Sample records for dynamic rock properties

  1. Numerical Investigation of the Dynamic Properties of Intermittent Jointed Rock Models Subjected to Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen

    2017-01-01

    Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.

  2. Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad

    2017-01-01

    This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.

  3. Attenuation and Dispersion Analysis in Laboratory Measured Elastic Properties in the Middle East Carbonate Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Sharma, R.

    2016-12-01

    Carbonate rocks are sensitive to circulation of fluid types that leads to diagenetic alterations and therefore to heterogeneity in distribution of porosity and permeability. These heterogeneities in turn, lead to heterogeneity in saturations varying from partial to patchy to uniform. Depending on the interaction between fluids and rock matrix, a weakening or strengthening in shear modulus of carbonate rocks can also develop (Eberli et al., 2003; Adam et al., 2006; Sharma et al., 2009; Sharma et al., 2013). Thus the elastic response over the production life of the carbonate reservoirs can change considerably. Efforts to couple fluid flow with varying seismic properties of these reservoirs are limited in success due to the differences between static elastic properties derived from reservoir simulation and dynamic elastic properties derived from inverted seismic. An additional limitation arises from the assumption that shear modulus does not change with fluid type and saturations. To overcome these limitations, we need to understand the relationships between the static and the dynamic elastic properties using laboratory measurements made at varying pressures, frequencies and with varying saturants. I will present the following results: 1) errors associated with using dynamic (2 - 2000 Hz and 1 MHz) elastic properties data for static ( 0 Hz) reservoir properties, 2) shear modulus variation in carbonates upon saturation with varying saturants The results will enable us to estimate, 1) distribution of stress-strain relations in reservoir rocks and 2) modulus dispersion to correct seismic-derived moduli as inputs for reservoir simulators. The results are critical to estimate, 1) modulus dispersion correction and 2) occurrence and amount of shear modulus variation with fluid change vital for rock stability analysis

  4. Seismology in civil engineering

    NASA Astrophysics Data System (ADS)

    Dvorak, A.

    Properties of soils and rocks exposed to vibrations in the practice of civil engineering are examined. Seismic and dynamic field investigations, determination of seismic and dynamic modulus of elasticity, coefficients of damping and absorption are studied. Seismic effects of blasting and of other sources of vibrations on structures and persons, application of rock-noise and dynamic tests of piles are studied.

  5. Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale

    NASA Astrophysics Data System (ADS)

    Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe

    2017-08-01

    A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.Plain Language SummaryWe develop a core scale modeling method to simulate the viscoelastic properties of rocks saturated with viscous fluid at low frequencies based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. By using this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the composite's viscoelastic properties. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and pore aspect ratio affect the rock frame stiffness and result in different viscoelastic behavior of the saturated rocks. The lower the rock frame stiffness, the larger the stress-strain phase lags. The viscoelastic properties of saturated rocks are more sensitive to the pore aspect ratio. The results suggest that significant seismic dispersion might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids. This will be important in the context of heavy hydrocarbon reservoirs and igneous rocks saturated with silicate melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Postural+AND+Control&pg=7&id=EJ750273','ERIC'); return false;" href="https://eric.ed.gov/?q=Postural+AND+Control&pg=7&id=EJ750273"><span>Dynamical Origins of Stereotypy: Relation of Postural Movements during Sitting to Stereotyped Movements during Body-Rocking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Newell, Karl M.; Bodfish, James W.</p> <p>2007-01-01</p> <p>The relation between the movement dynamic properties of sitting still and of seated body-rocking in adults with stereotyped movement disorder and mental retardation and a contrast group of typically developing age-matched adults was examined. Continuous measurement of sequential displacements in center-of-pressure was made using a force platform…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991SPIE.1554A.380S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991SPIE.1554A.380S"><span>Photoelastic stress investigation in underground large hole in permafrost soil (statics, thermoelasticity, dynamics, photoelastic strain-gauges)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Savostjanov, V. N.; Dvalishvili, V. V.; Sakharov, V. N.; Isajkin, A. S.; Frishter, L.; Starchevsky, A. V.</p> <p>1991-12-01</p> <p>The development of many-year-frost rock (MYFR) region hydrotechnic construction, the MYFR being quite a reliable construction based provided it is situated outside the seasonal temperature fluctuation layer, requires the rock stress-deformed state evaluating criteria working out with maximal possible account of static, dynamic, blast-hole drilling, and temperature effect on their properties. In estimating the hydroelectrical power station (HPS) underground building stress-deformed state the present work refers to experimental data and calculations, received by solving a linear task with further account of the building profile changing effect in the process of construction and the concrete and rock mechanic properties heterogeneity. The proposed order is justified, provided the rock mass defrosting depth value is small as compared to the rock separate block dimensions and it corresponds to the building construction period. The results are given for the Kolymskaya Hydroelectrical Power Station building cross-section, considered under flat deformation conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5666273','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5666273"><span>Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wanniarachchi, W. A. M.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.</p> <p>2017-01-01</p> <p>The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1–1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43–4.61 km s−1 and 1.43–2.41 km h−1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests. PMID:29134090</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29134090','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29134090"><span>Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wanniarachchi, W A M; Ranjith, P G; Perera, M S A; Rathnaweera, T D; Lyu, Q; Mahanta, B</p> <p>2017-10-01</p> <p>The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient ( α ) and quality factor ( Q ) values for the five selected rock types for both primary ( P ) and secondary ( S ) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus ( E ), bulk modulus ( K ), shear modulus ( µ ) and Poisson's ratio ( ν ). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s -1 and 1.43-2.41 km h -1 , respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RSOS....470896W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RSOS....470896W"><span>Assessment of dynamic material properties of intact rocks using seismic wave attenuation: an experimental study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wanniarachchi, W. A. M.; Ranjith, P. G.; Perera, M. S. A.; Rathnaweera, T. D.; Lyu, Q.; Mahanta, B.</p> <p>2017-10-01</p> <p>The mechanical properties of any substance are essential facts to understand its behaviour and make the maximum use of the particular substance. Rocks are indeed an important substance, as they are of significant use in the energy industry, specifically for fossil fuels and geothermal energy. Attenuation of seismic waves is a non-destructive technique to investigate mechanical properties of reservoir rocks under different conditions. The attenuation characteristics of five different rock types, siltstone, shale, Australian sandstone, Indian sandstone and granite, were investigated in the laboratory using ultrasonic and acoustic emission instruments in a frequency range of 0.1-1 MHz. The pulse transmission technique and spectral ratios were used to calculate the attenuation coefficient (α) and quality factor (Q) values for the five selected rock types for both primary (P) and secondary (S) waves, relative to the reference steel sample. For all the rock types, the attenuation coefficient was linearly proportional to the frequency of both the P and S waves. Interestingly, the attenuation coefficient of granite is more than 22% higher than that of siltstone, sandstone and shale for both P and S waves. The P and S wave velocities were calculated based on their recorded travel time, and these velocities were then used to calculate the dynamic mechanical properties including elastic modulus (E), bulk modulus (K), shear modulus (µ) and Poisson's ratio (ν). The P and S wave velocities for the selected rock types varied in the ranges of 2.43-4.61 km s-1 and 1.43-2.41 km h-1, respectively. Furthermore, it was observed that the P wave velocity was always greater than the S wave velocity, and this confirmed the first arrival of P waves to the sensor. According to the experimental results, the dynamic E value is generally higher than the static E value obtained by unconfined compressive strength tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T14A..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T14A..02A"><span>Coseismic Damage Generation in Fault Zones by Successive High Strain Rate Loading Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aben, F. M.; Doan, M. L.; Renard, F.; Toussaint, R.; Reuschlé, T.; Gratier, J. P.</p> <p>2014-12-01</p> <p>Damage zones of active faults control both resistance to rupture and transport properties of the fault. Hence, knowing the rock damage's origin is important to constrain its properties. Here we study experimentally the damage generated by a succession of dynamic loadings, a process mimicking the stress history of a rock sample located next to an active fault. A propagating rupture generates high frequency stress perturbations next to its tip. This dynamic loading creates pervasive damage (pulverization), as multiple fractures initiate and grow simultaneously. Previous single loading experiments have shown a strain rate threshold for pulverization. Here, we focus on conditions below this threshold and the dynamic peak stress to constrain: 1) if there is dynamic fracturing at these conditions and 2) if successive loadings (cumulative seismic events) result in pervasive fracturing, effectively reducing the pulverization threshold to milder conditions. Monzonite samples were dynamically loaded (strain rate > 50 s-1) several times below the dynamic peak strength, using a Split Hopkinson Pressure Bar apparatus. Several quasi-static experiments were conducted as well (strain rate < 10-5-s). Samples loaded up to stresses above the quasi-static uniaxial compressive strength (qsUCS) systematically fragmented or pulverized after four successive loadings. We measured several damage proxies (P-wave velocity, porosity), that show a systematic increase in damage with each load. In addition, micro-computed tomography acquisition on several damage samples revealed the growth of a pervasive fracture network between ensuing loadings. Samples loaded dynamically below the qsUCS failed along one fracture after a variable amount of loadings and damage proxies do not show any a systematic trend. Our conclusions is that milder dynamic loading conditions, below the dynamic peak strength, result in pervasive dynamic fracturing. Also, successive loadings effectively lower the pulverization threshold of the rock. However, the peak loading stress must exceed the qsUCS of the rock, otherwise quasi-static fracturing occurs. Pulverized rocks found in the field are therefore witnesses of previous large earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33A1646T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33A1646T"><span>Rock Physical Interpretation of the Relationship between Dynamic and Static Young's Moduli of Sedimentary Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, T.</p> <p>2017-12-01</p> <p>The static Young's modulus (deformability) of a rock is indispensable for designing and constructing tunnels, dams and underground caverns in civil engineering. Static Young's modulus which is an elastic modulus at large strain level is usually obtained with the laboratory tests of rock cores sampled in boreholes drilled in a rock mass. A deformability model of the entire rock mass is then built by extrapolating the measurements based on a rock mass classification obtained in geological site characterization. However, model-building using data obtained from a limited number of boreholes in the rock mass, especially a complex rock mass, may cause problems in the accuracy and reliability of the model. On the other hand, dynamic Young's modulus which is the modulus at small strain level can be obtained from seismic velocity. If dynamic Young's modulus can be rationally converted to static one, a seismic velocity model by the seismic method can be effectively used to build a deformability model of the rock mass. In this study, we have, therefore, developed a rock physics model (Mavko et al., 2009) to estimate static Young's modulus from dynamic one for sedimentary rocks. The rock physics model has been generally applied to seismic properties at small strain level. In the proposed model, however, the sandy shale model, one of rock physics models, is extended for modeling the static Young's modulus at large strain level by incorporating the mixture of frictional and frictionless grain contacts into the Hertz-Mindlin model. The proposed model is verified through its application to the dynamic Young's moduli derived from well log velocities and static Young's moduli measured in the tri-axial compression tests of rock cores sampled in the same borehole as the logs were acquired. This application proves that the proposed rock physics model can be possibly used to estimate static Young's modulus (deformability) which is required in many types of civil engineering applications from seismically derived dynamic Young's modulus. References:Mavko, G., Mukerji, T. and Dvorkin, J., 2009, The Rock Physics Handbook, 2nd Edition, Cambridge University Press, Cambridge.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29596371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29596371"><span>Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Ji-Won; Chong, Song-Hun; Cho, Gye-Chun</p> <p>2018-03-29</p> <p>Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10 -5 ) and mid-strain (10 -5 to 10 -3 ) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5951370','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5951370"><span>Experimental Characterization of Stress- and Strain-Dependent Stiffness in Grouted Rock Masses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cho, Gye-Chun</p> <p>2018-01-01</p> <p>Grouting of fractured rock mass prior to excavation results in grout-filled discontinuities that govern the deformation characteristics of a site. The influence of joint characteristics on the properties of grouted rocks is important in assessing the effects of grouting on jointed rock mass. However, grouting remains a predominantly empirical practice and the effects of grouting on rock joint behavior and material properties have yet to be accurately assessed. Granular materials, including jointed rocks, typically display nonlinear strain-dependent responses that can be characterized by the shear modulus degradation curve. In this study, the effects of grouting on the strain-dependent shear stiffness of jointed rock mass were investigated at the small-strain (below 10−5) and mid-strain (10−5 to 10−3) ranges using the quasi-static resonant column test and rock mass dynamic test devices. The effects of curing time, axial stress, initial joint roughness, and grouted joint thickness were examined. The results show that (1) grouting of rock joints leads to decreased stress sensitivity and increased small-strain shear stiffness for all tested samples; (2) the grouted rock samples display similar modulus degradation characteristics as the applied grout material; (3) the initial joint roughness determines the stress-dependent behaviors and general stiffness range of the jointed and grouted rocks, but the strain-dependent behaviors are dependent on the properties of the grout material; (4) increased grouted joint thickness results in larger contribution of the grout properties in the overall grouted rock mass. PMID:29596371</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810241B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810241B"><span>Semantic modeling of the structural and process entities during plastic deformation of crystals and rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babaie, Hassan; Davarpanah, Armita</p> <p>2016-04-01</p> <p>We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG52A..02C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG52A..02C"><span>Dynamic characterisation of the specific surface area for fracture networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cvetkovic, V.</p> <p>2017-12-01</p> <p>One important application of chemical transport is geological disposal of high-level nuclear waste for which crystalline rock is a prime candidate for instance in Scandinavia. Interconnected heterogeneous fractures of sparsely fractured rock such as granite, act as conduits for transport of dissolved tracers. Fluid flow is known to be highly channelized in such rocks. Channels imply narrow flow paths, adjacent to essentially stagnant water in the fracture and/or the rock matrix. Tracers are transported along channelised flow paths and retained by minerals and/or stagnant water, depending on their sorption properties; this mechanism is critical for rocks to act as a barrier and ultimately provide safety for a geological repository. The sorbing tracers are retained by diffusion and sorption on mineral surfaces, whereas non-sorbing tracers can be retained only by diffusion into stagnant water of fractures. The retention and transport properties of a sparsely fractured rock will primarily depend on the specific surface area (SSA) of the fracture network which is determined by the heterogeneous structure and flow. The main challenge when characterising SSA on the field-scale is its dependence on the flow dynamics. We first define SSA as a physical quantity and clarify its importance for chemical transport. A methodology for dynamic characterisation of SSA in fracture networks is proposed that relies on three sets of data: i) Flow rate data as obtained by a flow logging procedure; ii) transmissivity data as obtained by pumping tests; iii) fracture network data as obtained from outcrop and geophysical observations. The proposed methodology utilises these data directly as well as indirectly through flow and particle tracking simulations in three-dimensional discrete fracture networks. The methodology is exemplified using specific data from the Swedish site Laxemar. The potential impact of uncertainties is of particular significance and is illustrated for radionuclide attenuation. Effects of internal fracture heterogeneity vs fracture network heterogeneity, and of rock deformation, on the statistical properties of SSA are briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.209..282X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.209..282X"><span>Theoretical constraints on dynamic pulverization of fault zone rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Shiqing; Ben-Zion, Yehuda</p> <p>2017-04-01</p> <p>We discuss dynamic rupture results aiming to elucidate the generation mechanism of pulverized fault zone rocks (PFZR) observed in 100-200 m wide belts distributed asymmetrically across major strike-slip faults separating different crustal blocks. Properties of subshear and supershear ruptures are considered using analytical results of Linear Elastic Fracture Mechanics and numerical simulations of Mode-II ruptures along faults between similar or dissimilar solids. The dynamic fields of bimaterial subshear ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks having no preferred orientation, in agreement with field observations. Subshear ruptures in a homogeneous solid are expected to produce off-fault damage with high-angle tensile cracks on the extensional side of the fault, while supershear ruptures between similar or dissimilar solids are likely to produce off-fault damage on both sides of the fault with preferred tensile crack orientations. One or more of these features are not consistent with properties of natural samples of PFZR. At a distance of about 100 m from the fault, subshear and supershear ruptures without stress singularities produce strain rates up to 1 s-1. This is less than required for rock pulverization in laboratory experiments with centimetre-scale intact rock samples, but may be sufficient for pulverizing larger samples with pre-existing damage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.3009Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.3009Z"><span>Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng</p> <p>2016-08-01</p> <p>Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.3865C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.3865C"><span>Dynamic Fracture Properties of Rocks Subjected to Static Pre-load Using Notched Semi-circular Bend Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun</p> <p>2016-10-01</p> <p>A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........41J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........41J"><span>Seismic Velocity and Elastic Properties of Plate Boundary Faults</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeppson, Tamara N.</p> <p></p> <p>The elastic properties of fault zone rock at depth play a key role in rupture nucleation, propagation, and the magnitude of fault slip. Materials that lie within major plate boundary fault zones often have very different material properties than standard crustal rock values. In order to understand the mechanics of faulting at plate boundaries, we need to both measure these properties and understand how they govern the behavior of different types of faults. Mature fault zones tend to be identified in large-scale geophysical field studies as zones with low seismic velocity and/or electrical resistivity. These anomalous properties are related to two important mechanisms: (1) mechanical or diagenetic alteration of the rock materials and/or (2) pore fluid pressure and stress effects. However, in remotely-sensed and large-length-scale data it is difficult to determine which of these mechanisms are affecting the measured properties. The objective of this dissertation research is to characterize the seismic velocity and elastic properties of fault zone rocks at a range of scales, with a focus on understanding why the fault zone properties are different from those of the surrounding rock and the potential effects on earthquake rupture and fault slip. To do this I performed ultrasonic velocity experiments under elevated pressure conditions on drill core and outcrops samples from three plate boundary fault zones: the San Andreas Fault, California, USA; the Alpine Fault, South Island, New Zealand; and the Japan Trench megathrust, Japan. Additionally, I compared laboratory measurements to sonic log and large-scale seismic data to examine the scale-dependence of the measured properties. The results of this study provide the most comprehensive characterization of the seismic velocities and elastic properties of fault zone rocks currently available. My work shows that fault zone rocks at mature plate boundary faults tend to be significantly more compliant than surrounding crustal rocks and quantifies that relationship. The results of this study are particularly relevant to the interpretation of field-scale seismic datasets at major fault zones. Additionally, the results of this study provide constraints on elastic properties used in dynamic rupture models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T14D..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T14D..02M"><span>Cumulative co-seismic fault damage and feedbacks on earthquake rupture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, T. M.; Aben, F. M.; Ostermeijer, G.; Rockwell, T. K.; Doan, M. L.</p> <p>2017-12-01</p> <p>The importance of the damage zone in the faulting and earthquake process is widely recognized, but our understanding of how damage zones are created, what their properties are, and how they feed back into the seismic cycle, is remarkably poorly known. Firstly, damaged rocks have reduced elastic moduli, cohesion and yield strength, which can cause attenuation and potentially non-linear wave propagation effects during ruptures. Secondly, damaged fault rocks are generally more permeable than intact rocks, and hence play a key role in the migration of fluids in and around fault zones over the seismic cycle. Finally, the dynamic generation of damage as the earthquake propagates can itself influence the dynamics of rupture propagation, by increasing the amount of energy dissipation, decreasing the rupture velocity, modifying the size of the earthquake, changing the efficiency of weakening mechanisms such as thermal pressurisation of pore fluids, and even generating seismic waves itself . All of these effects imply that a feedback exists between the damage imparted immediately after rupture propagation, at the early stages of fault slip, and the effects of that damage on subsequent ruptures dynamics. In recent years, much debate has been sparked by the identification of so-called `pulverized rocks' described on various crustal-scale faults, a type of intensely damaged fault rock which has undergone minimal shear strain, and the occurrence of which has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. In this contribution, we will demonstrate laboratory and field examples of two dynamic mechanisms that have been proposed for the generation of pulverized rocks; (i) compressive loading by high-frequency stress pulses due to the radiation of seismic waves and (ii) explosive dilation in tension in rocks containing pressurized pore fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27069826','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27069826"><span>Numerical simulation study on the optimization design of the crown shape of PDC drill bit.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ju, Pei; Wang, Zhenquan; Zhai, Yinghu; Su, Dongyu; Zhang, Yunchi; Cao, Zhaohui</p> <p></p> <p>The design of bit crown is an important part of polycrystalline diamond compact (PDC) bit design, although predecessors have done a lot of researches on the design principles of PDC bit crown, the study of the law about rock-breaking energy consumption according to different bit crown shape is not very systematic, and the mathematical model of design is over-simplified. In order to analyze the relation between rock-breaking energy consumption and bit crown shape quantificationally, the paper puts forward an idea to take "per revolution-specific rock-breaking work" as objective function, and analyzes the relationship between rock properties, inner cone angle, outer cone arc radius, and per revolution-specific rock-breaking work by means of explicit dynamic finite element method. Results show that the change law between per revolution-specific rock-breaking work and the radius of gyration is similar for rocks with different properties, it is beneficial to decrease rock-breaking energy consumption by decreasing inner cone angle or outer cone arc radius. Of course, we should also consider hydraulic structure and processing technology in the optimization design of PDC bit crown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MMI....22..764K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MMI....22..764K"><span>Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak</p> <p>2016-09-01</p> <p>Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8353Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8353Z"><span>High Strain Rate Testing of Rocks using a Split-Hopkinson-Pressure Bar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael; Nau, Siegfried; Hess, Sebastian</p> <p>2016-04-01</p> <p>Dynamic mechanical testing of rocks is important to define the onset of rate dependency of brittle failure. The strain rate dependency occurs through the propagation velocity limit (Rayleigh wave speed) of cracks and their reduced ability to coalesce, which, in turn, significantly increases the strength of the rock. We use a newly developed pressurized air driven Split-Hopkinson-Pressure Bar (SHPB), that is specifically designed for the investigation of high strain rate testing of rocks, consisting of several 10 to 50 cm long strikers and bar components of 50 mm in diameter and 2.5 meters in length each. The whole set up, composed of striker, incident- and transmission bar is available in aluminum, titanium and maraging steel to minimize the acoustic impedance contrast, determined by the change of density and speed of sound, to the specific rock of investigation. Dynamic mechanical parameters are obtained in compression as well as in spallation configuration, covering a wide spectrum from intermediate to high strain rates (100-103 s-1). In SHPB experiments [1] one-dimensional longitudinal compressive pulses of diverse shapes and lengths - formed with pulse shapers - are used to generate a variety of loading histories under 1D states of stress in cylindrical rock samples, in order to measure the respective stress-strain response at specific strain rates. Subsequent microstructural analysis of the deformed samples is aimed at quantification fracture orientation, fracture pattern, fracture density, and fracture surface properties as a function of the loading rate. Linking mechanical and microstructural data to natural dynamic deformation processes has relevance for the understanding of earthquakes, landslides, impacts, and has several rock engineering applications. For instance, experiments on dynamic fragmentation help to unravel super-shear rupture events that pervasively pulverize rocks up to several hundred meters from the fault core [2, 3, 4]. The dynamic, strain rate dependent behavior with strongly increasing strength and changing fracturing process has not been consequently considered in modeling of geo-hazards such as earthquakes, rock falls, landslides or even meteorite impacts [5]. Incorporation of dynamic material data therefore will contribute to improvements of forecast models and the understanding of fast geodynamic processes. References [1] Zhang, Q. B. & Zhao, J. (2013). A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech Rock Eng. DOI 10.1007/s00603-013-0463-y [2] Doan, M. L., & Gary, G. (2009). Rock pulverization at high strain rate near the San Andreas fault. Nature Geosci., 2, 709-712. [3] Reches, Z. E., & Dewers, T. A. (2005). Gouge formation by dynamic pulverization during earthquake rupture. Earth Planet. Sci. Lett., 235, 361-374. [4] Fondriest, M., Aretusini, S., Di Toro, G., & Smith, S. A. (2015). Fracturing and rock pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault Zone (Southern Alps, Italy). Tectonophys.654, 56-74. [5] Kenkmann, T., Poelchau, M. H., & Wulf, G. (2014). Structural Geology of impact craters. J. .Struct. Geol., 62, 156-182.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997LPI....28..631I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997LPI....28..631I"><span>Block oscillation model for impact crater collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, B. A.; Kostuchenko, V. N.</p> <p>1997-03-01</p> <p>Previous investigations of the impact crater formation mechanics have shown that the late stage, a transient cavity collapse in a gravity field, may be modeled with a traditional rock mechanics if one ascribes very specific mechanical properties of rock in the vicinity of a crater: an effective strength of rock needed is around 30 bar, and effective angle of internal friction below 5 deg. The rock media with such properties may be supposed 'temporary fluidized'. The nature of this fluidization is now poorly understood; an acoustic (vibration) nature of this fluidization has been suggested. This model now seems to be the best approach to the problem. The open question is how to implement the model (or other possible models) in a hydrocode for numerical simulation of a dynamic crater collapse. We study more relevant models of mechanical behavior of rocks during cratering. The specific of rock deformation is that the rock media deforms not as a plastic metal-like continuum, but as a system of discrete rock blocks. The deep drilling of impact craters revealed the system of rock blocks of 50 m to 200 m in size. We used the model of these block oscillations to formulate the appropriate rheological law for the subcrater flow during the modification stage.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR33B0473A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR33B0473A"><span>Dynamic permeability in fault damage zones induced by repeated coseismic fracturing events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aben, F. M.; Doan, M. L.; Mitchell, T. M.</p> <p>2017-12-01</p> <p>Off-fault fracture damage in upper crustal fault zones change the fault zone properties and affect various co- and interseismic processes. One of these properties is the permeability of the fault damage zone rocks, which is generally higher than the surrounding host rock. This allows large-scale fluid flow through the fault zone that affects fault healing and promotes mineral transformation processes. Moreover, it might play an important role in thermal fluid pressurization during an earthquake rupture. The damage zone permeability is dynamic due to coseismic damaging. It is crucial for earthquake mechanics and for longer-term processes to understand how the dynamic permeability structure of a fault looks like and how it evolves with repeated earthquakes. To better detail coseismically induced permeability, we have performed uniaxial split Hopkinson pressure bar experiments on quartz-monzonite rock samples. Two sample sets were created and analyzed: single-loaded samples subjected to varying loading intensities - with damage varying from apparently intact to pulverized - and samples loaded at a constant intensity but with a varying number of repeated loadings. The first set resembles a dynamic permeability structure created by a single large earthquake. The second set resembles a permeability structure created by several earthquakes. After, the permeability and acoustic velocities were measured as a function of confining pressure. The permeability in both datasets shows a large and non-linear increase over several orders of magnitude (from 10-20 up to 10-14 m2) with an increasing amount of fracture damage. This, combined with microstructural analyses of the varying degrees of damage, suggests a percolation threshold. The percolation threshold does not coincide with the pulverization threshold. With increasing confining pressure, the permeability might drop up to two orders of magnitude, which supports the possibility of large coseismic fluid pulses over relatively large distances along a fault. Also, a relatively small threshold could potentially increase permeability in a large volume of rock, given that previous earthquakes already damaged these rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNS23A3888S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNS23A3888S"><span>Constraining the Dynamic Rupture Properties with Moment Tensor Derived Vp/Vs Ratios.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith-Boughner, L.; Baig, A. M.; Urbancic, T.; Viegas, G. F.</p> <p>2014-12-01</p> <p>The goal of hydraulic fracturing is to increase the permeability of rocks to extract hydrocarbons from "tight" formations. This process stimulates fluid-driven fractures which induce microseismic events. Successfully treating the formations, stimulating large volumes of the reservoir, depends on targeting parts of the formation with more "brittleness", a property which is frequently characterized from the mechanical properties of the rock. Typically, these properties are constrained using well-logs, vertical seismic profiles and 3-D seismic surveys. Such tools provide a static view of the reservoir on very large or very small scales. While lithology controls the average rock strength within a unit, the content (gas or fluid filled), the shape of the pore space and the concentration of micro-fractures alters the mechanical properties of the reservoir. Seismic moment tensor inversion of the events generated during these stimulations reveals that they are significantly non-double-couple, and are described by a tensile angle and a Poisson's ratio (or, equivalently, ratio of shear to compressional velocities, Vp/Vs) of the rock-fracture system. Following Vavryčuk (2011), the mechanical properties of the reservoir (i.e. Vp/Vs ratio) are estimated as the hydraulic fracture progresses from an extensive catalog of microseismic events spanning magnitudes of -1.5 to 0.8 in the Horn-River Basin, Canada. Studying several fracture stages in the reservoir reveals temporal and spatial variations in the rock strength within a unit as hydraulic fracturing proceeds. Initially, the estimated values of Vp/Vs are quite close to those determined from 3-D seismic surveys. As the stage progresses, previously fractured regions have lower Vp/Vs values. At the onset of maximum treating pressure, regions have anomalously high Vp/Vs values, which could reflect short-term local concentrations of high pore pressures or other interactions of the treatment with the formation. The relationship between source parameters and variations in Vp/Vs are also examined. This technique has the potential to provide a unique and dynamic view of variations in the reservoir both spatially and temporally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSG...103...17D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSG...103...17D"><span>Carbonate hosted fault rocks: A review of structural and microstructural characteristic with implications for seismicity in the upper crust</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delle Piane, Claudio; Clennell, M. Ben; Keller, Joao V. A.; Giwelli, Ausama; Luzin, Vladimir</p> <p>2017-10-01</p> <p>The structure, frictional properties and permeability of faults within carbonate rocks exhibit a dynamic interplay that controls both seismicity and the exchange of fluid between different crustal levels. Here we review field and experimental studies focused on the characterization of fault zones in carbonate rocks with the aim of identifying the microstructural indicators of rupture nucleation and seismic slip. We highlight results from experimental research linked to observations on exhumed fault zones in carbonate rocks. From the analysis of these accumulated results we identify the meso and microstructural deformation styles in carbonates rocks and link them to the lithology of the protolith and their potential as seismic indicators. Although there has been significant success in the laboratory reproduction of deformation structures observed in the field, the range of slip rates and dynamic friction under which most of the potential seismic indicators is formed in the laboratory urges caution when using them as a diagnostic for seismic slip. We finally outline what we think are key topics for future research that would lead to a more in-depth understanding of the record of seismic slip in carbonate rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.V41C1748W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.V41C1748W"><span>Preliminary Numerical Simulations of Nozzle Formation in the Host Rock of Supersonic Volcanic Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wohletz, K. H.; Ogden, D. E.; Glatzmaier, G. A.</p> <p>2006-12-01</p> <p>Recognizing the difficulty in quantitatively predicting how a vent changes during an explosive eruption, Kieffer (Kieffer, S.W., Rev. Geophys. 27, 1989) developed the theory of fluid dynamic nozzles for volcanism, utilizing a highly developed predictive scheme used extensively in aerodynamics for design of jet and rocket nozzles. Kieffer's work shows that explosive eruptions involve flow from sub to supersonic conditions through the vent and that these conditions control the erosion of the vent to nozzle shapes and sizes that maximize mass flux. The question remains how to predict the failure and erosion of vent host rocks by a high-speed, multiphase, compressible fluid that represents an eruption column. Clearly, in order to have a quantitative model of vent dynamics one needs a robust computational method for a turbulent, compressible, multiphase fluid. Here we present preliminary simulations of fluid flowing from a high-pressure reservoir through an eroding conduit and into the atmosphere. The eruptive fluid is modeled as an ideal gas, the host rock as a simple incompressible fluid with sandstone properties. Although these simulations do not yet include the multiphase dynamics of the eruptive fluid or the solid mechanics of the host rock, the evolution of the host rock into a supersonic nozzle is clearly seen. Our simulations show shock fronts both above the conduit, where the gas has expanded into the atmosphere, and within the conduit itself, thereby influencing the dynamics of the jet decompression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123.1161J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123.1161J"><span>Poisson's Ratio and Auxetic Properties of Natural Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ji, Shaocheng; Li, Le; Motra, Hem Bahadur; Wuttke, Frank; Sun, Shengsi; Michibayashi, Katsuyoshi; Salisbury, Matthew H.</p> <p>2018-02-01</p> <p>Here we provide an appraisal of the Poisson's ratios (υ) for natural elements, common oxides, silicate minerals, and rocks with the purpose of searching for naturally auxetic materials. The Poisson's ratios of equivalently isotropic polycrystalline aggregates were calculated from dynamically measured elastic properties. Alpha-cristobalite is currently the only known naturally occurring mineral that has exclusively negative υ values at 20-1,500°C. Quartz and potentially berlinite (AlPO4) display auxetic behavior in the vicinity of their α-β structure transition. None of the crystalline igneous and metamorphic rocks (e.g., amphibolite, gabbro, granite, peridotite, and schist) display auxetic behavior at pressures of >5 MPa and room temperature. Our experimental measurements showed that quartz-rich sedimentary rocks (i.e., sandstone and siltstone) are most likely to be the only rocks with negative Poisson's ratios at low confining pressures (≤200 MPa) because their main constituent mineral, α-quartz, already has extremely low Poisson's ratio (υ = 0.08) and they contain microcracks, micropores, and secondary minerals. This finding may provide a new explanation for formation of dome-and-basin structures in quartz-rich sedimentary rocks in response to a horizontal compressional stress in the upper crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJEaS.tmp....2K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJEaS.tmp....2K"><span>Ultrasonic constraint of the microfracture anisotropy of flysch rocks from the Podhale Synclinorium (Poland)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kłopotowska, Agnieszka</p> <p>2018-01-01</p> <p>This paper attempts to show the relationship between joints observed in flysch formations in the field and microfracture fabrics invisible to the naked eye in hand specimens. Ultrasonic measurements demonstrate that the intensity and orientations of domains "memorised" by rock specimens are associated with the historical stresses within the rock mass rather than the rock lamination. The spatial orientations of these microfractures have been measured, and their dynamic-elastic properties have been found to correlate with the orientation of macroscopic joint sets measured in the field. The elastic properties measured vary because of sedimentary diagenetic processes that occured during the tectonic deformations of these flysch rocks in the Podhale Synclinorium of Poland. The structural discontinuities detected by ultrasonic measurements can be perceived as an incipient phase of the macroscopic joints already visible in the field and are attributed to the in situ residual tectonic stresses. Such historical stresses impart a hidden mechanical anisotropy to the entire flysch sequence. The microfractures will develop into macroscopic joints during future relaxation of the exposed rock mass. Understanding the nature and orientation of the invisible microfracture anisotropy that will become macroscopic in the future is vital for the safe and efficient engineering of any rock mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRB..122.4982S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRB..122.4982S"><span>Experimental evidence for dynamic friction on rock fractures from frequency-dependent nonlinear hysteresis and harmonic generation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saltiel, Seth; Bonner, Brian P.; Mittal, Tushar; Delbridge, Brent; Ajo-Franklin, Jonathan B.</p> <p>2017-07-01</p> <p>Frictional properties affect the propagation of high-amplitude seismic waves across rock fractures and faults. Laboratory evidence suggests that these properties can be measured in active seismic surveys, potentially offering a route to characterizing friction in situ. We present experimental results from a subresonance torsional modulus and attenuation apparatus that utilizes micron-scale sinusoidal oscillations to probe the nonlinear stress-strain relation at a range of strain amplitudes and rates. Nonlinear effects are further quantified using harmonic distortion; however, time series data best illuminate underlying physical processes. The low-frequency stress-strain hysteretic loops show stiffening at the sinusoid's static ends, but stiffening is reduced above a threshold frequency. This shape is determined by harmonic generation in the strain; the stress signal has no harmonics, confirming that the fractured sample is the source of the nonlinearity. These qualitative observations suggest the presence of rate-dependent friction and are consistent between fractures in three different rock types. We propose that static friction at the low strain rate part of the cycle, when given sufficient "healing" time at low oscillation frequencies, causes this stiffening cusp shape in the hysteresis loop. While rate-and-state friction is commonly used to represent dynamic friction, it cannot capture static friction or negative slip velocities. So we implement another dynamic friction model, based on the work of Dahl, which describes this process and produces similar results. Since the two models have a similar form, parameterizations of field data could constraint fault model inputs, such as specific location velocity strengthening or weakening properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.1423K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.1423K"><span>Two-dimensional Coupled Petrological-tectonic Modelling of Extensional Basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaus, B. J. P.; Podladchikov, Y. Y.; Connolly, J. A. D.</p> <p></p> <p>Most numerical codes that simulate the deformation of a lithosphere assume the den- sity of the lithosphere to be either constant or depend only on temperature and pres- sure. It is, however, well known that rocks undergo phase transformations in response to changes in pressure and temperature. Such phase transformations may substantially alter the bulk properties of the rock (i.e., density, thermal conductivity, thermal ex- pansivity and elastic moduli). Several previous studies demonstrated that the density effects due to phase transitions are indeed large enough to have an impact on the litho- sphere dynamics. These studies were however oversimplified in that they accounted for only one or two schematic discontinuous phase transitions. The current study there- fore takes into account all the reactions that occur for a realistic lithospheric composi- tion. Calculation of the phase diagram and bulk physical properties of the stable phase assemblages for the crust and mantle within the continental lithosphere was done ac- counting for mineral solution behaviour using a free energy minimization program for natural rock compositions. The results of these calculations provide maps of the varia- tions in rock properties as a function of pressure and temperature that are easily incor- porated in any dynamic model computations. In this contribution we implemented a density map in the two-dimensional basin code TECMOD2D. We compare the results of the model with metamorphic reactions with a model without reactions and define some effective parameters that allow the use of a simpler model that still mimics most of the density effects of the metamorphic reactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P44B..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P44B..04G"><span>Evolution of Lunar Crater Ejecta Through Time: Influence of Crater Size on the Record of Dynamic Processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghent, R. R.; Tai Udovicic, C.; Mazrouei, S.; Bottke, W. F., Jr.</p> <p>2017-12-01</p> <p>The bombardment history of the Moon holds the key to understanding important aspects of the evolution of the Solar System at 1AU. It informs our thinking about the rates and chronology of events on other planetary bodies and the evolution of the asteroid belt. In previous work, we established a quantitative relationship between the ages of lunar craters and the rockiness of their ejecta. That result was based on the idea that crater-forming impacts eject rocks from beneath the regolith, instantaneously emplacing a deposit with characteristic initial physical properties, such as rock abundance. The ejecta rocks are then gradually removed and / or covered by a combination of mechanical breakdown via micrometeorite bombardment, emplacement of regolith fines due to nearby impacts, and possibly rupture due to thermal stresses. We found that ejecta rocks, as detected by the Lunar Reconnaissance Orbiter Diviner thermal radiometer disappear on a timescale of 1 Gyr, eventually becoming undetectable by the Diviner instrument against the ambient background rock abundance of the regolith.The "index" craters we used to establish the rock abundance—age relationship are all larger than 15 km (our smallest index crater is Byrgius A, at 18.7 km), and therefore above the transition diameter between simple and complex craters (15-20 km). Here, we extend our analysis to include craters smaller than the transition diameter. It is not obvious a priori that the initial ejecta properties of simple and complex craters should be identical, and therefore, that the same metrics of crater age can be applied to both populations. We explore this issue using LRO Diviner rock abundance and a high-resolution optical maturity dataset derived from Kaguya multiband imager VIS/NIR data to identify young craters to 5 km diameter. We examine the statistical properties of this population relative to that of the NEO population, and interpret the results in the context of our recently documented evidence for changes in the flux of impactors that create larger craters. Finally, we detail implications of our result for understanding the dynamic history of the lunar surface and the evolution of the asteroid belt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25071241','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25071241"><span>Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko</p> <p>2014-08-28</p> <p>It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. © 2014 The Author(s) Published by the Royal Society. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910631D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910631D"><span>Knowledge representation of rock plastic deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davarpanah, Armita; Babaie, Hassan</p> <p>2017-04-01</p> <p>The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28362082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28362082"><span>Pore-Scale Geochemical Reactivity Associated with CO2 Storage: New Frontiers at the Fluid-Solid Interface.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Noiriel, Catherine; Daval, Damien</p> <p>2017-04-18</p> <p>The reactivity of carbonate and silicate minerals is at the heart of porosity and pore geometry changes in rocks injected with CO 2 , which ultimately control the evolution of flow and transport properties of fluids in porous and/or fractured geological reservoirs. Modeling the dynamics of CO 2 -water-rock interactions is challenging because of the resulting large geochemical disequilibrium, the reservoir heterogeneities, and the large space and time scales involved in the processes. In particular, there is a lack of information about how the macroscopic properties of a reservoir, e.g., the permeability, will evolve as a result of geochemical reactions at the molecular scale. Addressing this point requires a fundamental understanding of how the microstructures influence the macroscopic properties of rocks. The pore scale, which ranges from a few nanometers to centimeters, has stood out as an essential scale of observation of geochemical processes in rocks. Transport or surface reactivity limitations due to the pore space architecture, for instance, are best described at the pore scale itself. It can be also considered as a mesoscale for aggregating and increasing the gain of fundamental understanding of microscopic interfacial processes. Here we focus on the potential application of a combination of physicochemical measurements coupled with nanoscale and microscale imaging techniques during laboratory experiments to improve our understanding of the physicochemical mechanisms that occur at the fluid-solid interface and the dynamics of the coupling between the geochemical reactions and flow and transport modifications at the pore scale. Imaging techniques such as atomic force microscopy, vertical scanning interferometry, focused ion beam transmission electron microscopy, and X-ray microtomography, are ideal for investigating the reactivity dynamics of these complex materials. Minerals and mineral assemblages, i.e., rocks, exhibit heterogeneous and anisotropic reactivity, which challenges the continuum description of porous media and assumptions required for reactive transport modeling at larger scales. The conventional approach, which consists of developing dissolution rate laws normalized to the surface area, should be revisited to account for both the anisotropic crystallographic structure of minerals and the transport of chemical species near the interface, which are responsible for the intrinsic evolution of the mineral dissolution rate as the reaction progresses. In addition, the crystal morphology and the mineral assemblage composition, texture, and structural heterogeneities are crucial in determining whether the permeability and transport properties of the reservoir will be altered drastically or maintain the sealing properties required to ensure the safe sequestration of CO 2 for hundreds of years. Investigating the transport properties in nanometer- to micrometer-thick amorphous Si-rich surface layers (ASSLs), which develop at the fluid-mineral interface in silicates, provides future direction, as ASSLs may prevent contact between the dissolving solids and the pore fluid, potentially inhibiting the dissolution/carbonation process. Equally, at a larger scale, the growth of micrometer- to millimeter-thick alteration layers, which result from the difference in reactivity between silicates and carbonates, slows the transport in the vicinity of the fluid-solid interface in polymineralic rocks, thus limiting the global reactivity of the carbonate matrix. In contrast, in pure limestone, the global reactivity of the monomineralic rock decreases because the flow localization promotes the local reactivity within the forming channels, thus enhancing permeability changes compared with more homogeneous dissolution of the rock matrix. These results indicate that the transformation of the rock matrix should control the evolution of the transport properties in reservoirs injected with CO 2 to the same extent as the intrinsic chemical reactivity of the minerals and the reservoir hydrodynamics. This process, which is currently not captured by large-scale modeling of reactive transport, should benefit from the increasing capabilities of noninvasive and nondestructive characterization tools for pore-scale processes, ultimately constraining reactive transport modeling and improving the reliability of predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1814005S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1814005S"><span>Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara</p> <p>2016-04-01</p> <p>Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D., & Gomez-Rivas, E. (2015). Transport efficiency and dynamics of hydraulic fracture networks. Frontiers in Physics, 3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR33A2640A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR33A2640A"><span>High strain rate behavior of saturated and non-saturated sandstone: implications for earthquake mechanisms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.</p> <p>2015-12-01</p> <p>Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical behavior, creating local overpressure in the pore that breaks the inter-granular cement. This strength-decreasing effect provides an explanation for the presence of pulverized and coseismically damaged rocks at depth and extends the range of dynamic stress where dynamic damage can occur in fault zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/211382','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/211382"><span>Summaries of FY 1995 geosciences research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>NONE</p> <p>1995-12-01</p> <p>The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAfES.137...22G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAfES.137...22G"><span>Estimation of static parameters based on dynamical and physical properties in limestone rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghafoori, Mohammad; Rastegarnia, Ahmad; Lashkaripour, Gholam Reza</p> <p>2018-01-01</p> <p>Due to the importance of uniaxial compressive strength (UCS), static Young's modulus (ES) and shear wave velocity, it is always worth to predict these parameters from empirical relations that suggested for other formations with same lithology. This paper studies the physical, mechanical and dynamical properties of limestone rocks using the results of laboratory tests which carried out on 60 the Jahrum and the Asmari formations core specimens. The core specimens were obtained from the Bazoft dam site, hydroelectric supply and double-curvature arch dam in Iran. The Dynamic Young's modulus (Ed) and dynamic Poisson ratio were calculated using the existing relations. Some empirical relations were presented to estimate uniaxial compressive strength, as well as static Young's modulus and shear wave velocity (Vs). Results showed the static parameters such as uniaxial compressive strength and static Young's modulus represented low correlation with water absorption. It is also found that the uniaxial compressive strength and static Young's modulus had high correlation with compressional wave velocity and dynamic Young's modulus, respectively. Dynamic Young's modulus was 5 times larger than static Young's modulus. Further, the dynamic Poisson ratio was 1.3 times larger than static Poisson ratio. The relationship between shear wave velocity (Vs) and compressional wave velocity (Vp) was power and positive with high correlation coefficient. Prediction of uniaxial compressive strength based on Vp was better than that based on Vs . Generally, both UCS and static Young's modulus (ES) had good correlation with Ed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3835167','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3835167"><span>Study on Roadheader Cutting Load at Different Properties of Coal and Rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2013-01-01</p> <p>The mechanism of cutting process of roadheader with cutting head was researched, and the influences of properties of coal and rock on cutting load were deeply analyzed. Aimed at the defects of traditional calculation method of cutting load on fully expressing the complex cutting process of cutting head, the method of finite element simulation was proposed to simulate the dynamic cutting process. Aimed at the characteristics of coal and rock which affect the cutting load, several simulations with different firmness coefficient were taken repeatedly, and the relationship between three-axis force and firmness coefficient was derived. A comparative analysis of cutting pick load between simulation results and theoretical formula was carried out, and a consistency was achieved. Then cutting process with a total cutting head was carried out on this basis. The results show that the simulation analysis not only provides a reliable guarantee for the accurate calculation of the cutting head load and improves the efficiency of the cutting head cutting test but also offers a basis for selection of cutting head with different geological conditions of coal or rock. PMID:24302866</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12703693','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12703693"><span>Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ravazzoli, C L; Santos, J E; Carcione, J M</p> <p>2003-04-01</p> <p>We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S21B4449V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S21B4449V"><span>Rupture Dynamics and Scaling Behavior of Hydraulically Stimulated Micro-Earthquakes in a Shale Reservoir</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Viegas, G. F.; Urbancic, T.; Baig, A. M.</p> <p>2014-12-01</p> <p>In hydraulic fracturing completion programs fluids are injected under pressure into fractured rock formations to open escape pathways for trapped hydrocarbons along pre-existing and newly generated fractures. To characterize the failure process, we estimate static and dynamic source and rupture parameters, such as dynamic and static stress drop, radiated energy, seismic efficiency, failure modes, failure plane orientations and dimensions, and rupture velocity to investigate the rupture dynamics and scaling relations of micro-earthquakes induced during a hydraulic fracturing shale completion program in NE British Columbia, Canada. The relationships between the different parameters combined with the in-situ stress field and rock properties provide valuable information on the rupture process giving insights into the generation and development of the fracture network. Approximately 30,000 micro-earthquakes were recorded using three multi-sensor arrays of high frequency geophones temporarily placed close to the treatment area at reservoir depth (~2km). On average the events have low radiated energy, low dynamic stress and low seismic efficiency, consistent with the obtained slow rupture velocities. Events fail in overshoot mode (slip weakening failure model), with fluids lubricating faults and decreasing friction resistance. Events occurring in deeper formations tend to have faster rupture velocities and are more efficient in radiating energy. Variations in rupture velocity tend to correlate with variation in depth, fault azimuth and elapsed time, reflecting a dominance of the local stress field over other factors. Several regions with different characteristic failure modes are identifiable based on coherent stress drop, seismic efficiency, rupture velocities and fracture orientations. Variations of source parameters with rock rheology and hydro-fracture fluids are also observed. Our results suggest that the spatial and temporal distribution of events with similar characteristic rupture behaviors can be used to determine reservoir geophysical properties, constrain reservoir geo-mechanical models, classify dynamic rupture processes for fracture models and improve fracture treatment designs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARS48010M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARS48010M"><span>Spiraling patterns in evolutionary models inspired by bacterial games with cyclic dominance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mobilia, Mauro</p> <p>2015-03-01</p> <p>Understanding the mechanisms allowing the maintenance of biodiversity is a central issue in biology. Evolutionary game theory, where the success of one species depends on what the others are doing, provides a promising framework to investigate this complex problem. Experiments on microbial populations have shown that cyclic local interactions promote species coexistence. In this context, rock-paper-scissors games - in which rock crushes scissors, scissors cut paper, and paper wraps rock - are often used to model the dynamics of populations in cyclic competition. After a brief survey of some inspiring experiments, I will discuss the subtle interplay between individuals' mobility and their local interactions in two-dimensional rock-paper-scissors systems. This leads to the loss of biodiversity above a certain mobility threshold, and to the formation of spiraling patterns below the critical mobility rate. I will then study a generic rock-paper-scissors metapopulation model formulated on a two-dimensional grid of patches. When these have a large carrying capacity, the model's dynamics is faithfully described in terms of the system's complex Ginzburg-Landau equation properly derived from a multiscale expansion. The properties of the ensuing complex Ginzburg-Landau equation are exploited to derive the system's phase diagram and to characterize the spatio-temporal properties of the spiraling patterns in each phase. This enables us to analyze the spiral waves stability, how these are influenced by linear and nonlinear diffusion, and to discuss phenomena such as far-field breakup. Presentation mainy based on joint work with B. Szczesny and A. M. Rucklidge. Fruitful earlier collaborations with E. Frey, Q. He, T. Reichenbach, and U. C. Täuber are also acknowledged. Work supported by the UK EPSRC (Grant No. EP/P505593/1).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2003/0501/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2003/0501/"><span>Surficial and bedrock geologic map database of the Kelso 7.5 Minute quadrangle, San Bernardino County, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bedford, David R.</p> <p>2003-01-01</p> <p>This geologic map database describes geologic materials for the Kelso 7.5 Minute Quadrangle, San Bernardino County, California. The area lies in eastern Mojave Desert of California, within the Mojave National Preserve (a unit of the National Parks system). Geologic deposits in the area consist of Proterozoic metamorphic rocks, Cambrian-Neoproterozoic sedimentary rocks, Mesozoic plutonic and hypabyssal rocks, Tertiary basin fill, and Quaternary surficial deposits. Bedrock deposits are described by composition, texture, and stratigraphic relationships. Quaternary surficial deposits are classified into soil-geomorphic surfaces based on soil characteristics, inset relationships, and geomorphic expression. The surficial geology presented in this report is especially useful to understand, and extrapolate, physical properties that influence surface conditions, and surface- and soil-water dynamics. Physical characteristics such as pavement development, soil horizonation, and hydraulic characteristics have shown to be some of the primary drivers of ecologic dynamics, including recovery of those ecosystems to anthropogenic disturbance, in the eastern Mojave Desert and other arid and semi-arid environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.tmp.1237W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.tmp.1237W"><span>Analysis of Dynamic Fracture Compliance Based on Poroelastic Theory - Part II: Results of Numerical and Experimental Tests</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ding; Ding, Pin-bo; Ba, Jing</p> <p>2018-03-01</p> <p>In Part I, a dynamic fracture compliance model (DFCM) was derived based on the poroelastic theory. The normal compliance of fractures is frequency-dependent and closely associated with the connectivity of porous media. In this paper, we first compare the DFCM with previous fractured media theories in the literature in a full frequency range. Furthermore, experimental tests are performed on synthetic rock specimens, and the DFCM is compared with the experimental data in the ultrasonic frequency band. Synthetic rock specimens saturated with water have more realistic mineral compositions and pore structures relative to previous works in comparison with natural reservoir rocks. The fracture/pore geometrical and physical parameters can be controlled to replicate approximately those of natural rocks. P- and S-wave anisotropy characteristics with different fracture and pore properties are calculated and numerical results are compared with experimental data. Although the measurement frequency is relatively high, the results of DFCM are appropriate for explaining the experimental data. The characteristic frequency of fluid pressure equilibration calculated based on the specimen parameters is not substantially less than the measurement frequency. In the dynamic fracture model, the wave-induced fluid flow behavior is an important factor for the fracture-wave interaction process, which differs from the models at the high-frequency limits, for instance, Hudson's un-relaxed model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CG....111..213B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CG....111..213B"><span>Semantic modeling of plastic deformation of polycrystalline rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Babaie, Hassan A.; Davarpanah, Armita</p> <p>2018-02-01</p> <p>We have developed the first iteration of the Plastic Rock Deformation (PRD) ontology by modeling the semantics of a selected set of deformational processes and mechanisms that produce, reconfigure, displace, and/or consume the material components of inhomogeneous polycrystalline rocks. The PRD knowledge model also classifies and formalizes the properties (relations) that hold between instances of the dynamic physical and chemical processes and the rock components, the complex physio-chemical, mathematical, and informational concepts of the plastic rock deformation system, the measured or calculated laboratory testing conditions, experimental procedures and protocols, the state and system variables, and the empirical flow laws that define the inter-relationships among the variables. The ontology reuses classes and properties from several existing ontologies that are built for physics, chemistry, biology, and mathematics. With its flexible design, the PRD ontology is well positioned to incrementally develop into a model that more fully represents the knowledge of plastic deformation of polycrystalline rocks in the future. The domain ontology will be used to consistently annotate varied data and information related to the microstructures and the physical and chemical processes that produce them at different spatial and temporal scales in the laboratory and in the solid Earth. The PRDKB knowledge base, when built based on the ontology, will help the community of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and integration and query of heterogeneous experimental deformation data that originate from autonomous rock testing laboratories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/964283','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/964283"><span>2008 Gordon Research Conference on Rock Deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hirth, James G.; Gray, Nancy Ryan</p> <p>2009-09-21</p> <p>The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismologicalmore » data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the shallow crust that are important for developing ideas in CO2 sequestration, geothermal and petrochemical research and the mechanics of shallow faults.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BVol...75..728K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BVol...75..728K"><span>The influence of thermal and cyclic stressing on the strength of rocks from Mount St. Helens, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendrick, Jackie Evan; Smith, Rosanna; Sammonds, Peter; Meredith, Philip G.; Dainty, Matthew; Pallister, John S.</p> <p>2013-07-01</p> <p>Stratovolcanoes and lava domes are particularly susceptible to sector collapse resulting from wholesale rock failure as a consequence of decreasing rock strength. Here, we provide insights into the influence of thermal and cyclic stressing on the strength and mechanical properties of volcanic rocks. Specifically, this laboratory study examines the properties of samples from Mount St. Helens; chosen because its strength and stability have played a key role in its history, influencing the character of the infamous 1980 eruption. We find that thermal stressing exerts different effects on the strengths of different volcanic units; increasing the heterogeneity of rocks in situ. Increasing the uniaxial compressive stress generates cracking, the timing and magnitude of which was monitored via acoustic emission (AE) output during our experiments. AEs accelerated in the approach to failure, sometimes following the pattern predicted by the failure forecast method (Kilburn 2003). Crack damage during the experiments was tracked using the evolving static Young's modulus and Poisson's ratio, which represent the quasi-static deformation in volcanic edifices more accurately than dynamic elastic moduli which are usually implemented in volcanic models. Cyclic loading of these rocks resulted in a lower failure strength, confirming that volcanic rocks may be weakened by repeated inflation and deflation of the volcanic edifice. Additionally, volcanic rocks in this study undergo significant elastic hysteresis; in some instances, a material may fail at a stress lower than the peak stress which has previously been endured. Thus, a volcanic dome repeatedly inflated and deflated may progressively weaken, possibly inducing failure without necessarily exceeding earlier conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27956513','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27956513"><span>Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani</p> <p>2017-01-28</p> <p>This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5179973','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5179973"><span>Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kuokkala, Veli-Tapani</p> <p>2017-01-01</p> <p>This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956513</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMPSo..92...28S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMPSo..92...28S"><span>Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, Yongjia; Hu, Hengshan; Rudnicki, John W.</p> <p>2016-07-01</p> <p>Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003Tectp.370...31P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003Tectp.370...31P"><span>Direct measurement of 3D elastic anisotropy on rocks from the Ivrea zone (Southern Alps, NW Italy)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pros, Z.; Lokajíček, T.; Přikryl, R.; Klíma, K.</p> <p>2003-07-01</p> <p>Lower crustal and upper mantle rocks exposed at the earth's surface present direct possibility to measure their physical properties that must be, in other cases, interpreted using indirect methods. The results of these direct measurements can be then used for the corrections of models based on the indirect data. Elastic properties are among the most important parameters studied in geophysics and employed in many fields of earth sciences. In laboratory, dynamic elastic properties are commonly tested in three mutually perpendicular directions. The spatial distribution of P- and S-wave velocities are then computed using textural data, modal composition, density and elastic constants. During such computation, it is virtually impossible to involve all microfabric parameters like different types of microcracking, micropores, mineral alteration or quality of grain boundaries. In this study, complete 3D ultrasonic transmission of spherical samples in 132 independent directions at several levels of confining pressure up to 400 MPa has been employed for study of selected mafic and ultrabasic rocks sampled in and nearby Balmuccia ultrabasic massif (Ivrea zone, Southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetries (orthorhombic vs. transversal isotropic) of elastic waves 3D distribution that has not been recorded on these rocks before. Moreover, one dunite sample exhibits P-wave velocity approaching to that of olivine single crystal being interpreted as influence of CPO.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9954A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9954A"><span>Estimating Rheological Parameters of Anhydrite from Folded Evaporite sequences: Implications for Internal Dynamics of Salt Structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adamuszek, Marta; Dabrowski, Marcin; Schmalholz, Stefan M.; Urai, Janos L.; Raith, Alexander</p> <p>2015-04-01</p> <p>Salt structures have been identified as a potential target for hydrocarbon, CO2, or radioactive waste storage. The most suitable locations for magazines are considered in the thick and relatively homogeneous rock salt layers. However, salt structures often consist of the evaporite sequence including rock salt intercalated with other rock types e.g.: anhydrite, gypsum, potassium and magnesium salt, calcite, dolomite, or shale. The presence of such heterogeneities causes a serious disturbance in the structure management. Detailed analysis of the internal architecture and internal dynamics of the salt structure are crucial for evaluating them as suitable repositories and also their long-term stability. The goal of this study is to analyse the influence of the presence of anhydrite layers on the internal dynamics of salt structures. Anhydrite is a common rock in evaporite sequences. Its physical and mechanical properties strongly differ from the properties of rock salt. The density of anhydrite is much higher than the density of salt, thus anhydrite is likely to sink in salt causing the disturbance of the surrounding structures. This suggestion was the starting point to the discussion about the long-term stability of the magazines in salt structures [1]. However, the other important parameter that has to be taken into account is the viscosity of anhydrite. The high viscosity ratio between salt and anhydrite can restrain the layer from sinking. The rheological behaviour of anhydrite has been studied in laboratory experiments [2], but the results only provide information about the short-term behaviour. The long-term behaviour can be best predicted using indirect methods e.g. based on the analysis of natural structures that developed over geological time scale. One of the most promising are fold structures, the shape of which is very sensitive to the rheological parameters of the deforming materials. Folds can develop in mechanically stratified materials during layer parallel shortening. Mechanical model have been developed to rigorously correlate rheological properties of rock to the fold shape. A quantitative fold shape analysis combined with the folding theory allows deciphering the rock rheology. In this study, we analyse anhydrite layers embedded in the rock salt from the Upper Permian Zechstein salt formation from Dutch offshore. The anhydrite layers are common intercalation in the sequence. Their thickness varies between few millimetres up to hundred meters. The layers are strongly deformed often forming fold structures, which can be observed on a wide range of scales: in core samples, mine galleries, and also in the seismic sections. For our analysis, we select single layer fold trains. Quantitative fold shape analysis is carried out using Fold Geometry Toolbox [3], which allows deciphering the viscosity ratio between anhydrite and salt. The results indicate that anhydrite layer is ca. 10 to 30 times more viscous than the embedding salt. Further, we use the estimated rheological parameters of anhydrite in the numerical analysis of the internal salt dynamics. We solve an incompressible Stokes equation in the presence of the gravity using the finite element method solver MILAMIN [4]. We show that the presence of denser and more viscous anhydrite layers in the tectonically stable regime is insignificant for the internal stability of the salt structures. [1] Chemia, Z., Koyi, H., Schmeling, H. 2008. Numerical modelling of rise and fall of a dense layer in salt diapirs. Geophysical Journal International, 172: 798-816. [2] Muller, W.H., Briegel, U. 1978. The rheological behaviour of polycrystalline Anhydrite. Eclogae Geol. Helv, 71(2): 397-407 [3] Adamuszek M., Schmid D.W., Dabrowski M. 2011. Fold geometry toolbox - Automated determination of fold shape, shortening, and material properties, Journal of Structural Geology, 33: 1406-1416. [4] Dabrowski, M., Krotkiewski, M., and Schmid, D. W. 2008. MILAMIN: MATLAB-based finite element method solver for large problems. Geochemistry Geophysics Geosystems, 9: Q04030.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJASE...9..191F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJASE...9..191F"><span>Seismic performance of arch dams on non-homogeneous and discontinuous foundations (a case study: Karun 4 Dam)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferdousi, A.</p> <p>2017-06-01</p> <p>The present study set out to investigate the nonlinear seismic response of the dam-reservoir-rock foundation system, taking into consideration the effects of change in the material properties of discontinuous foundation. To this end, it is important to provide the proper modeling of truncated boundary conditions at the far-end of rock foundation and reservoir fluid domain and to correctly apply the in situ stresses for rock foundation. The nonlinear seismic response of an arch dam mainly depends on the opening and sliding of the dam body's contraction joints and foundation discontinuities, failure of the jointed rock and concrete materials, etc. In this paper, a time domain dynamic analysis of the 3D dam-reservoir-foundation interaction problem was performed by developing a nonlinear Finite Element program. The results of the analysis of Karun-4 Dam revealed the essential role of modeling discontinuities and boundary conditions of rock foundation under seismic excitation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..462H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..462H"><span>The soil water regime of stony soils in a mountain catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hlaváčiková, Hana; Danko, Michal; Holko, Ladislav; Hlavčo, Jozef; Novák, Viliam</p> <p>2016-04-01</p> <p>Investigation of processes related to runoff generation is an important topic in catchment hydrology. Observations are usually carried out in small catchments or on hillslopes. Many of such catchments are located in mountain or forested areas. From many studies it is evident that soil conditions and soil characteristics are one of the crucial factors in runoff generation. Mountainous or forest soils have usually high rock fragments content. Nevertheless, the influence of soil stoniness on water flow was not sufficiently studied up to now at catchment and hillslope scales due to flow formation complexity or problems with stony soil properties measurement (installing measuring devices, interpretation of measured data). Results of this work can be divided in two groups: (1) hydrophysical properties of stony soils measurements, and (2) water flow dynamic modelling in stony soils. Properties of stony soils were measured in the Jalovecky creek catchment, the Western Tatra Mts., Slovakia. Altitude of particular study sites varies from 780 to1500 m a.s.l. We measured and analyzed the stoniness of reference soil profiles, as well as retention properties of stony soils (fine soil fraction and rock fragments separately) and hydraulic conductivities of surface and subsurface soil layers. The methodology for determination of the effective hydrophysical properties of a stony soil (later used in modelling) was proposed using results from measurements, calculation, and numerical Darcy experiments. Modelling results show that the presence of rock fragments with low water retention in a stony soil with moderate or high stoniness can cause the soil water storage decrease by 16-31% in compared to the soil without rock fragments. In addition, decreased stony soil retention capacity resulted in faster outflow increase at the bottom of the soil profile during non-ponding infiltration. Furthermore, the presence of rock fragments can increase maximum outflow value. It is not possible to simply extrapolate the results from a soil profile to larger catchment scale because spatial variability of soil properties and unknown bedrock properties. Moreover, water outflow from the soil profile is a complex problem in which several factors co-operate. However, this points out that the presence of rock fragments in moderate or highly stony soils can play a significant role in catchment runoff generation under certain circumstances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.7366T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.7366T"><span>Lattice Boltzmann simulation of CO2 reactive transport in network fractured media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, Zhiwei; Wang, Junye</p> <p>2017-08-01</p> <p>Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.212..189S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.212..189S"><span>Stress-dependent elastic properties of shales—laboratory experiments at seismic and ultrasonic frequencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szewczyk, Dawid; Bauer, Andreas; Holt, Rune M.</p> <p>2018-01-01</p> <p>Knowledge about the stress sensitivity of elastic properties and velocities of shales is important for the interpretation of seismic time-lapse data taken as part of reservoir and caprock surveillance of both unconventional and conventional oil and gas fields (e.g. during 4-D monitoring of CO2 storage). Rock physics models are often developed based on laboratory measurements at ultrasonic frequencies. However, as shown previously, shales exhibit large seismic dispersion, and it is possible that stress sensitivities of velocities are also frequency dependent. In this work, we report on a series of seismic and ultrasonic laboratory tests in which the stress sensitivity of elastic properties of Mancos shale and Pierre shale I were investigated. The shales were tested at different water saturations. Dynamic rock engineering parameters and elastic wave velocities were examined on core plugs exposed to isotropic loading. Experiments were carried out in an apparatus allowing for static-compaction and dynamic measurements at seismic and ultrasonic frequencies within single test. For both shale types, we present and discuss experimental results that demonstrate dispersion and stress sensitivity of the rock stiffness, as well as P- and S-wave velocities, and stiffness anisotropy. Our experimental results show that the stress-sensitivity of shales is different at seismic and ultrasonic frequencies, which can be linked with simultaneously occurring changes in the dispersion with applied stress. Measured stress sensitivity of elastic properties for relatively dry samples was higher at seismic frequencies however, the increasing saturation of shales decreases the difference between seismic and ultrasonic stress-sensitivities, and for moist samples stress-sensitivity is higher at ultrasonic frequencies. Simultaneously, the increased saturation highly increases the dispersion in shales. We have also found that the stress-sensitivity is highly anisotropic in both shales and that in some of the cases higher stress-sensitivity of elastic properties can be seen in the direction parallel to the bedding plane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015RMRE...48.1867Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015RMRE...48.1867Z"><span>Dynamic Brazilian Test of Rock Under Intermediate Strain Rate: Pendulum Hammer-Driven SHPB Test and Numerical Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, W. C.; Niu, L. L.; Li, S. H.; Xu, Z. H.</p> <p>2015-09-01</p> <p>The tensile strength of rock subjected to dynamic loading constitutes many engineering applications such as rock drilling and blasting. The dynamic Brazilian test of rock specimens was conducted with the split Hopkinson pressure bar (SHPB) driven by pendulum hammer, in order to determine the indirect tensile strength of rock under an intermediate strain rate ranging from 5.2 to 12.9 s-1, which is achieved when the incident bar is impacted by pendulum hammer with different velocities. The incident wave excited by pendulum hammer is triangular in shape, featuring a long rising time, and it is considered to be helpful for achieving a constant strain rate in the rock specimen. The dynamic indirect tensile strength of rock increases with strain rate. Then, the numerical simulator RFPA-Dynamics, a well-recognized software for simulating the rock failure under dynamic loading, is validated by reproducing the Brazilian test of rock when the incident stress wave retrieved at the incident bar is input as the boundary condition, and then it is employed to study the Brazilian test of rock under the higher strain rate. Based on the numerical simulation, the strain-rate dependency of tensile strength and failure pattern of the Brazilian disc specimen under the intermediate strain rate are numerically simulated, and the associated failure mechanism is clarified. It is deemed that the material heterogeneity should be a reason for the strain-rate dependency of rock.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1390518-rock-salt-structure-lithium-deuteride-formation-liquid-lithium-high-concentrations-deuterium-first-principles-molecular-dynamics-study','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1390518-rock-salt-structure-lithium-deuteride-formation-liquid-lithium-high-concentrations-deuterium-first-principles-molecular-dynamics-study"><span>Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...</p> <p>2015-12-17</p> <p>Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H23B1589P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H23B1589P"><span>Rock Content Influence on Soil Hydraulic Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parajuli, K.; Sadeghi, M.; Jones, S. B.</p> <p>2015-12-01</p> <p>Soil hydraulic properties including the soil water retention curve (SWRC) and hydraulic conductivity function are important characteristics of soil affecting a variety of soil properties and processes. The hydraulic properties are commonly measured for seived soils (i.e. particles < 2 mm), but many natural soils include rock fragments of varying size that alter bulk hydraulic properties. Relatively few studies have addressed this important problem using physically-based concepts. Motivated by this knowledge gap, we set out to describe soil hydraulic properties using binary mixtures (i.e. rock fragment inclusions in a soil matrix) based on individual properties of the rock and soil. As a first step of this study, special attention was devoted to the SWRC, where the impact of rock content on the SWRC was quantified using laboratory experiments for six different mixing ratios of soil matrix and rock. The SWRC for each mixture was obtained from water mass and water potential measurements. The resulting data for the studied mixtures yielded a family of SWRC indicating how the SWRC of the mixture is related to that of the individual media, i.e., soil and rock. A consistent model was also developed to describe the hydraulic properties of the mixture as a function of the individual properties of the rock and soil matrix. Key words: Soil hydraulic properties, rock content, binary mixture, experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V34C..01H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V34C..01H"><span>On the physical properties of volcanic rock masses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heap, M. J.; Villeneuve, M.; Ball, J. L.; Got, J. L.</p> <p>2017-12-01</p> <p>The physical properties (e.g., elastic properties, porosity, permeability, cohesion, strength, amongst others) of volcanic rocks are crucial input parameters for modelling volcanic processes. These parameters, however, are often poorly constrained and there is an apparent disconnect between modellers and those who measure/determine rock and rock mass properties. Although it is well known that laboratory measurements are scale dependent, experimentalists, field volcanologists, and modellers should work together to provide the most appropriate model input parameters. Our pluridisciplinary approach consists of (1) discussing with modellers to better understand their needs, (2) using experimental know-how to build an extensive database of volcanic rock properties, and (3) using geotechnical and field-based volcanological know-how to address scaling issues. For instance, increasing the lengthscale of interest from the laboratory-scale to the volcano-scale will reduce the elastic modulus and strength and increase permeability, but to what extent? How variable are the physical properties of volcanic rocks, and is it appropriate to assume constant, isotropic, and/or homogeneous values for volcanoes? How do alteration, depth, and temperature influence rock physical and mechanical properties? Is rock type important, or do rock properties such as porosity exert a greater control on such parameters? How do we upscale these laboratory-measured properties to rock mass properties using the "fracturedness" of a volcano or volcanic outcrop, and how do we quantify fracturedness? We hope to discuss and, where possible, address some of these issues through active discussion between two (or more) scientific communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10109493','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10109493"><span>Summaries of FY 1994 geosciences research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1994-12-01</p> <p>The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scopemore » of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ConPh..57..151Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ConPh..57..151Z"><span>The rock-paper-scissors game</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Hai-Jun</p> <p>2016-04-01</p> <p>Rock-Paper-Scissors (RPS), a game of cyclic dominance, is not merely a popular children's game but also a basic model system for studying decision-making in non-cooperative strategic interactions. Aimed at students of physics with no background in game theory, this paper introduces the concepts of Nash equilibrium and evolutionarily stable strategy, and reviews some recent theoretical and empirical efforts on the non-equilibrium properties of the iterated RPS, including collective cycling, conditional response patterns and microscopic mechanisms that facilitate cooperation. We also introduce several dynamical processes to illustrate the applications of RPS as a simplified model of species competition in ecological systems and price cycling in economic markets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H21B0727D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H21B0727D"><span>Air and groundwater flow at the interface between fractured host rock and a bentonite buffer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dessirier, B.; Jarsjo, J.; Frampton, A.</p> <p>2014-12-01</p> <p>Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1257766','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1257766"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Bin; Wang, Xue -Peng; Shen, Zhen -Ju</p> <p></p> <p>Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) atmore » an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Furthermore, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1257766-vacancy-structures-melting-behavior-rock-salt-gesbte','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1257766-vacancy-structures-melting-behavior-rock-salt-gesbte"><span>Vacancy structures and melting behavior in rock-salt GeSbTe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Zhang, Bin; Wang, Xue -Peng; Shen, Zhen -Ju; ...</p> <p>2016-05-03</p> <p>Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) atmore » an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Furthermore, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4853729','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4853729"><span>Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Bin; Wang, Xue-Peng; Shen, Zhen-Ju; Li, Xian-Bin; Wang, Chuan-Shou; Chen, Yong-Jin; Li, Ji-Xue; Zhang, Jin-Xing; Zhang, Ze; Zhang, Sheng-Bai; Han, Xiao-Dong</p> <p>2016-01-01</p> <p>Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) at an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Moreover, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe. PMID:27140674</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EUCAS..10...73I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EUCAS..10...73I"><span>Neural network adaptive control of wing-rock motion of aircraft model mounted on three-degree-of-freedom dynamic rig in wind tunnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ignatyev, D. I.</p> <p>2018-06-01</p> <p>High-angles-of-attack dynamics of aircraft are complicated with dangerous phenomena such as wing rock, stall, and spin. Autonomous dynamically scaled aircraft model mounted in three-degree-of-freedom (3DoF) dynamic rig is proposed for studying aircraft dynamics and prototyping of control laws in wind tunnel. Dynamics of the scaled aircraft model in 3DoF manoeuvre rig in wind tunnel is considered. The model limit-cycle oscillations are obtained at high angles of attack. A neural network (NN) adaptive control suppressing wing rock motion is designed. The wing rock suppression with the proposed control law is validated using nonlinear time-domain simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H13R..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H13R..05M"><span>A Microfluidics Study to Quantify the Impact of Microfracture Properties on Two-Phase Flow in Tight Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mehmani, A.; Kelly, S. A.; Torres-Verdin, C.; Balhoff, M.</p> <p>2017-12-01</p> <p>Microfluidics provides the opportunity for controlled experiments of immiscible fluid dynamics in quasi two-dimensional permeable media and allows their direct observation. We leverage microfluidics to investigate the impact of microfracture properties on water imbibition and drainage in a porous matrix. In the context of this work, microfractures are defined as apertures or preferential flow paths formed along planes of weakness, such as between two different rock fabrics. Patterns of pseudo-microfractures with orientations from parallel and perpendicular to fluid flow as well as variations in their connectivity were fabricated in glass micromodels; surface roughness of the micromodels was also varied utilizing a new method. Light microscopy and image analysis were used to quantify transient front advancement and trapped non-wetting phase saturation during imbibition as well as residual wetting phase saturation and its spatial distribution following drainage. Our experiments enable the assessment of quantitative relationships between fluid invasion rate and residual phase distributions as functions of microfracture network properties. Ultimately, the wide variety of microfluidic experiments performed in this study provide valuable insight into two-phase fluid dynamics in microfracture/matrix networks, the extent of fracture fluid invasion, and the saturation of trapped phases. In reservoir description, the geometries of subsurface fractures are often difficult to ascertain, but the distribution of rock types in a zone, from highly laminated to homogenous, can be reliably assessed with core data and well logs. Assuming that microcracks are functions of lamination planes (thin beds), then a priori predictions of the effect of microcracks on two-phase fluid flow across various geological conditions can possibly be upscaled via effective lamination properties. Such upscaling can significantly reduce the uncertainties associated with subsurface operations, including reservoir production, carbon storage and sequestration, and hazardous waste sequestration. A reliable prediction of capillary trapping, for instance, can determine the fracture fluid saturation subsequent to hydraulic fracturing of unconventional formations or the efficacy of water flooding in fractured reservoirs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..627K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..627K"><span>Coupled Viscous Fluid Flow and Joint Deformation Analysis for Grout Injection in a Rock Joint</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Hyung-Mok; Lee, Jong-Won; Yazdani, Mahmoud; Tohidi, Elham; Nejati, Hamid Reza; Park, Eui-Seob</p> <p>2018-02-01</p> <p>Fluid flow modeling is a major area of interest within the field of rock mechanics. The main objective of this study is to gain insight into the performance of grout injection inside jointed rock masses by numerical modeling of grout flow through a single rock joint. Grout flow has been widely simulated using non-Newtonian Bingham fluid characterized by two main parameters of dynamic viscosity and shear yield strength both of which are time dependent. The increasing value of these properties with injection time will apparently affect the parameters representing the grouting performance including grout penetration length and volumetric injection rate. In addition, through hydromechanical coupling a mutual influence between the injection pressure from the one side and the joint opening/closing behavior and the aperture profile variation on the other side is anticipated. This is capable of producing a considerable impact on grout spread within the rock joints. In this study based on the Bingham fluid model, a series of numerical analysis has been conducted using UDEC to simulate the flow of viscous grout in a single rock joint with smooth parallel surfaces. In these analyses, the time-dependent evolution of the grout fluid properties and the hydromechanical coupling have been considered to investigate their impact on grouting performance. In order to verify the validity of these simulations, the results of analyses including the grout penetration length and the injection flow rate were compared with a well-known analytical solution which is available for the simple case of constant grout properties and non-coupled hydraulic analysis. The comparison demonstrated that the grout penetration length can be overestimated when the time-dependent hardening of grout material is not considered. Moreover, due to the HM coupling, it was shown that the joint opening induced by injection pressure may have a considerable increasing impression on the values of penetration length and injected grout volume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..248a2023G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..248a2023G"><span>Dynamic response analysis of surrounding rock under the continuous blasting seismic wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gao, P. F.; Zong, Q.; Xu, Y.; Fu, J.</p> <p>2017-10-01</p> <p>The blasting vibration that is caused by blasting excavation will generate a certain degree of negative effect on the stability of surrounding rock in underground engineering. A dynamic response analysis of surrounding rock under the continuous blasting seismic wave is carried out to optimize blasting parameters and guide underground engineering construction. Based on the theory of wavelet analysis, the reconstructed signals of each layer of different frequency bands are obtained by db8 wavelet decomposition. The difference of dynamic response of the continuous blasting seismic wave at a certain point caused by different blasting sources is discussed. The signal in the frequency band of natural frequency of the surrounding rock shows a certain degree of amplification effect deduced from the dynamic response characteristics of the surrounding rock under the influence of continuous blasting seismic wave. Continuous blasting operations in a fixed space will lead to the change of internal structure of the surrounding rock. It may result in the decline of natural frequency of the whole surrounding rock and it is also harmful for the stability of the surrounding rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.4441T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.4441T"><span>Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant</p> <p>2016-11-01</p> <p>The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..613L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..613L"><span>Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai</p> <p>2018-02-01</p> <p>Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014RMRE...47.1839N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014RMRE...47.1839N"><span>Brittleness Effect on Rock Fatigue Damage Evolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nejati, Hamid Reza; Ghazvinian, Abdolhadi</p> <p>2014-09-01</p> <p>The damage evolution mechanism of rocks is one of the most important aspects in studying of rock fatigue behavior. Fatigue damage evolution of three rock types (onyx marble, sandstone and soft limestone) with different brittleness were considered in the present study. Intensive experimental tests were conducted on the chosen rock samples and acoustic emission (AE) sensors were used in some of them to monitor the fracturing process. Experimental tests indicated that brittleness strongly influences damage evolution of rocks in the course of static and dynamic loading. AE monitoring revealed that micro-crack density induced by the applied loads during different stages of the failure processes increases as rock brittleness increases. Also, results of fatigue tests on the three rock types indicated that the rock with the most induced micro-cracks during loading cycles has the least fatigue life. Furthermore, the condition of failure surfaces of the studied rocks samples, subjected to dynamic and static loading, were evaluated and it was concluded that the roughness of failure surfaces is influenced by loading types and rock brittleness. Dynamic failure surfaces were rougher than static ones and low brittle rock demonstrate a smoother failure surface compared to high brittle rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FNL....1450006D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FNL....1450006D"><span>The Usability of Noise Level from Rock Cutting for the Prediction of Physico-Mechanical Properties of Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Delibalta, M. S.; Kahraman, S.; Comakli, R.</p> <p>2015-11-01</p> <p>Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20083126','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20083126"><span>Oscillatory dynamics in rock-paper-scissors games with mutations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mobilia, Mauro</p> <p>2010-05-07</p> <p>We study the oscillatory dynamics in the generic three-species rock-paper-scissors games with mutations. In the mean-field limit, different behaviors are found: (a) for high mutation rate, there is a stable interior fixed point with coexistence of all species; (b) for low mutation rates, there is a region of the parameter space characterized by a limit cycle resulting from a Hopf bifurcation; (c) in the absence of mutations, there is a region where heteroclinic cycles yield oscillations of large amplitude (not robust against noise). After a discussion on the main properties of the mean-field dynamics, we investigate the stochastic version of the model within an individual-based formulation. Demographic fluctuations are therefore naturally accounted and their effects are studied using a diffusion theory complemented by numerical simulations. It is thus shown that persistent erratic oscillations (quasi-cycles) of large amplitude emerge from a noise-induced resonance phenomenon. We also analytically and numerically compute the average escape time necessary to reach a (quasi-)cycle on which the system oscillates at a given amplitude. Copyright (c) 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7453S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7453S"><span>Geothermal alteration of Kamchatka rock physical properties: experimental and pore-scale modeling study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shanina, Violetta; Gerke, Kirill; Bichkov, Andrey; Korost, Dmitry</p> <p>2013-04-01</p> <p>Alternative renewable energy sources research is getting more and more attention due to its importance for future exploitation and low ecological impacts. Geothermal energy is quite abundant and represents a cheap and easily extractable power source for electricity generation or central heating. For these purposes naturally heated geothermal fluids are extracted via drilled wells; after cooling water is usually pumped back to the reservoir to create a circle, or dumped into local streams. In addition to fundamental interest in understanding natural geothermal processes inside the reservoir, in both cases fluids can significantly alter rock properties around the well or stream bed, which is of great practical and ecological importance for the geothermal industry. Detailed knowledge of these transformations is necessary for power plant construction and well design, geophysical modeling and the prediction of geological properties. Under natural conditions such processes occur within geological time frames and are hard to capture. To accelerate geothermal alteration and model deep reservoir high temperature and pressure conditions we use autoclave laboratory experiments. To represent different geothermal conditions, rock samples are autoclaved using a wide range of parameters: temperature (100-450°C), pressure (16-1000 Bars), solution chemistry (from acidic to alkali artificial solutions and natural geothermal fluids sampled in Kamchatka), duration (from weeks to 1 year). Rock samples represent unaltered andesite-dacite tuffs, basalts and andesite collected at the Kamchatka peninsula. Numerous rock properties, e.g., density (bulk and specific), porosity (total and effective), hygroscopicity, P/S wave velocities, geomechanical characteristics (compressive and tensile strength, elastic modulus), etc., were thoroughly analyzed before and after alteration in laboratory autoclave or natural conditions (in situ). To reveal structural changes, some samples were scanned using X-ray microtomography prior to any alteration and after the experiments. 