important goals of the postgenomic era is understanding the metabolic dynamic processes and the functional structures generated by them. Extensive studies during the last three decades have shown that the dissipative self-organization of the functional enzymatic associations, the catalytic reactions produced during the metabolite channeling, the microcompartmentalization of these metabolic processes and the emergence of dissipative networks are the fundamental elements of the dynamical organization of cell metabolism. Here we present an overview of how mathematical models can be used to address the properties of dissipative metabolic structures at different organizational levels, both for individual enzymatic associations and for enzymatic networks. Recent analyses performed with dissipative metabolic networks have shown that unicellular organisms display a singular global enzymatic structure common to all living cellular organisms, which seems to be an intrinsic property of the functional metabolism as a whole. Mathematical models firmly based on experiments and their corresponding computational approaches are needed to fully grasp the molecular mechanisms of metabolic dynamical processes. They are necessary to enable the quantitative and qualitative analysis of the cellular catalytic reactions and also to help comprehend the conditions under which the structural dynamical phenomena and biological rhythms arise. Understanding the molecular mechanisms responsible for the metabolic dissipative structures is crucial for unraveling the dynamics of cellular life. PMID:20957111

  6. Vibration Response Predictions for Heavy Panel Mounted Components from Panel Acreage Environment Specifications

    NASA Technical Reports Server (NTRS)

    Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce

    2010-01-01

    The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:

  7. Identification of visual evoked response parameters sensitive to pilot mental state

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.

    1988-01-01

    Systems analysis techniques were developed and demonstrated for modeling the electroencephalographic (EEG) steady state visual evoked response (ssVER), for use in EEG data compression and as an indicator of mental workload. The study focused on steady state frequency domain stimulation and response analysis, implemented with a sum-of-sines (SOS) stimulus generator and an off-line describing function response analyzer. Three major tasks were conducted: (1) VER related systems identification material was reviewed; (2) Software for experiment control and data analysis was developed and implemented; and (3) ssVER identification and modeling was demonstrated, via a mental loading experiment. It was found that a systems approach to ssVER functional modeling can serve as the basis for eventual development of a mental workload indicator. The review showed how transient visual evoked response (tVER) and ssVER research are related at the functional level, the software development showed how systems techniques can be used for ssVER characterization, and the pilot experiment showed how a simple model can be used to capture the basic dynamic response of the ssVER, under varying loads.

  8. Predator and prey functional traits: understanding the adaptive machinery driving predator-prey interactions.

    PubMed

    Schmitz, Oswald

    2017-01-01

    Predator-prey relationships are a central component of community dynamics. Classic approaches have tried to understand and predict these relationships in terms of consumptive interactions between predator and prey species, but characterizing the interaction this way is insufficient to predict the complexity and context dependency inherent in predator-prey relationships. Recent approaches have begun to explore predator-prey relationships in terms of an evolutionary-ecological game in which predator and prey adapt to each other through reciprocal interactions involving context-dependent expression of functional traits that influence their biomechanics. Functional traits are defined as any morphological, behavioral, or physiological trait of an organism associated with a biotic interaction. Such traits include predator and prey body size, predator and prey personality, predator hunting mode, prey mobility, prey anti-predator behavior, and prey physiological stress. Here, I discuss recent advances in this functional trait approach. Evidence shows that the nature and strength of many interactions are dependent upon the relative magnitude of predator and prey functional traits. Moreover, trait responses can be triggered by non-consumptive predator-prey interactions elicited by responses of prey to risk of predation. These interactions in turn can have dynamic feedbacks that can change the context of the predator-prey interaction, causing predator and prey to adapt their traits-through phenotypically plastic or rapid evolutionary responses-and the nature of their interaction. Research shows that examining predator-prey interactions through the lens of an adaptive evolutionary-ecological game offers a foundation to explain variety in the nature and strength of predator-prey interactions observed in different ecological contexts.

  9. Modeling ultrafast solvated electronic dynamics using time-dependent density functional theory and polarizable continuum model.

    PubMed

    Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong

    2012-03-01

    A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society

  10. Vortex dynamics in two-dimensional Josephson junction arrays

    NASA Astrophysics Data System (ADS)

    Ashrafuzzaman, Md.; Capezzali, Massimiliano; Beck, Hans

    2003-08-01

    The dynamic response of two-dimensional Josephson junction arrays close to, but above the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature is described in terms of the vortex dielectric function ɛ(ω) and the flux noise spectrum Sφ(ω). They are calculated by considering both the contributions of free vortices interacting through a screened Coulomb potential and the pair motion of vortices that are closer to each other than the BKT correlation length. This procedure allows us to understand various anomalous features in ɛ(ω) and in Sφ(ω) that have been observed both experimentally and in dynamic simulations.

  11. Luminescent tunable polydots: Charge effects in confined geometry

    DOE PAGES

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...

    2017-06-28

    Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. As a result, we find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.

  12. Protein-DNA binding dynamics predict transcriptional response to nutrients in archaea.

    PubMed

    Todor, Horia; Sharma, Kriti; Pittman, Adrianne M C; Schmid, Amy K

    2013-10-01

    Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its ∼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.

  13. Effects of Four Different Regulatory Mechanisms on the Dynamics of Gene Regulatory Cascades

    NASA Astrophysics Data System (ADS)

    Hansen, Sabine; Krishna, Sandeep; Semsey, Szabolcs; Lo Svenningsen, Sine

    2015-07-01

    Gene regulatory cascades (GRCs) are common motifs in cellular molecular networks. A given logical function in these cascades, such as the repression of the activity of a transcription factor, can be implemented by a number of different regulatory mechanisms. The potential consequences for the dynamic performance of the GRC of choosing one mechanism over another have not been analysed systematically. Here, we report the construction of a synthetic GRC in Escherichia coli, which allows us for the first time to directly compare and contrast the dynamics of four different regulatory mechanisms, affecting the transcription, translation, stability, or activity of a transcriptional repressor. We developed a biologically motivated mathematical model which is sufficient to reproduce the response dynamics determined by experimental measurements. Using the model, we explored the potential response dynamics that the constructed GRC can perform. We conclude that dynamic differences between regulatory mechanisms at an individual step in a GRC are often concealed in the overall performance of the GRC, and suggest that the presence of a given regulatory mechanism in a certain network environment does not necessarily mean that it represents a single optimal evolutionary solution.

  14. Influence of dynamic topography on landscape evolution and passive continental margin stratigraphy

    NASA Astrophysics Data System (ADS)

    Ding, Xuesong; Salles, Tristan; Flament, Nicolas; Rey, Patrice

    2017-04-01

    Quantifying the interaction between surface processes and tectonics/deep Earth processes is one important aspect of landscape evolution modelling. Both observations and results from numerical modelling indicate that dynamic topography - a surface expression of time-varying mantle convection - plays a significant role in shaping landscape through geological time. Recent research suggests that dynamic topography also has non-negligible effects on stratigraphic architecture by modifying accommodation space available for sedimentation. In addition, dynamic topography influences the sediment supply to continental margins. We use Badlands to investigate the evolution of a continental-scale landscape in response to transient dynamic uplift or subsidence, and to model the stratigraphic development on passive continental margins in response to sea-level change, thermal subsidence and dynamic topography. We consider a circularly symmetric landscape consisting of a plateau surrounded by a gently sloping continental plain and a continental margin, and a linear wave of dynamic topography. We analyze the evolution of river catchments, of longitudinal river profiles and of the χ values to evaluate the dynamic response of drainage systems to dynamic topography. We calculate the amount of cumulative erosion and deposition, and sediment flux at shoreline position, as a function of precipitation rate and erodibility coefficient. We compute the stratal stacking pattern and Wheeler diagram on vertical cross-sections at the continental margin. Our results indicate that dynamic topography 1) has a considerable influence on drainage reorganization; 2) contributes to shoreline migration and the distribution of depositional packages by modifying the accommodation space; 3) affects sediment supply to the continental margin. Transient dynamic topography contributes to the migration of drainage divides and to the migration of the mainstream in a drainage basin. The dynamic uplift (respectively subsidence) of the source area results in an increase (respectively decrease) of sediment supply, while the dynamic uplift (respectively subsidence) of the continental margin leads to a decrease (respectively increase) in sedimentation.

  15. Dynamic Object Representations in Infants with and without Fragile X Syndrome

    PubMed Central

    Farzin, Faraz; Rivera, Susan M.

