Sample records for dynamic sgs model

  1. Toward Simplification of Dynamic Subgrid-Scale Models

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    We examine the relationship between the filter and the subgrid-scale (SGS) model for large-eddy simulations, in general, and for those with dynamic SGS models, in particular. From a review of the literature, it would appear that many practitioners of LES consider the link between the filter and the model more or less as a formality of little practical effect. In contrast, we will show that the filter and the model are intimately linked, that the Smagorinsky SGS model is appropriate only for filters of first- or second-order, and that the Smagorinsky model is inconsistent with spectral filters. Moreover, the Germano identity is shown to be both problematic and unnecessary for the development of dynamic SGS models. Its use obscures the following fundamental realization: For a suitably chosen filter, the computible resolved turbulent stresses, property scaled, closely approximate the SGS stresses.

  2. Characteristics of subgrid-resolved-scale dynamics in anisotropic turbulence, with application to rough-wall boundary layers

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1999-10-01

    Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using eddy viscosity subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the ground, a rough surface with no viscous sublayer. It has recently been shown that convective motions carry this localized error vertically to infect the entire ABL, and that the error is more a consequence of the SGS model than grid resolution in the near-surface inertial layer. Our goal was to determine what first-order errors in the predicted SGS terms lead to spurious expectation values, and what basic dynamics in the filtered equation for resolved scale (RS) velocity must be captured by SGS models to correct the deficiencies. Our analysis is of general relevance to LES of rough-wall high Reynolds number boundary layers, where the essential difficulty in the closure is the importance of the SGS acceleration terms, a consequence of necessary under-resolution of relevant energy-containing motions at the first few grid levels, leading to potentially strong couplings between the anisotropies in resolved velocity and predicted SGS dynamics. We analyze these two issues (under-resolution and anisotropy) in the absence of a wall using two direct numerical simulation datasets of homogeneous turbulence with very different anisotropic structure characteristic of the near-surface ABL: shear- and buoyancy-generated turbulence. We uncover three important issues which should be addressed in the design of SGS closures near rough walls and we provide a priori tests for the SGS model. First, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted velocity field. Second, we find that eddy viscosity and "similarity" SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Third, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.

  3. SGS Dynamics and Modeling near a Rough Wall.

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1998-11-01

    Large-eddy simulation (LES) of the atmospheric boundary layer (ABL) using classical subgrid-scale (SGS) models is known to poorly predict mean shear at the first few grid cells near the rough surface, creating error which can propogate vertically to infect the entire ABL. Our goal was to determine the first-order errors in predicted SGS terms that arise as a consequence of necessary under-resolution of integral scales and anisotropy which exist at the first few grid levels in LES of rough wall turbulence. Analyzing the terms predicted from eddy-viscosity and similarity closures with DNS anisotropic datasets of buoyancy- and shear-driven turbulence, we uncover three important issues which should be addressed in the design of SGS closures for rough walls and we provide a priori tests for the SGS model. Firstly, we identify a strong spurious coupling between the anisotropic structure of the resolved velocity field and predicted SGS dynamics which can create a feedback loop to incorrectly enhance certain components of the predicted resolved velocity. Secondly, we find that eddy viscosity and similarity SGS models do not contain enough degrees of freedom to capture, at a sufficient level of accuracy, both RS-SGS energy flux and SGS-RS dynamics. Thirdly, to correctly capture pressure transport near a wall, closures must be made more flexible to accommodate proper partitioning between SGS stress divergence and SGS pressure gradient.

  4. Local dynamic subgrid-scale models in channel flow

    NASA Technical Reports Server (NTRS)

    Cabot, William H.

    1994-01-01

    The dynamic subgrid-scale (SGS) model has given good results in the large-eddy simulation (LES) of homogeneous isotropic or shear flow, and in the LES of channel flow, using averaging in two or three homogeneous directions (the DA model). In order to simulate flows in general, complex geometries (with few or no homogeneous directions), the dynamic SGS model needs to be applied at a local level in a numerically stable way. Channel flow, which is inhomogeneous and wall-bounded flow in only one direction, provides a good initial test for local SGS models. Tests of the dynamic localization model were performed previously in channel flow using a pseudospectral code and good results were obtained. Numerical instability due to persistently negative eddy viscosity was avoided by either constraining the eddy viscosity to be positive or by limiting the time that eddy viscosities could remain negative by co-evolving the SGS kinetic energy (the DLk model). The DLk model, however, was too expensive to run in the pseudospectral code due to a large near-wall term in the auxiliary SGS kinetic energy (k) equation. One objective was then to implement the DLk model in a second-order central finite difference channel code, in which the auxiliary k equation could be integrated implicitly in time at great reduction in cost, and to assess its performance in comparison with the plane-averaged dynamic model or with no model at all, and with direct numerical simulation (DNS) and/or experimental data. Other local dynamic SGS models have been proposed recently, e.g., constrained dynamic models with random backscatter, and with eddy viscosity terms that are averaged in time over material path lines rather than in space. Another objective was to incorporate and test these models in channel flow.

  5. Evaluation of subgrid-scale models in large-eddy simulations of turbulent flow in a centrifugal pump impeller

    NASA Astrophysics Data System (ADS)

    Yang, Zhengjun; Wang, Fujun; Zhou, Peijian

    2012-09-01

    The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.

  6. A dynamic regularized gradient model of the subgrid-scale stress tensor for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Vollant, A.; Balarac, G.; Corre, C.

    2016-02-01

    Large-eddy simulation (LES) solves only the large scales part of turbulent flows by using a scales separation based on a filtering operation. The solution of the filtered Navier-Stokes equations requires then to model the subgrid-scale (SGS) stress tensor to take into account the effect of scales smaller than the filter size. In this work, a new model is proposed for the SGS stress model. The model formulation is based on a regularization procedure of the gradient model to correct its unstable behavior. The model is developed based on a priori tests to improve the accuracy of the modeling for both structural and functional performances, i.e., the model ability to locally approximate the SGS unknown term and to reproduce enough global SGS dissipation, respectively. LES is then performed for a posteriori validation. This work is an extension to the SGS stress tensor of the regularization procedure proposed by Balarac et al. ["A dynamic regularized gradient model of the subgrid-scale scalar flux for large eddy simulations," Phys. Fluids 25(7), 075107 (2013)] to model the SGS scalar flux. A set of dynamic regularized gradient (DRG) models is thus made available for both the momentum and the scalar equations. The second objective of this work is to compare this new set of DRG models with direct numerical simulations (DNS), filtered DNS in the case of classic flows simulated with a pseudo-spectral solver and with the standard set of models based on the dynamic Smagorinsky model. Various flow configurations are considered: decaying homogeneous isotropic turbulence, turbulent plane jet, and turbulent channel flows. These tests demonstrate the stable behavior provided by the regularization procedure, along with substantial improvement for velocity and scalar statistics predictions.

  7. Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows

    NASA Technical Reports Server (NTRS)

    Blaisdell, Gregory A.

    1996-01-01

    The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.

  8. A mixed multiscale model better accounting for the cross term of the subgrid-scale stress and for backscatter

    NASA Astrophysics Data System (ADS)

    Thiry, Olivier; Winckelmans, Grégoire

    2016-02-01

    In the large-eddy simulation (LES) of turbulent flows, models are used to account for the subgrid-scale (SGS) stress. We here consider LES with "truncation filtering only" (i.e., that due to the LES grid), thus without regular explicit filtering added. The SGS stress tensor is then composed of two terms: the cross term that accounts for interactions between resolved scales and unresolved scales, and the Reynolds term that accounts for interactions between unresolved scales. Both terms provide forward- (dissipation) and backward (production, also called backscatter) energy transfer. Purely dissipative, eddy-viscosity type, SGS models are widely used: Smagorinsky-type models, or more advanced multiscale-type models. Dynamic versions have also been developed, where the model coefficient is determined using a dynamic procedure. Being dissipative by nature, those models do not provide backscatter. Even when using the dynamic version with local averaging, one typically uses clipping to forbid negative values of the model coefficient and hence ensure the stability of the simulation; hence removing the backscatter produced by the dynamic procedure. More advanced SGS model are thus desirable, and that better conform to the physics of the true SGS stress, while remaining stable. We here investigate, in decaying homogeneous isotropic turbulence, and using a de-aliased pseudo-spectral method, the behavior of the cross term and of the Reynolds term: in terms of dissipation spectra, and in terms of probability density function (pdf) of dissipation in physical space: positive and negative (backscatter). We then develop a new mixed model that better accounts for the physics of the SGS stress and for the backscatter. It has a cross term part which is built using a scale-similarity argument, further combined with a correction for Galilean invariance using a pseudo-Leonard term: this is the term that also does backscatter. It also has an eddy-viscosity multiscale model part that accounts for all the remaining phenomena (also for the incompleteness of the cross term model), that is dynamic and that adjusts the overall dissipation. The model is tested, both a priori and a posteriori, and is compared to the direct numerical simulation and to the exact SGS terms, also in time. The model is seen to provide accurate energy spectra, also in comparison to the dynamic Smagorinsky model. It also provides significant backscatter (although four times less than the real SGS stress), while remaining stable.

  9. Performance of Smagorinsky and dynamic models in near surface turbulence

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1997-11-01

    In LES of high-Reynolds-number wall bounded turbulence such as the atmospheric boundary layer (ABL), a viscous sublayer either does not exist or is within the first grid cell, and some integral scale motions are necessarily under-resolved at the first few grid locations. Here the subgrid terms dominate the evolution of resolved velocity and the SGS model performance becomes crucial. To develop improved closures for surface layer turbulence (under-resolved and anisotropic), we explore (a) why current SGS closures fail and (b) what needs to be fixed. We evaluate the performance of the Smagorinsky and dynamic models using DNS data from shear- and buoyancy-driven turbulence as a function of filter cutoff location. We find that the underlying assumption of good alignment between the subgrid stress and resolved strain-rate tensors is not correct in general. More importantly, the Smagorinsky model incorrectly predicts a strong preference in the direction of the SGS stress divergence vector, a spurious prediction that is directly related to the anisotropic structure of the resolved turbulence field. This, and its under-estimation of the SGS pressure gradient, are likely sources of the errors observed in LES of the ABL. Whereas the dynamic formulations do a better job predicting some SGS dynamics, the model fails when the filter cutoff is near an integral scale, and predicts unreasonable fluctuation levels-- although performance is sensitive to type of averaging. *supported by ARO grant DAAL03-92-0117.

  10. Comparison of Large eddy dynamo simulation using dynamic sub-grid scale (SGS) model with a fully resolved direct simulation in a rotating spherical shell

    NASA Astrophysics Data System (ADS)

    Matsui, H.; Buffett, B. A.

    2017-12-01

    The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.

  11. Large eddy simulations of time-dependent and buoyancy-driven channel flows

    NASA Technical Reports Server (NTRS)

    Cabot, William H.

    1993-01-01

    The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.

  12. Impact of Subgrid Scale Models and Heat Loss on Large Eddy Simulations of a Premixed Jet Burner Using Flamelet-Generated Manifolds

    NASA Astrophysics Data System (ADS)

    Hernandez Perez, Francisco E.; Im, Hong G.; Lee, Bok Jik; Fancello, Alessio; Donini, Andrea; van Oijen, Jeroen A.; de Goey, L. Philip H.

    2017-11-01

    Large eddy simulations (LES) of a turbulent premixed jet flame in a confined chamber are performed employing the flamelet-generated manifold (FGM) method for tabulation of chemical kinetics and thermochemical properties, as well as the OpenFOAM framework for computational fluid dynamics. The burner has been experimentally studied by Lammel et al. (2011) and features an off-center nozzle, feeding a preheated lean methane-air mixture with an equivalence ratio of 0.71 and mean velocity of 90 m/s, at 573 K and atmospheric pressure. Conductive heat loss is accounted for in the FGM tabulation via burner-stabilized flamelets and the subgrid-scale (SGS) turbulence-chemistry interaction is modeled via presumed filtered density functions. The impact of heat loss inclusion as well as SGS modeling for both the SGS stresses and SGS variance of progress variable on the numerical results is investigated. Comparisons of the LES results against measurements show a significant improvement in the prediction of temperature when heat losses are incorporated into FGM. While further enhancements in the LES results are accomplished by using SGS models based on transported quantities and/or dynamically computed coefficients as compared to the Smagorinsky model, heat loss inclusion is more relevant. This research was sponsored by King Abdullah University of Science and Technology (KAUST) and made use of computational resources at KAUST Supercomputing Laboratory.

  13. Stabilized High-order Galerkin Methods Based on a Parameter-free Dynamic SGS Model for LES

    DTIC Science & Technology

    2015-01-01

    stresses obtained via Dyn-SGS are residual-based, the effect of the artificial diffusion is minimal in the regions where the solution is smooth. The direct...used in the analysis of the results rather than in the definition and analysis of the LES equations described from now on. 2.1 LES and the Dyn-SGS model... definition is sucient given the scope of the current study; nevertheless, a more proper defi- nition of for LES should be used in future work

  14. Tests of dynamic Lagrangian eddy viscosity models in Large Eddy Simulations of flow over three-dimensional bluff bodies

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B.

    2004-11-01

    Large Eddy Simulations (LES) of atmospheric boundary-layer air movement in urban environments are especially challenging due to complex ground topography. Typically in such applications, fairly coarse grids must be used where the subgrid-scale (SGS) model is expected to play a crucial role. A LES code using pseudo-spectral discretization in horizontal planes and second-order differencing in the vertical is implemented in conjunction with the immersed boundary method to incorporate complex ground topography, with the classic equilibrium log-law boundary condition in the new-wall region, and with several versions of the eddy-viscosity model: (1) the constant-coefficient Smagorinsky model, (2) the dynamic, scale-invariant Lagrangian model, and (3) the dynamic, scale-dependent Lagrangian model. Other planar-averaged type dynamic models are not suitable because spatial averaging is not possible without directions of statistical homogeneity. These SGS models are tested in LES of flow around a square cylinder and of flow over surface-mounted cubes. Effects on the mean flow are documented and found not to be major. Dynamic Lagrangian models give a physically more realistic SGS viscosity field, and in general, the scale-dependent Lagrangian model produces larger Smagorinsky coefficient than the scale-invariant one, leading to reduced distributions of resolved rms velocities especially in the boundary layers near the bluff bodies.

  15. The power of structural modeling of sub-grid scales - application to astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Georgiev Vlaykov, Dimitar; Grete, Philipp

    2015-08-01

    In numerous astrophysical phenomena the dynamical range can span 10s of orders of magnitude. This implies more than billions of degrees-of-freedom and precludes direct numerical simulations from ever being a realistic possibility. A physical model is necessary to capture the unresolved physics occurring at the sub-grid scales (SGS).Structural modeling is a powerful concept which renders itself applicable to various physical systems. It stems from the idea of capturing the structure of the SGS terms in the evolution equations based on the scale-separation mechanism and independently of the underlying physics. It originates in the hydrodynamics field of large-eddy simulations. We apply it to the study of astrophysical MHD.Here, we present a non-linear SGS model for compressible MHD turbulence. The model is validated a priori at the tensorial, vectorial and scalar levels against of set of high-resolution simulations of stochastically forced homogeneous isotropic turbulence in a periodic box. The parameter space spans 2 decades in sonic Mach numbers (0.2 - 20) and approximately one decade in magnetic Mach number ~(1-8). This covers the super-Alfvenic sub-, trans-, and hyper-sonic regimes, with a range of plasma beta from 0.05 to 25. The Reynolds number is of the order of 103.At the tensor level, the model components correlate well with the turbulence ones, at the level of 0.8 and above. Vectorially, the alignment with the true SGS terms is encouraging with more than 50% of the model within 30° of the data. At the scalar level we look at the dynamics of the SGS energy and cross-helicity. The corresponding SGS flux terms have median correlations of ~0.8. Physically, the model represents well the two directions of the energy cascade.In comparison, traditional functional models exhibit poor local correlations with the data already at the scalar level. Vectorially, they are indifferent to the anisotropy of the SGS terms. They often struggle to represent the energy backscatter from small to large scales as well as the turbulent dynamo mechanism.Overall, the new model surpasses the traditional ones in all tests by a large margin.

  16. Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Nazarov, Murtazo; Giraldo, Francis X.

    2015-11-01

    The high order spectral element approximation of the Euler equations is stabilized via a dynamic sub-grid scale model (Dyn-SGS). This model was originally designed for linear finite elements to solve compressible flows at large Mach numbers. We extend its application to high-order spectral elements to solve the Euler equations of low Mach number stratified flows. The major justification of this work is twofold: stabilization and large eddy simulation are achieved via one scheme only. Because the diffusion coefficients of the regularization stresses obtained via Dyn-SGS are residual-based, the effect of the artificial diffusion is minimal in the regions where the solution is smooth. The direct consequence is that the nominal convergence rate of the high-order solution of smooth problems is not degraded. To our knowledge, this is the first application in atmospheric modeling of a spectral element model stabilized by an eddy viscosity scheme that, by construction, may fulfill stabilization requirements, can model turbulence via LES, and is completely free of a user-tunable parameter. From its derivation, it will be immediately clear that Dyn-SGS is independent of the numerical method; it could be implemented in a discontinuous Galerkin, finite volume, or other environments alike. Preliminary discontinuous Galerkin results are reported as well. The straightforward extension to non-linear scalar problems is also described. A suite of 1D, 2D, and 3D test cases is used to assess the method, with some comparison against the results obtained with the most known Lilly-Smagorinsky SGS model.

  17. SGS Closure Methodology for Surface-layer Rough-wall Turbulence.

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1998-11-01

    As reported in another abstract, necessary under-resolution and anisotropy of integral scales near the surface in LES of rough-wall boundary layers cause errors in the statistical structure of the modeled subgrid-scale (SGS) acceleration using eddy viscosity and similarity closures. The essential difficulty is an overly strong coupling between the modeled SGS stress tensor and predicted resolved velocity u^r. Specific to this problem, we propose a class of SGS closures in which subgrid scale velocities u^s1 between an explicit filter scale Δ and the grid scale δ are estimated from the solution to a separate prognostic equation, and the SGS stress tensor is formed using u^s1 as a surrogate for subgrid velocity u^s. The method is currently under development for pseudo-spectral LES where a filter at scales δ < Δ is explicit. The exact evolution equation for u^s1 contains dynamical interactions between u^r and u^s1 which can be calculated directly, and a term which is modeled to capture energy flux from the s1 scales without altering u^s1 structure. Three levels of closure for SGS stress are possible at different levels of accuracy and computational expense. The cheapest model has been tested with DNS and LES of anisotropic buoyancy-driven turbulence. Preliminary results show major improvement in the structure of the predicted SGS acceleration with much of the spurious coupling between u^r and SGS stress removed. Performance, predictions and cost of the three levels of closure are under analysis.

  18. A dynamic subgrid-scale parameterization of the effective wall stress in atmospheric boundary layer flows over multiscale, fractal-like surfaces

    NASA Astrophysics Data System (ADS)

    Anderson, William; Meneveau, Charles

    2010-05-01

    A dynamic subgrid-scale (SGS) parameterization for hydrodynamic surface roughness is developed for large-eddy simulation (LES) of atmospheric boundary layer (ABL) flow over multiscale, fractal-like surfaces. The model consists of two parts. First, a baseline model represents surface roughness at horizontal length-scales that can be resolved in the LES. This model takes the form of a force using a prescribed drag coefficient. This approach is tested in LES of flow over cubes, wavy surfaces, and ellipsoidal roughness elements for which there are detailed experimental data available. Secondly, a dynamic roughness model is built, accounting for SGS surface details of finer resolution than the LES grid width. The SGS boundary condition is based on the logarithmic law of the wall, where the unresolved roughness of the surface is modeled as the product of local root-mean-square (RMS) of the unresolved surface height and an unknown dimensionless model coefficient. This coefficient is evaluated dynamically by comparing the plane-average hydrodynamic drag at two resolutions (grid- and test-filter scale, Germano et al., 1991). The new model is tested on surfaces generated through superposition of random-phase Fourier modes with prescribed, power-law surface-height spectra. The results show that the method yields convergent results and correct trends. Limitations and further challenges are highlighted. Supported by the US National Science Foundation (EAR-0609690).

  19. Stochastic Parametrization for the Impact of Neglected Variability Patterns

    NASA Astrophysics Data System (ADS)

    Kaiser, Olga; Hien, Steffen; Achatz, Ulrich; Horenko, Illia

    2017-04-01

    An efficient description of the gravity wave variability and the related spontaneous emission processes requires an empirical stochastic closure for the impact of neglected variability patterns (subgridscales or SGS). In particular, we focus on the analysis of the IGW emission within a tangent linear model which requires a stochastic SGS parameterization for taking the self interaction of the ageostrophic flow components into account. For this purpose, we identify the best SGS model in terms of exactness and simplicity by deploying a wide range of different data-driven model classes, including standard stationary regression models, autoregression and artificial neuronal networks models - as well as the family of nonstationary models like FEM-BV-VARX model class (Finite Element based vector autoregressive time series analysis with bounded variation of the model parameters). The models are used to investigate the main characteristics of the underlying dynamics and to explore the significant spatial and temporal neighbourhood dependencies. The best SGS model in terms of exactness and simplicity is obtained for the nonstationary FEM-BV-VARX setting, determining only direct spatial and temporal neighbourhood as significant - and allowing to drastically reduce the number of informations that are required for the optimal SGS. Additionally, the models are characterized by sets of vector- and matrix-valued parameters that must be inferred from big data sets provided by simulations - making it a task that can not be solved without deploying high-performance computing facilities (HPC).

  20. Large Eddy Simulation Study for Fluid Disintegration and Mixing

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2011-01-01

    A new modeling approach is based on the concept of large eddy simulation (LES) within which the large scales are computed and the small scales are modeled. The new approach is expected to retain the fidelity of the physics while also being computationally efficient. Typically, only models for the small-scale fluxes of momentum, species, and enthalpy are used to reintroduce in the simulation the physics lost because the computation only resolves the large scales. These models are called subgrid (SGS) models because they operate at a scale smaller than the LES grid. In a previous study of thermodynamically supercritical fluid disintegration and mixing, additional small-scale terms, one in the momentum and one in the energy conservation equations, were identified as requiring modeling. These additional terms were due to the tight coupling between dynamics and real-gas thermodynamics. It was inferred that if these terms would not be modeled, the high density-gradient magnitude regions, experimentally identified as a characteristic feature of these flows, would not be accurately predicted without the additional term in the momentum equation; these high density-gradient magnitude regions were experimentally shown to redistribute turbulence in the flow. And it was also inferred that without the additional term in the energy equation, the heat flux magnitude could not be accurately predicted; the heat flux to the wall of combustion devices is a crucial quantity that determined necessary wall material properties. The present work involves situations where only the term in the momentum equation is important. Without this additional term in the momentum equation, neither the SGS-flux constant-coefficient Smagorinsky model nor the SGS-flux constant-coefficient Gradient model could reproduce in LES the pressure field or the high density-gradient magnitude regions; the SGS-flux constant- coefficient Scale-Similarity model was the most successful in this endeavor although not totally satisfactory. With a model for the additional term in the momentum equation, the predictions of the constant-coefficient Smagorinsky and constant-coefficient Scale-Similarity models were improved to a certain extent; however, most of the improvement was obtained for the Gradient model. The previously derived model and a newly developed model for the additional term in the momentum equation were both tested, with the new model proving even more successful than the previous model at reproducing the high density-gradient magnitude regions. Several dynamic SGS-flux models, in which the SGS-flux model coefficient is computed as part of the simulation, were tested in conjunction with the new model for this additional term in the momentum equation. The most successful dynamic model was a "mixed" model combining the Smagorinsky and Gradient models. This work is directly applicable to simulations of gas turbine engines (aeronautics) and rocket engines (astronautics).

  1. A Coherent vorticity preserving eddy-viscosity correction for Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Chapelier, J.-B.; Wasistho, B.; Scalo, C.

    2018-04-01

    This paper introduces a new approach to Large-Eddy Simulation (LES) where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated or deactivated in regions dominated by large-scale and/or laminar vortical motion. The proposed coherent-vorticity preserving (CvP) LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy, σ. Values of σ close to 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of the SGS dissipation. The intensity of the SGS dissipation is progressively increased for σ < 1 which corresponds to a small-scale spectral broadening. The SGS dissipation is then fully activated in developed turbulence characterized by σ ≤σeq, where the value σeq is derived assuming a Kolmogorov spectrum. The proposed approach can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. LES of Taylor-Green vortex breakdown demonstrates that the CvP methodology improves the performance of traditional, non-dynamic dissipative SGS models, capturing the peak of total turbulent kinetic energy dissipation during transition. Similar accuracy is obtained by adopting Germano's dynamic procedure albeit at more than twice the computational overhead. A CvP-LES of a pair of unstable periodic helical vortices is shown to predict accurately the experimentally observed growth rate using coarse resolutions. The ability of the CvP methodology to dynamically sort the coherent, large-scale motion from the smaller, broadband scales during transition is demonstrated via flow visualizations. LES of compressible channel are carried out and show a good match with a reference DNS.

  2. Wildfire simulation using LES with synthetic-velocity SGS models

    NASA Astrophysics Data System (ADS)

    McDonough, J. M.; Tang, Tingting

    2016-11-01

    Wildland fires are becoming more prevalent and intense worldwide as climate change leads to warmer, drier conditions; and large-eddy simulation (LES) is receiving increasing attention for fire spread predictions as computing power continues to improve (see, e.g.,). We report results from wildfire simulations over general terrain employing implicit LES for solution of the incompressible Navier-Stokes (N.-S.) and thermal energy equations with Boussinesq approximation, altered with Darcy, Forchheimer and Brinkman extensions, to represent forested regions as porous media with varying (in both space and time) porosity and permeability. We focus on subgrid-scale (SGS) behaviors computed with a synthetic-velocity model, a discrete dynamical system, based on the poor man's N.-S. equations and investigate the ability of this model to produce fire whirls (tornadoes of fire) at the (unresolved) SGS level. Professor, Mechanical Engineering and Mathematics.

  3. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE PAGES

    GS, Sidharth; Candler, Graham V.

    2018-05-08

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  4. Subgrid-scale effects in compressible variable-density decaying turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GS, Sidharth; Candler, Graham V.

    We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less

  5. Fine-scale spatial genetic dynamics over the life cycle of the tropical tree Prunus africana.

    PubMed

    Berens, D G; Braun, C; González-Martínez, S C; Griebeler, E M; Nathan, R; Böhning-Gaese, K

    2014-11-01

    Studying fine-scale spatial genetic patterns across life stages is a powerful approach to identify ecological processes acting within tree populations. We investigated spatial genetic dynamics across five life stages in the insect-pollinated and vertebrate-dispersed tropical tree Prunus africana in Kakamega Forest, Kenya. Using six highly polymorphic microsatellite loci, we assessed genetic diversity and spatial genetic structure (SGS) from seed rain and seedlings, and different sapling stages to adult trees. We found significant SGS in all stages, potentially caused by limited seed dispersal and high recruitment rates in areas with high light availability. SGS decreased from seed and early seedling stages to older juvenile stages. Interestingly, SGS was stronger in adults than in late juveniles. The initial decrease in SGS was probably driven by both random and non-random thinning of offspring clusters during recruitment. Intergenerational variation in SGS could have been driven by variation in gene flow processes, overlapping generations in the adult stage or local selection. Our study shows that complex sequential processes during recruitment contribute to SGS of tree populations.

  6. High Order Numerical Methods for LES of Turbulent Flows with Shocks

    NASA Technical Reports Server (NTRS)

    Kotov, D. V.; Yee, H. C.; Hadjadj, A.; Wray, A.; Sjögreen, B.

    2014-01-01

    Simulation of turbulent flows with shocks employing explicit subgrid-scale (SGS) filtering may encounter a loss of accuracy in the vicinity of a shock. In this work we perform a comparative study of different approaches to reduce this loss of accuracy within the framework of the dynamic Germano SGS model. One of the possible approaches is to apply Harten's subcell resolution procedure to locate and sharpen the shock, and to use a one-sided test filter at the grid points adjacent to the exact shock location. The other considered approach is local disabling of the SGS terms in the vicinity of the shock location. In this study we use a canonical shock-turbulence interaction problem for comparison of the considered modifications of the SGS filtering procedure. For the considered test case both approaches show a similar improvement in the accuracy near the shock.

  7. Large eddy simulations of compressible magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Grete, Philipp

    2017-02-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the subsonic (sonic Mach number M s ≈ 0.2) to the highly supersonic (M s ≈ 20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ≈ 3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.

  8. Explicit filtering in large eddy simulation using a discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Brazell, Matthew J.

    The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.

  9. Direct and Large Eddy Simulation of non-equilibrium wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Park, Hee-Jun

    2005-11-01

    The performance of several existing SGS models in non-equilibrium wall-bounded turbulent flows is investigated through comparisons of LES and DNS. The test problem is a shear-driven three-dimensional turbulent channel flow at base Reτ˜210 established by impulsive motion of one of the channel walls in the spanwise direction with a spanwise velocity equal to 3/4 of the bulk mean velocity in the channel. The DNS and LES are performed using pseudo-spectral methods with resolutions of 128x128x129 and 32x64x65, respectively. The SGS models tested include the nonlinear Interactions Approximation model (NIA) [Haliloglu and Akhavan (2004)], the Dynamic Smagorinsky model (DSM) [Germano et al. (1991)], and the Dynamic Mixed Model (DMM) [Zang et al. (1993)]. The results show that NIA gives the best overall agreement with DNS. Both DMM and DSM over-predict the decay of the mean streamwise wall shear stress on the moving wall, while NIA gives results in close agreements with DNS. Similarly, NIA gives the best agreement with DNS in the prediction of the mean velocity, the higher-order turbulence statistics, and the lag angle between the mean shear and the turbulent shear stress. These results suggest that non-equilibrium wall-bounded turbulent flows can be accurately computed by LES with NIA as the SGS model.

  10. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.

    NASA Astrophysics Data System (ADS)

    Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.

    2017-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF demonstrated that CF is improved if SHOC is provided with correct variances of total water and MSE. Consequently, SHOC was modified to include two new prognostic equations for variances of total water and MSE, and coupled with the Chikira-Sugiyama parameterization of deep convection to include effects of detrainment on the prognostic variances.