3D images were used to quantify structural changes and to determine permeability values using a pore-scale modeling approach, as laboratory measurements with through flow are known to have a potential to modify the pore structure. Chemical composition and local mineral formations were investigated using a «Spectroscan Max GV» spectrometer and scanning electron microscope imaging. Our study revealed significant relationships between structure modifications, physical properties and alteration conditions. Main results and conclusions include: 1) initial porosity and its connectivity have substantial effect on alteration dynamics, rocks with higher porosity values and connected pore space exhibit more pronounced alterations; 2) under similar experimental conditions (pressure, temperature, duration) pH plays an important role, acidic conditions result in significant new mineral formation; 3) almost all physical properties, including porosity, permeability, and elastic properties, were seriously modified in the modeled geothermal processes within short (from geological point of view) time frames; 4) X-ray microtomography was found useful for mineral phases distribution and the pore-scale modeling approach was found to be a promising technique to numerically obtain rock properties based on 3D scans; 5) we conclude that alteration and change of reservoir rocks should be taken into account for re-injecting well and geothermal power-plant design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23520108','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23520108"><span>Simple scaling of catastrophic landslide dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ekström, Göran; Stark, Colin P</p> <p>2013-03-22</p> <p>Catastrophic landslides involve the acceleration and deceleration of millions of tons of rock and debris in response to the forces of gravity and dissipation. Their unpredictability and frequent location in remote areas have made observations of their dynamics rare. Through real-time detection and inverse modeling of teleseismic data, we show that landslide dynamics are primarily determined by the length scale of the source mass. When combined with geometric constraints from satellite imagery, the seismically determined landslide force histories yield estimates of landslide duration, momenta, potential energy loss, mass, and runout trajectory. Measurements of these dynamical properties for 29 teleseismogenic landslides are consistent with a simple acceleration model in which height drop and rupture depth scale with the length of the failing slope.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GGG....1212013S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GGG....1212013S"><span>Seismically damaged regolith as self-organized fragile geological feature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sleep, Norman H.</p> <p>2011-12-01</p> <p>The S-wave velocity in the shallow subsurface within seismically active regions self-organizes so that typical strong dynamic shear stresses marginally exceed the Coulomb elastic limit. The dynamic velocity from major strike-slip faults yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic shear strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic shear stress is this quantity times the local shear modulus. The dynamic shear traction on fault parallel vertical planes is finite at the free surface. Coulomb failure occurs on favorably oriented fractures and internally in intact rock. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock extending all the way to the surface. The imposed dynamic shear strain in stiff rock causes Coulomb failure at shallow depths and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Cracked rock is also weaker in friction, but shear modulus changes have a larger effect. Each subsequent event causes additional shallow cracking until the rock becomes compliant enough that it just reaches Coulomb failure over a shallow depth range of tens to hundreds of meters. Further events maintain the material at the shear modulus as a function where it just fails. The formalism provided in the paper yields reasonable representation of the S-wave velocity in exhumed sediments near Cajon Pass and the San Fernando Valley of California. A general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.3947S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.3947S"><span>Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saksala, Timo</p> <p>2016-10-01</p> <p>This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ExG....49...11E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ExG....49...11E"><span>Study of the Nankai seismogenic fault using dynamic wave propagation modelling of digital rock from the Nobeoka Fault</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eng, Chandoeun; Ikeda, Tatsunori; Tsuji, Takeshi</p> <p>2018-10-01</p> <p>To understand the characteristics of the Nankai seismogenic fault in the plate convergent margin, we calculated the P- and S-wave velocities (VP and VS) of digital rock models constructed from core samples of an ancient plate boundary fault at Nobeoka, Kyushu Island, Japan. We first constructed 3D digital rock models from microcomputed tomography images and identified their heterogeneous textures such as cracks and veins. We replaced the cracks and veins with air, water, quartz, calcite and other materials with different bulk and shear moduli. Using the Rotated Staggered Grid Finite-Difference Method, we performed dynamic wave propagation simulations and quantified the effective VP, VS and the ratio of VP to VS (VP/VS) of the 3D digital rock models with different crack-filling minerals. Our results demonstrate that the water-saturated cracks considerably decreased the seismic velocity and increased VP/VS. The VP/VS of the quartz-filled rock model was lower than that in the water-saturated case and in the calcite-filled rock model. By comparing the elastic properties derived from the digital rock models with the seismic velocities (e.g. VP and VP/VS) around the seismogenic fault estimated from field seismic data, we characterised the evolution process of the deep seismogenic fault. The high VP/VS and low VP observed at the transition from aseismic to coseismic regimes in the Nankai Trough can be explained by open cracks (or fractures), while the low VP/VS and high VP observed at the deeper coseismic fault zone suggests quartz-filled cracks. The quartz-rich fault zone characterised as low VP/VS and high VP in this study could partially relate to the coseismic behaviour as suggested by previous studies, because quartz exhibits slip-weakening behaviour (i.e. unstable coseismic slip).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..79..472S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..79..472S"><span>Analyzing a suitable elastic geomechanical model for Vaca Muerta Formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sosa Massaro, Agustin; Espinoza, D. Nicolas; Frydman, Marcelo; Barredo, Silvia; Cuervo, Sergio</p> <p>2017-11-01</p> <p>Accurate geomechanical evaluation of oil and gas reservoir rocks is important to provide design parameters for drilling, completion and predict production rates. In particular, shale reservoir rocks are geologically complex and heterogeneous. Wells need to be hydraulically fractured for stimulation and, in complex tectonic environments, it is to consider that rock fabric and in situ stress, strongly influence fracture propagation geometry. This article presents a combined wellbore-laboratory characterization of the geomechanical properties of a well in El Trapial/Curamched Field, over the Vaca Muerta Formation, located in the Neuquén Basin in Argentina. The study shows the results of triaxial tests with acoustic measurements in rock plugs from outcrops and field cores, and corresponding dynamic to static correlations considering various elastic models. The models, with increasing complexity, include the Isotropic Elastic Model (IEM), the Anisotropic Elastic Model (AEM) and the Detailed Anisotropic Elastic Model (DAEM). Each model shows advantages over the others. An IEM offers a quick overview, being easy to run without much detailed data for heterogeneous and anisotropic rocks. The DAEM requires significant amounts of data, time and a multidisciplinary team to arrive to a detailed model. Finally, an AEM suits well to an anisotropic and realistic rock without the need of massive amounts of data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.212.2003G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.212.2003G"><span>Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da</p> <p>2018-03-01</p> <p>The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41B0413W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41B0413W"><span>The Effect of Fluid and Solid Properties on the Auxetic Behavior of Porous Materials Having Rock-like Microstructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wollner, U.; Vanorio, T.; Kiss, A. M.</p> <p>2017-12-01</p> <p>Materials with a negative Poisson's Ratio (PR), known as auxetics, exhibit the counterintuitive behavior of becoming wider when uniaxially stretched and thinner when compressed. Though negative PR is characteristic of polymer foams or cellular solids, tight as well as highly porous rocks have also been reported to exhibit a negative Poisson's ratio, both from dynamic (PRd) and static measurements. We propose a novel auxetic structure based on pore-space configuration observed in rocks. First, we performed 2D and 3D imaging of a pumice and tight basalt to analyze their rock microstructure as well as similarities to natural structures of auxetic materials - e.g., cork. Based on these analyses, we developed a theoretical auxetic 3D model consisting of rotating rigid bodies having pore configurations similar to those observed in rocks. To alleviate the mechanical assumption of rotating bodies, the theoretical model was modified to include crack-like features being represented by intersecting, elliptic cylinders. We then used a 3D printer to create a physical version of the modified model, whose PRd was tested. We also numerically explored how the compressibility of fluids located in the pore-space of the modified model as well as how the elastic properties of the material from which the model is made of affect its auxetic behavior. We conclude that for a porous medium composed of a single material saturated with a single fluid (a) the more compliant the fluid is and (b) the lower the PR of the solid material, the lower the PR value of the composite material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhyB..276..837B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhyB..276..837B"><span>Investigation of rock samples by neutron diffraction and ultrasonic sounding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burilichev, D. E.; Ivankina, T. I.; Klima, K.; Locajicek, T.; Nikitin, A. N.; Pros, Z.</p> <p>2000-03-01</p> <p>The interpretation of large-scale geophysical anisotropies largely depends upon the knowledge of rock anisotropies of any kind (compositions, foliations, grain shape, physical properties). Almost all physical rock properties (e.g. elastic, thermal, magnetic properties) are related to the textures of the rock constituents since they are anisotropic for the single crystal. Although anisotropy determinations are numerous, systematic investigations are scarce. Therefore, several rock samples with different microfabrics were selected for texture analysis and to determine its P-wave distributions at various confining pressures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoJI.176..822C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoJI.176..822C"><span>Temperature-dependent poroelastic and viscoelastic effects on microscale-modelling of seismic reflections in heavy oil reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciz, Radim; Saenger, Erik H.; Gurevich, Boris; Shapiro, Serge A.</p> <p>2009-03-01</p> <p>We develop a new model for elastic properties of rocks saturated with heavy oil. The heavy oil is represented by a viscoelastic material, which at low frequencies and/or high temperatures behaves as a Newtonian fluid, and at high frequencies and/or low temperatures as a nearly elastic solid. The bulk and shear moduli of a porous rock saturated with such viscoelastic material are then computed using approximate extended Gassmann equations of Ciz and Shapiro by replacing the elastic moduli of the pore filling material with complex and frequency-dependent moduli of the viscoelastic pore fill. We test the proposed model by comparing its predictions with numerical simulations based on a direct finite-difference solution of equations of dynamic viscoelasticity. The simulations are performed for the reflection coefficient from an interface between a homogeneous fluid and a porous medium. The numerical tests are performed both for an idealized porous medium consisting of alternating solid and viscoelastic layers, and for a more realistic 3-D geometry of the pore space. Both sets of numerical tests show a good agreement between the predictions of the proposed viscoelastic workflow and numerical simulations for relatively high viscosities where viscoelastic effects are important. The results confirm that application of extended Gassmann equations in conjunction with the complex and frequency-dependent moduli of viscoelastic pore filling material, such as heavy oil, provides a good approximation for the elastic moduli of rocks saturated with such material. By construction, this approximation is exactly consistent with the classical Gassmann's equation for sufficiently low frequencies or high temperature when heavy oil behaves like a fluid. For higher frequencies and/or lower temperatures, the predictions are in good agreement with the direct numerical solution of equations of dynamic viscoelasticity on the microscale. This demonstrates that the proposed methodology provides realistic estimates of elastic properties of heavy oil rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJMMM..19....1Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJMMM..19....1Y"><span>Effects of bioleaching on the mechanical and chemical properties of waste rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming</p> <p>2012-01-01</p> <p>Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21148968-experimental-estimation-energy-damping-during-free-rocking-unreinforced-masonry-walls-first-results','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21148968-experimental-estimation-energy-damping-during-free-rocking-unreinforced-masonry-walls-first-results"><span>Experimental Estimation Of Energy Damping During Free Rocking Of Unreinforced Masonry Walls. First Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sorrentino, Luigi; Masiani, Renato; Benedetti, Stefano</p> <p>2008-07-08</p> <p>This paper presents an ongoing experimental program on unreinforced masonry walls undergoing free rocking. Aim of the laboratory campaign is the estimation of kinetic energy damping exhibited by walls released with non-zero initial conditions of motion. Such energy damping is necessary for dynamic modelling of unreinforced masonry local mechanisms. After a brief review of the literature on this topic, the main features of the laboratory tests are presented. The program involves the experimental investigation of several parameters: 1) unit material (brick or tuff), 2) wall aspect ratio (ranging between 14.5 and 7.1), 3) restraint condition (two-sided or one-sided rocking), andmore » 4) depth of the contact surface between facade and transverse walls (one-sided rocking only). All walls are single wythe and the mortar is pozzuolanic. The campaign is still in progress. However, it is possible to present the results on most of the mechanical properties of mortar and bricks. Moreover, a few time histories are reported, already indicating the need to correct some of the assumptions frequent in the literature.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LPI....40.2127P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LPI....40.2127P"><span>Thermophysical Properties of Terrestrial Rock and Debris-covered Glaciers as Analogs for Martian Lobate Debris Aprons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piatek, J. L.</p> <p>2009-03-01</p> <p>A survey of the thermophysical properties of terrestrial rock and debris-covered glaciers suggests these properties may be used to distinguish between massive debris-covered ice and intimate rock/ice mixtures in martian lobate debris aprons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.H42B..02S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.H42B..02S"><span>Effects of Contaminated Fluids on Complex Moduli in Porous Rocks; Lab and Field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spetzler, H.; Snieder, R.; Zhang, J.</p> <p>2006-12-01</p> <p>The interaction between fluids and porous rocks has been measured in the laboratory and in a controlled field experiment. In the laboratory we measured the static and dynamic effect of various contaminated fluids on the wettability, capillary pressure and other flow properties on geometrically simple surfaces. The characteristics of the menisci were quantified by measuring the forces required to deform and move them. Rate dependent surface tension and contact angles describe the hysteresis of the contact line motion. Finally we used geometrically complex surfaces, i.e. real rocks, and observed similar behavior. Then we did a field experiment where we could controllably irrigate a test volume and observe changes in deformation. At low deformation rates, where viscous deformation of the fluid is negligible, the dynamic hystereses of menisci deformation become the dominant mechanism for changes in complex moduli of partially fluid saturated rocks. In the laboratory for contaminated samples we observe attenuation increasing from below 1 Hz to 1 mHz, the limit of our patience in making these measurements. In the field we used microseisms and solid Earth tides as low frequency deformation sources. In the case of the tides we compare changes in observed tilt with theoretical site specific tidal tilts. Preliminary theoretical modeling suggests that indeed small changes in the moduli should be observable in changes in tilt response. In this paper we present our laboratory results and the field data and analysis to date.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHyd..557..276T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHyd..557..276T"><span>Lattice Boltzmann simulation of dissolution-induced changes in permeability and porosity in 3D CO2 reactive transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, Zhiwei; Wang, Junye</p> <p>2018-02-01</p> <p>Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMMR53A..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMMR53A..07M"><span>Unexpected mechanical properties of very dry Berea sandstone near 45°C</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, R. A.; Darling, T. W.; TenCate, J. A.; Johnson, P. A.</p> <p>2011-12-01</p> <p>An understanding of the nonlinear and hysteretic behavior of porous rocks is important for seismic studies and geologic carbon sequestration applications. However, the fundamental processes responsible for such behavior are poorly understood, including interactions involving adsorbed water and bulk carbon dioxide. Water has been shown to affect the nonlinear mechanical properties of porous rocks, both in high humidity conditions and in low pressure conditions where only a monolayer of water is present on rock grain surfaces [1, 2]. To study the impact of small quantities of adsorbed water on the nonlinear behavior of sandstone, we compare nonlinear resonant ultrasound spectroscopy (NRUS) and time-of-flight modulation (TOFM) measurements [3] on a Berea sandstone core before and after removing bulk water from the sample. Water is removed through extended exposure to ultra high vacuum (UHV) conditions. At the sample's driest state, we achieve a partial pressure of water below 10-8 Torr at room temperature. Periodic measurements record acoustic data as the rock is slowly heated from room temperature to 55°C in UHV. Measurements made after several months of exposure to UHV conditions show behavior we have not previously observed. We report an unexpected sharp increase in Q-1 above 45°C, suggesting we have reduced the concentration of water to a low enough level to affect the sample's mechanical properties. Nonlinear effects are still present when the sample is at its driest state below 45°C, in agreement with previous work [4], which indicates water is not the sole contributor to nonlinearity in porous rock. We are also studying the effect of adding carbon dioxide or argon gas to the dry specimen. We present our acoustic data and propose a model for the impact of adsorbed water on the attenuation of porous rock. [We gratefully acknowledge support from the Nevada Terawatt Facility at the University of Nevada, Reno, and from the Geosciences Research Program of the DOE Office of Basic Energy Sciences]. [1] B. R. Tittmann, L. Ahlberg, and J. Curnow, "Internal friction and velocity measurements," Proc. of 7th Lunar Science Conference , pp. 3123-3132, 1997. [2] K. E.-A. Van Den Abeele, J. Carmeliet, P. A. Johnson, and B. Zinszner, "Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity," Journal of Geophysical Research 107, p. 2121, June 2002. [3] "Dynamic Measures of Elastic Nonlinear (Anelastic) Behavior: Dynamic Acousto-Elasticity Testing (DAET)," G. Renaud, P-Y Le Bas, J. A. TenCate, T. J. Ulrich, J. W. Carey, J. Han, T.W. Darling and P. A. Johnson, AGU Fall Meeting, Dec. 2011. [4] "Water and CO2 chemistry influences on the mechanical integrity of rocks," T.W. Darling, P-Y Le Bas, J. W. Carey, P. A. Johnson and R. A. Miller, AGU Fall Meeting, Dec. 2010.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.3893L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.3893L"><span>Direct laboratory observation of fluid distribution and its influence on acoustic properties of patchy saturated rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lebedev, M.; Clennell, B.; Pervukhina, M.; Shulakova, V.; Mueller, T.; Gurevich, B.</p> <p>2009-04-01</p> <p>Porous rocks in hydrocarbon reservoirs are often saturated with a mixture of two or more fluids. Interpretation of exploration seismograms requires understanding of the relationship between distribution of the fluids patches and acoustic properties of rocks. The sizes of patches as well as their distribution affect significantly the seismic response. If the size of the fluid patch is smaller than the diffusion wavelength then pressure equilibration is achieved and the bulk modulus of the rock saturated with a mixture is defined by the Gassmann equations (Gassmann, 1951) with the saturation-weighted average of the fluid bulk modulus given by Wood's law (Wood, 1955, Mavko et al., 1998). If the fluid patch size is much larger than the diffusion wavelength then there is no pressure communication between different patches. In this case, fluid-flow effects can be neglected and the overall rock may be considered equivalent to an elastic composite material consisting of homogeneous parts whose properties are given by Gassmann theory with Hill's equation for the bulk modulus (Hill, 1963, Mavko et al., 1998). At intermediate values of fluid saturation the velocity-saturation relationship is significantly affected by the fluid patch distribution. In order to get an improved understanding of factors influencing the patch distribution and the resulting seismic wave response we performed simultaneous measurements of P-wave velocities and rock sample CT imaging. The CT imaging allows us to map the fluid distribution inside rock sample during saturation (water imbibition). We compare the experimental results with theoretical predictions. In this paper we will present results of simultaneous measurements of longitudinal wave velocities and imaging mapping of fluid distribution inside rock sample during sample saturation. We will report results of two kinds of experiments: "dynamic" and "quasi static" saturation. In both experiments Casino Cores Otway Basin sandstone, Australia core samples (38 mm in diameter, approximately 60 mm long) were dried in oven under reduced pressure. In dynamic saturation experiments, samples were jacketed in the experimental cell, made from transparent for X-radiation material (PMMA). Distillate water was injected into the sample from the one side. Fluid distribution in such "dynamic" experiment: both spatial and time dependant was measured using X-ray Computer Tomograph (CT) with resolution 0.2 x 0.2 x 1 mm3. Velocities (Vp, and Vs) at ultrasonic frequency of 1 MHz, were measured in the direction perpendicular to initial direction of the fluid flow injection. Sample saturation was estimated from the CT results. In "quasi static" experiments samples were saturated during long period of time (over 2 weeks) to achieve uniform distribution of liquid inside the sample. Saturation was determined by measurement of the weight of water fraction. All experiments were performed at laboratory environments at temperature 25 C. Ultrasonic velocities and fluid saturations were measured simultaneously during water injection into sandstone core samples. The experimental results obtained on low-permeability samples show that at low saturation values the velocity-saturation dependence can be described by the Gassmann-Wood relationship. However, with increasing saturation a sharp increase of P-wave velocity is observed, eventually approaching the Gassmann-Hill relationship. We connect the characteristics of the transition behavior of the velocity-saturation relationships to the increasing size of the patches inside the rock sample. In particular, we show that for relatively large fluid injection rate this transition occurs at smaller degrees of saturation as compared with high injection rate. We model the experimental data using the so-called White model (Toms 2007) that assumes fluid patch distribution as a periodic assemblage of concentric spheres. We can observe reasonable agreement between experimental results and theoretical predictions of White's model. The results illustrate the non-unique relationships between saturation and velocity in sandstones dependent on texture and fluid displacement history: fuller understanding of these phenomena is needed for accurate assessment of time lapse seismic measurements, be they for oil and gas recovery or for CO2 disposal purposes. Gassmann, F., 1951, Elastic waves through a packing of spheres. Geophysics 16, 673-685; Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The Rock Physics Handbook: Tools for seismic analysis in porous media: Cambridge University Press. Wood, A. W., 1955, A Textbook of Sound, The MacMillan Co., New York, 360 pp. Hill, R., 1963, Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids, 11, 357-372. Hill, R., 1952, The elastic behavior of crystalline aggregates. Proc. Physical Soc., London, A65, 349-354. J. Toms, T.M. Mueller, B. Gurevich, 2007 Seismic attenuation in porous rocks with random patchy saturation. Geophysical Prospecting, 55, 671-678.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/813448','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/813448"><span>ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.</p> <p>2001-07-01</p> <p>Mechanically weak formations, such as chalks, high porosity sandstones, and marine sediments, pose significant problems for oil and gas operators. Problems such as compaction, subsidence, and loss of permeability can affect reservoir production operations. For example, the unexpected subsidence of the Ekofisk chalk in the North Sea required over one billion dollars to re-engineer production facilities to account for losses created during that compaction (Sulak 1991). Another problem in weak formations is that of shallow water flows (SWF). Deep water drilling operations sometimes encounter cases where the marine sediments, at shallow depths just below the seafloor, begin to uncontrollably flowmore » up and around the drill pipe. SWF problems created a loss of $150 million for the Ursa development project in the U.S. Gulf Coast SWF (Furlow 1998a,b; 1999a,b). The goal of this project is to provide a database on both the rock mechanical properties and the geophysical properties of weak rocks and sediments. These could be used by oil and gas companies to detect, evaluate, and alleviate potential production and drilling problems. The results will be useful in, for example, pre-drill detection of events such as SWF's by allowing a correlation of seismic data (such as hazard surveys) to rock mechanical properties. The data sets could also be useful for 4-D monitoring of the compaction and subsidence of an existing reservoir and imaging the zones of damage. During the second quarter of the project the research team has: (1) completed acoustic sensor construction, (2) conducted reconnaissance tests to map the deformational behaviors of the various rocks, (3) developed a sample assembly for the measurement of dynamic elastic and poroelastic parameters during triaxial testing, and (4) conducted a detailed review of the scientific literature and compiled a bibliography of that review. During the first quarter of the project the research team acquired several rock types for testing including: (a) Danian chalk, (b) Cordoba Cream limestone, (c) Indiana limestone, (d) Ekofisk chalk, (e) Oil Creek sandstone, (f) unconsolidated Oil Creek sand, and (g) unconsolidated Brazos river sand. During the second quarter experiments were begun on these rock types. A series of reconnaissance experiments have been carried out on all but the Ekofisk (for which there is a preliminary data set already inhouse). A series of triaxial tests have been conducted on the Danian chalk, the Cordoba Cream limestone, the Indiana limestone, and sand samples to make a preliminary determination of the deformational mechanisms present in these samples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.3281Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.3281Z"><span>Rock Magnetic Properties of Remagnetised Devonian and Carboniferous Carbonate and Clastic Rocks From The NE Rhenish Massif, Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zwing, A.; Matzka, J.; Bachtadse, V.; Soffel, H. C.</p> <p></p> <p>Previous studies on remagnetised carbonate rocks from the North American and Eu- ropean Variscides reported characteristic rock magnetic properties which are thought to be diagnostic for a chemical remagnetisation event. Their hysteresis properties with high ratios of Mrs/Ms and Hcr/Hc indicate the presence of a mixture of single-domain and superparamagnetic magnetite (Jackson, et al. 1990). In order to test if this fin- gerprint can be identified in remagnetised carbonate and clastic rocks from the NE Rhenish Massif, Germany, a series of rock magnetic experiments has been carried out. The hysteresis properties of the remagnetised clastic rocks indicate the domi- nance of large MD particles, as can be expected for detrital sediments. The carbon- ates yield significantly higher ratios of Mrs/Ms and Hcr/Hc than the clastic rocks, but only partly correspond to the characteristic properties of remagnetised carbon- ates described above. The latter might be attributed to detrital input into the carbonate platforms. Additional low-temperature remanence measurements show a wide vari- ety of phenomena, including Verwey transitions and indications for the presence of superparamagnetic grains. However, the low-temperature experiments do not allow a straightforward discrimination between the clastic and carbonate rocks and suggest more complex magnetomineralogies than expected from the hysteresis measurements alone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRE..119.1322A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRE..119.1322A"><span>Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arvidson, R. E.; Bellutta, P.; Calef, F.; Fraeman, A. A.; Garvin, J. B.; Gasnault, O.; Grant, J. A.; Grotzinger, J. P.; Hamilton, V. E.; Heverly, M.; Iagnemma, K. A.; Johnson, J. R.; Lanza, N.; Le Mouélic, S.; Mangold, N.; Ming, D. W.; Mehta, M.; Morris, R. V.; Newsom, H. E.; Rennó, N.; Rubin, D.; Schieber, J.; Sletten, R.; Stein, N. T.; Thuillier, F.; Vasavada, A. R.; Vizcaino, J.; Wiens, R. C.</p> <p>2014-06-01</p> <p>Physical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover-based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity-based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist of moderately to well-consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard-packed basaltic sand and dust, with both embedded and surface-strewn rock clasts. Rock clasts have been added through local bedrock weathering and impact ejecta emplacement and form a pavement-like surface in which only small clasts (<5 to 10 cm wide) have been pressed into the soil during wheel passages. The bedded fractured (BF) unit, site of Curiosity's first drilling activity, exposes several alluvial-lacustrine bedrock units with little to no soil cover and varying degrees of lithification. Small wheel sinkage values (<1 cm) for both HP and BF surfaces demonstrate that compaction resistance countering driven-wheel thrust has been minimal and that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill, have been dominated by terrain tilts and wheel-surface material shear modulus values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PApGe.170..507K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PApGe.170..507K"><span>Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khandelwal, Manoj</p> <p>2013-04-01</p> <p>In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...628585Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...628585Y"><span>Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu</p> <p>2016-06-01</p> <p>Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27346701','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27346701"><span>Stochastic Evolution Dynamic of the Rock-Scissors-Paper Game Based on a Quasi Birth and Death Process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Qian; Fang, Debin; Zhang, Xiaoling; Jin, Chen; Ren, Qiyu</p> <p>2016-06-27</p> <p>Stochasticity plays an important role in the evolutionary dynamic of cyclic dominance within a finite population. To investigate the stochastic evolution process of the behaviour of bounded rational individuals, we model the Rock-Scissors-Paper (RSP) game as a finite, state dependent Quasi Birth and Death (QBD) process. We assume that bounded rational players can adjust their strategies by imitating the successful strategy according to the payoffs of the last round of the game, and then analyse the limiting distribution of the QBD process for the game stochastic evolutionary dynamic. The numerical experiments results are exhibited as pseudo colour ternary heat maps. Comparisons of these diagrams shows that the convergence property of long run equilibrium of the RSP game in populations depends on population size and the parameter of the payoff matrix and noise factor. The long run equilibrium is asymptotically stable, neutrally stable and unstable respectively according to the normalised parameters in the payoff matrix. Moreover, the results show that the distribution probability becomes more concentrated with a larger population size. This indicates that increasing the population size also increases the convergence speed of the stochastic evolution process while simultaneously reducing the influence of the noise factor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3293912','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3293912"><span>Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Baydil, Banu; Daley, William P.; Larsen, Melinda; Yener, Bülent</p> <p>2012-01-01</p> <p>Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues. PMID:22403724</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1321750-origin-nonlinear-elasticity-disparate-rocks','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1321750-origin-nonlinear-elasticity-disparate-rocks"><span>On the origin of nonlinear elasticity in disparate rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Riviere, Jacques Vincent; Shokouhi, Parisa; Guyer, Robert A.; ...</p> <p>2015-03-31</p> <p>Dynamic acousto-elastic (DAE) studies are performed on a set of 6 rock samples (four sandstones, one soapstone, and one granite). From these studies, at 20 strain levels 10 -7 < ϵ < 10 -5, four measures characterizing the nonlinear elastic response of each sample are found. Additionally, each sample is tested with nonlinear resonant ultrasonic spectroscopy (NRUS) and a fth measure of nonlinear elastic response is found. The ve measures of the nonlinear elastic response of the samples (approximately 3 x 6 x 20 x 5 numbers as each measurement is repeated 3 times) are subjected to careful analysis usingmore » model independent statistical methods, principal component analysis and fuzzy clustering. This analysis reveals di erences among the samples and di erences among the nonlinear measures. Four of the nonlinear measures are sensing much the same physical mechanism in the samples. The fth is seeing something di erent. This is the case for all samples. Although the same physical mechanisms (two) are operating in all samples there are distinctive features in the way the physical mechanisms present themselves from sample to sample. This suggests classi cation of the samples into two groups. The numbers in this study and the classi cation of the measures/samples constitute an empirical characterization of rock nonlinear elastic properties that can serve as a valuable testing ground for physically based theories that relate rock nonlinear elastic properties to microscopic elastic features.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7212M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7212M"><span>Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.</p> <p>2012-04-01</p> <p>Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning fluid-rock interaction processes in geothermal reservoirs, and their effects on rock properties, that will aid improved understanding of the evolution of high-temperature geothermal systems, provide constraints to parameterization of reservoir models and assist future well planning and design through prediction of rock properties in the context of drilling strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAfES.141....1Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAfES.141....1Y"><span>A sampling study on rock properties affecting drilling rate index (DRI)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal</p> <p>2018-05-01</p> <p>Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR41C2663H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR41C2663H"><span>Fluid flow and coupled poroelastic response in low-permeability rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasanov, A.; Prasad, M.</p> <p>2015-12-01</p> <p>Hydraulic transport properties of reservoir rocks are traditionally defined as rock properties, responsiblefor the passage of fluids through the porous rock sample, as well as their storage. These properties arealso called permeability and storage capacity. The evaluation of both is an important part of any reservoircharacterization workflow. A vivid example of the importance of the transport properties is the bloomingbusiness of unconventional oil and gas production. Tight formations with ultra-low permeabilities and storagecapacities, which have never been perceived as reservoir rocks, today are actively exploited for oil and gas.This tremendous achievement in petroleum science and technology was only possible due to hydraulic frac-turing, which is essentially a process of enhancing permeability and storage capacity by creating a swarmof microcracks in the rock. The knowledge of hydraulic and poroelastic properties is also essential for proper simulations of diffusive pore fluidflow in petroleum reservoirs, as well as aquifers. This work is devoted to an integrated study of low-permeability rocks' hydraulic and poroe-lastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressuremethod is traditionally used to measure hydraulic transport properties. We modified the method and builtan experimental setup, capable of measuring all aforementioned rock properties simultaneously. The mea-surements were carried out for four sub-millidarcy rock samples at a range of oscillationfrequencies and effective stresses. An apparent frequency dependence of permeability was observed. Measured frequency dispersion of drained poroelastic propertiesindicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demon-strated the best fit to the experimental dispersion data. We established that hydraulically-measured storage capacitiesare in good agreement with elastically-derived ones. We also introduce a novel method, which allowedus to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. The results of numerical simulation of oscillatory fluid flow confirm both the analyticalsolution and the experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.2929A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.2929A"><span>Evaluating the Relationships Between NTNU/SINTEF Drillability Indices with Index Properties and Petrographic Data of Hard Igneous Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad; Azali, Sadegh Tarigh</p> <p>2017-11-01</p> <p>Thorough and realistic performance predictions are among the main requisites for estimating excavation costs and time of the tunneling projects. Also, NTNU/SINTEF rock drillability indices, including the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), and Cutter Life Index™ (CLI), are among the most effective indices for determining rock drillability. In this study, brittleness value (S20), Sievers' J-Value (SJ), abrasion value (AV), and Abrasion Value Cutter Steel (AVS) tests are conducted to determine these indices for a wide range of Iranian hard igneous rocks. In addition, relationships between such drillability parameters with petrographic features and index properties of the tested rocks are investigated. The results from multiple regression analysis revealed that the multiple regression models prepared using petrographic features provide a better estimation of drillability compared to those prepared using index properties. Also, it was found that the semiautomatic petrography and multiple regression analyses provide a suitable complement to determine drillability properties of igneous rocks. Based on the results of this study, AV has higher correlations with studied mineralogical indices than AVS. The results imply that, in general, rock surface hardness of hard igneous rocks is very high, and the acidic igneous rocks have a lower strength and density and higher S20 than those of basic rocks. Moreover, DRI is higher, while BWI is lower in acidic igneous rocks, suggesting that drill and blast tunneling is more convenient in these rocks than basic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.129..659A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.129..659A"><span>The use of index tests to determine the mechanical properties of crushed aggregates from Precambrian basement complex rocks, Ado-Ekiti, SW Nigeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Afolagboye, Lekan Olatayo; Talabi, Abel Ojo; Oyelami, Charles Adebayo</p> <p>2017-05-01</p> <p>This study assessed the possibility of using index tests to determine the mechanical properties of crushed aggregates. The aggregates used in this study were derived from major Precambrian basement rocks in Ado-Ekiti, Nigeria. Regression analyses were performed to determine the empirical relations that mechanical properties of the aggregates may have with the point load strength (IS(50)), Schmidt rebound hammer value (SHR) and unconfined compressive strength (UCS) of the rocks. For all the data, strong correlation coefficients were found between IS(50), SHR, UCS, and mechanical properties of the aggregates. The regression analysis conducted on the different rocks separately showed that correlations coefficients obtained between the IS(50), SHR, UCS and mechanical properties of the aggregates were stronger than those of the grouped rocks. The T-test and F-test showed that the derived models were valid. This study has shown that the mechanical properties of the aggregates can be estimated from IS(50), SHR and USC but the influence of rock type on the relationships should be taken into consideration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..661K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..661K"><span>Geological and geophysical properties of cap rock in a natural CO2 occurrence, Mihályi-Répcelak area, Western Hungary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Király, Csilla; Szamosfalvi, Ágnes; Sendula, Eszter; Páles, Mariann; Kovács, István; Kónya, Péter; Falus, György; Szabó, Csaba</p> <p>2015-04-01</p> <p>The physical and geochemical consistency of the cap rock is primarily important for safe geological storage of CO2.. As a consequence of CO2 injection reactions took place between the minerals of the reservoir, the cap rock and CO2 saturated pore water. These reactions may change the mineral composition and petrophysical properties of the storage reservoir as well as the cap rock that provides the only physical barrier that retains carbon dioxide in the target reservoir formation. Study of the natural CO2 occurrences delivers information to understand which properties of a cap rock provide the sustainable closure and retainment. Knowledge of the long term effect of CO2 on the behavior of the cap rock is an important input in the selection procedure of a potential CO2 injection site. Yet, very few data exist on geochemical properties and reactivity of the cap rocks. During normal commercial operations the reservoir is typically cored, but not the cap rock. This study may enhance our knowledge about possible mineralogical reactions, which can occur in clayey-aleuritic cap rocks. The Mihályi-Répcelak natural CO2 occurrence is believed to be leakage safe. There is no known seepage on the surface. It is suggested that the aleuritic clay rich cap rock occurring at the natural reservoir can stop CO2 migration into other reservoirs or to the surface. The most important characteristics of cap rocks that they have low permeability (<0.1 mD) and porosity (eff.por. = 4%) and high clayeyness (approx. 80%). However, we demonstrate that in addition to these parameters the geochemical properties of cap rock is also important. In order to characterize the natural CO2 occurrence, we applied the following analysis, like XRD, FTIR, SEM. The petrophysical properties are determined from the interpretation of geophysical well-logs and grain size distribution. The most important result of this study that adequate petrophysical properties do not completely define the suitability of a cap rock. The effective porosity (~4 %), permeability (0.026 mD) and clayeyness (~80%) data imply that the studied aleurolites are good cap rocks. The mineral composition of cap rock is similar to that of reservoir rock, however, the ratio of components is different. The mineralogical analysis and petrography yield to the reaction between CO2 and the cap rocks. The most visible effect of CO2 presence is the dawsonite precipitation after albite dissolution within the cap rocks. Therefore, the CO2 may migrate through the cap rocks in geological time scale, however the total system could be leakage safe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol1/pdf/CFR-2011-title36-vol1-sec13-1112.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title36-vol1/pdf/CFR-2011-title36-vol1-sec13-1112.pdf"><span>36 CFR 13.1112 - May I collect rocks and minerals?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-07-01</p> <p>... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false May I collect rocks and minerals? 13.1112 Section 13.1112 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... Preserve General Provisions § 13.1112 May I collect rocks and minerals? Collecting rocks and minerals in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol1/pdf/CFR-2013-title36-vol1-sec13-1112.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol1/pdf/CFR-2013-title36-vol1-sec13-1112.pdf"><span>36 CFR 13.1112 - May I collect rocks and minerals?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false May I collect rocks and minerals? 13.1112 Section 13.1112 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... Preserve General Provisions § 13.1112 May I collect rocks and minerals? Collecting rocks and minerals in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol1/pdf/CFR-2012-title36-vol1-sec13-1112.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol1/pdf/CFR-2012-title36-vol1-sec13-1112.pdf"><span>36 CFR 13.1112 - May I collect rocks and minerals?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false May I collect rocks and minerals? 13.1112 Section 13.1112 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF... Preserve General Provisions § 13.1112 May I collect rocks and minerals? Collecting rocks and minerals in...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29199291','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29199291"><span>Geo-material surface modification of microchips using layer-by-layer (LbL) assembly for subsurface energy and environmental applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Y Q; Sanati-Nezhad, A; Hejazi, S H</p> <p>2018-01-16</p> <p>A key constraint in the application of microfluidic technology to subsurface flow and transport processes is the surface discrepancy between microchips and the actual rocks/soils. This research employs a novel layer-by-layer (LbL) assembly technology to produce rock-forming mineral coatings on microchip surfaces. The outcome of the work is a series of 'surface-mimetic micro-reservoirs (SMMR)' that represent multi-scales and multi-types of natural rocks/soils. For demonstration, the clay pores of sandstones and mudrocks are reconstructed by representatively coating montmorillonite and kaolinite in polydimethylsiloxane (PDMS) microchips in a wide range of channel sizes (width of 10-250 μm, depth of 40-100 μm) and on glass substrates. The morphological and structural properties of mineral coatings are characterized using a scanning electron microscope (SEM), optical microscope and profilometer. The coating stability is tested by dynamic flooding experiments. The surface wettability is characterized by measuring mineral oil-water contact angles. The results demonstrate the formation of nano- to micro-scale, fully-covered and stable mineral surfaces with varying wetting properties. There is an opportunity to use this work in the development of microfluidic technology-based applications for subsurface energy and environmental research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSAES..80..559A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSAES..80..559A"><span>Emplacement dynamics and hydrothermal alteration of the Atengo ignimbrite, southern Sierra Madre Occidental, northwestern Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Agarwal, Amar; Alva-Valdivia, L. M.; Rivas-Sánchez, M. L.; Herrero-Bervera, E.; Urrutia-Fucugauchi, J.; Espejel-García, V.</p> <p>2017-12-01</p> <p>The Sierra Madre Occidental is a thick continental arc related to the subduction of the Farallon plate beneath North America resulting in a very intense and widespread Cretaceous to Cenozoic magmatic and tectonic activity. The 28 My old Atengo ignimbrite outcrops in the southern Sierra Madre Occidental, northwestern Mexico. From 12 sites that belong to various pyroclastic and lava flows emplaced during two pulses in the Oligocene (ca. 32-28 Ma) and Early Miocene (ca. 24-20 Ma), 97 rock specimens were drilled. The mineralogical and rock magnetic properties of the Atengo ignimbrite are compared with the surrounding volcanic rocks to identify the eruption mechanism, and with the El Castillo Ignimbrite, Veracruz, Mexico, to understand the depositional conditions. The comparisons reveal that the Atengo ignimbrite erupted from a single source, but less violently than the El Castillo ignimbrite, and cooled rapidly, inhibiting the formation of subhedral grains. The source of the Atengo Ignimbrite was a Plinian-type eruption, and the characteristic mineralogical and textural properties of each flow are related to different stages of the Plinian-type eruption. Further more, hydrothermal fluids were active during the last stages of volcanism, and caused moderate to intense alteration, especially in the ignimbrites, where high permeability aided the movement of hydrothermal fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EAEJA....11087C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EAEJA....11087C"><span>Acoustic Emission and Velocity Measurements using a Modular Borehole Prototype Tool to Provide Real Time Rock Mass Characterization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collins, D. S.; Pettitt, W. S.; Young, R. P.</p> <p>2003-04-01</p> <p>Permanent changes to rock mass properties can occur due to the application of excavation or thermal induced stresses. This project involves the design of hardware and software for the long term monitoring of a rock volume, and the real time analysis and interpretation of induced microcracks and their properties. A set of borehole sondes have been designed with each sonde containing up to 6 sensor modules. Each piezoelectric sensor is dual mode allowing it to either transmit an ultrasonic pulse through a rock mass, or receive ultrasonic waveform data. Good coupling of the sensors with the borehole wall is achieved through a motorized clamping mechanism. The borehole sondes are connected to a surface interface box and digital acquisition system and controlled by a laptop computer. The system allows acoustic emission (AE) data to be recorded at all times using programmable trigger logic. The AE data is processed in real time for 3D source location and magnitude, with further analysis such as mechanism type available offline. Additionally the system allows velocity surveys to be automatically performed at pre-defined times. A modelling component of the project, using a 3D dynamic finite difference code, is investigating the effect that different microcrack distributions have on velocity waveform data in terms of time and frequency amplitude. The modelling codes will be validated using data recorded from laboratory tests on rocks with known crack fabrics, and then used in insitu experimental tests. This modelling information will be used to help interpret, in real time, microcrack characteristics such as crack density, size, and fluid content. The technology has applications in a number of branches of geotechnical and civil engineering including radioactive waste storage, mining, dams, bridges, and oil reservoir monitoring.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.208.1811H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.208.1811H"><span>Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heinrich, Frances C.; Schmidt, Volkmar; Schramm, Michael; Mertineit, Michael</p> <p>2017-03-01</p> <p>Magnetic properties of rocks are often studied to characterize composition and fabric of rocks. For salt rocks, the basic relationships between their magnetic properties and composition, which are necessary to interpret rock magnetic data, are not yet established. Therefore, we studied different types of natural salt rock and pure salt minerals. We measured their magnetic properties (magnetic susceptibility, isothermal remanent magnetization acquisition curves, first-order reversal curve diagrams and temperature-dependent magnetic susceptibility) and used analytical methods such as microscopy, X-ray diffraction and inductively coupled plasma atomic emission spectroscopy to understand the relationship between magnetic properties and mineralogy. Salt rocks mainly consist of the diamagnetic minerals halite, carnallite, sylvine and anhydrite with negative magnetic susceptibilities. The magnetic susceptibilities of pure synthetic NaCl and KCl single crystals, show values of -14.5 × 10-6 and -13.5 × 10-6 SI, respectively. In contrast, in natural salt rocks higher magnetic susceptibility values were measured. The magnetic susceptibility of the samples investigated in this study shows a general increase from light rock salt (maximum -10 × 10-6 SI) over carnallitite (maximum 134 × 10-6 SI) to red sylvinite (maximum 270 × 10-6 SI). Whole rock analyses suggest that increased magnetic susceptibility can be attributed to paramagnetic and ferromagnetic minerals that are contained within the insoluble residue. The magnetic susceptibility is mainly controlled by magnetite and phyllosilicates. Its measurement can therefore be used to detect subtle changes in the content of these minerals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930030334&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930030334&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle"><span>Prediction and control of slender-wing rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kandil, Osama A.; Salman, Ahmed A.</p> <p>1992-01-01</p> <p>The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CoMP..172...78T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CoMP..172...78T"><span>Fluid-rock interactions related to metamorphic reducing fluid flow in meta-sediments: example of the Pic-de-Port-Vieux thrust (Pyrenees, Spain)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trincal, Vincent; Buatier, Martine; Charpentier, Delphine; Lacroix, Brice; Lanari, Pierre; Labaume, Pierre; Lahfid, Abdeltif; Vennemann, Torsten</p> <p>2017-09-01</p> <p>In orogens, shortening is mainly accommodated by thrusts, which constitute preferential zones for fluid-rock interactions. Fluid flow, mass transfer, and mineralogical reactions taking place along thrusts have been intensely investigated, especially in sedimentary basins for petroleum and uranium research. This study combines petrological investigations, mineralogical quantifications, and geochemical characterizations with a wide range of analytical tools with the aim of defining the fluid properties (nature, origin, temperature, and redox) and fluid-host rock interactions (mass transfers, recrystallization mechanisms, and newly formed synkinematic mineralization) in the Pic-de-Port-Vieux thrust fault zone (Pyrenees, Spain). We demonstrate that two geochemically contrasted rocks have been transformed by fluid flow under low-grade metamorphism conditions during thrusting. The hanging-wall Triassic red pelite was locally bleached, while the footwall Cretaceous dolomitic limestone was mylonitized. The results suggest that thrusting was accompanied by a dynamic calcite recrystallization in the dolomitic limestone as well as by leaching of iron via destabilization of iron oxides and phyllosilicate crystallization in the pelite. Geochemical and physical changes highlighted in this study have strong implications on the understanding of the thrust behavior (tectonic and hydraulic), and improve our knowledge of fluid-rock interactions in open fluid systems in the crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22894185','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22894185"><span>Computation of dynamic seismic responses to viscous fluid of digitized three-dimensional Berea sandstones with a coupled finite-difference method.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yang; Toksöz, M Nafi</p> <p>2012-08-01</p> <p>The seismic response of saturated porous rocks is studied numerically using microtomographic images of three-dimensional digitized Berea sandstones. A stress-strain calculation is employed to compute the velocities and attenuations of rock samples whose sizes are much smaller than the seismic wavelength of interest. To compensate for the contributions of small cracks lost in the imaging process to the total velocity and attenuation, a hybrid method is developed to recover the crack distribution, in which the differential effective medium theory, the Kuster-Toksöz model, and a modified squirt-flow model are utilized in a two-step Monte Carlo inversion. In the inversion, the velocities of P- and S-waves measured for the dry and water-saturated cases, and the measured attenuation of P-waves for different fluids are used. By using such a hybrid method, both the velocities of saturated porous rocks and the attenuations are predicted accurately when compared to laboratory data. The hybrid method is a practical way to model numerically the seismic properties of saturated porous rocks until very high resolution digital data are available. Cracks lost in the imaging process are critical for accurately predicting velocities and attenuations of saturated porous rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD15004T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD15004T"><span>Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali</p> <p>2017-11-01</p> <p>Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17677256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17677256"><span>Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García, Xavier; Medina, Ernesto</p> <p>2007-06-01</p> <p>The effect of cementation processes on the acoustical properties of sands is studied via molecular dynamics simulation methods. We propose numerical methods where the initial uncemented sand is built by simulating the settling process of sediments. Uncemented samples of different porosity are considered by emulating natural mechanical compaction of sediments due to overburden. Cementation is considered through a particle-based model that captures the underlying physics behind the process. In our simulations, we consider samples with different degrees of compaction and cementing materials with distinct elastic properties. The microstructure of cemented sands is taken into account while adding cement at specific locations within the pores, such as grain-to-grain contacts. Results show that the acoustical properties of cemented sands are strongly dependent on the amount of cement, its stiffness relative to the hosting medium, and its location within the pores. Simulation results are in good correspondence with available experimental data and compare favorably with some theoretical predictions for the sound velocity within a range of cement saturation, porosity, and confining pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SedG..350...72K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SedG..350...72K"><span>Determination of petrophysical properties of sedimentary rocks by optical methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korte, D.; Kaukler, D.; Fanetti, M.; Cabrera, H.; Daubront, E.; Franko, M.</p> <p>2017-04-01</p> <p>Petrophysical properties of rocks (thermal diffusivity and conductivity, porosity and density) as well as the correlation between them are of great importance for many geoscientific applications. The porosity of the reservoir rocks and their permeability are the most fundamental physical properties with respect to the storage and transmission of fluids, mainly oil characterization. Accurate knowledge of these parameters for any hydrocarbon reservoir is required for efficient development, management, and prediction of future performance of the oilfield. Thus, the porosity and permeability, as well as the chemical composition must be quantified as precisely as possible. This should be done along with the thermal properties, density, conductivity, diffusivity and effusivity that are intimately related with them. For this reason, photothermal Beam Deflection Spectrometry (BDS) technique for determination of materials' thermal properties together with other methods such as Energy Dispersive X-ray Scanning Electron Microscopy (SEM-EDX) for determining the chemical composition and sample structure, as well as optical microscopy to determine the particles size, were applied for characterization of sedimentary rocks. The rocks were obtained from the Andes south flank in the Venezuela's western basin. The validation of BDS applicability for determination of petrophysical properties of three sedimentary rocks of different texture and composition (all from Late Cretaceous associated with the Luna, Capacho and Colón-Mito Juan geological formations) was performed. The rocks' thermal properties were correlated to the microstructures and chemical composition of the examined samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1378536-dynamics-bingham-canyon-rock-avalanches-utah-usa-resolved-from-topographic-seismic-infrasound-data-bingham-canyon-rock-avalanches','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1378536-dynamics-bingham-canyon-rock-avalanches-utah-usa-resolved-from-topographic-seismic-infrasound-data-bingham-canyon-rock-avalanches"><span>Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data: Bingham Canyon Rock Avalanches</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.; ...</p> <p>2017-03-01</p> <p>The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. We combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm 3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5–2 times greatermore » volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10–50 s) seismic data. Intermediate- and shorter-period (1–50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2–1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes ~10 4–10 5 m 3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. These results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914819K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914819K"><span>Understanding physical rock properties and their relation to fluid-rock interactions under supercritical conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kummerow, Juliane; Raab, Siegfried; Meyer, Romain</p> <p>2017-04-01</p> <p>The electrical conductivity of rocks is, in addition to lithological factors (mineralogy, porosity) and physical parameters (temperature, pressure) sensitive to the nature of pore fluids (phase, salinity), and thus may be an indicative measure for fluid-rock interactions. Especially near the critical point, which is at 374.21° C and 22.12 MPa for pure water, the physico-chemical properties of aqueous fluids change dramatically and mass transfer and diffusion-controlled chemical reactivity are enhanced, which in turn leads to the formation of element depletion/ enrichment patterns or cause mineral dissolution. At the same time, the reduction of the dielectric constant of water promotes ion association and consequently mineral precipitation. All this cause changes in the electrical conductivity of geothermal fluids and may have considerable effects on the porosity and hydraulic properties of the rocks with which they are in contact. In order to study the impact of fluid-rock interactions on the physical properties of fluids and rocks in near- and supercritical geological settings in more detail, in the framework of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration) hydraulic and electrical properties of rock cores from different active and exhumed geothermal areas on Iceland were measured up to supercritical conditions (Tmax = 380° C, pfluid = 23 MPa) during long-term (2-3 weeks) flow-through experiments in an internally heated gas pressure vessel at a maximum confining pressure of 42 MPa. In a second flow-through facility both the intrinsic T-dependent electrical fluid properties as well as the effect of mineral dissolution/ precipitation on the fluid conductivity were measured for increasing temperatures in a range of 24 - 422° C at a constant fluid pressure of 31 MPa. Petro- and fluid physical measurements were supplemented by a number of additional tests, comprising microstructural investigations as well as the chemical analysis of fluid samples, which were taken at every temperature level. Both physical and chemical data indicate only slight fluid-rock interactions at T < 250° C and the increase in bulk conductivity is most probably dominated by a T-dependence of the surface conductance. At higher temperatures, the decreasing fluid density causes the decrease of dielectric constant, which in turn leads to the precipitation of minerals due to a promoted association between oppositely charged ions. This is intensified at the critical point, indicated by a sharp decrease in conductivity, when regarding pure fluids. The opposite was observed in experiments, where fluid-solid interaction was allowed. In this case, the conductivity of the bulk system has increased within seconds nearly by factor 7. This points to a massive release of charge carriers due to an extensive and spontaneous increase in rock solubility, what counterbalances the effect of mineral precipitation. Moreover, the permanent oscillation of conductivities at supercritical conditions may indicate a dynamic interplay of ion depletion by mineral precipitation and the input of new charge carriers due to mineral dissolution. Regarding the permeability we can resolve the influence of mineral precipitation only, which is indicated by a decrease in rock permeability by about 5 % after the sample was exposed to supercritical conditions for 4 hours. Especially, for Si a continuous increase of ion concentration in the fluid samples is revealed for increasing temperatures, indicating a beginning mineral dissolution above 150° C. At near-critical conditions also Al and Pb as well as the rare earth elements (REE) are more intensively dissolved. From SEM analyses it is apparent that the alteration of the solid material is most effective where fresh fluid is continuously flowing around the solid, while stagnant fluids led to a much less pervasive alteration of the material. In this case, solid dissolution seems to slow down considerably or even comes to an end, what can be explained by the adjustment of a chemical equilibrium and the stabilisation of the reaction front.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..346R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..346R"><span>Heterogeneities of mechanical properties in potential geothermal reservoir rocks of the North German Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reyer, D.; Philipp, S. L.</p> <p>2012-04-01</p> <p>Heterogeneous rock properties in terms of layering and complex infrastructure of fault zones are typical phenomena in sedimentary basins such as the North German Basin. To be able to model reservoir stimulation in layered stratifications and to better adapt the drilling strategy to the rock mechanical conditions it is important to have knowledge about the effects of heterogeneous rock properties on fracture propagation and fault zone infrastructure for typical sedimentary reservoir rocks in the North German Basin. Therefore we aim at quantifying these properties by performing structural geological field studies in outcrop analogues combined with laboratory analyses. The field studies in Rotliegend sandstones (Lower Permian), the sandstones of the Middle Bunter (Lower Triassic) and the sandstones of the Upper Keuper (Upper Triassic) focus on 1) host rock fracture systems and 2) fault zone infrastructure. We analyse quantitatively the dimension, geometry, persistence and connectivity of fracture systems separately for host rocks and fault damage zones. The results show that in rocks with distinctive layering (sandstones and shales) natural fractures are often restricted to individual layers, that is, they are stratabound. The probability of fracture arrest seems to depend on the stiffness contrast between the two layers and on the thickness of the softer layer. The field studies are complemented by systematic sampling to obtain mechanical property variations caused by the layering. For the samples we measure the parameters Young's modulus, compressive and tensile strengths, elastic strain energy, density and porosity. The results show that the mechanical properties vary considerably and many samples are clearly anisotropic. That is, samples taken perpendicular to layering commonly have higher strengths but lower stiffnesses than those taken parallel to layering. We combine the results of laboratory analyses and field measurements to specify the mechanical heterogeneities of the sedimentary reservoir rocks of the North German Basin and of the mechanical units of fault zones therein. To estimate the in situ rock properties at different depths it is further important to understand how rocks from outcrops differ from rocks at depth (for example due to alteration and removal of the overburden load). To answer these questions we analyse samples from drill cores from depths relevant for the use as geothermal reservoirs which are stratigraphically and lithologically equivalent to those taken in outcrop analogues. The results from drill-core sample analyses are then compared with the results from the outcrop samples. Another approach is to analyse how rock mechanical properties correlate with petrographic properties (e.g., mineral content, cementation, fabric, porosity) to use this knowledge to extrapolate the data to depth. Altogether these results will be very useful to make better assumptions on natural reservoir permeabilities and to better adapt the drilling and reservoir stimulation strategy to the rock mechanical conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.S51A4424L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.S51A4424L"><span>Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langenbruch, C.; Shapiro, S. A.</p> <p>2014-12-01</p> <p>For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding seismicity in unconventional reservoirs is the role of anisotropy of rocks. We evaluate an elastic VTI rock model corresponding to a shale gas reservoir in the Horn River Basin to understand the relation between stress, event occurrence and elastic heterogeneity in anisotropic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H53A0835M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H53A0835M"><span>Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions Across Multiple Dissolution Regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menke, H. P.; Bijeljic, B.; Andrew, M. G.; Blunt, M. J.</p> <p>2014-12-01</p> <p>Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. When supercritical CO2 mixes with brine in a reservoir, the acid generated has the potential to dissolve the surrounding pore structure. However, the magnitude and type of dissolution are condition dependent. Understanding how small changes in the pore structure, chemistry, and flow properties affect dissolution is paramount for successful predictive modelling. Both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes during supercritical CO2 injection in carbonate rocks of varying heterogeneity at high temperatures and pressures and various flow-rates. Three carbonate rock types were studied, one with a homogeneous pore structure and two heterogeneous carbonates. All samples are practically pure calcium carbonate, but have widely varying rock structures. Flow-rate was varied in three successive experiments by over an order of magnitude whlie keeping all other experimental conditions constant. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC. Tomographic images were taken at 30-second to 20-minute time-resolutions during a 2 to 4-hour injection period. A pore network was extracted using a topological analysis of the pore space and pore-scale flow modelling was performed directly on the binarized images with connected pathways and used to track the altering velocity distributions. Significant differences in dissolution type and magnitude were found for each rock type and flowrate. At the highest flow-rates, the homogeneous carbonate was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. Alternatively, the heterogeneous carbonates which formed wormholes at high flow rates. At low flow rates the homogeneous rock developed wormholes, while the heterogeneous samples showed evidence of compact dissolution. This study serves as a unique benchmark for pore-scale reactive transport modelling directly on the binarized Micro-CT images. Dynamic pore-scale imaging methods offer advantages in helping explain the dominant processes at the pore scale so that they may be up-scaled for accurate model prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013MS%26E...52g2011L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013MS%26E...52g2011L"><span>Numerical investigation on the expansion of supercritical carbon dioxide jet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lv, Q.; Long, X. P.; Kang, Y.; Xiao, L. Z.; Wu, W.</p> <p>2013-12-01</p> <p>Supercritical carbon dioxide (SC-CO2) fluid is characterized by low rock breaking threshold pressure and high rock breaking rate. Meanwhile, SC-CO2 fluid has relatively low viscosity near to gas and high density near to liquid. So, it has great advantages in drilling and rock breaking over water. In this paper, numerical study of SC-CO2 flowing through a nozzle is presented. The purpose of this simulation is to ascertain why the SC-CO2 jet flow has better ability in drilling and rock breaking than the water jet flow. The simulation model was controlled by the RANS equations together with the continuity equation as well as the energy equation. The realizable k-epsilon turbulence model was adopted to govern the turbulent characteristics. Pressure boundary conditions were applied to the inlet and outlet boundary. The properties of carbon dioxide and water were described by UDF. It is found that: (1) under the same boundary conditions, the decay of dimensionless central axial velocity and dynamic pressure of water is quicker than that of the SC-CO2, and the core length of SC-CO2 jet is about 4.5 times of the nozzle diameter, which is 1 times longer than that of the water; (2) With the increase of inlet pressure or the decrease of outlet pressure, the dimensionless central axial velocity and dynamic pressure attenuation of water keeps the same, while the decay of central axial velocity of SC-CO2 turns gentle; (3) the change of central axial temperature of SC-CO2 is more complex than that of the water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7430D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7430D"><span>The application of refraction seismics in alpine permafrost studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Draebing, Daniel</p> <p>2017-04-01</p> <p>Permafrost studies in alpine environments focus on landslides from permafrost-affected rockwalls, landslide deposits or periglacial sediment dynamics. Mechanical properties of soils or rocks are influenced by permafrost and changed strength properties affect these periglacial processes. To assess the effects of permafrost thaw and degradation, monitoring techniques for permafrost distribution and active-layer thaw are required. Seismic wave velocities are sensitive to freezing and, therefore, refraction seismics presents a valuable tool to investigate permafrost in alpine environments. In this study, (1) laboratory and field applications of refraction seismics in alpine environments are reviewed and (2) data are used to quantify effects of rock properties (e.g. lithology, porosity, anisotropy, saturation) on p-wave velocities. In the next step, (3) influence of environmental factors are evaluated and conclusions drawn on permafrost differentiation within alpine periglacial landforms. This study shows that p-wave velocity increase is susceptible to porosity which is pronounced in high-porosity rocks. In low-porosity rocks, p-wave velocity increase is controlled by anisotropy decrease due to ice pressure (Draebing and Krautblatter, 2012) which enables active-layer and permafrost differentiation at rockwall scale (Krautblatter and Draebing, 2014; Draebing et al., 2016). However, discontinuity distribution can result in high anisotropy effects on seismic velocities which can impede permafrost differentiation (Phillips et al., 2016). Due to production or deposition history, porosity can show large spatial differences in deposited landforms. Landforms with large boulders such as rock glaciers and moraines show highest p-wave velocity differences between active-layer and permafrost which facilitates differentiation (Draebing, 2016). Saturation with water is essential for the successful application of refraction seismics for permafrost detection and can be controlled at laboratory scale. At landform scale, saturation shows temporal and spatial variation which is partially reflected in variation of seismic velocities of the active-layer (Draebing, 2016). Environmental factors result in a high spatial variation of rock or soil properties that affect seismic velocities. However, in landforms such as rock glaciers and moraines active-layer and permafrost can be distinguished based on seismic velocities alone while p-wave velocity differences of these layers in talus slopes and debris-covered slopes decrease and, therefore, require additional geophysical techniques or boreholes for layer differentiation (Draebing, 2016). Draebing, D., Krautblatter, M. 2012. P-wave velocity changes in freezing hard low-porosity rocks: a laboratory- based time-average model. The Cryosphere 6, 1163-1174. Draebing, D. 2016. Application of refraction seismics in alpine permafrost studies: A review. Earth-Science Reviews 155, 136-152. Draebing D., Haberkorn A., Krautblatter M., Kenner R., Phillips M. 2016. Spatial and temporal snow cover variability and resulting thermal and mechanical response in a permafrost rock wall. Permafrost and Periglacial Processes. Krautblatter M., Draebing D. 2014. Pseudo 3D - P-wave refraction seismic monitoring of permafrost in steep unstable bedrock. Journal of Geophysical Research: Earth Surface 119, 287-99. Phillips M., Haberkorn A., Draebing D., Krautblatter M., Rhyner H., Kenner R. 2016. Seasonally intermittent water flow through deep fractures in an Alpine rock ridge: Gemsstock, central Swiss Alps. Cold Regions Science and Technology 125, 117-127.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616848V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616848V"><span>Detecting Slow Deformation Signals Preceding Dynamic Failure: A New Strategy For The Mitigation Of Natural Hazards (SAFER)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vinciguerra, Sergio; Colombero, Chiara; Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Umili, Gessica; Fiaschi, Andrea; Saccorotti, Gilberto</p> <p>2014-05-01</p> <p>Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The high velocity that usually characterizes the failure phase of rock instabilities makes the traditional instruments based on slope deformation measurements not applicable for early warning systems. On the other hand the use of acoustic emission records has been often a good tool in underground mining for slope monitoring. Here we aim to identify the characteristic signs of impending failure, by deploying a "site specific" microseismic monitoring system on an unstable patch of the Madonna del Sasso landslide on the Italian Western Alps designed to monitor subtle changes of the mechanical properties of the medium and installed as close as possible to the source region. The initial characterization based on geomechanical and geophysical tests allowed to understand the instability mechanism and to design the monitoring systems to be placed. Stability analysis showed that the stability of the slope is due to rock bridges. Their failure progress can results in a global slope failure. Consequently the rock bridges potentially generating dynamic ruptures need to be monitored. A first array consisting of instruments provided by University of Turin, has been deployed on October 2013, consisting of 4 triaxial 4.5 Hz seismometers connected to a 12 channel data logger arranged in a 'large aperture' configuration which encompasses the entire unstable rock mass. Preliminary data indicate the occurrence of microseismic swarms with different spectral contents. Two additional geophones and 4 triaxial piezoelectric accelerometers able to operate at frequencies up to 23 KHz will be installed during summer 2014. This will allow us to develop a network capable of recording events with Mw < 0.5 and frequencies between 700 Hz and 20 kHz. Rock physical and mechanical characterization along with rock deformation laboratory experiments during which the evolution of related physical parameters under simulated conditions of stress and fluid content will be also studied and theoretical modelling will allow to come up with a full hazard assessment and test new methodologies for a much wider scale of applications within EU.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014GTES....2...21R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014GTES....2...21R"><span>Empirical relations of rock properties of outcrop and core samples from the Northwest German Basin for geothermal drilling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reyer, D.; Philipp, S. L.</p> <p>2014-09-01</p> <p>Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...356..163M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...356..163M"><span>Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, James D. P.; Yu, Hang; Tang, Chi-Hsien; Wang, Teng; Barbot, Sylvain; Peng, Dongju; Masuti, Sagar; Dauwels, Justin; Hsu, Ya-Ju; Lambert, Valère; Nanjundiah, Priyamvada; Wei, Shengji; Lindsey, Eric; Feng, Lujia; Shibazaki, Bunichiro</p> <p>2017-04-01</p> <p>The deformation of mantle and crustal rocks in response to stress plays a crucial role in the distribution of seismic and volcanic hazards, controlling tectonic processes ranging from continental drift to earthquake triggering. However, the spatial variation of these dynamic properties is poorly understood as they are difficult to measure. We exploited the large stress perturbation incurred by the 2016 earthquake sequence in Kumamoto, Japan, to directly image localized and distributed deformation. The earthquakes illuminated distinct regions of low effective viscosity in the lower crust, notably beneath the Mount Aso and Mount Kuju volcanoes, surrounded by larger-scale variations of viscosity across the back-arc. This study demonstrates a new potential for geodesy to directly probe rock rheology in situ across many spatial and temporal scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......124R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......124R"><span>Studying physical properties of deformed intact and fractured rocks by micro-scale hydro-mechanical-seismicity model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raziperchikolaee, Samin</p> <p></p> <p>The pore pressure variation in an underground formation during hydraulic stimulation of low permeability formations or CO2 sequestration into saline aquifers can induce microseismicity due to fracture generation or pre-existing fracture activation. While the analysis of microseismic data mainly focuses on mapping the location of fractures, the seismic waves generated by the microseismic events also contain information for understanding of fracture mechanisms based on microseismic source analysis. We developed a micro-scale geomechanics, fluid-flow and seismic model that can predict transport and seismic source behavior during rock failure. This model features the incorporation of microseismic source analysis in fractured and intact rock transport properties during possible rock damage and failure. The modeling method considers comprehensive grains and cements interaction through a bonded-particle-model. As a result of grain deformation and microcrack development in the rock sample, forces and displacements in the grains involved in the bond breakage are measured to determine seismic moment tensor. In addition, geometric description of the complex pore structure is regenerated to predict fluid flow behavior of fractured samples. Numerical experiments are conducted for different intact and fractured digital rock samples, representing various mechanical behaviors of rocks and fracture surface properties, to consider their roles on seismic and transport properties of rocks during deformation. Studying rock deformation in detail provides an opportunity to understand the relationship between source mechanism of microseismic events and transport properties of damaged rocks to have a better characterizing of fluid flow behavior in subsurface formations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........22C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........22C"><span>Prediction of Reservoir Properties for Geomechanical Analysis Using 3-D Seismic Data and Rock Physics Modeling in the Vaca Muerta Formation, Neuquen Basin, Argentina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Convers-Gomez, Carlos E.</p> <p></p> <p>The Vaca Muerta Formation in the Neuquen Basin has recently received a lot of attention from oil companies interested in developing its shale resources. Early identification of potential zones with possible good production is extremely important to optimize the return on capital investment. Developing a work flow in shale plays that associates an effective hydraulic fracture response with the presence of hydrocarbons is crucial for economic success. The vertical and lateral heterogeneity of rock properties are critical factors that impact production. The integration of 3D seismic and well data is necessary for prediction of rock properties and identifies their distribution in the rock, which can also be integrated with geomechanical properties to model the rock response favorable to hydraulic stimulation. This study includes a 3D seismic survey and six vertical wells with full log suites in each well. The well logs allowed for the computation of a pre-stack model-based inversion which uses seismic data to estimate rock property volumes. An inverse relationship between P-impedance and Total Organic Content (TOC) was observed and quantified. Likewise, a direct relationship between P-impedance and volume of carbonate was observed. The volume of kerogen, type of clay, type of carbonate and fluid pressure all control the geomechanical properties of the formation when subject to hydraulic fracturing. Probabilistic Neural Networks were then used to predict the lateral and vertical heterogeneity of rock properties. TOC and volume of kerogen behaved as adequate indicators of possible zones with high presence of hydrocarbons. Meanwhile, the volume of carbonate was a valid indicator of brittle-ductile rock. The predicted density volume was used to estimate geomechanical properties (Young's Modulus and Poisson's Ratio) and to identify the zones that have a better response to hydraulic stimulation. During the analysis of geomechanical properties, Young's Modulus was observed to have a direct relationship with volume of carbonate and an inverse relationship with TOC, enabling the identification of brittle and ductile rocks zones. The analysis detected zones that had a good presence of hydrocarbons and brittle rock. The information was integrated with the analysis of geomechanical properties generating a model with the most possible zones of good production. This model will aid in the future exploration and development of the Vaca Muerta Formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..112..224Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..112..224Z"><span>Reactive solute transport in an asymmetrical fracture-rock matrix system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Renjie; Zhan, Hongbin</p> <p>2018-02-01</p> <p>The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance which refers to the zero diffusion between the fracture and the rock matrix during the water flushing phase is closely associated with dispersive process in the fracture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1302338','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1302338"><span>Impact of Micro-to Meso-scale Fractures on Sealing Behavior of Argillaceous Cap Rocks For CO 2 Sequestration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Evans, James</p> <p></p> <p>This multi-disciplinary project evaluated seal lithologies for the safety and security of long-term geosequestration of CO 2. We used integrated studies to provide qualitative risk for potential seal failure; we integrated data sets from outcrop, core, geochemical analysis, rock failure properties from mechanical testing, geophysical wireline log analysis, and geomechanical modeling to understand the effects of lithologic heterogeneity and changing mechanical properties have on the mechanical properties of the seal. The objectives of this study were to characterize cap rock seals using natural field analogs, available drillhole logging data and whole-rock core, geochemical and isotopic analyses. Rock deformation experiments weremore » carried out on collected samples to develop better models of risk estimation for potential cap rock seal failure. We also sampled variably faulted and fractured cap rocks to examine the impacts of mineralization and/or alteration on the mechanical properties. We compared CO 2 reacted systems to non-CO 2 reacted seal rock types to determine response of each to increased pore fluid pressures and potential for the creation of unintentional hydrofractures at depth.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15016020','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15016020"><span>Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hutchings, L J; Foxall, W; Rambo, J</p> <p>2005-02-14</p> <p>Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintainmore » such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15016018','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15016018"><span>Evaluation of Nevada Test Site Ground Motion and Rock Property Data to Bound Ground Motions at the Yucca Mountain Repository</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hutchings, L H; Foxall, W; Rambo, J</p> <p>2005-03-09</p> <p>Yucca Mountain licensing will require estimation of ground motions from probabilistic seismic hazard analyses (PSHA) with annual probabilities of exceedance on the order of 10{sup -6} to 10{sup -7} per year or smaller, which correspond to much longer earthquake return periods than most previous PSHA studies. These long return periods for the Yucca Mountain PSHA result in estimates of ground motion that are extremely high ({approx} 10 g) and that are believed to be physically unrealizable. However, there is at present no generally accepted method to bound ground motions either by showing that the physical properties of materials cannot maintainmore » such extreme motions, or the energy release by the source for such large motions is physically impossible. The purpose of this feasibility study is to examine recorded ground motion and rock property data from nuclear explosions to determine its usefulness for studying the ground motion from extreme earthquakes. The premise is that nuclear explosions are an extreme energy density source, and that the recorded ground motion will provide useful information about the limits of ground motion from extreme earthquakes. The data were categorized by the source and rock properties, and evaluated as to what extent non-linearity in the material has affected the recordings. They also compiled existing results of non-linear dynamic modeling of the explosions carried out by LLNL and other institutions. They conducted an extensive literature review to outline current understanding of extreme ground motion. They also analyzed the data in terms of estimating maximum ground motions at Yucca Mountain.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100021328','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100021328"><span>Semi-Automated Identification of Rocks in Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bornstein, Benjamin; Castano, Andres; Anderson, Robert</p> <p>2006-01-01</p> <p>Rock Identification Toolkit Suite is a computer program that assists users in identifying and characterizing rocks shown in images returned by the Mars Explorer Rover mission. Included in the program are components for automated finding of rocks, interactive adjustments of outlines of rocks, active contouring of rocks, and automated analysis of shapes in two dimensions. The program assists users in evaluating the surface properties of rocks and soil and reports basic properties of rocks. The program requires either the Mac OS X operating system running on a G4 (or more capable) processor or a Linux operating system running on a Pentium (or more capable) processor, plus at least 128MB of random-access memory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..579X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..579X"><span>Investigation of Rock Mass Stability Around the Tunnels in an Underground Mine in USA Using Three-Dimensional Numerical Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xing, Yan; Kulatilake, P. H. S. W.; Sandbak, L. A.</p> <p>2018-02-01</p> <p>The stability of the rock mass around the tunnels in an underground mine was investigated using the distinct element method. A three-dimensional model was developed based on the available geological, geotechnical, and mine construction information. It incorporates a complex lithological system, persistent and non-persistent faults, and a complex tunnel system including backfilled tunnels. The strain-softening constitutive model was applied for the rock masses. The rock mass properties were estimated using the Hoek-Brown equations based on the intact rock properties and the RMR values. The fault material behavior was modeled using the continuously yielding joint model. Sequential construction and rock supporting procedures were simulated based on the way they progressed in the mine. Stress analyses were performed to study the effect of the horizontal in situ stresses and the variability of rock mass properties on tunnel stability, and to evaluate the effectiveness of rock supports. The rock mass behavior was assessed using the stresses, failure zones, deformations around the tunnels, and the fault shear displacement vectors. The safety of rock supports was quantified using the bond shear and bolt tensile failures. Results show that the major fault and weak interlayer have distinct influences on the displacements and stresses around the tunnels. Comparison between the numerical modeling results and the field measurements indicated the cases with the average rock mass properties, and the K 0 values between 0.5 and 1.25 provide satisfactory agreement with the field measurements.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRF..122..615M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRF..122..615M"><span>Dynamics of the Bingham Canyon rock avalanches (Utah, USA) resolved from topographic, seismic, and infrasound data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.; Koper, Keith D.; Hale, J. Mark; Aaron, Jordan; Larsen, Chris F.</p> <p>2017-03-01</p> <p>The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. Here we combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5-2 times greater volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10-50 s) seismic data. Intermediate- and shorter-period (1-50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2-1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes 104-105 m3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. Our results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JVGR..288...76W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JVGR..288...76W"><span>Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wyering, L. D.; Villeneuve, M. C.; Wallis, I. C.; Siratovich, P. A.; Kennedy, B. M.; Gravley, D. M.; Cant, J. L.</p> <p>2014-11-01</p> <p>Mechanical characterization of hydrothermally altered rocks from geothermal reservoirs will lead to an improved understanding of rock mechanics in a geothermal environment. To characterize rock properties of the selected formations, we prepared samples from intact core for non-destructive (porosity, density and ultrasonic wave velocities) and destructive laboratory testing (uniaxial compressive strength). We characterised the hydrothermal alteration assemblage using optical mineralogy and existing petrography reports and showed that lithologies had a spread of secondary mineralisation that occurred across the smectite, argillic and propylitic alteration zones. The results from the three geothermal fields show a wide variety of physical rock properties. The testing results for the non-destructive testing shows that samples that originated from the shallow and low temperature section of the geothermal field had higher porosity (15 - 56%), lower density (1222 - 2114 kg/m3) and slower ultrasonic waves (1925 - 3512 m/s (vp) and 818 - 1980 m/s (vs)), than the samples from a deeper and higher temperature section of the field (1.5 - 20%, 2072 - 2837 kg/m3, 2639 - 4593 m/s (vp) and 1476 - 2752 m/s (vs), respectively). The shallow lithologies had uniaxial compressive strengths of 2 - 75 MPa, and the deep lithologies had strengths of 16 - 211 MPa. Typically samples of the same lithologies that originate from multiple wells across a field have variable rock properties because of the different alteration zones from which each sample originates. However, in addition to the alteration zones, the primary rock properties and burial depth of the samples also have an impact on the physical and mechanical properties of the rock. Where this data spread exists, we have been able to derive trends for this specific dataset and subsequently have gained an improved understanding of how hydrothermal alteration affects physical and mechanical properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.3437D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.3437D"><span>Experimental Study of Slabbing and Rockburst Induced by True-Triaxial Unloading and Local Dynamic Disturbance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Kun; Tao, Ming; Li, Xi-bing; Zhou, Jian</p> <p>2016-09-01</p> <p>Slabbing/spalling and rockburst are unconventional types of failure of hard rocks under conditions of unloading and various dynamic loads in environments with high and complex initial stresses. In this study, the failure behaviors of different rock types (granite, red sandstone, and cement mortar) were investigated using a novel testing system coupled to true-triaxial static loads and local dynamic disturbances. An acoustic emission system and a high-speed camera were used to record the real-time fracturing processes. The true-triaxial unloading test results indicate that slabbing occurred in the granite and sandstone, whereas the cement mortar underwent shear failure. Under local dynamically disturbed loading, none of the specimens displayed obvious fracturing at low-amplitude local dynamic loading; however, the degree of rock failure increased as the local dynamic loading amplitude increased. The cement mortar displayed no failure during testing, showing a considerable load-carrying capacity after testing. The sandstone underwent a relatively stable fracturing process, whereas violent rockbursts occurred in the granite specimen. The fracturing process does not appear to depend on the direction of local dynamic loading, and the acoustic emission count rate during rock fragmentation shows that similar crack evolution occurred under the two test scenarios (true-triaxial unloading and local dynamically disturbed loading).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=mechanical+AND+properties&pg=4&id=EJ346062','ERIC'); return false;" href="https://eric.ed.gov/?q=mechanical+AND+properties&pg=4&id=EJ346062"><span>Extracting Information from Folds in Rocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Hudleston, Peter John</p> <p>1986-01-01</p> <p>Describes the three processes of folding in rocks: buckling, bending, and passive folding. Discusses how geometrical properties and strain distributions help to identify which processes produce natural folds, and also provides information about the mechanical properties of rocks, and the sense of shear in shear zones. (TW)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.T42C..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.T42C..08S"><span>Shallow near-fault material self organizes so it is just nonlinear in typical strong shaking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sleep, N. H.</p> <p>2011-12-01</p> <p>Cracking within shallow compliant fault zones self-organizes so that strong dynamic stresses marginally exceed the elastic limit. To the first order, the compliant material experiences strain boundary conditions imposed by underlying stiffer rock. A major strike-slip fault yields simple dimensional relations. The near-field velocity pulse is essentially a Love wave. The dynamic strain is the ratio of the measured particle velocity over the deep S-wave velocity. The shallow dynamic stress is this quantity times the local shear modulus. I obtain the equilibrium shear modulus by starting a sequence of earthquakes with intact stiff rock surrounding the shallow fault zone. The imposed dynamic strain in stiff rock causes Coulomb failure and leaves cracks in it wake. Cracked rock is more compliant than the original intact rock. Each subsequent event causes more cracking until the rock becomes compliant enough that it just reaches its elastic limit. Further events maintain the material at the shear modulus where it just fails. Analogously, shallow damaged regolith forms with its shear modulus and S-wave velocity increasing with depth so it just reaches failure during typical strong shaking. The general conclusion is that shallow rocks in seismically active areas just become nonlinear during typical shaking. This process causes transient changes in S-wave velocity, but not strong nonlinear attenuation of seismic waves. Wave amplitudes significantly larger than typical ones would strongly attenuate and strongly damage the rock. The equilibrium shear modulus and S-wave velocity depend only modestly on the effective coefficient of internal friction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.3983J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.3983J"><span>Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming</p> <p>2016-10-01</p> <p>Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1042378','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1042378"><span>THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Robert Podgorney; Chuan Lu; Hai Huang</p> <p>2012-01-01</p> <p>Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions ofmore » EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability evolution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.3175E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.3175E"><span>Modelling Geomechanical Heterogeneity of Rock Masses Using Direct and Indirect Geostatistical Conditional Simulation Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald</p> <p>2017-12-01</p> <p>An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..118a2041W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..118a2041W"><span>Characteristics and engineering properties of residual soil of volcanic deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wibawa, Y. S.; Sugiarti, K.; Soebowo, E.</p> <p>2018-02-01</p> <p>Residual soil knowledge of volcanic-sedimentary rock products provides important information on the soil bearing capacity and its engineering properties. The residual soil is the result of weathering commonly found in unsaturated conditions, having varied geotechnical characteristics at each level of weathering. This paper summarizes the results of the research from the basic engineering properties of residual soil of volcanic-sedimentary rocks from several different locations. The main engineering properties of residual soil such as specific gravity, porosity, grain size, clay content (X-Ray test) and soil shear strength are performed on volcanic rock deposits. The results show that the variation of the index and engineering properties and the microstructure properties of residual soil have the correlation between the depths of weathering levels. Pore volume and pore size distribution on weathered rock profiles can be used as an indication of weathering levels in the tropics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H23C1292M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H23C1292M"><span>The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.</p> <p>2011-12-01</p> <p>Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740040235&hterms=mechanics+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmechanics%2Brocks','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740040235&hterms=mechanics+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmechanics%2Brocks"><span>Rock physics properties of some lunar samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.</p> <p>1973-01-01</p> <p>Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMNG13A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMNG13A..02L"><span>Computational Challenges in the Analysis of Petrophysics Using Microtomography and Upscaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J.; Pereira, G.; Freij-Ayoub, R.; Regenauer-Lieb, K.