    2009-01-01

    Our visual world is dynamic in nature. The ability to encode, mentally represent, and track an object's identity as it moves across time and space is critical for integrating and maintaining a complete and coherent view of the world. Here we investigated dynamic object processing in typically developing (TD) infants and infants with fragile X syndrome (FXS), a single-gene disorder associated with deficits in dorsal stream functioning. We used the violation of expectation method to assess infants’ visual response to expected versus unexpected outcomes following a brief dynamic (dorsal stream) or static (ventral stream) occlusion event. Consistent with previous reports of deficits in dorsal stream-mediated functioning in individuals with this disorder, these results reveal that, compared to mental age-matched TD infants, infants with FXS could maintain the identity of static, but not dynamic, object information during occlusion. These findings are the first to experimentally evaluate visual object processing skills in infants with FXS, and further support the hypothesis of dorsal stream difficulties in infants with this developmental disorder. PMID:20224809

  16. Exploring GPCR-Lipid Interactions by Molecular Dynamics Simulations: Excitements, Challenges, and the Way Forward.

    PubMed

    Sengupta, Durba; Prasanna, Xavier; Mohole, Madhura; Chattopadhyay, Amitabha

    2018-06-07

    Gprotein-coupled receptors (GPCRs) are seven transmembrane receptors that mediate a large number of cellular responses and are important drug targets. One of the current challenges in GPCR biology is to analyze the molecular signatures of receptor-lipid interactions and their subsequent effects on GPCR structure, organization, and function. Molecular dynamics simulation studies have been successful in predicting molecular determinants of receptor-lipid interactions. In particular, predicted cholesterol interaction sites appear to correspond well with experimentally determined binding sites and estimated time scales of association. In spite of several success stories, the methodologies in molecular dynamics simulations are still emerging. In this Feature Article, we provide a comprehensive overview of coarse-grain and atomistic molecular dynamics simulations of GPCR-lipid interaction in the context of experimental observations. In addition, we discuss the effect of secondary and tertiary structural constraints in coarse-grain simulations in the context of functional dynamics and structural plasticity of GPCRs. We envision that this comprehensive overview will help resolve differences in computational studies and provide a way forward.

  17. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  18. Measurements of observables during detonator function

    NASA Astrophysics Data System (ADS)

    Smilowitz, Laura; Henson, Bryan; Remelius, Dennis

    Thermal explosion and detonation are two phenomena which can both occur as the response of explosives to thermal or mechanical insults. Thermal explosion is typically considered in the safety envelope and detonation is considered in the performance regime of explosive behavior. However, the two regimes are tied together by a phenomenon called deflagration to detonation transition (DDT). In this talk, I will discuss experiments on commercial detonators aimed at understanding the mechanism for energy release during detonator function. Diagnostic development towards measuring temperature, pressure, and density during the extreme conditions and time scales of detonation will be discussed. Our current ability to perform table-top dynamic radiography on functioning detonators will be described. Dynamic measurements of temperature, pressure, and density will be shown and discussion of the function of a detonator will be given in terms of our current understanding of deflagration, detonation, and the transition between the two.

  19. Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function.

    PubMed

    Ohto, Tatsuhiko; Usui, Kota; Hasegawa, Taisuke; Bonn, Mischa; Nagata, Yuki

    2015-09-28

    Interfacial water structures have been studied intensively by probing the O-H stretch mode of water molecules using sum-frequency generation (SFG) spectroscopy. This surface-specific technique is finding increasingly widespread use, and accordingly, computational approaches to calculate SFG spectra using molecular dynamics (MD) trajectories of interfacial water molecules have been developed and employed to correlate specific spectral signatures with distinct interfacial water structures. Such simulations typically require relatively long (several nanoseconds) MD trajectories to allow reliable calculation of the SFG response functions through the dipole moment-polarizability time correlation function. These long trajectories limit the use of computationally expensive MD techniques such as ab initio MD and centroid MD simulations. Here, we present an efficient algorithm determining the SFG response from the surface-specific velocity-velocity correlation function (ssVVCF). This ssVVCF formalism allows us to calculate SFG spectra using a MD trajectory of only ∼100 ps, resulting in the substantial reduction of the computational costs, by almost an order of magnitude. We demonstrate that the O-H stretch SFG spectra at the water-air interface calculated by using the ssVVCF formalism well reproduce those calculated by using the dipole moment-polarizability time correlation function. Furthermore, we applied this ssVVCF technique for computing the SFG spectra from the ab initio MD trajectories with various density functionals. We report that the SFG responses computed from both ab initio MD simulations and MD simulations with an ab initio based force field model do not show a positive feature in its imaginary component at 3100 cm(-1).

  20. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network.

    PubMed

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-12-12

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy.

  1. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network

    PubMed Central

    Sun, Shan-Bin; He, Yuan-Yuan; Zhou, Si-Da; Yue, Zhen-Jiang

    2017-01-01

    Measurement of dynamic responses plays an important role in structural health monitoring, damage detection and other fields of research. However, in aerospace engineering, the physical sensors are limited in the operational conditions of spacecraft, due to the severe environment in outer space. This paper proposes a virtual sensor model with partial vibration measurements using a convolutional neural network. The transmissibility function is employed as prior knowledge. A four-layer neural network with two convolutional layers, one fully connected layer, and an output layer is proposed as the predicting model. Numerical examples of two different structural dynamic systems demonstrate the performance of the proposed approach. The excellence of the novel technique is further indicated using a simply supported beam experiment comparing to a modal-model-based virtual sensor, which uses modal parameters, such as mode shapes, for estimating the responses of the faulty sensors. The results show that the presented data-driven response virtual sensor technique can predict structural response with high accuracy. PMID:29231868

  2. Modeling of functional trunk muscle performance: interfacing ergonomics and spine rehabilitation in response to the ADA.

    PubMed

    Khalaf, K A; Parnianpour, M; Sparto, P J; Simon, S R

    1997-10-01

    The combination of increasing costs of musculoskeletal injuries and the implementation of the Americans with Disabilities Act (ADA) has created the need for a more objective functional understanding of dynamic trunk performance. In this study, trunk extensor and flexor strengths were measured as a function of angular position and velocity for 20 subjects performing maximum isometric and isokinetic exertions. Results indicate that trunk strength is significantly influenced by trunk angular position, trunk angular velocity, gender, and direction, as well as by the interaction between trunk angular position and velocity. Three-dimensional surfaces of trunk strength in response to trunk angular position and velocity were constructed for each subject per direction. Such data presentation is more accurate and gives better insight about the strength profile of an individual than does the traditional use of a single strength value. The joint strength capacity profiles may be combined with joint torque requirements from a manual material handling task, such as a lifting task, to compute the dynamic utilization ratio for the trunk muscles. This ratio can be used as a unified measure of both task demand and functional capacity to guide job assignment, return to work, and prognosis during the rehabilitation processes. Furthermore, the strength regressions developed in this study would provide dynamic strength limits that can be used as functional constraints in the computer simulation of physical activities, such as lifting. In light of the ADA, this would be of great value in predicting the consequences of task modifications and/or workstation alterations without subjecting an injured worker or an individual with a disability to unnecessary testing.

  3. Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.

    PubMed

    Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus

    2013-12-01

    Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.

  4. FATE-HD: A spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale

    PubMed Central

    Isabelle, Boulangeat; Damien, Georges; Wilfried, Thuiller

    2014-01-01

    During the last decade, despite strenuous efforts to develop new models and compare different approaches, few conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider multiple species in interactions; and (iii) account for the processes shaping biodiversity distribution. This paper presents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological and process-based approaches and using well-defined plant functional groups. FATE-HD has been tested and validated in a French National Park, demonstrating its ability to simulate vegetation dynamics, structure and diversity in response to disturbances and climate change. The analysis demonstrated the importance of considering biotic interactions, spatio-temporal dynamics, and disturbances in addition to abiotic drivers to simulate vegetation dynamics. The distribution of pioneer trees was particularly improved, as were all undergrowth functional groups. PMID:24214499

  5. The human operator transfer function: Identification of the limb mechanics subsystem

    NASA Technical Reports Server (NTRS)

    Jones, Lynette A.; Hunter, Ian W.

    1991-01-01

    The objective of our research is to decompose the performance of the human operator in terms of the subsystems that determine the operator's responses in order to establish how the dynamics of these component subsystems influence the operator's performance. In the present experiment, the dynamic stiffness of the human elbow joint was measured at rest and under different levels of biceps muscle activation; this work forms part of the analysis of the limb mechanics subsystem.

  6. Comparison of Dynamic Characteristics for an Inflatable Solar Concentrator in Atmospheric and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Slade, Kara N.; Tinker, Michael L.; Lassiter, John O.; Engberg, Robert

    2000-01-01

    Dynamic testing of an inflatable solar concentrator structure in a thermal vacuum chamber as well as in ambient laboratory conditions is described in detail. Unique aspects of modal testing for the extremely lightweight inflatable are identified, including the use of a noncontacting laser vibrometer measurement system. For the thermal vacuum environment, mode shapes and frequency response functions are compared for three different test article inflation pressures at room temperature. Modes that persist through all the inflation pressure regimes are identified, as well as modes that are unique for each pressure. In atmospheric pressure and room temperature conditions, dynamic measurements were obtained for the expected operational inflation pressure of 0.5 psig. Experimental mode shapes and frequency response functions for ambient conditions are described and compared to the 0.5 psig results from the thermal vacuum tests. Only a few mode shapes were identified that occurred in both vacuum and atmospheric environments. This somewhat surprising result is discussed in detail, and attributed at least partly to 1.) large differences in modal damping, and 2.) significant differences in the mass of air contained by the structure, in the two environments. Results of this investigation point out the necessity of testing inflatable space structures in vacuum conditions before they can be launched. Ground testing in atmospheric pressure is not sufficient for predicting on-orbit dynamics of non-rigidized inflatable systems.

  7. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching.

    PubMed

    Brydges, Christopher R; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index "context-updating"-critical for cognitive control-in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300-350 ms) and later sustained P3-like potentials (400-1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses-residue iteration decomposition (RIDE)-in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that "the context" consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control.