  11. Subgrid-scale stresses and scalar fluxes constructed by the multi-scale turnover Lagrangian map

    NASA Astrophysics Data System (ADS)

    AL-Bairmani, Sukaina; Li, Yi; Rosales, Carlos; Xie, Zheng-tong

    2017-04-01

    The multi-scale turnover Lagrangian map (MTLM) [C. Rosales and C. Meneveau, "Anomalous scaling and intermittency in three-dimensional synthetic turbulence," Phys. Rev. E 78, 016313 (2008)] uses nested multi-scale Lagrangian advection of fluid particles to distort a Gaussian velocity field and, as a result, generate non-Gaussian synthetic velocity fields. Passive scalar fields can be generated with the procedure when the fluid particles carry a scalar property [C. Rosales, "Synthetic three-dimensional turbulent passive scalar fields via the minimal Lagrangian map," Phys. Fluids 23, 075106 (2011)]. The synthetic fields have been shown to possess highly realistic statistics characterizing small scale intermittency, geometrical structures, and vortex dynamics. In this paper, we present a study of the synthetic fields using the filtering approach. This approach, which has not been pursued so far, provides insights on the potential applications of the synthetic fields in large eddy simulations and subgrid-scale (SGS) modelling. The MTLM method is first generalized to model scalar fields produced by an imposed linear mean profile. We then calculate the subgrid-scale stress, SGS scalar flux, SGS scalar variance, as well as related quantities from the synthetic fields. Comparison with direct numerical simulations (DNSs) shows that the synthetic fields reproduce the probability distributions of the SGS energy and scalar dissipation rather well. Related geometrical statistics also display close agreement with DNS results. The synthetic fields slightly under-estimate the mean SGS energy dissipation and slightly over-predict the mean SGS scalar variance dissipation. In general, the synthetic fields tend to slightly under-estimate the probability of large fluctuations for most quantities we have examined. Small scale anisotropy in the scalar field originated from the imposed mean gradient is captured. The sensitivity of the synthetic fields on the input spectra is assessed by using truncated spectra or model spectra as the input. Analyses show that most of the SGS statistics agree well with those from MTLM fields with DNS spectra as the input. For the mean SGS energy dissipation, some significant deviation is observed. However, it is shown that the deviation can be parametrized by the input energy spectrum, which demonstrates the robustness of the MTLM procedure.

  12. Numerical prediction of pollutant dispersion and transport in an atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zeoli, Stéphanie; Bricteux, Laurent; Mech. Eng. Dpt. Team

    2014-11-01

    The ability to accurately predict concentration levels of air pollutant released from point sources is required in order to determine their environmental impact. A wall modeled large-eddy simulation (WMLES) of the ABL is performed using the OpenFoam based solver SOWFA (Churchfield and Lee, NREL). It uses Boussinesq approximation for buoyancy effects and takes into account Coriolis forces. A synthetic eddy method is proposed to properly model turbulence inlet velocity boundary conditions. This method will be compared with the standard pressure gradient forcing. WMLES are usually performed using a standard Smagorinsky model or its dynamic version. It is proposed here to investigate a subgrid scale (SGS) model with a better spectral behavior. To this end, a regularized variational multiscale (RVMs) model (Jeanmart and Winckelmans, 2007) is implemented together with standard wall function in order to preserve the dynamics of the large scales within the Ekman layer. The influence of the improved SGS model on the wind simulation and scalar transport will be discussed based on turbulence diagnostics.

  13. LES FOR SIMULATING THE GAS EXCHANGE PROCESS IN A SPARK IGNITION ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameen, Muhsin M; yang, xiaofeng; kuo, tang-wei

    2015-01-01

    The gas exchange process is known to be a significant source of cyclic variability in Internal Combustion Engines (ICE). Traditionally, Large Eddy Simulations (LES) are expected to capture these cycle-to-cycle variations. This paper reports a numerical effort to establish best practices for capturing cyclic variability with LES tools in a Transparent Combustion Chamber (TCC) spark ignition engine. The main intention is to examine the sensitivity of cycle averaged mean and Root Mean Square (RMS) flow fields and Proper Orthogonal Decomposition (POD) modes to different computational hardware, adaptive mesh refinement (AMR) and LES sub-grid scale (SGS) models, since these aspects havemore » received little attention in the past couple of decades. This study also examines the effect of near-wall resolution on the predicted wall shear stresses. LES is pursued with commercially available CONVERGE code. Two different SGS models are tested, a one-equation eddy viscosity model and dynamic structure model. The results seem to indicate that both mean and RMS fields without any SGS model are not much different than those with LES models, either one-equation eddy viscosity or dynamic structure model. Computational hardware results in subtle quantitative differences, especially in RMS distributions. The influence of AMR on both mean and RMS fields is negligible. The predicted shear stresses near the liner walls is also found to be relatively insensitive to near-wall resolution except in the valve curtain region.« less

  14. Large Eddy Simulation of jets laden with evaporating drops

    NASA Technical Reports Server (NTRS)

    Leboissetier, A.; Okong'o, N.; Bellan, J.

    2004-01-01

    LES of a circular jet laden with evaporating liquid drops are conducted to assess computational-drop modeling and three different SGS-flux models: the Scale Similarity model (SSC), using a constant coefficient calibrated on a temporal mixing layer DNS database, and dynamic-coefficient Gradient and Smagorinsky models.

  15. Large-Eddy Simulations of Radiatively Driven Convection: Sensitivities to the Representation of Small Scales.

    NASA Astrophysics Data System (ADS)

    Stevens, Bjorn; Moeng, Chin-Hoh; Sullivan, Peter P.

    1999-12-01

    Large-eddy simulations of a smoke cloud are examined with respect to their sensitivity to small scales as manifest in either the grid spacing or the subgrid-scale (SGS) model. Calculations based on a Smagorinsky SGS model are found to be more sensitive to the effective resolution of the simulation than are calculations based on the prognostic turbulent kinetic energy (TKE) SGS model. The difference between calculations based on the two SGS models is attributed to the advective transport, diffusive transport, and/or time-rate-of-change terms in the TKE equation. These terms are found to be leading order in the entrainment zone and allow the SGS TKE to behave in a way that tends to compensate for changes that result in larger or smaller resolved scale entrainment fluxes. This compensating behavior of the SGS TKE model is attributed to the fact that changes that reduce the resolved entrainment flux (viz., values of the eddy viscosity in the upper part of the PBL) simultaneously tend to increase the buoyant production of SGS TKE in the radiatively destabilized portion of the smoke cloud. Increased production of SGS TKE in this region then leads to increased amounts of transported, or fossil, SGS TKE in the entrainment zone itself, which in turn leads to compensating increases in the SGS entrainment fluxes. In the Smagorinsky model, the absence of a direct connection between SGS TKE in the entrainment and radiatively destabilized zones prevents this compensating mechanism from being active, and thus leads to calculations whose entrainment rate sensitivities as a whole reflect the sensitivities of the resolved-scale fluxes to values of upper PBL eddy viscosities.

  16. Improved Large-Eddy Simulation Using a Stochastic Backscatter Model: Application to the Neutral Atmospheric Boundary Layer and Urban Street Canyon Flow

    NASA Astrophysics Data System (ADS)

    O'Neill, J. J.; Cai, X.; Kinnersley, R.

    2015-12-01

    Large-eddy simulation (LES) provides a powerful tool for developing our understanding of atmospheric boundary layer (ABL) dynamics, which in turn can be used to improve the parameterisations of simpler operational models. However, LES modelling is not without its own limitations - most notably, the need to parameterise the effects of all subgrid-scale (SGS) turbulence. Here, we employ a stochastic backscatter SGS model, which explicitly handles the effects of both forward and reverse energy transfer to/from the subgrid scales, to simulate the neutrally stratified ABL as well as flow within an idealised urban street canyon. In both cases, a clear improvement in LES output statistics is observed when compared with the performance of a SGS model that handles forward energy transfer only. In the neutral ABL case, the near-surface velocity profile is brought significantly closer towards its expected logarithmic form. In the street canyon case, the strength of the primary vortex that forms within the canyon is more accurately reproduced when compared to wind tunnel measurements. Our results indicate that grid-scale backscatter plays an important role in both these modelled situations.

  17. LES study of microphysical variability bias in shallow cumulus

    NASA Astrophysics Data System (ADS)

    Kogan, Yefim

    2017-05-01

    Subgrid-scale (SGS) variability of cloud microphysical variables over the mesoscale numerical weather prediction (NWP) model has been evaluated by means of joint probability distribution functions (JPDFs). The latter were obtained using dynamically balanced Large Eddy Simulation (LES) model dataset from a case of marine trade cumulus initialized with soundings from Rain in Cumulus Over the Ocean (RICO) field project. Bias in autoconversion and accretion rates from different formulations of the JPDFs was analyzed. Approximating the 2-D PDF using a generic (fixed-in-time), but variable-in-height JPDFs give an acceptable level of accuracy, whereas neglecting the SGS variability altogether results in a substantial underestimate of the grid-mean total conversion rate and producing negative bias in rain water. Nevertheless the total effect on rain formation may be uncertain in the long run due to the fact that the negative bias in rain water may be counterbalanced by the positive bias in cloud water. Consequently, the overall effect of SGS neglect needs to be investigated in direct simulations with a NWP model.

  18. Consistent Large-Eddy Simulation of a Temporal Mixing Layer Laden with Evaporating Drops. Part 2; A Posteriori Modelling

    NASA Technical Reports Server (NTRS)

    Leboissertier, Anthony; Okong'O, Nora; Bellan, Josette

    2005-01-01

    Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sibendu; Wang, Zihan; Pei, Yuanjiang

    A state-of-the-art spray modeling methodology, recently presented by Senecal et al. [ , , ], is applied to Large Eddy Simulations (LES) of vaporizing gasoline sprays. Simulations of non-combusting Spray G (gasoline fuel) from the Engine Combustion Network are performed. Adaptive mesh refinement (AMR) with cell sizes from 0.09 mm to 0.5 mm are utilized to further demonstrate grid convergence of the dynamic structure LES model for the gasoline sprays. Grid settings are recommended to optimize the accuracy/runtime tradeoff for LES-based spray simulations at different injection pressure conditions typically encountered in gasoline direct injection (GDI) applications. The influence of LESmore » sub-grid scale (SGS) models is explored by comparing the results from dynamic structure and Smagorinsky based models against simulations without any SGS model. Twenty different realizations are simulated by changing the random number seed used in the spray sub-models. It is shown that for global quantities such as spray penetration, comparing a single LES simulation to experimental data is reasonable. Through a detailed analysis using the relevance index (RI) criteria, recommendations are made regarding the minimum number of LES realizations required for accurate prediction of the gasoline sprays.« less

  20. A priori testing of subgrid-scale models for large-eddy simulation of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Juneja, Anurag; Brasseur, James G.

    1996-11-01

    Subgrid-scale models are generally developed assuming homogeneous isotropic turbulence with the filter cutoff lying in the inertial range. In the surface layer and capping inversion regions of the atmospheric boundary layer, the turbulence is strongly anisotropic and, in general, influenced by both buoyancy and shear. Furthermore, the integral scale motions are under-resolved in these regions. Herein we perform direct numerical simulations of shear and buoyancy-generated homogeneous anisotropic turbulence to compute and analyze the actual subgrid-resolved-scale (SGS-RS) dynamics as the filter cutoff moves into the energy-containing scales. These are compared with the SGS-RS dynamics predicted by Smagorinsky-based models with a focus on motivating improved closures. We find that, in general, the underlying assumption of such models, that the anisotropic part of the subgrid stress tensor be aligned with the resolved strain rate tensor, is a poor approximation. Similarly, we find poor alignment between the actual and predicted stress divergence, and find low correlations between the actual and modeled subgrid-scale contribution to the pressure and pressure gradient. Details will be given in the talk.

  1. Effect of LES models on the entrainment characteristics in a turbulent planar jet

    NASA Astrophysics Data System (ADS)

    Chambel Lopes, Diogo; da Silva, Carlos; Raman, Venkat

    2012-11-01

    The effect of subgrid-scale (SGS) models in the jet spreading rate and centreline passive scalar decay rates are assessed and compared. The modelling of the subgrid-scale fluxes is particularly challenging in the turbulent/nonturbulent (T/NT) region that divides the two regions in the jet flow: the outer region where the flow is irrotational and the inner region where the flow is turbulent: it has been shown that important Reynolds stresses exist near the T/NT interface and that these stresses determine in part the mixing and combustion rates in jets. In this work direct and large-eddy simulations (DNS/LES) of turbulent planar jets are used to study the role of subgrid-scale models in the integral characteristics of the passive scalar mixing in a jet. LES show that different SGS modes lead to different spreading rates for the velocity and scalar fields, and the scalar quantities are more affected than the velocity e.g. SGS models affect strongly the centreline mean scalar decay than the centreline mean velocity decay. The results suggest the need for a minimum resolution close to the Taylor micro-scale in order to recover the correct results for the integral quantities and this can be explained by recent results on the dynamics of the T/NT interface.

  2. A Priori Analysis of Subgrid-Scale Models for Large Eddy Simulations of Supercritical Binary-Species Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora; Bellan, Josette

    2005-01-01

    Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.

  3. Scale-Similar Models for Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Sarghini, F.

    1999-01-01

    Scale-similar models employ multiple filtering operations to identify the smallest resolved scales, which have been shown to be the most active in the interaction with the unresolved subgrid scales. They do not assume that the principal axes of the strain-rate tensor are aligned with those of the subgrid-scale stress (SGS) tensor, and allow the explicit calculation of the SGS energy. They can provide backscatter in a numerically stable and physically realistic manner, and predict SGS stresses in regions that are well correlated with the locations where large Reynolds stress occurs. In this paper, eddy viscosity and mixed models, which include an eddy-viscosity part as well as a scale-similar contribution, are applied to the simulation of two flows, a high Reynolds number plane channel flow, and a three-dimensional, nonequilibrium flow. The results show that simulations without models or with the Smagorinsky model are unable to predict nonequilibrium effects. Dynamic models provide an improvement of the results: the adjustment of the coefficient results in more accurate prediction of the perturbation from equilibrium. The Lagrangian-ensemble approach [Meneveau et al., J. Fluid Mech. 319, 353 (1996)] is found to be very beneficial. Models that included a scale-similar term and a dissipative one, as well as the Lagrangian ensemble averaging, gave results in the best agreement with the direct simulation and experimental data.

  4. The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response.

    PubMed

    Sukarieh, R; Sonenberg, N; Pelletier, J

    2009-05-01

    Stress granules (SGs) arise as a consequence of cellular stress, contain stalled translation preinitiation complexes, and are associated with cell survival during environmental insults. SGs are dynamic entities with proteins relocating into and out of them during stress. Among the repertoire of proteins present in SGs is eukaryotic initiation factor 4E (eIF4E), a translation factor required for cap-dependent translation and that regulates a rate-limiting step for protein synthesis. Herein, we demonstrate that localization of eIF4E to SGs is dependent on the presence of a family of repressor proteins, eIF4E-binding proteins (4E-BPs). Our results demonstrate that 4E-BPs regulate the SG localization of eIF4E.

  5. Identification of Neuregulin-2 as a novel stress granule component.

    PubMed

    Kim, Jin Ah; Jayabalan, Aravinth Kumar; Kothandan, Vinoth Kumar; Mariappan, Ramesh; Kee, Younghoon; Ohn, Takbum

    2016-08-01

    Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress. [BMB Reports 2016; 49(8): 449-454].

  6. Identification of Neuregulin-2 as a novel stress granule component

    PubMed Central

    Kim, Jin Ah; Jayabalan, Aravinth Kumar; Kothandan, Vinoth Kumar; Mariappan, Ramesh; Kee, Younghoon; Ohn, Takbum

    2016-01-01

    Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress. [BMB Reports 2016; 49(8): 449-454] PMID:27345716

  7. A hierarchical model for estimating change in American Woodcock populations

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Kendall, W.L.; Kelley, J.R.; Niven, D.K.

    2008-01-01

    The Singing-Ground Survey (SGS) is a primary source of information on population change for American woodcock (Scolopax minor). We analyzed the SGS using a hierarchical log-linear model and compared the estimates of change and annual indices of abundance to a route regression analysis of SGS data. We also grouped SGS routes into Bird Conservation Regions (BCRs) and estimated population change and annual indices using BCRs within states and provinces as strata. Based on the hierarchical model?based estimates, we concluded that woodcock populations were declining in North America between 1968 and 2006 (trend = -0.9%/yr, 95% credible interval: -1.2, -0.5). Singing-Ground Survey results are generally similar between analytical approaches, but the hierarchical model has several important advantages over the route regression. Hierarchical models better accommodate changes in survey efficiency over time and space by treating strata, years, and observers as random effects in the context of a log-linear model, providing trend estimates that are derived directly from the annual indices. We also conducted a hierarchical model analysis of woodcock data from the Christmas Bird Count and the North American Breeding Bird Survey. All surveys showed general consistency in patterns of population change, but the SGS had the shortest credible intervals. We suggest that population management and conservation planning for woodcock involving interpretation of the SGS use estimates provided by the hierarchical model.

  8. The eIF4E-binding proteins are modifiers of cytoplasmic eIF4E relocalization during the heat shock response

    PubMed Central

    Sukarieh, R.; Sonenberg, N.; Pelletier, J.

    2009-01-01

    Stress granules (SGs) arise as a consequence of cellular stress, contain stalled translation preinitiation complexes, and are associated with cell survival during environmental insults. SGs are dynamic entities with proteins relocating into and out of them during stress. Among the repertoire of proteins present in SGs is eukaryotic initiation factor 4E (eIF4E), a translation factor required for cap-dependent translation and that regulates a rate-limiting step for protein synthesis. Herein, we demonstrate that localization of eIF4E to SGs is dependent on the presence of a family of repressor proteins, eIF4E-binding proteins (4E-BPs). Our results demonstrate that 4E-BPs regulate the SG localization of eIF4E. PMID:19244480

  9. A normal stress subgrid-scale eddy viscosity model in large eddy simulation

    NASA Technical Reports Server (NTRS)

    Horiuti, K.; Mansour, N. N.; Kim, John J.

    1993-01-01

    The Smagorinsky subgrid-scale eddy viscosity model (SGS-EVM) is commonly used in large eddy simulations (LES) to represent the effects of the unresolved scales on the resolved scales. This model is known to be limited because its constant must be optimized in different flows, and it must be modified with a damping function to account for near-wall effects. The recent dynamic model is designed to overcome these limitations but is compositionally intensive as compared to the traditional SGS-EVM. In a recent study using direct numerical simulation data, Horiuti has shown that these drawbacks are due mainly to the use of an improper velocity scale in the SGS-EVM. He also proposed the use of the subgrid-scale normal stress as a new velocity scale that was inspired by a high-order anisotropic representation model. The testing of Horiuti, however, was conducted using DNS data from a low Reynolds number channel flow simulation. It was felt that further testing at higher Reynolds numbers and also using different flows (other than wall-bounded shear flows) were necessary steps needed to establish the validity of the new model. This is the primary motivation of the present study. The objective is to test the new model using DNS databases of high Reynolds number channel and fully developed turbulent mixing layer flows. The use of both channel (wall-bounded) and mixing layer flows is important for the development of accurate LES models because these two flows encompass many characteristic features of complex turbulent flows.

  10. RNA granules: the good, the bad and the ugly

    PubMed Central

    Thomas, María Gabriela; Loschi, Mariela; Desbats, María Andrea; Boccaccio, Graciela Lidia

    2010-01-01

    Processing bodies (PBs) and Stress granules (SGs) are the founding members of a new class of RNA granules, known as mRNA silencing foci, as they harbor transcripts circumstantially excluded from the translationally active pool. PBs and SGs are able to release mRNAs thus allowing their translation. PBs are constitutive, but respond to stimuli that affect mRNA translation and decay, whereas SGs are specifically induced upon cellular stress, which triggers a global translational silencing by several pathways, including phosphorylation of the key translation initiation factor elF2alpha, and tRNA cleavage among others. PBs and SGs with different composition may coexist in a single cell. These macromolecular aggregates are highly conserved through evolution, from unicellular organisms to vertebrate neurons. Their dynamics is regulated by several signaling pathways, and depends on microfilaments and microtubules, and the cognate molecular motors myosin, dynein, and kinesin. SGs share features with aggresomes and related aggregates of unfolded proteins frequently present in neurodegenerative diseases, and may play a role in the pathology. Virus infections may induce or impair SG formation. Besides being important for mRNA regulation upon stress, SGs modulate the signaling balancing apoptosis and cell survival. Finally, the formation of nuclear stress bodies (nSBs), which share components with SGs, and the assembly of additional cytosolic aggregates containing RNA—the UV granules and the Ire1 foci—, all them induced by specific cell damage factors, contribute to cell survival. PMID:20813183

  11. Assessment of the Subgrid-Scale Models at Low and High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Horiuti, K.

    1996-01-01

    Accurate SGS models must be capable of correctly representing the energy transfer between GS and SGS. Recent direct assessment of the energy transfer carried out using direct numerical simulation (DNS) data for wall-bounded flows revealed that the energy exchange is not unidirectional. Although GS kinetic energy is transferred to the SGS (forward scatter (F-scatter) on average, SGS energy is also transferred to the GS. The latter energy exchange (backward scatter (B-scatter) is very significant, i.e., the local energy exchange can be backward nearly as often as forward and the local rate of B-scatter is considerably higher than the net rate of energy dissipation.

  12. Most superficial sublamina of rat superior colliculus: neuronal response properties and correlates with perceptual figure-ground segregation.

    PubMed

    Girman, S V; Lund, R D

    2007-07-01

    The uppermost layer (stratum griseum superficiale, SGS) of the superior colliculus (SC) provides an important gateway from the retina to the visual extrastriate and visuomotor systems. The majority of attention has been given to the role of this "visual" SC in saccade generation and target selection and it is generally considered to be less important in visual perception. We have found, however, that in the rat SGS1, the most superficial division of the SGS, the neurons perform very sophisticated analysis of visual information. First, in studying their responses with a variety of flashing stimuli we found that the neurons respond not to brightness changes per se, but to the appearance and/or disappearance of visual shapes in their receptive fields (RFs). Contrary to conventional RFs of neurons at the early stages of visual processing, the RFs in SGS1 cannot be described in terms of fixed spatial distribution of excitatory and inhibitory inputs. Second, SGS1 neurons showed robust orientation tuning to drifting gratings and orientation-specific modulation of the center response from surround. These are features previously seen only in visual cortical neurons and are considered to be involved in "contour" perception and figure-ground segregation. Third, responses of SGS1 neurons showed complex dynamics; typically the response tuning became progressively sharpened with repetitive grating periods. We conclude that SGS1 neurons are involved in considerably more complex analysis of retinal input than was previously thought. SGS1 may participate in early stages of figure-ground segregation and have a role in low-resolution nonconscious vision as encountered after visual decortication.

  13. A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    Currently, the modeling of supercritical-pressure flows through Large Eddy Simulation (LES) uses models derived for atmospheric-pressure flows. Those atmospheric-pressure flows do not exhibit the particularities of high densitygradient magnitude features observed both in experiments and simulations of supercritical-pressure flows in the case of two species mixing. To assess whether the current LES modeling is appropriate and if found not appropriate to propose higher-fidelity models, a LES a posteriori study has been conducted for a mixing layer that initially contains different species in the lower and upper streams, and where the initial pressure is larger than the critical pressure of either species. An initially-imposed vorticity perturbation promotes roll-up and a double pairing of four initial span-wise vortices into an ultimate vortex that reaches a transitional state. The LES equations consist of the differential conservation equations coupled with a real-gas equation of state, and the equation set uses transport properties depending on the thermodynamic variables. Unlike all LES models to date, the differential equations contain, additional to the subgrid scale (SGS) fluxes, a new SGS term that is a pressure correction in the momentum equation. This additional term results from filtering of Direct Numerical Simulation (DNS) equations, and represents the gradient of the difference between the filtered pressure and the pressure computed from the filtered flow field. A previous a priori analysis, using a DNS database for the same configuration, found this term to be of leading order in the momentum equation, a fact traced to the existence of high-densitygradient magnitude regions that populated the entire flow; in the study, models were proposed for the SGS fluxes as well as this new term. In the present study, the previously proposed constantcoefficient SGS-flux models of the a priori investigation are tested a posteriori in LES, devoid of or including, the SGS pressure correction term. The present pressure-correction model is different from, and more accurate as well as less computationally intensive than that of the a priori study. The constant-coefficient SGS-flux models encompass the Smagorinsky (SMC), in conjunction with the Yoshizawa (YO) model for the trace, the Gradient (GRC) and the Scale Similarity (SSC) models, all exercised with the a priori study constant coefficients calibrated at the transitional state. The LES comparison is performed with the filtered- and-coarsened (FC) DNS, which represents an ideal LES solution. Expectably, an LES model devoid of SGS terms is shown to be considerably inferior to models containing SGS effects. Among models containing SGS effects, those including the pressure-correction term are substantially superior to those devoid of it. The sensitivity of the predictions to the initial conditions and grid size are also investigated. Thus, it has been discovered that, additional to the atmospheric-pressure models currently used, a new model is necessary to simulate supercritical-pressure flows. This model depends on the thermodynamic characteristics of the chemical species involved.

  14. SGS Modeling of the Internal Energy Equation in LES of Supersonic Channel Flow

    NASA Astrophysics Data System (ADS)

    Raghunath, Sriram; Brereton, Giles

    2011-11-01

    DNS of fully-developed turbulent supersonic channel flows (Reτ = 190) at up to Mach 3 indicate that the turbulent heat fluxes depend only weakly on Mach number, while the viscous dissipation and pressure dilatation do so strongly. Moreover, pressure dilatation makes a significant contribution to the internal energy budget at Mach 3 and higher. The balance between these terms is critical to determining the temperature (and so molecular viscosity) from the internal energy equation and so, in LES of these flows, it is essential to use accurate SGS models for the viscous dissipation and the pressure dilatation. In this talk, we present LES results for supersonic channel flow, using SGS models for these terms that are based on the resolved-scale dilatation, an inverse timescale, and SGS momentum fluxes, which intrinsically represent this Mach number effect.

  15. The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae).

    PubMed

    Gonzales, Eva; Hamrick, James L; Smouse, Peter E; Trapnell, Dorset W; Peakall, Rod

    2010-01-01

    We examined spatial genetic structure (SGS) in Enterolobium cyclocarpum (the Guanacaste tree), a dominant tree of Central American dry forests in 4 sites in Guanacaste Province, Costa Rica. In disturbed dry forest sites (e.g., pastures), E. cyclocarpum is primarily dispersed by cattle and horses, whose movements are restricted by pasture boundaries. The study sites varied in tree densities and disturbance. Allozyme analyses of adult trees demonstrated significant levels of SGS in 3 of 4 sites. SGS was primarily due to clusters of young adults located along seasonal streams, rocky areas, and in abandoned pastures. SGS was highest in the first distance class in the least disturbed population, which also had the lowest density of large adults. Low, but significant SGS characterized the site with the highest number of large adults located in individual pastures. The semiurban site, had no clusters of young adults and, probably as a result, failed to exhibit SGS. Our results demonstrate that disturbance can strongly influence SGS patterns and are consistent with a landscape model in which the location of potential recruitment sites, restricted seed disperser movements, and the number and location of maternal individuals dictate the level and pattern of SGS.

  16. Theoretical study of γ-hexachlorocyclohexane and β-hexachlorocyclohexane isomers interaction with surface groups of activated carbon model.

    PubMed

    Enriquez-Victorero, Carlos; Hernández-Valdés, Daniel; Montero-Alejo, Ana Lilian; Durimel, Axelle; Gaspard, Sarra; Jáuregui-Haza, Ulises

    2014-06-01

    Activated carbon (AC) is employed in drinking water purification without almost any knowledge about the adsorption mechanism of persistent organic pollutants (POPs) onto it. Hexachlorocyclohexane (HCH) is an organochlorinated contaminant present in water and soils of banana crops production zones of the Caribbean. The most relevant isomers of HCH are γ-HCH and β-HCH, both with great environmental persistence. A theoretical study of the influence of AC surface groups (SGs) on HCH adsorption is done in order to help to understand the process and may lead to improve the AC selection process. A simplified AC model consisting of naphthalene with a functional group was used to assess the influence of SGs over the adsorption process. The Multiple Minima Hypersurface (MMH) methodology was employed to study γ-HCH and β-HCH interactions with different AC SGs (hydroxyl and carboxyl) under different hydration and pH conditions. The results obtained showed that association of HCH with SGs preferentially occurs between the axial protons of HCH and SG's oxygen atom, and the most favorable interactions occurring with charged SGs. An increase in carboxylic SGs content is proposed to enhance HCH adsorption onto AC under neutral pH conditions. Finally, this work presents an inexpensive computer aided methodology for preselecting activated carbon SGs content for the removal of a given compound. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Simulation of Oxygen Disintegration and Mixing With Hydrogen or Helium at Supercritical Pressure

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Taskinoglu, Ezgi

    2012-01-01

    The simulation of high-pressure turbulent flows, where the pressure, p, is larger than the critical value, p(sub c), for the species under consideration, is relevant to a wide array of propulsion systems, e.g. gas turbine, diesel, and liquid rocket engines. Most turbulence models, however, have been developed for atmospheric-p turbulent flows. The difference between atmospheric-p and supercritical-p turbulence is that, in the former situation, the coupling between dynamics and thermodynamics is moderate to negligible, but for the latter it is very significant, and can dominate the flow characteristics. The reason for this stems from the mathematical form of the equation of state (EOS), which is the perfect-gas EOS in the former case, and the real-gas EOS in the latter case. For flows at supercritical pressure, p, the large eddy simulation (LES) equations consist of the differential conservation equations coupled with a real-gas EOS. The equations use transport properties that depend on the thermodynamic variables. Compared to previous LES models, the differential equations contain not only the subgrid scale (SGS) fluxes, but also new SGS terms, each denoted as a correction. These additional terms, typically assumed null for atmospheric pressure flows, stem from filtering the differential governing equations, and represent differences between a filtered term and the same term computed as a function of the filtered flow field. In particular, the energy equation contains a heat-flux correction (q-correction) that is the difference between the filtered divergence of the heat flux and the divergence of the heat flux computed as a function of the filtered flow field. In a previous study, there was only partial success in modeling the q-correction term, but in this innovation, success has been achieved by using a different modeling approach. This analysis, based on a temporal mixing layer Direct Numerical Simulation database, shows that the focus in modeling the q-correction should be on reconstructing the primitive variable gradients rather than their coefficients, and proposes the approximate deconvolution model (ADM) as an effective means of flow field reconstruction for LES heat flux calculation. Further, results for a study conducted for temporal mixing layers initially containing oxygen in the lower stream, and hydrogen or helium in the upper stream, show that, for any LES, including SGS-flux models (constant-coefficient Gradient or Scale-Similarity models, dynamic-coefficient Smagorinsky/Yoshizawa or mixed Smagorinsky/Yoshizawa/Gradient models), the inclusion of the q-correction in the LES leads to the theoretical maximum reduction of the SGS heat-flux difference. The remaining error in modeling this new subgrid term is thus irreducible.