</p> <p>2014-12-01</p> <p>Microtomography provides detailed 3D internal structures of rocks in micro- to tens of nano-meter resolution and is quickly turning into a new technology for studying petrophysical properties of materials. An important step is the upscaling of these properties as micron or sub-micron resolution can only be done on the sample-scale of millimeters or even less than a millimeter. We present here a recently developed computational workflow for the analysis of microstructures including the upscaling of material properties. Computations of properties are first performed using conventional material science simulations at micro to nano-scale. The subsequent upscaling of these properties is done by a novel renormalization procedure based on percolation theory. We have tested the workflow using different rock samples, biological and food science materials. We have also applied the technique on high-resolution time-lapse synchrotron CT scans. In this contribution we focus on the computational challenges that arise from the big data problem of analyzing petrophysical properties and its subsequent upscaling. We discuss the following challenges: 1) Characterization of microtomography for extremely large data sets - our current capability. 2) Computational fluid dynamics simulations at pore-scale for permeability estimation - methods, computing cost and accuracy. 3) Solid mechanical computations at pore-scale for estimating elasto-plastic properties - computational stability, cost, and efficiency. 4) Extracting critical exponents from derivative models for scaling laws - models, finite element meshing, and accuracy. Significant progress in each of these challenges is necessary to transform microtomography from the current research problem into a robust computational big data tool for multi-scale scientific and engineering problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1212744D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1212744D"><span>Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Paola, Nicola; Hirose, Takehiro; Mitchell, Tom; di Toro, Giulio; Viti, Cecilia; Shimamoto, Toshiko</p> <p>2010-05-01</p> <p>During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee's range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T52A..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T52A..02D"><span>Fault Lubrication and Earthquake Propagation in Thermally Unstable Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Paola, N.; Hirose, T.; Mitchell, T. M.; di Toro, G.; Viti, C.; Shimamoto, T.</p> <p>2009-12-01</p> <p>During earthquake propagation in thermally unstable rocks, the frictional heat generated can induce thermal reactions which lead to chemical and physical changes in the slip zone. We performed laboratory friction experiments on thermally unstable minerals (gypsum, dolomite and calcite) at about 1 m/s slip velocities, more than 1 m displacements and calculated temperature rise above 500 C degrees. These conditions are typical during the propagation of large earthquakes. The main findings of our experimental work are: 1) Dramatic fault weakening is characterized by a dynamic frictional strength drop up to 90% of the initial static value in the Byerlee’s range. 2) Seismic source parameters, calculated from our experimental results, match those obtained by modelling of seismological data from the 1997 Cofliorito earthquake nucleated in carbonate rocks in Italy (i.e. same rocks used in the friction experiments). Fault lubrication observed during the experiments is controlled by the superposition of multiple, thermally-activated, slip weakening mechanisms (e.g., flash heating, thermal pressurization and nanoparticle lubrication). The integration of mechanical and CO2 emission data, temperature rise calculations and XRPD analyses suggests that flash heating is not the main dynamic slip weakening process. This process was likely inhibited very soon (t < 1s) for displacements d < 0.20 m, when intense grain size reduction by both cataclastic and chemical/thermal processes took place. Conversely, most of the dynamic weakening observed was controlled by thermal pressurization and nanoparticle lubrication processes. The dynamic shear strength of experimental faults was reduced when fluids (CO2, H2O) were trapped and pressurized within the slip zone, in accord with the effective normal stress principle. The fluids were not initially present in the slip zone, but were released by decarbonation (dolomite and Mg-rich calcite) and dehydration (gypsum) reactions, both activated by frictional heating during seismic slip. The dynamic weakening effects of nanoparticles (e.g. powder lubrication) are still unclear due to the poorly understood mechanical properties of nanoparticles at high velocities and temperatures, typical of seismic slip. The experimental results improve our understanding of the controls exerted on the dynamic frictional strength of faults by the coseismic operation of chemical (mineral decomposition) and physical (grain size reduction, fluids release and pressurization) processes. The estimation of this parameter is out of the range of seismological studies, although it controls the magnitude of the stress drop, the seismic fault heat flow and the relative partitioning of the earthquake energy budget, which are all controversial and still debated issues in the scientific community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.3223L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.3223L"><span>Rockbursting Potential of Kimberlite: A Case Study of Diavik Diamond Mine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leveille, Paul; Sepehri, Mohammadali; Apel, Derek B.</p> <p>2017-12-01</p> <p>The research described in this paper provides information about the rockbursting potential of kimberlite. Kimberlite is a diamond-bearing rock found in deposits around the world including northern Canada. This paper outlines three methods for the prediction of rockbursts based on the properties of a rock. The methods include the: strain energy index, strain energy density, and rock brittleness. Kimberlite samples collected from Diavik, a diamond mine in northern Canada, were tested to define the rock's uniaxial compressive strength, tensile strength, and hysteresis loop. The samples were separated into sub-rock types based on their descriptions from the mine geologists. The results indicate that it is possible to produce rockbursts in kimberlite. It was also observed that the sub-rock types had a range of rockbursting properties. Some types of kimberlite exhibited little to no potential for producing bursts, while other types potentially could produce violent bursts. The diverse nature of kimberlite indicates that the rockbursting properties of the rock should not be generalized and are dependent on the sub-rock type being encountered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3278719','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3278719"><span>Mitochondrial Fission Triggered by Hyperglycemia Is Mediated by ROCK1 Activation in Podocytes and Endothelial Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Wenjian; Wang, Yin; Long, Jianyin; Wang, Jinrong; Haudek, Sandra B.; Overbeek, Paul; Chang, Benny H.J.; Schumacker, Paul T.; Danesh, Farhad R.</p> <p>2012-01-01</p> <p>SUMMARY Several lines of evidence suggest that mitochondrial dysfunction plays a critical role in the pathogenesis of microvascular complications of diabetes, including diabetic nephropathy. However, the signaling pathways by which hyperglycemia leads to mitochondrial dysfunction are not fully understood. Here we examined the role of Rho-associated coiled-coil containing protein kinase 1 (ROCK1) on mitochondrial dynamics by generating two diabetic mouse models with targeted deletions of ROCK1, and an inducible podocyte-specific knock-in mouse expressing a constitutively active (cA) mutant of ROCK1. Our findings suggest that ROCK1 mediates hyperglycemia-induced mitochondrial fission by promoting dynamin-related protein-1 (Drp1) recruitment to the mitochondria. Deletion of ROCK1 in diabetic mice prevented mitochondrial fission, whereas podocyte-specific cA-ROCK1 mice exhibited increased mitochondrial fission. Importantly, we found that ROCK1 triggers mitochondrial fission by phosphorylating Drp1 at Serine 600 residue. These findings provide insights into the unexpected role of ROCK1 in a signaling cascade that regulates mitochondrial dynamics. PMID:22326220</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123.3250Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123.3250Z"><span>Dynamic Fragmentation of Jointed Rock Blocks During Rockslide-Avalanches: Insights From Discrete Element Analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Tao; Crosta, Giovanni Battista; Dattola, Giuseppe; Utili, Stefano</p> <p>2018-04-01</p> <p>The dynamic fragmentation of jointed rock blocks during rockslide avalanches has been investigated by discrete element method simulations for a multiple arrangement of a rock block sliding over a simple slope geometry. The rock blocks are released along an inclined sliding plane and subsequently collide onto a flat horizontal plane at a sharp kink point. The contact force chains generated by the impact appear initially at the bottom frontal corner of the rock block and then propagate radially upward to the top rear part of the block. The jointed rock blocks exhibit evident contact force concentration and discontinuity of force wave propagation near the joint, associating with high energy dissipation of granular dynamics. The corresponding force wave propagation velocity can be less than 200 m/s, which is much smaller than that of an intact rock (1,316 m/s). The concentration of contact forces at the bottom leads to high rock fragmentation intensity and momentum boosts, facilitating the spreading of many fine fragments to the distal ends. However, the upper rock block exhibits very low rock fragmentation intensity but high energy dissipation due to intensive friction and damping, resulting in the deposition of large fragments near the slope toe. The size and shape of large fragments are closely related to the orientation and distribution of the block joints. The cumulative fragment size distribution can be well fitted by the Weibull's distribution function, with very gentle and steep curvatures at the fine and coarse size ranges, respectively. The numerical results of fragment size distribution can match well some experimental and field observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28408598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28408598"><span>Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moore, James D P; Yu, Hang; Tang, Chi-Hsien; Wang, Teng; Barbot, Sylvain; Peng, Dongju; Masuti, Sagar; Dauwels, Justin; Hsu, Ya-Ju; Lambert, Valère; Nanjundiah, Priyamvada; Wei, Shengji; Lindsey, Eric; Feng, Lujia; Shibazaki, Bunichiro</p> <p>2017-04-14</p> <p>The deformation of mantle and crustal rocks in response to stress plays a crucial role in the distribution of seismic and volcanic hazards, controlling tectonic processes ranging from continental drift to earthquake triggering. However, the spatial variation of these dynamic properties is poorly understood as they are difficult to measure. We exploited the large stress perturbation incurred by the 2016 earthquake sequence in Kumamoto, Japan, to directly image localized and distributed deformation. The earthquakes illuminated distinct regions of low effective viscosity in the lower crust, notably beneath the Mount Aso and Mount Kuju volcanoes, surrounded by larger-scale variations of viscosity across the back-arc. This study demonstrates a new potential for geodesy to directly probe rock rheology in situ across many spatial and temporal scales. Copyright © 2017, American Association for the Advancement of Science.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAfES.124..151Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAfES.124..151Y"><span>Examining the relation between rock mass cuttability index and rock drilling properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yetkin, Mustafa E.; Özfırat, M. Kemal; Yenice, Hayati; Şimşir, Ferhan; Kahraman, Bayram</p> <p>2016-12-01</p> <p>Drilling rate is a substantial index value in drilling and excavation operations at mining. It is not only a help in determining physical and mechanical features of rocks, but also delivers strong estimations about instantaneous cutting rates. By this way, work durations to be finished on time, proper machine/equipment selection and efficient excavation works can be achieved. In this study, physical and mechanical properties of surrounding rocks and ore zones are determined by investigations carried out on specimens taken from an underground ore mine. Later, relationships among rock mass classifications, drillability rates, cuttability, and abrasivity have been investigated using multi regression analysis. As a result, equations having high regression rates have been found out among instantaneous cutting rates and geomechanical properties of rocks. Moreover, excavation machine selection for the study area has been made at the best possible interval.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S51E..08B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S51E..08B"><span>New Laboratory Observations of Thermal Pressurization Weakening</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Badt, N.; Tullis, T. E.; Hirth, G.</p> <p>2017-12-01</p> <p>Dynamic frictional weakening due to pore fluid thermal pressurization has been studied under elevated confining pressure in the laboratory, using a rotary-shear apparatus having a sample with independent pore pressure and confining pressure systems. Thermal pressurization is directly controlled by the permeability of the rocks, not only for the initiation of high-speed frictional weakening but also for a subsequent sequence of high-speed sliding events. First, the permeability is evaluated at different effective pressures using a method where the pore pressure drop and the flow-through rate are compared using Darcy's Law as well as a pore fluid oscillation method, the latter method also permitting measurement of the storage capacity. Then, the samples undergo a series of high-speed frictional sliding segments at a velocity of 2.5 mm/s, under an applied confining pressure and normal stress of 45 MPa and 50 MPa, respectively, and an initial pore pressure of 25 MPa. Finally the rock permeability and storage capacity are measured again to assess the evolution of the rock's pore fluid properties. For samples with a permeability of 10-20 m2 thermal pressurization promotes a 40% decrease in strength. However, after a sequence of three high-speed sliding events, the magnitude of weakening diminishes progressively from 40% to 15%. The weakening events coincide with dilation of the sliding interface. Moreover, the decrease in the weakening degree with progressive fast-slip events suggest that the hydraulic diffusivity may increase locally near the sliding interface during thermal pressurization-enhanced slip. This could result from stress- or thermally-induced damage to the host rock, which would perhaps increase both permeability and storage capacity, and so possibly decrease the susceptibility of dynamic weakening due to thermal pressurization in subsequent high-speed sliding events.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3439G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3439G"><span>Characterization of seismic properties across scales: from the laboratory- to the field scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grab, Melchior; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart</p> <p>2016-04-01</p> <p>When exploring geothermal systems, the main interest is on factors controlling the efficiency of the heat exchanger. This includes the energy state of the pore fluids and the presence of permeable structures building part of the fluid transport system. Seismic methods are amongst the most common exploration techniques to image the deep subsurface in order to evaluate such a geothermal heat exchanger. They make use of the fact that a seismic wave caries information on the properties of the rocks in the subsurface through which it passes. This enables the derivation of the stiffness and the density of the host rock from the seismic velocities. Moreover, it is well-known that the seismic waveforms are modulated while propagating trough the subsurface by visco-elastic effects due to wave induced fluid flow, hence, delivering information about the fluids in the rock's pore space. To constrain the interpretation of seismic data, that is, to link seismic properties with the fluid state and host rock permeability, it is common practice to measure the rock properties of small rock specimens in the laboratory under in-situ conditions. However, in magmatic geothermal systems or in systems situated in the crystalline basement, the host rock is often highly impermeable and fluid transport predominately takes place in fracture networks, consisting of fractures larger than the rock samples investigated in the laboratory. Therefore, laboratory experiments only provide the properties of relatively intact rock and an up-scaling procedure is required to characterize the seismic properties of large rock volumes containing fractures and fracture networks and to study the effects of fluids in such fractured rock. We present a technique to parameterize fractured rock volumes as typically encountered in Icelandic magmatic geothermal systems, by combining laboratory experiments with effective medium calculations. The resulting models can be used to calculate the frequency-dependent bulk modulus K(ω) and shear modulus G(ω), from which the P- and S-wave velocities V P(ω) and V S(ω) and the quality factors QP(ω) and QS(ω) of fluid saturated fractured rock volumes can be estimated. These volumes are much larger and contain more complex structures than the rock samples investigated in the laboratory. Thus, the derived quantities describe the elastic and anelastic (energy loss due to wave induced fluid flow) short-term deformation induced by seismic waves at scales that are relevant for field-scale seismic exploration projects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAG...128...58P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAG...128...58P"><span>Characterization of the Vajont landslide (North-Eastern Italy) by means of reflection and surface wave seismics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petronio, Lorenzo; Boaga, Jacopo; Cassiani, Giorgio</p> <p>2016-05-01</p> <p>The mechanisms of the disastrous Vajont rockslide (North-Eastern Italy, October 9, 1963) have been studied in great detail over the past five decades. Nevertheless, the reconstruction of the rockslide dynamics still presents several uncertainties, including those related to the accurate estimation of the actual landslide mass. This work presents the results of a geophysical characterization of the Vajont landslide body in terms of material properties and buried geometry. Both aspects add new information to the existing dataset and will help a better understanding of the rockslide failure mechanisms and dynamics. In addition, some general considerations concerning the intricacies of landslide characterization can be drawn, with due attention to potential pitfalls. The employed techniques are: (i) high resolution P-wave reflection, (ii) high resolution SH-wave reflection, (iii) controlled source surface wave analysis. We adopted as a seismic source a vibrator both for P waves and SH waves, using vertical and horizontal geophones respectively. For the surface wave seismic survey we used a heavy drop-weight source and low frequency receivers. Despite the high noise level caused by the fractured conditions of the large rock body, a common situation in landslide studies, we managed to achieve a satisfying imaging quality of the landslide structure thanks to the large number of active channels, the short receiver interval and the test of appropriate seismic sources. The joint use of different seismic techniques help focus the investigation on the rock mass mechanical properties. Results are in good agreement with the available borehole data, the geological sections and the mechanical properties of the rockmass estimated by other studies. In general the proposed approach is likely to be applicable successfully to similar situations where scattering and other noise sources are a typical bottleneck to geophysical data acquisition on landslide bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70173719','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70173719"><span>Rock fall dynamics and deposition: an integrated analysis of the 2009 Ahwiyah Point rock fall, Yosemite National Park, USA.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Valerie L. Zimmer,; Collins, Brian D.; Greg M. Stock,; Nicholas Sitar,</p> <p>2012-01-01</p> <p>We analyzed a combination of airborne and terrestrial LiDAR, high-resolution photography, seismic, and acoustic data in order to gain insights into the initiation, dynamics, and talus deposition of a complex rock fall. A large (46 700 m3) rock fall originated from near Ahwiyah Point in eastern Yosemite Valley and fell a total of 730 m to the valley floor on 28 March 2009. Analyses of remote sensing, seismic, and acoustic data were integrated to reconstruct the rock fall, which consisted of (1) the triggering of a 25 400 m3 rock block in an area of intersecting and sometimes highly weathered joint planes, (2) the sliding and subsequent ballistic trajectory of the block from a steeply dipping ledge, (3) dislodging of additional rock from the cliff surface from beneath the rock fall source area, (4) a mid-cliff ledge impact that detached a volume of rock nearly equivalent in volume to the initial block, (5) sliding of the deteriorating rock mass down the remainder of the cliff, and (6) final impact at the base of the cliff that remobilized the existing talus downward and outward and produced an airblast that knocked down hundreds of trees. The depositional geomorphology indicates that the porosity of the fresh talus is significantly lower than that expected for typical blocky talus slopes, likely because the rock debris from this event was pulverized into smaller, more poorly sorted fragments and densified via dynamic compaction when compared to less energetic, fragmental-type rock falls. These results suggest that accumulation of individual rock-fall boulders tends to steepen talus slopes, whereas large, energetic rock falls tend to flatten them. Detachment and impact signals were recorded by seismic and acoustic instruments and highlight the potential use of this type of instrumentation for generalized rock fall monitoring, while LiDAR and photography data were able to quantify the cliff geometry, rock fall volume, source and impact locations, and geomorphological changes to the cliff and talus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/90388','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/90388"><span>An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Watson, R.</p> <p></p> <p>Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core andmore » linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP33B0987L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP33B0987L"><span>Quantitative Relationships Linking Rock Strength to Channel Morphology: A Case Study in Central Arizona</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Larimer, J. E.; Yanites, B.</p> <p>2016-12-01</p> <p>River morphology is a consequence of the erosive forces acting on the channel boundary and the resisting forces that limit erosion. For bedrock rivers, the erosive forces are generated by the stresses exerted by impacting sediment and flowing water, while the resisting forces are controlled by the internal strength regime of the local rock. We investigate the susceptibility of different rock types to different erosional processes (i.e. abrasion and plucking) and how changes in channel morphology reflect rock strength properties across lithologic boundaries. The bedrock rivers in the Prescott National Forest, AZ flow over a number of rock types with variable strength including sedimentary, igneous, and metamorphic lithologies providing a natural experiment to quantify the influence of rock strength on channel morphology. We collected bedrock samples and channel surveys from 12 different rock types. Rock-strength and rock-mass properties include compressive strength, tensile strength, fatigue strength, decimeter scale P-wave velocity (varies by 8-fold), Schmidt rebound value, fracture spacing, fracture aperture, and slake durability (as a proxy for weathering susceptibility. Morphological measurements include channel width, channel steepness (varies by 10-fold), and grain size distribution. To distinguish between the major mechanisms of erosion we measure bedrock surface roughness factor at the centimeter scale. Preliminary results show that channel steepness (ksn) increases with P-wave velocity while normalized channel width (kwn) decreases with P-wave velocity. We use these data to quantify scaling relationships of channel geometry with rock strength properties. We consider the results in the context of the driving mechanistic process to develop new quantitative understandings of how rock strength properties influence the efficiency of erosion processes and how rock strength is reflected in river morphology. By comparing the results among different rock types in a landscape subject to spatially consistent tectonic and climatic influence, our work seeks to advance process-based river erosion models through field and laboratory measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...417..376A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...417..376A"><span>Dynamics of a distributed drill string system: Characteristic parameters and stability maps</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aarsnes, Ulf Jakob F.; van de Wouw, Nathan</p> <p>2018-03-01</p> <p>This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23093407','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23093407"><span>Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schofield, Alice V; Steel, Rohan; Bernard, Ora</p> <p>2012-12-21</p> <p>The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1036710','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1036710"><span>Method and system for generating a beam of acoustic energy from a borehole, and applications thereof</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Johnson, Paul A [Santa Fe, NM; Ten Cate, James A [Los Alamos, NM; Guyer, Robert [Reno, NV; Le Bas, Pierre-Yves [Los Alamos, NM; Vu, Cung [Houston, TX; Nihei, Kurt [Oakland, CA; Schmitt, Denis P [Katy, TX; Skelt, Christopher [Houston, TX</p> <p>2012-02-14</p> <p>A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3503009J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3503009J"><span>Comprehensive Interpretation of the Laboratory Experiments Results to Construct Model of the Polish Shale Gas Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jarzyna, Jadwiga A.; Krakowska, Paulina I.; Puskarczyk, Edyta; Wawrzyniak-Guz, Kamila; Zych, Marcin</p> <p>2018-03-01</p> <p>More than 70 rock samples from so-called sweet spots, i.e. the Ordovician Sa Formation and Silurian Ja Member of Pa Formation from the Baltic Basin (North Poland) were examined in the laboratory to determine bulk and grain density, total and effective/dynamic porosity, absolute permeability, pore diameters size, total surface area, and natural radioactivity. Results of the pyrolysis, i.e., TOC (Total Organic Carbon) together with S1 and S2 - parameters used to determine the hydrocarbon generation potential of rocks, were also considered. Elemental composition from chemical analyses and mineral composition from XRD measurements were also included. SCAL analysis, NMR experiments, Pressure Decay Permeability measurements together with water immersion porosimetry and adsorption/ desorption of nitrogen vapors method were carried out along with the comprehensive interpretation of the outcomes. Simple and multiple linear statistical regressions were used to recognize mutual relationships between parameters. Observed correlations and in some cases big dispersion of data and discrepancies in the property values obtained from different methods were the basis for building shale gas rock model for well logging interpretation. The model was verified by the result of the Monte Carlo modelling of spectral neutron-gamma log response in comparison with GEM log results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..529..265D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..529..265D"><span>Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dafny, Elad; Tawfeeq, Kochar Jamal; Ghabraie, Kazem</p> <p>2015-10-01</p> <p>Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10-8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15946671','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15946671"><span>The effect of mineral composition on the sorption of cesium ions on geological formations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kónya, József; Nagy, Noémi M; Nemes, Zoltán</p> <p>2005-10-15</p> <p>The sorption of cesium-137 on rock samples, mainly on clay rocks, is determined as a function of the mineral composition of the rocks. A relation between the mineral groups (tectosilicates, phyllosilicates, clay minerals, carbonates) and their cesium sorption properties is shown. A linear model is constructed by which the distribution coefficients of the different minerals can be calculated from the mineral composition and the net distribution coefficient of the rock. On the basis of the distribution coefficients of the minerals the cesium sorption properties of other rocks can be predicted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8467K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8467K"><span>Relict rock glaciers in alpine catchments: A regional study in Central Austria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kellerer-Pirklbauer, Andreas; Pauritsch, Marcus; Winkler, Gerfried</p> <p>2013-04-01</p> <p>Alpine catchments represent an important freshwater source in many regions. Catchments in the subalpine to nival altitudinal levels are generally characterised by higher precipitation, lower evapotranspiration and consequently higher discharge rates compared to lower elevated areas of the montane and foothill levels of the same region. Particularly in crystalline mountain regions in the mid- to high latitudes glacial and periglacial sediments cover larger areas and form important aquifers in alpine catchments. Typical periglacial landforms in mountain areas are rock glaciers. Relict rock glaciers consist of sediment accumulations without permafrost at present. This rock glacier type has a strong influence on water storage capacities and discharge behaviour of the catchments. The hydraulic properties of rock glaciers have a positive impact on flood-risk reduction and the riparian ecology below rock glacier springs during dry periods. Furthermore, the exceptional high discharge rates at springs at the front of relict rock glaciers compared to nearby non-rock glacier springs are also of economic interest. Knowledge about morphometric characteristics of rock glacier catchments helps to increase the understanding of the groundwater system and discharge dynamics of rock glaciers. In this context the main objectives of our study are (a) to assess and quantitatively describe rock glacier catchments at a regional scale by analysing different morphometric parameters of the catchments and (b) to combine the rock glacier catchment properties with water balance data. In doing so, at first an inventory of 295 rock glacier catchments was established for the 2440 km² large study area (Niedere Tauern Range, Styria) in Central Austria ranging from 590 to 2862 m a.s.l.. In a second step, the inventory data were combined with area-wide precipitation, discharge and evapotranspiration data. Results reveal that 108 km² or 4.4% of the entire study area belongs to rock glacier catchments. This proportion increases to 8.6% for areas above 1500 m a.s.l. and even to 23% for areas above 2000 m a.s.l.. Results for a 626 km² large subunit (Seckauer Tauern Range) reveal that even 15.6% of the area above 1500 m a.s.l. and more 42% above 2000 m a.s.l. are influenced by relict rock glaciers as aquifers. A total water volume of 4240 Mio m³ is precipitated annually (mean value for the normal period 1971-2000) in the entire study area. 22% of this water is evapotranspirated and the remaining water is the discharge of the catchments. Despite the fact that 8.6% of the entire Niedere Tauern Range above 1500 m a.s.l. belong to rock glacier catchments, about 9.5% of the total discharge and 9.2% of the total precipitation originates in the rock glacier catchments. In contrast, only 7.9% of all precipitated water is evapotranspirated in these catchments. In the subunit Seckauer Tauern Range the same figures for rock glacier catchments are substantially higher and more pronounced in their differences with 15.6% for area, 16.8% for precipitation, 14.5% for evapotranspiration and even 17.3% for discharge. These figures exemplarily show that rock glaciers and their catchments are highly relevant in the alpine water cycle of the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41B0404C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41B0404C"><span>Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.</p> <p>2017-12-01</p> <p>Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.213.1244G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.213.1244G"><span>Dynamic seismic signatures of saturated porous rocks containing two orthogonal sets of fractures: theory versus numerical simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guo, Junxin; Rubino, J. Germán; Glubokovskikh, Stanislav; Gurevich, Boris</p> <p>2018-05-01</p> <p>The dispersion and attenuation of seismic waves are potentially important attributes for the non-invasive detection and characterization of fracture networks. A primary mechanism for these phenomena is wave-induced fluid flow (WIFF), which can take place between fractures and their embedding background (FB-WIFF), as well as within connected fractures (FF-WIFF). In this work, we propose a theoretical approach to quantify seismic dispersion and attenuation related to these two manifestations of WIFF in saturated porous rocks permeated by two orthogonal sets of fractures. The methodology is based on existing theoretical models for rocks with aligned fractures, and we consider three types of fracture geometries, namely, periodic planar fractures, randomly spaced planar fractures and penny-shaped cracks. Synthetic 2-D rock samples with different degrees of fracture intersections are then explored by considering both the proposed theoretical approach and a numerical upscaling procedure that provides the effective seismic properties of generic heterogeneous porous media. The results show that the theoretical predictions are in overall good agreement with the numerical simulations, in terms of both the stiffness coefficients and the anisotropic properties. For the seismic dispersion and attenuation caused by FB-WIFF, the theoretical model for penny-shaped cracks matches the numerical simulations best, whereas for representing the effects due to FF-WIFF the periodic planar fractures model turns out to be the most suitable one. The proposed theoretical approach is easy to apply and is applicable not only to 2-D but also to 3-D fracture systems. Hence, it has the potential to constitute a useful framework for the seismic characterization of fractured reservoirs, especially in the presence of intersecting fractures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMMR44A..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMMR44A..07R"><span>Inferences from Microfractures and Geochemistry in Dynamic Shale-CO2 Packed Bed Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Radonjic, M.; Olabode, A.</p> <p>2016-12-01</p> <p>Subsurface storage of large volumes of carbondioxide (CO2) is expected to have long term rock-fluid interactions impact on reservoir and seal rocks properties. Caprocks, particularly sedimentary types, are the ultimate hydraulic barrier in carbon sequestration. The mineralogical components of sedimentary rocks are geochemically active under enormous earth stresses, which generate high pressure and temperature conditions. It has been postulated that in-situ mineralization can lead to flow impedance in natural fractures in the presence of favorable geochemical and thermodynamic conditions. This experimental modelling research investigated the impact of in-situ geochemical precipitation on conductivity of fractures. Geochemical analyses were performed on four different samples of shale rocks, effluent fluids and recovered precipitates both before and after CO2-brine flooding of crushed shale rocks at moderately high temperature and pressure conditions. The results showed that most significant diagenetic changes in shale rocks after flooding with CO2-brine, reflected in the effluent fluid with predominantly calcium based minerals dissolving and precipitating under experimental conditions. Major and trace elements in the effluent (using ICP-OES analysis) indicated that multiple geochemical reactions are occurring with almost all of the constituent minerals participating. The geochemical composition of precipitates recovered after the experiments showed diagenetic carbonates and opal as the main constituents. The bulk rock showed little changes in composition except for sharper and more refined peaks on XRD analysis, suggesting that a significant portion of the amorphous content of the rocks have been removed via dissolution by the slightly acid CO2-brine fluid that was injected. Micro-indentation results captured slight reduction in the hardness of the shale rocks and this reduction appeared dependent on diagenetic quartz content. It can be inferred that convective reactive transport of dissolved minerals are involved in nanoscale precipitation-dissolution processes in shale. This reactive transport of dissolved minerals can occlude micro-fracture flow paths, thereby improving shale caprock seal integrity with respect to leakage risk under CO2 sequestration conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD0840296','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD0840296"><span>THE NEAR SURFACE GEOLOGY AT ENIWETOK AND BIKINI ATOLLS.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p></p> <p>ROCK, *NUCLEAR EXPLOSIONS, BIKINI ATOLL, CRATERING, SURFACE PROPERTIES, PARTICLE SIZE, GEOPHYSICAL PROSPECTING, LIMESTONE, GEOLOGICAL SURVEYS, SAND, GRAVEL, CORAL REEFS, DRILLING, ROCK, MARSHALL ISLANDS , SANDSTONE, FRICTION, COMPRESSIVE PROPERTIES, SOILS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910069152&hterms=Video+18&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DVideo%252B18','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910069152&hterms=Video+18&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DVideo%252B18"><span>A study of high alpha dynamics and flow visualization for a 2.5-percent model of the F-18 HARV undergoing wing rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Quast, Thomas; Nelson, Robert C.; Fisher, David F.</p> <p>1991-01-01</p> <p>Free-to-roll experiments and flow visualization studies have been conducted for a 2.5-percent model of the F-18 undergoing unsteady wing rock oscillations. Data have been acquired in the form of roll angle time histories as well as video recordings and 35 mm photography of the forebody and leading edge extension vortices. The time histories were differentiated to produce angular velocity and angular acceleration. From this the roll moment as a function of time and/or roll angle could be estimated. A thorough analysis of the data has revealed a genuine wing-rock phenomenon. Off-surface flow visualization was used to identiify the forebody and LEX vortex core positions and their interaction in both static and dynamic configurations. A direct correlation between the dynamic data and visualized vortex activity during the wing-rock motion has been made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR33B0468M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR33B0468M"><span>Investigating coseismic fracture damage using a new high speed triaxial apparatus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mitchell, T. M.; Aben, F. M.; Pricci, R.; Brantut, N.; Rockwell, T. K.; Boon, S.</p> <p>2017-12-01</p> <p>The occurence of pulverized rocks, a type of intensely damaged fault rock which has undergone minimal shear strain, has been linked to damage induced by transient high strain-rate stress perturbations during earthquake rupture. Damage induced by such transient stresses, whether compressional or tensional, likely constitute heterogeneous modulations of the remote stresses that will impart significant changes on the strength, elastic and fluid flow properties of a fault zone immediately after rupture propagation, at the early stage of fault slip. While the physical mechanisms for pulverized rock generation are still not yet fully understood, it is likely that they are in some way related to a combination of the dynamic compressive and tensional stresses imparted on the rock surrounding a fault at the tip of a propagating earthquake rupture. Typical triaxial rock deformation apparatuses are limited by their loading systems to strain rates on the order of 10-4 s-1, which in terms of the seismic cycle, is only applicable to processes operating within the inter-seismic period. In order to achieve strain rates in excess of 100 s-1 under confined conditions with pore fluids (currently unachievable with conventional deformation apparatus such as split bar Hopkinson), we have designed, manufactured and constructed a new high strain rate triaxial rock deformation apparatus, with a unique innovative hydraulic loading system that allows samples to be deformed in compression and tension at strain rates from 10-7 up to 200 s-1 . We present preliminary data demonstrating the unique capability of this apparatus to produce co-seismic experimental conditions not previously acheived.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoJI.194..849B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoJI.194..849B"><span>Modal and thermal analysis of Les Arches unstable rock column (Vercors massif, French Alps)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bottelin, P.; Lévy, C.; Baillet, L.; Jongmans, D.; Guéguen, P.</p> <p>2013-08-01</p> <p>A potentially unstable limestone column (˜1000 m3, Vercors, French Alps) delineated by an open rear fracture was continuously instrumented with two three-component seismic sensors from mid-May 2009 to mid-October 2011. Spectral analysis of seismic noise allowed several resonance frequencies to be determined, ranging from 6 to 21 Hz. The frequency domain decomposition (FDD) technique was applied to the ambient vibrations recorded on the top of the rock column. Three vibration modes were identified at 6, 7.5 and 9 Hz, describing the upper part of corresponding modal shapes. Finite element numerical modelling of the column dynamic response confirmed that the first two modes are bending modes perpendicular and parallel to the fracture, respectively, while the third one corresponds to torsion. Seismic noise monitoring also pointed out that resonance frequencies fluctuate with time, under thermomechanical control. For seasonal cycles, changes in frequency are due to the variations of the bulk elastic properties with temperature. At daily scale, increase in fundamental frequency with temperature has been interpreted as resulting from the rock expansion inducing a closure of the rear fracture rock bridges, hence stiffening the contact between the column and the rock mass. Conversely, the rock contraction induces a fracture opening and a decrease in resonance frequency. In winter, when the temperature drops below 0 °C, a dramatic increase in fundamental frequency is observed from 6 Hz to more than 25 Hz, resulting from ice formation in the fracture. During spring, the resonance frequency gradually diminishes with ice melting to reach the value measured before winter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...154....1Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...154....1Y"><span>The spatial-temporal evolution law of microseismic activities in the failure process of deep rock masses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan-hui, Li; Gang, Lei; Shi-da, Xu; Da-wei, Wu</p> <p>2018-07-01</p> <p>Under high stress and blasting disturbance, the failure of deep rock masses is a complex, dynamic evolutionary process. To reveal the relation between macroscopic failure of deep rock masses and spatial-temporal evolution law of micro-cracking within, the initiation, extension, and connection of micro-cracks under blasting disturbance and the deformation and failure mechanism of deep rock masses were studied. The investigation was carried out using the microseismic (MS) monitoring system established in the deep mining area of Ashele Copper Mine (Xinjiang Uygur Autonomous Region, China). The results showed that the failure of the deep rock masses is a dynamic process accompanied with stress release and stress adjustment. It is not only related to the blasting-based mining, but also associated with zones of stress concentration formed due to the mining. In that space, the concentrated area in the cloud chart for the distribution of MS event density before failure of the rocks shows the basically same pattern with the damaged rocks obtained through scanning of mined-out areas, which indicates that the cloud chart can be used to determine potential risk areas of rocks in the spatial domain. In the time domain, relevant parameters of MS events presented different changes before the failure of the rocks: the energy index decreased while the cumulative apparent volume gradually increased, the magnitude distribution of microseismic events decreased rapidly, and the fractal dimension decreased at first and then remained stable. This demonstrates that the different changes in relevant MS parameters allow researchers to predict the failure time of the rocks. By analysing the dynamic evolution process of the failure of the deep rock masses, areas at potential risk can be predicted spatially and temporally. The result provides guidance for those involved in the safe production and management of underground engineering and establishes a theoretical basis for the study on the stability of deep rock masses.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR33C0479A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR33C0479A"><span>Simulating Hydraulic Fracturing: Failure in soft versus hard rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aleksans, J.; Koehn, D.; Toussaint, R.</p> <p>2017-12-01</p> <p>In this contribution we discuss the dynamic development of hydraulic fractures, their evolution and the resulting seismicity during fluid injection in a coupled numerical model. The model describes coupling between a solid that can fracture dynamically and a compressible fluid that can push back at the rock and open fractures. With a series of numerical simulations we show how the fracture pattern and seismicity change depending on changes in depth, injection rate, Young's Modulus and breaking strength. Our simulations indicate that the Young's Modulus has the largest influence on the fracture dynamics and also the related seismicity. Simulations of rocks with a Young's modulus smaller than 10 GPa show dominant mode I failure and a growth of fracture aperture with a decrease in Young's modulus. Simulations of rocks with a higher Young's modulus than 10 GPa show fractures with a constant aperture and fracture growth that is mainly governed by a growth in crack length and an increasing amount of mode II failure. We propose that two distinct failure regimes are observed in the simulations, above 10 GPa rocks break with a constant critical stress intensity factor whereas below 10 GPa they break reaching a critical cohesion, i.e. a critical tensile strength. These results are very important for the prediction of fracture dynamics and seismicity during fluid injection, especially since we see a transition from one failure regime to another at around 10 GPa, a Young's modulus that lies in the middle of possible values for natural shale rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S14B..04X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S14B..04X"><span>Theoretical Constraints on Properties of Dynamic Ruptures Implied by Pulverized Fault Zone Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, S.; Ben-Zion, Y.</p> <p>2016-12-01</p> <p>Prominent belts of Pulverized Fault Zone Rocks (PFZR) have been observed adjacent to several major strike-slip faults that separate different crustal blocks. They consist of 100-200m wide zones of highly damaged rock products, primarily of crystalline origin, that were mechanically shattered to sub-micron scale while preserving most of their original fabric with little evidence of shear. PFZR are strongly asymmetric with respect to the fault trace, existing primarily on the side with higher seismic velocity at depth, and their fabric suggests volumetric deformation with tensile cracks in all directions (e.g., Dor et al., 2006; Rockwell et al., 2009; Mitchell et al., 2011). Generating with split Hopkinson pressure bar in intact cm-scale sample microstructures similar to those observed in PFZR requires strain-rates higher than 150/s (e.g., Doan and Gary, 2009; Yuan et al., 2011). Using samples with preexisting damage reduces the strain-rate required for pulverization by 50% (Doan and d'Hour, 2012). These laboratory observations support earlier suggestions that PFZR are produced by dynamic stress fields at the tip of earthquake ruptures (e.g., Ben-Zion and Shi, 2005; Reches and Dewers, 2005). To clarify the conditions associated with generation of PFZR, we discuss theoretical results based on Linear Elastic Fracture Mechanics and simulations of Mode-II dynamic ruptures on frictional faults (Xu and Ben-Zion, 2016). We consider subshear and supershear ruptures along faults between similar and dissimilar solids. The results indicate that strain-rates higher than 150/s can be generated at distance of about 100m from the fault by either subshear ruptures on a bimaterial interface or supershear ruptures between similar and dissimilar solids. The dynamic fields of subshear bimaterial ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks that have no preferred orientation, in agreement with observations. In contrast, the supershear ruptures are likely to produce off-fault damage on both sides of the fault with preferred tensile crack orientations. Additional laboratory tests with multi-axial tension and larger samples with preexisting damage can clarify further the dynamic conditions implied by observed PFZR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70155511','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70155511"><span>Pore-pressure sensitivities to dynamic strains: observations in active tectonic regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barbour, Andrew J.</p> <p>2015-01-01</p> <p>Triggered seismicity arising from dynamic stresses is often explained by the Mohr-Coulomb failure criterion, where elevated pore pressures reduce the effective strength of faults in fluid-saturated rock. The seismic response of a fluid-rock system naturally depends on its hydro-mechanical properties, but accurately assessing how pore-fluid pressure responds to applied stress over large scales in situ remains a challenging task; hence, spatial variations in response are not well understood, especially around active faults. Here I analyze previously unutilized records of dynamic strain and pore-pressure from regional and teleseismic earthquakes at Plate Boundary Observatory (PBO) stations from 2006 through 2012 to investigate variations in response along the Pacific/North American tectonic plate boundary. I find robust scaling-response coefficients between excess pore pressure and dynamic strain at each station that are spatially correlated: around the San Andreas and San Jacinto fault systems, the response is lowest in regions of the crust undergoing the highest rates of secular shear strain. PBO stations in the Parkfield instrument cluster are at comparable distances to the San Andreas fault (SAF), and spatial variations there follow patterns in dextral creep rates along the fault, with the highest response in the actively creeping section, which is consistent with a narrowing zone of strain accumulation seen in geodetic velocity profiles. At stations in the San Juan Bautista (SJB) and Anza instrument clusters, the response depends non-linearly on the inverse fault-perpendicular distance, with the response decreasing towards the fault; the SJB cluster is at the northern transition from creeping-to-locked behavior along the SAF, where creep rates are at moderate to low levels, and the Anza cluster is around the San Jacinto fault, where to date there have been no statistically significant creep rates observed at the surface. These results suggest that the strength of the pore pressure response in fluid-saturated rock near active faults is controlled by shear strain accumulation associated with tectonic loading, which implies a strong feedback between fault strength and permeability: dynamic triggering susceptibilities may vary in space and also in time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024829','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024829"><span>A method for development of a system of identification for Appalachian coal-bearing rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ferm, J.C.; Weisenfluh, G.A.; Smith, G.C.</p> <p>2002-01-01</p> <p>The number of observable properties of sedimentary rocks is large and numerous classifications have been proposed for describing them. Some rock classifications, however, may be disadvantageous in situations such as logging rock core during coal exploration programs, where speed and simplicity are the essence. After experimenting with a number of formats for logging rock core in the Appalachian coal fields, a method of using color photographs accompanied by a rock name and numeric code was selected. In order to generate a representative collection of rocks to be photographed, sample methods were devised to produce a representative collection, and empirically based techniques were devised to identify repeatedly recognizable rock types. A number of cores representing the stratigraphic and geographic range of the region were sampled so that every megascopically recognizable variety was included in the collection; the frequency of samples of any variety reflects the frequency with which it would be encountered during logging. In order to generate repeatedly recognizable rock classes, the samples were sorted to display variation in grain size, mineral composition, color, and sedimentary structures. Class boundaries for each property were selected on the basis of existing, widely accepted limits and the precision with which these limits could be recognized. The process of sorting the core samples demonstrated relationships between rock properties and indicated that similar methods, applied to other groups of rocks, could yield more widely applicable field classifications. ?? 2002 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21529029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21529029"><span>Split Hopkinson resonant bar test for sonic-frequency acoustic velocity and attenuation measurements of small, isotropic geological samples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakagawa, Seiji</p> <p>2011-04-01</p> <p>Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver-the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 [ordinal indicator, masculine]C, and concurrently with x-ray CT imaging. The described split Hopkinson resonant bar test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples, and a natural rock sample. © 2011 American Institute of Physics</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28640342','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28640342"><span>Applicability of geomechanical classifications for estimation of strength properties in Brazilian rock masses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Santos, Tatiana B; Lana, Milene S; Santos, Allan E M; Silveira, Larissa R C</p> <p>2017-01-01</p> <p>Many authors have been proposed several correlation equations between geomechanical classifications and strength parameters. However, these correlation equations have been based in rock masses with different characteristics when compared to Brazilian rock masses. This paper aims to study the applicability of the geomechanical classifications to obtain strength parameters of three Brazilian rock masses. Four classification systems have been used; the Rock Mass Rating (RMR), the Rock Mass Quality (Q), the Geological Strength Index (GSI) and the Rock Mass Index (RMi). A strong rock mass and two soft rock masses with different degrees of weathering located in the cities of Ouro Preto and Mariana, Brazil; were selected for the study. Correlation equations were used to estimate the strength properties of these rock masses. However, such correlations do not always provide compatible results with the rock mass behavior. For the calibration of the strength values obtained through the use of classification systems, ​​stability analyses of failures in these rock masses have been done. After calibration of these parameters, the applicability of the various correlation equations found in the literature have been discussed. According to the results presented in this paper, some of these equations are not suitable for the studied rock masses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1971d0002Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1971d0002Z"><span>Asymmetric disappearance and periodic asymmetric phenomena of rocking dynamics in micro dual-capacitive energy harvester</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Jianxiong; Guo, Xiaoyu; Huang, Run</p> <p>2018-06-01</p> <p>We study asymmetric disappearance and period asymmetric phenomena starting with a rocking dynamic in micro dual-capacitive energy harvester. The mathematical model includes nonlinear electrostatic forces from the variable dual capacitor, the numerical functioned forces provided by suspending springs, linear damping forces and an external vibration force. The suspending plate and its elastic supports were designed in a symmetric structure in the micro capacitor, however, the reported energy harvester was unavoidable starting with a asymmetric motion in the real vibration environment. We found that the designed dual energy capacitive harvester can harvest ˜6 µW with 10V input voltage, and under 0.8 time's resonant frequency vibration. We also discovered that the rocking dynamics of the suspended plate can be showed with an asymmetric disappearance or periodic asymmetric phenomena starting with an asymmetric motion. The study of these asymmetric disappearance and period asymmetric phenomena were not only important for the design of the stability of the micro capacitor for sensor or the energy harvesting, but also gave a deep understanding of the rocking nonlinear dynamics of the complex micro structures and beams.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR21C2635W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR21C2635W"><span>SAPHYR: the Swiss Atlas of PHYsical properties of Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wenning, Q. C.; Zappone, A. S.; Kissling, E.</p> <p>2015-12-01</p> <p>The Swiss Atlas of PHYsical properties of Rocks (SAPHYR) is a multi-year project, aiming to compile a comprehensive data set on physical properties of rocks exposed in Switzerland and surrounding areas. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public, such as industrial, engineering, land and resource planning companies, as well as academic institutions. Since the early sixties worldwide geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. In combination with efforts to investigate deep structure of the continental crust by controlled source seismology, laboratories capable to reproduce pressure and temperature conditions to depth of 50km and more collected measurements of various parameters on a wide variety of rock types. In recent years, the increasing interest on non-traditional energy supply, (deep geothermal energy, shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. The idea to organize those laboratory data into a geographically referenced database (GIS) is supported by the Swiss Commission for Geophysics. The data refer to density and porosity, seismic, magnetic, thermal properties, permeability and electrical properties. An effort has been placed on collecting samples and measuring the physical properties of lithologies that are poorly documented in literature. The phase of laboratory measurements is still in progress. At present SAPHYR focuses towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology, boreholes data and seismic surveys, combined with lab determined pressure and temperature derivatives. An early version of the final product is presented here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAfES.142..193M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAfES.142..193M"><span>Magnetic mineralogy and rock magnetic properties of silicate and carbonatite rocks from Oldoinyo Lengai volcano (Tanzania)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mattsson, H. B.; Balashova, A.; Almqvist, B. S. G.; Bosshard-Stadlin, S. A.; Weidendorfer, D.</p> <p>2018-06-01</p> <p>Oldoinyo Lengai, a stratovolcano in northern Tanzania, is most famous for being the only currently active carbonatite volcano on Earth. The bulk of the volcanic edifice is dominated by eruptive products produced by silica-undersaturated, peralkaline, silicate magmas (effusive, explosive and/or as cumulates at depth). The recent (2007-2008) explosive eruption produced the first ever recorded pyroclastic flows at this volcano and the accidental lithics incorporated into the pyroclastic flows represent a broad variety of different rock types, comprising both extrusive and intrusive varieties, in addition to various types of cumulates. This mix of different accidental lithics provides a unique insight into the inner workings of the world's only active carbonatite volcano. Here, we focus on the magnetic mineralogy and the rock magnetic properties of a wide selection of samples spanning the spectrum of Oldoinyo Lengai rock types compositionally, as well from a textural point of view. Here we show that the magnetic properties of most extrusive silicate rocks are dominated by magnetite-ulvöspinel solid solutions, and that pyrrhotite plays a larger role in the magnetic properties of the intrusive silicate rocks. The natrocarbonatitic lavas, for which the volcano is best known for, show distinctly different magnetic properties in comparison with the silicate rocks. This discrepancy may be explained by abundant alabandite crystals/blebs in the groundmass of the natrocarbonatitic lavas. A detailed combination of petrological/mineralogical studies with geophysical investigations is an absolute necessity in order to understand, and to better constrain, the overall architecture and inner workings of the subvolcanic plumbing system. The results presented here may also have implications for the quest in order to explain the genesis of the uniquely natrocarbonatitic magmas characteristic of Oldoinyo Lengai.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006CG.....32..352M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006CG.....32..352M"><span>Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morin, Mario A.; Ficarazzo, Francesco</p> <p>2006-04-01</p> <p>Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JChPh.145t4509K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JChPh.145t4509K"><span>Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kolafa, Jiří</p> <p>2016-11-01</p> <p>Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/10110846','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/10110846"><span>Summaries of FY 1993 geosciences research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1993-12-01</p> <p>The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of themore » individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMMM..448..186S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMMM..448..186S"><span>Magnetic behavior study of samarium nitride using density functional theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.</p> <p>2018-02-01</p> <p>In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27908102','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27908102"><span>Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kolafa, Jiří</p> <p>2016-11-28</p> <p>Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913955S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913955S"><span>Investigating anomalous transport of electrolytes in charged porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skjøde Bolet, Asger Johannes; Mathiesen, Joachim</p> <p>2017-04-01</p> <p>Surface charge is know to play an important role in microfluidics devices when dealing with electrolytes and their transport properties. Similarly, surface charge could play a role for transport in porous rock with submicron pore sizes. Estimates of the streaming potentials and electro osmotic are mostly considered in simple geometries both using analytic and numerical tools, however it is unclear at present how realistic complex geometries will modify the dynamics. Our work have focused on doing numerical studies of the full three-dimensional Stokes-Poisson-Nernst-Planck problem for electrolyte transport in porous rock. As the numerical implementation, we have used a finite element solver made using the FEniCS project code base, which can both solve for a steady state configuration and the full transient. In the presentation, we will show our results on anomalous transport due to electro kinetic effects such as the streaming potential or the electro osmotic effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7730C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7730C"><span>Origin and structure of major orogen-scale exhumed strike-slip</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Shuyun; Neubauer, Franz</p> <p>2016-04-01</p> <p>The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San Andreas Fault, Alpine Fault in New Zealand) and transtensional rift zones such as the East African rift. In many cases, subsequent shortening exhumes such faults from depth to the surface. A major aspect of many exhumed strike-slip faults is its lateral thermal gradient induced by the juxtaposition of hot and cool levels of the crust controlling relevant properties of such fault zones, e.g. the overall fault architecture (e.g., fault core, damage zone, shear lenses, fault rocks) and the thermal structure. These properties and the overall fault architecture include strength of fault rocks, permeability and porosity, the hydrological regime, as well as the nature and origin of circulating hydrothermal fluids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C21F1174L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C21F1174L"><span>Challenging the Southern Boundary of Active Rock Glaciers in West Greenland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langley, K.; Abermann, J.</p> <p>2017-12-01</p> <p>Rock glaciers are permafrost features abundant in mountainous environments and are characterized as `steadily creeping perennially frozen and ice-rich debris on non-glacierised mountain slopes'. Previous studies investigated both the climatic significance and the dynamics of rock glaciers in Greenland, however, there do not exist studies as far south as the Godthåbsfjord area. We recently found evidence of a active rock glacier near Nuuk, around 250 km further south than the previously suggested southern active limit. It shows no signs of pioneer vegetation, which supports its likely dynamic activity. The rock glacier covers an area of ca. 1 km2and its lowest point is at an elevation of about 250 m a.s.l. Here we present the results of a two year field campaign designed to (I) confirm or reject active rock glacier occurrence in the Godthåbsfjord area with innovative methods, (II) study their dynamic regime and (III) investigate the climatic boundary conditions necessary for active rock glacier occurrence in the Sub-Arctic. We use a number of methods to determine the state of the rock glacier. Movement of the landform is assessed using repeat GPS surveying of marked stones and feature tracking based on ortho-photos and DEMs from repeat UAV deployments. Bottom temperature of snow cover (BTS) measurements give an independent first-order estimate of permafrost occurrence. An air temperature sensor deployed near the snout and recording hourly gives a first order estimate of the temperature gradients between Nuuk and the rock glacier, allowing us to assess the climatic boundary conditions required for rock glacier occurrence. BTS measurements show a clear drop in temperatures over the rock glacier compared to the surrounding areas suggesting an active landform with a well demarcated thermal regime. We will assess this independently with the repeat GPS and UAV surveys and will thus be able to confirm or reject the hypothesis of activity by the end of summer 2017.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..108P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..108P"><span>Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.</p> <p>2018-01-01</p> <p>Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26659187','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26659187"><span>Scale dependence of rock friction at high work rate.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Takizawa, Shigeru; Xu, Shiqing; Kawakata, Hironori</p> <p>2015-12-10</p> <p>Determination of the frictional properties of rocks is crucial for an understanding of earthquake mechanics, because most earthquakes are caused by frictional sliding along faults. Prior studies using rotary shear apparatus revealed a marked decrease in frictional strength, which can cause a large stress drop and strong shaking, with increasing slip rate and increasing work rate. (The mechanical work rate per unit area equals the product of the shear stress and the slip rate.) However, those important findings were obtained in experiments using rock specimens with dimensions of only several centimetres, which are much smaller than the dimensions of a natural fault (of the order of 1,000 metres). Here we use a large-scale biaxial friction apparatus with metre-sized rock specimens to investigate scale-dependent rock friction. The experiments show that rock friction in metre-sized rock specimens starts to decrease at a work rate that is one order of magnitude smaller than that in centimetre-sized rock specimens. Mechanical, visual and material observations suggest that slip-evolved stress heterogeneity on the fault accounts for the difference. On the basis of these observations, we propose that stress-concentrated areas exist in which frictional slip produces more wear materials (gouge) than in areas outside, resulting in further stress concentrations at these areas. Shear stress on the fault is primarily sustained by stress-concentrated areas that undergo a high work rate, so those areas should weaken rapidly and cause the macroscopic frictional strength to decrease abruptly. To verify this idea, we conducted numerical simulations assuming that local friction follows the frictional properties observed on centimetre-sized rock specimens. The simulations reproduced the macroscopic frictional properties observed on the metre-sized rock specimens. Given that localized stress concentrations commonly occur naturally, our results suggest that a natural fault may lose its strength faster than would be expected from the properties estimated from centimetre-sized rock samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21C1473H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21C1473H"><span>Challenges and Solutions for the Integration of Structural and Hydrogeological Understanding of Fracture Systems - Insights from the Olkiluoto Site, Finland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartley, L. J.; Aaltonen, I.; Baxter, S. J.; Cottrell, M.; Fox, A. L.; Hoek, J.; Koskinen, L.; Mattila, J.; Mosley, K.; Selroos, J. O.; Suikkanen, J.; Vanhanarkaus, O.; Williams, T. R. N.</p> <p>2017-12-01</p> <p>A field site at Olkiluoto in SW Finland has undergone extensive investigations as a location for a deep geological repository for spent nuclear fuel, which is expected to become operational in the early 2020s. Characterisation data comes from 58 deep cored drillholes, a wide variety of geophysical investigations, many outcrops, kilometres of underground mapping and testing in the ONKALO research facility, and groundwater pressure monitoring and sampling in both deep and shallow holes. A primary focus is on the properties of natural fractures and brittle fault zones in the low permeability crystalline rocks at Olkiluoto; an understanding of the flow and transport processes in these features are an essential part of assessing long-term safety of the repository. This presentation will illustrate how different types of source data and cross-disciplinary interpretations are integrated to develop conceptual and numerical models of the fracture system. A model of the brittle fault zones developed from geological and geophysical data provides the hydrostructural backbone controlling the most intense fracturing and dynamic conduits for fluids. Models of ductile deformation and lithology form a tectonic framework for the description of fracture heterogeneity in the background rock, revealing correlations between the intensity and orientation of fractures with geological and spatial properties. The sizes of brittle features are found to be best defined on two scales relating to individual fractures and zones. Inferred fracture-specific from flow logging are correlated with fracture geometric and mechanical properties along with in situ stress measurements to create a hydromechanical description of fracture hydraulic properties. The insights and understandings gained from these efforts help define a discrete fracture network (DFN) model for the Olkiluoto site, with hydrogeological characteristics consistent with monitoring data of hydraulic heads and their disturbances to pumping and underground construction. This work offers ideas and proposed solutions on how some of the challenges in describing fractured rock hydrogeology can be tackled.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Sci...358..734H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Sci...358..734H"><span>Perovskite in Earth’s deep interior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirose, Kei; Sinmyo, Ryosuke; Hernlund, John</p> <p>2017-11-01</p> <p>Silicate perovskite-type phases are the most abundant constituent inside our planet and are the predominant minerals in Earth’s lower mantle more than 660 kilometers below the surface. Magnesium-rich perovskite is a major lower mantle phase and undergoes a phase transition to post-perovskite near the bottom of the mantle. Calcium-rich perovskite is proportionally minor but may host numerous trace elements that record chemical differentiation events. The properties of mantle perovskites are the key to understanding the dynamic evolution of Earth, as they strongly influence the transport properties of lower mantle rocks. Perovskites are expected to be an important constituent of rocky planets larger than Mars and thus play a major role in modulating the evolution of terrestrial planets throughout the universe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70014699','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70014699"><span>Gravity-induced stresses in stratified rock masses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Amadei, B.; Swolfs, H.S.; Savage, W.Z.</p> <p>1988-01-01</p> <p>This paper presents closed-form solutions for the stress field induced by gravity in anisotropic and stratified rock masses. These rocks are assumed to be laterally restrained. The rock mass consists of finite mechanical units, each unit being modeled as a homogeneous, transversely isotropic or isotropic linearly elastic material. The following results are found. The nature of the gravity induced stress field in a stratified rock mass depends on the elastic properties of each rock unit and how these properties vary with depth. It is thermodynamically admissible for the induced horizontal stress component in a given stratified rock mass to exceed the vertical stress component in certain units and to be smaller in other units; this is not possible for the classical unstratified isotropic solution. Examples are presented to explore the nature of the gravity induced stress field in stratified rock masses. It is found that a decrease in rock mass anisotropy and a stiffening of rock masses with depth can generate stress distributions comparable to empirical hyperbolic distributions previously proposed in the literature. ?? 1988 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T41C2909A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T41C2909A"><span>Mineral texture based seismic properties of meta-sedimentary and meta-igneous rocks in the orogenic wedge of the Central Scandinavian Caledonides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Almqvist, B. S. G.; Czaplinska, D.; Piazolo, S.</p> <p>2015-12-01</p> <p>Progress in seismic methods offers the possibility to visualize in ever greater detail the structure and composition of middle to lower continental crust. Ideally, the seismic parameters, including compressional (Vp) and shear (Vs) wave velocities, anisotropy and Vp/Vs-ratio, allow the inference of detailed and quantitative information on the deformation conditions, chemical composition, temperature and the amount and geometry of fluids and melts in the crust. However, such inferences regarding the crust should be calibrated with known mineral and rock physical properties. Seismic properties calculated from the crystallographic preferred orientation (CPO) and laboratory measurements on representative core material allow us to quantify the interpretations from seismic data. The challenge of such calibrations lies in the non-unique interpretation of seismic data. A large catalogue of physical rock properties is therefore useful, with as many constraining geophysical parameters as possible (including anisotropy and Vp/Vs ratio). We present new CPO data and modelled seismic properties for amphibolite and greenschist grade rocks representing the orogenic wedge in the Central Scandinavian Caledonides. Samples were collected from outcrops in the field and from a 2.5 km long drill core, which penetrated an amphibolite-grade allochthonous unit composed of meta-sedimentary and meta-igneous rocks, as well as mica and chlorite-rich mylonites. The textural data was acquired using large area electron backscatter diffraction (EBSD) maps, and the chemical composition of minerals obtained by energy dispersive x-ray (EDS). Based on the texture data, we compare and evaluate some of the existing methods to calculate texture-based seismic properties of rocks. The suite of samples consists of weakly anisotropic rocks such as felsic gneiss and calc-silicates, and more anisotropic amphibolite, metagabbro, mica-schist. The newly acquired dataset provides a range of seismic properties that improves compositional and structural characterization of deformed middle and lower crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSV...417..341W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSV...417..341W"><span>Dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xue-She; Mazzoleni, Michael J.; Mann, Brian P.</p> <p>2018-03-01</p> <p>This paper presents the results of an investigation on the dynamics of unforced and vertically forced rocking elliptical and semi-elliptical disks. The full equation of motion for both rocking disks is derived from first principles. For unforced behavior, Lamb's method is used to derive the linear natural frequency of both disks, and harmonic balance is used to determine their amplitude-dependent rocking frequencies. A stability analysis then reveals that the equilibria and stability of the two disks are considerably different, as the semi-elliptical disk has a super-critical pitchfork bifurcation that enables it to exhibit bistable rocking behavior. Experimental studies were conducted to verify the trends. For vertically forced behavior, numerical investigations show the disk's responses to forward and reverse frequency sweeps. Three modes of periodicity were observed for the steady state behavior. Experiments were performed to verify the frequency responses and the presence of the three rocking modes. Comparisons between the experiments and numerical investigations show good agreement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1452765','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1452765"><span>Roosevelt Hot Springs, Utah FORGE Rock Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Gwynn, Mark</p> <p>2018-04-07</p> <p>This is an Excel spreadsheet that contains rock properties from several wells in the Utah FORGE study area. This includes a map of the wells. Data is described in the Final Topical Report included in the resources below.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGP43B0987T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGP43B0987T"><span>Rock- and Paleomagnetic Properties and Modeling of a Deep Crustal Volcanic System, the Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>ter Maat, G. W.; Pastore, Z.; Michels, A.; Church, N. S.; McEnroe, S. A.; Larsen, R. B.</p> <p>2017-12-01</p> <p>The Reinfjord Ultramafic Complex is part of the 5000 km2 Seiland Igneous Province (SIP) in Northern Norway. The SIP is argued to be the deep-seated conduit system of a Large Igneous Province and was emplaced at 25-35 km depth in less than 10 Ma (570-560 Ma). The Reinfjord Ultramafic Complex was emplaced during three major successive events at 22-28km depth at pressures of 6-8kb, with associated temperatures 1450-1500°C (Roberts, 2006). The rocks are divided into three formations: the central series (CS) consisting of mainly dunites, upper layered series (ULS) consisting of dunites and wehrlites, a lower layered series (LLS) containing most pyroxene-rich rocks and a marginal zone (MZ) which formed where the ultramafic melts intruded the gabbro-norite and metasedimentary gneisses. Deep exposures such as the Reinfjord Ultramafic Complex are rare, therefore this study gives a unique insight in the rock magnetic properties of a deep ultramafic system. Localised serpentinised zones provide an opportunity to observe the effect of this alteration process on the magnetic properties of deep-seated rocks. Here, we present the results from the rock magnetic properties, a paleomagnetic study and combined potential-fields modeling. The study of the rock magnetic properties provides insight in primary processes associated with the intrusion, and later serpentinization. The paleomagnetic data yields two distinct directions. One direction corresponds to a Laurentia pole at ≈ 532 Ma while the other, though younger, is not yet fully understood. Rock magnetic properties were measured on > 700 specimens and used to constrain the modelling of gravity, high-resolution helicopter, and ground magnetic data. The intrusion is modelled as a cylindrically shaped complex with a dunite core surrounded by wehrlite and gabbro. The ultramafic part of the complex dips to the NE and its maximum vertical extent is modelled to 1400m. Furthermore, modelling allows estimation of relative volumes of ultramafic and mafic rocks below the surface. By integrating different methods this study contributes to the understanding of the magnetization of deep ultramafic rocks in the lithosphere, and to the refinement of the geological interpretation of the Reinfjord ultramafic intrusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1946b0009P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1946b0009P"><span>Laboratory investigations into fracture propagation characteristics of rock material</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prasad, B. N. V. Siva; Murthy, V. M. S. R.</p> <p>2018-04-01</p> <p>After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/834923','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/834923"><span>Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Faybishenko, Boris</p> <p>2002-11-27</p> <p>The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1081610-sructure-dynamics-fluids-micropous-mesoporous-earth-engineered-materials','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1081610-sructure-dynamics-fluids-micropous-mesoporous-earth-engineered-materials"><span>Sructure and dynamics of fluids in micropous and mesoporous earth and engineered materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cole, David R; Mamontov, Eugene; Rother, Gernot</p> <p>2009-01-01</p> <p>The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometri-cal confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dy-namical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 nm to 50 nm the micro- and mesoporous regimes. Important factors influ-encing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid-surfacemore » interaction. While confinement of liq-uids in hydrophobic matrices, such as carbon nanotubes, or near the sur-faces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and ma-terials sciences usually contain oxide structural units and thus are hydro-philic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesopor-ous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered sys-tems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Al-though studied less frequently, matrices such as artificial opals and chry-sotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for com-paring the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques which assess both structural modification and dynamical behav-ior. Quantitative understanding of the complex solid-fluid interactions under different thermodynamic situations will impact both the design of bet-ter substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26632439','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26632439"><span>An Integrated In Silico Method to Discover Novel Rock1 Inhibitors: Multi- Complex-Based Pharmacophore, Molecular Dynamics Simulation and Hybrid Protocol Virtual Screening.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Haining; Li, Sijia; Hu, Yajiao; Chen, Guo; Jiang, Qinglin; Tong, Rongsheng; Zang, Zhihe; Cai, Lulu</p> <p>2016-01-01</p> <p>Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is an important regulator of focal adhesion, actomyosin contraction and cell motility. In this manuscript, a combination of the multi-complex-based pharmacophore (MCBP), molecular dynamics simulation and a hybrid protocol of a virtual screening method, comprised of multipharmacophore- based virtual screening (PBVS) and ensemble docking-based virtual screening (DBVS) methods were used for retrieving novel ROCK1 inhibitors from the natural products database embedded in the ZINC database. Ten hit compounds were selected from the hit compounds, and five compounds were tested experimentally. Thus, these results may provide valuable information for further discovery of more novel ROCK1 inhibitors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAfES.134..383Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAfES.134..383Y"><span>Investigation of intact rock geomechanical parameters' effects on commercial blocks' productivity within stone reserves: A case history of some quarries in Isfahan, Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yarahmadi, Reza; Bagherpour, Raheb; Tabaei, Morteza; Sousa, Luis M. O.</p> <p>2017-10-01</p> <p>One of the common methods to determine commercial blocks productivity (CBP) in reserves of dimension stone is through the study of the discontinuities' network. However, this determination remains a difficult task due to geographical heterogeneity and lack of access to all reserves' formations. This study presents a new method based on various geomechanical tests performed on intact rocks that assessed the CBP of a dimension stones' rock mass. Assuming that a dimension stone's rock mass comprised a large block of an intact rock, due to tectonics, the geomechanical properties of this block had direct effects on the discontinuities created within it. Therefore, the geomechanical properties of the intact rock may be related to the CBP of a stone reserve. Based on this factor, this study explored the relationship among some geomechanical properties, including failure angle, uniaxial compressive strength, and modulus of elasticity, and CBP by using data acquired from 21 dimension stone quarries consisting of travertine, marble, and onyx groups. According to the results obtained from the analysis of the Isfahan province's Iranian quarries, failure angle was not highly related to the reserve's CBP. In marble quarries, CBP may decrease, if the compressive strength of an intact rock exceeds 60 MPa. Among the studied parameters, the saturated-to-dry ratio's modulus of elasticity had the greatest relationship to the CBP. Generally, the presented diagrams displayed that the correlation between geomechanical properties and the CBP were an appropriate guide in determining the potential cost-effectiveness of a accessing a particular rock reserve during the early exploration phase.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GeoJI.203.1977F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GeoJI.203.1977F"><span>Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fuchs, Sven; Balling, Niels; Förster, Andrea</p> <p>2015-12-01</p> <p>In this study, equations are developed that predict for synthetic sedimentary rocks (clastics, carbonates and evapourates) thermal properties comprising thermal conductivity, specific heat capacity and thermal diffusivity. The rock groups are composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities of 0-30 per cent. Petrophysical properties and their well-logging-tool-characteristic readings were assigned to these rock-forming minerals and to pore-filling fluids. Relationships are explored between each thermal property and other petrophysical properties (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) using multivariate statistics. The application of these relations allows computing continuous borehole profiles for each rock thermal property. The uncertainties in the prediction of each property vary depending on the selected well-log combination. Best prediction is in the range of 2-8 per cent for the specific heat capacity, of 5-10 per cent for the thermal conductivity, and of 8-15 for the thermal diffusivity, respectively. Well-log derived thermal conductivity is validated by laboratory data measured on cores from deep boreholes of the Danish Basin, the North German Basin, and the Molasse Basin. Additional validation of thermal conductivity was performed by comparing predicted and measured temperature logs. The maximum deviation between these logs is <3 °C. The thermal-conductivity calculation allowed an evaluation of the depth range in which the palaeoclimatic effect on the subsurface temperature field can be observed in the North German Basin. This effect reduces the surface heat-flow density by 25 mW m-2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54.3139J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54.3139J"><span>Characterizing Drainage Multiphase Flow in Heterogeneous Sandstones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, Samuel J.; Agada, Simeon; Reynolds, Catriona A.; Krevor, Samuel</p> <p>2018-04-01</p> <p>In this work, we analyze the characterization of drainage multiphase flow properties on heterogeneous rock cores using a rich experimental data set and mm-m scale numerical simulations. Along with routine multiphase flow properties, 3-D submeter scale capillary pressure heterogeneity is characterized by combining experimental observations and numerical calibration, resulting in a 3-D numerical model of the rock core. The uniqueness and predictive capability of the numerical models are evaluated by accurately predicting the experimentally measured relative permeability of N2—DI water and CO2—brine systems in two distinct sandstone rock cores across multiple fractional flow regimes and total flow rates. The numerical models are used to derive equivalent relative permeabilities, which are upscaled functions incorporating the effects of submeter scale capillary pressure. The functions are obtained across capillary numbers which span four orders of magnitude, representative of the range of flow regimes that occur in subsurface CO2 injection. Removal of experimental boundary artifacts allows the derivation of equivalent functions which are characteristic of the continuous subsurface. We also demonstrate how heterogeneities can be reorientated and restructured to efficiently estimate flow properties in rock orientations differing from the original core sample. This analysis shows how combined experimental and numerical characterization of rock samples can be used to derive equivalent flow properties from heterogeneous rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.3258L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.3258L"><span>Investigation of the relationship between CO2 reservoir rock property change and the surface roughness change originating from the supercritical CO2-sandstone-groundwater geochemical reaction at CO2 sequestration condition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Minhee; Wang, Sookyun; Kim, Seyoon; Park, Jinyoung</p> <p>2015-04-01</p> <p>Lab scale experiments were performed to investigate the property changes of sandstone slabs and cores, resulting from the scCO2-rock-groundwater reaction for 180 days under CO2 sequestration conditions (100 bar and 50 °C). The geochemical reactions, including the surface roughness change of minerals in the slab, resulted from the dissolution and the secondary mineral precipitation for the sandstone reservoir of the Gyeongsang basin, Korea were reproduced in laboratory scale experiments and the relationship between the geochemical reaction and the physical rock property change was derived, for the consideration of successful subsurface CO2 sequestration. The use of the surface roughness value (SRrms) change rate and the physical property change rate to quantify scCO2-rock-groundwater reaction is the novel approach on the study area for CO2 sequestration in the subsurface. From the results of SPM (Scanning Probe Microscope) analyses, the SRrms for each sandstone slab was calculated at different reaction time. The average SRrms increased more than 3.5 times during early 90 days reaction and it continued to be steady after 90 days, suggesting that the surface weathering process of sandstone occurred in the early reaction time after CO2 injection into the subsurface reservoir. The average porosity of sandstone cores increased by 8.8 % and the average density decreased by 0.5 % during 90 days reaction and these values slightly changed after 90 days. The average P and S wave velocities of sandstone cores also decreased by 10 % during 90 days reaction. The trend of physical rock property change during the geochemical reaction showed in a logarithmic manner and it was also correlated to the logarithmic increase in SRrms, suggesting that the physical property change of reservoir rocks originated from scCO2 injection directly comes from the geochemical reaction process. Results suggested that the long-term estimation of the physical property change for reservoir rocks in CO2 injection site could be possible from the extrapolation process of SRrms and rocks property change rates, acquired from laboratory scale experiments. It will be aslo useful to determine the favorite CO2 injection site from the viewpoint of the safety.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.usgs.gov/ds/2007/297/pdf/ds297.pdf','USGSPUBS'); return false;" href="http://pubs.usgs.gov/ds/2007/297/pdf/ds297.pdf"><span>Digitally available interval-specific rock-sample data compiled from historical records, Nevada National Security Site and vicinity, Nye County, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wood, David B.</p> <p>2007-11-01</p> <p>Between 1951 and 1992, 828 underground tests were conducted on the Nevada National Security Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada National Security Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples can not be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51.1801D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51.1801D"><span>Simulation of Grouting Process in Rock Masses Under a Dam Foundation Characterized by a 3D Fracture Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, Shaohui; Wang, Xiaoling; Yu, Jia; Zhang, Yichi; Liu, Zhen; Zhu, Yushan</p> <p>2018-06-01</p> <p>Grouting plays a crucial role in dam safety. Due to the concealment of grouting activities, complexity of fracture distribution in rock masses and rheological properties of cement grout, it is difficult to analyze the effects of grouting. In this paper, a computational fluid dynamics (CFD) simulation approach of dam foundation grouting based on a 3D fracture network model is proposed. In this approach, the 3D fracture network model, which is based on an improved bootstrap sampling method and established by VisualGeo software, can provide a reliable and accurate geometric model for CFD simulation of dam foundation grouting. Based on the model, a CFD simulation is performed, in which the Papanastasiou regularized model is used to express the grout rheological properties, and the volume of fluid technique is utilized to capture the grout fronts. Two sets of tests are performed to verify the effectiveness of the Papanastasiou regularized model. When applying the CFD simulation approach for dam foundation grouting, three technical issues can be solved: (1) collapsing potential of the fracture samples, (2) inconsistencies in the geometric model in actual fractures under complex geological conditions, and (3) inappropriate method of characterizing the rheological properties of cement grout. The applicability of the proposed approach is demonstrated by an illustrative case study—a hydropower station dam foundation in southwestern China.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950009767','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950009767"><span>Physical properties (particle size, rock abundance) from thermal infrared remote observations: Implications for Mars landing sites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Christensen, P. R.; Edgett, Kenneth S.</p> <p>1994-01-01</p> <p>Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JAG...105..248L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JAG...105..248L"><span>The combined use of heat-pulse flowmeter logging and packer testing for transmissive fracture recognition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lo, Hung-Chieh; Chen, Po-Jui; Chou, Po-Yi; Hsu, Shih-Meng</p> <p>2014-06-01</p> <p>This paper presents an improved borehole prospecting methodology based on a combination of techniques in the hydrogeological characterization of fractured rock aquifers. The approach is demonstrated by on-site tests carried out in the Hoshe Experimental Forest site and the Tailuge National Park, Taiwan. Borehole televiewer logs are used to obtain fracture location and distribution along boreholes. The heat-pulse flow meter log is used to measure vertical velocity flow profiles which can be analyzed to estimate fracture transmissivity and to indicate hydraulic connectivity between fractures. Double-packer hydraulic tests are performed to determine the rock mass transmissivity. The computer program FLASH is used to analyze the data from the flowmeter logs. The FLASH program is confirmed as a useful tool which quantitatively predicts the fracture transmissivity in comparison to the hydraulic properties obtained from packer tests. The location of conductive fractures and their transmissivity is identified, after which the preferential flow paths through the fracture network are precisely delineated from a cross-borehole test. The results provide robust confirmation of the use of combined flowmeter and packer methods in the characterization of fractured-rock aquifers, particularly in reference to the investigation of groundwater resource and contaminant transport dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPSJ...87a4801H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPSJ...87a4801H"><span>Clustering Effect on the Dynamics in a Spatial Rock-Paper-Scissors System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hashimoto, Tsuyoshi; Sato, Kazunori; Ichinose, Genki; Miyazaki, Rinko; Tainaka, Kei-ichi</p> <p>2018-01-01</p> <p>The lattice dynamics for rock-paper-scissors games is related to population theories in ecology. In most cases, simulations are performed by local and global interactions. It is known in the former case that the dynamics is usually stable. We find two types of non-random distributions in the stationary state. One is a cluster formation of endangered species: when the density of a species approaches zero, its clumping degree diverges to infinity. The other is the strong aggregations of high-density species. Such spatial pattern formations play important roles in population dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.1666C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.1666C"><span>Seismic anisotropy in the lower crust: The link between rock composition, microstructure, texture and seismic properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Czaplinska, Daria; Piazolo, Sandra; Almqvist, Bjarne</p> <p>2015-04-01</p> <p>Seismic anisotropy observed in Earth's interior is caused by the presence of aligned anisotropic minerals (crystallographic and shape preferred orientation; CPO and SPO respectively), and fluid and/or melt inclusions related to deformation. Therefore, the variations in seismic anisotropy carry valuable information about the structure of the mantle and crust. For example, anisotropy observed in the upper mantle is mainly attributed to the CPO of olivine, and provides strong evidence for the flow within the upper mantle. Seismic anisotropy in the crust is still poorly constrained, mostly due to the much larger heterogeneity of the crustal rocks in comparison with the more homogenous mantle. Anisotropy in the crust will be affected by the variations in rock composition, microstructure, texture (presence or lack of CPO), brittle structures (e.g. fracture systems) and chemical composition of the minerals. However, once the relationships between those variables and seismic properties of the crustal rocks are established, seismic anisotropy can be used to derive characteristics of rocks otherwise out of reach. Our study focuses on two sets of samples of middle to lower crustal rocks collected in Fiordland (New Zealand) and in Sweden. Samples from Fiordland represent a root of a thick (ca. 80 km) magmatic arc and comprise igneous rocks, which crystallized at high P and T conditions and were subsequently metamorphosed and deformed. Samples from Sweden are derived from a metasedimentary nappe in the Caledonian orogenic belt, which is mostly composed of gneisses, amphibolites and calc-silicates that have experienced different amounts of strain. We use large area EBSD mapping to measure the CPO of the constituent phases and record the geometric relationships of the rock microstructure. Data is then used to calculate the elastic properties of the rock from single-crystal stiffnesses. Here, we utilize the EBSD GUI software (Cook et al., 2013), which offers varied homogenization techniques, including Voigt, Reuss, Hill, geometric mean and self-consistent and Asymptotic Expansion Homogenization (AEH) methods. To test the advantages and disadvantages of the method, results are compared to measured geophysical properties of equivalent rocks. Such comparison, allows refinement of seismic data interpretation for mid to lower crustal rocks. References: Cook, A., Vel., S., Johnson, S.E., Gerbi, C., Song, W.J., 2013. Elastic and Seismic Properties (ESP) Toolbox (beta version); http://umaine.edu/mecheng/faculty-and-staff/senthil-vel/software/ESP_Toolbox/</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JTAM...47c..59L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JTAM...47c..59L"><span>Failure Mechanisms of Brittle Rocks under Uniaxial Compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Taoying; Cao, Ping</p> <p>2017-09-01</p> <p>The behaviour of a rock mass is determined not only by the properties of the rock matrix, but mostly by the presence and properties of discontinuities or fractures within the mass. The compression test on rock-like specimens with two prefabricated transfixion fissures, made by pulling out the embedded metal inserts in the pre-cured period was carried out on the servo control uniaxial loading tester. The influence of the geometry of pre-existing cracks on the cracking processes was analysed with reference to the experimental observation of crack initiation and propagation from pre-existing flaws. Based on the rock fracture mechanics and the stress-strain curves, the evolution failure mechanism of the fissure body was also analyzed on the basis of exploring the law of the compression-shear crack initiation, wing crack growth and rock bridge connection. Meanwhile, damage fracture mechanical models of a compression-shear rock mass are established when the rock bridge axial transfixion failure, tension-shear combined failure, or wing crack shear connection failure occurs on the specimen under axial compression. This research was of significance in studying the failure mechanism of fractured rock mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.3337S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.3337S"><span>Discrete Element Modeling of Micro-scratch Tests: Investigation of Mechanisms of CO2 Alteration in Reservoir Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, Zhuang; Espinoza, D. Nicolas; Balhoff, Matthew T.; Dewers, Thomas A.