  8. Functional Dissociation of Latency-Variable, Stimulus- and Response-Locked Target P3 Sub-components in Task-Switching

    PubMed Central

    Brydges, Christopher R.; Barceló, Francisco

    2018-01-01

    Cognitive control warrants efficient task performance in dynamic and changing environments through adjustments in executive attention, stimulus and response selection. The well-known P300 component of the human event-related potential (ERP) has long been proposed to index “context-updating”—critical for cognitive control—in simple target detection tasks. However, task switching ERP studies have revealed both target P3 (300–350 ms) and later sustained P3-like potentials (400–1,200 ms) to first targets ensuing transition cues, although it remains unclear whether these target P3-like potentials also reflect context updating operations. To address this question, we applied novel single-trial EEG analyses—residue iteration decomposition (RIDE)—in order to disentangle target P3 sub-components in a sample of 22 young adults while they either repeated or switched (updated) task rules. The rationale was to revise the context updating hypothesis of P300 elicitation in the light of new evidence suggesting that “the context” consists of not only the sensory units of stimulation, but also associated motor units, and intermediate low- and high-order sensorimotor units, all of which may need to be dynamically updated on a trial by trial basis. The results showed functionally distinct target P3-like potentials in stimulus-locked, response-locked, and intermediate RIDE component clusters overlying parietal and frontal regions, implying multiple functionally distinct, though temporarily overlapping context updating operations. These findings support a reformulated version of the context updating hypothesis, and reveal a rich family of distinct target P3-like sub-components during the reactive control of target detection in task-switching, plausibly indexing the complex and dynamic workings of frontoparietal cortical networks subserving cognitive control. PMID:29515383

  9. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes.

    PubMed

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-11-01

    Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.

  10. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multistage Compressor Blading

    DTIC Science & Technology

    1992-03-01

    of realistic reduced frequency values for the ftost time. 14. SUIUECT TEIEMS IS. NUMBER OF PAGES Unsteady Aerodynamic, 143 Flow Induced Vibrations 16...Flat Plate APPENDIX X. Prediction of Turbulence Generated Random Vibrational 106 Response of Turbomachinery Blading 3 APPENDIX XI. Viscous Oscillating...failure is fatigue caused by vibrations at levels exceeding3 material endurance limits. These vibrations occur when a periodic forcing function, with

  11. Effects of global climate change on the US forest sector: response functions derived from a dynamic resource and market simulator.

    Treesearch

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen

    2000-01-01

    A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...

  12. Importance of Vibronic Effects in the UV-Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion.

    PubMed

    Tapavicza, Enrico; Furche, Filipp; Sundholm, Dage

    2016-10-11

    We present a computational method for simulating vibronic absorption spectra in the ultraviolet-visible (UV-vis) range and apply it to the 7,7,8,8-tetracyanoquinodimethane anion (TCNQ - ), which has been used as a ligand in black absorbers. Gaussian broadening of vertical electronic excitation energies of TCNQ - from linear-response time-dependent density functional theory produces only one band, which is qualitatively incorrect. Thus, the harmonic vibrational modes of the two lowest doublet states were computed, and the vibronic UV-vis spectrum was simulated using the displaced harmonic oscillator approximation, the frequency-shifted harmonic oscillator approximation, and the full Duschinsky formalism. An efficient real-time generating function method was implemented to avoid the exponential complexity of conventional Franck-Condon approaches to vibronic spectra. The obtained UV-vis spectra for TCNQ - agree well with experiment; the Duschinsky rotation is found to have only a minor effect on the spectrum. Born-Oppenheimer molecular dynamics simulations combined with calculations of the electronic excitation energies for a large number of molecular structures were also used for simulating the UV-vis spectrum. The Born-Oppenheimer molecular dynamics simulations yield a broadening of the energetically lowest peak in the absorption spectrum, but additional vibrational bands present in the experimental and simulated quantum harmonic oscillator spectra are not observed in the molecular dynamics simulations. Our results underline the importance of vibronic effects for the UV-vis spectrum of TCNQ - , and they establish an efficient method for obtaining vibronic spectra using a combination of linear-response time-dependent density functional theory and a real-time generating function approach.

  13. What Information Theory Says About Best Response and About Binding Contracts

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is the information-theoretic extension of conventional full- rationality game theory to bounded rational games. Here PD theory is used to investigate games in which the players use bounded rational best-response strategies. This investigation illuminates how to determine the optimal organization chart for a corporation, or more generally how to order the sequence of moves of the players / employees so as to optimize an overall objective function. It is then shown that in the continuum-time limit, bounded rational best response games result in a variant of the replicator dynamics of evolutionary game theory. This variant is then investigated for team games, in which the players share the same utility function, by showing that such continuum- limit bounded rational best response is identical to Newton-Raphson iterative optimization of the shared utility function. Next PD theory is used to investigate changing the coordinate system of the game, i.e., changing the mapping from the joint move of the players to the arguments in the utility functions. Such a change couples those arguments, essentially by making each players move be an offered binding contract.

  14. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    NASA Astrophysics Data System (ADS)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  15. The Nonlinear Dynamic Response of an Elastic-Plastic Thin Plate under Impulsive Loading,

    DTIC Science & Technology

    1987-06-11

    Among those numerical methods, the finite element method is the most effective one. The method presented in this paper is an " influence function " numerical...computational time is much less than the finite element method. Its precision is higher also. II. Basic Assumption and the Influence Function of a Simple...calculation. Fig. 1 3 2. The Influence function of a Simple Supported Plate The motion differential equation of a thin plate can be written as DV’w+ _.eluq() (1

  16. Temperature-Dependent Conformational Properties of Human Neuronal Calcium Sensor-1 Protein Revealed by All-Atom Simulations.

    PubMed

    Zhu, Yuzhen; Ma, Buyong; Qi, Ruxi; Nussinov, Ruth; Zhang, Qingwen

    2016-04-14

    Neuronal calcium sensor-1 (NCS-1) protein has orthologues from Saccharomyces cerevisiae to human with highly conserved amino acid sequences. NCS-1 is an important factor controlling the animal's response to temperature change. This leads us to investigate the temperature effects on the conformational dynamics of human NCS-1 at 310 and 316 K by all-atom molecular dynamics (MD) simulations and dynamic community network analysis. Four independent 500 ns MD simulations show that secondary structure content at 316 K is similar to that at 310 K, whereas the global protein structure is expanded. Loop 3 (L3) adopts an extended state occuping the hydrophobic crevice, and the number of suboptimal communication paths between residue D176 and V190 is reduced at 316 K. The dynamic community network analysis suggests that the interdomain correlation is weakened, and the intradomain coupling is strengthened at 316 K. The elevated temperature reduces the number of the salt bridges, especially in C-domain. This study suggests that the elevated temperature affects the conformational dynamics of human NCS-1 protein. Comparison of the structural dynamics of R102Q mutant and Δ176-190 truncated NCS-1 suggests that the structural and dynamical response of NCS-1 protein to elevated temperature may be one of its intrinsic functional properties.

  17. Structure of a viscoplastic theory

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.

    1988-01-01

    The general structure of a viscoplastic theory is developed from physical and thermodynamical considerations. The flow equation is of classical form. The dynamic recovery approach is shown to be superior to the hardening function approach for incorporating nonlinear strain hardening into the material response through the evolutionary equation for back stress. A novel approach for introducing isotropic strain hardening into the theory is presented, which results in a useful simplification. In particular, the limiting stress for the kinematic saturation of state (not the drag stress) is the chosen scalar-valued state variable. The resulting simplification is that there is no coupling between dynamic and thermal recovery terms in each evolutionary equation. The derived theory of viscoplasticity has the structure of a two-surface plasticity theory when the response is plasticlike, and the structure of a Bailey-Orowan creep theory when the response is creeplike.

  18. Dynamic control of type I IFN signalling by an integrated network of negative regulators.

    PubMed

    Porritt, Rebecca A; Hertzog, Paul J

    2015-03-01

    Whereas type I interferons (IFNs) have critical roles in protection from pathogens, excessive IFN responses contribute to pathology in both acute and chronic settings, pointing to the importance of balancing activating signals with regulatory mechanisms that appropriately tune the response. Here we review evidence for an integrated network of negative regulators of IFN production and action, which function at all levels of the activating and effector signalling pathways. We propose that the aim of this extensive network is to limit tissue damage while enabling an IFN response that is temporally appropriate and of sufficient magnitude. Understanding the architecture and dynamics of this network, and how it differs in distinct tissues, will provide new insights into IFN biology and aid the design of more effective therapeutics. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Vibration monitoring of a helicopter blade model using the optical fiber distributed strain sensing technique.

    PubMed

    Wada, Daichi; Igawa, Hirotaka; Kasai, Tokio

    2016-09-01

    We demonstrate a dynamic distributed monitoring technique using a long-length fiber Bragg grating (FBG) interrogated by optical frequency domain reflectometry (OFDR) that measures strain at a speed of 150 Hz, spatial resolution of 1 mm, and measurement range of 20 m. A 5 m FBG is bonded to a 5.5 m helicopter blade model, and vibration is applied by the step relaxation method. The time domain responses of the strain distributions are measured, and the blade deflections are calculated based on the strain distributions. Frequency response functions are obtained using the time domain responses of the calculated deflection induced by the preload release, and the modal parameters are retrieved. Experimental results demonstrated the dynamic monitoring performances and the applicability to the modal analysis of the OFDR-FBG technique.