  18. Study of subgrid-scale velocity models for reacting and nonreacting flows

    NASA Astrophysics Data System (ADS)

    Langella, I.; Doan, N. A. K.; Swaminathan, N.; Pope, S. B.

    2018-05-01

    A study is conducted to identify advantages and limitations of existing large-eddy simulation (LES) closures for the subgrid-scale (SGS) kinetic energy using a database of direct numerical simulations (DNS). The analysis is conducted for both reacting and nonreacting flows, different turbulence conditions, and various filter sizes. A model, based on dissipation and diffusion of momentum (LD-D model), is proposed in this paper based on the observed behavior of four existing models. Our model shows the best overall agreements with DNS statistics. Two main investigations are conducted for both reacting and nonreacting flows: (i) an investigation on the robustness of the model constants, showing that commonly used constants lead to a severe underestimation of the SGS kinetic energy and enlightening their dependence on Reynolds number and filter size; and (ii) an investigation on the statistical behavior of the SGS closures, which suggests that the dissipation of momentum is the key parameter to be considered in such closures and that dilatation effect is important and must be captured correctly in reacting flows. Additional properties of SGS kinetic energy modeling are identified and discussed.

  19. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  20. Very-high-Reynolds-number vortex dynamics via Coherent-vorticity-Preserving (CvP) Large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Chapelier, Jean-Baptiste; Wasistho, Bono; Scalo, Carlo

    2017-11-01

    A new approach to Large-Eddy Simulation (LES) is introduced, where subgrid-scale (SGS) dissipation is applied proportionally to the degree of local spectral broadening, hence mitigated in regions dominated by large-scale vortical motion. The proposed CvP-LES methodology is based on the evaluation of the ratio of the test-filtered to resolved (or grid-filtered) enstrophy: σ = ξ ∧ / ξ . Values of σ = 1 indicate low sub-test-filter turbulent activity, justifying local deactivation of any subgrid-scale model. Values of σ < 1 span conditions ranging from incipient spectral broadening σ <= 1 , to equilibrium turbulence σ =σeq < 1 , where σeq is solely as a function of the test-to-grid filter-width ratio Δ ∧ / Δ , derived assuming a Kolmogorov's spectrum. Eddy viscosity is fully restored for σ <=σeq . The proposed approach removes unnecessary SGS dissipation, can be applied to any eddy-viscosity model, is algorithmically simple and computationally inexpensive. A CvP-LES of a pair of unstable helical vortices, representative of rotor-blade wake dynamics, show the ability of the method to sort the coherent motion from the small-scale dynamics. This work is funded by subcontract KSC-17-001 between Purdue University and Kord Technologies, Inc (Huntsville), under the US Navy Contract N68335-17-C-0159 STTR-Phase II, Purdue Proposal No. 00065007, Topic N15A-T002.

  1. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories

    PubMed Central

    Nikolic, Jovan; Civas, Ahmet; Lagaudrière-Gesbert, Cécile; Blondel, Danielle

    2016-01-01

    Stress granules (SGs) are membrane-less dynamic structures consisting of mRNA and protein aggregates that form rapidly in response to a wide range of environmental cellular stresses and viral infections. They act as storage sites for translationally silenced mRNAs under stress conditions. During viral infection, SG formation results in the modulation of innate antiviral immune responses, and several viruses have the ability to either promote or prevent SG assembly. Here, we show that rabies virus (RABV) induces SG formation in infected cells, as revealed by the detection of SG-marker proteins Ras GTPase-activating protein-binding protein 1 (G3BP1), T-cell intracellular antigen 1 (TIA-1) and poly(A)-binding protein (PABP) in the RNA granules formed during viral infection. As shown by live cell imaging, RABV-induced SGs are highly dynamic structures that increase in number, grow in size by fusion events, and undergo assembly/disassembly cycles. Some SGs localize in close proximity to cytoplasmic viral factories, known as Negri bodies (NBs). Three dimensional reconstructions reveal that both structures remain distinct even when they are in close contact. In addition, viral mRNAs synthesized in NBs accumulate in the SGs during viral infection, revealing material exchange between both compartments. Although RABV-induced SG formation is not affected in MEFs lacking TIA-1, TIA-1 depletion promotes viral translation which results in an increase of viral replication indicating that TIA-1 has an antiviral effect. Inhibition of PKR expression significantly prevents RABV-SG formation and favors viral replication by increasing viral translation. This is correlated with a drastic inhibition of IFN-B gene expression indicating that SGs likely mediate an antiviral response which is however not sufficient to fully counteract RABV infection. PMID:27749929

  2. A Direct Numerical Simulation of a Temporally Evolving Liquid-Gas Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Vu, Lam Xuan; Chiodi, Robert; Desjardins, Olivier

    2017-11-01

    Air-blast atomization occurs when streams of co-flowing high speed gas and low speed liquid shear to form drops. Air-blast atomization has numerous industrial applications from combustion engines in jets to sprays used for medical coatings. The high Reynolds number and dynamic pressure ratio of a realistic air-blast atomization case requires large eddy simulation and the use of multiphase sub-grid scale (SGS) models. A direct numerical simulations (DNS) of a temporally evolving mixing layer is presented to be used as a base case from which future multiphase SGS models can be developed. To construct the liquid-gas mixing layer, half of a channel flow from Kim et al. (JFM, 1987) is placed on top of a static liquid layer that then evolves over time. The DNS is performed using a conservative finite volume incompressible multiphase flow solver where phase tracking is handled with a discretely conservative volume of fluid method. This study presents statistics on velocity and volume fraction at different Reynolds and Weber numbers.

  3. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Drozda, T. G.; Sheikhi, R. M.; Givi, Peyman

    2001-01-01

    The objective of this research is to develop and implement new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. We have just completed two (2) years of Phase I of this research. This annual report provides a brief and up-to-date summary of our activities during the period: September 1, 2000 through August 31, 2001. In the work within the past year, a methodology termed "velocity-scalar filtered density function" (VSFDF) is developed and implemented for large eddy simulation (LES) of turbulent flows. In this methodology the effects of the unresolved subgrid scales (SGS) are taken into account by considering the joint probability density function (PDF) of all of the components of the velocity and scalar vectors. An exact transport equation is derived for the VSFDF in which the effects of the unresolved SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source terms appear in closed form. The remaining unclosed terms in this equation are modeled. A system of stochastic differential equations (SDEs) which yields statistically equivalent results to the modeled VSFDF transport equation is constructed. These SDEs are solved numerically by a Lagrangian Monte Carlo procedure. The consistency of the proposed SDEs and the convergence of the Monte Carlo solution are assessed by comparison with results obtained by an Eulerian LES procedure in which the corresponding transport equations for the first two SGS moments are solved. The unclosed SGS convection, SGS velocity-scalar source, and SGS scalar-scalar source in the Eulerian LES are replaced by corresponding terms from VSFDF equation. The consistency of the results is then analyzed for a case of two dimensional mixing layer.

  4. LES of Supersonic Turbulent Channel Flow at Mach Numbers 1.5 and 3

    NASA Astrophysics Data System (ADS)

    Raghunath, Sriram; Brereton, Giles

    2009-11-01

    LES of compressible, turbulent, body-force driven, isothermal-wall channel flows at Reτ of 190 and 395 at moderate supersonic speeds (Mach 1.5 and 3) are presented. Simulations are fully resolved in the wall-normal direction without the need for wall-layer models. SGS models for incompressible flows, with appropriate extensions for compressibility, are tested a priori/ with DNS results and used in LES. Convergence of the simulations is found to be sensitive to the initial conditions and to the choice of model (wall-normal damping) in the laminar sublayer. The Nicoud--Ducros wall adapting SGS model, coupled with a standard SGS heat flux model, is found to yield results in good agreement with DNS.

  5. Pur-alpha regulates cytoplasmic stress granule dynamics and ameliorates FUS toxicity

    PubMed Central

    Daigle, J Gavin; Krishnamurthy, Karthik; Ramesh, Nandini; Casci, Ian; Monaghan, John; McAvoy, Kevin; Godfrey, Earl W; Daniel, Dianne C.; Johnson, Edward M.; Monahan, Zach; Shewmaker, Frank; Pasinelli, Piera; Pandey, Udai Bhan

    2016-01-01

    Amyotrophic lateral Sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA binding proteins, have been linked to ALS pathology. Recently, Pur-alpha a DNA/RNA binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics. PMID:26728149

  6. Ebola virus VP35 blocks stress granule assembly.

    PubMed

    Le Sage, Valerie; Cinti, Alessandro; McCarthy, Stephen; Amorim, Raquel; Rao, Shringar; Daino, Gian Luca; Tramontano, Enzo; Branch, Donald R; Mouland, Andrew J

    2017-02-01

    Stress granules (SGs) are dynamic cytoplasmic aggregates of translationally silenced mRNAs that assemble in response to environmental stress. SGs appear to play an important role in antiviral innate immunity and many viruses have evolved to block or subvert SGs components for their own benefit. Here, we demonstrate that intracellular Ebola virus (EBOV) replication and transcription-competent virus like particles (trVLP) infection does not lead to SG assembly but leads to a blockade to Arsenite-induced SG assembly. Moreover we show that EBOV VP35 represses the assembly of canonical and non-canonical SGs induced by a variety of pharmacological stresses. This SG blockade requires, at least in part, the C-terminal domain of VP35. Furthermore, results from our co-immunoprecipitation studies indicate that VP35 interacts with multiple SG components, including G3BP1, eIF3 and eEF2 through a stress- and RNA-independent mechanism. These data suggest a novel function for EBOV VP35 in the repression of SG assembly. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds.

    PubMed

    Pressel, Kyle G; Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M; Tan, Zhihong

    2017-06-01

    Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS-II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS-II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid-scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS-II observations are identified. The results show that using weighted essentially non-oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest-fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high-quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest-fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model.

  8. Numerics and subgrid‐scale modeling in large eddy simulations of stratocumulus clouds

    PubMed Central

    Mishra, Siddhartha; Schneider, Tapio; Kaul, Colleen M.; Tan, Zhihong

    2017-01-01

    Abstract Stratocumulus clouds are the most common type of boundary layer cloud; their radiative effects strongly modulate climate. Large eddy simulations (LES) of stratocumulus clouds often struggle to maintain fidelity to observations because of the sharp gradients occurring at the entrainment interfacial layer at the cloud top. The challenge posed to LES by stratocumulus clouds is evident in the wide range of solutions found in the LES intercomparison based on the DYCOMS‐II field campaign, where simulated liquid water paths for identical initial and boundary conditions varied by a factor of nearly 12. Here we revisit the DYCOMS‐II RF01 case and show that the wide range of previous LES results can be realized in a single LES code by varying only the numerical treatment of the equations of motion and the nature of subgrid‐scale (SGS) closures. The simulations that maintain the greatest fidelity to DYCOMS‐II observations are identified. The results show that using weighted essentially non‐oscillatory (WENO) numerics for all resolved advective terms and no explicit SGS closure consistently produces the highest‐fidelity simulations. This suggests that the numerical dissipation inherent in WENO schemes functions as a high‐quality, implicit SGS closure for this stratocumulus case. Conversely, using oscillatory centered difference numerical schemes for momentum advection, WENO numerics for scalars, and explicitly modeled SGS fluxes consistently produces the lowest‐fidelity simulations. We attribute this to the production of anomalously large SGS fluxes near the cloud tops through the interaction of numerical error in the momentum field with the scalar SGS model. PMID:28943997

  9. Scalar excursions in large-eddy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheou, Georgios; Dimotakis, Paul E.

    Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less

  10. Scalar excursions in large-eddy simulations

    DOE PAGES

    Matheou, Georgios; Dimotakis, Paul E.

    2016-08-31

    Here, the range of values of scalar fields in turbulent flows is bounded by their boundary values, for passive scalars, and by a combination of boundary values, reaction rates, phase changes, etc., for active scalars. The current investigation focuses on the local conservation of passive scalar concentration fields and the ability of the large-eddy simulation (LES) method to observe the boundedness of passive scalar concentrations. In practice, as a result of numerical artifacts, this fundamental constraint is often violated with scalars exhibiting unphysical excursions. The present study characterizes passive-scalar excursions in LES of a shear flow and examines methods formore » diagnosis and assesment of the problem. The analysis of scalar-excursion statistics provides support of the main hypothesis of the current study that unphysical scalar excursions in LES result from dispersive errors of the convection-term discretization where the subgrid-scale model (SGS) provides insufficient dissipation to produce a sufficiently smooth scalar field. In the LES runs three parameters are varied: the discretization of the convection terms, the SGS model, and grid resolution. Unphysical scalar excursions decrease as the order of accuracy of non-dissipative schemes is increased, but the improvement rate decreases with increasing order of accuracy. Two SGS models are examined, the stretched-vortex and a constant-coefficient Smagorinsky. Scalar excursions strongly depend on the SGS model. The excursions are significantly reduced when the characteristic SGS scale is set to double the grid spacing in runs with the stretched-vortex model. The maximum excursion and volume fraction of excursions outside boundary values show opposite trends with respect to resolution. The maximum unphysical excursions increase as resolution increases, whereas the volume fraction decreases. The reason for the increase in the maximum excursion is statistical and traceable to the number of grid points (sample size) which increases with resolution. In contrast, the volume fraction of unphysical excursions decreases with resolution because the SGS models explored perform better at higher grid resolution.« less

  11. Quantitative Evaluation of Adult Subglottic Stenosis Using Intraoperative Long-range Optical Coherence Tomography

    PubMed Central

    Sharma, Giriraj K.; Loy, Anthony Chin; Su, Erica; Jing, Joe; Chen, Zhongping; Wong, Brian J-F.; Verma, Sunil

    2016-01-01

    Objectives To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS). Results Intraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual “fly through” bronchoscopy. Conclusions This is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS. PMID:27354215

  12. Effect of artificial length scales in large eddy simulation of a neutral atmospheric boundary layer flow: A simple solution to log-layer mismatch

    NASA Astrophysics Data System (ADS)

    Chatterjee, Tanmoy; Peet, Yulia T.

    2017-07-01

    A large eddy simulation (LES) methodology coupled with near-wall modeling has been implemented in the current study for high Re neutral atmospheric boundary layer flows using an exponentially accurate spectral element method in an open-source research code Nek 5000. The effect of artificial length scales due to subgrid scale (SGS) and near wall modeling (NWM) on the scaling laws and structure of the inner and outer layer eddies is studied using varying SGS and NWM parameters in the spectral element framework. The study provides an understanding of the various length scales and dynamics of the eddies affected by the LES model and also the fundamental physics behind the inner and outer layer eddies which are responsible for the correct behavior of the mean statistics in accordance with the definition of equilibrium layers by Townsend. An economical and accurate LES model based on capturing the near wall coherent eddies has been designed, which is successful in eliminating the artificial length scale effects like the log-layer mismatch or the secondary peak generation in the streamwise variance.

  13. Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton.

    PubMed

    De-Lucas, A I; González-Martínez, S C; Vendramin, G G; Hidalgo, E; Heuertz, M

    2009-11-01

    Habitat fragmentation, i.e., the reduction of populations into small isolated remnants, is expected to increase spatial genetic structure (SGS) in plant populations through nonrandom mating, lower population densities and potential aggregation of reproductive individuals. We investigated the effects of population size reduction and genetic isolation on SGS in maritime pine (Pinus pinaster Aiton) using a combined experimental and simulation approach. Maritime pine is a wind-pollinated conifer which has a scattered distribution in the Iberian Peninsula as a result of forest fires and habitat fragmentation. Five highly polymorphic nuclear microsatellites were genotyped in a total of 394 individuals from two population pairs from the Iberian Peninsula, formed by one continuous and one fragmented population each. In agreement with predictions, SGS was significant and stronger in fragments (Sp = 0.020 and Sp = 0.026) than in continuous populations, where significant SGS was detected for one population only (Sp = 0.010). Simulations suggested that under fat-tailed dispersal, small population size is a stronger determinant of SGS than genetic isolation, while under normal dispersal, genetic isolation has a stronger effect. SGS was always stronger in real populations than in simulations, except if unrealistically narrow dispersal and/or high variance of reproductive success were modelled (even when accounting for potential overestimation of SGS in real populations as a result of short-distance sampling). This suggests that factors such as nonrandom mating or selection not considered in the simulations were additionally operating on SGS in Iberian maritime pine populations.

  14. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence (e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anistropy, and stable stratification (gravity waves). In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation of these models into the presently available LES codes should begin with the SM, to be followed by the AM and finally by the CM.

  15. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.

    1994-06-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 108 for the planetary boundary layer and Re approximately equals 1014 for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re9/4 exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon, which affects both geophysical and astrophysical turbulence (e.g., oceanic structure and convective overshooting in stars), has been singularly difficult to account for in turbulence modeling. For example, the widely used model of Deardorff has not been confirmed by recent LES results. As of today, there is no SGS model capable of incorporating buoyancy, rotation, shear, anistropy, and stable stratification (gravity waves). In this paper, we construct such a model which we call CM (complete model). We also present a hierarchy of simpler algebraic models (called AM) of varying complexity. Finally, we present a set of models which are simplified even further (called SM), the simplest of which is the Smagorinsky-Lilly model. The incorporation of these models into the presently available LES codes should begin with the SM, to be followed by the AM and finally by the CM.

  16. Spatial-Temporal Synchrophasor Data Characterization and Analytics in Smart Grid Fault Detection, Identification, and Impact Causal Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Huaiguang; Dai, Xiaoxiao; Gao, David Wenzhong

    An approach of big data characterization for smart grids (SGs) and its applications in fault detection, identification, and causal impact analysis is proposed in this paper, which aims to provide substantial data volume reduction while keeping comprehensive information from synchrophasor measurements in spatial and temporal domains. Especially, based on secondary voltage control (SVC) and local SG observation algorithm, a two-layer dynamic optimal synchrophasor measurement devices selection algorithm (OSMDSA) is proposed to determine SVC zones, their corresponding pilot buses, and the optimal synchrophasor measurement devices. Combining the two-layer dynamic OSMDSA and matching pursuit decomposition, the synchrophasor data is completely characterized inmore » the spatial-temporal domain. To demonstrate the effectiveness of the proposed characterization approach, SG situational awareness is investigated based on hidden Markov model based fault detection and identification using the spatial-temporal characteristics generated from the reduced data. To identify the major impact buses, the weighted Granger causality for SGs is proposed to investigate the causal relationship of buses during system disturbance. The IEEE 39-bus system and IEEE 118-bus system are employed to validate and evaluate the proposed approach.« less

  17. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles.

    PubMed

    Di Sarli, Valeria; Di Benedetto, Almerinda; Russo, Gennaro

    2010-08-15

    In this work, an assessment of different sub-grid scale (sgs) combustion models proposed for large eddy simulation (LES) of steady turbulent premixed combustion (Colin et al., Phys. Fluids 12 (2000) 1843-1863; Flohr and Pitsch, Proc. CTR Summer Program, 2000, pp. 61-82; Kim and Menon, Combust. Sci. Technol. 160 (2000) 119-150; Charlette et al., Combust. Flame 131 (2002) 159-180; Pitsch and Duchamp de Lageneste, Proc. Combust. Inst. 29 (2002) 2001-2008) was performed to identify the model that best predicts unsteady flame propagation in gas explosions. Numerical results were compared to the experimental data by Patel et al. (Proc. Combust. Inst. 29 (2002) 1849-1854) for premixed deflagrating flame in a vented chamber in the presence of three sequential obstacles. It is found that all sgs combustion models are able to reproduce qualitatively the experiment in terms of step of flame acceleration and deceleration around each obstacle, and shape of the propagating flame. Without adjusting any constants and parameters, the sgs model by Charlette et al. also provides satisfactory quantitative predictions for flame speed and pressure peak. Conversely, the sgs combustion models other than Charlette et al. give correct predictions only after an ad hoc tuning of constants and parameters. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Belochitski, A.; Moorthi, S.; Bogenschutz, P.; Pincus, R.

    2015-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC code was adopted for a global model environment from its origins in a cloud resolving model, and incorporated into NCEP GFS. SHOC was first tested in a non-interactive mode, a configuration where SHOC receives inputs from the host model, but its outputs are not returned to the GFS. In this configuration: a) SGS TKE values produced by GFS SHOC are consistent with those produced by SHOC in a CRM, b) SGS TKE in GFS SHOC exhibits a well defined diurnal cycle, c) there's enhanced boundary layer turbulence in the subtropical stratocumulus and tropical transition-to-cumulus areas d) buoyancy flux diagnosed from the assumed PDF is consistent with independently calculated Brunt-Vaisala frequency in identifying stable and unstable regions.Next, SHOC was coupled to GFS, namely turbulent diffusion coefficients computed by SHOC are now used in place of those currently produced by the GFS boundary layer and shallow convection schemes (Han and Pan, 2011), as well as condensation and cloud fraction diagnosed from the SGS PDF replace those calculated in the current large-scale cloudines scheme (Zhao and Carr, 1997). Ongoing activities consist of debugging the fully coupled GFS/SHOC.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate tests with prescribed SSTs. Depending on the results, the model will be tuned or parameterizations modified. Next, SHOC will be implemented in the NCEP CFS, and tuned and evaluated for climate applications - seasonal prediction and long coupled climate runs. Impact of new physics on ENSO, MJO, ISO, monsoon variability, etc will be examined.

  19. Grid and subgrid-scale interactions in viscoelastic turbulent flow and implications for modelling

    NASA Astrophysics Data System (ADS)

    Masoudian, M.; da Silva, C. B.; Pinho, F. T.

    2016-06-01

    Using direct numerical simulations of turbulent plane channel flow of homogeneous polymer solutions, described by the Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitutive model, a-priori analyses of the filtered momentum and FENE-P constitutive equations are performed. The influence of the polymer additives on the subgrid-scale (SGS) energy is evaluated by comparing the Newtonian and the viscoelastic flows, and a severe suppression of SGS stresses and energy is observed in the viscoelastic flow. All the terms of the transport equation of the SGS kinetic energy for FENE-P fluids are analysed, and an approximated version of this equation for use in future large eddy simulation closures is suggested. The terms responsible for kinetic energy transfer between grid-scale (GS) and SGS energy (split into forward/backward energy transfer) are evaluated in the presence of polymers. It is observed that the probability and intensity of forward scatter events tend to decrease in the presence of polymers.

  20. Large Eddy Simulation of Flow in Turbine Cascades Using LESTool and UNCLE Codes

    NASA Technical Reports Server (NTRS)

    Huang, P. G.

    2004-01-01

    During the period December 23,1997 and December August 31,2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Spalart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.

  1. Large Eddy Simulation of Flow in Turbine Cascades Using LEST and UNCLE Codes

    NASA Technical Reports Server (NTRS)

    Ashpis, David (Technical Monitor); Huang, P. G.

    2004-01-01

    During the period December 23, 1997 and December August 31, 2004, we accomplished the development of 2 CFD codes for DNS/LES/RANS simulation of turbine cascade flows, namely LESTool and UNCLE. LESTool is a structured code making use of 5th order upwind differencing scheme and UNCLE is a second-order-accuracy unstructured code. LESTool has both Dynamic SGS and Sparlart's DES models and UNCLE makes use of URANS and DES models. The current report provides a description of methodologies used in the codes.

  2. Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Baya Toda, Hubert; Cabrit, Olivier; Truffin, Karine; Bruneaux, Gilles; Nicoud, Franck

    2014-07-01

    Large-Eddy Simulation (LES) in complex geometries and industrial applications like piston engines, gas turbines, or aircraft engines requires the use of advanced subgrid-scale (SGS) models able to take into account the main flow features and the turbulence anisotropy. Keeping this goal in mind, this paper reports a LES-dedicated experiment of a pulsatile hot-jet impinging a flat-plate in the presence of a cold turbulent cross-flow. Unlike commonly used academic test cases, this configuration involves different flow features encountered in complex configurations: shear/rotating regions, stagnation point, wall-turbulence, and the propagation of a vortex ring along the wall. This experiment was also designed with the aim to use quantitative and nonintrusive optical diagnostics such as Particle Image Velocimetry, and to easily perform a LES involving a relatively simple geometry and well-controlled boundary conditions. Hence, two eddy-viscosity-based SGS models are investigated: the dynamic Smagorinsky model [M. Germano, U. Piomelli, P. Moin, and W. Cabot, "A dynamic subgrid-scale eddy viscosity model," Phys. Fluids A 3(7), 1760-1765 (1991)] and the σ-model [F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, "Using singular values to build a subgrid-scale model for large eddy simulations," Phys. Fluids 23(8), 085106 (2011)]. Both models give similar results during the first phase of the experiment. However, it was found that the dynamic Smagorinsky model could not accurately predict the vortex-ring propagation, while the σ-model provides a better agreement with the experimental measurements. Setting aside the implementation of the dynamic procedure (implemented here in its simplest form, i.e., without averaging over homogeneous directions and with clipping of negative values to ensure numerical stability), it is suggested that the mitigated predictions of the dynamic Smagorinsky model are due to the dynamic constant, which strongly depends on the mesh resolution. Indeed, the shear-stress near the wall increases during the vortex-ring impingement leading to a less refined mesh in terms of wall units, y+. This loss of resolution induces a poor damping of the dynamic constant, which is no longer able to adjust itself to ensure the expected y3-behavior near the wall. It is shown that the dynamic constant is never small enough to properly balance the large values of the squared magnitude of the strain-rate tensor, 2SijSij. The experimental database is made available to the community upon request to the authors.

  3. BnSGS3 Has Differential Effects on the Accumulation of CMV, ORMV and TuMV in Oilseed Rape

    PubMed Central

    Chen, Quan; Wang, Jie; Hou, Mingsheng; Liu, Shengyi; Huang, Junyan; Cai, Li

    2015-01-01

    Virus diseases greatly affect oilseed rape (Brassica napus) production. Investigating antiviral genes may lead to the development of disease-resistant varieties of oilseed rape. In this study, we examined the effects of the suppressor of gene silencing 3 in Brassica napus (BnSGS3, a putative antiviral gene) with different genus viruses by constructing BnSGS3-overexpressing (BnSGS3-Ov) and BnSGS3-silenced (BnSGS3-Si) oilseed rape (cv. Zhongshuang No. 6) plants. These three viruses are Oilseed rape mosaic virus (ORMV), Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). The native BnSGS3 expressed in all examined tissues with the highest expression in siliques. All three viruses induced BnSGS3 expression, but ORMV induced a dramatic increase in the BnSGS3-Ov plants, followed by TuMV and CMV. Upon inoculation with three different viruses, transcript abundance of BnSGS3 gene follows: BnSGS3-Ov > non-transgenic plants > BnSGS3-Si. The accumulation quantities of ORMV and TuMV exhibited a similar trend. However, CMV accumulation showed an opposite trend where virus accumulations were negatively correlated with BnSGS3 expression. The results suggest that BnSGS3 selectively inhibits CMV accumulation but promotes ORMV and TuMV accumulation. BnSGS3 should be used in different ways (up- and down-regulation) for breeding virus-resistant oilseed rape varieties. PMID:26225990

  4. A new mixed subgrid-scale model for large eddy simulation of turbulent drag-reducing flows of viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Li, Feng-Chen; Wang, Lu; Cai, Wei-Hua

    2015-07-01

    A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. Project supported by the China Postdoctoral Science Foundation (Grant No. 2011M500652), the National Natural Science Foundation of China (Grant Nos. 51276046 and 51206033), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20112302110020).

  5. A large eddy simulation scheme for turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1993-01-01

    The recent development of the dynamic subgrid-scale (SGS) model has provided a consistent method for generating localized turbulent mixing models and has opened up great possibilities for applying the large eddy simulation (LES) technique to real world problems. Given the fact that the direct numerical simulation (DNS) can not solve for engineering flow problems in the foreseeable future (Reynolds 1989), the LES is certainly an attractive alternative. It seems only natural to bring this new development in SGS modeling to bear on the reacting flows. The major stumbling block for introducing LES to reacting flow problems has been the proper modeling of the reaction source terms. Various models have been proposed, but none of them has a wide range of applicability. For example, some of the models in combustion have been based on the flamelet assumption which is only valid for relatively fast reactions. Some other models have neglected the effects of chemical reactions on the turbulent mixing time scale, which is certainly not valid for fast and non-isothermal reactions. The probability density function (PDF) method can be usefully employed to deal with the modeling of the reaction source terms. In order to fit into the framework of LES, a new PDF, the large eddy PDF (LEPDF), is introduced. This PDF provides an accurate representation for the filtered chemical source terms and can be readily calculated in the simulations. The details of this scheme are described.

  6. A priori study of subgrid-scale features in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Dabbagh, F.; Trias, F. X.; Gorobets, A.; Oliva, A.

    2017-10-01

    At the crossroad between flow topology analysis and turbulence modeling, a priori studies are a reliable tool to understand the underlying physics of the subgrid-scale (SGS) motions in turbulent flows. In this paper, properties of the SGS features in the framework of a large-eddy simulation are studied for a turbulent Rayleigh-Bénard convection (RBC). To do so, data from direct numerical simulation (DNS) of a turbulent air-filled RBC in a rectangular cavity of aspect ratio unity and π spanwise open-ended distance are used at two Rayleigh numbers R a ∈{1 08,1 010 } [Dabbagh et al., "On the evolution of flow topology in turbulent Rayleigh-Bénard convection," Phys. Fluids 28, 115105 (2016)]. First, DNS at Ra = 108 is used to assess the performance of eddy-viscosity models such as QR, Wall-Adapting Local Eddy-viscosity (WALE), and the recent S3PQR-models proposed by Trias et al. ["Building proper invariants for eddy-viscosity subgrid-scale models," Phys. Fluids 27, 065103 (2015)]. The outcomes imply that the eddy-viscosity modeling smoothes the coarse-grained viscous straining and retrieves fairly well the effect of the kinetic unfiltered scales in order to reproduce the coherent large scales. However, these models fail to approach the exact evolution of the SGS heat flux and are incapable to reproduce well the further dominant rotational enstrophy pertaining to the buoyant production. Afterwards, the key ingredients of eddy-viscosity, νt, and eddy-diffusivity, κt, are calculated a priori and revealed positive prevalent values to maintain a turbulent wind essentially driven by the mean buoyant force at the sidewalls. The topological analysis suggests that the effective turbulent diffusion paradigm and the hypothesis of a constant turbulent Prandtl number are only applicable in the large-scale strain-dominated areas in the bulk. It is shown that the bulk-dominated rotational structures of vortex-stretching (and its synchronous viscous dissipative structures) hold the highest positive values of νt; however, the zones of backscatter energy and counter-gradient heat transport are related to the areas of compressed focal vorticity. More arguments have been attained through a priori investigation of the alignment trends imposed by existing parameterizations for the SGS heat flux, tested here inside RBC. It is shown that the parameterizations based linearly on the resolved thermal gradient are invalid in RBC. Alternatively, the tensor-diffusivity approach becomes a crucial choice of modeling the SGS heat flux, in particular, the tensorial diffusivity that includes the SGS stress tensor. This and other crucial scrutinies on a future modeling to the SGS heat flux in RBC are sought.