</p> <p>2017-12-01</p> <p>The injection of CO2 into geological formations leads to geochemical re-equilibrium between the pore fluid and rock minerals. Mineral-brine-CO2 reactions can induce alteration of mechanical properties and affect the structural integrity of the storage formation. The location of alterable mineral phases within the rock skeleton is important to assess the potential effects of mineral dissolution on bulk geomechanical properties. Hence, although often disregarded, the understanding of particle-scale mechanisms responsible for alterations is necessary to predict the extent of geomechanical alteration as a function of dissolved mineral amounts. This study investigates the CO2-related rock chemo-mechanical alteration through numerical modeling and matching of naturally altered rocks probed with micro-scratch tests. We use a model that couples the discrete element method (DEM) and the bonded particle model (BPM) to perform simulations of micro-scratch tests on synthetic rocks that mimic Entrada sandstone. Experimental results serve to calibrate numerical scratch tests with DEM-BPM parameters. Sensitivity analyses indicate that the cement size and bond shear strength are the most sensitive microscopic parameters that govern the CO2-induced alteration in Entrada sandstone. Reductions in cement size lead to decrease in scratch toughness and an increase in ductility in the rock samples. This work demonstrates how small variations of microscopic bond properties in cemented sandstone can lead to significant changes in macroscopic large-strain mechanical properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT.......285C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT.......285C"><span>Determining geophysical properties from well log data using artificial neural networks and fuzzy inference systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Hsien-Cheng</p> <p></p> <p>Two novel synergistic systems consisting of artificial neural networks and fuzzy inference systems are developed to determine geophysical properties by using well log data. These systems are employed to improve the determination accuracy in carbonate rocks, which are generally more complex than siliciclastic rocks. One system, consisting of a single adaptive resonance theory (ART) neural network and three fuzzy inference systems (FISs), is used to determine the permeability category. The other system, which is composed of three ART neural networks and a single FIS, is employed to determine the lithofacies. The geophysical properties studied in this research, permeability category and lithofacies, are treated as categorical data. The permeability values are transformed into a "permeability category" to account for the effects of scale differences between core analyses and well logs, and heterogeneity in the carbonate rocks. The ART neural networks dynamically cluster the input data sets into different groups. The FIS is used to incorporate geologic experts' knowledge, which is usually in linguistic forms, into systems. These synergistic systems thus provide viable alternative solutions to overcome the effects of heterogeneity, the uncertainties of carbonate rock depositional environments, and the scarcity of well log data. The results obtained in this research show promising improvements over backpropagation neural networks. For the permeability category, the prediction accuracies are 68.4% and 62.8% for the multiple-single ART neural network-FIS and a single backpropagation neural network, respectively. For lithofacies, the prediction accuracies are 87.6%, 79%, and 62.8% for the single-multiple ART neural network-FIS, a single ART neural network, and a single backpropagation neural network, respectively. The sensitivity analysis results show that the multiple-single ART neural networks-FIS and a single ART neural network possess the same matching trends in determining lithofacies. This research shows that the adaptive resonance theory neural networks enable decision-makers to clearly distinguish the importance of different pieces of data which are useful in three-dimensional subsurface modeling. Geologic experts' knowledge can be easily applied and maintained by using the fuzzy inference systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912073Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912073Z"><span>The Usability of Rock-Like Materials for Numerical Studies on Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zengin, Enes; Abiddin Erguler, Zeynal</p> <p>2017-04-01</p> <p>The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.1453L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.1453L"><span>Experimental Investigation of the Influence of Joint Geometric Configurations on the Mechanical Properties of Intermittent Jointed Rock Models Under Cyclic Uniaxial Compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu</p> <p>2017-06-01</p> <p>Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...44b2002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...44b2002B"><span>Investigation of Usability as Aggregate of Different Originated Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Başpinar Tuncay, Ebru; Kilinçarslan, Şemsettin; Yağmurlu, Fuzuli</p> <p>2016-10-01</p> <p>The general properties of aggregate can determine the performance and durability of the concrete. In this study, mineralogical, petrographic, mechanical, physical and chemical properties of the rock samples of different origin (limestone, recrystallized limestone, dolomite, sand and gravel, tephra-phonolite, trachybasalt) were determined. Samples were obtained from different origin rocks units and they have been classified in three different sizes of aggregate with crushing and screening method. Grading, classification of particle, loose bulk density, water absorption ratio, flakiness index, coefficient of Los Angeles, resistance to freeze-loosening and alkali-silica reaction of aggregates and organic matter determination has been determined. The rocks have been investigated in compliance with the relevant standards. Trachybasalt and dolomite have higher particle density than other rocks. In addition, strength and flexural strength of these rocks are higher than other rocks. Tephra-phonolite has the lowest water absorption rate. At the same time resistance to freeze loosening of Tephra- phonolite is lower than the other rocks. Resistance to fragmentation and the resistance to wear of all of rocks are quite high. Sand and gravel, tephra-phonolite and trachybasalt are evaluated in terms of alkali-silica reaction. Sand and gravel are more reactive than the other aggregates. Organic matter content of the aggregates is low for the quality of aggregate. Also high correlation between some properties of aggregates was observed. For example, high correlation between compressive strength and flexural strength, water absorption and porosity, resistance to fragmentation and the resistance to ware (Micro-Deval).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6073N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6073N"><span>European and Middle-East ferroan hydrothermal dolomites: lessons learnt with respect to crustal dynamics, fluid circulations and rock-fluid interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nader, Fadi Henri; Gasparrini, Marta; Bachaud, Pierre</p> <p>2016-04-01</p> <p>Classical case studies of hydrothermal dolostones, which are known worldwide to provide excellent reservoirs for ores and hydrocarbons, often illustrate the presence of iron-rich dolomite phases. The world-class hydrothermal dolostones from the Basque-Cantabrian Basin (Northern Spain) exemplify the initiation of high temperature dolomitization (at about 200°C), with significant amount of ferroan dolomite phases (including up to 2% FeO). These dolomites are believed to be responsible for the pervasive replacement of the original limestone rocks - they are followed by non-ferroan dolomite phases. The associated fluids are supposed to have interacted with basement rocks, and travelled from deep-seated sources along major fault pathways. The geochemical traits of such fluids are also typically similar to, and probably associated with, mineralization fluids (e.g. Pb-Zn, MVT). In the Middle East, several observed dolostones show, on the contrary, a later phase of ferroan dolomite cements which occlude the inter-crystalline porosity of earlier non-ferroan matrix dolomites. Dolomitization occurred under increasingly higher temperatures (from 50 to 100°C) during burial. Here, the origin of iron-rich fluids and conditions of precipitation of associated dolomites do not necessarily involve interactions with basement rocks, but rather a relative Fe-enrichment with further reducing settings. Based on previous research projects concerning a variety of dolostones from Europe and the Middle-East, this contribution presents observational, analytical and computational results focused on ferroan dolomites. Recent numerical geochemical modelling emphasized the physico-chemical pre-requisites for crystallizing ferroan rather than non-ferroan dolomites (and vice-versa), allowing better understanding of related diagenetic processes. Besides, important larger-scale information on the crustal fluid circulations are demonstrated to be intimately associated to the parent-fluids sources and the conditions of mineral precipitation. By adopting this approach, ferroan dolomites are no longer considered simply as accessory diagenetic phases. They rather provide significant clues for understanding crustal dynamics and the impacts of evolving rock-fluid interactions on carbonate reservoir properties which are essential for ore and hydrocarbon exploitation, and for underground storage and gas sequestration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1378536','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1378536"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.</p> <p></p> <p>The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. We combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm 3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5–2 times greatermore » volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10–50 s) seismic data. Intermediate- and shorter-period (1–50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2–1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes ~10 4–10 5 m 3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. These results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR44A..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR44A..02H"><span>Geomechanical Anisotropy and Rock Fabric in Shales</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huffman, K. A.; Connolly, P.; Thornton, D. A.</p> <p>2017-12-01</p> <p>Digital rock physics (DRP) is an emerging area of qualitative and quantitative scientific analysis that has been employed on a variety of rock types at various scales to characterize petrophysical, mechanical, and hydraulic rock properties. This contribution presents a generic geomechanically focused DRP workflow involving image segmentation by geomechanical constituents, generation of finite element (FE) meshes, and application of various boundary conditions (i.e. at the edge of the domain and at boundaries of various components such as edges of individual grains). The generic workflow enables use of constituent geological objects and relationships in a computational based approach to address specific questions in a variety of rock types at various scales. Two examples are 1) modeling stress dependent permeability, where it occurs and why it occurs at the grain scale; 2) simulating the path and complexity of primary fractures and matrix damage in materials with minerals or intervals of different mechanical behavior. Geomechanical properties and fabric characterization obtained from 100 micron shale SEM images using the generic DRP workflow are presented. Image segmentation and development of FE simulation composed of relatively simple components (elastic materials, frictional contacts) and boundary conditions enable the determination of bulk static elastic properties. The procedure is repeated for co-located images at pertinent orientations to determine mechanical anisotropy. The static moduli obtained are benchmarked against lab derived measurements since material properties (esp. frictional ones) are poorly constrained at the scale of investigation. Once confidence in the input material parameters is gained, the procedure can be used to characterize more samples (i.e. images) than is possible from rock samples alone. Integration of static elastic properties with grain statistics and geologic (facies) conceptual models derived from core and geophysical logs enables quantification of the impact that variations in rock fabric and grain interactions have on bulk mechanical rock behavior. When considered in terms of the stratigraphic framework of two different shale reservoirs it is found that silica distribution, clay content and orientation play a first order role in mechanical anisotropy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSMNS32A..04K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSMNS32A..04K"><span>Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Katsaga, T.; Young, P.</p> <p>2009-05-01</p> <p>The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the sample testing, in relation to the CT images allows the precise reconstruction of the failure sequence. Our proposed modelling approach illustrates realistic fracture formation and growth predictions at different loading conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....103..204W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....103..204W"><span>A 3-D wellbore simulator (WELLTHER-SIM) to determine the thermal diffusivity of rock-formations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong-Loya, J. A.; Santoyo, E.; Andaverde, J.</p> <p>2017-06-01</p> <p>Acquiring thermophysical properties of rock-formations in geothermal systems is an essential task required for the well drilling and completion. Wellbore thermal simulators require such properties for predicting the thermal behavior of a wellbore and the formation under drilling and shut-in conditions. The estimation of static formation temperatures also needs the use of these properties for the wellbore and formation materials (drilling fluids and pipes, cements, casings, and rocks). A numerical simulator (WELLTHER-SIM) has been developed for modeling the drilling fluid circulation and shut-in processes of geothermal wellbores, and for the in-situ determination of thermal diffusivities of rocks. Bottomhole temperatures logged under shut-in conditions (BHTm), and thermophysical and transport properties of drilling fluids were used as main input data. To model the thermal disturbance and recovery processes in the wellbore and rock-formation, initial drilling fluid and static formation temperatures were used as initial and boundary conditions. WELLTHER-SIM uses these temperatures together with an initial thermal diffusivity for the rock-formation to solve the governing equations of the heat transfer model. WELLTHER-SIM was programmed using the finite volume technique to solve the heat conduction equations under 3-D and transient conditions. Thermal diffusivities of rock-formations were inversely computed by using an iterative and efficient numerical simulation, where simulated thermal recovery data sets (BHTs) were statistically compared with those temperature measurements (BHTm) logged in some geothermal wellbores. The simulator was validated using a well-documented case reported in the literature, where the thermophysical properties of the rock-formation are known with accuracy. The new numerical simulator has been successfully applied to two wellbores drilled in geothermal fields of Japan and Mexico. Details of the physical conceptual model, the numerical algorithm, and the validation and application results are outlined in this work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMMR41A2682H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMMR41A2682H"><span>3-D Printing as a Tool to Investigate the Effects of Changes in Rock Microstructures on Permeability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Head, D. A.; Vanorio, T.</p> <p>2016-12-01</p> <p>Rocks are naturally heterogeneous; two rock samples with identical bulk properties can vary widely in microstructure. Understanding the evolutionary trends of rock properties requires the ability to connect time-lapse measurements of properties at different scales: the macro- scale used in the laboratory and field analyses capturing the bulk scale changes and the micro- scale used in imaging and digital techniques capturing the changes to the pore space. However, measuring those properties at different scales is very challenging, and sometimes impossible. The advent of modern 3D printing has provided an unprecedented opportunity to link those scales by combining the strengths of digital and experimental rock physics. To determine the feasibility of this technique we characterized the resolution capabilities of two different 3D printers. To calibrate our digital models with our printed models, we created a sample with an analytically solvable permeability. This allowed us to directly compare analytic calculation, numerical simulation, and laboratory measurement of permeability of the exact same sample. Next we took a CT-scanned model of a natural carbonate pore space, then iteratively digitally manipulated, 3D printed, and measured the flow properties in the laboratory. This approach allowed us to access multiple scales digitally and experimentally, to test hypotheses about how changes in rock microstructure due to compaction and dissolution affect bulk transport properties, and to connect laboratory measurements of porosity and permeability to quantities that are traditionally impossible to measure in the laboratory such as changes in surface area and tortuosity. As 3D printing technology continues to advance, we expect this technique to contribute to our ability to characterize the properties of remote and/or delicate samples as well as to test the impact of microstructural alteration on bulk physical properties in the lab in a highly consistent, repeatable manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec7-32.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec7-32.pdf"><span>36 CFR 7.32 - Pictured Rocks National Lakeshore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Pictured Rocks National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.32 Pictured Rocks National Lakeshore... Pictured Rocks National Lakeshore. The designated routes for snowmobiles will be confined to the frozen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol1/pdf/CFR-2012-title36-vol1-sec7-32.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title36-vol1/pdf/CFR-2012-title36-vol1-sec7-32.pdf"><span>36 CFR 7.32 - Pictured Rocks National Lakeshore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Pictured Rocks National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.32 Pictured Rocks National Lakeshore... Pictured Rocks National Lakeshore. The designated routes for snowmobiles will be confined to the frozen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol1/pdf/CFR-2013-title36-vol1-sec7-32.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title36-vol1/pdf/CFR-2013-title36-vol1-sec7-32.pdf"><span>36 CFR 7.32 - Pictured Rocks National Lakeshore.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Pictured Rocks National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.32 Pictured Rocks National Lakeshore... Pictured Rocks National Lakeshore. The designated routes for snowmobiles will be confined to the frozen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012902','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012902"><span>Alteration of Lunar Rock Surfaces through Interaction with the Space Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frushour, A. M.; Noble, S. K; Christoffersen, R.; Keller, L P.</p> <p>2014-01-01</p> <p>Space weathering occurs on all ex-posed surfaces of lunar rocks, as well as on the surfaces of smaller grains in the lunar regolith. Space weather-ing alters these exposed surfaces primarily through the action of solar wind ions and micrometeorite impact processes. On lunar rocks specifically, the alteration products produced by space weathering form surface coatings known as patina. Patinas can have spectral reflectance properties different than the underlying rock. An understanding of patina composition and thickness is therefore important for interpreting re-motely sensed data from airless solar system bodies. The purpose of this study is to try to understand the physical and chemical properties of patina by expanding the number of patinas known and characterized in the lunar rock sample collection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850037432&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Drock%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850037432&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Drock%2Bcycle"><span>Theory of wing rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hsu, C.-H.; Lan, C. E.</p> <p>1985-01-01</p> <p>Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.189..481S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.189..481S"><span>Impact of pore space topology on permeability, cut-off frequencies and validity of wave propagation theories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarout, Joël.</p> <p>2012-04-01</p> <p>For the first time, a comprehensive and quantitative analysis of the domains of validity of popular wave propagation theories for porous/cracked media is provided. The case of a simple, yet versatile rock microstructure is detailed. The microstructural parameters controlling the applicability of the scattering theories, the effective medium theories, the quasi-static (Gassmann limit) and dynamic (inertial) poroelasticity are analysed in terms of pores/cracks characteristic size, geometry and connectivity. To this end, a new permeability model is devised combining the hydraulic radius and percolation concepts. The predictions of this model are compared to published micromechanical models of permeability for the limiting cases of capillary tubes and penny-shaped cracks. It is also compared to published experimental data on natural rocks in these limiting cases. It explicitly accounts for pore space topology around the percolation threshold and far above it. Thanks to this permeability model, the scattering, squirt-flow and Biot cut-off frequencies are quantitatively compared. This comparison leads to an explicit mapping of the domains of validity of these wave propagation theories as a function of the rock's actual microstructure. How this mapping impacts seismic, geophysical and ultrasonic wave velocity data interpretation is discussed. The methodology demonstrated here and the outcomes of this analysis are meant to constitute a quantitative guide for the selection of the most suitable modelling strategy to be employed for prediction and/or interpretation of rocks elastic properties in laboratory-or field-scale applications when information regarding the rock's microstructure is available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H13M..08N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H13M..08N"><span>Effects of Injected CO2 on Geomechanical Properties Due to Mineralogical Changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, B. N.; Hou, Z.; Bacon, D. H.; Murray, C. J.; White, J. A.</p> <p>2013-12-01</p> <p>Long-term injection and storage of CO2 in deep underground reservoirs may significantly modify the geomechanical behavior of rocks since CO2 can react with the constituent phases of reservoir rocks and modify their composition. This can lead to modifications of their geomechanical properties (i.e., elastic moduli, Biot's coefficients, and permeability). Modifications of rock geomechanical properties have important consequences as these directly control stress and strain distributions, affect conditions for fracture initiation and development and/or fault healing. This paper attempts to elucidate the geochemical effects of CO2 on geomechanical properties of typical reservoir rocks by means of numerical analyses using the STOMP-ABAQUS sequentially coupled simulator that includes the capability to handle geomechanics and the reactive transport of CO2 together with a module (EMTA) to compute the homogenized rock poroelastic properties as a function of composition changes. EMTA, a software module developed at PNNL, implements the standard and advanced Eshelby-Mori-Tanaka approaches to compute the thermoelastic properties of composite materials. In this work, EMTA will be implemented in the coupled STOMP-ABAQUS simulator as a user subroutine of ABAQUS and used to compute local elastic stiffness based on rock composition. Under the STOMP-ABAQUS approach, STOMP models are built to simulate aqueous and CO2 multiphase fluid flows, and relevant chemical reactions of pore fluids with minerals in the reservoirs. The ABAQUS models then read STOMP output data for cell center coordinates, gas pressures, aqueous pressures, temperatures, saturations, constituent volume fractions, as well as permeability and porosity that are affected by chemical reactions. These data are imported into ABAQUS meshes using a mapping procedure developed for the exchange of data between STOMP and ABAQUS. Constitutive models implemented in ABAQUS via user subroutines then compute stiffness, stresses, strains, pore pressure, permeability, porosity, and capillary pressure, and return updated permeability, porosity, and capillary pressure to STOMP at selected times. In preliminary work, the enhanced STOMP-ABAQUS sequentially coupled approach is validated and illustrated in an example analysis of a cylindrical rock specimen subjected to axial loading, confining pressure, and CO2 fluid injection. The geomechanical analysis accounting for CO2 reactions with rock constituents is compared to that without chemical reactions to elucidate the geochemical effects of injected CO2 on the response of the reservoir rock to stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNH23A1527A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNH23A1527A"><span>Seismic response of rock slopes: Numerical investigations on the role of internal structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnold, L.; Applegate, K.; Gibson, M.; Wartman, J.; Adams, S.; Maclaughlin, M.; Smith, S.; Keefer, D. K.</p> <p>2013-12-01</p> <p>The stability of rock slopes is significantly influenced and often controlled by the internal structure of the slope created by such discontinuities as joints, shear zones, and faults. Under seismic conditions, these discontinuities influence both the resistance of a slope to failure and its response to dynamic loading. The dynamic response, which can be characterized by the slope's natural frequency and amplification of ground motion, governs the loading experienced by the slope in a seismic event and, therefore, influences the slope's stability. In support of the Network for Earthquake Engineering Simulation (NEES) project Seismically-Induced Rock Slope Failure: Mechanisms and Prediction (NEESROCK), we conducted a 2D numerical investigation using the discrete element method (DEM) coupled with simple discrete fracture networks (DFNs). The intact rock mass is simulated with a bonded assembly of discrete particles, commonly referred to as the bonded-particle model (BPM) for rock. Discontinuities in the BPM are formed by the insertion of smooth, unbonded contacts along specified planes. The influence of discontinuity spacing, orientation, and stiffness on slope natural frequency and amplification was investigated with the commercially available Particle Flow Code (PFC2D). Numerical results indicate that increased discontinuity spacing has a non-linear effect in decreasing the amplification and increasing the natural frequency of the slope. As discontinuity dip changes from sub-horizontal to sub-vertical, the slope's level of amplification increases while the natural frequency of the slope decreases. Increased joint stiffness decreases amplification and increases natural frequency. The results reveal that internal structure has a strong influence on rock slope dynamics that can significantly change the system's dynamic response and stability during seismic loading. Financial support for this research was provided by the United States National Science Foundation (NSF) under grant CMMI-1156413.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730003100','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730003100"><span>Multidisciplinary research leading to utilization of extraterrestrial resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1972-01-01</p> <p>Progress of the research accomplished during fiscal year 1972 is reported. The summaries presented include: (1) background analysis and coordination, (2) surface properties of rock in simulated lunar environment, (3) rock failure processes, strength and elastic properties in simulated lunar environment, (4) thermal fragmentation, and thermophysical and optical properties in simulated lunar environment, and (5) use of explosives on the moon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4476F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4476F"><span>New approaches in the indirect quantification of thermal rock properties in sedimentary basins: the well-log perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fuchs, Sven; Balling, Niels; Förster, Andrea</p> <p>2016-04-01</p> <p>Numerical temperature models generated for geodynamic studies as well as for geothermal energy solutions heavily depend on rock thermal properties. Best practice for the determination of those parameters is the measurement of rock samples in the laboratory. Given the necessity to enlarge databases of subsurface rock parameters beyond drill core measurements an approach for the indirect determination of these parameters is developed, for rocks as well a for geological formations. We present new and universally applicable prediction equations for thermal conductivity, thermal diffusivity and specific heat capacity in sedimentary rocks derived from data provided by standard geophysical well logs. The approach is based on a data set of synthetic sedimentary rocks (clastic rocks, carbonates and evaporates) composed of mineral assemblages with variable contents of 15 major rock-forming minerals and porosities varying between 0 and 30%. Petrophysical properties are assigned to both the rock-forming minerals and the pore-filling fluids. Using multivariate statistics, relationships then were explored between each thermal property and well-logged petrophysical parameters (density, sonic interval transit time, hydrogen index, volume fraction of shale and photoelectric absorption index) on a regression sub set of data (70% of data) (Fuchs et al., 2015). Prediction quality was quantified on the remaining test sub set (30% of data). The combination of three to five well-log parameters results in predictions on the order of <15% for thermal conductivity and thermal diffusivity, and of <10% for specific heat capacity. Comparison of predicted and benchmark laboratory thermal conductivity from deep boreholes of the Norwegian-Danish Basin, the North German Basin, and the Molasse Basin results in 3 to 5% larger uncertainties with regard to the test data set. With regard to temperature models, the use of calculated TC borehole profiles approximate measured temperature logs with an error of <3°C along a 4 km deep profile. A benchmark comparison for thermal diffusivity and specific heat capacity is pending. Fuchs, Sven; Balling, Niels; Förster, Andrea (2015): Calculation of thermal conductivity, thermal diffusivity and specific heat capacity of sedimentary rocks using petrophysical well logs, Geophysical Journal International 203, 1977-2000, doi: 10.1093/gji/ggv403</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.3273S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.3273S"><span>Acoustic and Petrophysical Evolution of Organic-Rich Chalk Following Maturation Induced by Unconfined Pyrolysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shitrit, Omri; Hatzor, Yossef H.; Feinstein, Shimon; Vinegar, Harold J.</p> <p>2017-12-01</p> <p>Thermal maturation is known to influence the rock physics of organic-rich rocks. While most studies were performed on low-porosity organic-rich shales, here we examine the effect of thermal maturation on a high-porosity organic-rich chalk. We compare the physical properties of native state immature rock with the properties at two pyrolysis-simulated maturity levels: early-mature and over-mature. We further evaluate the applicability of results from unconfined pyrolysis experiments to naturally matured rock properties. Special attention is dedicated to the elastic properties of the organic phase and the influence of bitumen and kerogen contents. Rock physics is studied based on confined petrophysical measurements of porosity, density and permeability, and measurements of bedding-normal acoustic velocities at estimated field stresses. Geochemical parameters like total organic carbon (TOC), bitumen content and thermal maturation indicators are used to monitor variations in density and volume fraction of each phase. We find that porosity increases significantly upon pyrolysis and that P wave velocity decreases in accordance. Solids density versus TOC relationships indicate that the kerogen increases its density from 1.43 to 1.49 g/cc at the immature and early-mature stages to 2.98 g/cc at the over-mature stage. This density value is unusually high, although increase in S wave velocity and backscatter SEM images of the over-mature samples verify that the over-mature kerogen is significantly denser and stiffer. Using the petrophysical and acoustic properties, the elastic moduli of the rock are estimated by two Hashin-Shtrikman (HS)-based models: "HS + BAM" and "HS kerogen." The "HS + BAM" model is calibrated to the post-pyrolysis measurements to describe the mechanical effect of the unconfined pyrolysis on the rock. The absence of compaction in the pyrolysis process causes the post-pyrolysis samples to be extremely porous. The "HS kerogen" model, which simulates a kerogen-supported matrix, depicts a compacted version of the matrix and is believed to be more representative of a naturally matured rock. Rock physics analysis using the "HS kerogen" model indicates strong mechanical dominance of porosity and organic content, and only small maturity-associated effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSG....97..225Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSG....97..225Z"><span>On the use of a split Hopkinson pressure bar in structural geology: High strain rate deformation of Seeberger sandstone and Carrara marble under uniaxial compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zwiessler, Ruprecht; Kenkmann, Thomas; Poelchau, Michael H.; Nau, Siegfried; Hess, Sebastian</p> <p>2017-04-01</p> <p>There is increasing evidence that seismogenic fractures can propagate faster than the shear wave velocity of the surrounding rocks. Strain rates within the tip region of such super-shear earthquake ruptures can reach deformation conditions similar to impact processes, resulting in rock pulverization. The physical response of brittle rocks at high strain rates changes dramatically with respect to quasi-static conditions. Rocks become stiffer and their strength increases. A measure for the dynamic behavior of a rock and its strain dependency is the dynamic increase factor (DIF) which is the ratio of the dynamic compressive strength to the quasi-static uniaxial compressive strength. To investigate deformation in the high strain rate regime experimentally, we introduce the split Hopkinson pressure bar technology to the structural geology community, a method that is frequently used by rock and impact engineers. We measure the stress-strain response of homogeneous, fine-grained Seeberger sandstone and Carrara marble in uniaxial compression at strain rates ranging from 10+1 to 10+2 s-1 with respect to tangent modulus and dynamic uniaxial compressive strength. We present full stress-strain response curves of Seeberger sandstone and Carrara marble at high strain rates and an evaluation method to determine representative rates of deformation. Results indicate a rate-dependent elastic behavior of Carrara marble where an average increase of ∼18% could be observed at high strain rates of about 100 s-1. DIF reaches a factor of 2.2-2.4. Seeberger sandstone does not have a rate-dependent linear stress-strain response at high strain rates. Its DIF was found to be about 1.6-1.7 at rates of 100 s-1. The onset of dynamic behavior is accompanied with changes in the fracture pattern from single to multiple fractures to pervasive pulverization for increasing rates of deformation. Seismogenic shear zones and their associated fragment-size spectra should be carefully revisited in the light of dynamic deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029489','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029489"><span>Three-dimensional geologic map of the Hayward fault, northern California: Correlation of rock unites with variations in seismicity, creep rate, and fault dip</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Graymer, R.W.; Ponce, D.A.; Jachens, R.C.; Simpson, R.W.; Phelps, G.A.; Wentworth, C.M.</p> <p>2005-01-01</p> <p>In order to better understand mechanisms of active faults, we studied relationships between fault behavior and rock units along the Hayward fault using a three-dimensional geologic map. The three-dimensional map-constructed from hypocenters, potential field data, and surface map data-provided a geologic map of each fault surface, showing rock units on either side of the fault truncated by the fault. The two fault-surface maps were superimposed to create a rock-rock juxtaposition map. The three maps were compared with seismicity, including aseismic patches, surface creep, and fault dip along the fault, by using visuallization software to explore three-dimensional relationships. Fault behavior appears to be correlated to the fault-surface maps, but not to the rock-rock juxtaposition map, suggesting that properties of individual wall-rock units, including rock strength, play an important role in fault behavior. Although preliminary, these results suggest that any attempt to understand the detailed distribution of earthquakes or creep along a fault should include consideration of the rock types that abut the fault surface, including the incorporation of observations of physical properties of the rock bodies that intersect the fault at depth. ?? 2005 Geological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMDI31B2578R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMDI31B2578R"><span>Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.</p> <p>2015-12-01</p> <p>One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037539','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037539"><span>Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Solum, J.G.; Davatzes, N.C.; Lockner, D.A.</p> <p>2010-01-01</p> <p>The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JHyd..259...89H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JHyd..259...89H"><span>Identification of an urban fractured-rock aquifer dynamics using an evolutionary self-organizing modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hong, Yoon-Seok; Rosen, Michael R.</p> <p>2002-03-01</p> <p>An urban fractured-rock aquifer system, where disposal of storm water is via 'soak holes' drilled directly into the top of fractured-rock basalt, has a highly dynamic nature where theories or knowledge to generate the model are still incomplete and insufficient. Therefore, formulating an accurate mechanistic model, usually based on first principles (physical and chemical laws, mass balance, and diffusion and transport, etc.), requires time- and money-consuming tasks. Instead of a human developing the mechanistic-based model, this paper presents an approach to automatic model evolution in genetic programming (GP) to model dynamic behaviour of groundwater level fluctuations affected by storm water infiltration. This GP evolves mathematical models automatically that have an understandable structure using function tree representation by methods of natural selection ('survival of the fittest') through genetic operators (reproduction, crossover, and mutation). The simulation results have shown that GP is not only capable of predicting the groundwater level fluctuation due to storm water infiltration but also provides insight into the dynamic behaviour of a partially known urban fractured-rock aquifer system by allowing knowledge extraction of the evolved models. Our results show that GP can work as a cost-effective modelling tool, enabling us to create prototype models quickly and inexpensively and assists us in developing accurate models in less time, even if we have limited experience and incomplete knowledge for an urban fractured-rock aquifer system affected by storm water infiltration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2013/1282/pdf/ofr2013-1282.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2013/1282/pdf/ofr2013-1282.pdf"><span>Gravity, aeromagnetic and rock-property data of the central California Coast Ranges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Langenheim, V.E.</p> <p>2014-01-01</p> <p>Gravity, aeromagnetic, and rock-property data were collected to support geologic-mapping, water-resource, and seismic-hazard studies for the central California Coast Ranges. These data are combined with existing data to provide gravity, aeromagnetic, and physical-property datasets for this region. The gravity dataset consists of approximately 18,000 measurements. The aeromagnetic dataset consists of total-field anomaly values from several detailed surveys that have been merged and gridded at an interval of 200 m. The physical property dataset consists of approximately 800 density measurements and 1,100 magnetic-susceptibility measurements from rock samples, in addition to previously published borehole gravity surveys from Santa Maria Basin, density logs from Salinas Valley, and intensities of natural remanent magnetization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/gip/2007/48/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/gip/2007/48/"><span>Riding the storm--landslide danger in the San Francisco Bay Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Adams, Karen</p> <p>2007-01-01</p> <p>Movie Synopsis: --A catastrophic 1982 rainstorm triggered 18,000 landslides in the Bay Area, claiming 25 lives and causing $66 million in property damage. --The combination of steep slopes, weak rocks, and intense winter storms make Bay Area uplands an ideal setting for landslides. --Landslides include both swift, potentially deadly debris flows and slower, but destructive deepseated slides. --Learn what USGS scientists have discovered about landslide dynamics and which slopes are most susceptible to sliding. --Hear the devastating stories of Bay Area residents affected by landslides and learn to recognize the danger signs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3842065','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3842065"><span>Petrophysical Properties (Density and Magnetization) of Rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad Geophysical Profile in Mongolia and Their Implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan</p> <p>2013-01-01</p> <p>Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data. PMID:24324382</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24324382','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24324382"><span>Petrophysical properties (density and magnetization) of rocks from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia and their implications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Tao; Gao, Jintian; Gu, Zuowen; Dagva, Baatarkhuu; Tserenpil, Batsaikhan</p> <p>2013-01-01</p> <p>Petrophysical properties of 585 rock samples from the Suhbaatar-Ulaanbaatar-Dalandzadgad geophysical profile in Mongolia are presented. Based on the rock classifications and tectonic units, petrophysical parameters (bulk density, magnetic susceptibility, intensity of natural remanent magnetization, and Köenigsberger ratio) of these rocks are summarized. Results indicate that (1) significant density contrast of different rocks would result in variable gravity anomalies along the profile; (2) magnetic susceptibility and natural remanent magnetization of all rocks are variable, covering 5-6 orders of magnitude, which would make a variable induced magnetization and further links to complex magnetic anomalies in ground surface; (3) the distribution of rocks with different lithologies controls the pattern of lithospheric magnetic anomaly along the profile. The petrophysical database thus provides not only one of the keys to understand the geological history and structure of the profile, but also essential information for analysis and interpretation of the geophysical (e.g., magnetic and gravity) survey data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/27182','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/27182"><span>Rock mass classification system : transition from RMR to GSI.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-11-01</p> <p>The AASHTO LRFD Bridge Design Specifications is expected to replace the rock mass rating : (RMR) system with the Geological Strength Index (GSI) system for classifying and estimating : engineering properties of rock masses. This transition is motivat...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/229310-rating-strength-coal-mine-roof-rocks-information-circular','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/229310-rating-strength-coal-mine-roof-rocks-information-circular"><span>Rating the strength of coal mine roof rocks. Information circular/1996</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Molinda, G.M.; Mark, C.</p> <p>1996-05-01</p> <p>The Ferm pictoral classification of coal measure rocks is widely utilized in coalfield exploration. Although extremely useful as an alternative to conventional geologic description, no material properties are provided that would be suitable for engineering solutions. To remedy this problem, the USBM has tested over 30 common coal measure roof rock types for axial and bedding strength. More than 1,300 individual point load tests have been conducted on core from 8 different coal mines representing the full range of common coal measure rocks. The USBM core and roof exposure properties database has been merged with the picture classification to provide,more » for the first time, a simple, clear guide from field identification of core to the associated mechanical strength of the rock. For 33 of the most common roof rocks, the axial and diametral point load strength, as well as the ultimate unit rating, is overprinted onto the photograph.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR33B2662Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR33B2662Z"><span>Magnetic properties of cores from the Wenchuan Earthquake Fault Scientific Drilling Hole-2 (WFSD-2), China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, L., Jr.; Sun, Z.; Li, H.; Cao, Y.; Ye, X.; Wang, L.; Zhao, Y.; Han, S.</p> <p>2015-12-01</p> <p>During an earthquake, seismic slip and frictional heating may cause the physical and chemical alterations of magnetic minerals within the fault zone. Rock magnetism provides a method for understanding earthquake dynamics. The Wenchuan earthquake Fault Scientific Drilling Project (WFSD) started right after 2008 Mw7.9 Wenchuan earthquake, to investigate the earthquake faulting mechanism. Hole 2 (WFSD-2) is located in the Pengguan Complex in the Bajiaomiao village (Dujiangyan, Sichuan), and reached the Yingxiu-Beichuan fault (YBF). We measured the surface magnetic susceptibility of the cores in WFSD-2 from 500 m to 1530 m with an interval of 1 cm. Rocks at 500-599.31 m-depth and 1211.49-1530 m-depth are from the Neoproterozoic Pengguang Complex while the section from 599.31 m to 1211.49 m is composed of Late Triassic sediments. The magnetic susceptibility values of the first part of the Pengguan Complex range from 1 to 25 × 10-6 SI, while the second part ranges from 10 to 200 × 10-6 SI, which indicate that the two parts are not from the same rock units. The Late Triassic sedimentary rocks have a low magnetic susceptibility values, ranging from -5 to 20 × 10-6 SI. Most fault zones coincide with the high value of magnetic susceptibility in the WFSD-2 cores. Fault rocks, mainly fault breccia, cataclasite, gouge and pseudotachylite within the WFSD-2 cores, and mostly display a significantly higher magnetic susceptibility than host rocks (5:1 to 20:1). In particular, in the YBF zone of the WFSD-2 cores (from 600 to 960 m), dozens of stages with high values of magnetic susceptibility have been observed. The multi-layered fault rocks with high magnetic susceptibility values might indicate that the YBF is a long-term active fault. The magnetic susceptibility values change with different types of fault rocks. The gouge and pseudotachylite have higher values of magnetic susceptibility than other fault rocks. Other primary rock magnetism analyses were then performed to investigate the mechanisms. We consider that the principal mechanism for the high magnetic susceptibility of these fault rocks is most likely the production of new magnetite from iron-bearing paramagnetic minerals (such as silicates or clays). These new magnetites might originate from frictional heating on a seismic fault slip plane or seismic fluid during an earthquake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025683','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025683"><span>Physical and hydraulic properties of volcanic rocks from Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Flint, Lorraine E.</p> <p>2003-01-01</p> <p>A database of physical and hydraulic properties was developed for rocks in the unsaturated zone at Yucca Mountain, Nevada, a site under consideration as a geologic repository for high-level radioactive waste. The 5320 core samples were collected from 23 shallow (<100 m) and 10 deep (500-1000 m) vertical boreholes. Hydrogeologic units have been characterized in the unsaturated zone [Flint, 1998] that represent rocks with ranges of welding, lithophysae, and high and low temperature alteration (as a result of the depositional, cooling, and alterational history of the lithostratigraphic layers). Lithostratigraphy, the hydrogeologic unit, and the corresponding properties are described. In addition, the physical properties of bulk density, porosity, and particle density; the hydraulic properties of saturated hydraulic conductivity and moisture retention characteristics; and the field water content were measured and compiled for each core sample.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027482','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027482"><span>Basis for paleoenvironmental interpretation of magnetic properties of sediment from Upper Klamath Lake (Oregon): Effects of weathering and mineralogical sorting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rosenbaum, J.G.; Reynolds, R.L.</p> <p>2004-01-01</p> <p>Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5485812-catalytic-properties-volcanic-rocks-synthesis-hydrocarbons-from-carbon-monoxide-hydrogen','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5485812-catalytic-properties-volcanic-rocks-synthesis-hydrocarbons-from-carbon-monoxide-hydrogen"><span>Catalytic properties of volcanic rocks in the synthesis of hydrocarbons from carbon monoxide and hydrogen</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Taran, Yu.A.; Novak, F.I.; Antoshchuk, I.A.</p> <p>1981-10-01</p> <p>Results obtained from studying the catalytic properties of effusive rocks of various chemical compositions, extracted from lava flows of several Kamchatka volcanos, in the process of synthesis from carbon monoxide and hydrogen, are presented. It was evident that samples of volcanic rock display catalytic properties in the process of synthesis from CO and H/sub 2/ in which liquid and gaseous hydrocarbons and an insignificant amount of oxygen-containing compounds are formed as products of the reactions. At a synthesis temperature of 350/sup 0/C the catalytic activity of the samples is characterized by the conversion of CO at a level of 70more » to 80%, and H/sub 2/ at 50 to 60%. The yield of oil, gasoline, and natural gas reached 40, 11, and 3 ml/m/sup 3/, respectively. The light synthetic products were presented based on saturated hydrocarbons of an aliphatic series with significant contents of olefins and insignificant quantities of alcohols and carbonyl compounds. The composition of gaseous products is characterized by significant unsaturation (approx. 33%) and a high content of butane-butylenic fractions (to approx. 55%). The data obtained showed that volcanic rocks were able to catalyze the synthesis of hydrocarbons from CO and H/sub 2/. The sources of the catalytic properties of the rocks shown are evidently iron compounds, and the remaining ingredients of the rocks are able to fulfill the role of structural or chemical promoters influencing the properties of the catalysts and the composition of the reaction products formed. 2 tables. (DP)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70009822','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70009822"><span>Mechanical and hydraulic properties of rocks related to induced seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Witherspoon, P.A.; Gale, J.E.</p> <p>1977-01-01</p> <p>Witherspoon, P.A. and Gale, J.E., 1977. Mechanical and hydraulic properties of rocks related to induced seismicity. Eng. Geol., 11(1): 23-55. The mechanical and hydraulic properties of fractured rocks are considered with regard to the role they play in induced seismicity. In many cases, the mechanical properties of fractures determine the stability of a rock mass. The problems of sampling and testing these rock discontinuities and interpreting their non-linear behavior are reviewed. Stick slip has been proposed as the failure mechanism in earthquake events. Because of the complex interactions that are inherent in the mechanical behavior of fractured rocks, there seems to be no simple way to combine the deformation characteristics of several sets of fractures when there are significant perturbations of existing conditions. Thus, the more important fractures must be treated as individual components in the rock mass. In considering the hydraulic properties, it has been customary to treat a fracture as a parallel-plate conduit and a number of mathematical models of fracture systems have adopted this approach. Non-steady flow in fractured systems has usually been based on a two-porosity model, which assumes the primary (intergranular) porosity contributes only to storage and the secondary (fracture) porosity contributes only to the overall conductivity. Using such a model, it has been found that the time required to achieve quasi-steady state flow in a fractured reservoir is one or two orders of magnitude greater than it is in a homogeneous system. In essentially all of this work, the assumption has generally been made that the fractures are rigid. However, it is clear from a review of the mechanical and hydraulic properties that not only are fractures easily deformed but they constitute the main flow paths in many rock masses. This means that one must consider the interaction of mechanical and hydraulic effects. A considerable amount of laboratory and field data is now available that clearly demonstrates this stress-flow behavior. Two approaches have been used in attempting to numerically model such behavior: (1) continuum models, and (2) discrete models. The continuum approach only needs information as to average values of fracture spacing and material properties. But because of the inherent complexity of fractured rock masses and the corresponding decrease in symmetry, it is difficult to develop an equivalent continuum that will simulate the behavior of the entire system. The discrete approach, on the other hand, requires details of the fracture geometry and material properties of both fractures and rock matrix. The difficulty in obtaining such information has been considered a serious limitation of discrete models, but improved borehole techniques can enable one to obtain the necessary data, at least in shallow systems. The possibility of extending these methods to deeper fracture systems needs more investigation. Such data must be considered when deciding whether to use a continuum or discrete model to represent the interaction of rock and fluid forces in a fractured rock system, especially with regard to the problem of induced seismicity. When one is attempting to alter the pressure distribution in a fault zone by injection or withdrawal of fluids, the extent to which this can be achieved will be controlled in large measure by the behavior of the fractures that communicate with the borehole. Since this is essentially a point phenomenon, i.e., the changes will propagate from a relatively small region around the borehole, the use of a discrete model would appear to be preferable. ?? 1977.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMED51A0870Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMED51A0870Z"><span>Developing a Virtual Rock Deformation Laboratory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.</p> <p>2012-12-01</p> <p>Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In addition, some web based data collection tools are available to collect student feedback and opinions on their learning experience. The virtual laboratory is designed to be an online education tool that facilitates interactive learning.; Virtual Deformation Laboratory</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGE....15..153Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGE....15..153Y"><span>Studies of electrical properties of low-resistivity sandstones based on digital rock technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yan, Weichao; Sun, Jianmeng; Zhang, Jinyan; Yuan, Weiguo; Zhang, Li; Cui, Likai; Dong, Huaimin</p> <p>2018-02-01</p> <p>Electrical properties are important parameters to quantitatively calculate water saturation in oil and gas reservoirs by well logging interpretation. It is usual that oil layers show high resistivity responses, while water layers show low-resistivity responses. However, there are low-resistivity oil zones that exist in many oilfields around the world, leading to difficulties for reservoir evaluation. In our research, we used digital rock technology to study different internal and external factors to account for low rock resistivity responses in oil layers. We first constructed three-dimensional digital rock models with five components based on micro-computed tomography technology and x-ray diffraction experimental results, and then oil and water distributions in pores were determined by the pore morphology method. When the resistivity of each component was assigned, rock resistivities were calculated by using the finite element method. We collected 20 sandstone samples to prove the effectiveness of our numerical simulation methods. Based on the control variate method, we studied the effects of different factors on the resistivity indexes and rock resistivities. After sensitivity analyses, we found the main factors which caused low rock resistivities in oil layers. For unfractured rocks, influential factors arranged in descending order of importance were porosity, clay content, temperature, water salinity, heavy mineral, clay type and wettability. In addition, we found that the resistivity index could not provide enough information to identify a low-resistivity oil zone by using laboratory rock-electric experimental results. These results can not only expand our understandings of the electrical properties of low-resistivity rocks from oil layers, but also help identify low-resistivity oil zones better.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......218H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......218H"><span>Reservoir transport and poroelastic properties from oscillating pore pressure experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasanov, Azar K.</p> <p></p> <p>Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically-derived ones. The fact that the values of storage capacities as estimated from the hydraulic component of the oscillating pore pressure experiment are unreliable was also demonstrated by comparing poroelastic Biot and Skempton coefficients. These coefficients were estimated both from hydraulic and strain measurements and the comparison of two datasets points out ambiguity of hydraulic measurements. I also introduce a novel method, which allowed us to estimate the permeability from the full range of acquired frequency data by utilizing a nonlinear least-squares regression. I additionally performed numerical simulation of oscillatory fluid flow. The simulated frequency-dependent results displayed an excellent agreement with both analytical solution and experimental data. This agreement proves that numerical simulation is a powerful tool in predicting frequency response of a porous rock sample to harmonic pore pressure excitations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1953H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1953H"><span>Accounting hierarchical heterogeneity of rock during its working off by explosive methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hachay, Olga; Khachay, Oleg</p> <p>2017-04-01</p> <p>First the phenomenon of zonal disintegration of rocks around excavations have been described and published as a discovery. Questions of structures formation are related to the fundamental problems of the natural sciences and the study of the structural appearance is one of the most important purposes of scientific knowledge. In real systems, considered in physics, it had been found spatial and temporal structures. The temporal structures are inseparable from the dynamics of the system, here it are particularly important principles of pointedness and causality. Formation of structures by irreversible processes is associated with a qualitative leap when it reaches the critical parameters. Self organization is a supercritical phenomenon when the system parameters exceed their critical values. When the system deviates greatly from its equilibrium, it's state variables satisfy the nonlinear equations. Non linearity is an important and common feature of the processes taking place far from equilibrium. By that the supercritical output of entropy is only possible if there is an unusual, special internal structure of the system. This means that self-organization is not a universal property of matter; it exists in certain internal and external conditions and is not associated with a particular class of substances. So, there are two classes of irreversible processes: 1.Destroying of the structure near the equilibrium position that is a universal property of systems under arbitrary conditions. 2. Occuring structures far from the equilibrium position under the conditions that the system is open and has a non-linear internal dynamics and its external parameters have supercritical parameters. Prigogine called them dissipative structures. The study of the morphology and dynamics of the migration of these zones is of particular importance when developing deep deposits, complicated by, dynamically events as rock bursts. Important tools for this study are the geophysical surveys. Because the information about the structure and state of the environment can be obtained from the geophysical data by interpreting them in frames of the model, which is an approximation to the real environment, therefore you must select it from the class of physically and geologically reasonable. For a description of the geological environment in the form of a rock massif with its natural and technogenic heterogeneity we should use more adequate description as is a discrete model of the environment in the form of a piece wise non-homogeneous block media with embedded heterogeneities of lower rank than the block size . This nesting can be traced back several times, ie, changing the scale of the study, we see that the heterogeneity of lower rank now appear as blocks for the irregularities of the next rank. The simple average of the measured geophysical parameters can lead to a distorted view of the structure of the environment and its evolution. The Institute of Geophysics, UB RAS has developed a hardware-methodological and interpretative system for studying the structure and state of complex geological environment, which has the potential instability and the ability to rebuild the hierarchy structure with significant external influence. The basis of this complex is the developed 3-D technique planshet electromagnetic induction studies in frequency geometrical variant, resting on one side on the interpretation software system for 3-D alternating electromagnetic fields, and on the other hand on developed by Ph.D. A.I.Chelovechkov device for carrying out the inductive research. On the basis of this technology the active monitoring of the structure and state of the rock massif inside the mines of different material composition can be provided, it can be carried out to detect short-term precursors of strong dynamic phenomena according to the electromagnetic induction monitoring. There are developed algorithms for modeling of electromagnetic fields in hierarchic heterogeneous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2304A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2304A"><span>Effective Wettability Measurements of CO2-Brine-Sandstone System at Different Reservoir Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Al-Menhali, Ali; Krevor, Samuel</p> <p>2014-05-01</p> <p>The wetting properties of CO2-brine-rock systems will have a major impact on the management of CO2 injection processes. The wettability of a system controls the flow and trapping efficiency during the storage of CO2 in geological formations as well as the efficiency of enhanced oil recovery operations. Despite its utility in EOR and the continued development of CCS, little is currently known about the wetting properties of the CO2-brine system on reservoir rocks, and no investigations have been performed assessing the impact of these properties on CO2 flooding for CO2 storage or EOR. The wetting properties of multiphase fluid systems in porous media have major impacts on the multiphase flow properties such as the capillary pressure and relative permeability. While recent studies have shown CO2 to generally act as a non-wetting phase in siliciclastic rocks, some observations report that the contact angle varies with pressure, temperature and water salinity. Additionally, there is a wide range of reported contact angles for this system, from strongly to weakly water-wet. In the case of some minerals, intermediate wet contact angles have been observed. Uncertainty with regard to the wetting properties of CO2-brine systems is currently one of the remaining major unresolved issues with regards to reservoir management of CO2 storage. In this study, we make semi-dynamic capillary pressure measurements of supercritical CO2 and brine at reservoir conditions to observe shifts in the wetting properties. We utilize a novel core analysis technique recently developed by Pini et al in 2012 to evaluate a core-scale effective contact angle. Carbon dioxide is injected at constant flow rate into a core that is initially fully saturated with water, while maintaining a constant outlet pressure. In this scenario, the pressure drop across the core corresponds to the capillary pressure at the inlet face of the core. When compared with mercury intrusion capillary pressure measurements, core-scale effective contact angle can be determined. In addition to providing a quantitative measure of the core-averaged wetting properties, the technique allows for the observation of shifts in contact angle with changing conditions. We examine the wettability changes of the CO2-brine system in Berea sandstone with variations in reservoir conditions including supercritical, gaseous and liquid CO2injection. We evaluate wettability variation within a single rock with temperature, pressure, and salinity across a range of conditions relevant to subsurface CO2 storage. This study will include results of measurements in a Berea sandstone sample across a wide range of conditions representative of subsurface reservoirs suitable for CO2 storage (5-20 MPa, 25-90 oC, 0-5 mol kg-1). The measurement uses X-ray CT imaging in a state of the art core flooding laboratory designed to operate at high temperature, pressure, and concentrated brines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6642Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6642Z"><span>Swiss Atlas of PHYsical properties of Rocks (SAPHYR)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zappone, Alba; Kissling, Eduard</p> <p>2015-04-01</p> <p>The Swiss Atlas of PHYsical properties of Rocks (SAPHYR), is a multi-year project, funded entirely by Swiss Commission for Geophysics (SGPK), with the aim to compile a comprehensive data set in digital form on physical properties of rocks exposed in Switzerland and surrounding regions. The ultimate goal of SAPHYR is to make these data accessible to an open and wide public including industrial, engineering, land and resource planning companies, as well as academic institutions, or simply people interested in geology. Since the early sixties worldwide many scientists, i.e. geophysicists, petrologists, and engineers, focused their work on laboratory measurements of rocks physical properties, and their relations with microstructures, mineralogical compositions and other rock parameters, in the effort to constrain the geological interpretation of geophysical surveys. Particularly in the years in which seismic reflection and refraction crustal scale projects were investigating the deep structures of the Alps, laboratories capable to reproduce the pressure and temperature ranges of the continental crust were collecting measurements of various rock parameters on a wide variety of lithologies, developing in the meantime more and more sophisticated experimental methodologies. In recent years, the increasing interest of European Countries on non-traditional energy supply, (i.e. Deep Geothermal Energy and shale gas) and CO2 storage renovated the interests in physical characterization of the deep underground. SAPHYR aims to organize all those laboratory data into a geographically referenced database (GIS). The data refer to density, porosity, permeability, and seismic, magnetic, thermal and electric properties. In the past years, effort has been placed on collecting samples and measuring the physical properties of lithologies that were poorly documented in literature. The phase of laboratory measurements is still in progress. Recently, SAPHYR project focused towards developing a 3-D physical properties model of the Swiss subsurface, using the structure of the exposed geology and data from boreholes and seismic surveys, combined with empirically determined pressure and temperature derivatives. The product is now almost ready for publication and an early version is presented here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912229K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912229K"><span>Assessment of aggregate quality and petrographic properties' influence on rock quality: A case study from Nordland county, Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kløve Keiding, Jakob; Erichsen, Eyolf; Heldal, Tom; Aslaksen Aasly, Kari</p> <p>2017-04-01</p> <p>Good access to construction materials is crucial for future infrastructure development and continued economic growth. In Norway >80 % of construction materials come from crushed aggregates and represent an growing share of the consumption. Although recycling to some extend can cover the need for construction materials, economic growth, increasing population and urbanization necessitates exploitation of new rock resources in Norway as well as many other parts of the world. Aggregates must fulfill a number of technical requirements to ensure high quality and long life expectancy of new roads, buildings and structures. Aggregates also have to be extracted near the consumer market. Particularly for road construction strict criteria are in place for wearing course for roads with high traffic density. Thus knowledge of mechanical rock quality is paramount for both exploitation as well as future resource and land-use planning but is often not assessed or mapped beyond the quarry scale. The Geological survey of Norway runs a database with information about crushed aggregate deposits from >1500 Norwegian quarries and sample sites. Here we use mechanical test analyses from the database to assess the aggregate quality in the Nordland county, Norway. Maps have been produced linking bed rock geology with rock quality parameters. The survey documents that the county is challenged in meeting the requirements for roads with high traffic density and especially in the middle parts of the county many samples have weak mechanical properties. This to some degree reflect that weak Cambro-Silurian rocks like phyllite, schist, carbonate and greenstone are abundant in Nordland. Typically mechanically stronger rock types such as gabbro, monzonite and granite are also exposed in large parts of the county, but are also characterized by relative poor or very variable mechanical test quality. Preliminary results indicate that many intrinsic parameters influence the mechanical rock strength, but variable degrees of deformation in the different tectonostratigraphic units exposed in Nordland affects the rock mechanical properties and is a prominent feature of our mapping. Unsurprisingly rock type, mineralogy, grain size and rock texture are all important factors that have a major control on the mechanical behaviour of the rocks. However, this assessment shows that there is an intricate interaction between these parameters and the resulting mechanical properties at present making it difficult to assess mechanical quality accurately only based on petrographic examination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..255L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..255L"><span>Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xibing; Wang, Shaofeng; Wang, Shanyong</p> <p>2018-01-01</p> <p>High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in deep hard rock masses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22288661-improved-microstructure-cement-based-composites-through-addition-rock-wool-particles','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22288661-improved-microstructure-cement-based-composites-through-addition-rock-wool-particles"><span>Improved microstructure of cement-based composites through the addition of rock wool particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lin, Wei-Ting; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan; Cheng, An, E-mail: ancheng@niu.edu.tw</p> <p>2013-10-15</p> <p>Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reducedmore » chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..134a2026K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..134a2026K"><span>Catastrophe theory—one of the basic components in the analysis of the seismic response of rock mass to explosions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khachay, OA; Khachay, OYu</p> <p>2018-03-01</p> <p>It is shown that the dynamic process of mining can be controlled using the catastrophe theory. The control parameters can be values of blasting energy and locations of explosions relative to an area under study or operation. The kinematic and dynamic parameters of the deformation waves, as well as the structural features of rock mass through which these waves pass act as internal parameters. The use of the analysis methods for short-term and medium-term forecast of rock mass condition with the control parameters only is insufficient in the presence of sharp heterogeneity. However, the joint use of qualitative recommendations of the catastrophe theory and spatial–temporal data of changes in the internal parameters of rock mass will allow accident prevention in the course of mining.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA157493','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA157493"><span>Geotechnical Descriptions of Rock and Rock Masses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1985-04-01</p> <p>determined in the field on core speci ns by the standard Rock Testing Handbook Methods . afls GA DTIC TAB thannounod 13 Justifiatlo By Distributin...to provide rock strength descriptions from the field. The point-load test has proven to be a reliable method of determining rock strength properties...report should qualify the reported spacing values by stating the methods used to determine spacing. Preferably the report should make the determination</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMMR41C2659K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMMR41C2659K"><span>Petrophysical Rock Typing of Unconventional Shale Plays: A Case Study for the Niobrara Formation of the Denver-Julesburg (DJ) Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kamruzzaman, A.; Prasad, M.</p> <p>2015-12-01</p> <p>The hydrocarbon-rich mudstone rock layers of the Niobrara Formation were deposited in the shallow marine environment and have evolved as overmature oil- or gas-prone source and reservoir rocks. The hydrocarbon production from its low-porosity, nano-darcy permeability and interbedded chalk-marl reservoir intervals is very challenging. The post-diagenetic processes have altered the mineralogy and pore structure of its sourcing and producing rock units. A rock typing analysis in this play can help understand the reservoir heterogeneity significantly. In this study, a petrophysical rock typing workflow is presented for the Niobrara Formation by integrating experimental rock properties with geologic lithofacies classification, well log data and core study.Various Niobrara lithofacies are classified by evaluating geologic depositional history, sequence stratigraphy, mineralogy, pore structure, organic content, core texture, acoustic properties, and well log data. The experimental rock measurements are conducted on the core samples recovered from a vertical well from the Wattenberg Field of the Denver-Julesburg (DJ) Basin. Selected lithofacies are used to identify distinct petrofacies through the empirical analysis of the experimental data-set. The grouped petrofacies are observed to have unique mineralogical properties, pore characteristics, and organic contents and are labelled as discrete Niobrara rock types in the study area.Micro-textural image analysis (FESEM) is performed to qualitatively examine the pore size distribution, pore types and mineral composition in the matrix to confirm the classified rock units. The principal component analysis and the cluster analysis are carried out to establish the certainty of the selected rock types. Finally, the net-to-pay thicknesses of these rock units are compared with the cumulative production data from the field to further validate the chosen rock types.For unconventional shale plays, the rock typing information can be used to locate hydrocarbon sweetspots, facilitate the placement of the horizontal section of the wells along the sweetspots, and can augment engineers' abilities on suitable well placement considerations. It can also help enhancing the effectiveness of the hydraulic fracture stimulation and completion operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S53B2835V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S53B2835V"><span>Detecting Slow Deformation Signals Preceding Dynamic Failure: A New Strategy For The Mitigation Of Natural Hazards (SAFER)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vinciguerra, S.; Colombero, C.; Comina, C.; Umili, G.</p> <p>2015-12-01</p> <p>Rock slope monitoring is a major aim in territorial risk assessment and mitigation. The use of "site specific" microseismic monitoring systems can allow to detect pre-failure signals in unstable sectors within the rock mass and to predict the possible acceleration to the failure. To this aim multi-scale geophysical methods can provide a unique tool for an high-resolution imaging of the internal structure of the rock mass and constraints on the physical state of the medium. We present here a cross-hole seismic tomography survey coupled with laboratory ultrasonic velocity measurements and determination of physical properties on rock samples to characterize the damaged and potentially unstable granitic cliff of Madonna del Sasso (NW, Italy). Results allowed to achieve two main advances, in terms of obtaining: i) a lithological interpretation of the velocity field obtained at the site, ii) a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granite (weathering and anisotropy) of the cliff. A microseismic monitoring system developed by the University of Turin/Compagnia San Paolo, consisting of a network of 4 triaxial geophones (4.5 Hz) connected to a 12-channel data logger, has been deployed on the unstable granitic cliff. More than 2000 events with different waveforms, duration and frequency content were recorded between November 2013 and July 2014. By inspecting the acquired events we identified the key parameters for a reliable distinction among the nature of each signal, i.e. the signal shape (in terms of amplitude, duration, kurtosis) and the frequency content (maximum frequency content and frequency distribution). Four main classes of recorded signals can be recognised: microseismic events, regional earthquakes, electrical noises and calibration signals, and unclassified events (probably grouping rockfalls, quarry blasts, other anthropic and natural sources of seismic noise).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN21A0031K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN21A0031K"><span>Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.</p> <p>2017-12-01</p> <p>Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7026H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7026H"><span>Modeling Stokes flow in real pore geometries derived by high resolution micro CT imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Halisch, M.; Müller, C.</p> <p>2012-04-01</p> <p>Meanwhile, numerical modeling of rock properties forms an important part of modern petrophysics. Substantially, equivalent rock models are used to describe and assess specific properties and phenomena, like fluid transport or complex electrical properties. In recent years, non-destructive computed X-ray tomography got more and more important - not only to take a quick and three dimensional look into rock samples but also to get access to in-situ sample information for highly accurate modeling purposes. Due to - by now - very high resolution of the 3D CT data sets (micron- to submicron range) also very small structures and sample features - e.g. micro porosity - can be visualized and used for numerical models of very high accuracy. Special demands even arise before numerical modeling can take place. Inappropriate filter applications (e.g. improper type of filter, wrong kernel, etc.) may lead to a significant corruption of spatial sample structure and / or even sample or void space volume. Because of these difficulties, especially small scale mineral- and pore space textures are very often lost and valuable in-situ information is erased. Segmentation of important sample features - porosity as well as rock matrix - based upon grayscale values strongly depends upon the scan quality and upon the experience of the application engineer, respectively. If the threshold for matrix-porosity separation is set too low, porosity can be quickly (and even more, due to restrictions of scanning resolution) underestimated. Contrary to this, a too high threshold over-determines porosity and small void space features as well as interfaces are changed and falsified. Image based phase separation in close combination with "conventional" analytics, as scanning electron microscopy or thin sectioning, greatly increase the reliability of this preliminary work. For segmentation and quantification purposes, a special CT imaging and processing software (Avizo Fire) has been used. By using this tool, 3D rock data can be assessed and interpreted by petrophysical means. Furthermore, pore structures can be directly segmented and hence could be used for so called image based modeling approach. The special XLabHydro module grants a finite volume solver for the direct assessment of Stokes flow (incompressible fluid, constant dynamic viscosity, stationary conditions and laminar flow) in real pore geometries. Nevertheless, also pore network extraction and numerical modeling with standard FE or lattice Boltzmann solvers is possible. By using the achieved voxel resolution as smallest node distance, fluid flow properties can be analyzed even in very small sample structures and hence with very high accuracy, especially with interaction to bigger parts of the pore network. The so derived results in combination with a direct 3D visualization within the structures offer great new insights and understanding in range of meso- and microscopic pore space phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EPJB...76...69L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EPJB...76...69L"><span>Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lubashevsky, I.; Kanemoto, S.</p> <p>2010-07-01</p> <p>A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as “altruism self-organization”. For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23823992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23823992"><span>The importance of stress percolation patterns in rocks and other polycrystalline materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burnley, P C</p> <p>2013-01-01</p> <p>A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3715852','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3715852"><span>The importance of stress percolation patterns in rocks and other polycrystalline materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Burnley, P.C.</p> <p>2013-01-01</p> <p>A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties. PMID:23823992</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1452749','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1452749"><span>Effective Elastic and Neutron Capture Cross Section Calculations Corresponding to Simulated Fluid Properties from CO2 Push-Pull Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chugunov, Nikita; Altundas, Bilgin</p> <p></p> <p>The submission contains a .xls files consisting of 10 excel sheets, which contain combined list of pressure, saturation, salinity, temperature profiles from the simulation of CO2 push-pull using Brady reservoir model and the corresponding effective compressional and shear velocity, bulk density, and fluid and time-lapse neutron capture cross section profiles of rock at times 0 day (baseline) through 14 days. First 9 sheets (each named after the corresponding CO2 push-pull simulation time) contains simulated pressure, saturation, temperature, salinity profiles and the corresponding effective elastic and neutron capture cross section profiles of rock matrix at the time of CO2 injection. Eachmore » sheet contains two sets of effective compressional velocity profiles of the rock, one based on Gassmann and the other based on Patchy saturation model. Effective neutron capture cross section calculations are done using a proprietary neutron cross-section simulator (SNUPAR) whereas for the thermodynamic properties of CO2 and bulk density of rock matrix filled with fluid, a standalone fluid substitution tool by Schlumberger is used. Last sheet in the file contains the bulk modulus of solid rock, which is inverted from the rock properties (porosity, sound speed etc) based on Gassmann model. Bulk modulus of solid rock in turn is used in the fluid substitution.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.T23B0546D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.T23B0546D"><span>Fault rock mineralogy and fluid flow in the Coso Geothermal Field, CA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davatzes, N. C.; Hickman, S. H.</p> <p>2005-12-01</p> <p>The minerals that comprise fault rock, their grain shapes, and packing geometry are important controls on fault zone properties such as permeability, frictional strength, and slip behavior. In this study we examine the role of mineralogy and deformation microstructures on fluid flow in a fault-hosted, fracture-dominated geothermal system contained in granitic rocks in the Coso Geothermal Field, CA. Initial examination of the mineralogy and microstructure of fault rock obtained from core and surface outcrops reveals three fault rock types. (1) Fault rock consisting of kaolinite and amorphous silica that contains large connected pores, dilatant brittle fractures, and dissolution textures. (2) Fault rock consisting of foliated layers of chlorite and illite-smectite separated by slip surfaces. (3) Fault rock consisting of poorly sorted angular grains, characterized by large variations in grain packing (pore size), and crack-seal textures. These different fault rocks are respectively associated with a high permeability upper boiling zone for the geothermal system, a conductively heated "caprock" at moderate to shallow depth associated with low permeability, and a deeper convectively heated region associated with enhanced permeability. Outcrop and hand-sample scale mapping, XRD analysis, and SEM secondary electron images of fault gouge and slip surfaces at different stages of development (estimated shear strain) are used to investigate the processes responsible for the development and physical properties of these distinct fault rocks. In each type of fault rock, mineral dissolution and re-precipitation in conjunction with the amount and geometry of porosity changes induced by dilation or compaction are the key controls on fault rock development. In addition, at the contacts between slip surfaces, abrasion and resulting comminution appear to influence grain size, sorting, and packing. Macroscopically, we expect the frictional strength of these characteristic fault rocks to differ because the processes that accommodate deformation depend strongly on mineralogy. Frictional strength of quartz-dominated fault rocks in the near surface and in the reservoir should be greater (~0.6) than that in the clay-dominated cap rock (~0.2-0.4). Similarly, permeability should be much lower in foliated clay-rich fault rocks than in quartz-rich fault rocks as evidenced by larger, more connected pores imaged in quartz-rich gouge. Mineral stability is a function of loading, strain rate, temperature, and fluid flow conditions. Which minerals form, and the rates at which they grow is also a key element in determining variations in the magnitude and anisotropy of fault zone properties at Coso. Consequently, we suggest that the development of fault-zone properties depends on the feedback between deformation, resulting changes in permeability, and large-scale fluid flow and the leading to dissolution/precipitation of minerals in the fault rock and adjacent host rock. The implication for Coso is that chemical alteration of otherwise low-porosity crystalline rocks appears to determine the distribution and temporal evolution of permeability in the actively deforming fracture network at small to moderate scales as well as along major, reservoir-penetrating fault zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1379824-changes-geophysical-properties-caused-fluid-injection-porous-rocks-analytical-models-geophysical-changes-porous-rocks','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1379824-changes-geophysical-properties-caused-fluid-injection-porous-rocks-analytical-models-geophysical-changes-porous-rocks"><span>Changes in geophysical properties caused by fluid injection into porous rocks: analytical models: Geophysical changes in porous rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pride, Steven R.; Berryman, James G.; Commer, Michael; ...</p> <p>2016-08-30</p> <p>Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990neri.rept.....M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990neri.rept.....M"><span>Physical property measurements on analog granites related to the joint verification experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martin, Randolph J., III; Coyner, Karl B.; Haupt, Robert W.</p> <p>1990-08-01</p> <p>A key element in JVE (Joint Verification Experiment) conducted jointly between the United States and the USSR is the analysis of the geology and physical properties of the rocks in the respective test sites. A study was initiated to examine unclassified crystalline rock specimens obtained from areas near the Soviet site, Semipalatinsk and appropriate analog samples selected from Mt. Katadin, Maine. These rocks were also compared to Sierra White and Westerly Granite which have been studied in great detail. Measurements performed to characterize these rocks were: (1) Uniaxial strain with simultaneous compressional and shear wave velocities; (2) Hydrostatic compression to 150 MPa with simultaneous compressional and shear wave velocities; (3) Attenuation measurements as a function of frequency and strain amplitude for both dry and water saturated conditions. Elastic moduli determined from the hydrostatic compression and uniaxial strain test show that the rock matrix/mineral properties were comparable in magnitudes which vary within 25 percent from sample to sample. These properties appear to be approximately isotropic, especially at high pressures. However, anisotropy evident for certain samples at pressures below 35 MPa is attributed to dominant pre-existing microcrack populations and their alignments. Dependence of extensional attenuation and Young's modulus on strain amplitude were experimentally determined for intact Sierra White granite using the hysteresis loop technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1379824','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1379824"><span>Changes in geophysical properties caused by fluid injection into porous rocks: analytical models: Geophysical changes in porous rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pride, Steven R.; Berryman, James G.; Commer, Michael</p> <p></p> <p>Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid-flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean-field analytical model that shows how each modeled rock property depends on the nature of the crack population. We describe the crack populations by a crack density, a probability distribution for the crack aperturesmore » and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. But, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.214...70H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.214...70H"><span>An effective medium approach to modelling the pressure-dependent electrical properties of porous rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Tongcheng</p> <p>2018-07-01</p> <p>Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..967R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..967R"><span>DaDyn-RS: a tool for the time-dependent simulation of damage, fluid pressure and long-term instability in alpine rock slopes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.</p> <p>2017-04-01</p> <p>Large mountain slopes in alpine environments undergo a complex long-term evolution from glacial to postglacial environments, through a transient period of paraglacial readjustment. During and after this transition, the interplay among rock strength, topographic relief, and morpho-climatic drivers varying in space and time can lead to the development of different types of slope instability, from sudden catastrophic failures to large, slow, long-lasting yet potentially catastrophic rockslides. Understanding the long-term evolution of large rock slopes requires accounting for the time-dependence of deglaciation unloading, permeability and fluid pressure distribution, displacements and failure mechanisms. In turn, this is related to a convincing description of rock mass damage processes and to their transition from a sub-critical (progressive failure) to a critical (catastrophic failure) character. Although mechanisms of damage occurrence in rocks have been extensively studied in the laboratory, the description of time-dependent damage under gravitational load and variable external actions remains difficult. In this perspective, starting from a time-dependent model conceived for laboratory rock deformation, we developed Dadyn-RS, a tool to simulate the long-term evolution of real, large rock slopes. Dadyn-RS is a 2D, FEM model programmed in Matlab, which combines damage and time-to-failure laws to reproduce both diffused damage and strain localization meanwhile tracking long-term slope displacements from primary to tertiary creep stages. We implemented in the model the ability to account for rock mass heterogeneity and property upscaling, time-dependent deglaciation, as well as damage-dependent fluid pressure occurrence and stress corrosion. We first tested DaDyn-RS performance on synthetic case studies, to investigate the effect of the different model parameters on the mechanisms and timing of long-term slope behavior. The model reproduces complex interactions between topography, deglaciation rate, mechanical properties and fluid pressure occurrence, resulting in different kinematics, damage patterns and timing of slope instabilities. We assessed the role of groundwater on slope damage and deformation mechanisms by introducing time-dependent pressure cycling within simulations. Then, we applied DaDyn-RS to real slopes located in the Italian Central Alps, affected by an active rockslide and a Deep Seated Gravitational Slope Deformation, respectively. From Last Glacial Maximum to present conditions, our model allows reproducing in an explicitly time-dependent framework the progressive development of damage-induced permeability, strain localization and shear band differentiation at different times between the Lateglacial period and the Mid-Holocene climatic transition. Different mechanisms and timings characterize different styles of slope deformations, consistently with available dating constraints. DaDyn-RS is able to account for different long-term slope dynamics, from slow creep to the delayed transition to fast-moving rockslides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1411603-modeling-dynamic-helium-release-tracer-rock-deformation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1411603-modeling-dynamic-helium-release-tracer-rock-deformation"><span>Modeling Dynamic Helium Release as a Tracer of Rock Deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.; ...</p> <p>2017-11-03</p> <p>Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1411603-modeling-dynamic-helium-release-tracer-rock-deformation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1411603-modeling-dynamic-helium-release-tracer-rock-deformation"><span>Modeling Dynamic Helium Release as a Tracer of Rock Deformation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gardner, W. Payton; Bauer, Stephen J.; Kuhlman, Kristopher L.</p> <p></p> <p>Here, we use helium released during mechanical deformation of shales as a signal to explore the effects of deformation and failure on material transport properties. A dynamic dual-permeability model with evolving pore and fracture networks is used to simulate gases released from shale during deformation and failure. Changes in material properties required to reproduce experimentally observed gas signals are explored. We model two different experiments of 4He flow rate measured from shale undergoing mechanical deformation, a core parallel to bedding and a core perpendicular to bedding. We also found that the helium signal is sensitive to fracture development and evolutionmore » as well as changes in the matrix transport properties. We constrain the timing and effective fracture aperture, as well as the increase in matrix porosity and permeability. Increases in matrix permeability are required to explain gas flow prior to macroscopic failure, and the short-term gas flow postfailure. Increased matrix porosity is required to match the long-term, postfailure gas flow. This model provides the first quantitative interpretation of helium release as a result of mechanical deformation. The sensitivity of this model to changes in the fracture network, as well as to matrix properties during deformation, indicates that helium release can be used as a quantitative tool to evaluate the state of stress and strain in earth materials.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR13A0312R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR13A0312R"><span>Influence of High Temperature Treatment on Mechanical Behavior of a Coarse-grained Marble</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rong, G.; Peng, J.; Jiang, M.</p> <p>2017-12-01</p> <p>High temperature has a significant influence on the physical and mechanical behavior of rocks. With increasing geotechnical engineering structures concerning with high temperature problems such as boreholes for oil or gas production, underground caverns for storage of radioactive waste, and deep wells for injection of carbon dioxides, etc., it is important to study the influence of temperature on the physical and mechanical properties of rocks. This paper experimentally investigates the triaxial compressive properties of a coarse-grained marble after exposure to different high temperatures. The rock specimens were first heated to a predetermined temperature (200, 400, and 600 oC) and then cooled down to room temperature. Triaxial compression tests on these heat-treated specimens subjected to different confining pressures (i.e., 0, 5, 10, 15, 20, 25, 30, 35, and 40 MPa) were then conducted. Triaxial compression tests on rock specimens with no heat treatment were also conducted for comparison. The results show that the high temperature treatment has a significant influence on the microstructure, porosity, P-wave velocity, stress-strain relation, strength and deformation parameters, and failure mode of the tested rock. As the treatment temperature gradually increases, the porosity slightly increases and the P-wave velocity dramatically decreases. Microscopic observation on thin sections reveals that many micro-cracks will be generated inside the rock specimen after high temperature treatment. The rock strength and Young's modulus show a decreasing trend with increase of the treatment temperature. The ductility of the rock is generally enhanced as the treatment temperature increases. In general, the high temperature treatment weakens the performance of the tested rock. Finally, a degradation parameter is defined and a strength degradation model is proposed to characterize the strength behavior of heat-treated rocks. The results in this study provide useful data for evaluation of rock properties in high temperature condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1110353F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1110353F"><span>The main factors controlling petrophysical alteration in hydrothermal systems of the Kuril-Kamchatka island arch</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frolova, J.; Ladygin, V.; Rychagov, S.; Shanina, V.; Blyumkina, M.</p> <p>2009-04-01</p> <p>This report is based on the results of petrophysical studies obtained on a number of hydrothermal systems in the Kuril-Kamchatka island arc (Pauzhetsky, Mutnovsky, Koshelevsky, Essovsky, a volcano of Ebeko, Oceansky). Mineral composition and pore-space structure of primary rocks change intensively during hydrothermal process, results in alteration of petrophysical properties - porosity, density, permeability, hygroscopy, sonic velocity, elastic modulus, mechanical properties, thermal and magnetic characteristics. Petrophysical alterations gradually lead to the change of the structure of hydrothermal system, and its hydrodynamic and temperature regime. The tendency of petrophysical alteration can be different. In some cases rocks "improvement" is observed i.e. consolidation, hardening, decrease of porosity and permeability, removal of hygroscopy. In other cases rocks "deterioration" occurs, i.e. formation of secondary porosity and permeability, a decrease of density, strength, and elastic modulus, and occurrence of hygroscopic moisture. The classical example of cardinal petrophysical alteration is the transformation of hard basalts to plastic clays. The opposite example is the transformation of only slightly consolidates porous tuffs to hard and dense secondary quartzite. The character of petrophysical alteration depends on a number of factors including peculiarities of primary rocks, temperature, pressure and composition of thermal fluids, duration of fluid-rock interaction, and condition of fluid (steam, water, boiling water). The contribution of each factor to change of volcanic rocks properties is considered and analyzed in details. In particular, primary rocks controls speed, intensity and character of petrophysical alterations. Factors favorable for alteration are high porosity and permeability, micro crakes, weak cementation, glassy structure, basaltic composition. Kuril-Kamchatka region represents the volcanic island arch so host rocks in hydrothermal systems are mainly volcanic or volcaniclastic types of Neogene-Quaternary age. Volcanic rocks (lava rocks) are dense with high strength and elastic modulus and low porosity and permeability. The speed of their alteration is low. Basically volcanic rocks form impermeable horizons in the structure of hydrothermal system. But sometimes they form fracture-type reservoir. The origin of fracturing can be various. Volcanoclastic rocks are characterized by lower physical and mechanical properties, higher porosity and permeability. Due to high porosity and permeability they are greatly exposed to thermal fluids so they are altered intensively. Volcaniclastic rocks are the most common host rocks of geothermal reservoirs. Typically they form porous or fracture-porous aquifers. But in some cases they form water confining layers. The well-studied example is Pauzhetskaya hydrothermal system. The main reservoir is composed of highly porous (30-40%) and permeable medium-grained tuffs. The caprock is composed of fine-grained argillized tuffs. They are highly porous but due to small pore size porosity is un-effective for fluid and permeability is low. The temperature and pressure in a hydrothermal system cardinally influence on rocks properties. High-temperature deep fluids (Т>200C) cause the perfect tendency of petrophysical alteration - consolidation, hardening, a decrease of porosity and permeability, and removal of a hygroscopic moisture. This petrophysical tendency is observed independently of composition of fluids. This is the result of the development of high-temperature secondary minerals, which fill pores and cracks, and substitute matrix and phenocrystals. The contacts between grains become strong and dense, intergranular porosity is disappeared that reinforces cementation of rock. The petrophysical alteration caused by low-temperature subsurface fluids (Т<150C) are more difficult and diverse. Depending on what process prevails - rocks leaching, sedimentation of secondary minerals in pores and cracks or replacement of primary minerals by secondary minerals, it can lead to both: an increase or a decrease in petrophysical properties. Financial support from RFBR (project 05-07-00118-a)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH33B0254W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH33B0254W"><span>Based on records of Three Gorge Telemetric Seismic Network to analyze Vibration process of micro fracture of rock landslide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>WANG, Q.</p> <p>2017-12-01</p> <p>Used the finite element analysis software GeoStudio to establish vibration analysis model of Qianjiangping landslide, which locates at the Three Gorges Reservoir area. In QUAKE/W module, we chosen proper Dynamic elasticity modulus and Poisson's ratio of soil layer and rock stratum. When loading, we selected the waveform data record of Three Gorge Telemetric Seismic Network as input ground motion, which includes five rupture events recorded of Lujiashan seismic station. In dynamic simulating, we mainly focused on sliding process when the earthquake date record was applied. The simulation result shows that Qianjiangping landslide wasn't not only affected by its own static force, but also experienced the dynamic process of micro fracture-creep-slip rupture-creep-slip.it provides a new approach for the early warning feasibility of rock landslide in future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616931G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616931G"><span>Rock shape, restitution coefficients and rockfall trajectory modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Glover, James; Christen, Marc; Bühler, Yves; Bartelt, Perry</p> <p>2014-05-01</p> <p>Restitution coefficients are used in rockfall trajectory modelling to describe the ratio between incident and rebound velocities during ground impact. They are central to the problem of rockfall hazard analysis as they link rock mass characteristics to terrain properties. Using laboratory experiments as a guide, we first show that restitution coefficients exhibit a wide range of scatter, although the material properties of the rock and ground are constant. This leads us to the conclusion that restitution coefficients are poor descriptors of rock-ground interaction. The primary problem is that "apparent" restitution coefficients are applied at the rock's centre-of-mass and do not account for rock shape. An accurate description of the rock-ground interaction requires the contact forces to be applied at the rock surface with consideration of the momentary rock position and spin. This leads to a variety of rock motions including bouncing, sliding, skipping and rolling. Depending on the impact configuration a wide range of motions is possible. This explains the large scatter of apparent restitution coefficients. We present a rockfall model based on newly developed hard-contact algorithms which includes the effects of rock shape and therefore is able to reproduce the results of different impact configurations. We simulate the laboratory experiments to show that it is possible to reproduce run-out and dispersion of different rock shapes using parameters obtained from independent tests. Although this is a step forward in rockfall trajectory modelling, the problem of parametersing real terrain remains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015FrEaS...3...29S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015FrEaS...3...29S"><span>Geomechanical rock properties of a basaltic volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schaefer, Lauren; Kendrick, Jackie; Lavallée, Yan; Oommen, Thomas; Chigna, Gustavo</p> <p>2015-06-01</p> <p>In volcanic regions, reliable estimates of mechanical properties for specific volcanic events such as cyclic inflation-deflation cycles by magmatic intrusions, thermal stressing, and high temperatures are crucial for building accurate models of volcanic phenomena. This study focuses on the challenge of characterizing volcanic materials for the numerical analyses of such events. To do this, we evaluated the physical (porosity, permeability) and mechanical (strength) properties of basaltic rocks at Pacaya Volcano (Guatemala) through a variety of laboratory experiments, including: room temperature, high temperature (935 °C), and cyclically-loaded uniaxial compressive strength tests on as-collected and thermally-treated rock samples. Knowledge of the material response to such varied stressing conditions is necessary to analyze potential hazards at Pacaya, whose persistent activity has led to 13 evacuations of towns near the volcano since 1987. The rocks show a non-linear relationship between permeability and porosity, which relates to the importance of the crack network connecting the vesicles in these rocks. Here we show that strength not only decreases with porosity and permeability, but also with prolonged stressing (i.e., at lower strain rates) and upon cooling. Complimentary tests in which cyclic episodes of thermal or load stressing showed no systematic weakening of the material on the scale of our experiments. Most importantly, we show the extremely heterogeneous nature of volcanic edifices that arise from differences in porosity and permeability of the local lithologies, the limited lateral extent of lava flows, and the scars of previous collapse events. Input of these process-specific rock behaviors into slope stability and deformation models can change the resultant hazard analysis. We anticipate that an increased parameterization of rock properties will improve mitigation power.