  20. Evaluation of High Dynamic Range Photography as a Luminance Mapping Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanici, Mehlika; Galvin, Jim

    2004-12-30

    The potential, limitations, and applicability of the High Dynamic Range (HDR) photography technique is evaluated as a luminance mapping tool. Multiple exposure photographs of static scenes are taken with a Nikon 5400 digital camera to capture the wide luminance variation within the scenes. The camera response function is computationally derived using the Photosphere software, and is used to fuse the multiple photographs into HDR images. The vignetting effect and point spread function of the camera and lens system is determined. Laboratory and field studies have shown that the pixel values in the HDR photographs can correspond to the physical quantitymore » of luminance with reasonable precision and repeatability.« less

  1. Femtosecond movies of water near interfaces at sub-Angstrom resolution

    NASA Astrophysics Data System (ADS)

    Coridan, Robert; Hwee Lai, Ghee; Schmidt, Nathan; Abbamonte, Peter; Wong, Gerard C. L.

    2010-03-01

    The behavior of liquid water near interfaces with nanoscopic variations in chemistry influences a broad range of phenomena in biology. Using inelastic x-ray scattering (IXS) data from 3rd-generation synchrotron x-ray sources, we reconstruct the Greens function of liquid water, which describes the å-scale spatial and femtosecond-scale temporal evolution of density fluctuations. We extend this response function formalism to reconstruct the evolution of hydration structures near dynamic surfaces with different charge distributions, in order to define more precisely the molecular signature of hydrophilicity and hydrophobicity. Moreover, we investigate modifications to surface hydration structures and dynamics as the size of hydrophilic and hydrophobic patches are varied.

  2. Dominant modal decomposition method

    NASA Astrophysics Data System (ADS)

    Dombovari, Zoltan

    2017-03-01

    The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.

  3. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl

    PubMed Central

    Sabin, Keith; Santos-Ferreira, Tiago; Essig, Jaclyn; Rudasill, Sarah; Echeverri, Karen

    2016-01-01

    Salamanders, such as the Mexican axolotl, are some of the few vertebrates fortunate in their ability to regenerate diverse structures after injury. Unlike mammals they are able to regenerate a fully functional spinal cord after injury. However, the molecular circuitry required to initiate a pro-regenerative response after spinal cord injury is not well understood. To address this question we developed a spinal cord injury model in axolotls and used in vivo imaging of labeled ependymoglial cells to characterize the response of these cells to injury. Using in vivo imaging of ion sensitive dyes we identified that spinal cord injury induces a rapid and dynamic change in the resting membrane potential of ependymoglial cells. Prolonged depolarization of ependymoglial cells after injury inhibits ependymoglial cell proliferation and subsequent axon regeneration. Using transcriptional profiling we identified c-Fos as a key voltage sensitive early response gene that is expressed specifically in the ependymoglial cells after injury. This data establishes that dynamic changes in the membrane potential after injury are essential for regulating the specific spatiotemporal expression of c-Fos that is critical for promoting faithful spinal cord regeneration in axolotl. PMID:26477559

  4. ProteinAC: a frequency domain technique for analyzing protein dynamics

    NASA Astrophysics Data System (ADS)

    Bozkurt Varolgunes, Yasemin; Demir, Alper

    2018-03-01

    It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.

  5. Ecosystem responses to biogeochemical fronts in the South Brazil Bight

    NASA Astrophysics Data System (ADS)

    Brandini, Frederico P.; Tura, Pedro M.; Santos, Pedro P. G. M.

    2018-05-01

    Here we described the general hydrography in the South Brazil Bight (23-28°S) with emphasis on frontal processes and their role in the structure and functioning of the regional shelf ecosystem. One of the key roles of fronts for ecosystem dynamics is the injection of nutrients into the euphotic zone increasing primary production. Frontal systems also affect plankton biodiversity and fisheries. Physical mechanisms behind frontogenesis in this region are similar in the analogous western side of oceanic basins; their magnitude and seasonal dynamics, however, may differ due to peculiarities in shelf morphology, wind field, tidal circulation and continental drainage. Here we provide a reassessment of earlier and recent ecological and hydrographic studies for a better evaluation of the spatial and temporal dynamics of fronts and their regional ecological implications. Albeit in a fragmented manner, we give a more detailed conceptual framework about the ecosystem responses to the complex frontal system in the South Brazil Bight.

  6. Broad-Band Pump-Probe Spectroscopy Quantifies Ultrafast Solvation Dynamics of Proteins and Molecules.

    PubMed

    Jumper, Chanelle C; Arpin, Paul C; Turner, Daniel B; McClure, Scott D; Rafiq, Shahnawaz; Dean, Jacob C; Cina, Jeffrey A; Kovac, Philip A; Mirkovic, Tihana; Scholes, Gregory D

    2016-11-17

    In this work, we demonstrate the use of broad-band pump-probe spectroscopy to measure femtosecond solvation dynamics. We report studies of a rhodamine dye in methanol and cryptophyte algae light-harvesting proteins in aqueous suspension. Broad-band impulsive excitation generates a vibrational wavepacket that oscillates on the excited-state potential energy surface, destructively interfering with itself at the minimum of the surface. This destructive interference gives rise to a node at a certain probe wavelength that varies with time. This reveals the Gibbs free-energy changes of the excited-state potential energy surface, which equates to the solvation time correlation function. This method captures the inertial solvent response of water (∼40 fs) and the bimodal inertial response of methanol (∼40 and ∼150 fs) and reveals how protein-buried chromophores are sensitive to the solvent dynamics inside and outside of the protein environment.

  7. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  8. A Density Functional Approach to Polarizable Models: A Kim-Gordon-Response Density Interaction Potential for Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabacchi, G; Hutter, J; Mundy, C

    2005-04-07

    A combined linear response--frozen electron density model has been implemented in a molecular dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory, and a response contribution determined by the instaneous ionic configuration of the system. The method is free from empirical pair-potentials and the parameterization protocol involves only calculations on properly chosen subsystems. They apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparablemore » to Kohn-Sham density functional calculations.« less

  9. The Role of Tomato WRKY Genes in Plant Responses to Combined Abiotic and Biotic Stresses

    PubMed Central

    Bai, Yuling; Sunarti, Sri; Kissoudis, Christos; Visser, Richard G. F.; van der Linden, C. G.

    2018-01-01

    In the field, plants constantly face a plethora of abiotic and biotic stresses that can impart detrimental effects on plants. In response to multiple stresses, plants can rapidly reprogram their transcriptome through a tightly regulated and highly dynamic regulatory network where WRKY transcription factors can act as activators or repressors. WRKY transcription factors have diverse biological functions in plants, but most notably are key players in plant responses to biotic and abiotic stresses. In tomato there are 83 WRKY genes identified. Here we review recent progress on functions of these tomato WRKY genes and their homologs in other plant species, such as Arabidopsis and rice, with a special focus on their involvement in responses to abiotic and biotic stresses. In particular, we highlight WRKY genes that play a role in plant responses to a combination of abiotic and biotic stresses.

  10. Dynamic calibration approach for determining catechins and gallic acid in green tea using LC-ESI/MS.

    PubMed

    Bedner, Mary; Duewer, David L

    2011-08-15

    Catechins and gallic acid are antioxidant constituents of Camellia sinensis, or green tea. Liquid chromatography with both ultraviolet (UV) absorbance and electrospray ionization mass spectrometric (ESI/MS) detection was used to determine catechins and gallic acid in three green tea matrix materials that are commonly used as dietary supplements. The results from both detection modes were evaluated with 14 quantitation models, all of which were based on the analyte response relative to an internal standard. Half of the models were static, where quantitation was achieved with calibration factors that were constant over an analysis set. The other half were dynamic, with calibration factors calculated from interpolated response factor data at each time a sample was injected to correct for potential variations in analyte response over time. For all analytes, the relatively nonselective UV responses were found to be very stable over time and independent of the calibrant concentration; comparable results with low variability were obtained regardless of the quantitation model used. Conversely, the highly selective MS responses were found to vary both with time and as a function of the calibrant concentration. A dynamic quantitation model based on polynomial data-fitting was used to reduce the variability in the quantitative results using the MS data.

  11. Mitochondrial Dynamics in Mitochondrial Diseases

    PubMed Central

    Suárez-Rivero, Juan M.; Villanueva-Paz, Marina; de la Cruz-Ojeda, Patricia; de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Sánchez-Alcázar, José A.

    2016-01-01

    Mitochondria are very versatile organelles in continuous fusion and fission processes in response to various cellular signals. Mitochondrial dynamics, including mitochondrial fission/fusion, movements and turnover, are essential for the mitochondrial network quality control. Alterations in mitochondrial dynamics can cause neuropathies such as Charcot-Marie-Tooth disease in which mitochondrial fusion and transport are impaired, or dominant optic atrophy which is caused by a reduced mitochondrial fusion. On the other hand, mitochondrial dysfunction in primary mitochondrial diseases promotes reactive oxygen species production that impairs its own function and dynamics, causing a continuous vicious cycle that aggravates the pathological phenotype. Mitochondrial dynamics provides a new way to understand the pathophysiology of mitochondrial disorders and other diseases related to mitochondria dysfunction such as diabetes, heart failure, or Hungtinton’s disease. The knowledge about mitochondrial dynamics also offers new therapeutics targets in mitochondrial diseases. PMID:28933354

  12. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  13. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  14. Benthic versus Planktonic Foundations of Three Lake Superior Coastal Food Webs

    EPA Science Inventory

    The structure of aquatic food webs can provide information on system function, trophic dynamics and, potentially, responses to anthropogenic stressors. Stable isotope analyses in a Lake Superior coastal wetland (Allouez Bay, WI, USA) revealed that the food web was based upon carb...