  7. Stress granules at the intersection of autophagy and ALS

    PubMed Central

    Monahan, Zachary; Shewmaker, Frank; Pandey, Udai Bhan

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease caused by loss of upper and lower motor neurons. The majority of ALS cases are classified as sporadic (80-90%), with the remaining considered familial based on patient history. The last decade has seen a surge in the identification of ALS-causing genes – including TARDBP (TDP-43), FUS, MATR3 (Matrin-3), C9ORF72 and several others – providing important insights into the molecular pathways involved in pathogenesis. Most of the protein products of ALS-linked genes fall into two functional categories: RNA-binding/homeostasis and protein-quality control (i.e. autophagy and proteasome). The RNA-binding proteins tend to be aggregation-prone with low-complexity domains similar to the prion-forming domains of yeast. Many also incorporate into stress granules (SGs), which are cytoplasmic ribonucleoprotein complexes that form in response to cellular stress. Mutant forms of TDP-43 and FUS perturb SG dynamics, lengthening their cytoplasmic persistence. Recent evidence suggests that SGs are regulated by the autophagy pathway, suggesting a unifying connection between many of the ALS-linked genes. Persistent SGs may give rise to intractable aggregates that disrupt neuronal homeostasis, thus failure to clear SGs by autophagic processes may promote ALS pathogenesis. PMID:27181519

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeuw, Frederic de; Zhang Tong; Wauquier, Corinne

    The cold-inducible RNA-binding protein (CIRP) is a nuclear 18-kDa protein consisting of an amino-terminal RNA Recognition Motif (RRM) and a carboxyl-terminal domain containing several RGG motifs. First characterized for its overexpression upon cold shock, CIRP is also induced by stresses such as UV irradiation and hypoxia. Here, we investigated the expression as well as the subcellular localization of CIRP in response to other stress conditions. We demonstrate that oxidative stress leads to the migration of CIRP to stress granules (SGs) without alteration of expression. Stress granules are dynamic cytoplasmic foci at which stalled translation initiation complexes accumulate in cells subjectedmore » to environmental stress. Relocalization of CIRP into SGs also occurs upon other cytoplasmic stresses (osmotic pressure or heat shock) as well as in response to stresses of the endoplasmic reticulum. CIRP migration into SGs is independent from TIA-1 which has been previously reported to be a general mediator of SG formation, thereby suggesting the existence of multiple pathways leading to SG formation. Moreover, deletion mutants revealed that both RGG and RRM domains can independently promote CIRP migration into SGs. However, the methylation of arginine residues in the RGG domain is necessary for CIRP to exit the nucleus to be further recruited into SGs. By RNA-tethering experiments, we also show that CIRP down-regulates mRNA translation and that this activity is carried by the carboxyl-terminal RG-enriched domain. Altogether, our findings further reveal the diversity of mechanisms by which CIRP is regulated by environmental stresses and provide new insights into CIRP cytoplasmic function.« less

  9. Enterovirus 71 induces anti-viral stress granule-like structures in RD cells.

    PubMed

    Zhu, Yuanmei; Wang, Bei; Huang, He; Zhao, Zhendong

    2016-08-05

    Stress granules (SGs) are dynamic cytoplasmic granules formed in response to a variety of stresses, including viral infection. Several viruses can modulate the formation of SG with different effects, but the relationship between SG formation and EV71 infection is poorly understood. In this study, we report that EV71 inhibits canonical SGs formation in infected cells and induces the formation of novel RNA granules that were distinguished from canonical SGs in composition and morphology, which we termed 'SG like structures'. Our results also demonstrated that EV71 triggered formation of SG-like structures is dependent on PKR and eIF2α phosphorylation and requires ongoing cellular mRNA synthesis. Finally, we found that SG-like structures are antiviral RNA granules that promote cellular apoptosis and suppress EV71 propagation. Taken together, our findings explain the formation mechanism of SG-like structures induced by EV71 and shed light on virus-host interaction and molecular mechanism underlying EV71 pathogenesis. Copyright © 2016. Published by Elsevier Inc.

  10. Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.

    2017-12-01

    The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.

  11. Assessment of zero-equation SGS models for simulating indoor environment

    NASA Astrophysics Data System (ADS)

    Taghinia, Javad; Rahman, Md Mizanur; Tse, Tim K. T.

    2016-12-01

    The understanding of air-flow in enclosed spaces plays a key role to designing ventilation systems and indoor environment. The computational fluid dynamics aspects dictate that the large eddy simulation (LES) offers a subtle means to analyze complex flows with recirculation and streamline curvature effects, providing more robust and accurate details than those of Reynolds-averaged Navier-Stokes simulations. This work assesses the performance of two zero-equation sub-grid scale models: the Rahman-Agarwal-Siikonen-Taghinia (RAST) model with a single grid-filter and the dynamic Smagorinsky model with grid-filter and test-filter scales. This in turn allows a cross-comparison of the effect of two different LES methods in simulating indoor air-flows with forced and mixed (natural + forced) convection. A better performance against experiments is indicated with the RAST model in wall-bounded non-equilibrium indoor air-flows; this is due to its sensitivity toward both the shear and vorticity parameters.

  12. Multi-scale properties of large eddy simulations: correlations between resolved-scale velocity-field increments and subgrid-scale quantities

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Buzzicotti, Michele; Biferale, Luca

    2018-06-01

    We provide analytical and numerical results concerning multi-scale correlations between the resolved velocity field and the subgrid-scale (SGS) stress-tensor in large eddy simulations (LES). Following previous studies for Navier-Stokes equations, we derive the exact hierarchy of LES equations governing the spatio-temporal evolution of velocity structure functions of any order. The aim is to assess the influence of the subgrid model on the inertial range intermittency. We provide a series of predictions, within the multifractal theory, for the scaling of correlation involving the SGS stress and we compare them against numerical results from high-resolution Smagorinsky LES and from a-priori filtered data generated from direct numerical simulations (DNS). We find that LES data generally agree very well with filtered DNS results and with the multifractal prediction for all leading terms in the balance equations. Discrepancies are measured for some of the sub-leading terms involving cross-correlation between resolved velocity increments and the SGS tensor or the SGS energy transfer, suggesting that there must be room to improve the SGS modelisation to further extend the inertial range properties for any fixed LES resolution.

  13. Large eddy simulation of orientation and rotation of ellipsoidal particles in isotropic turbulent flows

    NASA Astrophysics Data System (ADS)

    Chen, Jincai; Jin, Guodong; Zhang, Jian

    2016-03-01

    The rotational motion and orientational distribution of ellipsoidal particles in turbulent flows are of significance in environmental and engineering applications. Whereas the translational motion of an ellipsoidal particle is controlled by the turbulent motions at large scales, its rotational motion is determined by the fluid velocity gradient tensor at small scales, which raises a challenge when predicting the rotational dispersion of ellipsoidal particles using large eddy simulation (LES) method due to the lack of subgrid scale (SGS) fluid motions. We report the effects of the SGS fluid motions on the orientational and rotational statistics, such as the alignment between the long axis of ellipsoidal particles and the vorticity, the mean rotational energy at various aspect ratios against those obtained with direct numerical simulation (DNS) and filtered DNS. The performances of a stochastic differential equation (SDE) model for the SGS velocity gradient seen by the particles and the approximate deconvolution method (ADM) for LES are investigated. It is found that the missing SGS fluid motions in LES flow fields have significant effects on the rotational statistics of ellipsoidal particles. Alignment between the particles and the vorticity is weakened; and the rotational energy of the particles is reduced in LES. The SGS-SDE model leads to a large error in predicting the alignment between the particles and the vorticity and over-predicts the rotational energy of rod-like particles. The ADM significantly improves the rotational energy prediction of particles in LES.

  14. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is themore » inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.« less

  15. Stochastic backscatter modelling for the prediction of pollutant removal from an urban street canyon: A large-eddy simulation

    NASA Astrophysics Data System (ADS)

    O'Neill, J. J.; Cai, X.-M.; Kinnersley, R.

    2016-10-01

    The large-eddy simulation (LES) approach has recently exhibited its appealing capability of capturing turbulent processes inside street canyons and the urban boundary layer aloft, and its potential for deriving the bulk parameters adopted in low-cost operational urban dispersion models. However, the thin roof-level shear layer may be under-resolved in most LES set-ups and thus sophisticated subgrid-scale (SGS) parameterisations may be required. In this paper, we consider the important case of pollutant removal from an urban street canyon of unit aspect ratio (i.e. building height equal to street width) with the external flow perpendicular to the street. We show that by employing a stochastic SGS model that explicitly accounts for backscatter (energy transfer from unresolved to resolved scales), the pollutant removal process is better simulated compared with the use of a simpler (fully dissipative) but widely-used SGS model. The backscatter induces additional mixing within the shear layer which acts to increase the rate of pollutant removal from the street canyon, giving better agreement with a recent wind-tunnel experiment. The exchange velocity, an important parameter in many operational models that determines the mass transfer between the urban canopy and the external flow, is predicted to be around 15% larger with the backscatter SGS model; consequently, the steady-state mean pollutant concentration within the street canyon is around 15% lower. A database of exchange velocities for various other urban configurations could be generated and used as improved input for operational street canyon models.

  16. 78 FR 38388 - SGS North America, Inc. (Formerly SGS U.S. Testing Company, Inc.)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    ... of one test site and the removal of one test site. This notice presents the Agency's preliminary...'s expansion request covers the addition of one additional test site. SGS's also requests the removal of one test site from its NRTL scope of recognition. SGS informed OSHA of a change in name from SGS U...

  17. Mapping Snow Grain Size over Greenland from MODIS

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Tedesco, Marco; Wang, Yujie; Kokhanovsky, Alexander

    2008-01-01

    This paper presents a new automatic algorithm to derive optical snow grain size (SGS) at 1 km resolution using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements. Differently from previous approaches, snow grains are not assumed to be spherical but a fractal approach is used to account for their irregular shape. The retrieval is conceptually based on an analytical asymptotic radiative transfer model which predicts spectral bidirectional snow reflectance as a function of the grain size and ice absorption. The analytical form of solution leads to an explicit and fast retrieval algorithm. The time series analysis of derived SGS shows a good sensitivity to snow metamorphism, including melting and snow precipitation events. Preprocessing is performed by a Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, which includes gridding MODIS data to 1 km resolution, water vapor retrieval, cloud masking and an atmospheric correction. MAIAC cloud mask (CM) is a new algorithm based on a time series of gridded MODIS measurements and an image-based rather than pixel-based processing. Extensive processing of MODIS TERRA data over Greenland shows a robust performance of CM algorithm in discrimination of clouds over bright snow and ice. As part of the validation analysis, SGS derived from MODIS over selected sites in 2004 was compared to the microwave brightness temperature measurements of SSM\\I radiometer, which is sensitive to the amount of liquid water in the snowpack. The comparison showed a good qualitative agreement, with both datasets detecting two main periods of snowmelt. Additionally, MODIS SGS was compared with predictions of the snow model CROCUS driven by measurements of the automatic whether stations of the Greenland Climate Network. We found that CROCUS grain size is on average a factor of two larger than MODIS-derived SGS. Overall, the agreement between CROCUS and MODIS results was satisfactory, in particular before and during the first melting period in mid-June. Following detailed time series analysis of SGS for four permanent sites, the paper presents SGS maps over the Greenland ice sheet for the March-September period of 2004.

  18. Difference in distribution of membrane proteins between low- and high-density secretory granules in parotid acinar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita-Yoshigaki, Junko; Katsumata, Osamu; Matsuki, Miwako

    Secretory granules (SGs) are considered to be generated as immature granules and to mature by condensation of their contents. In this study, SGs of parotid gland were separated into low-, medium-, and high-density granule fractions by Percoll-density gradient centrifugation, since it was proposed that the density corresponds to the degree of maturation. The observation with electron microscopy showed that granules in the three fractions were very similar. The average diameter of high-density granules was a little but significantly larger than that of low-density granules. Although the three fractions contained amylase, suggesting that they are all SGs, distribution of membrane proteinsmore » was markedly different. Syntaxin6 and VAMP4 were localized in the low-density granule fraction, while VAMP2 was concentrated in the high-density granule fraction. Immunoprecipitation with anti-syntaxin6 antibody caused coprecipitation of VAMP2 from the medium-density granule fraction without solubilization, but not from Triton X-100-solubilized fraction, while VAMP4 was coprecipitated from both fractions. Therefore, VAMP2 is present on the same granules, but is separated from syntaxin6 and VAMP4, which are expected to be removed from immature granules. These results suggest that the medium-density granules are intermediates from low- to high-density granules, and that the membrane components of SGs dynamically change by budding and fusion during maturation.« less

  19. Stress granules at the intersection of autophagy and ALS.

    PubMed

    Monahan, Zachary; Shewmaker, Frank; Pandey, Udai Bhan

    2016-10-15

    Amyotrophic lateral sclerosis (ALS) is a progressive, fatal disease caused by loss of upper and lower motor neurons. The majority of ALS cases are classified as sporadic (80-90%), with the remaining considered familial based on patient history. The last decade has seen a surge in the identification of ALS-causing genes - including TARDBP (TDP-43), FUS, MATR3 (Matrin-3), C9ORF72 and several others - providing important insights into the molecular pathways involved in pathogenesis. Most of the protein products of ALS-linked genes fall into two functional categories: RNA-binding/homeostasis and protein-quality control (i.e. autophagy and proteasome). The RNA-binding proteins tend to be aggregation-prone with low-complexity domains similar to the prion-forming domains of yeast. Many also incorporate into stress granules (SGs), which are cytoplasmic ribonucleoprotein complexes that form in response to cellular stress. Mutant forms of TDP-43 and FUS perturb SG dynamics, lengthening their cytoplasmic persistence. Recent evidence suggests that SGs are regulated by the autophagy pathway, suggesting a unifying connection between many of the ALS-linked genes. Persistent SGs may give rise to intractable aggregates that disrupt neuronal homeostasis, thus failure to clear SGs by autophagic processes may promote ALS pathogenesis. This article is part of a Special Issue entitled SI:Autophagy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Part 2 of a Computational Study of a Drop-Laden Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2004-01-01

    This second of three reports on a computational study of a mixing layer laden with evaporating liquid drops presents the evaluation of Large Eddy Simulation (LES) models. The LES models were evaluated on an existing database that had been generated using Direct Numerical Simulation (DNS). The DNS method and the database are described in the first report of this series, Part 1 of a Computational Study of a Drop-Laden Mixing Layer (NPO-30719), NASA Tech Briefs, Vol. 28, No.7 (July 2004), page 59. The LES equations, which are derived by applying a spatial filter to the DNS set, govern the evolution of the larger scales of the flow and can therefore be solved on a coarser grid. Consistent with the reduction in grid points, the DNS drops would be represented by fewer drops, called computational drops in the LES context. The LES equations contain terms that cannot be directly computed on the coarser grid and that must instead be modeled. Two types of models are necessary: (1) those for the filtered source terms representing the effects of drops on the filtered flow field and (2) those for the sub-grid scale (SGS) fluxes arising from filtering the convective terms in the DNS equations. All of the filtered-sourceterm models that were developed were found to overestimate the filtered source terms. For modeling the SGS fluxes, constant-coefficient Smagorinsky, gradient, and scale-similarity models were assessed and calibrated on the DNS database. The Smagorinsky model correlated poorly with the SGS fluxes, whereas the gradient and scale-similarity models were well correlated with the SGS quantities that they represented.

  1. Efficient parallel implicit methods for rotary-wing aerodynamics calculations

    NASA Astrophysics Data System (ADS)

    Wissink, Andrew M.

    Euler/Navier-Stokes Computational Fluid Dynamics (CFD) methods are commonly used for prediction of the aerodynamics and aeroacoustics of modern rotary-wing aircraft. However, their widespread application to large complex problems is limited lack of adequate computing power. Parallel processing offers the potential for dramatic increases in computing power, but most conventional implicit solution methods are inefficient in parallel and new techniques must be adopted to realize its potential. This work proposes alternative implicit schemes for Euler/Navier-Stokes rotary-wing calculations which are robust and efficient in parallel. The first part of this work proposes an efficient parallelizable modification of the Lower Upper-Symmetric Gauss Seidel (LU-SGS) implicit operator used in the well-known Transonic Unsteady Rotor Navier Stokes (TURNS) code. The new hybrid LU-SGS scheme couples a point-relaxation approach of the Data Parallel-Lower Upper Relaxation (DP-LUR) algorithm for inter-processor communication with the Symmetric Gauss Seidel algorithm of LU-SGS for on-processor computations. With the modified operator, TURNS is implemented in parallel using Message Passing Interface (MPI) for communication. Numerical performance and parallel efficiency are evaluated on the IBM SP2 and Thinking Machines CM-5 multi-processors for a variety of steady-state and unsteady test cases. The hybrid LU-SGS scheme maintains the numerical performance of the original LU-SGS algorithm in all cases and shows a good degree of parallel efficiency. It experiences a higher degree of robustness than DP-LUR for third-order upwind solutions. The second part of this work examines use of Krylov subspace iterative solvers for the nonlinear CFD solutions. The hybrid LU-SGS scheme is used as a parallelizable preconditioner. Two iterative methods are tested, Generalized Minimum Residual (GMRES) and Orthogonal s-Step Generalized Conjugate Residual (OSGCR). The Newton method demonstrates good parallel performance on the IBM SP2, with OS-GCR giving slightly better performance than GMRES on large numbers of processors. For steady and quasi-steady calculations, the convergence rate is accelerated but the overall solution time remains about the same as the standard hybrid LU-SGS scheme. For unsteady calculations, however, the Newton method maintains a higher degree of time-accuracy which allows tbe use of larger timesteps and results in CPU savings of 20-35%.

  2. Reactions to Receiving a Gift-Maternal Scaffolding and Cultural Learning in Berlin and Delhi.

    PubMed

    Kärtner, Joscha; Crafa, Daina; Chaudhary, Nandita; Keller, Heidi

    2016-05-01

    This study shows how Berlin (n = 35) and Delhi (n = 28) mothers scaffold a common and highly scripted social situation, namely gift giving, and enable cultural learning in 19-month-olds. Using modeling and prompting to encourage appropriate responses, mothers took culture-specific directions during scaffolding that were in line with the broader cultural model as assessed by maternal socialization goals (SGs). Whereas Berlin mothers prioritized autonomous SGs, Delhi mothers emphasized autonomous and relational SGs to similar degrees. During scaffolding, Berlin mothers focused on maximizing positive affect and acknowledging the gift, whereas Delhi mothers prompted toddlers to acknowledge the giver more often. Furthermore, there were differences in toddlers' behavior in line with these culture-specific scripts guiding gift giving. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  3. A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.

    2016-12-01

    Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.

  4. Do singing-ground surveys reflect american woodcock abundance in the western Great Lakes region?

    USGS Publications Warehouse

    Matthew R. Nelson,; Andersen, David E.

    2013-01-01

    The Singing-ground Survey (SGS) is the primary monitoring tool used to assess population status and trends of American woodcock (Scolopax minor). Like most broad-scale surveys, the SGS cannot be directly validated because there are no independent estimates of abundance of displaying male American woodcock at an appropriate spatial scale. Furthermore, because locations of individual SGS routes have generally remained stationary since the SGS was standardized in 1968, it is not known whether routes adequately represent the landscapes they were intended to represent. To indirectly validate the SGS, we evaluated whether 1) counts of displaying male American woodcock on SGS routes related to land-cover types known to be related to American woodcock abundance, 2) changes in counts of displaying male American woodcock through time were related to changes in land cover along SGS routes, and 3) land-cover type composition along SGS routes was similar to land-cover type composition of the surrounding landscape. In Wisconsin and Minnesota, USA, counts along SGS routes reflected known American woodcock-habitat relations. Increases in the number of woodcock heard along SGS routes over a 13-year period in Wisconsin were related to increasing amounts of early successional forest, decreasing amounts of mature forest, and increasing dispersion and interspersion of cover types. Finally, the cover types most strongly associated with American woodcock abundance were represented along SGS routes in proportion to their composition of the broader landscape. Taken together, these results suggest that in the western Great Lakes region, the SGS likely provides a reliable tool for monitoring relative abundance and population trends of breeding, male American woodcock.

  5. Discovery of the First B[e] Supergiants in M 31

    NASA Astrophysics Data System (ADS)

    Kraus, M.; Cidale, L. S.; Arias, M. L.; Oksala, M. E.; Borges Fernandes, M.

    2014-01-01

    B[e] supergiants (B[e]SGs) are transitional objects in the post-main sequence evolution of massive stars. The small number of B[e]SGs known so far in the Galaxy and the Magellanic Clouds indicates that this evolutionary phase is short. Nevertheless, the strong aspherical mass loss occurring during this phase, which leads to the formation of rings or disk-like structures, and the similarity to possible progenitors of SN1987 A emphasize the importance of B[e]SGs for the dynamics of the interstellar medium as well as stellar and galactic chemical evolution. The number of objects and their mass-loss behavior at different metallicities are essential ingredients for accurate predictions from stellar and galactic evolution calculations. However, B[e]SGs are not easily identified, as they share many characteristics with luminous blue variables (LBVs) in their quiescent (hot) phase. We present medium-resolution near-infrared K-band spectra for four stars in M 31, which have been assigned a hot LBV (candidate) status. Applying diagnostics that were recently developed to distinguish B[e]SGs from hot LBVs, we classify two of the objects as bonafide LBVs; one of them currently in outburst. In addition, we firmly classify the two stars 2MASS J00441709+4119273 and 2MASS J00452257+4150346 as the first B[e]SGs in M 31 based on strong CO band emission detected in their spectra, and infrared colors typical for this class of stars. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), under program ID GN-2013B-Q-10.

  6. Myrip couples the capture of secretory granules by the actin-rich cell cortex and their attachment to the plasma membrane.

    PubMed

    Huet, Sébastien; Fanget, Isabelle; Jouannot, Ouardane; Meireles, Patricia; Zeiske, Tim; Larochette, Nathanaël; Darchen, François; Desnos, Claire

    2012-02-15

    Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.

  7. Performance Benchmark for a Prismatic Flow Solver

    DTIC Science & Technology

    2007-03-26

    Gauss- Seidel (LU-SGS) implicit method is used for time integration to reduce the computational time. A one-equation turbulence model by Goldberg and...numerical flux computations. The Lower-Upper-Symmetric Gauss- Seidel (LU-SGS) implicit method [1] is used for time integration to reduce the...Sharov, D. and Nakahashi, K., “Reordering of Hybrid Unstructured Grids for Lower-Upper Symmetric Gauss- Seidel Computations,” AIAA Journal, Vol. 36

  8. RECQ-like helicases Sgs1 and BLM regulate R-loop–associated genome instability

    PubMed Central

    Chang, Emily Yun-Chia; Novoa, Carolina A.; Aristizabal, Maria J.; Coulombe, Yan; Segovia, Romulo; Shen, Yaoqing; Keong, Christelle; Tam, Annie S.; Jones, Steven J.M.; Masson, Jean-Yves; Kobor, Michael S.

    2017-01-01

    Sgs1, the orthologue of human Bloom’s syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription–replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop–forming potential. Analysis of BLM in Bloom’s syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop–associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop–mediated genome instability. PMID:29042409

  9. Subglottic stenosis in granulomatosis with polyangiitis (Wegener's granulomatosis): Report of 4 cases.

    PubMed

    Horta-Baas, Gabriel; Hernández-Cabrera, María Fernanda; Catana, Rocío; Pérez-Cristóbal, Mario; Barile-Fabris, Leonor Adriana

    2016-01-01

    Subglottic stenosis (SGS) in granulomatosis with polyangiitis (GPA) may result from active disease or from chronic recurrent inflammation. The objective of the study was to describe the clinical features and treatment of patients with subglottic stenosis. We retrospectively reviewed the medical records of all patients with SGS due to GPA diagnosed at Rheumatology deparment between January 2000 and June 2015. We present 4 cases of SGS at our department during a period of 15 years. The interval between the presentation of the GPA and SGS varied between 2 and 144 months. The leading symptoms of SGS were dyspnoea on exertion and stridor. Three patients presented SGS without evidence of systemic activity. Two patients presented SGS grade i and received tracheal dilatation; two recurred and three needed a tracheostomy due to severe airway-limiting stenosis. SGS presents high morbidity. Even though subglottic dilatation provides symptomatic relief, recurrences may present. Severe airway-limiting stenosis often requires tracheostomy. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  10. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability.

    PubMed

    Chang, Emily Yun-Chia; Novoa, Carolina A; Aristizabal, Maria J; Coulombe, Yan; Segovia, Romulo; Chaturvedi, Richa; Shen, Yaoqing; Keong, Christelle; Tam, Annie S; Jones, Steven J M; Masson, Jean-Yves; Kobor, Michael S; Stirling, Peter C

    2017-12-04

    Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1 Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability. © 2017 Chang et al.

  11. A Dynamic Analysis of Secretory Granules Containing Proteins Involved In Learning

    NASA Astrophysics Data System (ADS)

    Prahl, Louis; Simon, Alex; Jacobs, Conor; Fulwiler, Audrey; Hilken, Lindsay; Scalettar, Bethe; Lochner, Janis

    2010-10-01

    Formation and encoding of long-term memories requires a series of structural changes at synapses, or sites of neuronal communication, in the hippocampus; these changes are mediated by neuromodulatory proteins and serve to strengthen synapses to improve communication. Two prominent neuromodulators, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), are copackaged into secretory granules (SGs) in the body of nerve cells and are transported to distal synapses by motor proteins. At synapses, particularly presynaptic sites, the fate of tPA and BDNF is largely unknown. Motivated by this, and by recent data implicating presynaptic BDNF in early phases of learning, we used fluorescence microscopy to elucidate dynamic properties of presynaptic tPA and BDNF. We find that presynaptic SGs containing tPA and/or BDNF undergo Brownian and anomalous diffusive motion that, in 75% of cases, is so slow that it typically would be classified as immobility. These results suggest that tPA and BDNF are retained at presynaptic sites to facilitate their corelease and role in learning.

  12. 78 FR 48909 - SGS North America, Inc. (formerly SGS U.S. Testing Company, Inc.)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... of one test site. OSHA also recognizes the removal of one test site and 13 test standards from SGS's... expand its recognition to include one additional test site located at 620 Old Peachtree Road, Suwanee, GA... this move, SGS requests the removal of one test site, located at 291 Fairfield Avenue, Fairfield, NJ...

  13. 76 FR 64961 - Accreditation and Approval of SGS North America, Inc. as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... of SGS North America, Inc. as a Commercial Gauger and Laboratory AGENCY: Bureau of Customs and Border Protection, Department of Homeland Security. ACTION: Notice of approval of SGS North America, Inc., Carson... 151.12 and 151.13, SGS North America, Inc., Carson, California 90746, has been approved to gauge and...

  14. Reduction of the Oxidative Stress Status Using Steviol Glycosides in a Fish Model (Cyprinus carpio)

    PubMed Central

    Sánchez-Aceves, Livier Mireya; Dublán-García, Octavio; López-Martínez, Leticia-Xochitl; Novoa-Luna, Karen Adriana; Galar-Martínez, Marcela; Hernández-Navarro, María Dolores

    2017-01-01

    Steviol glycosides are sweetening compounds from the Stevia rebaudiana Bertoni plant. This product is considered safe for human consumption and was approved as a food additive by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA). Its effects on the ecosystem have not been studied in depth; therefore, it is necessary to carry out ecotoxicological studies in organisms such as Cyprinus carpio. The present study aimed to evaluate the antioxidant activity by SGs on diverse tissues in C. carpio using oxidative stress (OS) biomarkers. To test the antioxidant activity, carps were exposed to four systems: (1) SGs free control, (2) CCl4 0.5 mL/kg, (3) SGs 1 g/L, and (4) CCl4 0.5 mL/kg + SGs 1 g/L at 96 h. The following biomarkers were analyzed: lipoperoxidation (LPX), hydroperoxide content (HPC), and protein carbonyl content (PCC), as well as antioxidant activity of superoxide dismutase (SOD) and catalase (CAT). It was found that both (3 and 4) systems' exposure decreases LPX, CHP, PCC, SOD, and CAT with respect to the CCl4 system. The results of this study demonstrate that the concentrations of SGs used are not capable of generating oxidative stress and, on the contrary, would appear to induce an antioxidant effect. PMID:28691017

  15. Reduction of the Oxidative Stress Status Using Steviol Glycosides in a Fish Model (Cyprinus carpio).

    PubMed

    Sánchez-Aceves, Livier Mireya; Dublán-García, Octavio; López-Martínez, Leticia-Xochitl; Novoa-Luna, Karen Adriana; Islas-Flores, Hariz; Galar-Martínez, Marcela; García-Medina, Sandra; Hernández-Navarro, María Dolores; Gómez-Oliván, Leobardo Manuel

    2017-01-01

    Steviol glycosides are sweetening compounds from the Stevia rebaudiana Bertoni plant. This product is considered safe for human consumption and was approved as a food additive by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA). Its effects on the ecosystem have not been studied in depth; therefore, it is necessary to carry out ecotoxicological studies in organisms such as Cyprinus carpio . The present study aimed to evaluate the antioxidant activity by SGs on diverse tissues in C. carpio using oxidative stress (OS) biomarkers. To test the antioxidant activity, carps were exposed to four systems: (1) SGs free control, (2) CCl 4 0.5 mL/kg, (3) SGs 1 g/L, and (4) CCl 4 0.5 mL/kg + SGs 1 g/L at 96 h. The following biomarkers were analyzed: lipoperoxidation (LPX), hydroperoxide content (HPC), and protein carbonyl content (PCC), as well as antioxidant activity of superoxide dismutase (SOD) and catalase (CAT). It was found that both (3 and 4) systems' exposure decreases LPX, CHP, PCC, SOD, and CAT with respect to the CCl 4 system. The results of this study demonstrate that the concentrations of SGs used are not capable of generating oxidative stress and, on the contrary, would appear to induce an antioxidant effect.

  16. Impact of precipitation dynamics on net ecosystem exchange

    USDA-ARS?s Scientific Manuscript database

    Net ecosystem carbon dioxide (CO2) exchange (NEE) was measured on shortgrass steppe (SGS) vegetation at the USDA Central Plains Experimental Range in northeastern Colorado from 2001-2003. Large year-to-year differences were observed in annual NEE, with > 95% of the net carbon uptake occurring during...