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3325F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3325F"><span>Data Services and Transnational Access for European Geosciences Multi-Scale Laboratories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Funiciello, Francesca; Rosenau, Matthias; Sagnotti, Leonardo; Scarlato, Piergiorgio; Tesei, Telemaco; Trippanera, Daniele; Spires, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst</p> <p>2016-04-01</p> <p>The EC policy for research in the new millennium supports the development of european-scale research infrastructures. In this perspective, the existing research infrastructures are going to be integrated with the objective to increase their accessibility and to enhance the usability of their multidisciplinary data. Building up integrating Earth Sciences infrastructures in Europe is the mission of the Implementation Phase (IP) of the European Plate Observing System (EPOS) project (2015-2019). The integration of european multiscale laboratories - analytical, experimental petrology and volcanology, magnetic and analogue laboratories - plays a key role in this context and represents a specific task of EPOS IP. In the frame of the WP16 of EPOS IP working package 16, European geosciences multiscale laboratories aims to be linked, merging local infrastructures into a coherent and collaborative network. In particular, the EPOS IP WP16-task 4 "Data services" aims at standardize data and data products, already existing and newly produced by the participating laboratories, and made them available through a new digital platform. The following data and repositories have been selected for the purpose: 1) analytical and properties data a) on volcanic ash from explosive eruptions, of interest to the aviation industry, meteorological and government institutes, b) on magmas in the context of eruption and lava flow hazard evaluation, and c) on rock systems of key importance in mineral exploration and mining operations; 2) experimental data describing: a) rock and fault properties of importance for modelling and forecasting natural and induced subsidence, seismicity and associated hazards, b) rock and fault properties relevant for modelling the containment capacity of rock systems for CO2, energy sources and wastes, c) crustal and upper mantle rheology as needed for modelling sedimentary basin formation and crustal stress distributions, d) the composition, porosity, permeability, and frackability of reservoir rocks of interest in relation to unconventional resources and geothermal energy; 3) repository of analogue models on tectonic processes, from the plate to the reservoir scale, relevant to the understanding of Earth dynamics, geo-hazards and geo-energy; 4) paleomagnetic data, that are crucial a) for understanding the evolution of sedimentary basins and associated resources, and b) for charting geo-hazard frequency. EPOS IP WP16 - task 5 aims to create mechanisms and procedures for easy trans-national access to multiscale laboratory facilities. Moreover, the same task will coordinate all the activities in a pilot phase to test, validate and consolidate the over mentioned services and to provide a proof of concept for what will be offered beyond the completion of the EPOS IP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdWR..116..127S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdWR..116..127S"><span>Imaging and computational considerations for image computed permeability: Operating envelope of Digital Rock Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saxena, Nishank; Hows, Amie; Hofmann, Ronny; Alpak, Faruk O.; Freeman, Justin; Hunter, Sander; Appel, Matthias</p> <p>2018-06-01</p> <p>This study defines the optimal operating envelope of the Digital Rock technology from the perspective of imaging and numerical simulations of transport properties. Imaging larger volumes of rocks for Digital Rock Physics (DRP) analysis improves the chances of achieving a Representative Elementary Volume (REV) at which flow-based simulations (1) do not vary with change in rock volume, and (2) is insensitive to the choice of boundary conditions. However, this often comes at the expense of image resolution. This trade-off exists due to the finiteness of current state-of-the-art imaging detectors. Imaging and analyzing digital rocks that sample the REV and still sufficiently resolve pore throats is critical to ensure simulation quality and robustness of rock property trends for further analysis. We find that at least 10 voxels are needed to sufficiently resolve pore throats for single phase fluid flow simulations. If this condition is not met, additional analyses and corrections may allow for meaningful comparisons between simulation results and laboratory measurements of permeability, but some cases may fall outside the current technical feasibility of DRP. On the other hand, we find that the ratio of field of view and effective grain size provides a reliable measure of the REV for siliciclastic rocks. If this ratio is greater than 5, the coefficient of variation for single-phase permeability simulations drops below 15%. These imaging considerations are crucial when comparing digitally computed rock flow properties with those measured in the laboratory. We find that the current imaging methods are sufficient to achieve both REV (with respect to numerical boundary conditions) and required image resolution to perform digital core analysis for coarse to fine-grained sandstones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGE....15..275D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGE....15..275D"><span>3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao</p> <p>2018-02-01</p> <p>Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.T33A4647O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.T33A4647O"><span>Subsurface Rock Physical Properties by Downhole Loggings - Case Studies of Continental Deep Drilling in Kanto Distinct, Japan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Omura, K.</p> <p>2014-12-01</p> <p>In recent years, many examples of physical logging have been carried out in deep boreholes. The loggings are direct in-situ measurements of rock physical properties under the ground. They provide significant basic data for the geological, geophysical and geotechnical investigations, e.g., tectonic history, seismic wave propagation, and ground motion prediction. Since about 1980's, Natl. Res. Inst. for Earth Sci. and Disast. Prev. (NIED) dug deep boreholes (from 200m to 3000m depth) in sedimentary basin of Kanto distinct, Japan, for purposes of installing seismographs and hydrological instruments, and in-situ stress and pore pressure measurements. At that time, downhole physical loggings were conducted in the boreholes: spontaneous potential, electrical resistance, elastic wave velocity, formation density, neutron porosity, total gamma ray, caliper, temperature loggings. In many cases, digital data values were provided every 2m or 1m or 0.1m. In other cases, we read printed graphs of logging plots and got digital data values. Data from about 30 boreholes are compiled. Especially, particular change of logging data at the depth of an interface between a shallow part (soft sedimentary rock) and a base rock (equivalent to hard pre-Neogene rock) is examined. In this presentation, the correlations among physical properties of rock (especially, formation density, elastic wave velocity and electrical resistance) are introduced and the relation to the lithology is discussed. Formation density, elastic wave velocity and electric resistance data indicate the data are divide in two groups that are higher or lower than 2.5g/cm3: the one correspond to a shallow part and the other correspond to a base rock part. In each group, the elastic wave velocity and electric resistance increase with increase of formation density. However the rates of increases in the shallow part are smaller than in the base rock part. The shallow part has lower degree of solidification and higher porosity than that in the base rock part. It appears differences in the degree of solidification and/or porosity are related to differences in the increasing rates. The present data show that the physical logging data are effective information to explore where the base rock is and what properties of the base rock are different from those in the shallow part.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/889377','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/889377"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Willis-Richards, J.; Watanable, K.; Yamaguchi, T.</p> <p></p> <p>A set of models of HDR systems is presented which attempts to explain the formation and operation of HDR systems using only the in-situ properties of the fractured rock mass, the earth stress field, the engineering intervention applied by way of stimulation and the relative positions and pressures of the well(s). A statistical and rock mechanics description of fractures in low permeability rocks provides the basis for modeling of stimulation, circulation and water loss in HDR systems. The model uses a large number of parameters, chiefly simple directly measurable quantities, describing the rock mass and fracture system. The effect ofmore » stimulation (raised fluid pressure allowing slip) on fracture apertures is calculated, and the volume of rock affected per volume of fluid pumped estimated. The total rock volume affected by stimulation is equated with the rock volume containing the associated AE (microseismicity). The aperture and compliance properties of the stimulated fractures are used to estimate impedance and flow within the reservoir. Fluid loss from the boundary of the stimulated volume is treated using radial leak-off with pressure-dependent permeability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUSMNS44A..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUSMNS44A..03D"><span>Gas Hydrate Estimation Using Rock Physics Modeling and Seismic Inversion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, J.; Dutta, N.; Xu, H.</p> <p>2006-05-01</p> <p>ABSTRACT We conducted a theoretical study of the effects of gas hydrate saturation on the acoustic properties (P- and S- wave velocities, and bulk density) of host rocks, using wireline log data from the Mallik wells in the Mackenzie Delta in Northern Canada. We evaluated a number of gas hydrate rock physics models that correspond to different rock textures. Our study shows that, among the existing rock physics models, the one that treats gas hydrate as part of the solid matrix best fits the measured data. This model was also tested on gas hydrate hole 995B of ODP leg 164 drilling at Blake Ridge, which shows adequate match. Based on the understanding of rock models of gas hydrates and properties of shallow sediments, we define a procedure that quantifies gas hydrate using rock physics modeling and seismic inversion. The method allows us to estimate gas hydrate directly from seismic information only. This paper will show examples of gas hydrates quantification from both 1D profile and 3D volume in the deepwater of Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec13-1112.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title36-vol1/pdf/CFR-2014-title36-vol1-sec13-1112.pdf"><span>36 CFR 13.1112 - May I collect rocks and minerals?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false May I collect rocks and minerals? 13.1112 Section 13.1112 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol1/pdf/CFR-2010-title36-vol1-sec13-1112.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title36-vol1/pdf/CFR-2010-title36-vol1-sec13-1112.pdf"><span>36 CFR 13.1112 - May I collect rocks and minerals?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-07-01</p> <p>... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false May I collect rocks and minerals? 13.1112 Section 13.1112 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR NATIONAL PARK SYSTEM UNITS IN ALASKA Special Regulations-Glacier Bay National Park and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9822K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9822K"><span>Geometrical properties of a discontinuity network in gneissic rock, a case study in high alpine terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koppensteiner, Matthias; Zangerl, Christian</p> <p>2017-04-01</p> <p>For the purposes of estimating slope stability and investigating landslide formation processes, it is indispensable to obtain information about the discontinuity properties of the rock mass. These properties control failure processes, deformation behaviour and groundwater flow. Scanline measurements represent a systematic surveying method, however they make certain demands in case of natural outcorps in a high alpine terrain. The performance of the scanline method is tested and the thereby obtained and evaluated data is compared to findings from other studies. An area of a well exposed, fractured rock mass composed of granodioritic gneisses in the Oetztal-Stubai crytalline basement of the Alps (Austria) has been chosen to perform the investigations. Eight scanlines have been measured on a single hillside with varying lengths between 8 and 30 meters. The orientations of the scanlines have been varied in order to minimize the sampling bias associated with the angle between the scanlines and the intersected discontinuities. For every intersecting discontinuity at a certain tape length, the orientation, the trace length and the terminations of the trace have been recorded. Primarily, the discontinuity data from all scanlines have been analyzed with the software package Dips (Rocscience, 1989) in order to determine their allocation in sets. For the evaluation of the spacing and trace length properties, two scripts have been developed in the language Matlab (The MathWorks, 1984) to faciliate setwise processing of the entire dataset. Variation of the scanline directions and lengths returned homogeneous sample sizes for the individual discontinuity sets. Both, normal spacings and trace lengths show negative exponential distributions for all sets. A comparison of four different methods to estimate trace lengths show that the result is highly dependent on the chosen method itself. However, when the relation of the results for the respective sets within one of the methods is considered, the consistency is obvious. Scanline measurements and analyses provide siginificant results for discontinuity properties under the described circumstances. Considering sampling biases, the obtained dataset is even benefiting from the randomized sampling process, due to the natural terrain. The scanline survey provides a statistical database which can be used for rock mass characterization. Geometrical rock mass characterization is essential to model the in-situ block size distribution, to estimate the degree of fracturing and rock mass anisotropy for quarry oder tunnelling projects or define the mechanical rock mass properties based on classifications systems. The study should contribute a reference for the development and application of other methods for investigating discontinuity properties in instable rock masses.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4645220','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4645220"><span>Formononetin promotes angiogenesis through the estrogen receptor alpha-enhanced ROCK pathway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Shang; Dang, Yuanye; Zhou, Xuelin; Huang, Bin; Huang, Xiaohui; Zhang, Zherui; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man</p> <p>2015-01-01</p> <p>Formononetin is an isoflavone that has been shown to display estrogenic properties and induce angiogenesis activities. However, the interrelationship between the estrogenic properties and angiogenesis activities of formononetin are not well defined. In the present study, docking and enzymatic assay demonstrated that formononetin displayed direct binding to the ligand-binding domain (LBD) of estrogen receptor alpha (ERα) with an agonistic property. Results from Human Umbilical Vein Endothelial Cells (HUVEC) by using real-time migration xCELLigence system, immunofluorescence and western blotting provided strong evidences of formononetin induced endothelial cell migration and dramatic actin cytoskeleton spatial modification through ERα-enhanced-ROCK-II/MMP2/9 signaling pathways. In addition, results from co-immunoprecipitation suggested formononetin induced cell migration via recruiting of ERα/ROCK-II activated complex formation. More interestingly, in zebrafish embryo we observed that formononetin significantly promoted angiogenic sproutings in the subintestinal vessels (SIVs) that could be completely abolished by ROCK inhibitor. In this study, we elucidated the underlying mechanisms that formononetin produced proangiogenesis effects through an ERα-enhanced ROCK-II signaling pathways. Results from the present study also expand our knowledge about the enigmatic underlying mechanisms of phytoestrogenic compounds in the promotion of angiogenesis in relation to ERα and ROCK interaction in endothelial cells and their relationship with actin assembly and cell migration. PMID:26568398</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26568398','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26568398"><span>Formononetin promotes angiogenesis through the estrogen receptor alpha-enhanced ROCK pathway.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Shang; Dang, Yuanye; Zhou, Xuelin; Huang, Bin; Huang, Xiaohui; Zhang, Zherui; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man</p> <p>2015-11-16</p> <p>Formononetin is an isoflavone that has been shown to display estrogenic properties and induce angiogenesis activities. However, the interrelationship between the estrogenic properties and angiogenesis activities of formononetin are not well defined. In the present study, docking and enzymatic assay demonstrated that formononetin displayed direct binding to the ligand-binding domain (LBD) of estrogen receptor alpha (ERα) with an agonistic property. Results from Human Umbilical Vein Endothelial Cells (HUVEC) by using real-time migration xCELLigence system, immunofluorescence and western blotting provided strong evidences of formononetin induced endothelial cell migration and dramatic actin cytoskeleton spatial modification through ERα-enhanced-ROCK-II/MMP2/9 signaling pathways. In addition, results from co-immunoprecipitation suggested formononetin induced cell migration via recruiting of ERα/ROCK-II activated complex formation. More interestingly, in zebrafish embryo we observed that formononetin significantly promoted angiogenic sproutings in the subintestinal vessels (SIVs) that could be completely abolished by ROCK inhibitor. In this study, we elucidated the underlying mechanisms that formononetin produced proangiogenesis effects through an ERα-enhanced ROCK-II signaling pathways. Results from the present study also expand our knowledge about the enigmatic underlying mechanisms of phytoestrogenic compounds in the promotion of angiogenesis in relation to ERα and ROCK interaction in endothelial cells and their relationship with actin assembly and cell migration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJP..133..150T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJP..133..150T"><span>Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanekou, G. B.; Fogang, C. F.; Kengne, R.; Pelap, F. B.</p> <p>2018-04-01</p> <p>We examine the dynamical behaviours of the "single mass-spring" model for earthquakes considering lubrication pressure effects on pre-existing faults and viscous fractional damping. The lubrication pressure supports a part of the load, thereby reducing the normal stress and the associated friction across the gap. During the co-seismic phase, all of the strain accumulated during the inter-seismic duration does not recover; a fraction of this strain remains as a result of viscous relaxation. Viscous damping friction makes it possible to study rocks at depth possessing visco-elastic behaviours. At increasing depths, rock deformation gradually transitions from brittle to ductile. The fractional derivative is based on the properties of rocks, including information about previous deformation events ( i.e., the so-called memory effect). Increasing the fractional derivative can extend or delay the transition from stick-slip oscillation to a stable equilibrium state and even suppress it. For the single block model, the interactions of the introduced lubrication pressure and viscous damping are found to give rise to oscillation death, which corresponds to aseismic fault behaviour. Our result shows that the earthquake occurrence increases with increases in both the damping coefficient and the lubrication pressure. We have also revealed that the accumulation of large stresses can be controlled via artificial lubrication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28802767','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28802767"><span>Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J</p> <p>2017-09-01</p> <p>Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..801H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..801H"><span>Theoretical Investigations on the Influence of Artificially Altered Rock Mass Properties on Mechanical Excavation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartlieb, Philipp; Bock, Stefan</p> <p>2018-03-01</p> <p>This study presents a theoretical analysis of the influence of the rock mass rating on the cutting performance of roadheaders. Existing performance prediction models are assessed for their suitability for forecasting the influence of pre-damaging the rock mass with alternative methods like lasers or microwaves, prior to the mechanical excavation process. Finally, the RMCR model was chosen because it is the only reported model incorporating a range of rock mass properties into its calculations. The results show that even very tough rocks could be mechanically excavated if the occurrence, orientation and condition of joints are favourable for the cutting process. The calculated improvements in the cutting rate (m3/h) are up to 350% for the most favourable cases. In case of microwave irradiation of hard rocks with an UCS of 200 MPa, a reasonable improvement in the performance by 120% can be achieved with as little as an extra 0.7 kWh/m3 (= 1% more energy) compared to cutting only.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMMR14A..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMMR14A..06K"><span>Digital Rock Simulation of Flow in Carbonate Samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klemin, D.; Andersen, M.</p> <p>2014-12-01</p> <p>Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three ranges of wetting properties. The wetting variation affected phase mobility and residual phase saturations for primary oil flood and floods with varying ratios of oil and water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51..747X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51..747X"><span>Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Yuan; Dai, Feng</p> <p>2018-03-01</p> <p>A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024317','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024317"><span>Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.</p> <p>2002-01-01</p> <p>In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PApGe.173.2841H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PApGe.173.2841H"><span>Static and Dynamic Moduli of Malm Carbonate: A Poroelastic Correlation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassanzadegan, Alireza; Guérizec, Romain; Reinsch, Thomas; Blöcher, Guido; Zimmermann, Günter; Milsch, Harald</p> <p>2016-08-01</p> <p>The static and poroelastic moduli of a porous rock, e.g., the drained bulk modulus, can be derived from stress-strain curves in rock mechanical tests, and the dynamic moduli, e.g., dynamic Poisson's ratio, can be determined by acoustic velocity and bulk density measurements. As static and dynamic elastic moduli are different, a correlation is often required to populate geomechanical models. A novel poroelastic approach is introduced to correlate static and dynamic bulk moduli of outcrop analogues samples, representative of Upper-Malm reservoir rock in the Molasse basin, southwestern Germany. Drained and unjacketed poroelastic experiments were performed at two different temperature levels (30 and 60°C). For correlating the static and dynamic elastic moduli, a drained acoustic velocity ratio is introduced, corresponding to the drained Poisson's ratio in poroelasticity. The strength of poroelastic coupling, i.e., the product of Biot and Skempton coefficients here, was the key parameter. The value of this parameter decreased with increasing effective pressure by about 56 ~% from 0.51 at 3 MPa to 0.22 at 73 MPa. In contrast, the maximum change in P- and S-wave velocities was only 3 % in this pressure range. This correlation approach can be used in characterizing underground reservoirs, and can be employed to relate seismicity and geomechanics (seismo-mechanics).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010345','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010345"><span>Spectral reflectance and photometric properties of selected rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Watson, Robert D.</p> <p>1971-01-01</p> <p>Studies of the spectral reflectance and photometric properties of selected rocks at the USGS Mill Creek, Oklahoma, remote sensing test site demonstrate that discrimination of rock types is possible through reflection measurements, but that the discrimination is complicated by surface conditions, such as weathering and lichen growth. Comparisons between fresh-broken, weathered, and lichen-covered granite show that whereas both degree of weathering and amount of lichen cover change the reflectance quality of the granite, lichen cover also considerably changes the photometric properties of the granite. Measurements of the spectral reflectance normal to the surface of both limestone and dolomite show limestone to be more reflective than dolomite in the wavelength range from 380 to 1550 nanometers. The reflectance difference decreases at view angles greater than 40° owing to the difference in the photometric properties of dolomite and limestone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26526020','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26526020"><span>Exploring the techno-economic feasibility of mine rock waste utilisation in road works: The case of a mining deposit in Ghana.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Agyeman, Stephen; Ampadu, Samuel I K</p> <p>2016-02-01</p> <p>Mine rock waste, which is the rock material removed in order to access and mine ore, is free from gold processing chemical contaminants but presents a significant environmental challenge owing to the large volumes involved. One way of mitigating the environmental and safety challenges posed by the large volume of mine rock waste stockpiled in mining communities is to find uses of this material as a substitute for rock aggregates in construction. This article reports on a study conducted to evaluate the engineering properties of such a mine deposit to determine its suitability for use as road pavement material. Samples of mine rock waste, derived from the granitic and granodioritic intrusive units overlying the gold-bearing metavolcanic rock and volcano-clastic sediments of a gold mining area in Ghana, were obtained from three mine rock waste disposal facilities and subjected to a battery of laboratory tests to determine their physical, mechanical, geotechnical, geometrical and durability properties. The overall conclusion was that the mine rock waste met all the requirements of the Ghana Ministry of Transportation specification for use as aggregates for crushed rock subbase, base and surface dressing chippings for road pavements. The recommendation is to process it into the required sizes for the various applications. © The Author(s) 2015.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR24A..06C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR24A..06C"><span>Combining mineral physics with seismic observations: What can we deduce about the thermochemical structure of the Earth's deep interior?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cobden, L. J.</p> <p>2017-12-01</p> <p>Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720030950&hterms=lecture&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlecture','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720030950&hterms=lecture&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dlecture"><span>The earth and the moon /Harold Jeffreys Lecture/.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Press, F.</p> <p>1971-01-01</p> <p>The internal structures of the earth and the moon are compared in the light of the latest extensive data on the earth structure, mobility of the earth outer layers, and the properties of lunar crust. The Monte Carlo method is applied to develop an earth model by a stepwise process beginning with a random distribution of two elastic velocities and the density as a function of de pth. Lunar seismic, magnetic, and rock analysis data are used to infer the properties of the moon. The marked planetological contrast between the earth and the moon is shown to consist in that the earth is highly differentiated and still undergoes a large-scale differentiation, while the moon has lost its volatiles in its early history and has a cold dynamically inactive shell which has been without basic changes for three billion years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMGC51A0924O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMGC51A0924O"><span>Geophysical Signatures to Monitor Fluids and Mineralization for CO2 Sequestration in Basalts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Otheim, L. T.; Adam, L.; Van Wijk, K.; Batzle, M. L.; Mcling, T. L.; Podgorney, R. K.</p> <p>2011-12-01</p> <p>Carbon dioxide sequestration in large reservoirs can reduce emissions of this green house gas into the atmosphere. Basalts are promising host rocks due to their volumetric extend, worldwide distribution, and recent observations that CO2-water mixtures react with basalt minerals to precipitate as carbonate minerals, trapping the CO2. The chemical reaction between carbonic acid and minerals rich in calcium, magnesium and iron precipitates carbonates in the pore space. This process would increase the elastic modulus and velocity of the rock. At the same time, the higher compressibility of CO2 over water changes the elastic properties of the rock, decreasing the saturated rock bulk modulus and the P-wave velocity. Reservoirs where the rock properties change as a result of fluid or pressure changes are commonly monitored with seismic methods. Here we present experiments to study the feasibility of monitoring CO2 migration in a reservoir and CO2-rock reactions for a sequestration scenario in basalts. Our goal is to measure the rock's elastic response to mineralization with non-contacting ultrasonic lasers, and the effect of fluid substitution at reservoir conditions at seismic and ultrasonic frequencies. For the fluid substitution experiment we observe changes in the P- and S-wave velocities when saturating the sample with super-critical (sc) CO2, CO2-water mixtures and water alone for different pore and confining pressures. The bulk modulus of the rock is significantly dependent on frequency in the 2~to 106~Hz range, for CO2-water mixtures and pure water saturations. Dry and pure CO2 (sc or gas) do not show a frequency dependence on the modulus. Moreover, the shear wave modulus is not dispersive for either fluid. The frequency dependence of the elastic parameters is related to the attenuation (1/Q) of the rock. We will show the correlation between frequency dependent moduli and attenuation data for the different elastic moduli of the rocks. Three other basalt samples were stored in a pressure chamber with a sc CO2-water solution to study the effect of mineralization on the elastic properties of the rock. The rock elastic properties are recorded with non-contacting ultrasonic lasers at room conditions. After 15 weeks the first post-mineralization scan showed differences in the rock velocities with respect to the pre-mineralization scan. The analysis is done through coda wave interferometry and direct arrivals. The samples were inserted back into the pressure vessel for continuing mineralization and subsequent scans. Finally, we will discuss the applicability of Gassmann's equation and how the combination of mineralization together with CO2-water mixture affects the velocity of waves in basalt rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51...47L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51...47L"><span>Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng</p> <p>2018-01-01</p> <p>Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/137704','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/137704"><span>Drill-back studies examine fractured, heated rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wollenberg, H.A.; Flexser, S.; Myer, L.R.</p> <p>1990-01-01</p> <p>To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences inmore » compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.T23D2989W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.T23D2989W"><span>Quantitative Characterisation of Fracturing Around the Damage Zone Surrounding New Zealand's Alpine Fault Using X-ray CT Scans of DFDP-1 Core</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, J. N.; Toy, V.; Massiot, C.; Mcnamara, D. D.; Wang, T.</p> <p>2015-12-01</p> <p>X-ray computer tomography (CT) scans of core recovered from the first phase of the Deep Fault Drilling Project (DFDP-1) through the Alpine Fault provide an excellent opportunity to analyse brittle deformation around the fault. In particular, assessment can be made of the heavily fractured protolith constituting the damage zone. Damage zone structures are divided into two types that result from two distinct processes: (1) "off fault damage" formed by stress changes induced by the passage of a seismic rupture and (2) "off fault deformation" that represent structures, which accommodate strain around the fault that was not localised on the principal slip zone (PSZ). The distribution of these damage zones structures within CT scans of the recovered core was measured along a scanline parallel to the core axis and assessed using a weighted moving average technique to account for orientation bias. The results of this analysis reveal that within the part of the fault rocks sampled by DFDP-1 there is no increase in density of these structures towards the PSZ. This is in agreement with independent analysis using Borehole Televiewer Data of the DFDP-1B borehole. Instead, we consider the density of these structures to be controlled to the first order by lithology, which modulates the mechanical properties of the fault rocks such as its frictional strength and cohesion. Comparisons of fracture density to p-wave velocities obtained from wireline logs indicate they are independent of each other, therefore, for the cores sampled in this study fractures impart no influence on the elastic properties of the rock. This is consistent with the observation from core that the majority of fractures are cemented. We consider how this might influence future rupture dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010DPS....42.0405H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010DPS....42.0405H"><span>A Critical Lunar and Planetary Period 4 Gy Ago - Independent of Dynamical Cataclysm Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, William K.</p> <p>2010-10-01</p> <p>Lunar crater counts at various landing sites show that the lunar cratering rate was declining from about 3.8 to 3.3 Gy ago, as found independently by different workers [1,2,3]. This means saturation cratering was reached in much shorter intervals around 3.8 Gy ago (and probably 3.9-4.1 Gy) than today. This creates a critical period in terms of surface sample properties. Geometric considerations alone show that as crater densities approach saturation levels, the depth of pulverization, reworking, and regolith production increases explosively [4,5]. Thus, while some 5 to 20 meters of regolith have been produced on mare surface in the last 3.5 Gy, such depths would have been reworked many times over in intervals as short as 30 My at times around 3.8 Gy and probably before - whether a Nice-style cataclysm happened or not. The conclusion is that rocks placed on the surfaces of airless inner solar system worlds before 3.8-4.1 Gy ago have much lower probability of surviving intact until today, than rocks delivered after 3.8 Gy ago. This statement explains some properties of rock collections from surface sites of different ages. References: [1] Hartmann, W.K. 1972. Astrophysics and Space Sci. 12:48-64. [2] Neukum, Gerhard 1983 Habilitation Dissertation, Ludwig-Maximilians-University, Munich. [3] Neukum, G., Boris Ivanov, and W. K. Hartmann 2001. Space Sci. Rev., 96:55-86. [4] Hartmann, W. K. 1980. In Proc. Conf. Lunar Highlands Crust, ed. J. Papike and R. Merrill. (N.Y.: Pergamon Press), pp. 155-171. [5] Hartmann, W. K. 2003. Meteoritics and Planet. Sci. 38:579-593.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/760293','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/760293"><span>Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Faybishenko, B.</p> <p>1999-02-01</p> <p>This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. Themore » technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=rocks+AND+minerals&id=EJ759917','ERIC'); return false;" href="https://eric.ed.gov/?q=rocks+AND+minerals&id=EJ759917"><span>The Challenges of Observing Geologically: Third Graders' Descriptions of Rock and Mineral Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ford, Danielle J.</p> <p>2005-01-01</p> <p>The understandings of properties that children develop in the context of rock and mineral identification point to the challenges of observing in a manner authentic to the discipline of geology. The notebook entries of 34 third graders written during the enactment of a commercial unit on earth materials were investigated for their descriptions of…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.4647L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.4647L"><span>A Novel True Triaxial Apparatus to Study the Geomechanical and Fluid Flow Aspects of Energy Exploitations in Geological Formations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Minghui; Yin, Guangzhi; Xu, Jiang; Li, Wenpu; Song, Zhenlong; Jiang, Changbao</p> <p>2016-12-01</p> <p>Fluid-solid coupling investigations of the geological storage of CO2, efficient unconventional oil and natural gas exploitations are mostly conducted under conventional triaxial stress conditions ( σ 2 = σ 3), ignoring the effects of σ 2 on the geomechanical properties and permeability of rocks (shale, coal and sandstone). A novel multi-functional true triaxial geophysical (TTG) apparatus was designed, fabricated, calibrated and tested to simulate true triaxial stress ( σ 1 > σ 2 > σ 3) conditions and to reveal geomechanical properties and permeability evolutions of rocks. The apparatus was developed with the capacity to carry out geomechanical and fluid flow experiments at high three-dimensional loading forces and injection pressures under true triaxial stress conditions. The control and measurement of the fluid flow with effective sealing of rock specimen corners were achieved using a specially designed internally sealed fluid flow system. To validate that the apparatus works properly and to recognize the effects of each principal stress on rock deformation and permeability, stress-strain and permeability experiments and a hydraulic fracturing simulation experiment on shale specimens were conducted under true triaxial stress conditions using the TTG apparatus. Results show that the apparatus has advantages in recognizing the effects of σ 2 on the geomechanical properties and permeability of rocks. Results also demonstrate the effectiveness and reliability of the novel TTG apparatus. The apparatus provides a new method of studying the geomechanical properties and permeability evolutions of rocks under true triaxial stress conditions, promoting further investigations of the geological storage of CO2, efficient unconventional oil and gas exploitations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhA...51f3001D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhA...51f3001D"><span>Stochastic population dynamics in spatially extended predator-prey systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.</p> <p>2018-02-01</p> <p>Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex Ginzburg-Landau equation. Multiple-species extensions to general ‘food networks’ can be classified on the mean-field level, providing both fundamental understanding of ensuing cooperativity and profound insight into the rich spatio-temporal features and coarsening kinetics in the corresponding spatially extended systems. Novel space-time patterns emerge as a result of the formation of competing alliances; e.g. coarsening domains that each incorporate rock-paper-scissors competition games.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2003/0268/pdf/of03-268.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2003/0268/pdf/of03-268.pdf"><span>Density and magnetic suseptibility values for rocks in the Talkeetna Mountains and adjacent region, south-central Alaska</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sanger, Elizabeth A.; Glen, Jonathan M.G.</p> <p>2003-01-01</p> <p>This report presents a compilation and statistical analysis of 306 density and 706 magnetic susceptibility measurements of rocks from south-central Alaska that were collected by U.S. Geological Survey (USGS) and Alaska Division of Geological and Geophysical Surveys (ADGGS) scientists between the summers of 1999 and 2002. This work is a product of the USGS Talkeetna Mountains Transect Project and was supported by USGS projects in the Talkeetna Mountains and Iron Creek region, and by Bureau of Land Management (BLM) projects in the Delta River Mining District that aim to characterize the subsurface structures of the region. These data were collected to constrain potential field models (i.e., gravity and magnetic) that are combined with other geophysical methods to identify and model major faults, terrane boundaries, and potential mineral resources of the study area. Because gravity and magnetic field anomalies reflect variations in the density and magnetic susceptibility of the underlying lithology, these rock properties are essential components of potential field modeling. In general, the average grain density of rocks in the study region increases from sedimentary, felsic, and intermediate igneous rocks, to mafic igneous and metamorphic rocks. Magnetic susceptibility measurements performed on rock outcrops and hand samples from the study area also reveal lower magnetic susceptibilities for sedimentary and felsic intrusive rocks, moderate susceptibility values for metamorphic, felsic extrusive, and intermediate igneous rocks, and higher susceptibility values for mafic igneous rocks. The density and magnetic properties of rocks in the study area are generally consistent with general trends expected for certain rock types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43E1694K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43E1694K"><span>Measurement of Thermal Properties of Rocks at Temperature up to 1,000°C with Transient Plane Source Techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S. K.; Lee, Y.</p> <p>2017-12-01</p> <p>A set of devices that can measure thermal properties of rocks over a temperature range from room temperature up to 1,000°C with transient plane source techniques (also known as a Hot Disk method) is introduced. It consists of a main control system (e.g., TPS 2500 S from Hot Disk), mica-insulated sensor, tubular furnace, N2 gas supplier, and pressure regulator. The TPS 2500 S is the core instrument designed for precise analysis of thermal transport properties including thermal conductivity, thermal diffusivity, and volumetric heat capacity. The mica-insulated sensor is composed of an insulated nickel double spiral, which is utilized for both transient heating and precise temperature reading; a mica insulator protects the sensor against mechanical and thermal damage at high temperatures. The tubular furnace can hold two rock core samples of 50-mm-diameter and 25-mm-height with increasing temperatures up to 1,000°C. N2 gas supplier and pressure regulator are used to keep the inside the furnace away from oxygen. Thermal properties of most rocks and minerals vary with increasing temperatures. Experimental measurements of thermal properties at high temperatures have been made mostly using laser flash, needle probe, and divided bar methods in the previous researches, and no previous measurements with the Hot Disk method have been reported yet. We report thermal conductivities, thermal diffusivities, and volumetric heat capacities determined by a transient plane heat source method for fused silica and mafic rock samples using the introduced transient plane source apparatus. The thermal properties of fused silica have been measured mainly over the temperature range from ambient temperature to 500°C. The results seem to agree moderately with the previously reported values by Birch and Clark (Am. J. Sci., 1940). We now check the possible causes of measurement errors in our measurements and prepare to measure thermal properties of the mafic rock samples at temperatures up to 1,000°C using the hot disk method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/radiation/tenorm-fertilizer-and-fertilizer-production-wastes','PESTICIDES'); return false;" href="https://www.epa.gov/radiation/tenorm-fertilizer-and-fertilizer-production-wastes"><span>TENORM: Fertilizer and Fertilizer Production Wastes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Phosphate rock is used in the production of phosphate fertilizers. Due to its chemical properties, phosphate rock may contain significant quantities of naturally occurring radioactive materials (NORM).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMDI13B4282G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMDI13B4282G"><span>Against the grain: The physical properties of anisotropic partially molten rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.</p> <p>2014-12-01</p> <p>Partially molten rocks commonly develop textures that appear close to textural equilibrium, where the melt network evolves to minimize the energy of the melt-solid interfaces, while maintaining the dihedral angle θ at solid-solid-melt contact lines. Textural equilibrium provides a powerful model for the melt distribution that controls the petro-physical properties of partially molten rocks, e.g., permeability, elastic moduli, and electrical resistivity. We present the first level-set computations of three-dimensional texturally equilibrated melt networks in rocks with an anisotropic fabric. Our results show that anisotropy induces wetting of smaller grain boundary faces for θ > 0 at realistic porosities ϕ < 3%. This was previously not thought to be possible at textural equilibrium and reconciles the theory with experimental observations. Wetting of the grain boundary faces leads to a dramatic redistribution of the melt from the edges to the faces that introduces strong anisotropy in the petro-physical properties such as permeability, effective electrical conductivity and mechanical properties. Figure, on left, shows that smaller grain boundaries become wetted at relatively low melt fractions of 3% in stretched polyhedral grains with elongation factor 1.5. Right plot represents the ratio of melt electrical conductivity to effective conductivity of medium (known as formation factor) as an example of anisotropy in physical properties. The plot shows that even slight anisotropy in grains induces considerable anisotropy in electrical properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41B0412T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41B0412T"><span>Segmentation-less Digital Rock Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tisato, N.; Ikeda, K.; Goldfarb, E. J.; Spikes, K. T.</p> <p>2017-12-01</p> <p>In the last decade, Digital Rock Physics (DRP) has become an avenue to investigate physical and mechanical properties of geomaterials. DRP offers the advantage of simulating laboratory experiments on numerical samples that are obtained from analytical methods. Potentially, DRP could allow sparing part of the time and resources that are allocated to perform complicated laboratory tests. Like classic laboratory tests, the goal of DRP is to estimate accurately physical properties of rocks like hydraulic permeability or elastic moduli. Nevertheless, the physical properties of samples imaged using micro-computed tomography (μCT) are estimated through segmentation of the μCT dataset. Segmentation proves to be a challenging and arbitrary procedure that typically leads to inaccurate estimates of physical properties. Here we present a novel technique to extract physical properties from a μCT dataset without the use of segmentation. We show examples in which we use segmentation-less method to simulate elastic wave propagation and pressure wave diffusion to estimate elastic properties and permeability, respectively. The proposed method takes advantage of effective medium theories and uses the density and the porosity that are measured in the laboratory to constrain the results. We discuss the results and highlight that segmentation-less DRP is more accurate than segmentation based DRP approaches and theoretical modeling for the studied rock. In conclusion, the segmentation-less approach here presented seems to be a promising method to improve accuracy and to ease the overall workflow of DRP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..134a2008B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..134a2008B"><span>Selection of basic data for numerical modeling of rock mass stress state at Mirny Mining and Processing Works, Alrosa Group of Companies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bokiy, IB; Zoteev, OV; Pul, VV; Pul, EK</p> <p>2018-03-01</p> <p>The influence of structural features on the strength and elasticity modulus is studied in rock mass in the area of Mirny Mining and Processing Works. The authors make recommendations on the values of physical properties of rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912041T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912041T"><span>The influence of hydrocarbons in changing the mechanical and acoustic properties of a carbonate reservoir: implications of laboratory results on larger scale processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trippetta, Fabio; Ruggieri, Roberta; Geremia, Davide; Brandano, Marco</p> <p>2017-04-01</p> <p>Understanding hydraulic and mechanical processes that acted in reservoir rocks and their effect on the rock properties is of a great interest for both scientific and industry fields. In this work we investigate the role of hydrocarbons in changing the petrophysical properties of rock by merging laboratory, outcrops, and subsurface data focusing on the carbonate-bearing Majella reservoir (Bolognano formation). This reservoir represents an interesting analogue for subsurface carbonate reservoirs and is made of high porosity (8 to 28%) ramp calcarenites saturated by hydrocarbon in the state of bitumen at the surface. Within this lithology clean and bitumen bearing samples were investigated. For both groups, density, porosity, P and S wave velocity, at increasing confining pressure and deformation tests were conducted on cylindrical specimens with BRAVA apparatus at the HP-HT Laboratory of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. The performed petrophysical characterization, shows a very good correlation between Vp, Vs and porosity and a pressure independent Vp/Vs ratio while the presence of bitumen within samples increases both Vp and Vs. P-wave velocity hysteresis measured at ambient pressure after 100 MPa of applied confining pressure, suggests an almost pure elastic behaviour for bitumen-bearing samples and a more inelastic behaviour for cleaner samples. Calculated dynamic Young's modulus is larger for bitumen-bearing samples and these data are confirmed by cyclic deformation tests where the same samples generally record larger strength, larger Young's modulus and smaller permanent strain respect to clean samples. Starting from laboratory data, we also derived a synthetic acoustic model highlighting an increase in acoustic impedance for bitumen-bearing samples. Models have been also performed simulating a saturation with decreasing API° hydrocarbons, showing opposite effects on the seismic properties of the reservoir respect to bitumen. In order to compare our laboratory results at larger scale we selected 11 outcrops of the same lithofacies of laboratory samples both clean and bitumen-saturated. Fractures orientations, from the scan-line method, are similar for the two types of outcrops and they follow the same trends of literature data collected on older rocks. On the other hand, spacing data show very lower fracture density for bitumen-saturated outcrops confirming laboratory observations. In conclusion, laboratory experiments highlight a more elastic behaviour for bitumen-bearing samples and saturated outcrops are less prone to fracture respect to clean outcrops. Presence of bitumen has, thus, a positive influence on mechanical properties of the reservoir while acoustic model suggests that lighter oils should have an opposite effect. Geologically, this suggests that hydrocarbons migration in the study area predates the last stage of deformation giving also clues about a relatively high density of the oil when deformation began.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910223T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910223T"><span>Can multi-scale calibrations allow MT-derived resistivities to be used to probe the structure of the deep crust?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toy, Virginia; Billia, Marco; Easingwood, Richard; Kirilova, Martina; Kluge, Emma; Sauer, Katrina; Sutherland, Rupert; Timms, Nicholas; Townend, John</p> <p>2017-04-01</p> <p>Our current knowledge of microstructural and mechanical controls on rock resistivity is such that identical magnetotelluric (MT) anomalies could result from a highly mineralized but extinct shear zone, or from an unmineralized, fluid saturated, active shear zone. In pursuit of the ability to interpret the structure and activity (rather than just the presence) of buried geological structures from electromagnetic data, we are investigating correlations between rock structure and electrical properties of ductile shear zone rocks recovered from the active Alpine Fault Zone, New Zealand. Multi-scale measurements of resistivity exist for this zone: its ductile portions have anomalously high electrical conductivity identified in MT models constructed as part of the South Island Geophysical Transect (SIGHT). Additionally wireline resistivities were measured in situ to 820 m depth during the recent Deep Fault Drilling Project (DFDP-2), and resisistivity of hand samples has been measured at laboratory conditions [Kluge et al., Abstract EGU2017-10139]. In exhumed and borehole samples, the distributions and arrangements of conductivity carriers - graphite, amorphous carbon, and grain boundary pores that would have contained brines or other conductive fluids at depth, have been characterised. These vary systematically according to the total ductile shear strain they have accommodated [Kirilova et al., Abstract EGU2017-5773; Sauer et al., Abstract EGU2017-10485]. Transmission electron microscopy analyses of grain boundaries also indicate that they contain carbon. The next phases of our investigation involve: (i) construction of crustal fluid composition models by quantitative microstructural and compositional/mineralogical mapping of fluid remnants and their solid residues and calibration of these using in situ measurements of fluid composition in DFDP-2 at depths to 820 m; (ii) calculation of resistivities for real microstructures based on electrical properties of the individual component minerals and fluids - for microstructures fully characterised in three-dimensions; (iii) measurement of the effects of dynamic linking of phases during ductile creep of solid rock on complex resistivity of DFDP samples at a range of realistic crustal temperatures and pressures. A particular challenge in this study is to determine appropriate scaling relationships of electrical properties among samples, boreholes, and MT models because dielectric constants of minerals depend on frequency of the imposed current, which varies with scale and, consequently, measurement method. We invite discussion of strategies to overcome this.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.707a2054K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.707a2054K"><span>A Comprehensive Study on Dielectric Properties of Volcanic Rock/PANI Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiliç, M.; Karabul, Y.; Okutan, M.; İçelli, O.</p> <p>2016-05-01</p> <p>Basalt is a very well-known volcanic rock that is dark colored and relatively rich in iron and magnesium, almost located each country in the world. These rocks have been used in the refused rock industry, to produce building tiles, construction industrial, highway engineering. Powders and fibers of basalt rocks are widely used of radiation shielding, thermal stability, heat and sound insulation. This study examined three different basalt samples (coded CM-1, KYZ-13 and KYZ-24) collected from different regions of Van province in Turkey. Polyaniline (PANI) is one of the representative conductive polymers due to its fine environmental stability, huge electrical conductivity, as well as a comparatively low cost. Also, the electrical and thermal properties of polymer composites containing PANI have been widely studied. The dielectric properties of Basalt/Polyaniline composites in different concentrations (10, 25, 50 wt.% PANI) have been investigated by dielectric spectroscopy method at the room temperature. The dielectric parameters (dielectric constants, loss and strength) were measured in the frequency range of 102 Hz-106 Hz at room temperature. The electrical mechanism change with PANI dopant. A detailed dielectrically analysis of these composites will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JEMat.tmp..159L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JEMat.tmp..159L"><span>Mechanical and Thermophysical Properties of Cubic Rock-Salt AlN Under High Pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lebga, Noudjoud; Daoud, Salah; Sun, Xiao-Wei; Bioud, Nadhira; Latreche, Abdelhakim</p> <p>2018-03-01</p> <p>Density functional theory, density functional perturbation theory, and the Debye model have been used to investigate the structural, elastic, sound velocity, and thermodynamic properties of AlN with cubic rock-salt structure under high pressure, yielding the equilibrium structural parameters, equation of state, and elastic constants of this interesting material. The isotropic shear modulus, Pugh ratio, and Poisson's ratio were also investigated carefully. In addition, the longitudinal, transverse, and average elastic wave velocities, phonon contribution to the thermal conductivity, and interesting thermodynamic properties were predicted and analyzed in detail. The results demonstrate that the behavior of the elastic wave velocities under increasing hydrostatic pressure explains the hardening of the corresponding phonons. Based on the elastic stability criteria under pressure, it is found that AlN with cubic rock-salt structure is mechanically stable, even at pressures up to 100 GPa. Analysis of the Pugh ratio and Poisson's ratio revealed that AlN with cubic rock-salt structure behaves in brittle manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26926952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26926952"><span>Energetic and flexibility properties captured by long molecular dynamics simulations of a membrane-embedded pMHCII-TCR complex.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bello, Martiniano; Correa-Basurto, José</p> <p>2016-04-01</p> <p>Although crystallographic data have provided important molecular insight into the interactions in the pMHC-TCR complex, the inherent features of this structural approach cause it to only provide a static picture of the interactions. While unbiased molecular dynamics simulations (UMDSs) have provided important information about the dynamic structural behavior of the pMHC-TCR complex, most of them have modeled the pMHC-TCR complex as soluble, when in physiological conditions, this complex is membrane bound; therefore, following this latter UMDS protocol might hamper important dynamic results. In this contribution, we performed three independent 300 ns-long UMDSs of the pMHCII-TCR complex anchored in two opposing membranes to explore the structural and energetic properties of the recognition of pMHCII by the TCR. The conformational ensemble generated through UMDSs was subjected to clustering and Cartesian principal component analyses (cPCA) to explore the dynamical behavior of the pMHCII-TCR association. Furthermore, based on the conformational population sampled through UMDSs, the effective binding free energy, per-residue free energy decomposition, and alanine scanning mutations were explored for the native pMHCII-TCR complex, as well as for 12 mutations (p1-p12MHCII-TCR) introduced in the native peptide. Clustering analyses and cPCA provide insight into the rocking motion of the TCR onto pMHCII, together with the presence of new electrostatic interactions not observed through crystallographic methods. Energetic results provide evidence of the main contributors to the pMHC-TCR complex formation as well as the key residues involved in this molecular recognition process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRB..114.6205T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRB..114.6205T"><span>Viscous constitutive relations of solid-liquid composites in terms of grain boundary contiguity: 1. Grain boundary diffusion control model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takei, Yasuko; Holtzman, Benjamin K.</p> <p>2009-06-01</p> <p>Viscous constitutive relations of partially molten rocks deforming in the regime of grain boundary (GB) diffusion creep are derived theoretically on the basis of microstructural processes at the grain scale. The viscous constitutive relation developed in this study is based on contiguity as an internal state variable, which enables us to take into account the detailed effects of grain-scale melt distribution observed in experiments. Compared to the elasticities derived previously for the same microstructural model, the viscosities are much more sensitive to the presence of melt and variations in contiguity. As explored in this series of three companion papers, this "contiguity" model predicts that a very small amount of melt (ϕ < 0.01) significantly reduces the bulk and shear viscosities. Furthermore, a large anisotropy in viscosity is produced by anisotropy in contiguity, which occurs in deforming partially molten rocks. These results have important implications for deformation and melt extraction at small melt fractions, as well as for shear-induced melt segregation. The viscous and elastic constitutive relations derived in terms of contiguity bridge microscopic grain-scale and macroscopic continuum properties. These constitutive relations are essential for investigating melt migration dynamics in a forward sense on the basis of the basic equations of two-phase dynamics and in an inverse sense on the basis of seismological observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28656033','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28656033"><span>Incorporation of interfacial roughness into recursion matrix formalism of dynamical X-ray diffraction in multilayers and superlattices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lobach, Ihar; Benediktovitch, Andrei; Ulyanenkov, Alexander</p> <p>2017-06-01</p> <p>Diffraction in multilayers in the presence of interfacial roughness is studied theoretically, the roughness being considered as a transition layer. Exact (within the framework of the two-beam dynamical diffraction theory) differential equations for field amplitudes in a crystalline structure with varying properties along its surface normal are obtained. An iterative scheme for approximate solution of the equations is developed. The presented approach to interfacial roughness is incorporated into the recursion matrix formalism in a way that obviates possible numerical problems. Fitting of the experimental rocking curve is performed in order to test the possibility of reconstructing the roughness value from a diffraction scan. The developed algorithm works substantially faster than the traditional approach to dealing with a transition layer (dividing it into a finite number of thin lamellae). Calculations by the proposed approach are only two to three times longer than calculations for corresponding structures with ideally sharp interfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1360967','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1360967"><span>Data Validation Package September 2016 Groundwater and Surface Water Sampling at the Slick Rock, Colorado, Processing Sites January 2017</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Traub, David; Nguyen, Jason</p> <p></p> <p>The Slick Rock, Colorado, Processing Sites are referred to as the Slick Rock West Processing Site (SRK05) and the Slick Rock East Processing Site (SRK06). This annual event involved sampling both sites for a total of 16 monitoring wells and 6 surface water locations as required by the 2006 Draft Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, Processing Sites (GCAP). A domestic well was also sampled at a property adjacent to the Slick Rock East site at the request of the landowner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP34A..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP34A..01E"><span>Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.</p> <p>2016-12-01</p> <p>The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in outcrops of granite, sandstone, and quartzite found in Shenandoah National Park, Virginia. Preliminary results reveal that many observed cracking characteristics are consistent with our hypotheses linking subcritical crack growth, weathering stresses and the production of different sized sediment from different rock types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912090Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912090Z"><span>Comparison of Crack Initiation, Propagation and Coalescence Behavior of Concrete and Rock Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zengin, Enes; Abiddin Erguler, Zeynal</p> <p>2017-04-01</p> <p>There are many previously studies carried out to identify crack initiation, propagation and coalescence behavior of different type of rocks. Most of these studies aimed to understand and predict the probable instabilities on different engineering structures such as mining galleries or tunnels. For this purpose, in these studies relatively smaller natural rock and synthetic rock-like models were prepared and then the required laboratory tests were performed to obtain their strength parameters. By using results provided from these models, researchers predicted the rock mass behavior under different conditions. However, in the most of these studies, rock materials and models were considered as contains none or very few discontinuities and structural flaws. It is well known that rock masses naturally are extremely complex with respect to their discontinuities conditions and thus it is sometimes very difficult to understand and model their physical and mechanical behavior. In addition, some vuggy rock materials such as basalts and limestones also contain voids and gaps having various geometric properties. Providing that the failure behavior of these type of rocks controlled by the crack initiation, propagation and coalescence formed from their natural voids and gaps, the effect of these voids and gaps over failure behavior of rocks should be investigated. Intact rocks are generally preferred due to relatively easy side of their homogeneous characteristics in numerical modelling phases. However, it is very hard to extract intact samples from vuggy rocks because of their complex pore sizes and distributions. In this study, the feasibility of concrete samples to model and mimic the failure behavior vuggy rocks was investigated. For this purpose, concrete samples were prepared at a mixture of %65 cement dust and %35 water and their physical and mechanical properties were determined by laboratory experiments. The obtained physical and mechanical properties were used to constitute numerical models, and then uniaxial compressive strength (UCS) tests were performed on these models by using a commercial software called as Particle Flow Code (PFC2D). When the crack behavior of concrete samples obtained from both laboratory tests and numerical models are compared with the results of previous studies, a significant similarity was found. As a result, due to the observed similarity crack behavior between concretes and rocks, it can be concluded that intact concrete samples can be used for modelling purposes to understand the effect of voids and gaps on failure characteristics of vuggy rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1210584','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1210584"><span>Integrated system for investigating sub-surface features of a rock formation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.</p> <p>2015-08-18</p> <p>A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMGP33B..01G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMGP33B..01G"><span>Shock Magnetization and Demagnetization of Rocks: What we Have Learnt From Experimental Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gattacceca, J.; Rochette, P.; Boustie, M.; Berthe, L.; Natalia, B.; de Resseguier, T.</p> <p>2008-12-01</p> <p>We will present new results of simultaneous shock magnetization and shock demagnetization experiments performed on titanomagnetite-bearing basalt samples with a pulsed laser in controlled magnetic field. These new results provide the opportunity to discuss the main properties of the these two phenomena. What is the efficiency of the acquisition of shock remanent magnetization (SRM) acquisition with respect to thermoremanent magnetization? Is shock demagnetization equivalent to shock magnetization in zero field? Do we observe scattered SRM direction in shocked samples? Can we predict the shock demagnetization/remagnetization behavior of a rock knowing its rock magnetic properties? Eventually we will discuss the implications of these results for the understanding of the paleomagnetic signal of shocked rocks (meteorites in paticular) and of the magnetic anomalies above impact basins.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.H51B..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.H51B..01B"><span>Experimental Analysis of the Role of Fluid Transport Properties in Fluid-Induced Fracture Initiation and Propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boutt, D.; McPherson, B. J.; Cook, B. K.; Goodwin, L. B.; Williams, J. R.; Lee, M. Y.; Patteson, R.</p> <p>2003-12-01</p> <p>It is well known that pore fluid pressure fundamentally influences a rock's mechanical response to stress. However, most measures of the mechanical behavior of rock (e.g. shear strength, Young's modulus) do not incorporate, either explicitly or implicitly, pore fluid pressure or transport properties of rock. Current empirical and theoretical criteria that define the amount of stress a given body of rock can support before fracturing also lack a direct connection between fluid transport and mechanical properties. Our research goal is to use laboratory experimental results to elucidate correlations between rock transport properties and fracture behavior under idealized loading conditions. In strongly coupled fluid-solid systems the evolution of the solid framework is influenced by the fluid and vice versa. These couplings often result in changes of the bulk material properties (i.e. permeability and failure strength) with respect to the fluid's ability to move through the solid and the solids ability to transmit momentum. Feedbacks between fluid and solid framework ultimately play key roles in understanding the spatial and temporal evolution of the coupled fluid-solid system. Discretely coupled models of fluid and solid mechanics were developed a priori to design an experimental approach for testing the role of fluid transport parameters in rock fracture. The experimental approach consists of first loading a fluid saturated cylindrical rock specimen under hydrostatic conditions and then applying a differential stress such that the maximum stress is perpendicular to the cylinder long axis. At the beginning of the test the minimum stress and the fluid pressure are dropped at the same time such that the resulting difference in the initial fluid pressure and the final fluid pressure is greater than the final minimum stress. These loading conditions should produce a fluid driven tensile fracture that is perpendicular to the cylinder long axis. Initial analyses using numerical simulations with similar boundary conditions suggest that resulting fracture propagation rates and fracture spacing are controlled by the rocks hydraulic diffusivity. Modeled rocks with higher permeability had fractures with larger apertures, more localized deformation, and greater fracture spacing. Intuitively, these results are consistent with permeability controlling the time required for pressure to come to equilibrium with the new boundary conditions. Finally, more general goals of this research include using these core-scale experimental data and discrete simulation results to calibrate larger-scale, more traditional continuum models of geologic deformation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JAfES.123..223E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JAfES.123..223E"><span>Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ersoy, Hakan; Yalçinalp, Bülent; Arslan, Mehmet; Babacan, Ali Erden; Çetiner, Gözde</p> <p>2016-11-01</p> <p>Turkey located in the Alpine-Himalayan Mountain Belt has 35% of the natural stone reserves of the world and has good quality marble, limestone, travertine and onyx reserves especially in the western regions of the country. The eastern Black Sea Region with a 1.4 million meters cubes reserve has a little role on the natural stone production in the country. For this reason, this paper deals with investigation on the potential of carbonate stone in the region and determination of the geological and geo-mechanical properties of these rocks in order to provide economic contribution to the national economy. While the study sites are selected among the all carbonate rock sites, the importance as well as the representative of the sites were carefully considered for the region. After representative samples were analyzed for major oxide and trace element compositions to find out petrochemical variations, the experimental program conducted on rock samples for determination of both physical and strength properties of the carbonate rocks. The results of the tests showed that there are significant variations in the geo-mechanical properties of the studied rock groups. The density values vary from 2.48 to 2.70 gr/cm3, water absorption by weight values range from 0.07 to 1.15% and the apparent porosity of the carbonate rocks are between 0.19 and 3.29%. However, the values of the UCS shows variation from 36 to 80 MPa. Tensile and bending strength values range from 3.2 to 7.5 MPa and 6.0-9.2 MPa respectively. Although the onyx samples have the lowest values of apparent porosity and water absorption by weight, these samples do not have the highest values of UCS values owing to occurrence of the micro-cracks. The UCS values of the rock samples were also found after cycling tests However, the limestone samples have less than 5% deterioration after freezing-thawing and wetting-drying tests, but travertine and onyx samples have more than 15% deterioration. Exception of the apparent porosity values of travertine samples, all geo-mechanical properties of the studied carbonate rocks were determined in the acceptance values given by Turkish Standards Institute (TSE) for using as a natural dimension stone. After these investigations, it is anticipated that in the near future the number of quarries and factories will increase and more types of natural stones will be discovered in the eastern Black Sea Region and thus this will provide economic contribution to the economy of the country.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=spices&pg=3&id=EJ721556','ERIC'); return false;" href="https://eric.ed.gov/?q=spices&pg=3&id=EJ721556"><span>Welcome to Rock Day</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Varelas, Maria; Benhart, Jeaneen</p> <p>2004-01-01</p> <p>At the beginning of the school year, the authors, a first-grade teacher and a teacher educator, worked together to "spice up" the first-grade science curriculum. The teacher had taught the unit Rocks, Sand, and Soil several times, conducting hands-on explorations and using books to help students learn about properties of rocks, but she felt the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472093-characteristics-neutrons-produced-muons-standard-rock','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472093-characteristics-neutrons-produced-muons-standard-rock"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Malgin, A. S., E-mail: malgin@lngs.infn.it</p> <p></p> <p>Characteristics of cosmogenic neutrons, such as the yield, production rate, and flux, were determined for a standard rock. The dependences of these quantities on the standard-rock depth and on the average muon energy were obtained. These properties and dependences make it possible to estimate easy the muon-induced neutron background in underground laboratories for various chemical compositions of rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51.1755M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51.1755M"><span>Experimental Study and Numerical Modeling of Fracture Propagation in Shale Rocks During Brazilian Disk Test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mousavi Nezhad, Mohaddeseh; Fisher, Quentin J.; Gironacci, Elia; Rezania, Mohammad</p> <p>2018-06-01</p> <p>Reliable prediction of fracture process in shale-gas rocks remains one of the most significant challenges for establishing sustained economic oil and gas production. This paper presents a modeling framework for simulation of crack propagation in heterogeneous shale rocks. The framework is on the basis of a variational approach, consistent with Griffith's theory. The modeling framework is used to reproduce the fracture propagation process in shale rock samples under standard Brazilian disk test conditions. Data collected from the experiments are employed to determine the testing specimens' tensile strength and fracture toughness. To incorporate the effects of shale formation heterogeneity in the simulation of crack paths, fracture properties of the specimens are defined as spatially random fields. A computational strategy on the basis of stochastic finite element theory is developed that allows to incorporate the effects of heterogeneity of shale rocks on the fracture evolution. A parametric study has been carried out to better understand how anisotropy and heterogeneity of the mechanical properties affect both direction of cracks and rock strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15495319','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15495319"><span>Numerical method to determine mechanical parameters of engineering design in rock masses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xue, Ting-He; Xiang, Yi-Qiang; Guo, Fa-Zhong</p> <p>2004-07-01</p> <p>This paper proposes a new continuity model for engineering in rock masses and a new schematic method for reporting the engineering of rock continuity. This method can be used to evaluate the mechanics of every kind of medium; and is a new way to determine the mechanical parameters used in engineering design in rock masses. In the numerical simulation, the experimental parameters of intact rock were combined with the structural properties of field rock. The experimental results for orthogonally-jointed rock are given. The results included the curves of the stress-strain relationship of some rock masses, the curve of the relationship between the dimension Delta and the uniaxial pressure-resistant strength sc of these rock masses, and pictures of the destructive procedure of some rock masses in uniaxial or triaxial tests, etc. Application of the method to engineering design in rock masses showed the potential of its application to engineering practice.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780019546','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780019546"><span>Reflection spectra and magnetochemistry of iron oxides and natural surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wasilewski, P.</p> <p>1978-01-01</p> <p>The magnetic properties and spectral characteristics of iron oxides are distinctive. Diagnostic features in reflectance spectra (0.5 to 2.4 micron) for alpha Fe2O3, gamma Fe2O3, and FeOOH include location of Fe3(+) absorption features, intensity ratios at various wavelengths, and the curve shape between 1.2 micron and 2.4 micron. The reflection spectrum of natural rock surfaces are seldom those of the bulk rock because of weathering effects. Coatings are found to be dominated by iron oxides and clay. A simple macroscopic model of rock spectra (based on concepts of stains and coatings) is considered adequate for interpretation of LANDSAT data. The magnetic properties of materials associated with specific spectral types and systematic changes in both spectra and magnetic properties are considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JMEP...19..885P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JMEP...19..885P"><span>Microstructure-Mechanical Property Relationships for a Fe/Mn/Cr Rock Bolt Reinforcing Steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panigrahi, B. K.</p> <p>2010-08-01</p> <p>The influence of low chromium additions to a 0.25C-1.5Mn semikilled steel on microstructure, and tensile and impact behaviors of high strength rock bolt reinforcing bars has been investigated. Although chromium imparted adequate tensile properties at ambient temperature (yield stress: 624 MPa; ultimate tensile stress: 819 MPa; elongation: 12.5%) by forming transformation products such as tempered martensite, lower and upper bainite, and small amounts of acicular ferrite, it increased the ductile-to-brittle transition temperature due to coarser upper bainite in the core region of bar having larger unit crack paths. The synthesized steel is considered to be effective in realizing the desired tensile properties, and suitable for application in rock bolt, as well as other reinforced concrete structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5882641-elastic-viscoelastic-model-stress-history-sedimentary-rocks','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5882641-elastic-viscoelastic-model-stress-history-sedimentary-rocks"><span>Elastic and viscoelastic model of the stress history of sedimentary rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Warpinski, N.R.</p> <p></p> <p>A model has been developed to calculate the elastic and viscoelastic stresses which develop in rocks at depth due to burial, uplift and diagenesis. This model includes the effect of the overburden load, tectonic or geometric strains, thermal strains, varying material properties, pore pressure variations, and viscoeleastic relaxation. Calculations for some simple examples are given to show the contributions of the individual stress components due to gravity, tectonics, thermal effects and pore pressure. A complete stress history for Mesaverde rocks in the Piceance basin is calculated based on available burial history, thermal history and expected pore pressure, material property andmore » tectonic strain variations through time. These calculations show the importance of including material property changes and viscoelastic effects. 15 refs., 48 figs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IzPSE..54..310I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IzPSE..54..310I"><span>Mesozoic–Cenozoic Climate and Neotectonic Events as Factors in Reconstructing the Thermal History of the Source-Rock Bazhenov Formation, Arctic Region, West Siberia, by the Example of the Yamal Peninsula</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Isaev, V. I.; Iskorkina, A. A.; Lobova, G. A.; Starostenko, V. I.; Tikhotskii, S. A.; Fomin, A. N.</p> <p>2018-03-01</p> <p>Schemes and criteria are developed for using the measured and modeled geotemperatures for studying the thermal regime of the source rock formations, as well as the tectonic and sedimentary history of sedimentary basins, by the example of the oil fields of the Yamal Peninsula. The method of paleotemperature modeling based on the numerical solution of the heat conduction equation for a horizontally layered solid with a movable upper boundary is used. The mathematical model directly includes the climatic secular trend of the Earth's surface temperature as the boundary condition and the paleotemperatures determined from the vitrinite reflectance as the measurement data. The method does not require a priori information about the nature and intensities of the heat flow from the Earth's interior; the flow is determined by solving the inverse problem of geothermy with a parametric description of the of the sedimentation history and the history of the thermophysical properties of the sedimentary stratum. The rate of sedimentation is allowed to be zero and negative which provides the possibility to take into account the gaps in sedimentation and denudation. The formation, existence, and degradation of the permafrost stratum and ice cover are taken into account as dynamical lithological-stratigraphic complexes with anomalously high thermal conductivity. It is established that disregarding the paleoclimatic factors precludes an adequate reconstruction of thermal history of the source-rock deposits. Revealing and taking into account the Late Eocene regression provided the computationally optimal and richest thermal history of the source-rock Bazhenov Formation, which led to more correct volumetric-genetic estimates of the reserves. For estimating the hydrocarbon reserves in the land territories of the Arctic region of West Siberia by the volumetric-genetic technique, it is recommended to use the Arctic secular trend of temperatures and take into account the dynamics of the Neoplesitocene permafrost layers 300-600 m thick. Otherwise, the calculated hydrocarbon reserves could be underestimated by up to 40%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1510495B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1510495B"><span>Monitoring rock glacier dynamics and ground temperatures in the semiarid Andes (Chile, 30°S)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brenning, Alexander; Azócar, Guillermo F.; Bodin, Xavier</p> <p>2013-04-01</p> <p>Rock glaciers and mountain permafrost are widespread in the high semiarid Andes of Chile, where they concentrate greater amounts of ice than glaciers. Rock glaciers are of particular interest because in some cases the permafrost they contain might be in a degrading in response to climatic warming. This could result in increased dynamics and even to destabilization, which has been observed on some rock glaciers in the studied area. Displacement rates and active-layer temperatures of two rock glaciers as well as ground surface temperatures of the periglacial environment in the upper Elqui valley have been monitored since summer 2009/10 with funding from the Chilean Dirección General de Aguas. Differential GPS measurements of 115 points on the surface of two rock glaciers since April 2010 showed horizontal displacements of up to 1.3 m/a on the Llano de las Liebres rock glacier and up to 1.2 m/a on the Tapado rock glacier. General velocity patterns are consistent with the morphological evidence of activity (e.g., front slopes, looseness of debris) and for the Tapado complex, a clearly distinct activity from the debris-covered glacier was observed. Temperature measurements in four boreholes indicate active-layer depths of about 2.5 m at the highest locations on the Tapado rock glacier (~4400 m a.s.l.) and about 8 m near the front of the Llano rock glacier (3786 m a.s.l.). Spatial patterns of mean ground surface temperature (MGST) were analyzed with regards to influences of elevation, potential incoming solar radiation, location on ice-debris landforms (rock and debris-covered glaciers), and snow cover duration using linear mixed-effects models. While accounting for the other variables, sites with long-lasting snow patches had ~0.4°C lower MGST, and ice-debris landforms had ~0.4-0.6°C lower MGST than general debris surfaces, highlighting important local modifications to the general topographic variation of ground thermal conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CRMec.345..890L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CRMec.345..890L"><span>Numerical simulation of rock fragmentation during cutting by conical picks under confining pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xuefeng; Wang, Shibo; Ge, Shirong; Malekian, Reza; Li, Zhixiong</p> <p>2017-12-01</p> <p>In this article, the effect of confining pressure on rock fragmentation process during cutting was investigated by numerical simulation with a discrete element method (DEM). Four kinds of sandstones with different physical properties were simulated in the rock cutting models under different confining pressures. The rock fragmentation process, the cutting force, and the specific energy under different confining pressures were analyzed. With the increase in confining pressure and rock strength, the vertical propagation of cracks was restrained. Rock samples were compacted and strengthened by confining pressure resulting in the increase of the cutting force. The specific energy of rock cutting linearly increased with the increase of the confining pressure ratio.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H11E..05W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H11E..05W"><span>Heterogeneous alternation of fractured rock driven by preferential carbonate dissolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wen, H.; Zhi, W.; Li, L.</p> <p>2016-12-01</p> <p>Understanding the alternation of fractured rock induced by geochemical reactions is critical for predicting the flow, solute transport and energy production in geosystems. Most existing studies on fracture alterations focus on rocks with single minerals where reactions occur at the fracture wall resulting in fracture aperture alteration while ignoring rock matrix properties (e.g. the formation and development of altered zones). In this work, we aimed to mechanistically understand the role of preferential calcite dissolution in the long-term evolution of fracture and rock matrix. We use direct simulation of physics-based reactive transport processes in an image of fractured rock at the resolution of tens of micrometers. Three numerical experiments were carried out with the same initial physical properties however different calcite content. Simulation results show that the formation and development of altered zones in the rock matrix is highly related to the abundance of fast-dissolving calcite. Abundant calcite (50% (v/v), calcite50) leads to a localized, thick zone of large porosity increase while low calcite content (10% (v/v), calcite10) creates an extended and narrow zone of small porosity increase resulting in surprisingly larger change in effective transport property. After 300 days of dissolution, although with relatively similar dissolved calcite mass and matrix porosity increase, effective matrix diffusion coefficients increase by 9.9 and 19.6 times in calcite50 and calcite10, respectively. In turn, calcite dissolution rates are directly limited by diffusive transport in the altered matrix and the shape of the altered zone. This work sheds light on the unique characteristics of reactive transport in fractured, mineralogically complex rocks that are different from those with single minerals (Wen et al., 2016). Reference: Wen, H., Li, L., Crandall, D. and Hakala, J.A. (2016) Where Lower Calcite Abundance Creates More Alteration: Enhanced Rock Matrix Diffusivity Induced by Preferential Carbonate Dissolution. Energy & Fuels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00759&hterms=Pink+eyes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPink%2Beyes','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00759&hterms=Pink+eyes&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DPink%2Beyes"><span>First look at rock & soil properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1997-01-01</p> <p>The earliest survey of spectral properties of the rocks and soils surrounding Pathfinder was acquired as a narrow strip covering the region just beyond the where the rover made its egress from the lander. The wavelength filters used, all in the binocular camera's right eye, cover mainly visible wavelengths. These data reveal at least five kinds of rocks and soil in the immediate vicinity of the lander. All of the spectra are ratioed to the mean spectrum of bright red drift to highlight the differences. Different occurrences of drift (pink spectra) are closely similar. Most of the rocks (black spectra) have a dark gray color, and are both darker and less red than the drift, suggesting less weathering. Typical soils (green spectra) are intermediate in properties to the rocks and drift. Both these data and subsequent higher resolution images show that the typical soil consists of a mixture of drift and small dark gray particles resembling the rock. However, two other kinds of materials are significantly different from the rocks and drift. Pinkish or whitish pebbles and crusts on some of the rocks (blue spectra) are brighter in blue light and darker in near-infrared light than is the drift, and they lack the spectral characteristics closely associated with iron minerals. Dark red soils in the lee of several rocks are about as red as the drift, but consistently darker. The curvature in the spectrum at visible wavelengths suggests either more ferric iron minerals than in the drift or a larger particle size.<p/>Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1374331-comparative-study-discrete-fracture-network-equivalent-continuum-models-simulating-flow-transport-far-field-hypothetical-nuclear-waste-repository-crystalline-host-rock','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1374331-comparative-study-discrete-fracture-network-equivalent-continuum-models-simulating-flow-transport-far-field-hypothetical-nuclear-waste-repository-crystalline-host-rock"><span>A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hadgu, Teklu; Karra, Satish; Kalinina, Elena</p> <p></p> <p>One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. In this paper, we compare DFN and ECM in termsmore » of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km 3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. Finally, we identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1374331-comparative-study-discrete-fracture-network-equivalent-continuum-models-simulating-flow-transport-far-field-hypothetical-nuclear-waste-repository-crystalline-host-rock','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1374331-comparative-study-discrete-fracture-network-equivalent-continuum-models-simulating-flow-transport-far-field-hypothetical-nuclear-waste-repository-crystalline-host-rock"><span>A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hadgu, Teklu; Karra, Satish; Kalinina, Elena; ...</p> <p>2017-07-28</p> <p>One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. In this paper, we compare DFN and ECM in termsmore » of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km 3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. Finally, we identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..553...59H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..553...59H"><span>A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hadgu, Teklu; Karra, Satish; Kalinina, Elena; Makedonska, Nataliia; Hyman, Jeffrey D.; Klise, Katherine; Viswanathan, Hari S.; Wang, Yifeng</p> <p>2017-10-01</p> <p>One of the major challenges of simulating flow and transport in the far field of a geologic repository in crystalline host rock is related to reproducing the properties of the fracture network over the large volume of rock with sparse fracture characterization data. Various approaches have been developed to simulate flow and transport through the fractured rock. The approaches can be broadly divided into Discrete Fracture Network (DFN) and Equivalent Continuum Model (ECM). The DFN explicitly represents individual fractures, while the ECM uses fracture properties to determine equivalent continuum parameters. We compare DFN and ECM in terms of upscaled observed transport properties through generic fracture networks. The major effort was directed on making the DFN and ECM approaches similar in their conceptual representations. This allows for separating differences related to the interpretation of the test conditions and parameters from the differences between the DFN and ECM approaches. The two models are compared using a benchmark test problem that is constructed to represent the far field (1 × 1 × 1 km3) of a hypothetical repository in fractured crystalline rock. The test problem setting uses generic fracture properties that can be expected in crystalline rocks. The models are compared in terms of the: 1) effective permeability of the domain, and 2) nonreactive solute breakthrough curves through the domain. The principal differences between the models are mesh size, network connectivity, matrix diffusion and anisotropy. We demonstrate how these differences affect the flow and transport. We identify the factors that should be taken in consideration when selecting an approach most suitable for the site-specific conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMMR11A4296T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMMR11A4296T"><span>Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.</p> <p>2014-12-01</p> <p>A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNG52A..03Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNG52A..03Z"><span>Non-Newtonian fluid flow in 2D fracture networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zou, L.; Håkansson, U.; Cvetkovic, V.</p> <p>2017-12-01</p> <p>Modeling of non-Newtonian fluid (e.g., drilling fluids and cement grouts) flow in fractured rocks is of interest in many geophysical and industrial practices, such as drilling operations, enhanced oil recovery and rock grouting. In fractured rock masses, the flow paths are dominated by fractures, which are often represented as discrete fracture networks (DFN). In the literature, many studies have been devoted to Newtonian fluid (e.g., groundwater) flow in fractured rock using the DFN concept, but few works are dedicated to non-Newtonian fluids.In this study, a generalized flow equation for common non-Newtonian fluids (such as Bingham, power-law and Herschel-Bulkley) in a single fracture is obtained from the analytical solutions for non-Newtonian fluid discharge between smooth parallel plates. Using Monte Carlo sampling based on site characterization data for the distribution of geometrical features (e.g., density, length, aperture and orientations) in crystalline fractured rock, a two dimensional (2D) DFN model is constructed for generic flow simulations. Due to complex properties of non-Newtonian fluids, the relationship between fluid discharge and the pressure gradient is nonlinear. A Galerkin finite element method solver is developed to iteratively solve the obtained nonlinear governing equations for the 2D DFN model. Using DFN realizations, simulation results for different geometrical distributions of the fracture network and different non-Newtonian fluid properties are presented to illustrate the spatial discharge distributions. The impact of geometrical structures and the fluid properties on the non-Newtonian fluid flow in 2D DFN is examined statistically. The results generally show that modeling non-Newtonian fluid flow in fractured rock as a DFN is feasible, and that the discharge distribution may be significantly affected by the geometrical structures as well as by the fluid constitutive properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812219C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812219C"><span>Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.</p> <p>2016-04-01</p> <p>The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1371113-assessment-mechanical-rock-alteration-caused-co-water-mixtures-using-indentation-scratch-experiments','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1371113-assessment-mechanical-rock-alteration-caused-co-water-mixtures-using-indentation-scratch-experiments"><span>Assessment of mechanical rock alteration caused by CO 2 -water mixtures using indentation and scratch experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sun, Yuhao; Aman, Michael; Espinoza, D. Nicolas</p> <p></p> <p>CO2 injection into geological formations disturbs the geochemical equilibrium between water and minerals. Thus, some mineral phases are prone to dissolution and precipitation with ensuing changes of petrophysical and geomechanical properties of the host formations. Chemically-assisted degradation of mechanical properties can endanger the structural integrity of the storage formation and must be carefully studied and considered to guarantee safe long-term trapping. Few experimental data sets involving CO2 alteration and mechanical testing of rock samples are available since these experiments are length, expensive, and require specialized equipment and personnel. Autoclave experiments are easier to perform and control but result in amore » limited 'skin depth' of chemically-altered zone near the surface of the sample. This article presents the validation of micro-indentation and micro-scratch tests as efficient tools to assess the alteration of mechanical properties of rocks geochemically altered by CO2-water mixtures. Results from tests on sandstone and siltstone from Crystal Geyser, Utah naturally altered by CO2-acidified water show that mechanical parameters measured with indentation (indentation hardness, Young's modulus and contact creep compliance rate) and scratching (scratch hardness and fracture toughness) consistently indicated weakening of the rock after CO2-induced alteration. Decreases of measured parameters vary from 14% to 87%. Experimental results and analyses show that micromechanical tests are potentially quick and reliable tools to determine the change of mechanical properties of rocks subject to exposure to CO2-acidified water, particularly in well-controlled autoclave experiments. Measured parameters are not intended to provide inputs for coupled reservoir simulation with geomechanics but rather to inform the execution of larger scale tests investigating the susceptibility of rock facies to chemical alteration by CO2-water mixtures. Recognizing this susceptibility of rock facies of CO2 geological storage target formations is critical to controlling undesired emergent behavior associated with CO2 sequestration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..2900006S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..2900006S"><span>Analysis of rock mass dynamic impact influence on the operation of a powered roof support control system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szurgacz, Dawid; Brodny, Jaroław</p> <p>2018-01-01</p> <p>A powered roof support is a machine responsible for protection of an underground excavation against deformation generated by rock mass. In the case of dynamic impact of rock mass, the proper level of protection is hard to achieve. Therefore, the units of the roof support and its components are subject to detailed tests aimed at acquiring greater reliability, efficiency and efficacy. In the course of such test, however, it is not always possible to foresee values of load that may occur in actual conditions. The article presents a case of a dynamic load impacting the powered roof support during a high-energy tremor in an underground hard coal mine. The authors discuss the method for selecting powered roof support units proper for specific forecasted load conditions. The method takes into account the construction of the support and mining and geological conditions of an excavation. Moreover, the paper includes tests carried out on hydraulic legs and yield valves which were responsible for additional yielding of the support. Real loads impacting the support unit during tremors are analysed. The results indicated that the real registered values of the load were significantly greater than the forecasted values. The analysis results of roof support operation during dynamic impact generated by the rock mass (real life conditions) prompted the authors to develop a set of recommendations for manufacturers and users of powered roof supports. These include, inter alia, the need for innovative solutions for testing hydraulic section systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatCo...6E8361M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatCo...6E8361M"><span>Observing the overall rocking motion of a protein in a crystal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Peixiang; Xue, Yi; Coquelle, Nicolas; Haller, Jens D.; Yuwen, Tairan; Ayala, Isabel; Mikhailovskii, Oleg; Willbold, Dieter; Colletier, Jacques-Philippe; Skrynnikov, Nikolai R.; Schanda, Paul</p> <p>2015-10-01</p> <p>The large majority of three-dimensional structures of biological macromolecules have been determined by X-ray diffraction of crystalline samples. High-resolution structure determination crucially depends on the homogeneity of the protein crystal. Overall `rocking' motion of molecules in the crystal is expected to influence diffraction quality, and such motion may therefore affect the process of solving crystal structures. Yet, so far overall molecular motion has not directly been observed in protein crystals, and the timescale of such dynamics remains unclear. Here we use solid-state NMR, X-ray diffraction methods and μs-long molecular dynamics simulations to directly characterize the rigid-body motion of a protein in different crystal forms. For ubiquitin crystals investigated in this study we determine the range of possible correlation times of rocking motion, 0.1-100 μs. The amplitude of rocking varies from one crystal form to another and is correlated with the resolution obtainable in X-ray diffraction experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PApGe.174.2621K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PApGe.174.2621K"><span>Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan</p> <p>2017-07-01</p> <p>Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997PhDT.......101J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997PhDT.......101J"><span>Exploiting broadband seismograms and the mechanism of deep-focus earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiao, Wenjie</p> <p>1997-09-01</p> <p>Modern broadband seismic instrumentation has provided enormous opportunities to retrieve the information in almost any frequency band of seismic interest. In this thesis, we have investigated the long period responses of the broadband seismometers and the problem of recovering actual groundmotion. For the first time, we recovered the static offset for an earthquake from dynamic seismograms. The very long period waves of near- and intermediate-field term from 1994 large Bolivian deep earthquake (depth = 630km, Msb{W}=8.2) and 1997 large Argentina deep earthquake (depth = 285km, Msb{W}=7.1) are successfully recovered from the portable broadband recordings by BANJO and APVC networks. These waves provide another dynamic window into the seismic source process and may provide unique information to help constrain the source dynamics of deep earthquakes in the future. We have developed a new method to locate global explosion events based on broadband waveform stacking and simulated annealing. This method utilizes the information provided by the full broadband waveforms. Instead of "picking times", the character of the wavelet is used for locating events. The application of this methodology to a Lop Nor nuclear explosion is very successful, and suggests a procedure for automatic monitoring. We have discussed the problem of deep earthquakes from the viewpoint of rock mechanics and seismology. The rupture propagation of deep earthquakes requires a slip-weakening process unlike that for shallow events. However, this process is not necessarily the same as the process which triggers the rupture. Partial melting due to stress release is developed to account for the slip-weakening process in the deep earthquake rupture. The energy required for partial melting in this model is on the same order of the maximum energy required for the slip-weakening process in the shallow earthquake rupture. However, the verification of this model requires experimental work on the thermodynamic properties of rocks under non-hydrostatic stress. The solution of the deep earthquake problem will require an interdisciplinary study of seismology, high pressure rock mechanics, and mineralogy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.B23B0454A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.B23B0454A"><span>Quantifying Biofilm in Porous Media Using Rock Physics Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alhadhrami, F. M.; Jaiswal, P.; Atekwana, E. A.