  15. Research Program Overview

    Science.gov Websites

    coordinates research in support of the PEER mission in performance-based earthquake engineering. The broad system dynamic response; assessment of the performance of the structural and nonstructural systems ; consequences in terms of casualties, capital costs, and post-earthquake functionality; and decision-making to

  16. 16 CFR 1207.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... means members providing structural support to the assembled, installed slide. (5) Casual contact means...) Performance test means a test to measure the functional or structural characteristics of the slide and may... measurements of the slide's response to dynamic and static loads. (20) [Reserved] (21) Pinching hazard means...

  17. Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart.

    PubMed

    Levitan, Bryana M; Manning, Janet R; Withers, Catherine N; Smith, Jeffrey D; Shaw, Robin M; Andres, Douglas A; Sorrell, Vincent L; Satin, Jonathan

    2016-12-01

    Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad -/- ) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad -/- confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad -/- . Rad -/- basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support.

  18. Rad-deletion Phenocopies Tonic Sympathetic Stimulation of the Heart

    PubMed Central

    Levitan, Bryana M.; Manning, Janet R.; Withers, Catherine N.; Smith, Jeffrey D.; Shaw, Robin M.; Andres, Douglas A.; Sorrell, Vincent L.

    2016-01-01

    Sympathetic stimulation modulates L-type calcium channel (LTCC) gating to contribute to increased systolic heart function. Rad is a monomeric G-protein that interacts with LTCC. Genetic deletion of Rad (Rad−/−) renders LTCC in a sympathomimetic state. The study goal was to use a clinically inspired pharmacological stress echocardiography test, including analysis of global strain, to determine whether Rad−/− confers tonic positive inotropic heart function. Sarcomere dynamics and strain showed partial parallel isoproterenol (ISO) responsiveness for wild-type (WT) and for Rad−/−. Rad−/− basal inotropy was elevated compared to WT but was less responsiveness to ISO. Rad protein levels were lower in human patients with end-stage non-ischemic heart failure. These results show that Rad reduction provides a stable inotropic response rooted in sarcomere level function. Thus, reduced Rad levels in heart failure patients may be a compensatory response to need for increased output in the setting of HF. Rad deletion suggests a future therapeutic direction for inotropic support. PMID:27798760

  19. Ubiquitinated Sirtuin 1 (SIRT1) Function Is Modulated during DNA Damage-induced Cell Death and Survival*

    PubMed Central

    Peng, Lirong; Yuan, Zhigang; Li, Yixuan; Ling, Hongbo; Izumi, Victoria; Fang, Bin; Fukasawa, Kenji; Koomen, John; Chen, Jiandong; Seto, Edward

    2015-01-01

    Downstream signaling of physiological and pathological cell responses depends on post-translational modification such as ubiquitination. The mechanisms regulating downstream DNA damage response (DDR) signaling are not completely elucidated. Sirtuin 1 (SIRT1), the founding member of Class III histone deacetylases, regulates multiple steps in DDR and is closely associated with many physiological and pathological processes. However, the role of post-translational modification or ubiquitination of SIRT1 during DDR is unclear. We show that SIRT1 is dynamically and distinctly ubiquitinated in response to DNA damage. SIRT1 was ubiquitinated by the MDM2 E3 ligase in vitro and in vivo. SIRT1 ubiquitination under normal conditions had no effect on its enzymatic activity or rate of degradation; hypo-ubiquitination, however, reduced SIRT1 nuclear localization. Ubiquitination of SIRT1 affected its function in cell death and survival in response to DNA damage. Our results suggest that ubiquitination is required for SIRT1 function during DDR. PMID:25670865

  20. Dynamics of a plant-herbivore-predator system with plant-toxicity

    USGS Publications Warehouse

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L.

    2011-01-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense.

  1. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.

    PubMed

    Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2017-08-29

    RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.

  2. Dynamics of a plant-herbivore-predator system with plant-toxicity.

    PubMed

    Feng, Zhilan; Qiu, Zhipeng; Liu, Rongsong; DeAngelis, Donald L

    2011-02-01

    A system of ordinary differential equations is considered that models the interactions of two plant species populations, an herbivore population, and a predator population. We use a toxin-determined functional response to describe the interactions between plant species and herbivores and use a Holling Type II functional response to model the interactions between herbivores and predators. In order to study how the predators impact the succession of vegetation, we derive invasion conditions under which a plant species can invade into an environment in which another plant species is co-existing with a herbivore population with or without a predator population. These conditions provide threshold quantities for several parameters that may play a key role in the dynamics of the system. Numerical simulations are conducted to reinforce the analytical results. This model can be applied to a boreal ecosystem trophic chain to examine the possible cascading effects of predator-control actions when plant species differ in their levels of toxic defense. Published by Elsevier Inc.

  3. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States.

    PubMed

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-25

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  4. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-01-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  5. Edge Singularities and Quasilong-Range Order in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    De Nardis, Jacopo; Panfil, Miłosz

    2018-05-01

    The singularities of the dynamical response function are one of the most remarkable effects in many-body interacting systems. However in one dimension these divergences only exist strictly at zero temperature, making their observation very difficult in most cold atomic experimental settings. Moreover the presence of a finite temperature destroys another feature of one-dimensional quantum liquids: the real space quasilong-range order in which the spatial correlation functions exhibit power-law decay. We consider a nonequilibrium protocol where two interacting Bose gases are prepared either at different temperatures or chemical potentials and then joined. We show that the nonequilibrium steady state emerging at large times around the junction displays edge singularities in the response function and quasilong-range order.

  6. Dynamics of a Stochastic Predator-Prey Model with Stage Structure for Predator and Holling Type II Functional Response

    NASA Astrophysics Data System (ADS)

    Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Alsaedi, Ahmed

    2018-06-01

    In this paper, we develop and study a stochastic predator-prey model with stage structure for predator and Holling type II functional response. First of all, by constructing a suitable stochastic Lyapunov function, we establish sufficient conditions for the existence and uniqueness of an ergodic stationary distribution of the positive solutions to the model. Then, we obtain sufficient conditions for extinction of the predator populations in two cases, that is, the first case is that the prey population survival and the predator populations extinction; the second case is that all the prey and predator populations extinction. The existence of a stationary distribution implies stochastic weak stability. Numerical simulations are carried out to demonstrate the analytical results.

  7. A predator-prey model with generic birth and death rates for the predator.

    PubMed

    Terry, Alan J

    2014-02-01

    We propose and study a predator-prey model in which the predator has a Holling type II functional response and generic per capita birth and death rates. Given that prey consumption provides the energy for predator activity, and that the predator functional response represents the prey consumption rate per predator, we assume that the per capita birth and death rates for the predator are, respectively, increasing and decreasing functions of the predator functional response. These functions are monotonic, but not necessarily strictly monotonic, for all values of the argument. In particular, we allow the possibility that the predator birth rate is zero for all sufficiently small values of the predator functional response, reflecting the idea that a certain level of energy intake is needed before a predator can reproduce. Our analysis reveals that the model exhibits the behaviours typically found in predator-prey models - extinction of the predator population, convergence to a periodic orbit, or convergence to a co-existence fixed point. For a specific example, in which the predator birth and death rates are constant for all sufficiently small or large values of the predator functional response, we corroborate our analysis with numerical simulations. In the unlikely case where these birth and death rates equal the same constant for all sufficiently large values of the predator functional response, the model is capable of structurally unstable behaviour, with a small change in the initial conditions leading to a more pronounced change in the long-term dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Understanding neural system dynamics through task modulation and measurement of functional MRI amplitude, latency, and width

    PubMed Central

    Bellgowan, P. S. F.; Saad, Z. S.; Bandettini, P. A.

    2003-01-01

    Estimates of hemodynamic amplitude, delay, and width were combined to investigate system dynamics involved in lexical decision making. Subjects performed a lexical decision task using word and nonword stimuli rotated 0°, 60°, or 120°. Averaged hemodynamic responses to repeated stimulation were fit to a Gamma-variate function convolved with a heavyside function of varying onset and duration to estimate each voxel's activation delay and width. Consistent with prolonged reaction times for the rotated stimuli and nonwords, the motor cortex showed delayed hemodynamic onset for both conditions. Language areas such as the lingual gyrus, middle temporal gyrus, fusiform gyrus, and precuneus all showed delayed hemodynamic onsets to rotated stimuli but not to nonword stimuli. The inferior frontal gyrus showed both increased onset latency for rotated stimuli and a wider hemodynamic response to nonwords, consistent with prolonged processing in this area during the lexical decision task. Phonological processing areas such as superior temporal and angular gyrus showed no delay or width difference for rotated stimuli. These results suggest that phonological routes but not semantic routes to the lexicon can proceed regardless of stimulus orientation. This study demonstrates the utility of estimating hemodynamic delay and width in addition to amplitude allowing for more quantitative measures of brain function such as mental chronometry. PMID:12552093

  9. Large-scale coupling dynamics of instructed reversal learning.

    PubMed

    Mohr, Holger; Wolfensteller, Uta; Ruge, Hannes

    2018-02-15

    The ability to rapidly learn from others by instruction is an important characteristic of human cognition. A recent study found that the rapid transfer from initial instructions to fluid behavior is supported by changes of functional connectivity between and within several large-scale brain networks, and particularly by the coupling of the dorsal attention network (DAN) with the cingulo-opercular network (CON). In the present study, we extended this approach to investigate how these brain networks interact when stimulus-response mappings are altered by novel instructions. We hypothesized that residual stimulus-response associations from initial practice might negatively impact the ability to implement novel instructions. Using functional imaging and large-scale connectivity analysis, we found that functional coupling between the CON and DAN was generally at a higher level during initial than reversal learning. Examining the learning-related connectivity dynamics between the CON and DAN in more detail by means of multivariate patterns analyses, we identified a specific subset of connections which showed a particularly high increase in connectivity during initial learning compared to reversal learning. This finding suggests that the CON-DAN connections can be separated into two functionally dissociable yet spatially intertwined subsystems supporting different aspects of short-term task automatization. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Neural field theory of perceptual echo and implications for estimating brain connectivity

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.