  17. Association Between Social Participation and Instrumental Activities of Daily Living Among Community-Dwelling Older Adults

    PubMed Central

    Tomioka, Kimiko; Kurumatani, Norio; Hosoi, Hiroshi

    2016-01-01

    Background Population-based data examining the relationship between social participation (SP) and instrumental activities of daily living (IADL) are scarce. This study examined the cross-sectional relationship between SP and IADL in community-dwelling elderly persons. Methods Self-administered questionnaires were mailed to 23 710 residents aged ≥65 years in Nara, Japan (response rate: 74.2%). Data from 14 956 respondents (6935 males and 8021 females) without dependency in basic activities of daily living (ADL) were analyzed. The number, type, and frequency of participation in social groups (SGs) were used to measure SP. SGs included volunteer groups, sports groups, hobby groups, senior citizens’ clubs, neighborhood community associations, and cultural groups. IADL was evaluated using the Tokyo Metropolitan Institute of Gerontology Index of Competence. Logistic regression models stratified by gender were used. Results After adjustment for putative confounding factors, including demographics, health status, life-style habits, ADL, depression, cognitive function, social networks, social support, and social roles, participation in various SGs among both genders was inversely associated with poor IADL, showing a significant dose-response relationship between an increasing number of SGs and a lower proportion of those with poor IADL (P for trend <0.001). A significant inverse association between frequent participation and poor IADL was observed for all types of SGs among females, whereas the association was limited to sports groups and senior citizens’ clubs among males. Conclusions Our results show that participation in a variety of SGs is associated with independent IADL among the community-dwelling elderly, regardless of gender. However, the beneficial effects of frequent participation on IADL may be stronger for females than for males. PMID:27180933

  18. Association Between Social Participation and Instrumental Activities of Daily Living Among Community-Dwelling Older Adults.

    PubMed

    Tomioka, Kimiko; Kurumatani, Norio; Hosoi, Hiroshi

    2016-10-05

    Population-based data examining the relationship between social participation (SP) and instrumental activities of daily living (IADL) are scarce. This study examined the cross-sectional relationship between SP and IADL in community-dwelling elderly persons. Self-administered questionnaires were mailed to 23 710 residents aged ≥65 years in Nara, Japan (response rate: 74.2%). Data from 14 956 respondents (6935 males and 8021 females) without dependency in basic activities of daily living (ADL) were analyzed. The number, type, and frequency of participation in social groups (SGs) were used to measure SP. SGs included volunteer groups, sports groups, hobby groups, senior citizens' clubs, neighborhood community associations, and cultural groups. IADL was evaluated using the Tokyo Metropolitan Institute of Gerontology Index of Competence. Logistic regression models stratified by gender were used. After adjustment for putative confounding factors, including demographics, health status, life-style habits, ADL, depression, cognitive function, social networks, social support, and social roles, participation in various SGs among both genders was inversely associated with poor IADL, showing a significant dose-response relationship between an increasing number of SGs and a lower proportion of those with poor IADL (P for trend <0.001). A significant inverse association between frequent participation and poor IADL was observed for all types of SGs among females, whereas the association was limited to sports groups and senior citizens' clubs among males. Our results show that participation in a variety of SGs is associated with independent IADL among the community-dwelling elderly, regardless of gender. However, the beneficial effects of frequent participation on IADL may be stronger for females than for males.

  19. Sudden Gains in the Treatment of Depression in a Partial Hospitalization Program

    ERIC Educational Resources Information Center

    Drymalski, Walter M.; Washburn, Jason J.

    2011-01-01

    Objective: This study examines sudden gains (SGs), or rapid improvements in symptoms, among adults in treatment for depression in a partial hospitalization program (PHP). This study identifies the proportion of people who experience SGs in a PHP, when SGs occur in treatment, and the association of SGs with outcomes at the end of treatment. Method:…

  20. LES, DNS, and RANS for the Analysis of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Colucci, P. J.; Jaberi, F. A.; Givi, P.

    1996-01-01

    A filtered density function (FDF) method suitable for chemically reactive flows is developed in the context of large eddy simulation. The advantage of the FDF methodology is its inherent ability to resolve subgrid scales (SGS) scalar correlations that otherwise have to be modeled. Because of the lack of robust models to accurately predict these correlations in turbulent reactive flows, simulations involving turbulent combustion are often met with a degree of skepticism. The FDF methodology avoids the closure problem associated with these terms and treats the reaction in an exact manner. The scalar FDF approach is particularly attractive since it can be coupled with existing hydrodynamic computational fluid dynamics (CFD) codes.

  1. Formulating a subgrid-scale breakup model for microbubble generation from interfacial collisions

    NASA Astrophysics Data System (ADS)

    Chan, Wai Hong Ronald; Mirjalili, Shahab; Urzay, Javier; Mani, Ali; Moin, Parviz

    2017-11-01

    Multiphase flows often involve impact events that engender important effects like the generation of a myriad of tiny bubbles that are subsequently transported in large liquid bodies. These impact events are created by large-scale phenomena like breaking waves on ocean surfaces, and often involve the relative approach of liquid surfaces. This relative motion generates continuously shrinking length scales as the entrapped gas layer thins and eventually breaks up into microbubbles. The treatment of this disparity in length scales is computationally challenging. In this presentation, a framework is presented that addresses a subgrid-scale (SGS) model aimed at capturing the process of microbubble generation. This work sets up the components in an overarching volume-of-fluid (VoF) toolset and investigates the analytical foundations of an SGS model for describing the breakup of a thin air film trapped between two approaching water bodies in a physical regime corresponding to Mesler entrainment. Constituents of the SGS model, such as the identification of impact events and the accurate computation of the local characteristic curvature in a VoF-based architecture, and the treatment of the air layer breakup, are discussed and illustrated in simplified scenarios. Supported by Office of Naval Research (ONR)/A*STAR (Singapore).

  2. Parameter investigation with line-implicit lower-upper symmetric Gauss-Seidel on 3D stretched grids

    NASA Astrophysics Data System (ADS)

    Otero, Evelyn; Eliasson, Peter

    2015-03-01

    An implicit lower-upper symmetric Gauss-Seidel (LU-SGS) solver has been implemented as a multigrid smoother combined with a line-implicit method as an acceleration technique for Reynolds-averaged Navier-Stokes (RANS) simulation on stretched meshes. The computational fluid dynamics code concerned is Edge, an edge-based finite volume Navier-Stokes flow solver for structured and unstructured grids. The paper focuses on the investigation of the parameters related to our novel line-implicit LU-SGS solver for convergence acceleration on 3D RANS meshes. The LU-SGS parameters are defined as the Courant-Friedrichs-Lewy number, the left-hand side dissipation, and the convergence of iterative solution of the linear problem arising from the linearisation of the implicit scheme. The influence of these parameters on the overall convergence is presented and default values are defined for maximum convergence acceleration. The optimised settings are applied to 3D RANS computations for comparison with explicit and line-implicit Runge-Kutta smoothing. For most of the cases, a computing time acceleration of the order of 2 is found depending on the mesh type, namely the boundary layer and the magnitude of residual reduction.

  3. Sudden gains in the outpatient treatment of anorexia nervosa: A process-outcome study.

    PubMed

    Cartwright, Anna; Cheng, Yat Ping; Schmidt, Ulrike; Landau, Sabine

    2017-10-01

    Sudden gains (SGs), broadly defined as sudden symptom reductions occurring between two consecutive treatment sessions, have been associated with improved treatment outcomes in anxiety and depression. The present study is the first to formally define SGs in anorexia nervosa and explore the characteristics, demographic and baseline clinical predictors, and clinical impact of SGs in anorexia nervosa. This is a secondary analysis of data from 89 outpatients with broadly defined anorexia nervosa who received one of two psychotherapeutic interventions as part of the MOSAIC trial (Schmidt et al., 2015). SGs were defined using session-by-session body mass index (BMI) measures. This study investigated whether SGs were associated with changes in BMI, eating disorder symptomology, general psychopathology, and psychosocial impairment between baseline and 6, 12, and 24 months follow-up. SGs, experienced by 61.8% of patients, mostly occurred during the early and middle phases of treatment. A larger proportion of SGs predicted larger increases in BMI between baseline and 6, 12, and 24 months follow-up. Amongst those experiencing at least one SG, fewer days between baseline and a patient's first SG predicted a larger increase in BMI between baseline and both 6 and 12 months follow-up. The proportion and timing of SGs did not predict changes in other outcome measures. SGs in BMI during the outpatient treatment of anorexia nervosa are clinically useful predictors of longer-term weight outcomes. © 2017 Wiley Periodicals, Inc.

  4. Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection

    PubMed Central

    Pène, Véronique; Sodroski, Catherine; Hsu, Ching-Sheng

    2015-01-01

    ABSTRACT The ubiquitous ATP-dependent RNA helicase DDX3X is involved in many cellular functions, including innate immunity, and is a pivotal host factor for hepatitis C virus (HCV) infection. Recently, we showed that DDX3X specifically recognizes the HCV 3′ untranslated region (UTR), leading to the activation of IKK-α and a cascade of lipogenic signaling to facilitate lipid droplet biogenesis and viral assembly (Q. Li, V. Pene, S. Krishnamurthy, H. Cha, and T. J. Liang, Nat Med 19:722–729, 2013, http://dx.doi.org/10.1038/nm.3190). The interaction of DDX3X with HCV core protein seems to be dispensable for its proviral role. In this study, through systematic imaging and biochemical and virologic approaches, we identified a dynamic association between DDX3X and various cellular compartments and viral elements mediating multiple functions of DDX3X in productive HCV infection. Upon HCV infection, the HCV 3′UTR interacts with DDX3X and IKK-α, which redistribute to speckle-like cytoplasmic structures shown to be stress granules (SGs). As viral proteins accumulate in infected cells, DDX3X granules together with SG-associated proteins redistribute and colocalize with HCV core protein around lipid droplets (LDs). IKK-α, however, does not relocate to the LD but translocates to the nucleus. In HCV-infected cells, various HCV nonstructural proteins also interact or colocalize with DDX3X in close proximity to SGs and LDs, consistent with the tight juxtaposition of the replication complex and the assembly site at the surface of LDs. Short interfering RNA (siRNA)-mediated silencing of DDX3X and multiple SG components markedly inhibits HCV infection. Our data suggest that DDX3X initiates a multifaceted cellular program involving dynamic associations with HCV RNA and proteins, IKK-α, SG, and LD surfaces for its crucial role in the HCV life cycle. IMPORTANCE DDX3X is a proviral host factor for HCV infection. Recently, we showed that DDX3X binds to the HCV 3′UTR, activating IKK-α and cellular lipogenesis to facilitate viral assembly (Q. Li et al., Nat Med 19:722–729, 2013, http://dx.doi.org/10.1038/nm.3190). Here, we report associations of DDX3X with various cellular compartments and viral elements that mediate its multiple functions in the HCV life cycle. Upon infection, the HCV 3′UTR redistributes DDX3X and IKK-α to speckle-like cytoplasmic structures shown to be SGs. Subsequently, interactions between DDX3X, SG, and HCV proteins facilitate the translocation of DDX3X-SG complexes to the LD surface. HCV nonstructural proteins are shown to colocalize with DDX3X in close proximity to SGs and LDs, consistent with the tight juxtaposition of the HCV replication complex and assembly site at the LD surface. Our data demonstrate that DDX3X initiates a multifaceted cellular program involving dynamic associations with HCV elements, IKK-α, SGs, and LDs for its critical role in HCV infection. PMID:25740981

  5. Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection.

    PubMed

    Pène, Véronique; Li, Qisheng; Sodroski, Catherine; Hsu, Ching-Sheng; Liang, T Jake

    2015-05-01

    The ubiquitous ATP-dependent RNA helicase DDX3X is involved in many cellular functions, including innate immunity, and is a pivotal host factor for hepatitis C virus (HCV) infection. Recently, we showed that DDX3X specifically recognizes the HCV 3' untranslated region (UTR), leading to the activation of IKK-α and a cascade of lipogenic signaling to facilitate lipid droplet biogenesis and viral assembly (Q. Li, V. Pene, S. Krishnamurthy, H. Cha, and T. J. Liang, Nat Med 19:722-729, 2013, http://dx.doi.org/10.1038/nm.3190). The interaction of DDX3X with HCV core protein seems to be dispensable for its proviral role. In this study, through systematic imaging and biochemical and virologic approaches, we identified a dynamic association between DDX3X and various cellular compartments and viral elements mediating multiple functions of DDX3X in productive HCV infection. Upon HCV infection, the HCV 3'UTR interacts with DDX3X and IKK-α, which redistribute to speckle-like cytoplasmic structures shown to be stress granules (SGs). As viral proteins accumulate in infected cells, DDX3X granules together with SG-associated proteins redistribute and colocalize with HCV core protein around lipid droplets (LDs). IKK-α, however, does not relocate to the LD but translocates to the nucleus. In HCV-infected cells, various HCV nonstructural proteins also interact or colocalize with DDX3X in close proximity to SGs and LDs, consistent with the tight juxtaposition of the replication complex and the assembly site at the surface of LDs. Short interfering RNA (siRNA)-mediated silencing of DDX3X and multiple SG components markedly inhibits HCV infection. Our data suggest that DDX3X initiates a multifaceted cellular program involving dynamic associations with HCV RNA and proteins, IKK-α, SG, and LD surfaces for its crucial role in the HCV life cycle. IMPORTANCE DDX3X is a proviral host factor for HCV infection. Recently, we showed that DDX3X binds to the HCV 3'UTR, activating IKK-α and cellular lipogenesis to facilitate viral assembly (Q. Li et al., Nat Med 19:722-729, 2013, http://dx.doi.org/10.1038/nm.3190). Here, we report associations of DDX3X with various cellular compartments and viral elements that mediate its multiple functions in the HCV life cycle. Upon infection, the HCV 3'UTR redistributes DDX3X and IKK-α to speckle-like cytoplasmic structures shown to be SGs. Subsequently, interactions between DDX3X, SG, and HCV proteins facilitate the translocation of DDX3X-SG complexes to the LD surface. HCV nonstructural proteins are shown to colocalize with DDX3X in close proximity to SGs and LDs, consistent with the tight juxtaposition of the HCV replication complex and assembly site at the LD surface. Our data demonstrate that DDX3X initiates a multifaceted cellular program involving dynamic associations with HCV elements, IKK-α, SGs, and LDs for its critical role in HCV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Play seriously: Effectiveness of serious games and their features in motor rehabilitation. A meta-analysis.

    PubMed

    Tăut, Diana; Pintea, Sebastian; Roovers, Jan-Paul W R; Mañanas, Miguel-Angel; Băban, Adriana

    2017-01-01

    Evidence for the effectiveness of serious games (SGs) and their various features is inconsistent in the motor rehabilitation field, which makes evidence based development of SGs a rare practice. To investigate the effectiveness of SGs in motor rehabilitation for upper limb and movement/balance and to test the potential moderating role of SGs features like feedback, activities, characters and background. We ran a meta-analysis including 61 studies reporting randomized controlled trials (RCTs), controlled trials (CTs) or case series designs in which at least one intervention for motor rehabilitation included the use of SGs as standalone or in combination. There was an overall moderate effect of SGs on motor indices, d = 0.59, [95% CI, 0.48, 0.71], p <  0.001. Regarding the game features, only two out of 17 moderators were statistically different in terms of effect sizes: type of activity (combination of group with individual activities had the highest effects), and realism of the scenario (fantasy scenarios had the highest effects). While we showed that SGs are more effective in improving motor upper limb and movement/balance functions compared to conventional rehabilitation, there were no consistent differences between various game features in their contribution to effects. Further research should systematically investigate SGs features that might have added value in improving effectiveness.

  7. A Priori Analyses of Three Subgrid-Scale Models for One-Parameter Families of Filters

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Adams, Nikolaus A.

    1998-01-01

    The decay of isotropic turbulence a compressible flow is examined by direct numerical simulation (DNS). A priori analyses of the DNS data are then performed to evaluate three subgrid-scale (SGS) models for large-eddy simulation (LES): a generalized Smagorinsky model (M1), a stress-similarity model (M2), and a gradient model (M3). The models exploit one-parameter second- or fourth-order filters of Pade type, which permit the cutoff wavenumber k(sub c) to be tuned independently of the grid increment (delta)x. The modeled (M) and exact (E) SGS-stresses are compared component-wise by correlation coefficients of the form C(E,M) computed over the entire three-dimensional fields. In general, M1 correlates poorly against exact stresses (C < 0.2), M3 correlates moderately well (C approx. 0.6), and M2 correlates remarkably well (0.8 < C < 1.0). Specifically, correlations C(E, M2) are high provided the grid and test filters are of the same order. Moreover, the highest correlations (C approx.= 1.0) result whenever the grid and test filters are identical (in both order and cutoff). Finally, present results reveal the exact SGS stresses obtained by grid filters of differing orders to be only moderately well correlated. Thus, in LES the model should not be specified independently of the filter.

  8. Toward Better Modeling of Supercritical Turbulent Mixing

    NASA Technical Reports Server (NTRS)

    Selle, Laurent; Okongo'o, Nora; Bellan, Josette; Harstad, Kenneth

    2008-01-01

    study was done as part of an effort to develop computational models representing turbulent mixing under thermodynamic supercritical (here, high pressure) conditions. The question was whether the large-eddy simulation (LES) approach, developed previously for atmospheric-pressure compressible-perfect-gas and incompressible flows, can be extended to real-gas non-ideal (including supercritical) fluid mixtures. [In LES, the governing equations are approximated such that the flow field is spatially filtered and subgrid-scale (SGS) phenomena are represented by models.] The study included analyses of results from direct numerical simulation (DNS) of several such mixing layers based on the Navier-Stokes, total-energy, and conservation- of-chemical-species governing equations. Comparison of LES and DNS results revealed the need to augment the atmospheric- pressure LES equations with additional SGS momentum and energy terms. These new terms are the direct result of high-density-gradient-magnitude regions found in the DNS and observed experimentally under fully turbulent flow conditions. A model has been derived for the new term in the momentum equation and was found to perform well at small filter size but to deteriorate with increasing filter size. Several alternative models were derived for the new SGS term in the energy equation that would need further investigations to determine if they are too computationally intensive in LES.

  9. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    PubMed

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Randomized Crossover Study of Training Benefits of High Fidelity ECMO Simulation versus Porcine Animal Model An Interim Report

    DTIC Science & Technology

    2017-02-25

    59 MDW/SGVU SUBJECT: Professional Presentation Approval 24 FEB 2017 1. Your paper, entitled Randomized C rossover Study of T raining Benefits of...WHASC) internship and residency programs. 3. Please know that if you are a Graduate Health Sciences Education student and your department has told you...source for your study [e.g .. 59 MOW CRD Graduate Health Sciences Education (GHSE) (SGS O&M): SGS R&D; Tri-Service Nursing Research Program (TSNRP

  11. The 13Carbon footprint of B[e] supergiants

    NASA Astrophysics Data System (ADS)

    Liermann, A.; Kraus, M.; Schnurr, O.; Fernandes, M. Borges

    2010-10-01

    We report on the first detection of 13C enhancement in two B[e] supergiants (B[e]SGs) in the Large Magellanic Cloud. Stellar evolution models predict the surface abundance in 13C to strongly increase during main-sequence and post-main-sequence evolution of massive stars. However, direct identification of chemically processed material on the surface of B[e]SGs is hampered by their dense, disc-forming winds, hiding the stars. Recent theoretical computations predict the detectability of enhanced 13C via the molecular emission in 13CO arising in the circumstellar discs of B[e]SGs. To test this potential method and to unambiguously identify a post-main-sequence B[e] SG by its 13CO emission, we have obtained high-quality K-band spectra of two known B[e] SGs in the Large Magellanic Cloud, using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared (VLT/SINFONI). Both stars clearly show the 13CO band emission, whose strength implies a strong enhancement of 13C, in agreement with theoretical predictions. This first ever direct confirmation of the evolved nature of B[e]SGs thus paves the way to the first identification of a Galactic B[e]SG. Based on observations collected with the ESO VLT Paranal Observatory under programme 384.D-1078(A). E-mail: liermann@mpifr-bonn.mpg.de (AL); kraus@sunstel.asu.cas.cz (MK); oschnurr@aip.de (OS); borges@on.br (MBF)

  12. Novel Biocatalysts Based on S-Layer Self-Assembly of Geobacillus Stearothermophilus NRS 2004/3a: A Nanobiotechnological Approach

    PubMed Central

    Schäffer, Christina; Novotny, René; Küpcü, Seta; Zayni, Sonja; Scheberl, Andrea; Friedmann, Jacqueline; Sleytr, Uwe B.; Messner, Paul

    2015-01-01

    The crystalline cell-surface (S) layer sgsE of Geobacillus stearothermophilus NRS 2004/3a represents a natural protein self-assembly system with nanometer-scale periodicity that is evaluated as a combined carrier/patterning element for the conception of novel types of biocatalyst aiming at the controllable display of biocatalytic epitopes, storage stability, and reuse. The glucose-1-phosphate thymidylyltransferase RmlA is used as a model enzyme and chimeric proteins are constructed by translational fusion of rmlA to the C-terminus of truncated forms of sgsE (rSgsE 131–903, rSgsE331–903) and used for the construction of three principal types of biocatalysts: soluble (monomeric), self-assembled in aqueous solution, and recrystallized on negatively charged liposomes. Enzyme activity of the biocatalysts reaches up to 100% compared to sole RmlA cloned from the same bacterium. The S-layer portion of the biocatalysts confers significantly improved shelf life to the fused enzyme without loss of activity over more than three months, and also enables biocatalyst recycling. These nanopatterned composites may open up new functional concepts for biocatalytic applications in nanobiotechnology. PMID:17786898

  13. Possible Explanation of the Different Temporal Behaviors of Various Classes of Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin; Li, Ke-Jun; Li, Fu-Yu

    2017-09-01

    In order to investigate the periodicity and long-term trends of various classes of sunspot groups (SGs), we separated SGs into two categories: simple SGs (A/U ≤ 4.5, where A represents the total corrected whole spot area of the group in millionths of the solar hemisphere (msh), and U represents the total corrected umbral area of the group in msh); and complex SGs (A/U > 6.2). Based on the revised version of the Greenwich Photoheliographic Results sunspot catalogue, we investigated the periodic behaviors and long-term trends of simple and complex SGs from 1875 to 1976 using the Hilbert-Huang Transform method, and we confirm that the temporal behaviors of simple and complex SGs are quite different. Our main findings are as follows. i) For simple and complex SGs, the values of the Schwabe cycle wax and wane, following the solar activity cycle. ii) There are significant phase differences (almost antiphase) between the periodicity of 53.50 ± 3.79 years extracted from yearly simple SG numbers and the periodicity of 56.21 ± 2.92 years extracted from yearly complex SG numbers. iii) The adaptive trends of yearly simple and complex SG numbers are also quite different: for simple SGs, the values of the adaptive trend gradually increase during the time period of 1875 - 1949, then they decrease gradually from 1949 to 1976, similar to the rise and the maximum phase of a sine curve; for complex SGs, the values of the adaptive trend first slowly increase and then quickly increase, similar to the minimum and rise phase of a sine curve.

  14. Unstrained and strained flamelets for LES of premixed combustion

    NASA Astrophysics Data System (ADS)

    Langella, Ivan; Swaminathan, Nedunchezhian

    2016-05-01

    The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane-air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.

  15. Repeated exposure to Lutzomyia intermedia sand fly saliva induces local expression of interferon-inducible genes both at the site of injection in mice and in human blood.

    PubMed

    Weinkopff, Tiffany; de Oliveira, Camila I; de Carvalho, Augusto M; Hauyon-La Torre, Yazmin; Muniz, Aline C; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne

    2014-01-01

    During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes.

  16. Numerical Study of the Response of an Atmospheric Surface Layer to a Spatially Nonuniform Plant Canopy

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Gu, Z. L.; Wang, Z. S.

    2008-05-01

    High-accuracy large-eddy simulations of neutral atmospheric surface-layer flow over a gapped plant canopy strip have been performed. Subgrid-scale (SGS) motions are parameterized by the Sagaut mixed length SGS model, with a modification to compute the SGS characteristic length self-adaptively. Shaw’s plant canopy model, taking the vertical variation of leaf area density into account, is applied to study the response of the atmospheric surface layer to the gapped dense forest strip. Differences in the region far away from the gap and in the middle of the gap are investigated, according to the instantaneous velocity magnitude, the zero-plane displacement, the potential temperature and the streamlines. The large-scale vortex structure, in the form of a roll vortex, is revealed in the region far away from the gap. The nonuniform spatial distribution of plants appears to cause the formation of the coherent structure. The roll vortex starts in the wake of the canopy, and results in strong fluctuations throughout the entire canopy region. Wind sweeps and ejections in the plant canopy are also attributed to the large vortex structure.

  17. Modeling and analysis of selected space station communications and tracking subsystems

    NASA Technical Reports Server (NTRS)

    Richmond, Elmer Raydean

    1993-01-01

    The Communications and Tracking System on board Space Station Freedom (SSF) provides space-to-ground, space-to-space, audio, and video communications, as well as tracking data reception and processing services. Each major category of service is provided by a communications subsystem which is controlled and monitored by software. Among these subsystems, the Assembly/Contingency Subsystem (ACS) and the Space-to-Ground Subsystem (SGS) provide communications with the ground via the Tracking and Data Relay Satellite (TDRS) System. The ACS is effectively SSF's command link, while the SGS is primarily intended as the data link for SSF payloads. The research activities of this project focused on the ACS and SGS antenna management algorithms identified in the Flight System Software Requirements (FSSR) documentation, including: (1) software modeling and evaluation of antenna management (positioning) algorithms; and (2) analysis and investigation of selected variables and parameters of these antenna management algorithms i.e., descriptions and definitions of ranges, scopes, and dimensions. In a related activity, to assist those responsible for monitoring the development of this flight system software, a brief summary of software metrics concepts, terms, measures, and uses was prepared.

  18. Effect of high carbon dioxide atmosphere packaging and soluble gas stabilization pre-treatment on the shelf-life and quality of chicken drumsticks.

    PubMed

    Al-Nehlawi, A; Saldo, J; Vega, L F; Guri, S

    2013-05-01

    The effects of an aerobic modified atmosphere packaging (MAP) (70% CO2, 15% O2 and 15% N2) with and without a CO2 3-h soluble gas stabilization (SGS) pre-treatment of chicken drumsticks were determined for various package and product quality characteristics. The CO2 dissolved into drumsticks was determined. The equilibrium between CO2 dissolved in drumsticks and CO2 in head space was reached within 48h after packaging, showing highest values of CO2 in SGS pre-treated samples. This greater availability of CO2 resulted in lower counts of TAB and Pseudomonas in SGS than in MAP drumsticks. Package collapse was significantly reduced in SGS samples. The average of CO2 dissolved in the MAP treatment was 567mg CO2kg(-1) of chicken and, 361mg CO2kg(-1) of chicken during the MAP treatment, in SGS pre-treated samples. This difference could be the quantity of CO2 dissolved during SGS pre-treatment. These results highlight the advantages of using SGS versus traditional MAP for chicken products preservation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Significant improvement in the interface thermal conductivity of graphene-nanoplatelets/silicone composite

    NASA Astrophysics Data System (ADS)

    Lv, Jian; Cai, Xiaoming; Ye, Qianxu; Zhang, Hui; Ruan, Zilin; Cai, Jinming

    2018-05-01

    Heat conducting silica gel sheets with graphene nanoplatelets (GNPs) filler prepared by high pressure homogenization were fabricated. The dispersed GNPs filler in silica gel significantly affects the thermal conductivity of GNPs silica gel sheets (GNPs-SGS). The thermal conductivity of GNPs-SGS with 5 wt% GNPs reaches 0.43 W(m · k)‑1 which increased by 110% and 50% comparing to the pure silica gel sheets (Pure-SGS) and graphite silica gel sheets (GP-SGS) with the same mass fraction. The efficient of heat conduction of heat-sink device which made of GNPs-SGS with 5 wt% is higher than the one which made of Pure-SGS. Besides, The temperature of the thermal plate is 22 °C lower when using 5 wt% GNPs-SGS compared to the bare one measured by thermal management simulator (TMS), proving its good heat radiation ability. FE-SEM was used to observe the fillers and the section of gel sheets, it can be clearly observed the layered and the uniform distribution of GNPs in the matrix. The facile process of high pressure homogenization to exfoliate GNPs is a feasible program for industrial production.

  20. Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies

    PubMed Central

    Steehouwer, Marloes; Gilissen, Christian; Graham, Sarah A.; Hoover-Fong, Julie; Telegrafi, Aida B.; Destree, Anne; Smigiel, Robert; Lambie, Lindsday A.; Kayserili, Hülya; Altunoglu, Umut; Lapi, Elisabetta; Uzielli, Maria Luisa; Aracena, Mariana; Nur, Banu G.; Mihci, Ercan; Moreira, Lilia M. A.; Borges Ferreira, Viviane; Horovitz, Dafne D. G.; da Rocha, Katia M.; Jezela-Stanek, Aleksandra; Brooks, Alice S.; Reutter, Heiko; Cohen, Julie S.; Fatemi, Ali; Smitka, Martin; Grebe, Theresa A.; Di Donato, Nataliya; Deshpande, Charu; Vandersteen, Anthony; Marques Lourenço, Charles; Dufke, Andreas; Rossier, Eva; Andre, Gwenaelle; Baumer, Alessandra; Spencer, Careni; McGaughran, Julie; Franke, Lude; Veltman, Joris A.; De Vries, Bert B. A.; Schinzel, Albert; Fisher, Simon E.; Hoischen, Alexander

    2017-01-01

    Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype. PMID:28346496

  1. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes.

    PubMed

    Chen, Junwen; Hou, Kai; Qin, Peng; Liu, Hongchang; Yi, Bin; Yang, Wenting; Wu, Wei

    2014-07-07

    Stevia (Stevia rebaudiana) is an important medicinal plant that yields diterpenoid steviol glycosides (SGs). SGs are currently used in the preparation of medicines, food products and neutraceuticals because of its sweetening property (zero calories and about 300 times sweeter than sugar). Recently, some progress has been made in understanding the biosynthesis of SGs in Stevia, but little is known about the molecular mechanisms underlying this process. Additionally, the genomics of Stevia, a non-model species, remains uncharacterized. The recent advent of RNA-Seq, a next generation sequencing technology, provides an opportunity to expand the identification of Stevia genes through in-depth transcript profiling. We present a comprehensive landscape of the transcriptome profiles of three genotypes of Stevia with divergent SG compositions characterized using RNA-seq. 191,590,282 high-quality reads were generated and then assembled into 171,837 transcripts with an average sequence length of 969 base pairs. A total of 80,160 unigenes were annotated, and 14,211 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Gene sequences of all enzymes known to be involved in SG synthesis were examined. A total of 143 UDP-glucosyltransferase (UGT) unigenes were identified, some of which might be involved in SG biosynthesis. The expression patterns of eight of these genes were further confirmed by RT-QPCR. RNA-seq analysis identified candidate genes encoding enzymes responsible for the biosynthesis of SGs in Stevia, a non-model plant without a reference genome. The transcriptome data from this study yielded new insights into the process of SG accumulation in Stevia. Our results demonstrate that RNA-Seq can be successfully used for gene identification and transcript profiling in a non-model species.