</p> <p>2012-12-01</p> <p>Biofilm formation and growth in porous rocks can change their material properties such as porosity, permeability which in turn will impact fluid flow. Finding a non-intrusive method to quantify biofilms and their byproducts in rocks is a key to understanding and modeling bioclogging in porous media. Previous geophysical investigations have documented that seismic techniques are sensitive to biofilm growth. These studies pointed to the fact that microbial growth and biofilm formation induces heterogeneity in the seismic properties. Currently there are no rock physics models to explain these observations and to provide quantitative interpretation of the seismic data. Our objectives are to develop a new class of rock physics model that incorporate microbial processes and their effect on seismic properties. Using the assumption that biofilms can grow within pore-spaces or as a layer coating the mineral grains, P-wave velocity (Vp) and S-wave (Vs) velocity models were constructed using travel-time and waveform tomography technique. We used generic rock physics schematics to represent our rock system numerically. We simulated the arrival times as well as waveforms by treating biofilms either as fluid (filling pore spaces) or as part of matrix (coating sand grains). The preliminary results showed that there is a 1% change in Vp and 3% change in Vs when biofilms are represented discrete structures in pore spaces. On the other hand, a 30% change in Vp and 100% change in Vs was observed when biofilm was represented as part of matrix coating sand grains. Therefore, Vp and Vs changes are more rapid when biofilm grows as grain-coating phase. The significant change in Vs associated with biofilms suggests that shear velocity can be used as a diagnostic tool for imaging zones of bioclogging in the subsurface. The results obtained from this study have significant implications for the study of the rheological properties of biofilms in geological media. Other applications include assessing biofilms used as barriers in CO2 sequestration studies as well as assisting in evaluating microbial enhanced oil recovery methods (MEOR), where microorganisms are used to plug highly porous rocks for efficient oil production.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913331W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913331W"><span>Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xiaoyan</p> <p>2017-04-01</p> <p>Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..132a2024P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..132a2024P"><span>Review of Studies of Mechanoelectrical Transformations in Rocks in Russia and Abroad</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pomishin, E.; Yavorovich, L.</p> <p>2016-06-01</p> <p>The problem of monitoring and forecast of dynamic manifestations of rock masses becomes immediate in the mining industry because of the growth of mining work intensity and changeover to the mining operations in deeper levels. The article presents a short review of the scientific works of foreign researchers for more complete and in-depth study of geophysical methods of control of the stress-strain state and bump hazard of rock masses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005Tectp.397..195S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005Tectp.397..195S"><span>Modelling deformation of partially melted rock using a poroviscoelastic rheology with dynamic power law viscosity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simakin, A.; Ghassemi, A.</p> <p>2005-03-01</p> <p>A poroviscoelastic constitutive model is developed and used to study coupled rock deformation and fluid flow. The model allows the relaxation of both shear and symmetric components of the effective stress. Experimental results are usually interpreted in terms of the power law viscous material. However, in this work the effect of strain damage on viscosity is considered by treating the viscosity as a dynamic time-dependent parameter that varies proportionally to the second invariant of the strain rate. Healing is also taken into account so that the dynamic power law viscosity has a constant asymptotic at a given strain rate. The theoretical model is implemented in a finite element (FE) formulation that couples fluid flow and mechanical equilibrium equations. The FE method is applied to numerically study the triaxial compression of partially melted rocks at elevated PT conditions. It is found that the numerically calculated stress-strain curves demonstrate maxima similar to those observed in laboratory experiments. Also, the computed pattern of melt redistribution and strain localization at the contact between the rock sample and a stiff spacer is qualitatively similar to the experimental observations. The results also indicate that the matrix sensitivity to damage affects the scale of strain localization and melt redistribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.V34C..05J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.V34C..05J"><span>Popping rocks from the Mid-Atlantic Ridge: Insights into mantle volatile concentrations and degassing dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, M.; Soule, S. A.; Kurz, M. D.; Wanless, V. D.; Le Roux, V.; Klein, F.; Mittelstaedt, E. L.; Curtice, J.</p> <p>2016-12-01</p> <p>During a 1985 cruise, the Mid-Atlantic Ridge (MAR) near 14°N yielded an unusually vesicular mid-ocean ridge (MOR) basalt that popped upon recovery from the seafloor due to the release of trapped volatiles. This `popping rock' has been inferred to be representative of primitive, undegassed magmas from the upper mantle due to its high volatile concentrations. Thus, the sample has been used to constrain CO2 flux from the MOR system, upper mantle volatile concentrations, and magma degassing dynamics. However, the lack of geologic context for the original popping rock raises questions about whether it truly reflects the volatile content of its mantle source. Here, we present results from a 2016 cruise to the MAR aimed at characterizing the geologic context of popping rocks and understanding their origins. The newly recovered samples display differences in volatile concentrations and vesicularities between popping and non-popping rocks. These differences may be related to geologic setting and eruption dynamics with potential implications for mantle volatile concentrations. Volatile concentrations in the outer quenched margin of new samples were measured by ion microprobe to elucidate degassing systematics, brine/magma interactions, and popping rock formation. The large variability in dissolved H2O (0.05-0.77 wt%) can be attributed to spatially variable brine contamination. Dissolved CO2 concentrations (153-356 ppm) are likely controlled by initial volatile concentrations and variable degrees of degassing. The subset of popping samples display low dissolved CO2 concentrations (161-178 ppm) and moderate dissolved H2O concentrations (.44-.50 wt%) and are at equilibrium with their eruption depth based on solubility calculations. X-ray microtomography reveals vesicularity in newly collected popping rocks exceeding 19%, making these samples the most highly vesicular recovered from the MAR. The total gas contents in the basaltic glasses are inferred from dissolved volatile concentrations and vesicularity. These calculations are aided by analysis of gas contents in vesicles by confocal Raman spectroscopy and vacuum crushing experiments. The preliminary results and seafloor observations allow an evaluation of the origins of popping rocks and their implications for mantle volatile concentrations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/807616','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/807616"><span>Fluid-Rock Characterization and Interactions in NMR Well Logging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hirasaki, George J.; Mohanty, Kishore K.</p> <p>2003-02-10</p> <p>The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/900792','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/900792"><span>Modeling coupled thermal-hydrological-chemical processes in theunsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity andseepage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas</p> <p></p> <p>An understanding of processes affecting seepage intoemplacement tunnels is needed for correctly predicting the performance ofunderground radioactive waste repositories. It has been previouslyestimated that the capillary and vaporization barriers in the unsaturatedfractured rock of Yucca Mountain are enough to prevent seepage underpresent day infiltration conditions. It has also been thought that asubstantially elevated infiltration flux will be required to causeseepage after the thermal period is over. While coupledthermal-hydrological-chemical (THC) changes in Yucca Mountain host rockdue to repository heating has been previously investigated, those THCmodels did not incorporate elements of the seepage model. In this paper,we combine the THC processes inmore » unsaturated fractured rock with theprocesses affecting seepage. We observe that the THC processes alter thehydrological properties of the fractured rock through mineralprecipitation and dissolution. We show that such alteration in thehydrological properties of the rock often leads to local flow channeling.We conclude that such local flow channeling may result in seepage undercertain conditions, even with nonelevated infiltrationfluxes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/886017','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/886017"><span>Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Michael S. Bruno</p> <p></p> <p>This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900058097&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900058097&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle"><span>An experimental study of the nonlinear dynamic phenomenon known as wing rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.</p> <p>1990-01-01</p> <p>An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/920331','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/920331"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pruess, Karsten</p> <p></p> <p>Responding to the need to reduce atmospheric emissions of carbon dioxide, Donald Brown (2000) proposed a novel enhanced geothermal systems (EGS) concept that would use CO{sub 2} instead of water as heat transmission fluid, and would achieve geologic sequestration of CO{sub 2} as an ancillary benefit. Following up on his suggestion, we have evaluated thermophysical properties and performed numerical simulations to explore the fluid dynamics and heat transfer issues in an engineered geothermal reservoir that would be operated with CO{sub 2}. We find that CO{sub 2} is superior to water in its ability to mine heat from hot fractured rock.more » CO{sub 2} also has certain advantages with respect to wellbore hydraulics, where larger compressibility and expansivity as compared to water would increase buoyancy forces and would reduce the parasitic power consumption of the fluid circulation system. While the thermal and hydraulic aspects of a CO{sub 2}-EGS system look promising, major uncertainties remain with regard to chemical interactions between fluids and rocks. An EGS system running on CO{sub 2} has sufficiently attractive features to warrant further investigation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/7135453','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/7135453"><span>Summaries of FY 92 geosciences research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1992-12-01</p> <p>The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries,more » equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=historia&id=EJ988015','ERIC'); return false;" href="https://eric.ed.gov/?q=historia&id=EJ988015"><span>Las Rocas Nos Cuentan (Rocks Tell Their Stories)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Llerandi-Roman, Pablo A.</p> <p>2012-01-01</p> <p>Many Earth science lessons today still focus on memorizing the names of rocks and minerals. This led the author to develop a lesson that reveals the fascinating stories told by rocks through the study of their physical properties. He first designed the lesson for Puerto Rican teachers, hence its Spanish title: "Las Rocas Nos Cuentan Su Historia."…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/9482','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/9482"><span>Rock fragment distributions and regolith evolution in the Ouachita Mountains, Arkansas, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jonathan D. Phillips; Ken Luckow; Daniel A. Marion; Kristin R. Adams</p> <p>2005-01-01</p> <p>Rock fragments in the regolith are a persistent property that reflects the combined influences of geologic controls, erosion, deposition, bioturbation, and weathering. The distribution of rock fragments in regoliths of the Ouachita Mountains, Arkansas, shows that sandstone fragments are common in all layers, even if sandstone is absent in parent material. Shale and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.V44A..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.V44A..03J"><span>Analogue of Caldera Dynamics: the Controlled Salt Cavern Collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jousset, P. G.; Rohmer, J.</p> <p>2012-12-01</p> <p>Caldera collapse (or pit-crater) dynamics are inferred from geological observations and laboratory experiments. Here, we present an analogue of caldera collapse at field scale and possible analogy with large scale caldera dynamics. Through an original exploitation technique in sedimentary environment, a salt layer is emptied, leaving a brine-filled cavern, which eventually collapses after overburden falls into the cavern. Such a collapse was monitored in East France by many instruments (including GPS, extensometers, geophones, broadband seismological sensors, tiltmeter, gravity meter, … ), which allowed us to describe mechanisms of the collapse. Micro-seismicity is a good indicator of spatio-temporal evolution of physical properties of rocks prior to catastrophic events like volcanic eruptions or landslides and may be triggered by a number of causes including dynamic characteristics of processes in play or/and external forces. We show evidence of triggered micro-seismicity observed in the vicinity of this underground salt cavern prone to collapse by a remote M~7.2 earthquake, which occurred ~12000 kilometres away. High-dynamic broadband records reveal the strong time-correlation between a dramatic change in the rate of local high-frequency micro-seismicity and the passage of low-frequency seismic waves, including body, Love and Rayleigh surface waves. Pressure was lowered in the cavern by pumping operations of brine out of the cavern. We demonstrate the near critical state of the cavern before the collapse by means of 2D axisymmetric elastic finite-element simulations. Stress oscillations due to the seismic waves may have exceeded the strength required for the rupture of the complex media made of brine and rock triggering micro-earthquakes and leading to damage of the overburden and eventually collapse of the salt cavern. The increment of stress necessary for the failure of a Dolomite layer is of the same order or magnitude as the maximum dynamic stress magnitude observed during the passage of the earthquakes waves. On this basis, we discuss the possible contribution of the Love and Rayleigh low-frequency surfaces waves. This experiment may help us understand mechanisms of caldera formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....106..118S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....106..118S"><span>Computation of fluid flow and pore-space properties estimation on micro-CT images of rock samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Starnoni, M.; Pokrajac, D.; Neilson, J. E.</p> <p>2017-09-01</p> <p>Accurate determination of the petrophysical properties of rocks, namely REV, mean pore and grain size and absolute permeability, is essential for a broad range of engineering applications. Here, the petrophysical properties of rocks are calculated using an integrated approach comprising image processing, statistical correlation and numerical simulations. The Stokes equations of creeping flow for incompressible fluids are solved using the Finite-Volume SIMPLE algorithm. Simulations are then carried out on three-dimensional digital images obtained from micro-CT scanning of two rock formations: one sandstone and one carbonate. Permeability is predicted from the computed flow field using Darcy's law. It is shown that REV, REA and mean pore and grain size are effectively estimated using the two-point spatial correlation function. Homogeneity and anisotropy are also evaluated using the same statistical tools. A comparison of different absolute permeability estimates is also presented, revealing a good agreement between the numerical value and the experimentally determined one for the carbonate sample, but a large discrepancy for the sandstone. Finally, a new convergence criterion for the SIMPLE algorithm, and more generally for the family of pressure-correction methods, is presented. This criterion is based on satisfaction of bulk momentum balance, which makes it particularly useful for pore-scale modelling of reservoir rocks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyC..547....1D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyC..547....1D"><span>Scanning SQUID microscope with an in-situ magnetization/demagnetization field for geological samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Junwei; Liu, Xiaohong; Qin, Huafeng; Wei, Zhao; Kong, Xiangyang; Liu, Qingsong; Song, Tao</p> <p>2018-04-01</p> <p>Magnetic properties of rocks are crucial for paleo-, rock-, environmental-magnetism, and magnetic material sciences. Conventional rock magnetometers deal with bulk properties of samples, whereas scanning microscope can map the distribution of remanent magnetization. In this study, a new scanning microscope based on a low-temperature DC superconducting quantum interference device (SQUID) equipped with an in-situ magnetization/demagnetization device was developed. To realize the combination of sensitive instrument as SQUID with high magnetizing/demagnetizing fields, the pick-up coil, the magnetization/demagnetization coils and the measurement mode of the system were optimized. The new microscope has a field sensitivity of 250 pT/√Hz at a coil-to-sample spacing of ∼350 μm, and high magnetization (0-1 T)/ demagnetization (0-300 mT, 400 Hz) functions. With this microscope, isothermal remanent magnetization (IRM) acquisition and the according alternating field (AF) demagnetization curves can be obtained for each point without transferring samples between different procedures, which could result in position deviation, waste of time, and other interferences. The newly-designed SQUID microscope, thus, can be used to investigate the rock magnetic properties of samples at a micro-area scale, and has a great potential to be an efficient tool in paleomagnetism, rock magnetism, and magnetic material studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7659K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7659K"><span>Discrete Element Method and its application to materials failure problem on the example of Brazilian Test</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Dębski, Wojciech</p> <p>2017-04-01</p> <p>The earthquake focus is the point where a rock under external stress starts to fracture. Understanding earthquake nucleation and earthquake dynamics requires thus understanding of fracturing of brittle materials. This, however, is a continuing problem and enduring challenge to geoscience. In spite of significant progress we still do not fully understand the failure of rock materials due to extreme stress concentration in natural condition. One of the reason of this situation is that information about natural or induced seismic events is still not sufficient for precise description of physical processes in seismic foci. One of the possibility of improving this situation is using numerical simulations - a powerful tool of contemporary physics. For this reason we used an advanced implementation of the Discrete Element Method (DEM). DEM's main task is to calculate physical properties of materials which are represented as an assembly of a great number of particles interacting with each other. We analyze the possibility of using DEM for describing materials during so called Brazilian Test. Brazilian Test is a testing method to obtain the tensile strength of brittle material. One of the primary reasons for conducting such simulations is to measure macroscopic parameters of the rock sample. We would like to report our efforts of describing the fracturing process during the Brazilian Test from the microscopic point of view and give an insight into physical processes preceding materials failure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28822588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28822588"><span>Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Qajar, Jafar; Arns, Christoph H</p> <p>2017-09-01</p> <p>Percolation of reactive fluids in carbonate rocks affects the rock microstructure and hence changes the rock macroscopic properties. In Part 1 paper, we examined the voxel-wise evolution of microstructure of the rock in terms of mineral dissolution/detachment, mineral deposition, and unchanged regions. In the present work, we investigate the relationships between changes in two characteristic transport properties, i.e. permeability and electrical conductivity and two critical parameters of the pore phase, i.e. the fraction of the pore space connecting the inlet and outlet faces of the core sample and the critical pore-throat diameter. We calculate the aforementioned properties on the images of the sample, wherein a homogeneous modification of pore structure occurred in order to ensure the representativeness of the calculated transport properties at the core scale. From images, the evolution of pore connectivity and the potential role of micropores on the connectivity are quantified. It is found that the changing permeability and electrical conductivity distributions along the core length are generally in good agreement with the longitudinal evolution of macro-connected macroporosity and the critical pore-throat diameter. We incorporate microporosity into critical length and permeability calculations and show how microporosity locally plays a role in permeability. It is shown that the Katz-Thompson model reasonably predicts the post-alteration permeability in terms of pre-alteration simulated parameters. This suggests that the evolution of permeability and electrical conductivity of the studied complex carbonate core are controlled by the changes in the macro-connected macroporosity as well as the smallest pore-throats between the connected macropores. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR43B0472V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR43B0472V"><span>A Discrete Element Method Approach to Progressive Localization of Damage in Granular Rocks and Associated Seismicity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vora, H.; Morgan, J.</p> <p>2017-12-01</p> <p>Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110020437','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110020437"><span>Prioritizing Scientific Data for Transmission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Castano, Rebecca; Anderson, Robert; Estlin, Tara; DeCoste, Dennis; Gaines, Daniel; Mazzoni, Dominic; Fisher, Forest; Judd, Michele</p> <p>2004-01-01</p> <p>A software system has been developed for prioritizing newly acquired geological data onboard a planetary rover. The system has been designed to enable efficient use of limited communication resources by transmitting the data likely to have the most scientific value. This software operates onboard a rover by analyzing collected data, identifying potential scientific targets, and then using that information to prioritize data for transmission to Earth. Currently, the system is focused on the analysis of acquired images, although the general techniques are applicable to a wide range of data modalities. Image prioritization is performed using two main steps. In the first step, the software detects features of interest from each image. In its current application, the system is focused on visual properties of rocks. Thus, rocks are located in each image and rock properties, such as shape, texture, and albedo, are extracted from the identified rocks. In the second step, the features extracted from a group of images are used to prioritize the images using three different methods: (1) identification of key target signature (finding specific rock features the scientist has identified as important), (2) novelty detection (finding rocks we haven t seen before), and (3) representative rock sampling (finding the most average sample of each rock type). These methods use techniques such as K-means unsupervised clustering and a discrimination-based kernel classifier to rank images based on their interest level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/18627','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/18627"><span>Geophysical testing of rock and its relationships to physical properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-02-01</p> <p>Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://pubs.water.usgs.gov/wri97-4243/','USGSPUBS'); return false;" href="http://pubs.water.usgs.gov/wri97-4243/"><span>Characterization of hydrogeologic units using matrix properties, Yucca Mountain, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Flint, L.E.</p> <p>1998-01-01</p> <p>Determination of the suitability of Yucca Mountain, in southern Nevada, as a geologic repository for high-level radioactive waste requires the use of numerical flow and transport models. Input for these models includes parameters that describe hydrologic properties and the initial and boundary conditions for all rock materials within the unsaturated zone, as well as some of the upper rocks in the saturated zone. There are 30 hydrogeologic units in the unsaturated zone, and each unit is defined by limited ranges where a discrete volume of rock contains similar hydrogeologic properties. These hydrogeologic units can be easily located in space by using three-dimensional lithostratigraphic models based on relation- ships of the properties with the lithostratigraphy. Physical properties of bulk density, porosity, and particle density; flow properties of saturated hydraulic conductivity and moisture-retention characteristics; and the state variables (variables describing the current state of field conditions) of saturation and water potential were determined for each unit. Units were defined using (1) a data base developed from 4,892 rock samples collected from the coring of 23 shallow and 8 deep boreholes, (2) described lithostratigraphic boundaries and corresponding relations to porosity, (3) recognition of transition zones with pronounced changes in properties over short vertical distances, (4) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (5) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. This study describes the correlation of hydrologic properties to porosity, a property that is well related to the lithostratigraphy and depositional and cooling history of the volcanic deposits and can, therefore, be modeled to be distributed laterally. Parameters of the hydrogeologic units developed in this study and the relation of flow properties to porosity that are described can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....9917863A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....9917863A"><span>Measurements of acoustic surface waves on fluid-filled porous rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Adler, Laszlo; Nagy, Peter B.</p> <p>1994-09-01</p> <p>Novel experimental techniques to measure ultrasonic velocity and attenuation of surface waves on fluid-filled porous natural rocks are presented. Our experimental results are consistent with the theoretical predictions of Feng and Johnson (1983). Depending on the interface conditions, i.e., whether the surface pores are open or closed, pseudo-Rayleigh, pseudo-Stoneley, and/or Stoneley surface waves may exist on fluid-saturated rocks with closed 'slow' surface wave (true Stoneley mode) on fluid-filled porous rocks with closed surface pores. The velocity and attenuation of the 'slow' surface mode may be used to assess the dynamic permeabilty of porous formations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41B0405N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41B0405N"><span>Modeling of carbonate reservoir variable secondary pore space based on CT images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.</p> <p>2017-12-01</p> <p>Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.4083Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.4083Z"><span>Deformation and stabilisation mechanisms of slow rock slides in crystalline bedrock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zangerl, C.; Prager, C.</p> <p>2009-04-01</p> <p>Deep-seated rock slides are slope instabilities which are characterised by deformation along one or several shear zones where most of the measured total slope displacement localizes. Generally, a high danger potential is given when rock slides fail in a rapid manner characterised by very high sliding velocities and/or when they develop into long run-out rock avalanches. However several field surveys and deformation monitoring data show that numerous deep-seated rock slides do not fail in a high velocity regime. In fact, many slides creep downwards at rates of some centimetres per year or even less and do not show any evidence for non-reversible acceleration in the past or in the future. Furthermore some of these slope instabilities are actually inactive (dormant) or have even reached a stabilised final state. Deformation monitoring on active rock slides show that acceleration phases characterised by velocities up to meters per day can occur. The trigger for these phases can be manifold and include heavy rainfall, snow melt, water level fluctuations of reservoirs at the slope foot, changes in the slope's equilibrium state due to antecedent slow creeping processes, changes in the material behaviour within the sliding zone, erosion along the foot of the slope, etc. Whereas the role of these triggers in promoting phases of acceleration are generally understood, the same can not be said regarding the kinematics and dynamic processes/mechanisms by which rock slide masses re-stabilise once the trigger impetus has been removed. In the context of this study the term "stabilisation" is used for rock slides which decelerate from high velocities to slow base activities or even stop moving after a certain amount of displacement. Given that reliable rock slide forecasts require the fundamental understanding of possible slope stabilisation mechanisms this study focuses on field-based and numerically obtained key-properties which influence the long-term slope deformation behaviour. On a regional scale several valleys located in amphibolites, ortho- and paragneisses of the Ötztal-Stubai crystalline basement (i.e. Kaunertal, Pitztal, Ötztal, Lüsenstal, all located in North Tyrol, Austria) were investigated. Therefore geological and morphological basis data were compiled and re-evaluated, remote sensing methods (i.e. airborne laser scanning terrain models and orthofotos) applied and field mapping campaigns performed. On a local scale several rock slides were investigated and analysed in high detail with regard to their lithological and structural inventory, geometry of sliding masses and -zones, failure mechanisms, kinematics and temporal deformation characteristics. Field data clearly show that competent rock masses, e.g. orthogneisses and amphibolites, are affected by rapid failure events and therefore are characterised by "brittle" rock mass behaviour. In contrast, the majority of the slowly moving and "self-stabilising" rock slides are located totally or partly in mica-rich incompetent crystalline rock masses, e.g. paragneisses and micaschists, and are characterised by moderately dipping sliding zones. Apart from a causal lithological influence, numerous field observations demonstrate a major influence of pre-existing geological structures on the formation and deformation behaviour of these rock slides. The nature of rock slides implies that the temporal deformation behaviour is primarily dominated by two key-features of the sliding zone i.e. the mechanical properties (shear strain strengthening or weakening) and the effective in-situ stresses. The in-situ stresses along a sliding zone are influenced by the geometry of both the sliding mass and sliding zone, the internal deformation of the sliding mass and the pore pressures. All these properties can vary during progressive shear displacements. Especially large shear displacements in the range of tens to hundreds of metres along a distinct sliding zone can cause significant in-situ stress changes which in turn may influence the slope deformation behaviour and stabilisation mechanisms. In order to study these processes for selected case studies in paragneissic rock masses the impact of the sliding mass geometry and sliding zone shape on the in-situ stresses has been investigated by applying the discrete element method. This numerical approach enables the simulation of large shear displacements and complex block assembly interactions. Results show that slope stabilisation can be achieved when the dip angle of the sliding zone flattens downslope. In this case and after a certain amount of displacement the lower part of the rock slide mass reaches stable slope conditions (shear strength of the sliding zone material exceeds the shear stress acting on the sliding zone) and acts as a resisting mass for the still unstable upper part of the slope. Furthermore numerical models show that secondary slides at the lower part of the slope have a similar effect. In both case cases the observed slope stabilisation can be clearly attributed to the formation of natural buttressing masses at the toe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28881257','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28881257"><span>The length of pre-existing fissures effects on the mechanical properties of cracked red sandstone and strength design in engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Jiangyu; Feng, Meimei; Yu, Bangyong; Han, Guansheng</p> <p>2018-01-01</p> <p>It is important to study the mechanical properties of cracked rock to understand the engineering behavior of cracked rock mass. Consequently, the influence of the length of pre-existing fissures on the strength, deformation, acoustic emission (AE) and failure characteristics of cracked rock specimen was analyzed, and the optimal selection of strength parameter in engineering design was discussed. The results show that the strength parameters (stress of dilatancy onset and uniaxial compressive strength) and deformation parameters (axial strain and circumferential strain at dilatancy onset and peak point) of cracked rock specimen decrease with the increase of the number of pre-existing fissures, and the relations which can use the negative exponential function to fit. Compared with the intact rock specimens, the different degrees of stress drop phenomena were produced in the process of cracked rock specimens when the stress exceeds the dilatancy onset. At this moment, the cracked rock specimens with the existence of stress drop are not instantaneous failure, but the circumferential strain, volumetric strain and AE signals increase burstingly. And the yield platform was presented in the cracked rock specimen with the length of pre-existing fissure more than 23mm, the yield failure was gradually conducted around the inner tip of pre-existing fissure, the development of original fissures and new cracks was evolved fully in rock. However, the time of dilatancy onset is always ahead of the the time of that point with the existence of stress drop. It indicates that the stress of dilatancy onset can be as the parameter of strength design in rock engineering, which can effectively prevent the large deformation of rock. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Grund..22..221G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Grund..22..221G"><span>Safety-relevant hydrogeological properties of the claystone barrier of a Swiss radioactive waste repository: An evaluation using multiple lines of evidence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gautschi, Andreas</p> <p>2017-09-01</p> <p>In Switzerland, the Opalinus Clay - a Jurassic (Aalenian) claystone formation - has been proposed as the first-priority host rock for a deep geological repository for both low- and intermediate-level and high-level radioactive wastes. An extensive site and host rock investigation programme has been carried out during the past 30 years in Northern Switzerland, comprising extensive 2D and 3D seismic surveys, a series of deep boreholes within and around potential geological siting regions, experiments in the international Mont Terri Rock Laboratory, compilations of data from Opalinus Clay in railway and motorway tunnels and comparisons with similar rocks. The hydrogeological properties of the Opalinus Clay that are relevant from the viewpoint of long-term safety are described and illustrated. The main conclusions are supported by multiple lines of evidence, demonstrating consistency of conclusions based on hydraulic properties, porewater chemistry, distribution of natural tracers across the Opalinus Clay as well as small- and large-scale diffusion models and the derived conceptual understanding of solute transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...43a2010G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...43a2010G"><span>Petrophysical rock properties of the Bazhenov Formation of the South-Eastern part of Kaymysovsky Vault (Tomsk Region)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gorshkov, A. M.; Kudryashova, L. K.; Lee-Van-Khe, O. S.</p> <p>2016-09-01</p> <p>The article presents the results of studying petrophysical rock properties of the Bazhenov Formation of the South-Eastern part of Kaymysovsky Vault with the Gas Research Institute (GRI) method. The authors have constructed dependence charts for bulk and grain density, open porosity and matrix permeability vs. depth. The results of studying petrophysical properties with the GRI method and core description have allowed dividing the entire section into three intervals each of which characterized by different conditions of Bazhenov Formation rock formation. The authors have determined a correlation between the compensated neutron log and the rock density vs. depth chart on the basis of complex well logging and petrophysical section analysis. They have determined a promising interval for producing hydrocarbons from the Bazhenov Formation in the well under study. Besides, they have determined the typical behavior of compensated neutron logs and SP logs on well logs for this interval. These studies will allow re-interpreting available well logs in order to determine the most promising interval to be involved in Bazhenov Formation development in Tomsk Region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003186&hterms=Physical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPhysical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003186&hterms=Physical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DPhysical"><span>Lunar Crater Ejecta: Physical Properties Revealed by Radar and Thermal Infrared Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ghent, R. R.; Carter, L. M.; Bandfield, J. L.; Udovicic, C. J. Tai; Campbell, B. A.</p> <p>2015-01-01</p> <p>We investigate the physical properties, and changes through time, of lunar impact ejecta using radar and thermal infrared data. We use data from two instruments on the Lunar Reconnaissance Orbiter (LRO) - the Diviner thermal radiometer and the Miniature Radio Frequency (Mini-RF) radar instrument - together with Earth-based radar observations. We use this multiwavelength intercomparison to constrain block sizes and to distinguish surface from buried rocks in proximal ejecta deposits. We find that radar-detectable rocks buried within the upper meter of regolith can remain undisturbed by surface processes such as micrometeorite bombardment for greater than 3 Gyr. We also investigate the thermophysical properties of radar-dark haloes, comprised of fine-grained, rock-poor ejecta distal to the blocky proximal ejecta. Using Diviner data, we confirm that the halo material is depleted in surface rocks, but show that it is otherwise thermophysically indistinct from background regolith. We also find that radar-dark haloes, like the blocky ejecta, remain visible in radar observations for craters with ages greater than 3 Ga, indicating that regolith overturn processes cannot replenish their block populations on that timescale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616505M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616505M"><span>Evolution of damage during deformation in porous granular materials (Louis Néel Medal Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Main, Ian</p> <p>2014-05-01</p> <p>'Crackling noise' occurs in a wide variety of systems that respond to external forcing in an intermittent way, leading to sudden bursts of energy release similar to those heard when crunching up a piece of paper or listening to a fire. In mineral magnetism ('Barkhausen') crackling noise occurs due to sudden changes in the size and orientation of microscopic ferromagnetic domains when the external magnetic field is changed. In rock physics sudden changes in internal stress associated with microscopically brittle failure events lead to acoustic emissions that can be recorded on the sample boundary, and used to infer the state of internal damage. Crackling noise is inherently stochastic, but the population of events often exhibits remarkably robust scaling properties, in terms of the source area, duration, energy, and in the waiting time between events. Here I describe how these scaling properties emerge and evolve spontaneously in a fully-dynamic discrete element model of sedimentary rocks subject to uniaxial compression at a constant strain rate. The discrete elements have structural disorder similar to that of a real rock, and this is the only source of heterogeneity. Despite the stationary loading and the lack of any time-dependent weakening processes, the results are all characterized by emergent power law distributions over a broad range of scales, in agreement with experimental observation. As deformation evolves, the scaling exponents change systematically in a way that is similar to the evolution of damage in experiments on real sedimentary rocks. The potential for real-time failure forecasting is examined by using synthetic and real data from laboratory tests and prior to volcanic eruptions. The combination of non-linearity and an irreducible stochastic component leads to significant variations in the precision and accuracy of the forecast failure time, leading to a significant proportion of 'false alarms' (forecast too early) and 'missed events' (forecast too late), as well as an over-optimistic assessments of forecasting power and quality when the failure time is known (the 'benefit of hindsight'). The evolution becomes progressively more complex, and the forecasting power diminishes, in going from ideal synthetics to controlled laboratory tests to open natural systems at larger scales in space and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70027820','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70027820"><span>Physical and chemical properties of submarine basaltic rocks from the submarine flanks of the Hawaiian Islands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Yokose, H.; Lipman, P.W.; Kanamatsu, T.</p> <p>2005-01-01</p> <p>To evaluate physical and chemical diversity in submarine basaltic rocks, approximately 280 deep submarine samples recovered by submersibles from the underwater flanks of the Hawaiian Islands were analyzed and compared. Based on observations from the submersibles and hand specimens, these samples were classified into three main occurrence types (lavas, coarse-grained volcaniclastic rocks, and fine-grained sediments), each with several subtypes. The whole-rock sulfur content and porosity in submarine basaltic rocks, recovered from depths greater than 2000 m, range from < 10 ppm and 2 vol.% to 2200 ppm and 47 vol.%, respectively. These wide variations cannot be due just to different ambient pressures at the collection depths, as inferred previously for submarine erupted lavas. The physical and chemical properties of the recovered samples, especially a combination of three whole-rock parameters (Fe-oxidation state, Sulfur content, and Porosity), are closely related to the occurrence type. The FSP triangular diagram is a valuable indicator of the source location of basaltic fragments deposited in deep submarine areas. This diagram can be applied to basaltic rocks such as clasts in debris-flow deposits, submarine-emplaced lava flows that may have crossed the shoreline, and slightly altered geological samples. ?? 2005 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ArMiS..62..775C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ArMiS..62..775C"><span>The Anti-Resonance Criterion in Selecting Pick Systems for Fully Operational Cutting Machinery Used in Mining</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheluszka, Piotr</p> <p>2017-12-01</p> <p>This article discusses the issue of selecting a pick system for cutting mining machinery, concerning the reduction of vibrations in the cutting system, particularly in a load-carrying structure at work. Numerical analysis was performed on a telescopic roadheader boom equipped with transverse heads. A frequency range of the boom's free vibrations with a set structure and dynamic properties were determined based on a dynamic model. The main components excited by boom vibrations, generated through the process of cutting rock, were identified. This was closely associated with the stereometry of the cutting heads. The impact on the pick system (the number of picks and their arrangement along the side of the cutting head) was determined by the intensity of the external boom load elements, especially in resonance zones. In terms of the anti-resonance criterion, an advantageous system of cutting head picks was determined as a result of the analysis undertaken. The correct selection of the pick system was ascertained based on a computer simulation of the dynamic loads and vibrations of a roadheader telescopic boom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JSV...267..663S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JSV...267..663S"><span>Street-running LRT may not affect a neighbour's sleep</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarkar, S. K.; Wang, J.-N.</p> <p>2003-10-01</p> <p>A comprehensive dynamic finite difference model and analysis was conducted simulating LRT running at the speed of 24 km/h on a city street. The analysis predicted ground borne vibration (GBV) to remain at or below the FTA criterion of a RMS velocity of 72 VdB (0.004 in/s) at the nearest residence. In the model, site-specific stratography and dynamic soil and rock properties were used that were determined from in situ testing. The dynamic input load from LRT vehicle running at 24 km/h was computed from actual measured data from Portland, Oregon's West Side LRT project, which used a low floor vehicle similar to the one proposed for the NJ Transit project. During initial trial runs of the LRT system, vibration and noise measurements were taken at three street locations while the vehicles were running at about the 20-24 km/h operating speed. The measurements confirmed the predictions and satisfied FTA criteria for noise and vibration for frequent events. This paper presents the analytical model, GBV predictions, site measurement data and comparison with FTA criterion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PhRvL..89k8101S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PhRvL..89k8101S"><span>Phase Transitions and Volunteering in Spatial Public Goods Games</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szabó, György; Hauert, Christoph</p> <p>2002-08-01</p> <p>We present a simple yet effective mechanism promoting cooperation under full anonymity by allowing for voluntary participation in public goods games. This natural extension leads to ``rock-scissors-paper''-type cyclic dominance of the three strategies, cooperate, defect, and loner. In spatial settings with players arranged on a regular lattice, this results in interesting dynamical properties and intriguing spatiotemporal patterns. In particular, variations of the value of the public good leads to transitions between one-, two-, and three-strategy states which either are in the class of directed percolation or show interesting analogies to Ising-type models. Although volunteering is incapable of stabilizing cooperation, it efficiently prevents successful spreading of selfish behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SSCom.271...16L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SSCom.271...16L"><span>Pressure-induced structural phase transformation and superconducting properties of titanium mononitride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei</p> <p>2018-03-01</p> <p>In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA289876','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA289876"><span>In Situ Shear Wave Measurements for Evaluating Dynamic Soil Properties at the Bannister Federal Complex, Kansas City, Missouri.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-11-01</p> <p>SO0400 DE OPTH ORILLED INTO ROCKS IN~IEO U 5 PCO #1TOTAL &EPT" o OfILE ELEVATION DET ELO CLASINICATION OF NATCSIALS WCORE sxWt aR REAKS ECOV. SA" PLEC ...34. ah.- Is.M HE.rl veA -6 r s-o 5.m NAME ice OFOPLEP4 TOTAL. PUMOE CORE boxes * IPEICTION OF MOLE IT~E PPEE c~vm~g" 0814fwce bse. P"" WEN. SL ATE MOLE 1...DRILLED NTO RO= SW TOWTM. acoRE ECOVERty FOR @Mo*D -s S. TOTAL. DEPTH Of HOLE __; ; ELEVAYSON DEPTH LjEOCH CLAWSHFCATIOCOF MATERIALS as CORE Box on 0EMARKS</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..153J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..153J"><span>Evidence for remotely triggered micro-earthquakes during salt cavern collapse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jousset, P.; Rohmer, J.</p> <p>2012-04-01</p> <p>Micro-seismicity is a good indicator of spatio-temporal evolution of physical properties of rocks prior to catastrophic events like volcanic eruptions or landslides and may be triggered by a number of causes including dynamic characteristics of processes in play or/and external forces. Micro-earthquake triggering has been in the recent years the subject of intense research and our work contribute to showing further evidence of possible triggering of micro-earthquakes by remote large earthquakes. We show evidence of triggered micro-seismicity in the vicinity of an underground salt cavern prone to collapse by a remote M~7.2 earthquake, which occurred ~12000 kilometres away. We demonstrate the near critical state of the cavern before the collapse by means of 2D axisymmetric elastic finite-element simulations. Pressure was lowered in the cavern by pumping operations of brine out of the cavern. We demonstrate that a very small stress increase would be sufficient to break the overburden. High-dynamic broadband records reveal a remarkable time-correlation between a dramatic increase of the local high-frequency micro-seismicity rate associated with the break of the stiffest layer stabilizing the overburden and the passage of low-frequency remote seismic waves, including body, Love and Rayleigh surface waves. Stress oscillations due to the seismic waves exceeded the strength required for the rupture of the complex media made of brine and rock triggering micro-earthquakes and leading to damage of the overburden and eventually collapse of the salt cavern. The increment of stress necessary for the failure of a Dolomite layer is of the same order or magnitude as the maximum dynamic stress magnitude observed during the passage of the earthquakes waves. On this basis, we discuss the possible contribution of the Love and Rayleigh low-frequency surfaces waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.T51J..06H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.T51J..06H"><span>The effect of segmented fault zones on earthquake rupture propagation and termination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Y.</p> <p>2017-12-01</p> <p>A fundamental question in earthquake source physics is what can control the nucleation and termination of an earthquake rupture. Besides stress heterogeneities and variations in frictional properties, damaged fault zones (DFZs) that surround major strike-slip faults can contribute significantly to earthquake rupture propagation. Previous earthquake rupture simulations usually characterize DFZs as several-hundred-meter-wide layers with lower seismic velocities than host rocks, and find earthquake ruptures in DFZs can exhibit slip pulses and oscillating rupture speeds that ultimately enhance high-frequency ground motions. However, real DFZs are more complex than the uniform low-velocity structures, and show along-strike variations of damages that may be correlated with historical earthquake ruptures. These segmented structures can either prohibit or assist rupture propagation and significantly affect the final sizes of earthquakes. For example, recent dense array data recorded at the San Jacinto fault zone suggests the existence of three prominent DFZs across the Anza seismic gap and the south section of the Clark branch, while no prominent DFZs were identified near the ends of the Anza seismic gap. To better understand earthquake rupture in segmented fault zones, we will present dynamic rupture simulations that calculate the time-varying rupture process physically by considering the interactions between fault stresses, fault frictional properties, and material heterogeneities. We will show that whether an earthquake rupture can break through the intact rock outside the DFZ depend on the nucleation size of the earthquake and the rupture propagation distance in the DFZ. Moreover, material properties of the DFZ, stress conditions along the fault, and friction properties of the fault also have a critical impact on rupture propagation and termination. We will also present scenarios of San Jacinto earthquake ruptures and show the parameter space that is favorable for rupture propagation through the Anza seismic gap. Our results suggest that a priori knowledge of properties of segmented fault zones is of great importance for predicting sizes of future large earthquakes on major faults.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR43E..07R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR43E..07R"><span>Three-dimensional characterization of microporosity and permeability in fault zones hosted in heterolithic succession</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.</p> <p>2017-12-01</p> <p>The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were used to perform computational fluid simulation (Lattice-Boltzmann multi relaxation time method) and estimate the permeability. These results will be useful for understanding the deformation process and hydraulic properties across meter-scale damage zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1237595-high-temperature-thermoelectric-properties-rock-salt-structure-pbs','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1237595-high-temperature-thermoelectric-properties-rock-salt-structure-pbs"><span>High temperature thermoelectric properties of rock-salt structure PbS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Parker, David S.; Singh, David J.</p> <p>2013-12-18</p> <p>We present an analysis of the high temperature transport properties of rock-salt structure PbS, a sister compound to the better studied lead chalcogenides PbSe and PbTe. In this study, we find thermopower magnitudes exceeding 200 V/K in a wide doping range for temperatures of 800 K and above. Based on these calculations, and an analysis of recent experimental work we find that this material has a potential for high thermoelectric performance. Also, we find favorable mechanical properties, based on an analysis of published data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2017/1094/ofr2017_1094.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2017/1094/ofr2017_1094.pdf"><span>Physical properties of sidewall cores from Decatur, Illinois</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Morrow, Carolyn A.; Kaven, Joern; Moore, Diane E.; Lockner, David A.</p> <p>2017-10-18</p> <p>To better assess the reservoir conditions influencing the induced seismicity hazard near a carbon dioxide sequestration demonstration site in Decatur, Ill., core samples from three deep drill holes were tested to determine a suite of physical properties including bulk density, porosity, permeability, Young’s modulus, Poisson’s ratio, and failure strength. Representative samples of the shale cap rock, the sandstone reservoir, and the Precambrian basement were selected for comparison. Physical properties were strongly dependent on lithology. Bulk density was inversely related to porosity, with the cap rock and basement samples being both least porous (</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19946684','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19946684"><span>Multifunctional properties of phosphate-solubilizing microorganisms grown on agro-industrial wastes in fermentation and soil conditions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vassileva, Maria; Serrano, Mercedes; Bravo, Vicente; Jurado, Encarnación; Nikolaeva, Iana; Martos, Vanessa; Vassilev, Nikolay</p> <p>2010-02-01</p> <p>One of the most studied approaches in solubilization of insoluble phosphates is the biological treatment of rock phosphates. In recent years, various techniques for rock phosphate solubilization have been proposed, with increasing emphasis on application of P-solubilizing microorganisms. The P-solubilizing activity is determined by the microbial biochemical ability to produce and release metabolites with metal-chelating functions. In a number of studies, we have shown that agro-industrial wastes can be efficiently used as substrates in solubilization of phosphate rocks. These processes were carried out employing various technologies including solid-state and submerged fermentations including immobilized cells. The review paper deals critically with several novel trends in exploring various properties of the above microbial/agro-wastes/rock phosphate systems. The major idea is to describe how a single P-solubilizing microorganism manifests wide range of metabolic abilities in different environments. In fermentation conditions, P-solubilizing microorganisms were found to produce various enzymes, siderophores, and plant hormones. Further introduction of the resulting biotechnological products into soil-plant systems resulted in significantly higher plant growth, enhanced soil properties, and biological (including biocontrol) activity. Application of these bio-products in bioremediation of disturbed (heavy metal contaminated and desertified) soils is based on another important part of their multifunctional properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.1173D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.1173D"><span>Cuttability Assessment of Selected Rocks Through Different Brittleness Values</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dursun, Arif Emre; Gokay, M. Kemal</p> <p>2016-04-01</p> <p>Prediction of cuttability is a critical issue for successful execution of tunnel or mining excavation projects. Rock cuttability is also used to determine specific energy, which is defined as the work done by the cutting force to excavate a unit volume of yield. Specific energy is a meaningful inverse measure of cutting efficiency, since it simply states how much energy must be expended to excavate a unit volume of rock. Brittleness is a fundamental rock property and applied in drilling and rock excavation. Brittleness is one of the most crucial rock features for rock excavation. For this reason, determination of relations between cuttability and brittleness will help rock engineers. This study aims to estimate the specific energy from different brittleness values of rocks by means of simple and multiple regression analyses. In this study, rock cutting, rock property, and brittleness index tests were carried out on 24 different rock samples with different strength values, including marble, travertine, and tuff, collected from sites around Konya Province, Turkey. Four previously used brittleness concepts were evaluated in this study, denoted as B 1 (ratio of compressive to tensile strength), B 2 (ratio of the difference between compressive and tensile strength to the sum of compressive and tensile strength), B 3 (area under the stress-strain line in relation to compressive and tensile strength), and B 9 = S 20, the percentage of fines (<11.2 mm) formed in an impact test for the Norwegian University of Science and Technology (NTNU) model as well as B 9p (B 9 as predicted from uniaxial compressive, Brazilian tensile, and point load strengths of rocks using multiple regression analysis). The results suggest that the proposed simple regression-based prediction models including B 3, B 9, and B 9p outperform the other models including B 1 and B 2 and can be used for more accurate and reliable estimation of specific energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/61507','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/61507"><span>Map and interpretation of aeromagnetic data for the Wild Rogue Wilderness, Coos and Curry Counties, Oregon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Blakely, Richard J.; Senior, Lisa</p> <p>1983-01-01</p> <p>The mapped geology of the Wild Rogue Wilderness (Gray and others, 1982) consists of a tectonic wedge of volcanic and intrusive rocks of Jurassic age surrounded on all sides by thick sequences of Jurassic, Creacetous, and Tertiary sedimentary rocks. Normally, volcanic and intrusive rocks are more magnetic than sedimentary rocks, a property which should be reflected by the areomagnetic data. We conclude, however, that most of the magnetic anomalies of the Wild Rogue Wilderness are caused by magnetic rocks that are not exposed but which occur at relatively shallow depth below the topographic surface. </p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/4796796','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/4796796"><span>SOURCES OF INFORMATION ON ROCK PHYSICS. CURRENT LITERATURE, FEBRUARY 28, 1962</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Burgin, L.</p> <p>1962-02-28</p> <p>A literature review on the field of rock physics, rock mechanics, wave propagation and other related subjects is presented. The 206 references, wtth abstracts, are included under the following categories: physical properties, rock deformation, loading, engineering applications, seismology, wave propagation, and instruments and methods. In each section the articles are arranged alphabetically according to author. The titles are from material which was made available at the Colorado School of Mines, Arthur Lakes Library during February 1962. (M.C.G.)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA108209','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA108209"><span>Professor M. M. Protod’yakonov’s Strength Coefficient f of Rocks,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-11-12</p> <p>of rock strengths. Prof. A. F. Sukhanov citpd such arguments as the fact that clay is easy to drill but difficult to blast hbile granite is equally...two rocks. on the basis of theste exauFles A. F. Sukhanov concluded that the coefficients of drillability and blastability are not equal and are nct...his work (6] A. F. Sukhanov gives a consoliditcea table (32) of varicus indicas of mechanical properties of rocks. The coefficient of relative strength</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900035129&hterms=dynamical+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddynamical%2Bsystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900035129&hterms=dynamical+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Ddynamical%2Bsystem"><span>Application of dynamical systems theory to the high angle of attack dynamics of the F-14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jahnke, Craig C.; Culick, Fred E. C.</p> <p>1990-01-01</p> <p>Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5951426','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5951426"><span>Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2018-01-01</p> <p>The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution. PMID:29614776</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29614776','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29614776"><span>Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wetzel, Maria; Kempka, Thomas; Kühn, Michael</p> <p>2018-04-01</p> <p>The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/894039','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/894039"><span>Modeling Coupled Thermal-Hydrological-Chemical Processes in the Unsaturated Fractured Rock of Yucca Mountain, Nevada: Heterogeneity and Seepage</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>S. Mukhopadhyay; E.L. Donnenthal; N. Spycher</p> <p></p> <p>An understanding of processes affecting seepage into emplacement tunnels is needed for correctly predicting the performance of underground radioactive waste repositories. It has been previously estimated that the capillary and vaporization barriers in the unsaturated fractured rock of Yucca Mountain are enough to prevent seepage under present day infiltration conditions. It has also been thought that a substantially elevated infiltration flux will be required to cause seepage after the thermal period is over. While coupled thermal-hydrological-chemical (THC) changes in Yucca Mountain host rock due to repository heating has been previously investigated, those THC models did not incorporate elements of themore » seepage model. In this paper, we combine the THC processes in unsaturated fractured rock with the processes affecting seepage. We observe that the THC processes alter the hydrological properties of the fractured rock through mineral precipitation and dissolution. We show that such alteration in the hydrological properties of the rock often leads to local flow channeling. We conclude that such local flow channeling may result in seepage under certain conditions, even with nonelevated infiltration fluxes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1815659G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1815659G"><span>Using earthquake-triggered landslides as a hillslope-scale shear strength test: Insights into rock strength properties at geomorphically relevant spatial scales in high-relief, tectonically active settings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine</p> <p>2016-04-01</p> <p>The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that obtained using typical laboratory shear strength measurements on intact rock samples. Furthermore, the near-surface material strength is similar between the study areas despite differences in tectonic, climatic, and lithologic conditions. Variations in near-surface strength within each setting appear to be more strongly associated with factors contributing to the weakening rock through chemical or physical weathering, such as mean annual precipitation and distance to active faults (a proxy for rock shattering intensity), rather than intrinsic lithologic properties. We hypothesize that the shattering of rock through long-term permanent strain accumulation and by repeated earthquakes is an important mechanism that can explain low rock strength values among the different study sites and the spatial pattern of rock strength within each location. These findings emphasize the potential role of factors other than lithology in controlling the spatial distribution of near-surface rock strength in high-relief, tectonically active settings, which has important implications for understanding the evolution of landscapes, interpreting tectonic and climatic signals from topography, critical zone processes, and natural hazard assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711544L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711544L"><span>Experimental constraints on the rheology and mechanical properties of lava erupted in the Holuhraun area during the 2014 rifting event at Bárðarbunga, Iceland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lavallee, Yan; Kendrick, Jackie; Wall, Richard; von Aulock, Felix; Kennedy, Ben; Sigmundsson, Freysteinn</p> <p>2015-04-01</p> <p>A fissure eruption began at Holuhraun on 16 August 2014, following magma drainage from the Bárðarbunga volcanic system (Iceland). Extrusion initiated as fire fountaining along a segment of the fracture and rapidly localised to a series of small, aligned cones containing a lava lake that over spilled at both ends, feeding a large lava field. The lava composition and flow behaviour put some constraints on its rheology and mechanical properties. The lava erupted is a nearly aphyric basalt containing approximately 2-3% plagioclase with traces of olivine and pyroxene in a quenched groundmass composed of glass and 20-25% microlites. The transition from fire fountaining to lava flow leads to lava with variable vesicularities; pyroclasts expelled during fire fountaining reach up to 80% vesicles whilst the lava contain up to 45% vesicles. Textures in the lava vary from a'a to slabby pahoehoe, and flow thicknesses from several meters to few centimetres. Tension gashes, crease structures and shear zones in the upper lava carapace reveal the importance of both compressive and tensional stresses. In addition, occasional frictional marks at the base of the lava flow as well as bulldozing of sediments along the flow hint at the importance of frictional properties of the rocks during lava flow. Flow properties, textures and failure modes are strongly dependent on the material properties as well as the local conditions of stress and temperature. Here we expand our field observation with preliminary high-temperature experimental data on the rheological and mechanical properties of the erupted lava. Dilatometric measurements are used to constrain the thermal expansion coefficient of the lava important to constrain the dynamics of cooling of the flow. Micropenetration is further employed to determine the viscosity of the melt at super-liquidus temperature, which is compared to the temperature-dependence of viscosity as constrained by geochemistry. Lastly, uniaxial compression and tension tests are presented to constrain the mechanical properties (strength and Young's modulus) of the rocks, forming the cooler carapace of the flow. This high-temperature experimental dataset will be integrated to field observations to constrain lava flow emplacement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916559G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916559G"><span>Sill intrusion in volcanic calderas: implications for vent opening probability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Giudicepietro, Flora; Macedonio, Giovanni; Martini, Marcello; D'Auria, Luca</p> <p>2017-04-01</p> <p>Calderas show peculiar behaviors with remarkable dynamic processes, which do not often culminate in eruptions. Observations and studies conducted in recent decades have shown that the most common cause of unrest in the calderas is due to magma intrusion; in particular, the intrusion of sills at shallow depths. Monogenic cones, with large areal dispersion, are quite common in the calderas, suggesting that the susceptibility analysis based on geological features, is not strictly suitable for estimating the vent opening probability in calderas. In general, the opening of a new eruptive vent can be regarded as a rock failure process. The stress field in the rocks that surrounds and tops the magmatic reservoirs plays an important role in causing the rock failure and creating the path that magma can follow towards the surface. In this conceptual framework, we approach the problem of getting clues about the probability of vent opening in volcanic calderas through the study of the stress field produced by the intrusion of magma, in particular, by the intrusion of a sill. We simulate the intrusion of a sill free to expand radially, with shape and dimensions which vary with time. The intrusion process is controlled by the elastic response of the rock plate above the sill, which bends because of the intrusion, and by gravity, that drives the magma towards the zones where the thickness of the sill is smaller. We calculated the stress field in the plate rock above the sill. We found that at the bottom of the rock plate above the sill the maximum intensity of tensile stress is concentrated at the front of the sill and spreads radially with it, over time. For this reason, we think that the front of the spreading sill is prone to open for eruptive vents. Even in the central area of the sill the intensity of stress is relatively high, but at the base of the rock plate stress is compressive. Under isothermal conditions, the stress soon reaches its maximum value (time interval depending on the model parameters) and then decreases over time during the intrusion. However, if we consider the effect of the cooling of magma, with the temperature which decreases with time and the viscosity that increases, we'll find that the stress in the rock above the sill gradually increases with time and becomes higher than in isothermal case. In order to investigate the role of the physical properties of magma and rock above the sill in the generation of the stress field we have carried out different simulations by varying the viscosity of magma and the rigidity of the rock and found that high viscosity magma produces a relatively high stress intensity, as well as a high rock rigidity does.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013RMRE...46..179Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013RMRE...46..179Z"><span>Applications of NTNU/SINTEF Drillability Indices in Hard Rock Tunneling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zare, S.; Bruland, A.</p> <p>2013-01-01</p> <p>Drillability indices, i.e., the Drilling Rate Index™ (DRI), Bit Wear Index™ (BWI), Cutter Life Index™ (CLI), and Vickers Hardness Number Rock (VHNR), are indirect measures of rock drillability. These indices are recognized as providing practical characterization of rock properties used in the Norwegian University of Science and Technology (NTNU) time and cost prediction models available for hard rock tunneling and surface excavation. The tests form the foundation of various hard rock equipment capacity and performance prediction methods. In this paper, application of the tests for tunnel boring machine (TBM) and drill and blast (D&B) tunneling is investigated and the impact of the indices on excavation time and costs is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770003322&hterms=mechanical+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmechanical%2Brocks','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770003322&hterms=mechanical+rocks&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dmechanical%2Brocks"><span>Rock failure analysis by combined thermal weakening and water jet impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nayfeh, A. H.</p> <p>1976-01-01</p> <p>The influence of preheating on the initiation of fracture in rocks subjected to the impingement of a continuous water jet is studied. Preheating the rock is assumed to degrade its mechanical properties and strength in accordance with existing experimental data. The water jet is assumed to place a quasi-static loading on the surface of the rock. The loading is approximated by elementary functions which permit analytic computation of the induced stresses in a rock half-space. The resulting stresses are subsequently coupled with the Griffith criteria for tensile failure to estimate the change, due to heating, in the critical stagnation pressure and velocity of the water jet required to cause failure in the rock.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51B2909M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51B2909M"><span>Experimental study of dynamic effective stress coefficient for ultrasonic velocities of Bakken cores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, X.; Zoback, M. D.</p> <p>2016-12-01</p> <p>We have performed a series of exhaustive experiments to measure the effective stress coefficient (α) of the tight cores from the Bakken shale oil play. Five distinct, bedding-normal cores from a vertical well were tested, covering the sequences of Lodgepole, Middle Bakken, and Three Forks. The scope of this laboratory study is two-fold: (1) to obtain the dynamic effective stress coefficient for ultrasonic velocities; (2) to characterize the poromechanical properties in relation to rock's mineral composition and microstructure. The experiments were carried out as follows: Argon-saturated specimen (1-inch length, 1-inch diameter) was subjected to hydrostatic confining pressure under drained conditions. Pore pressure was regulated as Argon was injected into both ends of the specimen. We drilled multiple non-through-going boreholes (1-mm diameter) in the specimen to facilitate pore pressure equilibrium, without compromising its integrity. The specimen was put through a loading path to experience confining pressure and pore pressure up to 70 and 60 MPa, respectively. P- and S- wave velocities were measured and used to calculate the rock's dynamic effective stress coefficient. Results of all five cores unanimously show that the dynamic a is a function of both confining and pore pressures, regardless of the wave type and loading path. When the simple effective stress is low, α is close to unity; however, α consistently increases as the simple effective stress rises and can reach as much as 3 when the latter reaches 60 MPa. This trend is rather surprising as it is diametrically the opposite of what was observed for the static α. A possible explanation is that high-frequency wave-induced pore pressure increment may have not remained equilibrated throughout the pore space, especially in very thin cracks, according to the squirt model. This phenomenon can be enhanced when the bulk modulus of pore fluid (gas typically considered to be `soft' and `non-viscous') increases with pore pressure and becomes comparable to the crack stiffness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890061682&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890061682&hterms=rock+cycle&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Drock%2Bcycle"><span>The effect of asymmetric vortex wake characteristics on a slender delta wing undergoing wing rock motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Arena, A. S., Jr.; Nelson, R. C.</p> <p>1989-01-01</p> <p>An experimental investigation into the fluid mechanisms responsible for wing rock on a slender delta wing with 80 deg leading edge sweep has been conducted. Time history and flow visualization data are presented for a wide angle-of-attack range. The use of an air bearing spindle has allowed the motion of the wing to be free from bearing friction or mechanical hysteresis. A bistable static condition has been found in vortex breakdown at an angle of attack of 40 deg which causes an overshoot of the steady state rocking amplitude. Flow visualization experiments also reveal a difference in static and dynamic breakdown locations on the wing. A hysteresis loop in dynamic breakdown location similar to that seen on pitching delta wings was observed as the wing was undergoing the limit cycle oscillation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9113C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9113C"><span>Crustal seismic anisotropy and structure from textural and seismic investigations in the Cycladic region, Greece</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard</p> <p>2016-04-01</p> <p>Seismic anisotropy data are often used to resolve rock structures and deformation styles in the crust based on compilations of rock properties that may not be representative of the exposed geology. We use teleseismic receiver functions jointly with in situ rock property data to constrain the seismic structure and anisotropy of the crust in the Cyclades, Greece, located in the back arc region of the Hellenic subduction zone. Crystallographic preferred orientations (CPOs) via electron backscatter diffraction (EBSD) analyses were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System; average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by blueschist assemblages, with AVp averaging 20.3% and AVs averaging 14.5% due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localized anisotropies of very high magnitude are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~25% for AVp and AVs. The direction of the fast and slow P-wave velocities occur parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction present in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during back-arc extension. Our results strongly favor radial anisotropy in the Aegean mid-crust over azimuthal anisotropy. The receiver function data indicate that the Moho is relatively flat at 25 km depth in the south and deepens to 33 km in the north, consistent with previous studies, and reveal an intra-crustal discontinuity at depth varying from 3 to 11 km, mostly observed in the south-central Aegean. Harmonic decomposition of the receiver functions further indicates layering of both shallow and deep crustal anisotropy related to crustal structures. We model synthetic receiver functions based on constraints from the in situ rock properties that we measured using the EBSD technique. Our results indicate that the shallow upper crustal layer is characterized by metapelites with ~5% anisotropy, underlain by a 20 km thick and anisotropic layer of possible high-pressure rocks comprising blueschist and eclogite and/or restitic crust as a consequence of Miocene magmatism. Seismic anisotropy models require a sub-vertical axis of hexagonal symmetry in the upper crust (i.e. radial anisotropy), consistent with in situ rock data. Finally, a thinned crust is likely caused by back-arc extension associated with elevated sub-crustal temperatures, in agreement with thermal isostasy models of back arcs. This study demonstrates the importance of integrating rock textural data with seismic velocity profiles in the interpretation of crustal architecture.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRB..123.1969R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRB..123.1969R"><span>Critical Evolution of Damage Toward System-Size Failure in Crystalline Rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Renard, François; Weiss, Jérôme; Mathiesen, Joachim; Ben-Zion, Yehuda; Kandula, Neelima; Cordonnier, Benoît</p> <p>2018-02-01</p> <p>Rock failure under shear loading conditions controls earthquake and faulting phenomena. We study the dynamics of microscale damage precursory to shear faulting in a quartz-monzonite rock representative of crystalline rocks of the continental crust. Using a triaxial rig that is transparent to X-rays, we image the mechanical evolution of centimeter-size core samples by in situ synchrotron microtomography with a resolution of 6.5 μm. Time-lapse three-dimensional images of the samples inside the rig provide a unique data set of microstructural evolution toward faulting. Above a yield point there is a gradual weakening during which microfractures nucleate and grow until this damage span the whole sample. This leads to shear faults oriented about 30° to the main compressive stress in agreement with Anderson's theory and macroscopic failure. The microfractures can be extracted from the three-dimensional images, and their dynamics and morphology (i.e., number, volume, orientation, shape, and largest cluster) are quantified as a function of increasing stress toward failure. The experimental data show for the first time that the total volume of microfractures, the rate of damage growth, and the size of the largest microfracture all increase and diverge when approaching faulting. The average flatness of the microfractures (i.e., the ratio between the second and third eigenvalues of their covariance matrix) shows a significant decrease near failure. The precursors to faulting developing in the future faulting zone are controlled by the evolving microfracture population. Their divergent dynamics toward failure is reminiscent of a dynamical critical transition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33I..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33I..02P"><span>Advanced core-analyses for subsurface characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pini, R.</p> <p>2017-12-01</p> <p>The heterogeneity of geological formations varies over a wide range of length scales and represents a major challenge for predicting the movement of fluids in the subsurface. Although they are inherently limited in the accessible length-scale, laboratory measurements on reservoir core samples still represent the only way to make direct observations on key transport properties. Yet, properties derived on these samples are of limited use and should be regarded as sample-specific (or `pseudos'), if the presence of sub-core scale heterogeneities is not accounted for in data processing and interpretation. The advent of imaging technology has significantly reshaped the landscape of so-called Special Core Analysis (SCAL) by providing unprecedented insight on rock structure and processes down to the scale of a single pore throat (i.e. the scale at which all reservoir processes operate). Accordingly, improved laboratory workflows are needed that make use of such wealth of information by e.g., referring to the internal structure of the sample and in-situ observations, to obtain accurate parameterisation of both rock- and flow-properties that can be used to populate numerical models. We report here on the development of such workflow for the study of solute mixing and dispersion during single- and multi-phase flows in heterogeneous porous systems through a unique combination of two complementary imaging techniques, namely X-ray Computed Tomography (CT) and Positron Emission Tomography (PET). The experimental protocol is applied to both synthetic and natural porous media, and it integrates (i) macroscopic observations (tracer effluent curves), (ii) sub-core scale parameterisation of rock heterogeneities (e.g., porosity, permeability and capillary pressure), and direct 3D observation of (iii) fluid saturation distribution and (iv) the dynamic spreading of the solute plumes. Suitable mathematical models are applied to reproduce experimental observations, including both 1D and 3D numerical schemes populated with the parameterisation above. While it validates the core-flooding experiments themselves, the calibrated mathematical model represents a key element for extending them to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760020055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760020055"><span>The Surface Chemical Composition of Lunar Samples and Its Significance for Optical Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gold, T.; Bilson, E.; Baron, R. L.</p> <p>1976-01-01</p> <p>The surface iron, titanium, calcium, and silicon concentration in numerous lunar soil and rock samples was determined by Auger electron spectroscopy. All soil samples show a large increase in the iron to oxygen ratio compared with samples of pulverized rock or with results of the bulk chemical analysis. A solar wind simulation experiment using 2 keV energy alpha -particles showed that an ion dose corresponding to approximately 30,000 years of solar wind increased the iron concentration on the surface of the pulverized Apollo 14 rock sample 14310 to the concentration measured in the Apollo 14 soil sample 14163, and the albedo of the pulverized rock decreased from 0.36 to 0.07. The low albedo of the lunar soil is related to the iron + titanium concentration on its surface. A solar wind sputter reduction mechanism is discussed as a possible cause for both the surface chemical and optical properties of the soil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912031K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912031K"><span>Natural remanent magnetization and rock magnetic parameters from the North-East Atlantic continental margin : Insights from a new, automated cryogenic magnetometer at the Geological Survey of Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klug, Martin; Fabian, Karl; Knies, Jochen; Sauer, Simone</p> <p>2017-04-01</p> <p>Natural remanent magnetization (NRM) and rock magnetic parameters from two locations, West Barents Sea ( 71.6°N,16.2°E) and Vestnesa Ridge, NW Svalbard ( 79.0°N, 6.9°E), were acquired using a new, automatically operating cryogenic magnetometer system at the Geological Survey of Norway. The magnetometer setup comprises an automated robot sample feeding, dynamic operation and measurement monitoring, and customised output-to-database data handling. The setup is designed to dynamically enable a variety of parallel measurements with several coupled devices (e.g. balance, MS2B) to effectively use dead-time in between the otherwise time-consuming measurements with the cryogen magnetometer. Web-based access allows remote quality control and interaction 24/7 and enables high sample throughput. The magnetic properties are combined with geophysical, geochemical measurements and optical imaging, both radiographic and colour images, from high-resolution core-logging. The multidisciplinary approach enables determination and interpretation of content and formation of the magnetic fraction, and its development during diagenetic processes. Besides palaeomagnetic age determination the results offer the opportunity to study sediment transformation processes that have implications for the burial and degradation of organic matter. The results also help to understand long and short-term variability of sediment accumulation. Chemical sediment stability is directly linked to environmental and climate variability in the polar marine environment during the recent past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.V11D..04Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.V11D..04Z"><span>Effects of solid/liquid phase fractionation on pH and aqueous species molality in subduction zone fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhong, X.; Galvez, M. E.</p> <p>2017-12-01</p> <p>Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018RMRE...51.1823P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018RMRE...51.1823P"><span>Estimating Tunnel Strain in the Weak and Schistose Rock Mass Influenced by Stress Anisotropy: An Evaluation Based on Three Tunnel Cases from Nepal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Panthi, Krishna Kanta; Shrestha, Pawan Kumar</p> <p>2018-06-01</p> <p>Total plastic deformation in tunnels passing through weak and schistose rock mass consists of both time-independent and time-dependent deformations. The extent of this total deformation is heavily influenced by the rock mass deformability properties and in situ stress condition prevailing in the area. If in situ stress is not isotropic, the deformation magnitude is not only different along the longitudinal alignment but also along the periphery of the tunnel wall. This manuscript first evaluates the long-term plastic deformation records of three tunnel projects from the Nepal Himalaya and identifies interlink between the time-independent and time-dependent deformations using the convergence law proposed by Sulem et al. (Int J Rock Mech Min Sci Geomech 24(3):145-154, 1987a, Int J Rock Mech Min Sci Geomech 24(3):155-164, 1987b). Secondly, the manuscript attempts to establish a correlation between plastic deformations (tunnel strain) and rock mass deformable properties, support pressure and in situ stress conditions. Finally, patterns of time-independent and time-dependent plastic deformations are also evaluated and discussed. The long-term plastic deformation records of 24 tunnel sections representing four different rock types of three different headrace tunnel cases from Nepal Himalaya are extensively used in this endeavor. The authors believe that the proposed findings will be a step further in analysis of plastic deformations in tunnels passing through weak and schistose rock mass and along the anisotropic stress conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25683464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25683464"><span>A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>De Kock, Tim; Boone, Marijn A; De Schryver, Thomas; Van Stappen, Jeroen; Derluyn, Hannelore; Masschaele, Bert; De Schutter, Geert; Cnudde, Veerle</p> <p>2015-03-03</p> <p>Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMagR.243..114X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMagR.243..114X"><span>k-t Acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Dan; Balcom, Bruce J.</p> <p>2014-06-01</p> <p>Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMGP32A..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMGP32A..02F"><span>Paleomagnetic and Magnetostratigraphic Studies in Drilling Projects of Impact Craters - Recent Studies, Challenges and Perspectives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.</p> <p>2013-05-01</p> <p>Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil exploration included several boreholes, and additionally we have drilled 11 boreholes with continuous core recovery. Contributions and limitations of paleomagnetism for investigating the impact age, crater stratigraphy, cratering, ejecta emplacement, impact dynamics, hydrothermal system and post-impact processes are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP33B1935L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP33B1935L"><span>The dynamics of sediment size and transient erosional signals in heterogeneous lithologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lyons, N. J.; Gasparini, N. M.; Crosby, B. T.; Wehrs, K.; Willenbring, J. K.</p> <p>2017-12-01</p> <p>Sediment supply and transport dynamics convey, transform, and destroy climatic and tectonic signals in channels and depositional landforms. The South Fork Eel River (SFER) in the northern California Coast Ranges, USA exhibits characteristics suggestive of transient landscape adjustment: strath terraces, knickpoints, and headwater terrain eroding more slowly than downstream areas. A tectonically-induced uplift wave is commonly invoked as the driver of transience in this region. The wave is attributed to the northward migration of the Mendocino Triple Junction (MTJ). Nested basin-mean erosion rates calculated from 10Be detrital quartz sand increase down the mainstem of the SFER, roughly coinciding with the direction of MTJ migration. This erosion trend is attributed to the proportion of adjusted and unadjusted landscape portions upstream of the locations where the nested 10Be samples were collected. Adjusted and unadjusted landscape portions are separated by a broad knickzone that contains 28% of relief along the mainstem. Knickzone propagation and considerable stream incision is suggested by projection of the upper SFER above the knickzone through the highest flight of strath terraces. Field observations and outcomes of numerical simulations using the Landlab modeling framework are incompatible with uplift modeled as a wave. Alternative uplift and variable sediment flux scenarios more reliably predict the pattern of terraces, knickpoints, and accelerated erosion. In the natural landscape, landforms and erosion rates follow the patterns expected for transient erosion along the mainstem, although a local base level lowering signal is not resolvable in many tributaries. Topographic relief, presence of knickpoints, and rock properties differ in the SFER tributaries. The tributaries draining mélange are over-steepened by boulders detached from hillslopes by earthflows. Here, we propose a framework in which rock properties and sediment size are a key control upon preservation of a base level change signal in low order streams. This result implies that transient erosion signals inferred using topography can be transformed or destroyed in certain lithologies, complicating efforts to infer climatic and tectonic history from topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41B0410S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41B0410S"><span>Micro X-ray CT imaging of pore-scale changes in unconsolidated sediment under confining pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schindler, M.; Prasad, M.</p> <p>2017-12-01</p> <p>Micro X-ray computed tomography was used to image confining-pressure induced changes in a dry, unconsolidated quartz sand pack while simultaneously recording ultrasonic P-wave velocities. The experiments were performed under in-situ pressure of up to 4000 psi. The majority of digital rock physics studies rely on micro CT images obtained under ambient pressure and temperature conditions although effective rock properties strongly depend on in situ conditions. Goal of this work is to be able to obtain micro CT images of rock samples while pore and confining pressure is applied. Simultaneously we recorded ultrasonic P-wave velocities. The combination of imaging and velocity measurements provides insight in pore-scale changes in the rock and their influence on elastic properties. We visually observed a reduction in porosity by more than a third of the initial value as well as extensive grain damage, changes in pore and grain size distribution and an increase in contact number and contact radius with increasing confining pressure. An increase in measured ultrasonic P-wave velocities with increasing pressure was observed. We used porosity, contact number and contact radius obtained from micro CT images to model P-wave velocity with the contact-radius model by Bachrach et al. (1998). Our observations showed that the frame of unconsolidated sediments is significantly altered starting at pressures of only 1000 psi. This finding indicates that common assumptions in rock physics models (the solid frame remains unchanged) are violated for unconsolidated sediments. The effects on the solid frame should be taken into account when modeling the pressure dependence of elastic rock properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614470M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614470M"><span>Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservior Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Menke, Hannah; Bijeljic, Branko; Andrew, Matthew; Blunt, Martin</p> <p>2014-05-01</p> <p>Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. Carbon capture, Utilization, and Storage (CCUS) in carbonate reservoirs has the added benefit of mobilizing more oil for extraction, increasing oil reservoir yield, and generating revenue while also mitigating climate change. The magnitude, speed, and type of dissolution are dependent the intrinsic properties of the rock. Understanding how small changes in the pore structure affect dissolution is paramount for successful predictive modelling both on the pore-scale and for up-scaled reservoir simulations. We propose an experimental method whereby both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes in carbonate rocks of varying heterogeneity at high temperatures and pressures. Four carbonate rock types were studied, two relatively homogeneous carbonates, Ketton and Mt. Gambier, and two very heterogeneous carbonates, Estalliades and Portland Basebed. Each rock type was imaged under the same reservoir and flow conditions to gain insight into the impact of heterogeneity. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC for 2 hours. Depending on sample heterogeneity and X-ray source, tomographic images were taken at between 30-second and 20-minute time-resolutions and a 4-micron spatial resolution during injection. Changes in porosity, permeability, and structure were obtained by first binning and filtering the images, then binarizing them with watershed segmentation, and finally extracting a pore/throat network. Furthermore, pore-scale flow modelling was performed directly on the binarized image and used to track velocity distributions as the pore network evolved. Significant differences in dissolution type and magnitude were found for each rock type. The most homogeneous carbonate, Ketton, was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. This was not true for the heterogeneous carbonates, Estalliades and Portland Basebed, which formed wormholes. Pore-scale modelling of flow directly on the voxels showed the differences in the evolution of complex flow fields with changes in dissolution regime. The PDFs of normalized velocity for uniform dissolution showed that the maximum pore velocity within the system decreased as dissolution occurred. This is due to dissolution enlarging pores and pore throats. However, in the wormholing regime, there was a large increase in maximum velocity once the wormhole broke through the length of the core and a preferential flow path was created. Additionally, this study serves as a unique benchmark for pore-scale reactive transport modelling directly on the binarized Micro-CT images. This dynamic pore-scale imaging method offers advantages in helping fully explain the dominant physical and chemical processes at the pore scale so that they may be up-scaled to the reservoir scale for increased accuracy in model prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3443G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3443G"><span>Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart</p> <p>2016-04-01</p> <p>Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics literature. The results of this study allow us to describe the seismic properties as a function of hydrothermal and geological features. We use it in a forward seismic modeling study to examine how the seismic response changes with temporally and/or spatially varying fluid properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSG...110...45F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSG...110...45F"><span>Space-time evolution of cataclasis in carbonate fault zones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferraro, Francesco; Grieco, Donato Stefano; Agosta, Fabrizio; Prosser, Giacomo</p> <p>2018-05-01</p> <p>The present contribution focuses on the micro-mechanisms associated to cataclasis of both calcite- and dolomite-rich fault rocks. This work combines field and laboratory data of carbonate fault cores currently exposed in central and southern Italy. By first deciphering the main fault rock textures, their spatial distribution, crosscutting relationships and multi-scale dimensional properties, the relative timing of Intragranular Extensional Fracturing (IEF), chipping, and localized shear is inferred. IEF was predominant within already fractured carbonates, forming coarse and angular rock fragments, and likely lasted for a longer period within the dolomitic fault rocks. Chipping occurred in both lithologies, and was activated by grain rolling forming minute, sub-rounded survivor grains embedded in a powder-like carbonate matrix. The largest fault zones, which crosscut either limestones or dolostones, were subjected to localized shear and, eventually, to flash temperature increase which caused thermal decomposition of calcite within narrow (cm-thick) slip zones. Results are organized in a synoptic panel including the main dimensional properties of survivor grains. Finally, a conceptual model of the time-dependent evolution of cataclastic deformation in carbonate rocks is proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70143013','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70143013"><span>Magnetic properties, acid neutralization capacity, and net acid production of rocks in the Animas River Watershed Silverton, Colorado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCafferty, Anne E.; Yager, Douglas B.; Horton, Radley M.; Diehl, Sharon F.</p> <p>2006-01-01</p> <p>Federal land managers along with local stakeholders in the Upper Animas River watershed near Silverton, Colorado are actively designing and implementing mine waste remediation projects to mitigate the effects of acid mine drainage from several abandoned hard rock metal mines and mills. Local source rocks with high acid neutralization capacity (ANC) within the watershed are of interest to land managers for use in these remediation projects. A suite of representative samples was collected from propylitic to weakly sericitic-altered volcanic and plutonic rocks exposed in outcrops throughout the watershed. Acid-base accounting laboratory methods coupled with mineralogic and geochemical characterization provide insight into lithologies that have a range of ANC and net acid production (NAP). Petrophysical lab determinations of magnetic susceptibility converted to estimates for percent magnetite show correlation with the environmental properties of ANC and NAP for many of the lithologies. A goal of our study is to interpret watershed-scale airborne magnetic data for regional mapping of rocks that have varying degrees of ANC and NAP. Results of our preliminary work are presented here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880010447','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880010447"><span>Microwave dielectric spectrum of rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.