    2018-04-01

    Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.

  11. Transfer function verification and block diagram simplification of a very high-order distributed pole closed-loop servo by means of non-linear time-response simulation

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, A. K.

    1975-01-01

    Linear frequency domain methods are inadequate in analyzing the 1975 Viking Orbiter (VO75) digital tape recorder servo due to dominant nonlinear effects such as servo signal limiting, unidirectional servo control, and static/dynamic Coulomb friction. The frequency loop (speed control) servo of the VO75 tape recorder is used to illustrate the analytical tools and methodology of system redundancy elimination and high order transfer function verification. The paper compares time-domain performance parameters derived from a series of nonlinear time responses with the available experimental data in order to select the best possible analytical transfer function representation of the tape transport (mechanical segment of the tape recorder) from several possible candidates. The study also shows how an analytical time-response simulation taking into account most system nonlinearities can pinpoint system redundancy and overdesign stemming from a strictly empirical design approach. System order reduction is achieved through truncation of individual transfer functions and elimination of redundant blocks.

  12. Activity-Dependence of Synaptic Vesicle Dynamics

    PubMed Central

    Forte, Luca A.

    2017-01-01

    The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in overall vesicle mobility in response to stimulation. These results define the vesicle dynamical states during recycling and reveal their activity-dependent modulation. Our study thus provides fundamental new insights into the principles governing synaptic function. PMID:28954868

  13. The CLAIR model: Extension of Brodmann areas based on brain oscillations and connectivity.

    PubMed

    Başar, Erol; Düzgün, Aysel

    2016-05-01

    Since the beginning of the last century, the localization of brain function has been represented by Brodmann areas, maps of the anatomic organization of the brain. They are used to broadly represent cortical structures with their given sensory-cognitive functions. In recent decades, the analysis of brain oscillations has become important in the correlation of brain functions. Moreover, spectral connectivity can provide further information on the dynamic connectivity between various structures. In addition, brain responses are dynamic in nature and structural localization is almost impossible, according to Luria (1966). Therefore, brain functions are very difficult to localize; hence, a combined analysis of oscillation and event-related coherences is required. In this study, a model termed as "CLAIR" is described to enrich and possibly replace the concept of the Brodmann areas. A CLAIR model with optimum function may take several years to develop, but this study sets out to lay its foundation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Functional rotation induced by alternating protonation states in the multidrug transporter AcrB: all-atom molecular dynamics simulations.

    PubMed

    Yamane, Tsutomu; Murakami, Satoshi; Ikeguchi, Mitsunori

    2013-10-29

    The multidrug transporter AcrB actively exports a wide variety of noxious compounds using proton-motive force as an energy source in Gram-negative bacteria. AcrB adopts an asymmetric structure comprising three protomers with different conformations that are sequentially converted during drug export; these cyclic conformational changes during drug export are referred to as functional rotation. To investigate functional rotation driven by proton-motive force, all-atom molecular dynamics simulations were performed. Using different protonation states for the titratable residues in the middle of the transmembrane domain, our simulations revealed the correlation between the specific protonation states and the side-chain configurations. Changing the protonation state for Asp408 induced a spontaneous structural transition, which suggests that the proton translocation stoichiometry may be one proton per functional rotation cycle. Furthermore, our simulations demonstrate that alternating the protonation states in the transmembrane domain induces functional rotation in the porter domain, which is primarily responsible for drug transport.

  15. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    NASA Astrophysics Data System (ADS)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to reproduce time-resolved data far above probe resonant frequency.

  16. Computing the Dynamic Response of a Stratified Elastic Half Space Using Diffuse Field Theory

    NASA Astrophysics Data System (ADS)

    Sanchez-Sesma, F. J.; Perton, M.; Molina Villegas, J. C.

    2015-12-01

    The analytical solution for the dynamic response of an elastic half-space for a normal point load at the free surface is due to Lamb (1904). For a tangential force, we have Chaós (1960) formulae. For an arbitrary load at any depth within a stratified elastic half space, the resulting elastic field can be given in the same fashion, by using an integral representation in the radial wavenumber domain. Typically, computations use discrete wave number (DWN) formalism and Fourier analysis allows for solution in space and time domain. Experimentally, these elastic Greeńs functions might be retrieved from ambient vibrations correlations when assuming a diffuse field. In fact, the field could not be totally diffuse and only parts of the Green's functions, associated to surface or body waves, are retrieved. In this communication, we explore the computation of Green functions for a layered media on top of a half-space using a set of equipartitioned elastic plane waves. Our formalism includes body and surface waves (Rayleigh and Love waves). These latter waves correspond to the classical representations in terms of normal modes in the asymptotic case of large separation distance between source and receiver. This approach allows computing Green's functions faster than DWN and separating the surface and body wave contributions in order to better represent Green's function experimentally retrieved.

  17. Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Afaq, A.; Aneeza, A.

    2018-05-01

    In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.

  18. Stochastic Resonance and Safe Basin of Single-Walled Carbon Nanotubes with Strongly Nonlinear Stiffness under Random Magnetic Field.

    PubMed

    Xu, Jia; Li, Chao; Li, Yiran; Lim, Chee Wah; Zhu, Zhiwen

    2018-05-04

    In this paper, a kind of single-walled carbon nanotube nonlinear model is developed and the strongly nonlinear dynamic characteristics of such carbon nanotubes subjected to random magnetic field are studied. The nonlocal effect of the microstructure is considered based on Eringen’s differential constitutive model. The natural frequency of the strongly nonlinear dynamic system is obtained by the energy function method, the drift coefficient and the diffusion coefficient are verified. The stationary probability density function of the system dynamic response is given and the fractal boundary of the safe basin is provided. Theoretical analysis and numerical simulation show that stochastic resonance occurs when varying the random magnetic field intensity. The boundary of safe basin has fractal characteristics and the area of safe basin decreases when the intensity of the magnetic field permeability increases.

  19. Brain-wide neuronal dynamics during motor adaptation in zebrafish.

    PubMed

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2012-05-09

    A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.

  20. Brain-wide neuronal dynamics during motor adaptation in zebrafish

    PubMed Central

    Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben

    2013-01-01

    A fundamental question in neuroscience is how entire neural circuits generate behavior and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record activity of large populations of neurons at the cellular level throughout the brain of larval zebrafish expressing a genetically-encoded calcium sensor, while the paralyzed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neural response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioral adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behavior. PMID:22622571

  1. Characterizing RNA ensembles from NMR data with kinematic models

    PubMed Central

    Fonseca, Rasmus; Pachov, Dimitar V.; Bernauer, Julie; van den Bedem, Henry

    2014-01-01

    Functional mechanisms of biomolecules often manifest themselves precisely in transient conformational substates. Researchers have long sought to structurally characterize dynamic processes in non-coding RNA, combining experimental data with computer algorithms. However, adequate exploration of conformational space for these highly dynamic molecules, starting from static crystal structures, remains challenging. Here, we report a new conformational sampling procedure, KGSrna, which can efficiently probe the native ensemble of RNA molecules in solution. We found that KGSrna ensembles accurately represent the conformational landscapes of 3D RNA encoded by NMR proton chemical shifts. KGSrna resolves motionally averaged NMR data into structural contributions; when coupled with residual dipolar coupling data, a KGSrna ensemble revealed a previously uncharacterized transient excited state of the HIV-1 trans-activation response element stem–loop. Ensemble-based interpretations of averaged data can aid in formulating and testing dynamic, motion-based hypotheses of functional mechanisms in RNAs with broad implications for RNA engineering and therapeutic intervention. PMID:25114056

  2. Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides

    DOE PAGES

    Mannebach, Ehren M.; Nyby, Clara; Ernst, Friederike; ...

    2017-11-09

    Modulation of weak interlayer interactions between quasi-two-dimensional atomic planes in the transition metal dichalcogenides (TMDCs) provides avenues for tuning their functional properties. Here we show that above-gap optical excitation in the TMDCs leads to an unexpected large-amplitude, ultrafast compressive force between the two-dimensional layers, as probed by in situ measurements of the atomic layer spacing at femtosecond time resolution. We show that this compressive response arises from a dynamic modulation of the interlayer van der Waals interaction and that this represents the dominant light-induced stress at low excitation densities. A simple analytic model predicts the magnitude and carrier density dependencemore » of the measured strains. Furthermore, this work establishes a new method for dynamic, nonequilibrium tuning of correlation-driven dispersive interactions and of the optomechanical functionality of TMDC quasi-two-dimensional materials.« less

  3. Quantum Fisher Information as a function response to a weak external perturbation

    NASA Astrophysics Data System (ADS)

    Rojas, Fernando; Maytorena, Jesus A.