  2. Variations and Regularities in the Hemispheric Distributions in Sunspot Groups of Various Classes

    NASA Astrophysics Data System (ADS)

    Gao, Peng-Xin

    2018-05-01

    The present study investigates the variations and regularities in the distributions in sunspot groups (SGs) of various classes in the northern and southern hemispheres from Solar Cycles (SCs) 12 to 23. Here, we use the separation scheme that was introduced by Gao, Li, and Li ( Solar Phys. 292, 124, 2017), which is based on A/U ( A is the corrected area of the SG, and U is the corrected umbral area of the SG), in order to separate SGs into simple SGs (A/U ≤ 4.5) and complex SGs (A/U > 6.2). The time series of Greenwich photoheliographic results from 1875 to 1976 (corresponding to complete SCs 12 - 20) and Debrecen photoheliographic data during the period 1974 - 2015 (corresponding to complete SCs 21 - 23) are used to show the distributions of simple and complex SGs in the northern and southern hemispheres. The main results we obtain are reported as follows: i) the larger of the maximum annual simple SG numbers in the two hemispheres and the larger of the maximum annual complex SG numbers in the two hemispheres occur in different hemispheres during SCs 12, 14, 18, and 19; ii) the relative changing trends of two curves - cumulative SG numbers in the northern and southern hemispheres - for simple SGs are different from those for complex SGs during SCs 12, 14, 18, and 21; and iii) there are discrepancies between the dominant hemispheres of simple and complex SGs for SCs 12, 14, 18, and 21.

  3. A Priori Subgrid Analysis of Temporal Mixing Layers with Evaporating Droplets

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    1999-01-01

    Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using three sets of results from a Direct Numerical Simulation (DNS) database, with Reynolds numbers (based on initial vorticity thickness) as large as 600 and with droplet mass loadings as large as 0.5. In the DNS, the gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. The Large Eddy Simulation (LES) equations corresponding to the DNS are first derived, and key assumptions in deriving them are first confirmed by computing the terms using the DNS database. Since LES of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be the sum of the filtered variables and a correction based on the filtered standard deviation; this correction is then computed from the Subgrid Scale (SGS) standard deviation. This model predicts the unfiltered variables at droplet locations considerably better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: the Smagorinsky approach, the Gradient model and the Scale-Similarity formulation. When the proportionality constant inherent in the SGS models is properly calculated, the Gradient and Scale-Similarity methods give results in excellent agreement with the DNS.

  4. Antimicrobial and other properties of a new stabilized alkaline glutaraldehyde disinfectant/sterilizer.

    PubMed

    Miner, N A; McDowell, J W; Willcockson, G W; Bruckner, N I; Stark, R L; Whitmore, E J

    1977-04-01

    The properties of stabilized alkaline 2% glutaraldehyde solution (SGS) are discussed. SGS is discussed with regard to its chemistry, antimicrobial properties, organic soil resistance, toxicity, corrosivity and chemical stability. SGS retains the maximum antimicrobial activity of alkaline glutaraldehyde solutions and the chemical stability heretofore observed only with acidic glutaraldehyde solutions. These improvements, along with the inherent resistance of glutaraldehyde to neutralization by organic soil, allow SGS to be continuously used for 14 days in situations of high dilution, or 28 days in situations of low dilution.

  5. Nucleoli and stress granules: connecting distant relatives.

    PubMed

    Mahboubi, Hicham; Stochaj, Ursula

    2014-10-01

    Nucleoli and cytoplasmic stress granules (SGs) are subcellular compartments that modulate the response to endogenous and environmental signals to control cell survival. In our opinion, nucleoli and SGs are functionally linked; they are distant relatives that combine forces when cellular homeostasis is threatened. Several lines of evidence support this idea; nucleoli and SGs share molecular building blocks, are regulated by common signaling pathways and communicate when vital cellular functions become compromised. Together, nucleoli and SGs orchestrate physiological responses that are directly relevant to stress and human health. As both compartments have established roles in neurodegenerative diseases, cancer and virus infections, we propose that these conditions will benefit from therapeutic interventions that target simultaneously nucleoli and SGs. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Repeated Exposure to Lutzomyia intermedia Sand Fly Saliva Induces Local Expression of Interferon-Inducible Genes Both at the Site of Injection in Mice and in Human Blood

    PubMed Central

    Weinkopff, Tiffany; de Oliveira, Camila I.; de Carvalho, Augusto M.; Hauyon-La Torre, Yazmin; Muniz, Aline C.; Miranda, Jose Carlos; Barral, Aldina; Tacchini-Cottier, Fabienne

    2014-01-01

    During a blood meal, Lutzomyia intermedia sand flies transmit Leishmania braziliensis, a parasite causing tegumentary leishmaniasis. In experimental leishmaniasis, pre-exposure to saliva of most blood-feeding sand flies results in parasite establishment in absence of any skin damages in mice challenged with dermotropic Leishmania species together with saliva. In contrast, pre-immunization with Lu. intermedia salivary gland sonicate (SGS) results in enhanced skin inflammatory exacerbation upon co-inoculation of Lu. intermedia SGS and L. braziliensis. These data highlight potential unique features of both L. braziliensis and Lu. intermedia. In this study, we investigated the genes modulated by Lu. intermedia SGS immunization to understand their potential impact on the subsequent cutaneous immune response following inoculation of both SGS and L. braziliensis. The cellular recruitment and global gene expression profile was analyzed in mice repeatedly inoculated or not with Lu. intermedia. Microarray gene analysis revealed the upregulation of a distinct set of IFN-inducible genes, an immune signature not seen to the same extent in control animals. Of note this INF-inducible gene set was not induced in SGS pre-immunized mice subsequently co-inoculated with SGS and L. braziliensis. These data suggest the parasite prevented the upregulation of this Lu. intermedia saliva-related immune signature. The presence of these IFN-inducible genes was further analyzed in peripheral blood mononuclear cells (PBMCs) sampled from uninfected human individuals living in a L. braziliensis-endemic region of Brazil thus regularly exposed to Lu. intermedia bites. PBMCs were cultured in presence or absence of Lu. intermedia SGS. Using qRT-PCR we established that the IFN-inducible genes induced in the skin of SGS pre-immunized mice, were also upregulated by SGS in PBMCs from human individuals regularly exposed to Lu. intermedia bites, but not in PBMCs of control subjects. These data demonstrate that repeated exposure to Lu. intermedia SGS induces the expression of potentially host-protective IFN-inducible genes. PMID:24421912

  7. Convergence issues in domain decomposition parallel computation of hovering rotor

    NASA Astrophysics Data System (ADS)

    Xiao, Zhongyun; Liu, Gang; Mou, Bin; Jiang, Xiong

    2018-05-01

    Implicit LU-SGS time integration algorithm has been widely used in parallel computation in spite of its lack of information from adjacent domains. When applied to parallel computation of hovering rotor flows in a rotating frame, it brings about convergence issues. To remedy the problem, three LU factorization-based implicit schemes (consisting of LU-SGS, DP-LUR and HLU-SGS) are investigated comparatively. A test case of pure grid rotation is designed to verify these algorithms, which show that LU-SGS algorithm introduces errors on boundary cells. When partition boundaries are circumferential, errors arise in proportion to grid speed, accumulating along with the rotation, and leading to computational failure in the end. Meanwhile, DP-LUR and HLU-SGS methods show good convergence owing to boundary treatment which are desirable in domain decomposition parallel computations.

  8. A Modulated-Gradient Parametrization for the Large-Eddy Simulation of the Atmospheric Boundary Layer Using the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Khani, Sina; Porté-Agel, Fernando

    2017-12-01

    The performance of the modulated-gradient subgrid-scale (SGS) model is investigated using large-eddy simulation (LES) of the neutral atmospheric boundary layer within the weather research and forecasting model. Since the model includes a finite-difference scheme for spatial derivatives, the discretization errors may affect the simulation results. We focus here on understanding the effects of finite-difference schemes on the momentum balance and the mean velocity distribution, and the requirement (or not) of the ad hoc canopy model. We find that, unlike the Smagorinsky and turbulent kinetic energy (TKE) models, the calculated mean velocity and vertical shear using the modulated-gradient model, are in good agreement with Monin-Obukhov similarity theory, without the need for an extra near-wall canopy model. The structure of the near-wall turbulent eddies is better resolved using the modulated-gradient model in comparison with the classical Smagorinsky and TKE models, which are too dissipative and yield unrealistic smoothing of the smallest resolved scales. Moreover, the SGS fluxes obtained from the modulated-gradient model are much smaller near the wall in comparison with those obtained from the regular Smagorinsky and TKE models. The apparent inability of the LES model in reproducing the mean streamwise component of the momentum balance using the total (resolved plus SGS) stress near the surface is probably due to the effect of the discretization errors, which can be calculated a posteriori using the Taylor-series expansion of the resolved velocity field. Overall, we demonstrate that the modulated-gradient model is less dissipative and yields more accurate results in comparison with the classical Smagorinsky model, with similar computational costs.

  9. Implicit LES using adaptive filtering

    NASA Astrophysics Data System (ADS)

    Sun, Guangrui; Domaradzki, Julian A.

    2018-04-01

    In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.

  10. 76 FR 64964 - Re-Accreditation and Re-Approval of SGS North America, Inc. as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-19

    ... DEPARTMENT OF HOMELAND SECURITY Bureau of Customs and Border Protection Re-Accreditation and Re... Border Protection, Department of Homeland Security. ACTION: Notice of re-approval of SGS North America..., pursuant to 19 CFR 151.13, SGS North America, Inc., Bayonne, New Jersey 07002, has been re-approved to...

  11. Amyloplast Membrane Protein SUBSTANDARD STARCH GRAIN6 Controls Starch Grain Size in Rice Endosperm1

    PubMed Central

    Matsushima, Ryo; Maekawa, Masahiko; Kusano, Miyako; Tomita, Katsura; Kondo, Hideki; Nishimura, Hideki; Crofts, Naoko; Fujita, Naoko; Sakamoto, Wataru

    2016-01-01

    Starch is a biologically and commercially important polymer of glucose. Starch is organized into starch grains (SGs) inside amyloplasts. The SG size differs depending on the plant species and is one of the most important factors for industrial applications of starch. There is limited information on genetic factors regulating SG sizes. In this study, we report the rice (Oryza sativa) mutant substandard starch grain6 (ssg6), which develops enlarged SGs in endosperm. Enlarged SGs are observed starting at 3 d after flowering. During endosperm development, a number of smaller SGs appear and coexist with enlarged SGs in the same cells. The ssg6 mutation also affects SG morphologies in pollen. The SSG6 gene was identified by map-based cloning and microarray analysis. SSG6 encodes a protein homologous to aminotransferase. SSG6 differs from other rice homologs in that it has a transmembrane domain. SSG6-green fluorescent protein is localized in the amyloplast membrane surrounding SGs in rice endosperm, pollen, and pericarp. The results of this study suggest that SSG6 is a novel protein that controls SG size. SSG6 will be a useful molecular tool for future starch breeding and applications. PMID:26792122

  12. Narrative meaning making is associated with sudden gains in psychotherapy clients' mental health under routine clinical conditions.

    PubMed

    Adler, Jonathan M; Harmeling, Luke H; Walder-Biesanz, Ilana

    2013-10-01

    The present study had two aims: (a) to replicate previous findings regarding the characteristics of sudden gains (SGs) in psychotherapy under routine clinical conditions and (b) to examine whether clients' narrative meaning-making processes were associated with SGs in mental health. 54 psychotherapy clients completed the Systemic Therapy Inventory of Change (Pinsof et al., 2009) and wrote private narratives prior to beginning treatment and between every session for 12 assessment points over the course of psychotherapy for a variety of presenting problems. Clients' narratives were coded using existing systems (Adler, 2012; A. M. Hayes, Feldman, & Goldfried, 2006) to assess their content in eight themes: processing, avoidance, coherence, positive self, negative self, agency, hope, and hopelessness. The prevalence, magnitude, and timing of SGs in mental health observed in the present study were similar to those observed in prior research. Two narrative meaning-making processes-processing and coherence-were significantly associated with SGs in mental health. The present study significantly extends prior research on SGs, replicating the characteristics of these gains in routine clinical conditions with a measure of general functioning and identifying two narrative meaning-making processes that are associated with SGs in mental health.

  13. Amyloplast-Localized SUBSTANDARD STARCH GRAIN4 Protein Influences the Size of Starch Grains in Rice Endosperm1[W

    PubMed Central

    Matsushima, Ryo; Maekawa, Masahiko; Kusano, Miyako; Kondo, Hideki; Fujita, Naoko; Kawagoe, Yasushi; Sakamoto, Wataru

    2014-01-01

    Starch is a biologically and commercially important polymer of glucose and is synthesized to form starch grains (SGs) inside amyloplasts. Cereal endosperm accumulates starch to levels that are more than 90% of the total weight, and most of the intracellular space is occupied by SGs. The size of SGs differs depending on the plant species and is one of the most important factors for industrial applications of starch. However, the molecular machinery that regulates the size of SGs is unknown. In this study, we report a novel rice (Oryza sativa) mutant called substandard starch grain4 (ssg4) that develops enlarged SGs in the endosperm. Enlargement of SGs in ssg4 was also observed in other starch-accumulating tissues such as pollen grains, root caps, and young pericarps. The SSG4 gene was identified by map-based cloning. SSG4 encodes a protein that contains 2,135 amino acid residues and an amino-terminal amyloplast-targeted sequence. SSG4 contains a domain of unknown function490 that is conserved from bacteria to higher plants. Domain of unknown function490-containing proteins with lengths greater than 2,000 amino acid residues are predominant in photosynthetic organisms such as cyanobacteria and higher plants but are minor in proteobacteria. The results of this study suggest that SSG4 is a novel protein that influences the size of SGs. SSG4 will be a useful molecular tool for future starch breeding and biotechnology. PMID:24335509

  14. Effects of silicone gel sheet on the stratum corneum hydration.

    PubMed

    Suetak, T; Sasai, S; Zhen, Y X; Tagami, H

    2000-09-01

    Various groups have reported the efficacy of treatment with topical silicone gel sheet (SGS) for keloids and hypertrophic scars. Because its hydrating effect on the stratum corneum (SC) has been suggested as a mechanism underlying its therapeutic effectiveness, we evaluated it by comparing it with simple plastic film occlusion. With biophysical instruments we assessed the water content of the skin surface as well as its water evaporation on the flexor aspects of bilateral forearms of 10 healthy volunteers for 30min after removal of dressings of SGS or a plastic film that were applied either for 1 day or for 7 days. Occlusion with SGS or plastic film induced hydration of the skin surface, which was followed by an initial quick and later slow process of dehydration when the skin was exposed to the ambient atmosphere. The magnitude of the increase in hydration induced by SGS was always smaller than that of the plastic film occlusion and, unlike the latter treatment, hydration became less with repetition of SGS treatment. On day 7, the SC hydration quickly reduced to the level of non-treated control skin after removal of the dressings. An in vivo test demonstrated that the water-holding capacity of the SC normalised after 7 days of SGS treatment. SGS probably produces a favourable condition for the skin by protecting it from various environmental stimuli, while keeping the SC in an adequately but not over-hydrated condition.

  15. Shooting gallery operation in the context of establishing a medically supervised injecting center: Sydney, Australia.

    PubMed

    Kimber, Jo; Dolan, Kate

    2007-03-01

    Shooting galleries (SGs) are illicit off-street spaces close to drug markets used for drug injection. Supervised injecting facilities (SIFs) are low threshold health services where injecting drug users (IDUs) can inject pre-obtained drugs under supervision. This study describes SG use in Kings Cross, Sydney before and after the opening of the Sydney Medically Supervised Injecting Centre (MSIC), Australia's first SIF. Operational and environmental characteristics of SGs, reasons for SG use, and willingness to use MSIC were also examined. An exploratory survey of SG users (n = 31), interviews with SG users (n = 17), and drug workers (n = 8), and counts of used needles routinely collected from SGs (6 months before and after MSIC) and visits to the MSIC (6 months after MSIC) were triangulated. We found five SGs operated during the study period. Key operational characteristics were 24-h operation, AUS $10 entry fee, 30-min time limit, and dual use for sex work. Key reasons for SG use were to avoid police, a preference not to inject in public, and assistance from SG operators in case of overdose. SG users reported high levels of willingness to use the MSIC. The number of used needles collected from SGs decreased by 69% (41,819 vs. 12,935) in the 6 months after MSIC opened, while MSIC visits increased incrementally. We conclude that injections were transferred from SGs to the MSIC, but SGs continued to accommodate injections and harm reduction outreach should be maintained.

  16. Implicit and explicit subgrid-scale modeling in discontinuous Galerkin methods for large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Fernandez, Pablo; Nguyen, Ngoc-Cuong; Peraire, Jaime

    2017-11-01

    Over the past few years, high-order discontinuous Galerkin (DG) methods for Large-Eddy Simulation (LES) have emerged as a promising approach to solve complex turbulent flows. Despite the significant research investment, the relation between the discretization scheme, the Riemann flux, the subgrid-scale (SGS) model and the accuracy of the resulting LES solver remains unclear. In this talk, we investigate the role of the Riemann solver and the SGS model in the ability to predict a variety of flow regimes, including transition to turbulence, wall-free turbulence, wall-bounded turbulence, and turbulence decay. The Taylor-Green vortex problem and the turbulent channel flow at various Reynolds numbers are considered. Numerical results show that DG methods implicitly introduce numerical dissipation in under-resolved turbulence simulations and, even in the high Reynolds number limit, this implicit dissipation provides a more accurate representation of the actual subgrid-scale dissipation than that by explicit models.

  17. A comparison of benefit and economic value between two sound therapy tinnitus management options.

    PubMed

    Newman, Craig W; Sandridge, Sharon A

    2012-02-01

    Sound therapy coupled with appropriate counseling has gained widespread acceptance in the audiological management of tinnitus. For many years, ear level sound generators (SGs) have been used to provide masking relief and to promote tinnitus habituation. More recently, an alternative treatment device was introduced, the Neuromonics Tinnitus Treatment (NTT), which employs spectrally-modified music in an acoustic desensitization approach in order to help patients overcome the disturbing consequences of tinnitus. It is unknown, however, if one treatment plan is more efficacious and cost-effective in comparison to the other. In today's economic climate, it has become critical that clinicians justify the value of tinnitus treatment devices in relation to observed benefit. To determine perceived benefit from, and economic value associated with, two forms of sound therapy, namely, SGs and NTT. Retrospective between-subject clinical study. A sample of convenience comprised of 56 patients drawn from the Tinnitus Management Clinic at the Cleveland Clinic participated. Twenty-three patients selected SGs, and 33 patients selected NTT as their preferred sound therapy treatment option. Sound therapy benefit was quantified using the Tinnitus Handicap Inventory (THI). The questionnaire was administered before and 6 mo after initiation of tinnitus treatment. Prior to device fitting, all patients participated in a 1.5 hr group education session about tinnitus and its management. Economic value comparisons between sound therapy options were made using a cost-effectiveness analysis (CEA) and cost-utility analysis (CUA). THI scores indicated a significant improvement (p < 0.001) in tinnitus reduction for both treatment types between a pre- and 6 mo postfitting interval, yet there were no differences (p > 0.05) between the treatment alternatives at baseline or 6 mo postfitting. The magnitude of improvement for both SGs and NTT was dependent on initial perceived tinnitus handicap. Based on the CEA and CUA economic analyses alone, it appears that the SGs may be the more cost-effective alternative; however, the magnitude of economic value is a function of preexisting perceived tinnitus activity limitation/participation restriction. Both SGs and NTT provide significant reduction in perceived tinnitus handicap, with benefit being more pronounced for those patients having greater tinnitus problems at the beginning of therapy. Although the economic models favored the SGs over the NTT, there are several other critical factors that clinicians must take into account when recommending a specific sound therapy option. These include initial tinnitus severity complaints and a number of patient preference variables such as sound preference, listening acceptability, and lifestyle. American Academy of Audiology.

  18. Molecular dissection of transcriptional reprogramming of steviol glycosides synthesis in leaf tissue during developmental phase transitions in Stevia rebaudiana Bert.

    PubMed

    Singh, Gopal; Singh, Gagandeep; Singh, Pradeep; Parmar, Rajni; Paul, Navgeet; Vashist, Radhika; Swarnkar, Mohit Kumar; Kumar, Ashok; Singh, Sanatsujat; Singh, Anil Kumar; Kumar, Sanjay; Sharma, Ram Kumar

    2017-09-19

    Stevia is a natural source of commercially important steviol glycosides (SGs), which share biosynthesis route with gibberellic acids (GAs) through plastidal MEP and cytosolic MVA pathways. Ontogeny-dependent deviation in SGs biosynthesis is one of the key factor for global cultivation of Stevia, has not been studied at transcriptional level. To dissect underlying molecular mechanism, we followed a global transcriptome sequencing approach and generated more than 100 million reads. Annotation of 41,262 de novo assembled transcripts identified all the genes required for SGs and GAs biosynthesis. Differential gene expression and quantitative analysis of important pathway genes (DXS, HMGR, KA13H) and gene regulators (WRKY, MYB, NAC TFs) indicated developmental phase dependent utilization of metabolic flux between SGs and GAs synthesis. Further, identification of 124 CYPs and 45 UGTs enrich the genomic resources, and their PPI network analysis with SGs/GAs biosynthesis proteins identifies putative candidates involved in metabolic changes, as supported by their developmental phase-dependent expression. These putative targets can expedite molecular breeding and genetic engineering efforts to enhance SGs content, biomass and yield. Futuristically, the generated dataset will be a useful resource for development of functional molecular markers for diversity characterization, genome mapping and evolutionary studies in Stevia.

  19. Shooting Gallery Operation in the Context of Establishing a Medically Supervised Injecting Center: Sydney, Australia

    PubMed Central

    Dolan, Kate

    2007-01-01

    Shooting galleries (SGs) are illicit off-street spaces close to drug markets used for drug injection. Supervised injecting facilities (SIFs) are low threshold health services where injecting drug users (IDUs) can inject pre-obtained drugs under supervision. This study describes SG use in Kings Cross, Sydney before and after the opening of the Sydney Medically Supervised Injecting Centre (MSIC), Australia’s first SIF. Operational and environmental characteristics of SGs, reasons for SG use, and willingness to use MSIC were also examined. An exploratory survey of SG users (n = 31), interviews with SG users (n = 17), and drug workers (n = 8), and counts of used needles routinely collected from SGs (6 months before and after MSIC) and visits to the MSIC (6 months after MSIC) were triangulated. We found five SGs operated during the study period. Key operational characteristics were 24-h operation, AUS$10 entry fee, 30-min time limit, and dual use for sex work. Key reasons for SG use were to avoid police, a preference not to inject in public, and assistance from SG operators in case of overdose. SG users reported high levels of willingness to use the MSIC. The number of used needles collected from SGs decreased by 69% (41,819 vs. 12,935) in the 6 months after MSIC opened, while MSIC visits increased incrementally. We conclude that injections were transferred from SGs to the MSIC, but SGs continued to accommodate injections and harm reduction outreach should be maintained. PMID:17273925

  20. A cell engineering strategy to enhance supercoiled plasmid DNA production for gene therapy.

    PubMed

    Hassan, Sally; Keshavarz-Moore, Eli; Ward, John

    2016-09-01

    With the recent revival of the promise of plasmid DNA vectors in gene therapy, a novel synthetic biology approach was used to enhance the quantity, (yield), and quality of the plasmid DNA. Quality was measured by percentage supercoiling and supercoiling density, as well as improving segregational stability in fermentation. We examined the hypothesis that adding a Strong Gyrase binding Site (SGS) would increase DNA gyrase-mediated plasmid supercoiling. SGS from three different replicons, (the Mu bacteriophage and two plasmids, pSC101 and pBR322) were inserted into the plasmid, pUC57. Different sizes of these variants were transformed into E. coli DH5α, and their supercoiling properties and segregational stability measured. A 36% increase in supercoiling density was found in pUC57-SGS, but only when SGS was derived from the Mu phage and was the larger sized version of this fragment. These results were also confirmed at fermentation scale. Total percentage supercoiled monomer was maintained to 85-90%. A twofold increase in plasmid yield was also observed for pUC57-SGS in comparison to pUC57. pUC57-SGS displayed greater segregational stability than pUC57-cer and pUC57, demonstrating a further potential advantage of the SGS site. These findings should augment the potential of plasmid DNA vectors in plasmid DNA manufacture. Biotechnol. Bioeng. 2016;113: 2064-2071. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  1. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum

    PubMed Central

    Rico, Y; Wagner, H H

    2016-01-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations. PMID:27381322

  2. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.

    PubMed

    Rico, Y; Wagner, H H

    2016-11-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.

  3. Prejudice and Health Anxiety about Radiation Exposure from Second-Generation Atomic Bomb Survivors: Results from a Qualitative Interview Study.

    PubMed

    Kamite, Yuka

    2017-01-01

    The effect of atomic bomb radiation exposure on the survivors and their children has been a worrisome problem since soon after the 1945 Hiroshima and Nagasaki bombings. Researchers have examined physical and genetic effects; however, no research has focused on second-generation survivors' (SGS) psychological effects. Consequently, this study shed light on the SGS' experience of discrimination and prejudice and their anxiety concerning the genetic effects of radiation exposure. This study utilized semi-structured interviews with 14 SGS (10 women, mean age = 56 ± 6.25 years, range = 46-68 years). Data were analyzed using a modified version of the grounded theory approach. Three categories were extracted: low awareness as an SGS, no health anxiety regarding the effect of radiation, and health anxiety regarding the effect of radiation. The results did not reveal that SGS who grew up in the bombed areas experienced discrimination or prejudice. They had little health anxiety from childhood to adolescence. In this study, some of the SGS developed health anxiety about their third-generation children, but only among female participants. Perhaps the transgenerational transmission of anxiety concerning the genetic effects of radiation exposure causes stress, particularly among women with children. However, a change was seen in adulthood health anxiety regarding the effects of radiation, suggesting the possibility that changes in the psychological experiences of SGS can be observed throughout their lifetimes and that their own health status, and that of their children, the third-generation survivors, affects their health anxiety regarding radiation.

  4. Newborn Spheroidal Galaxies at High Redshift (1

    NASA Astrophysics Data System (ADS)

    Kaviraj, Sugata; Cohen, S. H.; Ellis, R. S.; O'Connell, R. W.; Windhorst, R. A.; Silk, J.; Science Organising Committee, WFC3

    2013-01-01

    While the majority 80%) of the stellar mass in today’s spheroidal galaxies (SGs) is old, surprisingly little is known about exactly when and how these stars formed in the early Universe. This requires a survey-scale study of primordial SGs in the early Universe, which is only now becoming possible. Exploiting rest-frame UV-optical data from the Wide Field Camera 3 Early-Release Science programme, we present a statistical study of primordial SGs around the epoch of peak cosmic star formation (1 1011.5 M⊙ are ~2 Gyrs older than their counterparts with M* < 1010.5 M⊙. Nevertheless, a smooth downsizing trend with galaxy mass is not observed, and the large scatter in starburst ages indicates that SGs are not a particularly coeval population. Around 50% of these primordial SGs do not build their stars via major mergers, and those that have experienced a recent major merger show only marginally bluer colours and mild enhancements in specific star formation rate of ~40%. This points (empirically) to processes other than major mergers (e.g. minor mergers and cold streams), as the dominant channel of mass assembly in primordial SGs and, by extension, the assembly of the old stellar populations that dominate today’s Universe.

  5. 3′ fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3

    PubMed Central

    Yoshikawa, Manabu; Iki, Taichiro; Tsutsui, Yasuhiro; Miyashita, Kyoko; Poethig, R. Scott; Habu, Yoshiki; Ishikawa, Masayuki

    2013-01-01

    trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)–mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several factors including SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6. Here, using in vitro assembled ARGONAUTE (AGO)1–RISCs, we show that SGS3 is recruited onto RISCs only when they bind target RNA. Following cleavage by miRNA173 (miR173)-programmed RISC, SGS3 was found in complexes containing cleaved TAS2 RNA and RISC. The 3′ cleavage fragment (the source of tasiRNAs) was protected from degradation in this complex. Depletion of SGS3 did not affect TAS2 RNA cleavage by miR173-programmed RISC, but did affect the stability of the 3′ cleavage fragment. When the 3′ nucleotide of 22-nt miR173 was deleted or the corresponding nucleotide in TAS2 RNA was mutated, the complex was not observed and the 3′ cleavage fragment was degraded. Importantly, these changes in miR173 or TAS2 RNA are known to lead to a loss of tasiRNA production in vivo. These results suggest that (i) SGS3 associates with AGO1–RISC via the double-stranded RNA formed by the 3′-terminal nucleotides of 22-nt miR173 and corresponding target RNA, which probably protrudes from the AGO1–RISC molecular surface, (ii) SGS3 protects the 3′ cleavage fragment of TAS2 RNA from degradation, and (iii) the observed SGS3-dependent stabilization of the 3′ fragment of TAS2 RNA is key to tasiRNA production. PMID:23417299

  6. 3' fragment of miR173-programmed RISC-cleaved RNA is protected from degradation in a complex with RISC and SGS3.

    PubMed

    Yoshikawa, Manabu; Iki, Taichiro; Tsutsui, Yasuhiro; Miyashita, Kyoko; Poethig, R Scott; Habu, Yoshiki; Ishikawa, Masayuki

    2013-03-05

    trans-acting small interfering RNAs (tasiRNAs) are plant-specific endogenous siRNAs produced via a unique pathway whose first step is the microRNA (miRNA)-programmed RNA-induced silencing complex (RISC)-mediated cleavage of tasiRNA gene (TAS) transcripts. One of the products is subsequently transformed into tasiRNAs by a pathway that requires several factors including SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6. Here, using in vitro assembled ARGONAUTE (AGO)1-RISCs, we show that SGS3 is recruited onto RISCs only when they bind target RNA. Following cleavage by miRNA173 (miR173)-programmed RISC, SGS3 was found in complexes containing cleaved TAS2 RNA and RISC. The 3' cleavage fragment (the source of tasiRNAs) was protected from degradation in this complex. Depletion of SGS3 did not affect TAS2 RNA cleavage by miR173-programmed RISC, but did affect the stability of the 3' cleavage fragment. When the 3' nucleotide of 22-nt miR173 was deleted or the corresponding nucleotide in TAS2 RNA was mutated, the complex was not observed and the 3' cleavage fragment was degraded. Importantly, these changes in miR173 or TAS2 RNA are known to lead to a loss of tasiRNA production in vivo. These results suggest that (i) SGS3 associates with AGO1-RISC via the double-stranded RNA formed by the 3'-terminal nucleotides of 22-nt miR173 and corresponding target RNA, which probably protrudes from the AGO1-RISC molecular surface, (ii) SGS3 protects the 3' cleavage fragment of TAS2 RNA from degradation, and (iii) the observed SGS3-dependent stabilization of the 3' fragment of TAS2 RNA is key to tasiRNA production.