</p> <p>1988-01-01</p> <p>A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGP13C..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGP13C..01M"><span>Magnetic properties and anomalies related to eclogite- and high-pressure granulite-facies mafic rocks: What do they tell about magnetization of deep-crustal lithosphere?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McEnroe, S. A.; Robinson, P.</p> <p>2012-12-01</p> <p>The magnetic response of crustal rocks is directly related to type and abundance of oxides in the rock bodies. About 800 samples from mafic bodies and mantle peridotites from the eclogite-facies part of the Western Gneiss Region, Norway, were studied for magnetic properties and oxide mineralogy, and show strong variations. Many eclogites are paramagnetic, while adjacent gabbros from which the eclogites were derived during high-pressure (HP) recrystallization, either preserved or formed magnetite during HP metamorphism or during the following exhumation. Phase petrology indicates many of these rocks were subjected to 4 Gpa and possibly to 6 Gpa equivalent to depths of 125 and 200 km during the Scandian (Upper Silurian - Lower Devonian) continental subduction. Likely conditions in intermediate stages of exhumation were temperature (T) > 700C and pressure (P) of 1 GPa. When magnetite dominates in these samples, the primary control on magnetization is abundance, because magnetite in coarse-grained igneous and high-grade metamorphic rocks is commonly of multi-domain size, close to end-member, and with few microstructures. With few features to stabilize the NRM, the magnetic response is dominated by induced magnetization (Ji). When exsolved members of the rhombohedral ilmenite-hematite solid solution are present, commonly in more oxidized rocks, the response is dominated by the NRM (Jr), and NRM intensity is more complicated than in magnetite-bearing rocks. Important here, in addition to the amount of oxide, are the orientation of the oxide grains relative to the magnetizing field, and the amount of exsolution lamellae, mostly produced during cooling from HP conditions, leading to lamellar magnetism. Where there is no coexisting magnetite, these rocks have high Q values (Jr/Ji) because the induced magnetization (Ji) is low. For such more oxidized rocks, remanent anomalies are generally more common than for more reduced magnetite-bearing rocks formed under the same conditions. Mafic rocks from the Southwest Swedish Granulite Region contain high-pressure granulite-facies assemblages produced during Sveconorwegian (early Neoproterozoic) metamorphism with peak T of 770C and P 0.75-1.05 GPa. Here, the assemblages commonly indicate more oxidized compositions than prevailing in the Western Gneiss Region. Thus, the NRM is dominant, and resultant magnetic vectors are controlled by NRM vectors, nearly opposite to the Earth's present magnetic field, giving rise to striking negative anomalies. Both regions offer insights and show strong variations in the magnetic properties of lower crustal rocks.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ArMiS..57..715A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ArMiS..57..715A"><span>Prediction of penetration rate of rotary-percussive drilling using artificial neural networks - a case study / Prognozowanie postępu wiercenia przy użyciu wiertła udarowo-obrotowego przy wykorzystaniu sztucznych sieci neuronowych - studium przypadku</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aalizad, Seyed Ali; Rashidinejad, Farshad</p> <p>2012-12-01</p> <p>Penetration rate in rocks is one of the most important parameters of determination of drilling economics. Total drilling costs can be determined by predicting the penetration rate and utilized for mine planning. The factors which affect penetration rate are exceedingly numerous and certainly are not completely understood. For the prediction of penetration rate in rotary-percussive drilling, four types of rocks in Sangan mine have been chosen. Sangan is situated in Khorasan-Razavi province in Northeastern Iran. The selected parameters affect penetration rate is divided in three categories: rock properties, drilling condition and drilling pattern. The rock properties are: density, rock quality designation (RQD), uni-axial compressive strength, Brazilian tensile strength, porosity, Mohs hardness, Young modulus, P-wave velocity. Drilling condition parameters are: percussion, rotation, feed (thrust load) and flushing pressure; and parameters for drilling pattern are: blasthole diameter and length. Rock properties were determined in the laboratory, and drilling condition and drilling pattern were determined in the field. For create a correlation between penetration rate and rock properties, drilling condition and drilling pattern, artificial neural networks (ANN) were used. For this purpose, 102 blastholes were observed and drilling condition, drilling pattern and time of drilling in each blasthole were recorded. To obtain a correlation between this data and prediction of penetration rate, MATLAB software was used. To train the pattern of ANN, 77 data has been used and 25 of them found for testing the pattern. Performance of ANN models was assessed through the root mean square error (RMSE) and correlation coefficient (R2). For optimized model (14-14-10-1) RMSE and R2 is 0.1865 and 86%, respectively, and its sensitivity analysis showed that there is a strong correlation between penetration rate and RQD, rotation and blasthole diameter. High correlation coefficient and low root mean square error of these models showed that the ANN is a suitable tool for penetration rate prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014INL.....4..114C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014INL.....4..114C"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheraghian, Goshtasp; Khalili Nezhad, Seyyed Shahram; Kamari, Mosayyeb; Hemmati, Mahmood; Masihi, Mohsen; Bazgir, Saeed</p> <p>2014-07-01</p> <p>Nanotechnology has been used in many applications and new possibilities are discovered constantly. Recently, a renewed interest has risen in the application of nanotechnology for the upstream petroleum industry, such as exploration, drilling, production and distribution. In particular, adding nanoparticles to fluids may significantly benefit enhanced oil recovery and improve well drilling, such as changing the properties of the fluid, wettability alternation of rocks, advanced drag reduction, strengthening sand consolidation, reducing the interfacial tension and increasing the mobility of the capillary-trapped oil. In this study, we focus on the roles of clay and silica nanoparticles in adsorption process on reservoir rocks. Polymer-flooding schemes for recovering residual oil have been in general less satisfactory due to loss of chemicals by adsorption on reservoir rocks, precipitation, and resultant changes in rheological properties. Adsorption and rheological property changes are mainly determined by the chemical structure of the polymers, surface properties of the rock, composition of the oil and reservoir fluids, the nature of the polymers added and solution conditions such as salinity, pH and temperature. Because this method relies on the adsorption of a polymer layer onto the rock surface, a deeper understanding of the relevant polymer-rock interactions is of primary importance to develop reliable chemical selection rules for field applications. In this paper, the role of nanoparticles in the adsorption of water-soluble polymers onto solid surfaces of carbonate and sandstone is studied. The results obtained by means of static adsorption tests show that the adsorption is dominated by the nanoclay and nanosilica between the polymer molecules and the solid surface. These results also show that lithology, brine concentration and polymer viscosity are critical parameters influencing the adsorption behavior at a rock interface. On the other hand, in this study, the focus is on viscosity, temperature and salinity of solutions of polyacrylamide polymers with different nanoparticle degrees and molecular weight. The adsorption of nanopolymer solution is always higher in carbonated stones than in sandstones, and polymer solutions containing silica nanoparticles have less adsorption based on weight percent than similar samples containing clay. Based on the area of contact for stone, this behavior is the same regarding adsorption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51B2900H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51B2900H"><span>Continuous depth profile of mechanical properties in the Nankai accretionary prism based on drilling performance parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hamada, Y.; Kitamura, M.; Yamada, Y.; Sanada, Y.; Moe, K.; Hirose, T.</p> <p>2016-12-01</p> <p>In-situ rock properties in/around seismogenic zone in an accretionary prism are key parameters to understand the development mechanisms of an accretionary prism, spatio-temporal variation of stress state, and so on. For the purpose of acquiring continuous-depth-profile of in-situ formation strength in an accretionary prism, here we propose the new method to evaluate the in-situ rock strength using drilling performance property. Drilling parameters are inevitably obtained by any drilling operation even in the non-coring intervals or at challenging environment where core recovery may be poor. The relationship between the rock properties and drilling parameters has been proposed by previous researches [e.g. Teale 1964]. We introduced the relationship theory of Teale [1964], and developed a converting method to estimate in-situ rock strength without depending on uncertain parameters such as weight on bit (WOB). Specifically, we first calculated equivalent specific toughness (EST) which represents gradient of the relationship between Torque energy and volume of penetration at arbitrary interval (in this study, five meters). Then the EST values were converted into strength using the drilling parameters-rock strengths correlation obtained by Karasawa et al. [2002]. This method was applied to eight drilling holes in the Site C0002 of IODP NanTroSEIZE in order to evaluate in-situ rock strength in shallow to deep accretionary prism. In the shallower part (0 - 300 mbsf), the calculated strength shows sharp increase up to 20 MPa. Then the strength has approximate constant value to 1500 mbsf without significant change even at unconformity around 1000 mbsf (boundary between forearc basin and accretionary prism). Below that depth, value of the strength gradually increases with depth up to 60 MPa at 3000 mbsf with variation between 10 and 80 MPa. Because the calculated strength is across approximately the same lithology, the increase trend can responds to the rock strength. This strength-depth curve correspond reasonably well with the strength data of core and cutting samples collected from hole C0002N and C0002P [Kitamura et al., 2016 AGU]. These results show the validity of the method evaluating in-situ strength from the drilling parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1977/0644/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1977/0644/report.pdf"><span>Mineralogical, chemical, and physical properties of the regolith overlying crystalline rocks, Fairfax County, Virginia: a preliminary report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leo, Gerhard W.; Pavich, M.J.; Obermeier, Stephen F.</p> <p>1977-01-01</p> <p>Undisturbed cores of saprolite developed on crystalline rocks of the Piedmont Province in Fairfax County, Virginia have been obtained using a combination of Shelby tubes, Denison sampler, and modified diamond core-drilling. The principal purpose of the core study is to correlate variations in chemistry, mineralogy and texture with engineering properties throughout the weathering profile. Coring sites were chosen to obtain a maximum depth of weathering on diverse lithologies. The rocks investigated include pelitic schist, metagraywacke, granite, diabase and serpentinite. Four to twelve samples per core were selected, depending on thickness of 1) the weathering profile (from about 1 m in serpentinite to more than 30 m in pelitic schist) and on 2) megascopic changes in saprolite character for analysis of petrography, texture, clay mineralogy andd major element chemistry. Shear strength and compressibility were determined on corresponding segments of core. Standard penetration tests were performed adjacent to coring sites to evaluate engineering properties in situ. Geochemical changes of saprolite developed from each rock type follow predictable trends from fresh rock to soil profile, with relative Increases in Si, Ti, Al, Fe3+ and H20; variable K; and relative loss of Fe 2+, Mg, Ca, and Na. These variations are more pronounced in the weathering profiles over mafic and ultramafic rocks than metagraywacke. Clay minerals in granite, schist and metagraywacke saprolite are kaolinite, dioctahedral vermiculite, interlayered micavermiculite, and minor illite. Gibbsite is locally developed in near-surface samples of schist. Standard penetration test data for the upper 7 m of saprolite over schist and metagraywacke suggest alternations between stronger and weaker horizons than probably reflect variations in lithology including the presence of quartz lenses. Results for granite saprolite are most consistent but indicate lower strength. Shear strength increases fairly regularly downward in the weathering profile. The engineering behavior of diabase saprolite is controlled by a dense, plastic, near-surface clay layer (montmorillonite and kaolinite)overlying rock which is weathered to a granular state (grus), while engineering properties of serpentinite are determined by a very thin weathering profile.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70001459','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70001459"><span>Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Barnes, I.; Rapp, J.B.; O'Neil, J.R.; Sheppard, R.A.; Gude, A.J.</p> <p>1972-01-01</p> <p>Fluids related to Serpentinization are of at least three types. The first reported (Barnes and O'Neil, 1969) is a fluid of local meteoric origin, the chemical and thermodynamic properties of which are entirely controlled by olivine, orthopyroxene, brucite, and serpentine reactions. It is a Ca+2-OH-1 type and is shown experimentally to be capable of reacting with albite to yield calcium hydroxy silicates. Rodingites may form where the Ca+2-OH-1 type waters flow across the ultramafic contact and react with siliceous country rock. The second type of fluid has its chemical composition largely controlled before it enters the ultramafic rocks, but reactions within the ultramafic rocks fix the thermodynamic properties by reactions of orthopyroxene, olivine, calcite, brucite, and serpentine. The precipitation of brucite from this fluid clearly shows that fluid flow allows reaction products to be deposited at a distance from the point of solution. Thus, textural evidence for volume relations during Serpentinization may not be valid. The third type of fluid has its chemical properties fixed in part before the reactions with ultramafic rocks, in part by the reactions of orthopyroxene, olivine, and serpentine and in part by reactions with siliceous country rock at the contact. The reactions of the ultramafic rock and country rock with the fluid must be contemporaneous and require flow to be along the contact. This third type of fluid is grossly supersaturated with talc and tremolite, both found along the contact. The occurrence of magadiite, kenyaite, mountainite, and rhodesite along the contact is probably due to a late stage low-temperature reaction of fluids of the same thermodynamic properties as those that formed the talc and tremolite at higher temperatures. Oxygen isotope analyses of some of these minerals supports this conclusion. Rodingites form from Ca+2-rich fluids flowing across the contact; talc and tremolite form from silica-rich fluids flowing along the contact. Isotopic analyses of the fluids indicate varied origins including unaltered local meteoric water and connate water. Complexion Spring water may be a sample of only slightly altered Jurassic or Cretaceous sea water. ?? 1972 Springer-Verlag.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........34D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........34D"><span>The Analysis of Weak Rock Using the Pressuremeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dafni, Jacob</p> <p></p> <p>The pressuremeter is a versatile in situ testing instrument capable of testing a large range of materials from very soft clay to weak rock. Due to limitations of other testing devices, the pressuremeter is one of the few instruments capable of capturing stiffness and strength properties of weak rock. However, data collected is only useful if the material tested is properly modeled and desirable material properties can be obtained. While constitutive models with various flows rules have been developed for pressuremeter analysis in soil, less research has been directed at model development for pressuremeter tests in weak rock. The result is pressuremeter data collected in rock is typically analyzed using models designed for soil. The aim of this study was to explore constitutive rock models for development into a pressuremeter framework. Three models were considered, with two of those three implemented for pressuremeter analysis. A Mohr-Coulomb model with a tensile cutoff developed by Haberfield (1987) and a Hoek-Brown model initiated by Yang et al (2011) and further developed by the author were implemented and calibrated against a data set of pressuremeter tests from 5 project test sites including a total of 115 pressuremeter tests in a number of different rock formations. Development of a multiscale damage model established by Kondo et al (2008) was explored. However, this model requires further development to be used for pressuremeter data analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28862427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28862427"><span>Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bourg, Ian C; Ajo-Franklin, Jonathan B</p> <p>2017-09-19</p> <p>The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field theory of colloidal interactions that accurately predicts clay swelling in a narrow range of conditions (low salinity, low compaction, Na + counterion). An important feature of clay swelling that is not predicted by these models is the coexistence, in most conditions of aqueous chemistry and dry bulk density, of two types of pores between parallel smectite particles: mesopores with a pore width of >3 nm that are controlled by long-range interactions (the osmotic swelling regime) and nanopores with a pore width <1 nm that are controlled by short-range interactions (the crystalline swelling regime). Nanogeochemical characterization and simulation techniques, including coarse-grained and all-atom molecular dynamics simulations, hold significant promise for the development of advanced constitutive relations that predict this coexistence and its dependence on aqueous chemistry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611089M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611089M"><span>THM modelling of hydrothermal circulation in deep geothermal reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean; Genter, Albert</p> <p>2014-05-01</p> <p>Numerous models have been developped for describing deep geothermal reservoirs. Using the opensource finite element software ASTER developped by EDF R&D, we carried out 2D simulations of the hydrothermal circulation in the deep geothermal reservoir of Soultz-sous-Forêts. The model is based on the effective description of Thermo-Hydro-Mechanical (THM) coupling at large scale. Such a model has a fourfold interest: a) the physical integration of laboratory measurements (rock physics), well logging, well head parameters, geological description, and geophysics field measurements; b) the construction of a direct model mechanically based for geophysical inversion: fluid flow, fluid pressure, temperature profile, seismicity monitoring, deformation of the ground surface (INSAR/GPS) related to reservoir modification, gravity or electromagnetic geophysical measurements; c) the sensitivity analysis of the parameters involved in the hydrothermal circulation and identification of the dominant ones; d) the development of a decision tool for drilling planning, stimulation and exploitation. In our model, we introduced extended Thermo-Hydro-Mechanical coupling including not only poro-elastic behavior but also the sensitivity of the fluid density, viscosity, and heat capacity to temperature and pressure. The behavior of solid rock grains is assumed to be thermo-elastic and linear. Hydraulic and thermal phenomena are governed by Darcy and Fourier laws respectively, and most rock properties (like the specific heat at constant stress csσ(T), or the thermal conductivity Λ(T,φ)) are assumed to depend on the temperature T and/or porosity φ. The radioactivity of the rocks is taken into account through a heat source term appearing in the balance equation of enthalpy. To characterize as precisely as possible the convective movement of water and the associated heat flow, water properties (specific mass ρw(T,pw), specific enthalpy hmw(T,pw) dynamic viscosity μw(T), thermal dilation αw(T), and specific heat cwp(T)) are assumed to depend on pressure and/or temperature. The entire set of material properties is extracted from references dealing with investigations at Soultz-sous-Forêts when existing. The reservoir is described at large scale (about 10 km in width and 5 km in height) and it is assumed that the medium is homogenous, porous, and saturated with a single-phase fluid (considering homogenized effective porous and/or fractured layers, neglecting the details of the fracture networks). We performed a feasability study and show that a large scale convection regime is possible using realistic parameters. The size of the convection cell (2.8km) are shown to be compatible with field observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23513225','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23513225"><span>Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pan, Ding; Spanu, Leonardo; Harrison, Brandon; Sverjensky, Dimitri A; Galli, Giulia</p> <p>2013-04-23</p> <p>Water is a major component of fluids in the Earth's mantle, where its properties are substantially different from those at ambient conditions. At the pressures and temperatures of the mantle, experiments on aqueous fluids are challenging, and several fundamental properties of water are poorly known; e.g., its dielectric constant has not been measured. This lack of knowledge of water dielectric properties greatly limits our ability to model water-rock interactions and, in general, our understanding of aqueous fluids below the Earth's crust. Using ab initio molecular dynamics, we computed the dielectric constant of water under the conditions of the Earth's upper mantle, and we predicted the solubility products of carbonate minerals. We found that MgCO3 (magnesite)--insoluble in water under ambient conditions--becomes at least slightly soluble at the bottom of the upper mantle, suggesting that water may transport significant quantities of oxidized carbon. Our results suggest that aqueous carbonates could leave the subducting lithosphere during dehydration reactions and could be injected into the overlying lithosphere. The Earth's deep carbon could possibly be recycled through aqueous transport on a large scale through subduction zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750015372','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750015372"><span>Tektites and their origin. [properties and distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Okeefe, J. A.</p> <p>1975-01-01</p> <p>A study was conducted of the literature pertaining to the origin and characteristics of tektites. Topics discussed include tektite distribution in geographical locations, shapes of tektites, internal structure of tektites, physical properties, mechanical properties, optical properties, chemical composition, and comparisons with compositions of impact materials. Various arguments are presented on the terrestrial origin of tektites. It was found that some lunar craters of considerable size must be the products of volcanism which occurred during the past few million years, and that the moon must have within it a reservoir of rock which is considerably more like the mantle of the earth than like the rocks from which the basalts of the lunar crust are derived.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP11B..07G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP11B..07G"><span>The Role of Authigenic (pigment) Hematite in Controlling the Remanence, Rock Magnetic, and Magnetic Fabric Properties of Red Beds--If You Have Seen One Red Bed, You Certainly Have Not Seen Them All!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geissman, J. W.</p> <p>2014-12-01</p> <p>Discussion continues on the relative role of authigenic (pigment) fine-grained hematite, relative to detrital, considerably coarser specular hematite (specularite) as a carrier of geologically meaningful remanence, as a determinant of rock magnetic properties, and as a contributor to magnetic fabrics in red beds. For one, many workers commonly assume that the laboratory unblocking temperature spectra (Tlub) of a red bed dominated by authigenic pigment does not reach the maximum Tlub as approximated by the Neel temperature (~948 K) because of the ultra fine grain size of the pigment. This issue was discussed as recently as the IRM Santa Fe meeting in late June, 2014. Many laboratories routinely utilize chemical demagnetization in concert with progressive thermal demagnetization to attempt to assess the relative role of pigment vs. detrital hematite. However, the utility of chemical demagnetization has been long challenged. In studying the anisotropy of magnetic susceptibility and remanence in red beds, recent work has considered separating the contributions of both types of hematite to the fabric signal. Three different red bed "types" (siltstones of the Triassic Chugwater Group, Gros Ventre Range, Wyoming; mudrocks of lowermost Triassic Quartermaster Formation, west Texas; and siltstones to medium sandstones of Upper Cretaceous age, northwest Vietnam) are used to evaluate the effects of varying contributions by pigment hematite to remanence, rock magnetic, and magnetic fabric properties. All rocks are well-characterized petrographically, so that the modal abundance of detrital oxides is known. The Chugwater siltstones are notable because of a relatively low Tlub spectra (below about 620o C), with no evidence of a low coercivity cubic phase. Rock magnetic and magnetic fabric properties are monitored as a function of progressive chemical demagnetization to further elucidate the role of hematite pigment in rocks that have contributed much to the paleomagnetic record of Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1237802-three-dimensional-modeling-reactive-transport-co2-its-impact-geomechanical-properties-reservoir-rocks-seals','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1237802-three-dimensional-modeling-reactive-transport-co2-its-impact-geomechanical-properties-reservoir-rocks-seals"><span>Three-Dimensional Modeling of the Reactive Transport of CO2 and Its Impact on Geomechanical Properties of Reservoir Rocks and Seals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nguyen, Ba Nghiep; Hou, Zhangshuan; Bacon, Diana H.</p> <p></p> <p>This article develops a novel multiscale modeling approach to analyze CO2 reservoirs using Pacific Northwest National Laboratory’s STOMP-CO2-R code that is interfaced with the ABAQUS® finite element package. The STOMP-CO2-R/ABAQUS® sequentially coupled simulator accounts for the reactive transport of CO2 causing mineral composition changes that modify the geomechanical properties of reservoir rocks and seals. Formation rocks’ elastic properties that vary during CO2 injection and govern the poroelastic behavior of rocks are modeled by an Eshelby-Mori-Tanka approach (EMTA) implemented in ABAQUS® via user-subroutines. The computational tool incorporates the change in rock permeability due to both geochemistry and geomechanics. A three-dimensional (3D)more » STOMP-CO2-R model for a model CO2 reservoir containing a vertical fault is built to analyze a formation containing a realistic geochemical reaction network with 5 minerals: albite, anorthite, calcite, kaolinite and quartz. A 3D ABAQUS® model that maps the above STOMP-CO2-R model is built for the analysis using STOMP-CO2-R/ABAQUS®. The results show that the changes in volume fraction of minerals include dissolution of anorthite, precipitation of calcite and kaolinite, with little change in the albite volume fraction. After a long period of CO2 injection the mineralogical and geomechanical changes significantly reduced the permeability and elastic modulus of the reservoir (between the base and caprock) in front of the fault leading to a reduction of the pressure margin to fracture at and beyond the injection location. The impact of reactive transport of CO2 on the geomechanical properties of reservoir rocks and seals are studied in terms of mineral composition changes that directly affect the rock stiffness, stress and strain distributions as well as the pressure margin to fracture.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=rock+AND+cycle&pg=3&id=EJ285780','ERIC'); return false;" href="https://eric.ed.gov/?q=rock+AND+cycle&pg=3&id=EJ285780"><span>The Dynamic Earth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Siever, Raymond</p> <p>1983-01-01</p> <p>Discusses how the earth is a dynamic system that maintains itself in a steady state. Areas considered include large/small-scale earth motions, geologic time, rock and hydrologic cycles, and other aspects dealing with the changing face of the earth. (JN)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29728573','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29728573"><span>Heterogeneous network promotes species coexistence: metapopulation model for rock-paper-scissors game.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nagatani, Takashi; Ichinose, Genki; Tainaka, Kei-Ichi</p> <p>2018-05-04</p> <p>Understanding mechanisms of biodiversity has been a central question in ecology. The coexistence of three species in rock-paper-scissors (RPS) systems are discussed by many authors; however, the relation between coexistence and network structure is rarely discussed. Here we present a metapopulation model for RPS game. The total population is assumed to consist of three subpopulations (nodes). Each individual migrates by random walk; the destination of migration is randomly determined. From reaction-migration equations, we obtain the population dynamics. It is found that the dynamic highly depends on network structures. When a network is homogeneous, the dynamics are neutrally stable: each node has a periodic solution, and the oscillations synchronize in all nodes. However, when a network is heterogeneous, the dynamics approach stable focus and all nodes reach equilibriums with different densities. Hence, the heterogeneity of the network promotes biodiversity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17781568','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17781568"><span>Sound velocity and compressibility for lunar rocks 17 and 46 and for glass spheres from the lunar soil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schreiber, E; Anderson, O L; Sogat, N; Warren, N; Scholz, C</p> <p>1970-01-30</p> <p>Four experiments on lunar materials are reported: (i) resonance on glass spheres from the soil; (ii) compressibility of rock 10017; (iii) sound velocities of rocks 10046 and 10017; (iv) sound velocity of the lunar fines. The data overlap and are mutually consistent. The glass beads and rock 10017 have mechanical properties which correspond to terrestrial materials. Results of (iv) are consistent with low seismic travel times in the lunar maria. Results of analysis of the microbreccia (10046) agreed with the soil during the first pressure cycle, but after overpressure the rock changed, and it then resembled rock 10017. Three models of the lunar surface were constructed giving density and velocity profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18818149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18818149"><span>Between a rock and a hot place: the core-mantle boundary.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wookey, James; Dobson, David P</p> <p>2008-12-28</p> <p>The boundary between the rocky mantle and iron core, almost 2900 km below the surface, is physically the most significant in the Earth's interior. It may be the terminus for subducted surface material, the source of mantle plumes and a control on the Earth's magnetic field. Its properties also have profound significance for the thermochemical and dynamic evolution of the solid Earth. Evidence from seismology shows that D'' (the lowermost few hundred kilometres of the mantle) has a variety of anomalous features. Understanding the origin of these observations requires an understanding of the elastic and deformation properties of the deep Earth minerals. Core-mantle boundary pressures and temperatures are achievable in the laboratory using diamond anvil cell (DAC) apparatus. Such experiments have led to the recent discovery of a new phase, 'post-perovskite', which may explain many hitherto poorly understood properties of D''. Experimental work is also done using analogue minerals at lower pressures and temperatures; these circumvent some of the limits imposed by the small sample size allowed by the DAC. A considerable contribution also comes from theoretical methods that provide a wealth of otherwise unavailable information, as well as verification and refinement of experimental results. The future of the study of the lowermost mantle will involve the linking of the ever-improving seismic observations with predictions of material properties from theoretical and experimental mineral physics in a quantitative fashion, including simulations of the dynamics of the deep Earth. This has the potential to dispel much of the mystery that still surrounds this remote but important region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1211014I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1211014I"><span>Micromechanical Analyses of Sturzstroms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Imre, Bernd; Laue, Jan; Springman, Sarah M.</p> <p>2010-05-01</p> <p>Sturzstroms are very fast landslides of very large initial volume. As type features they display extreme run out, pared with intensive fragmentation of the involved blocks of rock within a collisional flow. The inherent danger to the growing communities in alpine valleys below future potential sites of sturzstroms must be examined and results of predictions of endangered zones allow to impact upon the planning processes in these areas. This calls for the ability to make Type A predictions, according to Lambe (1973), which are done before an event. But Type A predictions are only possible if sufficient understanding of the mechanisms involved in a process is available. The motivation of the doctoral thesis research project presented is therefore to reveal the mechanics of sturzstroms in more detail in order to contribute to the development of a Type A run out prediction model. It is obvious that a sturzstrom represents a highly dynamic collisional granular regime. Thus particles do not only collide but will eventually crush each other. Erismann and Abele (2001) describe this process as dynamic disintegration, where kinetic energy is the main driver for fragmenting the rock mass. In this case an approach combining the type features long run out and fragmentation within a single hypothesis is represented by the dynamic fragmentation-spreading model (Davies and McSaveney, 2009; McSaveney and Davies, 2009). Unfortunately, sturzstroms, and fragmentation within sturzstroms, can not be observed directly in a real event because of their long "reoccurrence time" and the obvious difficulties in placing measuring devices within such a rock flow. Therefore, rigorous modelling is required in particular of the transition from static to dynamic behaviour to achieve better knowledge of the mechanics of sturzstroms, and to provide empirical evidence to confirm the dynamic fragmentation-spreading model. Within this study fragmentation and their effects on the mobility of sturzstroms have been made observable and reproducible within a physical and a distinct element numerical modelling environment (DEM). As link between field evidence gained from the deposits of natural sturzstroms, the physical model within the ETH Geotechnical Drum Centrifuge (Springman et al., 2001) and the numerical model PFC-3D (Cundall and Strack, 1979; Itasca, 2005), serves a deterministic fractal analytical comminution model (Sammis et al., 1987; Steacy and Sammis, 1991). This approach allowed studying the effects of dynamic fragmentation within sturzstroms at true (macro) scale within the distinct element model, by allowing for a micro-mechanical, distinct particle based, and cyclic description of fragmentation at the same time, without losing significant computational efficiency. Theses experiments indicate rock mass and boundary conditions, which allow an alternating fragmenting and dilating dispersive regime to evolve and to be sustained long enough to replicate the spreading and run out of sturzstroms. The fragmenting spreading model supported here is able to explain the run out of a dry granular flow, beyond the travel distance predicted by a Coulomb frictional sliding model, without resorting to explanations by mechanics that can only be valid for certain, specific of the boundary conditions. The implications derived suggest that a sturzstrom, because of its strong relation to internal fractal fragmentation and other inertial effects, constitutes a landslide category of its own. Its mechanics differ significantly from all other gravity driven mass flows. This proposition does not exclude the possible appearance of frictionites, Toma hills or suspension flows etc., but it considers them as secondary features. The application of a fractal comminution model to describe natural and experimental sturzstrom deposits turned out to be a useful tool for sturzstrom research. Implemented within the DEM, it allows simulating the key features of sturzstrom successfully and consistent, based on standardised rock and rock mass properties. It also allows revealing the micro mechanical and energetically aspects of a sturzstrom, which suggests that the DEM, modified and developed in the frame of the research project is a promising tool for further research on sturzstroms. This study provides therefore good empirical evidences both to confirm the dynamic fragmentation-spreading model, and to provide a basis on which a successful Type A run out prediction model of sturzstrom may be developed. Cundall, P.A. and Strack, O.D.L., 1979. A discrete numerical model for granular assemblies. Géotechnique, 29(1): 47-65. Davies, T.R.H. and McSaveney, M.J., 2009. The role of rock fragmentation in the motion of large landslides. Engineering Geology, 109(1-2): 67-79. Erismann, T.H. and Abele, G., 2001. Dynamics of rockslides and rockfalls. Springer, Berlin, Heidelberg, Germany, 316 pp. Itasca, 2005. Particle Flow Code in 3 Dimensions. Itasca Consulting Group, Inc., Minneapolis, Minnesota. Lambe, T.W., 1973. The 13th Rankine Lecture, 1973: Predictions in soil engineering. Géotechnique, 23(2): 149-202. McSaveney, M.J. and Davies, T.R.H., 2009. Surface energy is not one of the energy losses in rock comminution. Engineering Geology, 109(1-2): 109-113. Sammis, C., King, G. and Biegel, R., 1987. The kinematics of gouge deformation. Pure and Applied Geophysics, 125(5): 777-812. Springman, S., Laue, J., Boyle, R., White, J. and Zweidler, A., 2001. The ETH Zurich Geotechnical Drum Centrifuge. International Journal of Physical Modelling in Geotechnics, 1(1): 59-70. Steacy, S.J. and Sammis, C.G., 1991. An automaton for fractal patterns of fragmentation. Nature, 353(6341): 250-252.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..2402005P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..2402005P"><span>Use of petrophysical data for siting of deep geological repository of radioactive waste</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Petrenko, Liliana; Shestopalov, Vyacheslav</p> <p>2017-11-01</p> <p>The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.C33D..02V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.C33D..02V"><span>Subglacial Volcanism in West-Antarctica - A Geologic and Ice Dynamical Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, S. W.; Tulaczyk, S.; Carter, S.; Renne, P.; Turrin, B. D.; Joughin, I.</p> <p>2004-12-01</p> <p>Subglacial volcanic eruptions may increase the contribution of the West-Antarctic Ice-Sheet (WAIS) to global sea-level rise in the near-future by enhancing basal melt water production and ice flow lubrication. Geophysical data have led scientists to believe that the ice sheet may be located over an extensive, young volcanic province containing ~1 million cubic kilometers of basalts (Behrendt, 1964; Behrendt et. al., 1991; 1995; 1998). While not all scientists may recognize this theory of widespread subglacial volcanism, so far no scientific paper has challenged its existence. Here we present the first geologic constraints on the presence/absence of widespread Late Cenozoic subglacial volcanism beneath the WAIS and investigate the potential influence of an individual subglacial volcano (Blankenship et. al., 1993) on the flow dynamic of WAIS. Properties of subglacial sediments indicate limited presence of subglacial volcanic rocks. Moreover, the only two basaltic pebbles, recovered from the region, are of Mesozoic-Paleozoic age (~100 to ~500 million years). While these findings reduce the potential for widespread near-future increases in ice discharge from WAIS due to eruptions of subglacial volcanoes, they do not rule out the presence of individual hot spots associated with volcanic centers beneath the WAIS. Fuel for the existence of a proposed volcano (Mt. Casertz) on the Whitmore Mountain Ross Sea Transitional Crust (WRT; Blankenship et. al., 1993), in the southern part of the WAIS, comes from thermo-dynamical modeling in comparison with observed ice velocities. Ice velocities (Joughin et. al., 1999; 2002) downstream of Mt. Casertz indicate significant basal sliding, where thermo-dynamical models suggest that the ice sheet is frozen to its base. Routing of basal melt water, produced in the vicinity of Mt. Casertz, may lubricate the ice base in parts of the WRT, thus enabling basal sliding and enhancing the discharge of ice in this sector of the WAIS. The only means to resolve any further questions on the existence of subglacial volcanism in West-Antarctica and its potential impact on the dynamic of the ice sheet, requires drilling into potential volcanic centers and the recovery of volcanic rocks for dating and geochemical analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4267M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4267M"><span>Is rock slope instability in high-mountain systems driven by topo-climatic, paraglacial or rock mechanical factors? - A question of scale!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Messenzehl, Karoline; Dikau, Richard</p> <p>2016-04-01</p> <p>Due to the emergent and (often non-linear) complex nature of mountain systems the key small-scale system properties responsible for rock slope instability contrast to those being dominant at larger spatial scales. This geomorphic system behaviour has major epistemological consequences for the study of rockfalls and associated form-process-relationships. As each scale requires its own scientific explanation, we cannot simply upscale bedrock-scale findings and, in turn, we cannot downscale the valley-scale knowledge to smaller phenomena. Here, we present a multi-scale study from the Turtmann Valley (Swiss Alps), that addresses rock slope properties at three different geomorphic levels: (i) regional valley scale, (ii) the hillslope scale and (iii) the bedrock scale. Using this hierarchical approach, we aim to understand the key properties of high-mountain systems responsible for rockfall initiation with respect to the resulting form-process-relationship at each scale. (i) At the valley scale (110 km2) rock slope instability was evaluated using a GIS-based modelling approach. Topo-climatic parameters, i.e. the permafrost distribution and the time since deglaciation after LGM were found to be the key variables causative for the regional-scale bedrock erosion and the storage of 62.3 - 65.3 x 106 m3 rockfall sediments in the hanging valleys (Messenzehl et al. 2015). (ii) At the hillslope scale (0.03 km2) geotechnical scanline surveys of 16 rock slopes and one-year rock temperature data of 25 ibuttons reveal that the local rockfall activity and the resulting deposition of individual talus slope landforms is mainly controlled by the specific rock mass strength with respect to the slope aspect, than being a paraglacial reaction. Permafrost might be only of secondary importance for the present-day rock mechanical state as geophysical surveys disprove the existence of frozen bedrock below 2600 m asl. (Messenzehl & Draebing 2015). (iii) At the bedrock scale (0.01 mm - 10 m) the spacing, persistence and orientation of joints turned out to be the most causative bedrock properties for the higher-scale rock mass strength. Rock temperature data suggest that high-frequent, surficial thermal processes, daily freeze-thaw cycles and seasonal ice segregation coupled with a winter snow cover are the major rock breakdown mechanisms. By linking the rockwalls' joint geometric pattern to the size and shape of rockfall blocks lying on the corresponding talus slopes, different rockfall magnitudes and frequencies were identified. Here we show, that the decrease in spatial scale is linked with a shift in variable importance, from topo-climatic and paraglacial factors at the largest scale to rock mechanical parameters at the smallest scale. Therefore, to understand the key destabilising factors of rock slopes in mountain systems and the resulting landforms, a holistic research approach is needed which considers the nested, hierarchical structure of geomorphic systems. Messenzehl, K., Meyer, H., Otto, J.-C., Hoffmann, T., Dikau, R., 2015. Regional-scale controls on the spatial activity of rockfalls. (Turtmann valley, Swiss Alps) - A multivariate modelling approach. In: Geomorphology. Messenzehl, K., Draebing, D., 2015. Multidisciplinary investigations on coupled rockwall talus-systems (Turtmann valley, Swiss Alps). Geophysical Research Abstracts, 17 (EGU2015-1935, 2015).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713063M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713063M"><span>Monitoring of rock glacier dynamics by multi-temporal UAV images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morra di Cella, Umberto; Pogliotti, Paolo; Diotri, Fabrizio; Cremonese, Edoardo; Filippa, Gianluca; Galvagno, Marta</p> <p>2015-04-01</p> <p>During the last years several steps forward have been made in the comprehension of rock glaciers dynamics mainly for their potential evolution into rapid mass movements phenomena. Monitoring the surface movement of creeping mountain permafrost is important for understanding the potential effect of ongoing climate change on such a landforms. This study presents the reconstruction of two years of surface movements and DEM changes obtained by multi-temporal analysis of UAV images (provided by SenseFly Swinglet CAM drone). The movement rate obtained by photogrammetry are compared to those obtained by differential GNSS repeated campaigns on almost fifty points distributed on the rock glacier. Results reveals a very good agreements between both rates velocities obtained by the two methods and vertical displacements on fixed points. Strengths, weaknesses and shrewdness of this methods will be discussed. Such a method is very promising mainly for remote regions with difficult access.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AIPC.1783b0103K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AIPC.1783b0103K"><span>Towards identifying the dynamics of sliding by acoustic emission and vibration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.</p> <p>2016-11-01</p> <p>The results of experiments with high load and sliding speed sliding conditions on tribologically mated pairs such as steel 1045/steel 1045 (test 1), steel 1045/basalt (test 2) and Hadfield steel/basalt (test 3) have been carried out in order to identify their response in terms of the acoustic emission and vibration signals. The steel to rock and rock to steel transfer has been revealed by examining the worn surfaces of both steel and rock samples with the use of laser scanning microscopy. The AE signal characteristics have been determined for the tribological pairs studied. The dynamics of sliding has been evaluated by measuring the vibration accelerations. Relationship between wear mode and either acoustic emission signal or vibration signal has been established. The minimal vibration oscillations amplitude and acoustic emission signal energy have been found out in sliding Hadfield steel/basalt pair.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000Geo....28..691S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000Geo....28..691S"><span>Mapping spatial variation in rock properties in relationship to scale-dependent structure using spectral curvature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, S. A.; Wynn, T. J.</p> <p>2000-08-01</p> <p>Maps of the three-dimensional geometry of geologic surfaces show that structural curvature commonly varies with scale of observation: This fact can be viewed as superposition of structures at different wavelengths. Rock properties such as fracture density and orientation reflect the contribution of superimposed structures. For this reason, characterization of geologic surfaces is fundamentally different from purely geometrical characterization, for which local description of surface properties is sufficient. We show that measured curvature decays according to a power law with increasing size of measurement window, so short-wavelength curvatures do not obscure long-wavelength curvatures in the same data set. This property can be taken advantage of in a simple technique for automatically mapping multiwavelength curvatures. At each point on a surface, curvature is measured at a range of wavelengths. This curvature spectrum can be analyzed in map view or collapsed into a single value at each point in space. The results indicate that complex geologic surfaces can be characterized without any prior knowledge of structural wavelengths and orientation. The method should prove useful in applications requiring knowledge of spatial variation in rock properties from remotely sensed data, such as exploration for hydrocarbon reservoirs or nuclear waste repositories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1351714','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1351714"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zalewski, Jenna K.; Mo, Joshua H.; Heber, Simone</p> <p></p> <p>Shroom-mediated remodeling of the actomyosin cytoskeleton is a critical driver of cellular shape and tissue morphology that underlies the development of many tissues including the neural tube, eye, intestines, and vasculature. Shroom uses a conserved SD2 domain to direct the subcellular localization of Rho-associated kinase (Rock), which in turn drives changes in the cytoskeleton and cellular morphology through its ability to phosphorylate and activate non-muscle myosin II. Here in this paper, we present the structure of the human Shroom-Rock binding module, revealing an unexpected stoichiometry for Shroom in which two Shroom SD2 domains bind independent surfaces on Rock. Mutation ofmore » interfacial residues impaired Shroom-Rock binding in vitro and resulted in altered remodeling of the cytoskeleton and loss of Shroom-mediated changes in cellular morphology. In addition, we provide the first direct evidence that Shroom can function as a Rock activator. These data provide molecular insight into the Shroom-Rock interface and demonstrate that Shroom directly participates in regulating cytoskeletal dynamics, adding to its known role in Rock localization.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29746010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29746010"><span>Rho Kinase (ROCK) collaborates with Pak to Regulate Actin Polymerization and Contraction in Airway Smooth Muscle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Wenwu; Bhetwal, Bhupal P; Gunst, Susan J</p> <p>2018-05-10</p> <p>The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle contraction were determined in tracheal smooth muscle tissues. ROCK may mediate smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is critical for airway smooth muscle contraction. Our results show that ROCK does not regulate airway smooth muscle contraction by inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation. We find that ROCK regulates airway smooth muscle contraction by activating the serine-threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. These results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain (RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle tissues and is required for contractile tension development in addition to myosin RLC phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, ROCK-K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC phosphorylation during contractile stimulation in this tissue. We find that ROCK regulates airway smooth muscle contraction by mediating activation of the serine-threonine kinase, Pak, to promote actin polymerization. Pak catalyzes paxillin phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signaling module to paxillin, which activates the GEF activity βPIX towards cdc42. Cdc42 is required for the activation of Neuronal Wiskott-Aldrich Syndrome protein (N-WASp), which transmits signals from cdc42 to the Arp2/3 complex for the nucleation of actin filaments. Our results demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 activation that is critical for the processes of actin polymerization and contractility in airway smooth muscle. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913755Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913755Y"><span>Drilling informatics: data-driven challenges of scientific drilling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamada, Yasuhiro; Kyaw, Moe; Saito, Sanny</p> <p>2017-04-01</p> <p>The primary aim of scientific drilling is to precisely understand the dynamic nature of the Earth. This is the reason why we investigate the subsurface materials (rock and fluid including microbial community) existing under particular environmental conditions. This requires sample collection and analytical data production from the samples, and in-situ data measurement at boreholes. Current available data comes from cores, cuttings, mud logging, geophysical logging, and exploration geophysics, but these datasets are difficult to be integrated because of their different kinds and scales. Now we are producing more useful datasets to fill the gap between the exiting data and extracting more information from such datasets and finally integrating the information. In particular, drilling parameters are very useful datasets as geomechanical properties. We believe such approach, 'drilling informatics', would be the most appropriate to obtain the comprehensive and dynamic picture of our scientific target, such as the seismogenic fault zone and the Moho discontinuity surface. This presentation introduces our initiative and current achievements of drilling informatics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3812962','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3812962"><span>Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio</p> <p>2013-01-01</p> <p>The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...639306Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...639306Z"><span>Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi</p> <p>2016-12-01</p> <p>Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5157029','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5157029"><span>Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi</p> <p>2016-01-01</p> <p>Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process. PMID:27976746</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JSG....18.1139S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JSG....18.1139S"><span>Relative scale and the strength and deformability of rock masses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schultz, Richard A.</p> <p>1996-09-01</p> <p>The strength and deformation of rocks depend strongly on the degree of fracturing, which can be assessed in the field and related systematically to these properties. Appropriate Mohr envelopes obtained from the Rock Mass Rating (RMR) classification system and the Hoek-Brown criterion for outcrops and other large-scale exposures of fractured rocks show that rock-mass cohesive strength, tensile strength, and unconfined compressive strength can be reduced by as much as a factor often relative to values for the unfractured material. The rock-mass deformation modulus is also reduced relative to Young's modulus. A "cook-book" example illustrates the use of RMR in field applications. The smaller values of rock-mass strength and deformability imply that there is a particular scale of observation whose identification is critical to applying laboratory measurements and associated failure criteria to geologic structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.5323V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.5323V"><span>Landslides and rock fall processes in the proglacial area of the Gepatsch glacier, Tyrol, Austria - Quantitative assessment of controlling factors and process rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vehling, Lucas; Rohn, Joachim; Moser, Michael</p> <p>2013-04-01</p> <p>Due to the rapid deglaciation since 1850, lithological structures and topoclimatic factors, mass movements like rock fall, landslides and complex processes are important contributing factors to sediment transport and modification of the earth's surface in the steep, high mountain catchment of the Gepatsch reservoir. Contemporary geotechnical processes, mass movement deposits, their source areas, and controlling factors like material properties and relief parameters are mapped in the field, on Orthofotos and on digital elevation models. The results are presented in an Arc-Gis based geotechnical map. All mapped mass movements are stored in an Arc-Gis geodatabase and can be queried regarding properties, volume and controlling factors, so that statistical analyses can be conducted. The assessment of rock wall retreat rates is carried out by three different methods in multiple locations, which differ in altitude, exposition, lithology and deglaciation time: Firstly, rock fall processes and rates are investigated in detail on five rock fall collector nets with an overall size of 750 m2. Rock fall particles are gathered, weighed and grain size distribution is detected by sieving and measuring the diameter of the particles to distinct between rock fall processes and magnitudes. Rock wall erosion processes like joint formation and expansions are measured with high temporal resolution by electrical crack meters, together with rock- and air temperature. Secondly, in cooperation with the other working groups in the PROSA project, rock fall volumes are determined with multitemporal terrestrial laserscanning from several locations. Lately, already triggered rock falls are accounted by mapping the volume of the deposit and calculating of the bedrock source area. The deposition time span is fixed by consideration of the late Holocene lateral moraines and analysing historical aerial photographs, so that longer term rock wall retreat rates can be calculated. In order to limit homogenous bedrock sections for calculating specific rock wall retreat rates and to extrapolate the local determinated rock wall retreat rates to larger scale, bedrock areas will be divided into units of similar morphodynamic intensities which will be therefore classified by a rock mass strength (RMS) system. The RMS-System contains lithological and topoclimatic factors but also takes the measured rock wall retreat rates into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193911','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193911"><span>Estimating thermal maturity in the Eagle Ford Shale petroleum system using gas gravity data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Birdwell, Justin E.; Kinney, Scott A.</p> <p>2017-01-01</p> <p>Basin-wide datasets that provide information on the geochemical properties of petroleum systems, such as source rock quality, product composition, and thermal maturity, are often difficult to come by or assemble from publically available data. When published studies are available and include these kinds of properties, they generally have few sampling locations and limited numbers and types of analyses. Therefore, production-related data and engineering parameters can provide useful proxies for geochemical properties that are often widely available across a play and in some states are reported in publically available or commercial databases. Gas-oil ratios (GOR) can be calculated from instantaneous or cumulative production data and can be related to the source rock geochemical properties like kerogen type (Lewan and Henry, 1999) and thermal maturity (Tian et al., 2013; U.S. Energy Information Administration [EIA], 2014). Oil density or specific gravity (SG), often reported in American Petroleum Institute units (°API = 141.5 /SG – 131.5), can also provide information on source rock thermal maturity, particularly when combined with GOR values in unconventional petroleum systems (Nesheim, 2017).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA113931','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA113931"><span>Mechanics of Cutting and Boring. Part 7. Dynamics and Energetics of Axial Rotation Machines,</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1981-12-01</p> <p>systematic analytical scheme that can be used to facilitate future work on the mechanics of cutting and boring machines. In the industrial sector, rock...Proceedings. Chapter 66, p. 1149-1158. Mellor, M. and I. Hawkes (1972) How to rate a hard-rock borer. World Construction, Sept, p. 21-23. (Also in Ingenieria</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RMRE...50.2849H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RMRE...50.2849H"><span>Assessment of Mudrock Brittleness with Micro-scratch Testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez-Uribe, Luis Alberto; Aman, Michael; Espinoza, D. Nicolas</p> <p>2017-11-01</p> <p>Mechanical properties are essential for understanding natural and induced deformational behavior of geological formations. Brittleness characterizes energy dissipation rate and strain localization at failure. Brittleness has been investigated in hydrocarbon-bearing mudrocks in order to quantify the impact of hydraulic fracturing on the creation of complex fracture networks and surface area for reservoir drainage. Typical well logging correlations associate brittleness with carbonate content or dynamic elastic properties. However, an index of rock brittleness should involve actual rock failure and have a consistent method to quantify it. Here, we present a systematic method to quantify mudrock brittleness based on micro-mechanical measurements from the scratch test. Brittleness is formulated as the ratio of energy associated with brittle failure to the total energy required to perform a scratch. Soda lime glass and polycarbonate are used for comparison to identify failure in brittle and ductile mode and validate the developed method. Scratch testing results on mudrocks indicate that it is possible to use the recorded transverse force to estimate brittleness. Results show that tested samples rank as follows in increasing degree of brittleness: Woodford, Eagle Ford, Marcellus, Mancos, and Vaca Muerta. Eagle Ford samples show mixed ductile/brittle failure characteristics. There appears to be no definite correlation between micro-scratch brittleness and quartz or total carbonate content. Dolomite content shows a stronger correlation with brittleness than any other major mineral group. The scratch brittleness index correlates positively with increasing Young's modulus and decreasing Poisson's ratio, but shows deviations in rocks with distinct porosity and with stress-sensitive brittle/ductile behavior (Eagle Ford). The results of our study demonstrate that the micro-scratch test method can be used to investigate mudrock brittleness. The method is particularly useful for reservoir characterization methods that take advantage of drill cuttings or whenever large samples for triaxial testing or fracture mechanics testing cannot be recovered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1813062W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1813062W"><span>Geologic and hydrologic controls on the economic potential of hydrothermal systems associated with upper crustal plutons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weis, Philipp; Driesner, Thomas; Scott, Samuel; Lecumberri-Sanchez, Pilar</p> <p>2016-04-01</p> <p>Heat and mass transport in hydrothermal systems associated with upper crustal magmatic intrusions can result in resources with large economic potential (Kesler, 1994). Active hydrothermal systems can form high-enthalpy geothermal reservoirs with the possibility for renewable energy production. Fossil continental or submarine hydrothermal systems may have formed ore deposits at variable crustal depths, which can be mined near today's surface with an economic profit. In both cases, only the right combination of first-order geologic and hydrologic controls may lead to the formation of a significant resource. To foster exploration for these hydrothermal georesources, we need to improve our understanding of subsurface fluxes of mass and energy by combining numerical process modelling, observations at both active and fossil systems, as well as knowledge of fluid and rock properties and their interactions in natural systems. The presentation will highlight the role of non-linear fluid properties, phase separation, salt precipitation, fluid mixing, permeability structure, hydraulic fracturing and the transition from brittle to ductile rock behavior as major geologic and hydrologic controls on the formation of high-enthalpy and supercritical geothermal resources (Scott et al., 2015), and magmatic-hydrothermal mineral resources, such as porphyry copper, massive sulfide and epithermal gold deposits (Lecumberri-Sanchez et al., 2015; Weis, 2015). References: Kesler, S. E., 1994: Mineral Resources, economics and the environment, New York, McMillan, 391. Lecumberri-Sanchez, P., Steele-MacInnis, M., Weis, P., Driesner, T., Bodnar, R.J. (2015): Salt precipitation in magmatic-hydrothermal systems associated with upper crustal plutons. Geology, v. 43, p. 1063-1066, doi:10.1130/G37163.1 Scott, S., Driesner, T., Weis, P. (2015): Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communications, 6:7837 doi: 10.1038/ncomms8837 Weis, P. (2015): The dynamic interplay between saline fluid flow and rock permeability in magmatic-hydrothermal systems. Geofluids, 15, 350-371.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1436917','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1436917"><span>Pressurized Slot Testing to Determine Thermo-Mechanical Properties of Lithophysal Tuff at Yucca Mountain Nevada.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>George, James T.; Sobolik, Steven R.; Lee, Moo Y.</p> <p></p> <p>The study described in this report involves heated and unheated pressurized slot testing to determine thermo-mechanical properties of the Tptpll (Tertiary, Paintbrush, Topopah Spring Tuff Formation, crystal poor, lower lithophysal) and Tptpul (upper lithophysal) lithostratigraphic units at Yucca Mountain, Nevada. A large volume fraction of the proposed repository at Yucca Mountain may reside in the Tptpll lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters, making a field program an effective method of measuring bulk thermal-mechanical rock properties (thermal expansion, rock mass modulus, compressive strength, time-dependent deformation) over a range ofmore » temperature and rock conditions. The field tests outlined in this report provide data for the determination of thermo-mechanical properties of this unit. Rock-mass response data collected during this field test will reduce the uncertainty in key thermal-mechanical modeling parameters (rock-mass modulus, strength and thermal expansion) for the Tptpll lithostratigraphic unit, and provide a basis for understanding thermal-mechanical behavior of this unit. The measurements will be used to evaluate numerical models of the thermal-mechanical response of the repository. These numerical models are then used to predict pre- and post-closure repository response. ACKNOWLEDGEMENTS The authors would like to thank David Bronowski, Ronnie Taylor, Ray E. Finley, Cliff Howard, Michael Schuhen (all SNL) and Fred Homuth (LANL) for their work in the planning and implementation of the tests described in this report. This is a reprint of SAND2004-2703, which was originally printed in July 2004. At that time, it was printed for a restricted audience. It has now been approved for unlimited release.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/927607','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/927607"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin</p> <p></p> <p>The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow themore » computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil recovery.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........17B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........17B"><span>Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boonyasatphan, Prat</p> <p></p> <p>The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19754849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19754849"><span>Large-scale mapping of hard-rock aquifer properties applied to Burkina Faso.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Courtois, Nathalie; Lachassagne, Patrick; Wyns, Robert; Blanchin, Raymonde; Bougaïré, Francis D; Somé, Sylvain; Tapsoba, Aïssata</p> <p>2010-01-01</p> <p>A country-scale (1:1,000,000) methodology has been developed for hydrogeologic mapping of hard-rock aquifers (granitic and metamorphic rocks) of the type that underlie a large part of the African continent. The method is based on quantifying the "useful thickness" and hydrodynamic properties of such aquifers and uses a recent conceptual model developed for this hydrogeologic context. This model links hydrodynamic parameters (transmissivity, storativity) to lithology and the geometry of the various layers constituting a weathering profile. The country-scale hydrogeological mapping was implemented in Burkina Faso, where a recent 1:1,000,000-scale digital geological map and a database of some 16,000 water wells were used to evaluate the methodology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AcMSn..32..442H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AcMSn..32..442H"><span>An experimental study on fracture mechanical behavior of rock-like materials containing two unparallel fissures under uniaxial compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Yan-Hua; Yang, Sheng-Qi; Tian, Wen-Ling; Zeng, Wei; Yu, Li-Yuan</p> <p>2016-06-01</p> <p>Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures. In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures (a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen. Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servo-controlled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0° to 75°. In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process. Moreover, acoustic emission (AE) monitoring technique was also used to obtain the AE evolution characteristic of pre-fissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, the corresponding axial stress dropped in the axial stress-time curve and a big AE event could be observed simultaneously. Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RMRE...49.2075T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RMRE...49.2075T"><span>Design of Rock Slope Reinforcement: An Himalayan Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tiwari, Gaurav; Latha, Gali Madhavi</p> <p>2016-06-01</p> <p>The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070017838','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070017838"><span>Mars Exploration Rover Pancam Multispectral Imaging of Rocks, Soils, and Dust at Gusev Crater and Meridiani Planum. Chapter 13</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, J. F., III; Calvin, W. M.; Farrand, W.; Greeley, R.; Johnson, J. R.; Jolliff, B.; Morris, R. V.; Sullivan, R. J.; Thompson, S.; Wang, A.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20070017838'); toggleEditAbsImage('author_20070017838_show'); toggleEditAbsImage('author_20070017838_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20070017838_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20070017838_hide"></p> <p>2007-01-01</p> <p>Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..140a2074N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..140a2074N"><span>A state-of-the-art anisotropic rock deformation model incorporating the development of mobilised shear strength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noor, M. J. Md; Jobli, A. F.</p> <p>2018-04-01</p> <p>Currently rock deformation is estimated using the relationship between the deformation modulus Em and the stress-strain curve. There have been many studies conducted to estimate the value of Em. This Em is basically derived from conducting unconfined compression test, UCS. However, the actual stress condition of the rock in the ground is anisotropic stress condition where the rock mass is subjected to different confining and vertical pressures. In addition, there is still no empirical or semi-empirical framework that has been developed for the prediction of rock stress-strain response under anisotropic stress condition. Arock triaxial machine GCTS Triaxial RTX-3000 has been deployed to obtain the anisotropic stress-strain relationship for weathered granite grade II from Rawang, Selangor sampled at depth of 20 m and subjected to confining pressure of 2 MPa, 7.5 MPa and 14 MPa. The developed mobilised shear strength envelope within the specimen of 50 mm diameter and 100 mm height during the application of the deviator stress is interpreted from the stress-strain curves. These mobilised shear strength envelopes at various axial strains are the intrinsic property and unique for the rock. Once this property has been established then it is being used to predict the stress-strain relationship at any confining pressure. The predicted stress-strain curves are compared against the curves obtained from the tests. A very close prediction is achieved to substantiate the applicability of this rock deformation model. This is a state-of-the art rock deformation theory which characterise the deformation base on the applied load and the developed mobilised shear strength within the rock body.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..SHK.J4001F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..SHK.J4001F"><span>Professor Thomas J. Ahrens and Shock Wave Physics in Russia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fortov, Vladimir E.; Kanel, Gennady I.</p> <p>2011-06-01</p> <p>Since his earlier works on the equations of state and dynamic mechanical properties of rocks and other materials Prof. T.J. Ahrens furnished large influence on development of the shock wave physics in Russia. He always demonstrates a choice of excellent problems and a level of productivity in the field of shock compression science which is unparalleled. In recognition of his great contribution into science and international scientific collaboration Prof. Ahrens has been elected in Russian Academy of Sciences as its foreign member. In the presentation, emphasis will be done on the Comet Shoemaker-Levy project in which we had fruitful informal collaboration, on the problem of wide-range equations of state, and on stress relaxation at shock compression of solids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhL.112k1909B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhL.112k1909B"><span>Plane shock loading on mono- and nano-crystalline silicon carbide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya</p> <p>2018-03-01</p> <p>The understanding of the nanoscale mechanisms of shock damage and failure in SiC is essential for its application in effective and damage tolerant coatings. We use molecular-dynamics simulations to investigate the shock properties of 3C-SiC along low-index crystallographic directions and in nanocrystalline samples with 5 nm and 10 nm grain sizes. The predicted Hugoniot in the particle velocity range of 0.1 km/s-6.0 km/s agrees well with experimental data. The shock response transitions from elastic to plastic, predominantly deformation twinning, to structural transformation to the rock-salt phase. The predicted strengths from 12.3 to 30.9 GPa, at the Hugoniot elastic limit, are in excellent agreement with experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036631','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036631"><span>Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry, northern California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCafferty, A.E.; Van Gosen, B. S.</p> <p>2009-01-01</p> <p>Serpentinized ultramafic rocks and associated soils in northern California are characterized by high concentrations of Cr and Ni, low levels of radioelements (K, Th, and U) and high amounts of ferrimagnetic minerals (primarily magnetite). Geophysical attributes over ultramafic rocks, which include airborne gamma-ray and magnetic anomaly data, are quantified and provide indirect measurements on the relative abundance of radioelements and magnetic minerals, respectively. Attributes are defined through a statistical modeling approach and the results are portrayed as probabilities in chart and map form. Two predictive models are presented, including one derived from the aeromagnetic anomaly data and one from a combination of the airborne K, Th and U gamma-ray data. Both models distinguish preferential values within the aerogeophysical data that coincide with mapped and potentially unmapped ultramafic rocks. The magnetic predictive model shows positive probabilities associated with magnetic anomaly highs and, to a lesser degree, anomaly lows, which accurately locate many known ultramafic outcrops, but more interestingly, locate potentially unmapped ultramafic rocks, possible extensions of ultramafic bodies that dip into the shallow subsurface, as well as prospective buried ultramafic rocks. The airborne radiometric model shows positive probabilities in association with anomalously low gamma radiation measurements over ultramafic rock, which is similar to that produced by gabbro, metavolcanic rock, and water bodies. All of these features share the characteristic of being depleted in K, Th and U. Gabbro is the only rock type in the study area that shares similar magnetic properties with the ultramafic rock. The aerogeophysical model results are compared to the distribution of ultramafic outcrops and to Cr, Ni, K, Th and U concentrations and magnetic susceptibility measurements from soil samples. Analysis of the soil data indicates high positive correlation between magnetic susceptibilities and concentration of Cr and Ni. Although the study focused on characterizing the geophysical properties of ultramafic rocks and associated soils, it has also yielded information on other rock types in addition to ultramafic rocks, which can also locally host naturally-occurring asbestos; specifically, gabbro and metavolcanic rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://ngmdb.usgs.gov/Prodesc/proddesc_45594.htm','USGSPUBS'); return false;" href="http://ngmdb.usgs.gov/Prodesc/proddesc_45594.htm"><span>Preliminary lithogeochemical map showing near-surface rock types in the Chesapeake Bay watershed, Virginia and Maryland</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Peper, John D.; McCartan, Lucy; Horton, J. Wright; Reddy, James E.</p> <p>2001-01-01</p> <p>This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units and aspects of ground and surface water chemistry could help to refine the lithogeochemical classification, and this map. The testing could also improve the usefulness of the map for assessing aquifer reactivity and the transport properties of reactive contaminants such as acid rain, and nitrate from agricultural sources, in the Chesapeake Bay watershed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH41D..06K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH41D..06K"><span>Lithology and Bedrock Geotechnical Properties in Controlling Rock and Ice Mass Movements in Mountain Cryosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karki, A.; Kargel, J. S.</p> <p>2017-12-01</p> <p>Landslides and ice avalanches kill >5000 people annually (D. Petley, 2012, Geology http://dx.doi.org/10.1130/G33217.1); destroy or damage homes and infrastructure; and create secondary hazards, such as flooding due to blocked rivers. Critical roles of surface slope, earthquake shaking, soil characteristics and saturation, river erosional undercutting, rainfall intensity, snow loading, permafrost thaw, freeze-thaw and frost shattering, debuttressing of unstable masses due to glacier thinning, and vegetation burn or removal are well-known factors affecting landslides and avalanches. Lithology-dependent bedrock physicochemical-mechanical properties—especially brittle elastic and shear strength, and chemical weathering properties that affect rock strength, are also recognized controls on landsliding and avalanching, but are not commonly considered in detail in landslide susceptibility assessment. Lithology controls the formation of weakened, weathered bedrock; the formation and accumulation of soils; soil saturation-related properties of grain size distribution, porosity, and permeability; and soil creep related to soil wetting-drying and freeze-thaw. Lithology controls bedrock abrasion and glacial erosion and debris production rates, the formation of rough or smoothed bedrock surface by glaciation, fluvial, and freeze-thaw processes. Lithologic variability (e.g., bedding; fault and joint structure) affects contrasts in chemical weathering rates, porosity, and susceptibility to frost shattering and chemical weathering, hence formation of overhanging outcrops and weakened slip planes. The sudden failure of bedrock or sudden slip of ice on bedrock, and many other processes depend on rock lithology, microstructure (porosity and permeability), and macrostructure (bedding; faults). These properties are sometimes considered in gross terms for landslide susceptibility assessment, but in detailed applications to specific development projects, and in detailed mapping over large areas, the details of rock lithology, weathering state, and structure are rarely considered. We have initiated a geological and rock mechanical properties approach to landslide susceptibility assessments in areas of high concern for human and infrastructure safety.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41B0408S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41B0408S"><span>Multi-scale Pore Imaging Techniques to Characterise Heterogeneity Effects on Flow in Carbonate Rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shah, S. M.</p> <p>2017-12-01</p> <p>Digital rock analysis and pore-scale studies have become an essential tool in the oil and gas industry to understand and predict the petrophysical and multiphase flow properties for the assessment and exploitation of hydrocarbon reserves. Carbonate reservoirs, accounting for majority of the world's hydrocarbon reserves, are well known for their heterogeneity and multiscale pore characteristics. The pore sizes in carbonate rock can vary over orders of magnitudes, the geometry and topology parameters of pores at different scales have a great impact on flow properties. A pore-scale study is often comprised of two key procedures: 3D pore-scale imaging and numerical modelling techniques. The fundamental problem in pore-scale imaging and modelling is how to represent and model the different range of scales encountered in porous media, from the pore-scale to macroscopic petrophysical and multiphase flow properties. However, due to the restrictions of image size vs. resolution, the desired detail is rarely captured at the relevant length scales using any single imaging technique. Similarly, direct simulations of transport properties in heterogeneous rocks with broad pore size distributions are prohibitively expensive computationally. In this study, we present the advances and review the practical limitation of different imaging techniques varying from core-scale (1mm) using Medical Computed Tomography (CT) to pore-scale (10nm - 50µm) using Micro-CT, Confocal Laser Scanning Microscopy (CLSM) and Focussed Ion Beam (FIB) to characterise the complex pore structure in Ketton carbonate rock. The effect of pore structure and connectivity on the flow properties is investigated using the obtained pore scale images of Ketton carbonate using Pore Network and Lattice-Boltzmann simulation methods in comparison with experimental data. We also shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21376366','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21376366"><span>Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Filippelli, Gabriel M</p> <p>2011-08-01</p> <p>The role that phosphorite formation, the ultimate source rock for fertilizer phosphate reserves, plays in the marine phosphorus (P) cycle has long been debated. A shift has occurred from early models that evoked strikingly different oceanic P cycling during times of widespread phosphorite deposition to current thinking that phosphorite deposits may be lucky survivors of a series of inter-related tectonic, geochemical, sedimentological, and oceanic conditions. This paradigm shift has been facilitated by an awareness of the widespread nature of phosphogenesis-the formation of authigenic P-bearing minerals in marine sediments that contributes to phosphorite formation. This process occurs not just in continental margin sediments, but in deep sea oozes as well, and helps to clarify the driving forces behind phosphorite formation and links to marine P geochemistry. Two processes come into play to make phosphorite deposits: chemical dynamism and physical dynamism. Chemical dynamism involves the diagenetic release and subsequent concentration of P-bearing minerals particularly in horizons, controlled by a number of sedimentological and biogeochemical factors. Physical dynamism involves the reworking and sedimentary capping of P-rich sediments, which can either concentrate the relatively heavy and insoluble disseminated P-bearing minerals or provide an episodic change in sedimentology to concentrate chemically mobilized P. Both processes can result from along-margin current dynamics and/or sea level variations. Interestingly, net P accumulation rates are highest (i.e., the P removal pump is most efficient) when phosphorites are not forming. Both physical and chemical pathways involve processes not dominant in deep sea environments and in fact not often coincide in space and time even on continental margins, contributing to the rarity of high-quality phosphorite deposits and the limitation of phosphate rock reserves. This limitation is becoming critical, as the human demand for P far outstrips the geologic replacement for P and few prospects exist for new discoveries of phosphate rock. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5141P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5141P"><span>A large landslide in volcanic rock: failure processes, geometry and propagation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Putu Krishna Wijaya, I.; Zangerl, Christian; Straka, Wolfgang; Mergili, Martin; Prasad Pudasaini, Shiva; Arifianti, Yukni</p> <p>2017-04-01</p> <p>The Jemblung landslide in Banjarnegara, Indonesia was one of the most destructive landslides in the country since 2006. This landslide caused at least 90 deaths while more than 1300 people were evacuated to safer areas. Concerning the failure mechanisms and type of material, the event can be characterized as a complex landslide (earth slide to earth flow). It originated in volcaniclastic soil/rock, i.e. andesites and lapilli-tuffs of varying degrees of weathering that lie above tuffaceous sandstones, conglomerates, as well as an alternation of shale and brown coal layers. Unmanned aerial vehicle (UAV) data from a secondary database are processed by using photogrammetric software to obtain an overview of the landslide geometry before and after the failure event. Stratigraphic field data and geoelectrical measurements are compared and correlated to build a geological-geometrical model and to estimate the volume of the landslide. Petrographical and XRD analysis are conducted to explain the mineral composition of parent rock and its weathering products. Rainfall as well as seismologic data are collected to study potential trigger and failure mechanisms. The geological-geometrical model of the landslide, digital terrain models of the process area and geotechnical soil properties are combined to model the initial sliding process by applying limit-equilibrium software products. Furthermore, the landslide propagation is simulated with the novel, GIS-based, two-phase mass flow modelling tool r.avaflow in order to improve the understanding of the dynamics of the Jemblung landslide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUSM.T34A..05N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUSM.T34A..05N"><span>Effect of Cohesion Uncertainty of Granular Materials on the Kinematics of Scaled Models of Fold-and-Thrust Belts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilfouroushan, F.; Pysklywec, R.; Cruden, S.</p> <p>2009-05-01</p> <p>Cohesionless or very low cohesion granular materials are widely used in analogue/physical models to simulate brittle rocks in the upper crust. Selection of materials with appropriate cohesion values in such models is important for the simulation of the dynamics of brittle rock deformation in nature. Uncertainties in the magnitude of cohesion (due to measurement errors, extrapolations at low normal stresses, or model setup) in laboratory experiments can possibly result in misinterpretation of the styles and mechanisms of deformation in natural fold-and thrust belts. We ran a series of 2-D numerical models to investigate systematically the effect of cohesion uncertainties on the evolution of models of fold-and-thrust belts. The analyses employ SOPALE, a geodynamic code based on the arbitrary Lagrangian-Eulerian (ALE) finite element method. Similar to analogue models, the material properties of sand and transparent silicone (PDMS) are used to simulate brittle and viscous behaviors of upper crustal rocks. The suite of scaled brittle and brittle-viscous numerical experiments have the same initial geometry but the cohesion value of the brittle layers is increased systematically from 0 to 100 Pa. The stress and strain distribution in different sets of models with different cohesion values are compared and analyzed. The kinematics and geometry of thrust wedges including the location and number of foreland- and hinterland- verging thrust faults, pop-up structures, tapers and topography are also explored and their sensitivity to cohesion value is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3975F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3975F"><span>Anisotropic and heterogeneous mechanical properties of a stratified shale/limestone sequence at Nash Point, South Wales: A case study for hydraulic fracture propagation through a layered medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes Inskip, Nathaniel; Meredith, Philip; Gudmundsson, Agust</p> <p>2016-04-01</p> <p>While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through layered sedimentary rocks with different mechanical and elastic properties remains poorly constrained. Yet this is a key issue controlling the propagation of both natural and anthropogenic hydraulic fractures in layered sequences. Here we report measurements of the contrasting mechanical and elastic properties of the Lower Lias at Nash Point, South Wales, which comprises an interbedded sequence of shale and limestone layers, and how those properties may influence fracture propagation. Elastic properties of both materials have been characterised via ultrasonic wave velocity measurements as a function of azimuth on samples cored both normal and parallel to bedding. The shale is highly anisotropic, with P-wave velocities varying from 2231 to 3890 m s-1, giving an anisotropy of ~55%. By contrast, the limestone is essentially isotropic, with a mean P-wave velocity of 5828 m s-1 and an anisotropy of ~2%. The dynamic Young's modulus of the shale, calculated from P- and S-wave velocity data, is also anisotropic with a value of 36 GPa parallel to bedding and 12 GPa normal to bedding. The modulus of the limestone is again isotropic with a value of 80 GPa. It follows that for a vertical fracture propagating (i.e. normal to bedding) the modulus contrast is 6.6. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. There are three principal mechanisms by which a fracture may deflect across or along an interface, namely: Cook-Gordon debonding, stress barrier, and elastic mismatch. Preliminary numerical modelling results (using a Finite Element Modelling software) of induced fractures at Nash Point suggest that all three are important. The results demonstrate a rotation of the maximum principal compressive stress across an interface but also a confinement of tensile stress within the host layer. Mechanical properties have been characterised by indirect measurement of the tensile strength using the Brazil-Disk technique. Measurements were made in the three principal orientations relative to bedding, Arrester, Divider, and Short-Transverse, and also at 15° intervals between these planes. Values for the shale again showed a high degree of anisotropy; with similar values in the Arrester and Divider orientations, but with much lower values in the Short-Transverse (bedding parallel) orientation. The tensile strength of the limestone is considerably higher than that of the shale and exhibits no significant anisotropy. Current work is underway to characterise the fracture propagation properties by measuring the fracture toughness and fracture ductility of both rocks using a combination of the Semi-Circular Bend and Short-Rod techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H23B1237C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H23B1237C"><span>Porosity and Permeability Evolution in Cemented Rock Cores under Reactive Flowing Conditions: Comparative Analysis between Limestone and Sandstone Host Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, P.; Karpyn, Z.; Li, L.</p> <p>2013-12-01</p> <p>CO2-brine has the potential to alter wellbore cement in depleted oil and gas reservoirs under geological CO2 sequestration conditions. A better understanding of CO2-brine-cement-rock interaction is needed to evaluate the seal integrity of candidate sequestration formation in the long run. This work investigates possible alteration of wellbore cement when bonded by different host formation rock upon exposure to CO2-saturated brine. Composite cement-sandstone and cement-limestone core samples were created to perform reactive coreflood experiments. After an eight-day dynamic flow-through period, both cores had a similar extent of porosity increase, while the cement-limestone core experienced a ten-fold higher increase in permeability. With the aid of X-ray Micro-CT imaging and Scanning Electron Microscopy, it is observed that cement underwent greater degradation at the cement-sandstone interface. Degradation of cement-limestone core mainly took place on the host rock matrix. Worm holes were developed and a solution channel was formed in the limestone, creating a dominant flow path that altered both flow and reaction behavior. Limestone buffered the injected acidic brine preventing further deterioration of cement near the core outlet. Changes in fluid chemistry of limestone and sandstone coreflood effluents are compared. Results from this work are aimed at assisting the development and validation of robust reactive transport models through direct measurement of cemented rock core porosity and permeability evolution as well as the effluent aqueous chemistry change. This will subsequently improve predictive capabilities of reactive transport models associated with CO2 sequestration in geologic environments. Permeability Evolution of Cement-Rock Core Sample during Dynamic Flow of CO2-Brine</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAG...148..272A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAG...148..272A"><span>Applying a probabilistic seismic-petrophysical inversion and two different rock-physics models for reservoir characterization in offshore Nile Delta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aleardi, Mattia</p> <p>2018-01-01</p> <p>We apply a two-step probabilistic seismic-petrophysical inversion for the characterization of a clastic, gas-saturated, reservoir located in offshore Nile Delta. In particular, we discuss and compare the results obtained when two different rock-physics models (RPMs) are employed in the inversion. The first RPM is an empirical, linear model directly derived from the available well log data by means of an optimization procedure. The second RPM is a theoretical, non-linear model based on the Hertz-Mindlin contact theory. The first step of the inversion procedure is a Bayesian linearized amplitude versus angle (AVA) inversion in which the elastic properties, and the associated uncertainties, are inferred from pre-stack seismic data. The estimated elastic properties constitute the input to the second step that is a probabilistic petrophysical inversion in which we account for the noise contaminating the recorded seismic data and the uncertainties affecting both the derived rock-physics models and the estimated elastic parameters. In particular, a Gaussian mixture a-priori distribution is used to properly take into account the facies-dependent behavior of petrophysical properties, related to the different fluid and rock properties of the different litho-fluid classes. In the synthetic and in the field data tests, the very minor differences between the results obtained by employing the two RPMs, and the good match between the estimated properties and well log information, confirm the applicability of the inversion approach and the suitability of the two different RPMs for reservoir characterization in the investigated area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023820','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023820"><span>Anomalous concentrations of seismically triggered rock falls in Pacoima Canyon: Are they caused by highly susceptible slopes or local amplification of seismic shaking?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Harp, Edwin L.; Jibson, Randall W.</p> <p>2002-01-01</p> <p>Anomalously high concentrations of rock falls were triggered in Pacoima Canyon (Los Angeles, California) during the 1994 Northridge earthquake. Similar concentrations were also documented from the 1971 San Fernando earthquake. Using an engineering rock-mass classification that evaluates the susceptibility of rock slopes to seismic failure based on the fracture properties of a rock mass (in terms of a numerical "Q-value" that describes rock quality), the rock slopes in Pacoima Canyon were compared with rock slopes in sorrounding areas where topography and lithology are similar, but rock-fall concentrations from the earthquakes were much lower. A statistical comparison of Q-values from five sites surrounding Pacoima Canyon indicates that seismic susceptibilities are similar to those within Pacoima Canyon; differences in the characteristics of rock slopes between these sites are not sufficient to account for the relatively high concentrations of rock falls within Pacoima Canyon as compared to low concentrations elsewhere. By eliminating susceptibility differences as a cause, the most likely explanations for the differences in rock-fall concentrations is anomalously high shaking levels in Pacoima Canyon, possibly resulting from topographic amplification within the canyon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917203S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917203S"><span>Digital Rock Physics of hydrate-bearing sediments: Determination of effective elastic properties on the microscale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sell, Kathleen; Saenger, Erik H.; Quintal, Beatriz; Enzmann, Frieder; Kersten, Michael</p> <p>2017-04-01</p> <p>To date, very little is known about the distribution of natural gas hydrates in sedimentary matrices and its influence on the seismic properties of the host rock, in particular at low hydrate concentration. Digital rock physics offers a unique approach to this issue yet requires good quality, high resolution 3D representations for the accurate modelling of petrophysical and transport properties. Although such models are readily available via in-situ synchrotron radiation X-ray tomography the analysis of such data asks for complex workflows and high computational power to maintain valuable results. More recently digital rock physics took also on data from a fairly new group of techniques focused on in-situ studies recreating complex settings that cannot be easily accessed by conventional means. Here, we present a best-practise procedure complementing high-resolution synchrotron-tomography data of hydrate-bearing sedimentary matrices from Chaouachi et al. (2015) with data post-processing, including image enhancement and segmentation as well as exemplary numerical simulations of acoustic wave propagation in 3D on realistic rock using the derived results. A combination of the tomography and 3D modelling opens a path to a more reliable deduction of properties of gas hydrate bearing sediments without a reliance on idealised and frequently imprecise models (Sell et al. 2016). The advantage of this method over traditional, often oversimplified models lays in a more faithful description of complex pore geometries and microstructures found in natural formations (Andrä et al., 2013b, a). References: Chaouachi, M., Falenty, A., Sell, K., Enzmann, F., Kersten, M., Haberthür, D., and Kuhs, W. F.: Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron x-ray computed tomographic microscopy, Geochem. Geophy. Geosy., 16, 1711-1722, 2015. Sell, K., E. H. Saenger, A. Falenty, M. Chaouachi, D. Haberthür, F. Enzmann, W. F. Kuhs, and M. Kersten: On the path to the digital rock physics of gas hydrate-bearing sediments - processing of in situ synchrotron-tomography data, Solid Earth, 7(4), 1243-1258, 2016. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks - Part II: Computing effective properties, Comput. Geosci., 50, 33-43, 2013a. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks - Part I: Imaging and segmentation, Comput. Geosci., 50, 25-32, 2013b.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AIPC.1542...25C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AIPC.1542...25C"><span>The glass and jamming transitions in dense granular matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coulais, Corentin; Candelier, Raphaël; Dauchot, Olivier</p> <p>2013-06-01</p> <p>Everyday life tells us that matter acquires rigidity either when it cools down, like lava flows which turn into solid rocks, or when it is compacted, like tablets simply formed by powder compression. As suggested by these examples, solidification is not the sole privilege of crystals but also happens for disordered media such as glass formers, granular media, foams, emulsions and colloidal suspensions. Fifteen years ago the "Jamming paradigm" emerged to encompass in a unique framework the glass transition and the emergence of yield stress, two challenging issues in modern condensed matter physics. One must realize how bold this proposal was, given that the glass transition is a finite temperature transition governing the dynamical properties of supercooled liquids, while Jamming is essentially a zero temperature, zero external stress and purely geometric transition which occurs when a given packing of particles reaches the maximum compression state above which particles start to overlap. More recently, the observation of remarkable scaling properties on the approach to jamming led to the conjecture that this zero temperature "critical point" could determine the properties of dense particle systems within a region of the parameter space to be determined, which in principle could include thermal and stressed systems. Fifteen years of intense theoretical and experimental work later, what have we learned about Jamming and glassy dynamics? In this paper, we discuss these issues in the light of the experiments we have been conducting with vibrated grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMEP21H..01E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMEP21H..01E"><span>Lithologic Controls on Critical Zone Processes in a Variably Metamorphosed Shale-Hosted Watershed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eldam Pommer, R.; Navarre-Sitchler, A.</p> <p>2017-12-01</p> <p>Local and regional shifts in thermal maturity within sedimentary shale systems impart significant variation in chemical and physical rock properties, such as pore-network morphology, mineralogy, organic carbon content, and solute release potential. Even slight variations in these properties on a watershed scale can strongly impact surface and shallow subsurface processes that drive soil formation, landscape evolution, and bioavailability of nutrients. Our ability to map and quantify the effects of this heterogeneity on critical zone processes is hindered by the complex coupling of the multi-scale nature of rock properties, geochemical signatures, and hydrological processes. This study addresses each of these complexities by synthesizing chemical and physical characteristics of variably metamorphosed shales in order to link rock heterogeneity with modern earth surface and shallow subsurface processes. More than 80 samples of variably metamorphosed Mancos Shale were collected in the East River Valley, Colorado, a headwater catchment of the Upper Colorado River Basin. Chemical and physical analyses of the samples show that metamorphism decreases overall rock porosity, pore anisotropy, and surface area, and introduces unique chemical signatures. All of these changes result in lower overall solute release from the Mancos Shale in laboratory dissolution experiments and a change in rock-derived solute chemistry with decreasing organic carbon and cation exchange capacity (Ca, Na, Mg, and K). The increase in rock competency and decrease in reactivity of the more thermally mature shales appear to subsequently control river morphology, with lower channel sinuosity associated with areas of the catchment underlain by metamorphosed Mancos Shale. This work illustrates the formative role of the geologic template on critical zone processes and landscape development within and across watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760019039','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760019039"><span>Electrical properties of Apollo 17 rock and soil samples and a summary of the electrical properties of lunar material at 450 MHz frequency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gold, T.; Bilson, E.; Baron, R. L.</p> <p>1976-01-01</p> <p>The dielectric constant and the voltage absorption length was measured for four Apollo 17 soil samples (73241, 74220, 75061, 76501) and for two Apollo 17 rock samples (76315 and 79135) at 450 MHz frequency. The dielectric constant and absorption length measurements made on the lunar samples are reviewed and related to the transition element concentration in these samples. The significance of the laboratory measurements for radar observations is discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>