    The quantum fisher information (QFI) is known as a good indicator of entanglement in a multipartite systems. In this work we show that it can be treated as an induced response to an external field, in the same spirit of the usual linear response theory, with respect to a linear combination of observables of each subsystem. We derive an expression for a corresponding linear dynamical susceptibilitywhich contains relevant information about entanglement properties of a multipartite system. This approach is applied to investigate the hybrid entanglement in the driven Jaynes-Cummings model. The Fisher susceptibility response function is obtained and allows us to characterize the changes on quantum correlations between the qubit and photon states, in terms of the driving frequency, atom-field coupling, and temperature. We acknowledge financial support from DGAPA PAPPIT IN105717.

  4. Dynamic Snap-Through of Thin-Walled Structures by a Reduced Order Method

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures exposed to combined high intensity random pressure fluctuations and thermal loadings. The study is conducted on a flat aluminum beam, which permits a comparison of results obtained by a reduced-order analysis with those obtained from a numerically intensive simulation in physical degrees-of-freedom. A uniformly distributed thermal loading is first applied to investigate the dynamic instability associated with thermal buckling. A uniformly distributed random loading is added to investigate the combined thermal-acoustic response. In the latter case, three types of response characteristics are considered, namely: (i) small amplitude vibration around one of the two stable buckling equilibrium positions, (ii) intermittent snap-through response between the two equilibrium positions, and (iii) persistent snap-through response between the two equilibrium positions. For the reduced order analysis, four categories of modal basis functions are identified including those having symmetric transverse (ST), anti-symmetric transverse (AT), symmetric in-plane (SI), and anti-symmetric in-plane (AI) displacements. The effect of basis selection on the quality of results is investigated for the dynamic thermal buckling and combined thermal-acoustic response. It is found that despite symmetric geometry, loading, and boundary conditions, the AT and SI modes must be included in the basis as they participate in the snap-through behavior.

  5. Myosin-II sets the optimal response time scale of chemotactic amoeba

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Fang; Westendorf, Christian; Tarantola, Marco; Bodenschatz, Eberhard; Beta, Carsten

    2014-03-01

    The response dynamics of the actin cytoskeleton to external chemical stimuli plays a fundamental role in numerous cellular functions. One of the key players that governs the dynamics of the actin network is the motor protein myosin-II. Here we investigate the role of myosin-II in the response of the actin system to external stimuli. We used a microfluidic device in combination with a photoactivatable chemoattractant to apply stimuli to individual cells with high temporal resolution. We directly compare the actin dynamics in Dictyostelium discodelium wild type (WT) cells to a knockout mutant that is deficient in myosin-II (MNL). Similar to the WT a small population of MNL cells showed self-sustained oscillations even in absence of external stimuli. The actin response of MNL cells to a short pulse of chemoattractant resembles WT during the first 15 sec but is significantly delayed afterward. The amplitude of the dominant peak in the power spectrum from the response time series of MNL cells to periodic stimuli with varying period showed a clear resonance peak at a forcing period of 36 sec, which is significantly delayed as compared to the resonance at 20 sec found for the WT. This shift indicates an important role of myosin-II in setting the response time scale of motile amoeba. Institute of Physics und Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.

  6. Dynamic Snap-Through of Thermally Buckled Structures by a Reduced Order Method

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2007-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures exposed to combined high intensity random pressure fluctuations and thermal loadings. The study is conducted on a flat aluminum beam, which permits a comparison of results obtained by a reduced-order analysis with those obtained from a numerically intensive simulation in physical degrees-of-freedom. A uniformly distributed thermal loading is first applied to investigate the dynamic instability associated with thermal buckling. A uniformly distributed random loading is added to investigate the combined thermal-acoustic response. In the latter case, three types of response characteristics are considered, namely: (i) small amplitude vibration around one of the two stable buckling equilibrium positions, (ii) intermittent snap-through response between the two equilibrium positions, and (iii) persistent snap-through response between the two equilibrium positions. For the reduced-order analysis, four categories of modal basis functions are identified including those having symmetric transverse, anti-symmetric transverse, symmetric in-plane, and anti-symmetric in-plane displacements. The effect of basis selection on the quality of results is investigated for the dynamic thermal buckling and combined thermal-acoustic response. It is found that despite symmetric geometry, loading, and boundary conditions, the anti-symmetric transverse and symmetric in-plane modes must be included in the basis as they participate in the snap-through behavior.

  7. F-111C Flight Data Reduction and Analysis Procedures

    DTIC Science & Technology

    1990-12-01

    BPHI NO 24 BTHE YES 25 BPSI NO 26 BH YES 27 LVEL NO 28 LBET NO 29 LALP YES 30 LPHI NO 31 LTHE NO 32 LPSI NO 33 LH NO 34 TABLE 2 INPUTS I Ax YES 2 Av NO...03 * 51 IJ Appendix G - A priori Data from Six Degree of Free- dom Flight Dynamic Model The six degree of freedom flight dynamic mathematical model of...Estimated Mathematical mode response - > of aircraft !Gauss- Maximum " Newton --- likelihood 4,computational cost Salgorithm function Maximum

  8. Fluid dynamics of out of equilibrium boost invariant plasmas

    NASA Astrophysics Data System (ADS)

    Blaizot, Jean-Paul; Yan, Li

    2018-05-01

    By solving a simple kinetic equation, in the relaxation time approximation, and for a particular set of moments of the distribution function, we establish a set of equations which, on the one hand, capture exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the hierarchy of equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This correspondence sheds light on the underlying mechanism responsible for the apparent success of hydrodynamics in regimes that are far from local equilibrium.

  9. MCC level C formulation requirements. Shuttle TAEM targeting

    NASA Technical Reports Server (NTRS)

    Carman, G. L.; Montez, M. N.

    1980-01-01

    The level C requirements for the shuttle orbiter terminal area energy management (TAEM) guidance and flight control functions to be incorporated into the Mission Control Center entry profile planning processor are described. This processor is used for preentry evaluation of the entry through landing maneuvers, and includes a simplified three degree-of-freedom model of the body rotational dynamics that is necessary to account for the effects of attitude response on the trajectory dynamics. This simulation terminates at TAEM-autoland interface.

  10. Active vibration control of functionally graded beams with piezoelectric layers based on higher order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Bendine, K.; Boukhoulda, F. B.; Nouari, M.; Satla, Z.

    2016-12-01

    This paper reports on a study of active vibration control of functionally graded beams with upper and lower surface-bonded piezoelectric layers. The model is based on higher-order shear deformation theory and implemented using the finite element method (FEM). The proprieties of the functionally graded beam (FGB) are graded along the thickness direction. The piezoelectric actuator provides a damping effect on the FGB by means of a velocity feedback control algorithm. A Matlab program has been developed for the FGB model and compared with ANSYS APDL. Using Newmark's method numerical solutions are obtained for the dynamic equations of FGB with piezoelectric layers. Numerical results show the effects of the constituent volume fraction and the influence the feedback control gain on the frequency and dynamic response of FGBs.

  11. Unravelling Immunoglobulin G Fc N-Glycosylation: A Dynamic Marker Potentiating Predictive, Preventive and Personalised Medicine.

    PubMed

    Russell, Alyce; Adua, Eric; Ugrina, Ivo; Laws, Simon; Wang, Wei

    2018-01-29

    Multiple factors influence immunoglobulin G glycosylation, which in turn affect the glycoproteins' function on eliciting an anti-inflammatory or pro-inflammatory response. It is prudent to underscore these processes when considering the use of immunoglobulin G N -glycan moieties as an indication of disease presence, progress, or response to therapeutics. It has been demonstrated that the altered expression of genes that encode enzymes involved in the biosynthesis of immunoglobulin G N -glycans, receptors, or complement factors may significantly modify immunoglobulin G effector response, which is important for regulating the immune system. The immunoglobulin G N -glycome is highly heterogenous; however, it is considered an interphenotype of disease (a link between genetic predisposition and environmental exposure) and so has the potential to be used as a dynamic biomarker from the perspective of predictive, preventive, and personalised medicine. Undoubtedly, a deeper understanding of how the multiple factors interact with each other to alter immunoglobulin G glycosylation is crucial. Herein we review the current literature on immunoglobulin G glycoprotein structure, immunoglobulin G Fc glycosylation, associated receptors, and complement factors, the downstream effector functions, and the factors associated with the heterogeneity of immunoglobulin G glycosylation.

  12. Analysis of blind identification methods for estimation of kinetic parameters in dynamic medical imaging

    NASA Astrophysics Data System (ADS)

    Riabkov, Dmitri

    Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of identification that assumes that FDG blood input in the brain can be modeled as a function of time and several parameters (IFM) is analyzed also. Nonuniform sampling SLS (NSLS) is developed due to the rapid change of the FDG concentration in the blood during the early postinjection stage. Comparisons of accuracy of EVAM, SLS, NSLS and IFM identification techniques are made.