  7. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata

    PubMed Central

    Mokhtar-Jamaï, Kenza; Coma, Rafel; Wang, Jinliang; Zuberer, Frederic; Féral, Jean-Pierre; Aurelle, Didier

    2013-01-01

    Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the population size should be taken into consideration for restoration projects. PMID:23789084

  8. Sleeve Gastrectomy: Correlation of Long-Term Results with Remnant Morphology and Eating Disorders.

    PubMed

    Tassinari, Daniele; Berta, Rossana D; Nannipieri, Monica; Giusti, Patrizia; Di Paolo, Luca; Guarino, Daniela; Anselmino, Marco

    2017-11-01

    Remnant dimension is considered one of the crucial elements determining the success of sleeve gastrectomy (SG), and dilation of the gastric fundus is often believed to be the main cause of failure. The main outcome of this study is to find correlations between remnant morphology in the immediate post-operative stage, its dilation in years, and the long-term results. The second purpose aims to correlate preoperative eating disorders, taste alteration, hunger perception, and early satiety with post-SG results. Remnant morphology was evaluated, in the immediate post-operative stage and over the years (≥2 years), through X-ray of the oesophagus-stomach-duodenum calculating the surface in anteroposterior (AP) and right anterior oblique projection (RAO). Presurgery diagnosis of eating disorders and their evaluation through "Eating Disorder Inventory-3" (EDI3) during follow-up were performed. Change in taste perception, sense of appetite, and early satiety were evaluated. Patients were divided into two groups: "failed SGs (EWL<50%) and "efficient SGs" (EWL >50%). There were a total of 50 patients (37 F, 13 M), with mean age 52 years, preoperative weight 131 ± 21.8 kg, and BMI 47.4 ± 6.8 kg/m 2 . Post-operative remnant mean dimensions overlapped between the two groups. On a long-term basis, an increase of 57.2 and 48.4% was documented in the AP and RAO areas respectively. In "failed" SGs, dilation was significantly superior to "efficient" SGs (AP area 70.2 vs 46.1%; RAO area 59.3 vs 39%; body width 102% vs 41.7%). Preoperative eating disorders were more present in efficient SGs than in failed SGs with the exception of sweet eating. There were no significant changes to taste perception during follow-up. Fifty-two percent of efficient SGs vs 26% of failed SGs reported a persistent lack of sense of hunger; similarly, 92.5 vs 78% declared the persistence of a sense of early satiety. The two groups did not statistically differ as far as all the variables of the EDI3 are concerned. On a long-term basis, the remnant mean dilation is around 50% compared to the immediate post-operative stage but failed SGs showed larger remnant dilation than efficient SGs and, in percentage, the more dilated portion is the body of the stomach. As far as all the EDI3 variables obtained are concerned, the two groups did not statistically differ. Of all eating disorders, sweet eating seems to be weakly connected to SG failure.

  9. THOR: A New Higher-Order Closure Assumed PDF Subgrid-Scale Parameterization; Evaluation and Application to Low Cloud Feedbacks

    NASA Astrophysics Data System (ADS)

    Firl, G. J.; Randall, D. A.

    2013-12-01

    The so-called "assumed probability density function (PDF)" approach to subgrid-scale (SGS) parameterization has shown to be a promising method for more accurately representing boundary layer cloudiness under a wide range of conditions. A new parameterization has been developed, named the Two-and-a-Half ORder closure (THOR), that combines this approach with a higher-order turbulence closure. THOR predicts the time evolution of the turbulence kinetic energy components, the variance of ice-liquid water potential temperature (θil) and total non-precipitating water mixing ratio (qt) and the covariance between the two, and the vertical fluxes of horizontal momentum, θil, and qt. Ten corresponding third-order moments in addition to the skewnesses of θil and qt are calculated using diagnostic functions assuming negligible time tendencies. The statistical moments are used to define a trivariate double Gaussian PDF among vertical velocity, θil, and qt. The first three statistical moments of each variable are used to estimate the two Gaussian plume means, variances, and weights. Unlike previous similar models, plume variances are not assumed to be equal or zero. Instead, they are parameterized using the idea that the less dominant Gaussian plume (typically representing the updraft-containing portion of a grid cell) has greater variance than the dominant plume (typically representing the "environmental" or slowly subsiding portion of a grid cell). Correlations among the three variables are calculated using the appropriate covariance moments, and both plume correlations are assumed to be equal. The diagnosed PDF in each grid cell is used to calculate SGS condensation, SGS fluxes of cloud water species, SGS buoyancy terms, and to inform other physical parameterizations about SGS variability. SGS condensation is extended from previous similar models to include condensation over both liquid and ice substrates, dependent on the grid cell temperature. Implementations have been included in THOR to drive existing microphysical and radiation parameterizations with samples drawn from the trivariate PDF. THOR has been tested in a single-column model framework using standardized test cases spanning a range of large-scale conditions conducive to both shallow cumulus and stratocumulus clouds and the transition between the two states. The results were compared to published LES intercomparison results using the same cases, and the gross characteristics of both cloudiness and boundary layer turbulence produced by THOR were within the range of results from the respective LES ensembles. In addition, THOR was used in a single-column model framework to study low cloud feedbacks in the northeastern Pacific Ocean. Using initialization and forcings developed as part of the CGILS project, THOR was run at 8 points along a cross-section from the trade-wind cumulus region east of Hawaii to the coastal stratocumulus region off the coast of California for both the control climate and a climate perturbed by +2K SST. A neutral to weakly positive cloud feedback of 0-4 W m-2 K-1 was simulated along the cross-section. The physical mechanisms responsible appeared to be increased boundary layer entrainment and stratocumulus decoupling leading to reduced maximum cloud cover and liquid water path.

  10. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan.

    PubMed

    Jang, Cheng-Shin; Huang, Han-Chen

    2017-07-01

    The Jiaosi Hot Spring Region is one of the most famous tourism destinations in Taiwan. The spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Moreover, the multipurpose uses of spring water can be dictated by the temperature of the water. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by integrating ordinary kriging (OK), sequential Gaussian simulation (SGS), and Geographic information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial uncertainty and distributions of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined using GIS and combined with the estimated distributions of the spring water temperatures. A suitable development strategy for the multipurpose uses of spring water is proposed according to the integration of the land use and spring water temperatures. The study results indicate that the integration of OK, SGS, and GIS is capable of characterizing spring water temperatures and the suitability of multipurpose uses of spring water. SGS realizations are more robust than OK estimates for characterizing spring water temperatures compared to observed data. Furthermore, current land use is almost ideal in the Jiaosi Hot Spring Region according to the estimated spatial pattern of spring water temperatures.

  11. The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans

    PubMed Central

    Legrand, Melanie; Chan, Christine L.; Jauert, Peter A.; Kirkpatrick, David T.

    2011-01-01

    Genome rearrangements, a common feature of Candida albicans isolates, are often associated with the acquisition of antifungal drug resistance. In Saccharomyces cerevisiae, perturbations in the S-phase checkpoints result in the same sort of Gross Chromosomal Rearrangements (GCRs) observed in C. albicans. Several proteins are involved in the S. cerevisiae cell cycle checkpoints, including Mec1p, a protein kinase of the PIKK (phosphatidyl inositol 3-kinase-like kinase) family and the central player in the DNA damage checkpoint. Sgs1p, the ortholog of BLM, the Bloom’s syndrome gene, is a RecQ-related DNA helicase; cells from BLM patients are characterized by an increase in genome instability. Yeast strains bearing deletions in MEC1 or SGS1 are viable (in contrast to the inviability seen with loss of MEC1 in S. cerevisiae) but the different deletion mutants have significantly different phenotypes. The mec1Δ/Δ colonies have a wild-type colony morphology, while the sgs1Δ/Δ mutants are slow-growing, producing wrinkled colonies with pseudohyphal-like cells. The mec1Δ/Δ mutants are only sensitive to ethylmethane sulfonate (EMS), methylmethane sulfonate (MMS), and hydroxyurea (HU) but the sgs1Δ/Δ mutants exhibit a high sensitivity to all DNA-damaging agents tested. In an assay for chromosome 1 integrity, the mec1Δ/Δ mutants exhibit an increase in genome instability; no change was observed in the sgs1Δ/Δ mutants. Finally, loss of MEC1 does not affect sensitivity to the antifungal drug fluconazole, while loss of SGS1 leads to an increased susceptibility to fluconazole. Neither deletion elevated the level of antifungal drug resistance acquisition. PMID:21511048

  12. The influence of sub-grid scale motions on particle collision in homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Li, Jing; Liu, Zhaohui; Zheng, Chuguang

    2018-02-01

    The absence of sub-grid scale (SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue, data from direct numerical simulation (DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS (FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover, this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS. As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However, it still leaves considerable errors for { St}_k <3.0.

  13. Learning decision making through serious games.

    PubMed

    Kaczmarczyk, Joseph; Davidson, Richard; Bryden, Daniele; Haselden, Stephen; Vivekananda-Schmidt, Pirashanthie

    2016-08-01

    In Serious Games (SGs), educational content is integrated into a game so that learning is intrinsic to play, thereby motivating players and improving engagement. SGs enable learning by developing situated understanding in users and by enabling players to practise safe clinical decision making; however, the use of SGs in medical education is not well established. We aimed to design a game-based resource to teach clinical decision making to medical students, and to assess user perceptions of educational value, usability and the role for SGs in undergraduate training. An SG focusing on the acute management of tachyarrhythmias was developed. Third- and fourth-year medical students at the medical school were invited to use and evaluate the game using questionnaires and focus groups. We invited 479 students, and 281 accessed the game. Only 47 students completed the questionnaire and 31 students participated in the focus groups. The data suggest that SGs: (1) can allow students to rehearse taking responsibility for decision making; (2) are fun and motivational; (3) have a role in revising and consolidating knowledge; and (4) could be formative assessment tools. Serious Games enable learning by developing situated understanding in users SGs could be employed as adjuvant learning resources to develop students' skills and knowledge. Further empirical research is required to assess the added value of games in medical education. © 2015 John Wiley & Sons Ltd.

  14. Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs

    NASA Astrophysics Data System (ADS)

    Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Pincus, R.

    2016-12-01

    A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC is now incorporated into a version of GFS, as well as into the next generation of the NCEP global model - NOAA Environmental Modeling System (NEMS). Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these variables. Radiative transfer parameterization uses cloudiness computed by SHOC.Outstanding problems include high level tropical cloud fraction being too high in SHOC runs, possibly related to the interaction of SHOC with condensate detrained from deep convection.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate tests with prescribed SSTs. Depending on the results, the model will be tuned or parameterizations modified. Next, SHOC will be implemented in the NCEP CFS, and tuned and evaluated for climate applications - seasonal prediction and long coupled climate runs. Impact of new physics on ENSO, MJO, ISO, monsoon variability, etc will be examined.

  15. Advanced subgrid-scale modeling for convection-dominated species transport at fluid interfaces with application to mass transfer from rising bubbles

    NASA Astrophysics Data System (ADS)

    Weiner, Andre; Bothe, Dieter

    2017-10-01

    This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.

  16. Modeling Jet and Outflow Feedback during Star Cluster Formation

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ~1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ~ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  17. A Priori Subgrid Scale Modeling for a Droplet Laden Temporal Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2000-01-01

    Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using a direct numerical simulation (DNS) database. The DNS is for a Reynolds number (based on initial vorticity thickness) of 600, with droplet mass loading of 0.2. The gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. Since Large Eddy Simulation (LES) of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be given by the filtered variables plus a correction based on the filtered standard deviation, which can be computed from the sub-grid scale (SGS) standard deviation. This model predicts unfiltered variables at droplet locations better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: Smagorinsky, gradient and scale-similarity. When properly calibrated, the gradient and scale-similarity methods give results in excellent agreement with the DNS.

  18. Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination

    PubMed Central

    Fredsøe, Jacob; Nielsen, Ida; Pedersen, Jakob Madsen; Bentsen, Iben Bach; Lisby, Michael; Bjergbaek, Lotte; Andersen, Anni H

    2015-01-01

    Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2) and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3) display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB) during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3) in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time. PMID:26630413

  19. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster

    PubMed Central

    Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O’Connor, Michael B.; Ono, Hajime

    2018-01-01

    Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. PMID:28782527

  20. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster.

    PubMed

    Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O'Connor, Michael B; Ono, Hajime

    2017-10-01

    Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and Experiment

    DOE PAGES

    Bainsla, Lakhan; Mallick, A. I.; Raja, M. Manivel; ...

    2015-07-08

    Despite a plethora of materials suggested for spintronic applications, a new class of materials has emerged, namely spin gapless semiconductors (SGS), which offers potentially more advantageous properties than existing ones. These magnetic semiconductors exhibit a finite band gap for one spin channel and a closed gap for the other. Supported by electronic-structure calculations, we report evidence of SGS behavior in equiatomic quaternary CoFeCrGa, having a cubic Heusler (prototype LiMgPdSn) structure but exhibiting chemical disorder (DO 3 structure). CoFeCrGa is found to transform from SGS to half-metallic phase under pressure, which is attributed to unique electronic-structure features. The saturation magnetization (Mmore » S) was obtained at 8K agrees with the Slater-Pauling rule and the Curie temperature (T C) is found to exceed 400K. Carrier concentration (up to 250K) and electrical conductivity are observed to be nearly temperature independent, prerequisites for SGS. The anomalous Hall coefficient is estimated to be 185S/cm at 5K. Considering the SGS properties and high T C, this material appears to be promising for spintronic applications.« less

  2. A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.

    2003-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.

  3. Assessment of sub-grid scale dispersion closure with regularized deconvolution method in a particle-laden turbulent jet

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Zhao, Xinyu; Ihme, Matthias

    2017-11-01

    Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).

  4. Investigation of Techniques for Simulating Communications and Tracking Subsystems on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Deacetis, Louis A.

    1991-01-01

    The need to reduce the costs of Space Station Freedom has resulted in a major redesign and downsizing of the Station in general, and its Communications and Tracking (C&T) components in particular. Earlier models and simulations of the C&T Space-to-Ground Subsystem (SGS) in particular are no longer valid. There thus exists a general need for updated, high fidelity simulations of C&T subsystems. This project explored simulation techniques and methods that might be used in developing new simulations of C&T subsystems, including the SGS. Three requirements were placed on the simulations to be developed: (1) they run on IBM PC/XT/AT compatible computers; (2) they be written in Ada as much as possible; and (3) since control and monitoring of the C&T subsystems will involve communication via a MIL-STD-1553B serial bus, that the possibility of commanding the simulator and monitoring its sensors via that bus be included in the design of the simulator. The result of the project is a prototype of a simulation of the Assembly/Contingency Transponder of the SGS, written in Ada, which can be controlled from another PC via a MIL-STD-1553B bus.

  5. Silicone gel sheet dressing for sclerodermatous type chronic graftversus- host-disease (cGVHD).

    PubMed

    Dinçer, Süleyman L; Kargı, Eksal; Dinçer, Sibel; Fitoz, Filiz; Akan, Hamdi

    2004-06-05

    Systemic sclerosis is an autoimmune disease characterized by endothelial cell injury, fibroblast activation and immunological aberrations. Generalized form of the disease involves skin and other organs. Progressive sclerodermatous type cGVHD is the difficult type to treat. Immunosuppressors are the most commonly used treatment regimens. Topical silicone gel sheet (SGS) were first used in the treatment of burn wound and following their initial successes have begun to be used in the treatment of hypertrophic scars and keloids. To best of our knowledge, this is the first patient with extensive sclerodermatous type cGVHD in whom SGS was applied on to the skin of the antecubital region. After a six months application of SGS, the skin of this region was remarkably soft and thick compared to other regions of the arm. The result indicate that SGS may be an useful tool for the treatment of extensive sclerodermatous type cGVHD.

  6. DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.

    PubMed

    Kim, Byunghyuk; Cooke, Howard J; Rhee, Kunsoo

    2012-02-01

    Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.

  7. High speed corner and gap-seal computations using an LU-SGS scheme

    NASA Technical Reports Server (NTRS)

    Coirier, William J.

    1989-01-01

    The hybrid Lower-Upper Symmetric Gauss-Seidel (LU-SGS) algorithm was added to a widely used series of 2D/3D Euler/Navier-Stokes solvers and was demonstrated for a particular class of high-speed flows. A limited study was conducted to compare the hybrid LU-SGS for approximate Newton iteration and diagonalized Beam-Warming (DBW) schemes on a work and convergence history basis. The hybrid LU-SGS algorithm is more efficient and easier to implement than the DBW scheme originally present in the code for the cases considered. The code was validated for the hypersonic flow through two mutually perpendicular flat plates and then used to investigate the flow field in and around a simplified scramjet module gap seal configuration. Due to the similarities, the gap seal flow was compared to hypersonic corner flow at the same freestream conditions and Reynolds number.

  8. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation.

    PubMed

    Deutsch, Judith E; Westcott McCoy, Sarah

    2017-07-01

    Use of virtual reality (VR) and serious games (SGs) interventions within rehabilitation as motivating tools for task specific training for individuals with neurological conditions are fast-developing. Within this perspective paper we use the framework of the IV STEP conference to summarize the literature on VR and SG for children and adults by three topics: Prevention; Outcomes: Body-Function-Structure, Activity and Participation; and Plasticity. Overall the literature in this area offers support for use of VR and SGs to improve body functions and to some extent activity domain outcomes. Critical analysis of clients' goals and selective evaluation of VR and SGs are necessary to appropriately take advantage of these tools within intervention. Further research on prevention, participation, and plasticity is warranted. We offer suggestions for bridging the gap between research and practice integrating VR and SGs into physical therapist education and practice.

  9. ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS)

    NASA Astrophysics Data System (ADS)

    Metcalfe, L.; Aberasturi, M.; Alonso, E.; Álvarez, R.; Ashman, M.; Barbarisi, I.; Brumfitt, J.; Cardesín, A.; Coia, D.; Costa, M.; Fernández, R.; Frew, D.; Gallegos, J.; García Beteta, J. J.; Geiger, B.; Heather, D.; Lim, T.; Martin, P.; Muñoz Crego, C.; Muñoz Fernandez, M.; Villacorta, A.; Svedhem, H.

    2018-06-01

    The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes.

  10. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production1

    PubMed Central

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi

    2015-01-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. PMID:26438788

  11. Optimal timing and frequency of bone marrow soup therapy for functional restoration of salivary glands injured by single-dose or fractionated irradiation.

    PubMed

    Fang, Dongdong; Shang, Sixia; Liu, Younan; Bakkar, Mohammed; Sumita, Yoshinori; Seuntjens, Jan; Tran, Simon D

    2018-02-01

    Injections of bone marrow (BM) cell extract, known as 'BM soup', were previously reported to mitigate ionizing radiation (IR) injury to salivary glands (SGs). However, the optimal starting time and frequency to maintain BM soup therapeutic efficacy remains unknown. This study tested the optimal starting time and frequency of BM soup injections in mice radiated with either a single dose or a fractionated dose. First, BM soup treatment was started at 1, 3 or 7 weeks post-IR; positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Second, BM soup-treated mice received injections at different frequencies (1, 2, 3 and 5 weekly injections). Third, a 'fractionated-dose radiation' model to injure mouse SGs was developed (5 Gy × 5 days) and compared with the single high dose radiation model. All mice (n = 65) were followed for 16 weeks post-IR. The results showed that starting injections of BM soup between 1 and 3 weeks mitigated the effect of IR-induced injury to SGs and improved the restoration of salivary function. Although the therapeutic effect of BM soup lessens after 8 weeks, it can be sustained by increasing the frequency of weekly injections. Moreover, both single-dose and fractionated-dose radiation models are efficient and comparable in inducing SG injury and BM soup treatments are effective in restoring salivary function in both radiation models. In conclusion, starting injections of BM soup within 3 weeks post-radiation, with 5 weekly injections, maintains 90-100% of saliva flow in radiated mice. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Prejudice and Health Anxiety about Radiation Exposure from Second-Generation Atomic Bomb Survivors: Results from a Qualitative Interview Study

    PubMed Central

    Kamite, Yuka

    2017-01-01

    The effect of atomic bomb radiation exposure on the survivors and their children has been a worrisome problem since soon after the 1945 Hiroshima and Nagasaki bombings. Researchers have examined physical and genetic effects; however, no research has focused on second-generation survivors’ (SGS) psychological effects. Consequently, this study shed light on the SGS’ experience of discrimination and prejudice and their anxiety concerning the genetic effects of radiation exposure. This study utilized semi-structured interviews with 14 SGS (10 women, mean age = 56 ± 6.25 years, range = 46–68 years). Data were analyzed using a modified version of the grounded theory approach. Three categories were extracted: low awareness as an SGS, no health anxiety regarding the effect of radiation, and health anxiety regarding the effect of radiation. The results did not reveal that SGS who grew up in the bombed areas experienced discrimination or prejudice. They had little health anxiety from childhood to adolescence. In this study, some of the SGS developed health anxiety about their third-generation children, but only among female participants. Perhaps the transgenerational transmission of anxiety concerning the genetic effects of radiation exposure causes stress, particularly among women with children. However, a change was seen in adulthood health anxiety regarding the effects of radiation, suggesting the possibility that changes in the psychological experiences of SGS can be observed throughout their lifetimes and that their own health status, and that of their children, the third-generation survivors, affects their health anxiety regarding radiation. PMID:28912738

  13. 77 FR 12869 - Approval of SGS North America, Inc., as a Commercial Gauger

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... hereby given that, pursuant to 19 CFR 151.13, SGS North America, Inc., 6624 Langley Dr., Baton Rouge, LA...- 1060. Dated: February 21, 2012. Ira S. Reese, Executive Director, Laboratories and Scientific Services...

  14. Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.

    1993-01-01

    The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the effects of scalar fluctuations. The implementation of the model requires the knowledge of the local values of the first two SGS moments. These are provided by additional modeled transport equations. In both a priori and a posteriori analyses, the predicted results are appraised by comparison with subgrid averaged results generated by DNS. Based on these results, the paths to be followed in future investigations are identified.

  15. Temporal Variations of Different Solar Activity Indices Through the Solar Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Göker, Ü. D.; Singh, J.; Nutku, F.; Priyal, M.

    2017-12-01

    Here, we compare the sunspot counts and the number of sunspot groups (SGs) with variations of total solar irradiance (TSI), magnetic activity, Ca II K-flux, faculae and plage areas. We applied a time series method for extracting the data over the descending phases of solar activity cycles (SACs) 21, 22 and 23, and the ascending phases 22 and 23. Our results suggest that there is a strong correlation between solar activity indices and the changes in small (A, B, C and H-modified Zurich Classification) and large (D, E and F) SGs. This somewhat unexpected finding suggests that plage regions substantially decreased in spite of the higher number of large SGs in SAC 23 while the Ca II K-flux did not decrease by a large amount nor was it comparable with SAC 22 and relates with C and DEF type SGs. In addition to this, the increase of facular areas which are influenced by large SGs, caused a small percentage decrease in TSI while the decrement of plage areas triggered a higher decrease in the magnetic field flux. Our results thus reveal the potential of such a detailed comparison of the SG analysis with solar activity indices for better understanding and predicting future trends in the SACs.

  16. Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation

    NASA Astrophysics Data System (ADS)

    Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab

    2015-05-01

    3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.

  17. C. elegans sirtuin SIR-2.4 and its mammalian homolog SIRT6 in stress response.

    PubMed

    Jedrusik-Bode, Monika

    2014-01-01

    Stress is a significant life event. The immediate response to stress is critical for survival. In organisms ranging from the unicellular Saccharomyces cerevisiae to protozoa (Trypanosoma brucei) and metazoan (such as Caenorhabditis elegans, Homo sapiens) stress response leads to the formation of cytoplasmic RNA-protein complexes referred to as stress granules (SGs). SGs regulate cell survival during stress by the sequestration of the signaling molecules implicated in apoptosis. They are a transient place of messenger ribonucleoproteins (mRNPs) remodeling for storage, degradation, or reinitiation of translation during stress and recovery from stress. Recently, we have identified chromatin factor, the sirtuin C. elegans SIR-2.4 variant and its mammalian homolog SIRT6 as a regulator of SGs formation. SIRT6 is highly conserved NAD(+)-dependent lysine deacetylase and ADP-ribosyltransferase impacting longevity, metabolism, and cancer. We observed that the cellular formation of SGs by SIRT6 or SIR-2.4 was linked with the cell viability or C. elegans survival and was dependent on SIRT6 enzymatic activity. Here, we discuss how SIR-2.4/SIRT6 influences SGs formation and stress response. We suggest possible mechanisms for such an unanticipated function of a chromatin regulatory factor SIRT6 in assembly of stress granules and cellular stress resistance.

  18. Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2016-01-01

    Variable-speed power turbines (VSPTs) operate at low Reynolds numbers and with a wide range of incidence angles. Transition, separation, and the relevant physics leading to them are important to VSPT flow. Higher fidelity tools such as large eddy simulation (LES) may be needed to resolve the flow features necessary for accurate predictive capability and design of such turbines. A survey conducted for this report explores the requirements for such computations. The survey is limited to the simulation of two-dimensional flow cases and endwalls are not included. It suggests that a grid resolution necessary for this type of simulation to accurately represent the physics may be of the order of Delta(x)+=45, Delta(x)+ =2 and Delta(z)+=17. Various subgrid-scale (SGS) models have been used and except for the Smagorinsky model, all seem to perform well and in some instances the simulations worked well without SGS modeling. A method of specifying the inlet conditions such as synthetic eddy modeling (SEM) is necessary to correctly represent the inlet conditions.

  19. The luminosities of cool supergiants in the Magellanic Clouds, and the Humphreys-Davidson limit revisited

    NASA Astrophysics Data System (ADS)

    Davies, Ben; Crowther, Paul A.; Beasor, Emma R.

    2018-05-01

    The empirical upper luminosity boundary Lmax of cool supergiants, often referred to as the Humphreys-Davidson limit, is thought to encode information on the general mass-loss behaviour of massive stars. Further, it delineates the boundary at which single stars will end their lives stripped of their hydrogen-rich envelope, which in turn is a key factor in the relative rates of Type-II to Type-Ibc supernovae from single star channels. In this paper we have revisited the issue of Lmax by studying the luminosity distributions of cool supergiants (SGs) in the Large and Small Magellanic Clouds (LMC/SMC). We assemble samples of cool SGs in each galaxy which are highly-complete above log L/L⊙=5.0, and determine their spectral energy distributions from the optical to the mid-infrared using modern multi-wavelength survey data. We show that in both cases Lmax appears to be lower than previously quoted, and is in the region of log L/L⊙=5.5. There is no evidence for Lmax being higher in the SMC than in the LMC, as would be expected if metallicity-dependent winds were the dominant factor in the stripping of stellar envelopes. We also show that Lmax aligns with the lowest luminosity of single nitrogen-rich Wolf-Rayet stars, indicating of a change in evolutionary sequence for stars above a critical mass. From population synthesis analysis we show that the Geneva evolutionary models greatly over-predict the numbers of cool SGs in the SMC. We also argue that the trend of earlier average spectral types of cool SGs in lower metallicity environments represents a genuine shift to hotter temperatures. Finally, we use our new bolometric luminosity measurements to provide updated bolometric corrections for cool supergiants.

  20. Analyzing polysemous concepts from a clinical perspective: Application to auditing concept categorization in the UMLS

    PubMed Central

    Mougin, Fleur; Bodenreider, Olivier; Burgun, Anita

    2015-01-01

    Objectives Polysemy is a frequent issue in biomedical terminologies. In the Unified Medical Language System (UMLS), polysemous terms are either represented as several independent concepts, or clustered into a single, multiply-categorized concept. The objective of this study is to analyze polysemous concepts in the UMLS through their categorization and hierarchical relations for auditing purposes. Methods We used the association of a concept with multiple Semantic Groups (SGs) as a surrogate for polysemy. We first extracted multi-SG (MSG) concepts from the UMLS Metathesaurus and characterized them in terms of the combinations of SGs with which they are associated. We then clustered MSG concepts in order to identify major types of polysemy. We also analyzed the inheritance of SGs in MSG concepts. Finally, we manually reviewed the categorization of the MSG concepts for auditing purposes. Results The 1208 MSG concepts in the Metathesaurus are associated with 30 distinct pairs of SGs. We created 75 semantically homogeneous clusters of MSG concepts, and 276 MSG concepts could not be clustered for lack of hierarchical relations. The clusters were characterized by the most frequent pairs of semantic types of their constituent MSG concepts. MSG concepts exhibit limited semantic compatibility with their parent and child concepts. A large majority of MSG concepts (92%) are adequately categorized. Examples of miscategorized concepts are presented. Conclusion This work is a systematic analysis and manual review of all concepts categorized by multiple SGs in the UMLS. The correctly-categorized MSG concepts do reflect polysemy in the UMLS Metathesaurus. The analysis of inheritance of SGs proved useful for auditing concept categorization in the UMLS. PMID:19303057

  1. The Sheep Grimace Scale as an indicator of post-operative distress and pain in laboratory sheep

    PubMed Central

    Buettner, M.; Glage, S.; Keubler, L. M.; Held, N.; Bleich, E. M.; Otto, K.; Müller, C. W.; Decker, S.; Talbot, S. R.; Bleich, A.