  13. Dynamic curvature sensing employing ionic-polymer-metal composite sensors

    NASA Astrophysics Data System (ADS)

    Bahramzadeh, Yousef; Shahinpoor, Mohsen

    2011-09-01

    A dynamic curvature sensor is presented based on ionic-polymer-metal composite (IPMC) for curvature monitoring of deployable/inflatable dynamic space structures. Monitoring the curvature variation is of high importance in various engineering structures including shape monitoring of deployable/inflatable space structures in which the structural boundaries undergo a dynamic deployment process. The high sensitivity of IPMCs to the applied deformations as well as its flexibility make IPMCs a promising candidate for sensing of dynamic curvature changes. Herein, we explore the dynamic response of an IPMC sensor strip with respect to controlled curvature deformations subjected to different forms of input functions. Using a specially designed experimental setup, the voltage recovery effect, phase delay, and rate dependency of the output voltage signal of an IPMC curvature sensor are analyzed. Experimental results show that the IPMC sensor maintains the linearity, sensitivity, and repeatability required for curvature sensing. Besides, in order to describe the dynamic phenomena such as the rate dependency of the IPMC sensor, a chemo-electro-mechanical model based on the Poisson-Nernst-Planck (PNP) equation for the kinetics of ion diffusion is presented. By solving the governing partial differential equations the frequency response of the IPMC sensor is derived. The physical model is able to describe the dynamic properties of the IPMC sensor and the dependency of the signal on rate of excitations.

  14. Optical Response of Warm Dense Matter Using Real-Time Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew; Shulenburger, Luke; Desjarlais, Michael; Magyar, Rudolph

    2014-03-01

    The extreme temperatures and solid-like densities in warm dense matter present a unique challenge for theory, wherein neither conventional models from condensed matter nor plasma physics capture all of the relevant phenomenology. While Kubo-Greenwood DFT calculations have proven capable of reproducing optical properties of WDM, they require a significant number of virtual orbitals to reach convergence due to their perturbative nature. Real-time TDDFT presents a complementary framework with a number of computationally favorable properties, including reduced cost complexity and better scalability, and has been used to reproduce the optical response of finite and ordered extended systems. We will describe the use of Ehrenfest-TDDFT to evolve coupled electron-nuclear dynamics in WDM systems, and the subsequent evaluation of optical response functions from the real-time electron dynamics. The advantages and disadvantages of this approach will be discussed relative to the current state-of-the-art. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  15. TLR4 signaling shapes B cell dynamics via MyD88-dependent pathways and Rac GTPases.

    PubMed

    Barrio, Laura; Saez de Guinoa, Julia; Carrasco, Yolanda R

    2013-10-01

    B cells use a plethora of TLR to recognize pathogen-derived ligands. These innate signals have an important function in the B cell adaptive immune response and modify their trafficking and tissue location. The direct role of TLR signaling on B cell dynamics nonetheless remains almost entirely unknown. In this study, we used a state-of-the-art two-dimensional model combined with real-time microscopy to study the effect of TLR4 stimulation on mouse B cell motility in response to chemokines. We show that a minimum stimulation period is necessary for TLR4 modification of B cell behavior. TLR4 stimulation increased B cell polarization, migration, and directionality; these increases were dependent on the MyD88 signaling pathway and did not require ERK or p38 MAPK activity downstream of TLR4. In addition, TLR4 stimulation enhanced Rac GTPase activity and promoted sustained Rac activation in response to chemokines. These results increase our understanding of the regulation of B cell dynamics by innate signals and the underlying molecular mechanisms.

  16. A New Concept to Reveal Protein Dynamics Based on Energy Dissipation

    PubMed Central

    Ma, Cheng-Wei; Xiu, Zhi-Long; Zeng, An-Ping

    2011-01-01

    Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term “protein dynamical modules” based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine. PMID:22022616

  17. Isometric exercise: cardiovascular responses in normal and cardiac populations.

    PubMed

    Hanson, P; Nagle, F

    1987-05-01

    Isometric exercise produces a characteristic pressor increase in blood pressure which may be important in maintaining perfusion of muscle during sustained contraction. This response is mediated by combined central and peripheral afferent input to medullary cardiovascular centers. In normal individuals the increase in blood pressure is mediated by a rise in cardiac output with little or no change in systemic vascular resistance. However, the pressor response is also maintained during pharmacologic blockade or surgical denervation by increasing systemic vascular resistance. Left ventricular function is normally maintained or improves in normal subjects and cardiac patients with mild impairment of left ventricular contractility. Patients with poor left ventricular function may show deterioration during isometric exercise, although this pattern of response is difficult to predict from resting studies. Recent studies have shown that patients with uncomplicated myocardial infarction can perform submaximum isometric exercise such as carrying weights in the range of 30 to 50 lb without difficulty or adverse responses. In addition, many patients who show ischemic ST depression or angina during dynamic exercise may have a reduced ischemic response during isometric or combined isometric and dynamic exercise. Isometric exercises are frequently encountered in activities of daily living and many occupational tasks. Cardiac patients should be gradually exposed to submaximum isometric training in supervised cardiac rehabilitation programs. Specific job tasks that require isometric or combined isometric and dynamic activities may be evaluated by work simulation studies. This approach to cardiac rehabilitation may facilitate patients who wish to return to a job requiring frequent isometric muscle contraction. Finally, there is a need for additional research on the long-term effects of isometric exercise training on left ventricular hypertrophy and performance. The vigorous training regimens currently utilized by international class and professional athletes should stimulate longitudinal studies of physiologic and pathophysiologic outcomes of intense isometric exercise training programs.

  18. An empirical propellant response function for combustion stability predictions

    NASA Technical Reports Server (NTRS)

    Hessler, R. O.

    1980-01-01

    An empirical response function model was developed for ammonium perchlorate propellants to supplant T-burner testing at the preliminary design stage. The model was developed by fitting a limited T-burner data base, in terms of oxidizer size and concentration, to an analytical two parameter response function expression. Multiple peaks are predicted, but the primary effect is of a single peak for most formulations, with notable bulges for the various AP size fractions. The model was extended to velocity coupling with the assumption that dynamic response was controlled primarily by the solid phase described by the two parameter model. The magnitude of velocity coupling was then scaled using an erosive burning law. Routine use of the model for stability predictions on a number of propulsion units indicates that the model tends to overpredict propellant response. It is concluded that the model represents a generally conservative prediction tool, suited especially for the preliminary design stage when T-burner data may not be readily available. The model work included development of a rigorous summation technique for pseudopropellant properties and of a concept for modeling ordered packing of particulates.

  19. Modeling of classical swirl injector dynamics

    NASA Astrophysics Data System (ADS)

    Ismailov, Maksud M.

    The knowledge of the dynamics of a swirl injector is crucial in designing a stable liquid rocket engine. Since the swirl injector is a complex fluid flow device in itself, not much work has been conducted to describe its dynamics either analytically or by using computational fluid dynamics techniques. Even the experimental observation is limited up to date. Thus far, there exists an analytical linear theory by Bazarov [1], which is based on long-wave disturbances traveling on the free surface of the injector core. This theory does not account for variation of the nozzle reflection coefficient as a function of disturbance frequency, and yields a response function which is strongly dependent on the so called artificial viscosity factor. This causes an uncertainty in designing an injector for the given operational combustion instability frequencies in the rocket engine. In this work, the author has studied alternative techniques to describe the swirl injector response, both analytically and computationally. In the analytical part, by using the linear small perturbation analysis, the entire phenomenon of unsteady flow in swirl injectors is dissected into fundamental components, which are the phenomena of disturbance wave refraction and reflection, and vortex chamber resonance. This reveals the nature of flow instability and the driving factors leading to maximum injector response. In the computational part, by employing the nonlinear boundary element method (BEM), the author sets the boundary conditions such that they closely simulate those in the analytical part. The simulation results then show distinct peak responses at frequencies that are coincident with those resonant frequencies predicted in the analytical part. Moreover, a cold flow test of the injector related to this study also shows a clear growth of instability with its maximum amplitude at the first fundamental frequency predicted both by analytical methods and BEM. It shall be noted however that Bazarov's theory does not predict the resonant peaks. Overall this methodology provides clearer understanding of the injector dynamics compared to Bazarov's. Even though the exact value of response is not possible to obtain at this stage of theoretical, computational, and experimental investigation, this methodology sets the starting point from where the theoretical description of reflection/refraction, resonance, and their interaction between each other may be refined to higher order to obtain its more precise value.

  20. On the dynamic singularities in the control of free-floating space manipulators

    NASA Technical Reports Server (NTRS)

    Papadopoulos, E.; Dubowsky, S.

    1989-01-01

    It is shown that free-floating space manipulator systems have configurations which are dynamically singular. At a dynamically singular position, the manipulator is unable to move its end effector in some direction. This problem appears in any free-floating space manipulator system that permits the vehicle to move in response to manipulator motion without correction from the vehicle's attitude control system. Dynamic singularities are functions of the dynamic properties of the system; their existence and locations cannot be predicted solely from the kinematic structure of the manipulator, unlike the singularities for fixed base manipulators. It is also shown that the location of these dynamic singularities in the workplace is dependent upon the path taken by the manipulator in reaching them. Dynamic singularities must be considered in the control, planning and design of free-floating space manipulator systems. A method for calculating these dynamic singularities is presented, and it is shown that the system parameters can be selected to reduce the effect of dynamic singularities on a system's performance.

Top