    2017-01-01

    The EU Directive 2010/63/EU changed the requirements regarding the use of laboratory animals and raised important issues related to assessing the severity of all procedures undertaken on laboratory animals. However, quantifiable parameters to assess severity are rare, and improved assessment strategies need to be developed. Hence, a Sheep Grimace Scale (SGS) was herein established by observing and interpreting sheep facial expressions as a consequence of pain and distress following unilateral tibia osteotomy. The animals were clinically investigated and scored five days before surgery and at 1, 3, 7, 10, 14 and 17 days afterwards. Additionally, cortisol levels in the saliva of the sheep were determined at the respective time points. For the SGS, video recording was performed, and pictures of the sheep were randomized and scored by blinded observers. Osteotomy in sheep resulted in an increased clinical severity score from days 1 to 17 post-surgery and elevated salivary cortisol levels one day post-surgery. An analysis of facial expressions revealed a significantly increased SGS on the day of surgery until day 3 post-surgery; this elevated level was sustained until day 17. Clinical severity and SGS scores correlated positively with a Pearson´s correlation coefficient of 0.47. Further investigations regarding the applicability of the SGS revealed a high inter-observer reliability with an intraclass correlation coefficient of 0.92 and an accuracy of 68.2%. In conclusion, the SGS represents a valuable approach for severity assessment that may help support and refine a widely used welfare assessment for sheep during experimental procedures, thereby meeting legislation requirements and minimizing the occurrence of unrecognized distress in animal experimentation. PMID:28422994

  2. The Sheep Grimace Scale as an indicator of post-operative distress and pain in laboratory sheep.

    PubMed

    Häger, C; Biernot, S; Buettner, M; Glage, S; Keubler, L M; Held, N; Bleich, E M; Otto, K; Müller, C W; Decker, S; Talbot, S R; Bleich, A

    2017-01-01

    The EU Directive 2010/63/EU changed the requirements regarding the use of laboratory animals and raised important issues related to assessing the severity of all procedures undertaken on laboratory animals. However, quantifiable parameters to assess severity are rare, and improved assessment strategies need to be developed. Hence, a Sheep Grimace Scale (SGS) was herein established by observing and interpreting sheep facial expressions as a consequence of pain and distress following unilateral tibia osteotomy. The animals were clinically investigated and scored five days before surgery and at 1, 3, 7, 10, 14 and 17 days afterwards. Additionally, cortisol levels in the saliva of the sheep were determined at the respective time points. For the SGS, video recording was performed, and pictures of the sheep were randomized and scored by blinded observers. Osteotomy in sheep resulted in an increased clinical severity score from days 1 to 17 post-surgery and elevated salivary cortisol levels one day post-surgery. An analysis of facial expressions revealed a significantly increased SGS on the day of surgery until day 3 post-surgery; this elevated level was sustained until day 17. Clinical severity and SGS scores correlated positively with a Pearson´s correlation coefficient of 0.47. Further investigations regarding the applicability of the SGS revealed a high inter-observer reliability with an intraclass correlation coefficient of 0.92 and an accuracy of 68.2%. In conclusion, the SGS represents a valuable approach for severity assessment that may help support and refine a widely used welfare assessment for sheep during experimental procedures, thereby meeting legislation requirements and minimizing the occurrence of unrecognized distress in animal experimentation.

  3. Large Eddy Simulation of "turbulent-like" flow in intracranial aneurysms

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Owais; Chnafa, Christophe; Steinman, David A.; Mendez, Simon; Nicoud, Franck

    2016-11-01

    Hemodynamic forces are thought to contribute to pathogenesis and rupture of intracranial aneurysms (IA). Recent high-resolution patient-specific computational fluid dynamics (CFD) simulations have highlighted the presence of "turbulent-like" flow features, characterized by transient high-frequency flow instabilities. In-vitro studies have shown that such "turbulent-like" flows can lead to lack of endothelial cell orientation and cell depletion, and thus, may also have relevance to IA rupture risk assessment. From a modelling perspective, previous studies have relied on DNS to resolve the small-scale structures in these flows. While accurate, DNS is clinically infeasible due to high computational cost and long simulation times. In this study, we present the applicability of LES for IAs using a LES/blood flow dedicated solver (YALES2BIO) and compare against respective DNS. As a qualitative analysis, we compute time-averaged WSS and OSI maps, as well as, novel frequency-based WSS indices. As a quantitative analysis, we show the differences in POD eigenspectra for LES vs. DNS and wavelet analysis of intra-saccular velocity traces. Differences in two SGS models (i.e. Dynamic Smagorinsky vs. Sigma) are also compared against DNS, and computational gains of LES are discussed.

  4. Semi-Tomographic Gamma Scanning Technique for Non-Destructive Assay of Radioactive Waste Drums

    NASA Astrophysics Data System (ADS)

    Gu, Weiguo; Rao, Kaiyuan; Wang, Dezhong; Xiong, Jiemei

    2016-12-01

    Segmented gamma scanning (SGS) and tomographic gamma scanning (TGS) are two traditional detection techniques for low and intermediate level radioactive waste drum. This paper proposes one detection method named semi-tomographic gamma scanning (STGS) to avoid the poor detection accuracy of SGS and shorten detection time of TGS. This method and its algorithm synthesize the principles of SGS and TGS. In this method, each segment is divided into annual voxels and tomography is used in the radiation reconstruction. The accuracy of STGS is verified by experiments and simulations simultaneously for the 208 liter standard waste drums which contains three types of nuclides. The cases of point source or multi-point sources, uniform or nonuniform materials are employed for comparison. The results show that STGS exhibits a large improvement in the detection performance, and the reconstruction error and statistical bias are reduced by one quarter to one third or less for most cases if compared with SGS.

  5. In-Frame Mutations in Exon 1 of SKI Cause Dominant Shprintzen-Goldberg Syndrome

    PubMed Central

    Carmignac, Virginie; Thevenon, Julien; Adès, Lesley; Callewaert, Bert; Julia, Sophie; Thauvin-Robinet, Christel; Gueneau, Lucie; Courcet, Jean-Benoit; Lopez, Estelle; Holman, Katherine; Renard, Marjolijn; Plauchu, Henri; Plessis, Ghislaine; De Backer, Julie; Child, Anne; Arno, Gavin; Duplomb, Laurence; Callier, Patrick; Aral, Bernard; Vabres, Pierre; Gigot, Nadège; Arbustini, Eloisa; Grasso, Maurizia; Robinson, Peter N.; Goizet, Cyril; Baumann, Clarisse; Di Rocco, Maja; Sanchez Del Pozo, Jaime; Huet, Frédéric; Jondeau, Guillaume; Collod-Beroud, Gwenaëlle; Beroud, Christophe; Amiel, Jeanne; Cormier-Daire, Valérie; Rivière, Jean-Baptiste; Boileau, Catherine; De Paepe, Anne; Faivre, Laurence

    2012-01-01

    Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway. PMID:23103230

  6. Implicit high-order discontinuous Galerkin method with HWENO type limiters for steady viscous flow simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen-Hua; Yan, Chao; Yu, Jian

    2013-08-01

    Two types of implicit algorithms have been improved for high order discontinuous Galerkin (DG) method to solve compressible Navier-Stokes (NS) equations on triangular grids. A block lower-upper symmetric Gauss-Seidel (BLU-SGS) approach is implemented as a nonlinear iterative scheme. And a modified LU-SGS (LLU-SGS) approach is suggested to reduce the memory requirements while retain the good convergence performance of the original LU-SGS approach. Both implicit schemes have the significant advantage that only the diagonal block matrix is stored. The resulting implicit high-order DG methods are applied, in combination with Hermite weighted essentially non-oscillatory (HWENO) limiters, to solve viscous flow problems. Numerical results demonstrate that the present implicit methods are able to achieve significant efficiency improvements over explicit counterparts and for viscous flows with shocks, and the HWENO limiters can be used to achieve the desired essentially non-oscillatory shock transition and the designed high-order accuracy simultaneously.

  7. Mutations in the TGF-β Repressor SKI Cause Shprintzen-Goldberg Syndrome with Aortic Aneurysm

    PubMed Central

    Doyle, Alexander J.; Doyle, Jefferson J.; Bessling, Seneca L.; Maragh, Samantha; Lindsay, Mark E.; Schepers, Dorien; Gillis, Elisabeth; Mortier, Geert; Homfray, Tessa; Sauls, Kimberly; Norris, Russell A.; Huso, Nicholas D.; Leahy, Dan; Mohr, David W.; Caulfield, Mark J.; Scott, Alan F.; Destrée, Anne; Hennekam, Raoul C.; Arn, Pamela H.; Curry, Cynthia J.; Van Laer, Lut; McCallion, Andrew S.; Loeys, Bart L.; Dietz, Harry C.

    2012-01-01

    Increased transforming growth factor beta (TGF-β) signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS)1-4. However, the location and character of many of the causal mutations in LDS would intuitively infer diminished TGF-β signaling5. Taken together, these data have engendered controversy regarding the specific role of TGF-β in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm6-8. We identified causative variation in 10 patients with SGS in the proto-oncogene SKI, a known repressor of TGF-β activity9,10. Cultured patient dermal fibroblasts showed enhanced activation of TGF-β signaling cascades and increased expression of TGF-β responsive genes. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in SGS patients. These data support the conclusion that increased TGF-β signaling is the mechanism underlying SGS and contributes to multiple syndromic presentations of aortic aneurysm. PMID:23023332

  8. Treatment options in idiopathic subglottic stenosis: protocol for a prospective international multicentre pragmatic trial

    PubMed Central

    Shyr, Yu; Berry, Lynne; Hillel, Alexander T; Ekbom, Dale C; Edell, Eric S; Kasperbauer, Jan L; Lott, David G; Donovan, Donald T; Garrett, C. Gaelyn; Sandhu, Guri; Daniero, James J; Netterville, James L; Schindler, Josh S; Smith, Marshall E; Bryson, Paul C; Lorenz, Robert R; Francis, David O

    2018-01-01

    Introduction Idiopathic subglottic stenosis (iSGS) is an unexplained progressive obstruction of the upper airway that occurs almost exclusively in adult, Caucasian women. The disease is characterised by mucosal inflammation and localised fibrosis resulting in life-threatening blockage of the upper airway. Because of high recurrence rates, patients with iSGS will frequently require multiple procedures following their initial diagnosis. Both the disease and its therapies profoundly affect patients’ ability to breathe, communicate and swallow. A variety of treatments have been advanced to manage this condition. However, comparative data on effectiveness and side effects of the unique approaches have never been systematically evaluated. This study will create an international, multi-institutional prospective cohort of patients with iSGS. It will compare three surgical approaches to determine how well the most commonly used treatments in iSGS ‘work’ and what quality of life (QOL) trade-offs are associated with each approach. Methods and analysis A prospective pragmatic trial comparing the ‘Standard of Care’ for iSGS at multiple international institutions. Patients with a diagnosis of iSGS without clinical or laboratory evidence of vasculitis or a history of endotracheal intubation 2 years prior to symptom onset will be included in the study. Prospective evaluation of disease recurrence requiring operative intervention, validated patient-reported outcome (PRO) measures as well as patient-generated health data (mobile peak flow recordings and daily steps taken) will be longitudinally tracked for 36 months. The primary endpoint is treatment effectiveness defined as time to recurrent operative procedure. Secondary endpoints relate to treatment side effects and include PRO measures in voice, swallowing, breathing and global QOL as well as patient-generated health data. Ethics and dissemination This protocol was approved by the local IRB Committee of the Vanderbilt University Medical Center in July 2015. The findings of the trial will be disseminated through peer-reviewed journals, national and international conference presentations and directly to patient with iSGS via social media-based support groups. Trial registration number NCT02481817. PMID:29643170

  9. Clinical use of sensory gardens and outdoor environments in norwegian nursing homes: a cross-sectional e-mail survey.

    PubMed

    Gonzalez, Marianne Thorsen; Kirkevold, Marit

    2015-01-01

    Gardens and outdoor environments offer multiple therapeutic possibilities for the residents in nursing homes. Web-based questionnaires were sent to 488 nursing home leaders and 121 leaders responded. The clinical impressions of the leaders and staff regarding the benefits of sensory gardens (SGs) to the residents were consistent with previous research. SGs facilitated taking residents outdoors, offered convenient topics for communication and facilitated social privacy for relatives. For improved clinical use of SGs and outdoor environments, systematic assessment of residents' interests, performance and experiences when outdoors, implementation of seasonal clinical programmes and educational programmes for leaders and staff are recommended.

  10. Chronically stressed or stress-preconditioned neurons fail to maintain stress granule assembly.

    PubMed

    Shelkovnikova, Tatyana A; Dimasi, Pasquale; Kukharsky, Michail S; An, Haiyan; Quintiero, Annamaria; Schirmer, Claire; Buée, Luc; Galas, Marie-Christine; Buchman, Vladimir L

    2017-05-11

    Dysregulation of stress granules (SGs) and their resident proteins contributes to pathogenesis of a number of (neuro)degenerative diseases. Phosphorylation of eIF2α is an event integrating different types of cellular stress and it is required for SG assembly. Phosphorylated eIF2α (p-eIF2α) is upregulated in the nervous system in some neurodegenerative conditions. We found that increasing p-eIF2α level by proteasomal inhibition in cultured cells, including mouse and human neurons, before a SG-inducing stress ('stress preconditioning'), limits their ability to maintain SG assembly. This is due to upregulation of PP1 phosphatase regulatory subunits GADD34 and/or CReP in preconditioned cells and early decline of p-eIF2α levels during subsequent acute stress. In two model systems with constitutively upregulated p-eIF2α, mouse embryonic fibroblasts lacking CReP and brain neurons of tau transgenic mice, SG formation was also impaired. Thus, neurons enduring chronic stress or primed by a transient mild stress fail to maintain p-eIF2α levels following subsequent acute stress, which would compromise protective function of SGs. Our findings provide experimental evidence on possible loss of function for SGs in certain neurodegenerative diseases.

  11. Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study

    NASA Astrophysics Data System (ADS)

    Selle, Laurent C.; Okong'o, Nora A.; Bellan, Josette; Harstad, Kenneth G.

    A database of transitional direct numerical simulation (DNS) realizations of a supercritical mixing layer is analysed for understanding small-scale behaviour and examining subgrid-scale (SGS) models duplicating that behaviour. Initially, the mixing layer contains a single chemical species in each of the two streams, and a perturbation promotes roll-up and a double pairing of the four spanwise vortices initially present. The database encompasses three combinations of chemical species, several perturbation wavelengths and amplitudes, and several initial Reynolds numbers specifically chosen for the sole purpose of achieving transition. The DNS equations are the Navier-Stokes, total energy and species equations coupled to a real-gas equation of state; the fluxes of species and heat include the Soret and Dufour effects. The large-eddy simulation (LES) equations are derived from the DNS ones through filtering. Compared to the DNS equations, two types of additional terms are identified in the LES equations: SGS fluxes and other terms for which either assumptions or models are necessary. The magnitude of all terms in the LES conservation equations is analysed on the DNS database, with special attention to terms that could possibly be neglected. It is shown that in contrast to atmospheric-pressure gaseous flows, there are two new terms that must be modelled: one in each of the momentum and the energy equations. These new terms can be thought to result from the filtering of the nonlinear equation of state, and are associated with regions of high density-gradient magnitude both found in DNS and observed experimentally in fully turbulent high-pressure flows. A model is derived for the momentum-equation additional term that performs well at small filter size but deteriorates as the filter size increases, highlighting the necessity of ensuring appropriate grid resolution in LES. Modelling approaches for the energy-equation additional term are proposed, all of which may be too computationally intensive in LES. Several SGS flux models are tested on an a priori basis. The Smagorinsky (SM) model has a poor correlation with the data, while the gradient (GR) and scale-similarity (SS) models have high correlations. Calibrated model coefficients for the GR and SS models yield good agreement with the SGS fluxes, although statistically, the coefficients are not valid over all realizations. The GR model is also tested for the variances entering the calculation of the new terms in the momentum and energy equations; high correlations are obtained, although the calibrated coefficients are not statistically significant over the entire database at fixed filter size. As a manifestation of the small-scale supercritical mixing peculiarities, both scalar-dissipation visualizations and the scalar-dissipation probability density functions (PDF) are examined. The PDF is shown to exhibit minor peaks, with particular significance for those at larger scalar dissipation values than the mean, thus significantly departing from the Gaussian behaviour.

  12. Comparative Transcriptomics Unravel Biochemical Specialization of Leaf Tissues of Stevia for Diterpenoid Production.

    PubMed

    Kim, Mi Jung; Jin, Jingjing; Zheng, Junshi; Wong, Limsoon; Chua, Nam-Hai; Jang, In-Cheol

    2015-12-01

    Stevia (Stevia rebaudiana) produces not only a group of diterpenoid glycosides known as steviol glycosides (SGs), but also other labdane-type diterpenoids that may be spatially separated from SGs. However, their biosynthetic routes and spatial distribution in leaf tissues have not yet been elucidated. Here, we integrate metabolome and transcriptome analyses of Stevia to explore the biosynthetic capacity of leaf tissues for diterpenoid metabolism. Tissue-specific chemical analyses confirmed that SGs were accumulated in leaf cells but not in trichomes. On the other hand, Stevia leaf trichomes stored other labdane-type diterpenoids such as oxomanoyl oxide and agatholic acid. RNA sequencing analyses from two different tissues of Stevia provided a comprehensive overview of dynamic metabolic activities in trichomes and leaf without trichomes. These metabolite-guided transcriptomics and phylogenetic and gene expression analyses clearly identified specific gene members encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate pathway and the biosynthesis of steviol or other labdane-type diterpenoids. Additionally, our RNA sequencing analysis uncovered copalyl diphosphate synthase (SrCPS) and kaurene synthase1 (SrKS1) homologs, SrCPS2 and KS-like (SrKSL), which were specifically expressed in trichomes. In vitro and in planta assays showed that unlike SrCPS and SrKS1, SrCPS2 synthesized labda-13-en-8-ol diphosphate and successively catalyzed the formation of manoyl oxide and epi-manoyl oxide in combination with SrKSL. Our findings suggest that Stevia may have evolved to use distinct metabolic pathways to avoid metabolic interferences in leaf tissues for efficient production of diverse secondary metabolites. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Segmented Gamma Scanner for Small Containers of Uranium Processing Waste- 12295

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, K.E.; Smith, S.K.; Gailey, S.

    2012-07-01

    The Segmented Gamma Scanner (SGS) is commonly utilized in the assay of 55-gallon drums containing radioactive waste. Successfully deployed calibration methods include measurement of vertical line source standards in representative matrices and mathematical efficiency calibrations. The SGS technique can also be utilized to assay smaller containers, such as those used for criticality safety in uranium processing facilities. For such an application, a Can SGS System is aptly suited for the identification and quantification of radionuclides present in fuel processing wastes. Additionally, since the significant presence of uranium lumping can confound even a simple 'pass/fail' measurement regimen, the high-resolution gamma spectroscopymore » allows for the use of lump-detection techniques. In this application a lump correction is not required, but the application of a differential peak approach is used to simply identify the presence of U-235 lumps. The Can SGS is similar to current drum SGSs, but differs in the methodology for vertical segmentation. In the current drum SGS, the drum is placed on a rotator at a fixed vertical position while the detector, collimator, and transmission source are moved vertically to effect vertical segmentation. For the Can SGS, segmentation is more efficiently done by raising and lowering the rotator platform upon which the small container is positioned. This also reduces the complexity of the system mechanism. The application of the Can SGS introduces new challenges to traditional calibration and verification approaches. In this paper, we revisit SGS calibration methodology in the context of smaller waste containers, and as applied to fuel processing wastes. Specifically, we discuss solutions to the challenges introduced by requiring source standards to fit within the confines of the small containers and the unavailability of high-enriched uranium source standards. We also discuss the implementation of a previously used technique for identifying the presence of uranium lumping. The SGS technique is a well-accepted NDA technique applicable to containers of almost any size. It assumes a homogenous matrix and activity distribution throughout the entire container; an assumption that is at odds with the detection of lumps within the assay item typical of uranium-processing waste. This fact, in addition to the difficultly in constructing small reference standards of uranium-bearing materials, required the methodology used for performing an efficiency curve calibration to be altered. The solution discussed in this paper is demonstrated to provide good results for both the segment activity and full container activity when measuring heterogeneous source distributions. The application of this approach will need to be based on process knowledge of the assay items, as biases can be introduced if used with homogenous, or nearly homogenous, activity distributions. The bias will need to be quantified for each combination of container geometry and SGS scanning settings. One recommended approach for using the heterogeneous calibration discussed here is to assay each item using a homogenous calibration initially. Review of the segment activities compared to the full container activity will signal the presence of a non-uniform activity distribution as the segment activity will be grossly disproportionate to the full container activity. Upon seeing this result, the assay should either be reanalyzed or repeated using the heterogeneous calibration. (authors)« less

  14. Self-contained filtered density function

    DOE PAGES

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...

    2017-09-18

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  15. Self-contained filtered density function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope

    The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less

  16. Self-contained filtered density function

    NASA Astrophysics Data System (ADS)

    Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.

    2017-09-01

    The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  17. PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen

    2017-11-01

    The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.

  18. Constrained Surface-Level Gateway Placement for Underwater Acoustic Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Deying; Li, Zheng; Ma, Wenkai; Chen, Hong

    One approach to guarantee the performance of underwater acoustic sensor networks is to deploy multiple Surface-level Gateways (SGs) at the surface. This paper addresses the connected (or survivable) Constrained Surface-level Gateway Placement (C-SGP) problem for 3-D underwater acoustic sensor networks. Given a set of candidate locations where SGs can be placed, our objective is to place minimum number of SGs at a subset of candidate locations such that it is connected (or 2-connected) from any USN to the base station. We propose a polynomial time approximation algorithm for the connected C-SGP problem and survivable C-SGP problem, respectively. Simulations are conducted to verify our algorithms' efficiency.

  19. Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.

  20. United States Air Force Personalized Medicine and Advanced Diagnostics Program Panel: Representative Research at the San Antonio Military Medical Center

    DTIC Science & Technology

    2016-05-20

    Health Sciences Education (GHSC) [SGS O&M]; SGS R&D; Tri-Service Nursing Research Program (TSNRP); Defense Medical Research & Development Program...and environmental risk and protective factors, such as those associated with socia l-occupational impairment , sleep deprivation, and resiliency

  1. Supervision Effects on Self-Effcacy, Competency, and Job Involvement of School Counsellors

    ERIC Educational Resources Information Center

    Tan, Soo Yin; Chou, Chih Chin

    2018-01-01

    This research examined the effects of structured group supervision (SGS) on counsellors' self-efficacy, counselling competency, and job involvement in Singapore. Twenty-one counsellors participated in six, 3- hour SGS sessions over 12 weeks with one qualified counselling supervisor. The counsellors had at least six months' experience working as…

  2. 76 FR 55082 - Re-Accreditation and Re-Approval of SGS North America, Inc. as a Commercial Gauger

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-06

    ... DEPARTMENT OF HOMELAND SECURITY Bureau of Customs and Border Protection Re-Accreditation and Re..., Department of Homeland Security. ACTION: Notice of re-approval of SGS North America, Inc., Baytown, Texas, as... America, Inc., Baytown, Texas 78408, has been re-approved to gauge petroleum and petroleum products...

  3. [Schinzel-Giedion syndrome: a new mutation in SETBP1].

    PubMed

    López-González, V; Domingo-Jiménez, M R; Burglen, L; Ballesta-Martínez, M J; Whalen, S; Piñero-Fernández, J A; Guillén-Navarro, E

    2015-01-01

    Schinzel-Giedion syndrome (SGS) (#MIM 269150) is a rare genetic disorder characterized by very marked craniofacial dysmorphism, multiple congenital anomalies and severe intellectual disability. Most affected patients die in early childhood. SETBP1 was identified as the causative gene, but a limited number of patients with molecular confirmation have been reported to date. The case is reported of a 4 and a half year-old male patient, affected by SGS. SETBP1 sequencing analysis revealed the presence of a non-previously described mutation: c.2608G>T (p.Gly870Cys). The clinical features and differential diagnosis of this rare condition are reviewed. Dysmorphic features are strongly suggestive of SGS. Its clinical recognition is essential to enable an early diagnosis, a proper follow-up, and to provide the family with genetic counseling. To date, this is the seventeenth SGS patient published with SETBP1 mutation, and the first in Spain, helping to widen clinical and molecular knowledge of the disease. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  4. IoT-based smart garbage system for efficient food waste management.

    PubMed

    Hong, Insung; Park, Sunghoi; Lee, Beomseok; Lee, Jaekeun; Jeong, Daebeom; Park, Sehyun

    2014-01-01

    Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%.

  5. IoT-Based Smart Garbage System for Efficient Food Waste Management

    PubMed Central

    Lee, Jaekeun

    2014-01-01

    Owing to a paradigm shift toward Internet of Things (IoT), researches into IoT services have been conducted in a wide range of fields. As a major application field of IoT, waste management has become one such issue. The absence of efficient waste management has caused serious environmental problems and cost issues. Therefore, in this paper, an IoT-based smart garbage system (SGS) is proposed to reduce the amount of food waste. In an SGS, battery-based smart garbage bins (SGBs) exchange information with each other using wireless mesh networks, and a router and server collect and analyze the information for service provisioning. Furthermore, the SGS includes various IoT techniques considering user convenience and increases the battery lifetime through two types of energy-efficient operations of the SGBs: stand-alone operation and cooperation-based operation. The proposed SGS had been operated as a pilot project in Gangnam district, Seoul, Republic of Korea, for a one-year period. The experiment showed that the average amount of food waste could be reduced by 33%. PMID:25258730

  6. In-frame mutations in exon 1 of SKI cause dominant Shprintzen-Goldberg syndrome.

    PubMed

    Carmignac, Virginie; Thevenon, Julien; Adès, Lesley; Callewaert, Bert; Julia, Sophie; Thauvin-Robinet, Christel; Gueneau, Lucie; Courcet, Jean-Benoit; Lopez, Estelle; Holman, Katherine; Renard, Marjolijn; Plauchu, Henri; Plessis, Ghislaine; De Backer, Julie; Child, Anne; Arno, Gavin; Duplomb, Laurence; Callier, Patrick; Aral, Bernard; Vabres, Pierre; Gigot, Nadège; Arbustini, Eloisa; Grasso, Maurizia; Robinson, Peter N; Goizet, Cyril; Baumann, Clarisse; Di Rocco, Maja; Sanchez Del Pozo, Jaime; Huet, Frédéric; Jondeau, Guillaume; Collod-Beroud, Gwenaëlle; Beroud, Christophe; Amiel, Jeanne; Cormier-Daire, Valérie; Rivière, Jean-Baptiste; Boileau, Catherine; De Paepe, Anne; Faivre, Laurence

    2012-11-02

    Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-β signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-β-signaling pathway. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  7. Budding yeast mms4 is epistatic with rad52 and the function of Mms4 can be replaced by a bacterial Holliday junction resolvase.

    PubMed

    Odagiri, Nao; Seki, Masayuki; Onoda, Fumitoshi; Yoshimura, Akari; Watanabe, Sei; Enomoto, Takemi

    2003-03-01

    MMS4 of Saccharomyces cerevisiae was originally identified as the gene responsible for one of the collection of methyl methanesulfonate (MMS)-sensitive mutants, mms4. Recently it was identified as a synthetic lethal gene with an SGS1 mutation. Epistatic analyses revealed that MMS4 is involved in a pathway leading to homologous recombination requiring Rad52 or in the recombination itself, in which SGS1 is also involved. MMS sensitivity of mms4 but not sgs1, was suppressed by introducing a bacterial Holliday junction (HJ) resolvase, RusA. The frequencies of spontaneously occurring unequal sister chromatid recombination (SCR) and loss of marker in the rDNA in haploid mms4 cells and interchromosomal recombination between heteroalleles in diploid mms4 cells were essentially the same as those of wild-type cells. Although UV- and MMS-induced interchromosomal recombination was defective in sgs1 diploid cells, hyper-induction of interchromosomal recombination was observed in diploid mms4 cells, indicating that the function of Mms4 is dispensable for this type of recombination.

  8. Accounting for aquifer heterogeneity from geological data to management tools.

    PubMed

    Blouin, Martin; Martel, Richard; Gloaguen, Erwan

    2013-01-01

    A nested workflow of multiple-point geostatistics (MPG) and sequential Gaussian simulation (SGS) was tested on a study area of 6 km(2) located about 20 km northwest of Quebec City, Canada. In order to assess its geological and hydrogeological parameter heterogeneity and to provide tools to evaluate uncertainties in aquifer management, direct and indirect field measurements are used as inputs in the geostatistical simulations to reproduce large and small-scale heterogeneities. To do so, the lithological information is first associated to equivalent hydrogeological facies (hydrofacies) according to hydraulic properties measured at several wells. Then, heterogeneous hydrofacies (HF) realizations are generated using a prior geological model as training image (TI) with the MPG algorithm. The hydraulic conductivity (K) heterogeneity modeling within each HF is finally computed using SGS algorithm. Different K models are integrated in a finite-element hydrogeological model to calculate multiple transport simulations. Different scenarios exhibit variations in mass transport path and dispersion associated with the large- and small-scale heterogeneity respectively. Three-dimensional maps showing the probability of overpassing different thresholds are presented as examples of management tools. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  9. Effectiveness of serious games and impact of design elements on engagement and educational outcomes in healthcare professionals and students: a systematic review and meta-analysis protocol.

    PubMed

    Maheu-Cadotte, Marc-André; Cossette, Sylvie; Dubé, Véronique; Fontaine, Guillaume; Mailhot, Tanya; Lavoie, Patrick; Cournoyer, Alexis; Balli, Fabio; Mathieu-Dupuis, Gabrielle

    2018-03-16

    Serious games (SGs) are interactive and entertaining digital software with an educational purpose. They engage the learner by proposing challenges and through various design elements (DEs; eg, points, difficulty adaptation, story). Recent reviews suggest the effectiveness of SGs in healthcare professionals' and students' education is mixed. This could be explained by the variability in their DEs, which has been shown to be highly variable across studies. The aim of this systematic review is to identify, appraise and synthesise the best available evidence regarding the effectiveness of SGs and the impact of DEs on engagement and educational outcomes of healthcare professionals and students. A systematic search of the literature will be conducted using a combination of medical subject headings terms and keywords in Cumulative Index of Nursing and Allied Health, Embase, Education Resources Information Center, PsycInFO, PubMed and Web of Science. Studies assessing SGs on engagement and educational outcomes will be included. Two independent reviewers will conduct the screening as well as the data extraction process. The risk of bias of included studies will also be assessed by two reviewers using the Effective Practice and Organisation of Care criteria. Data regarding DEs in SGs will first be synthesised qualitatively. A meta-analysis will then be performed, if the data allow it. Finally, the quality of the evidence regarding the effectiveness of SGs on each outcome will be assessed using the Grading of Recommendations Assessment, Development and Evaluation approach. As this systematic review only uses already collected data, no Institutional Review Board approval is required. Its results will be submitted in a peer-reviewed journal by the end of 2018. CRD42017077424. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Salivary gland function 5 years after radioactive iodine ablation in patients with differentiated thyroid cancer: direct comparison of pre- and postablation scintigraphies and their relation to xerostomia symptoms.

    PubMed

    Jeong, Shin Young; Kim, Hae Won; Lee, Sang-Woo; Ahn, Byeong-Cheol; Lee, Jaetae

    2013-05-01

    Chronic sialadenitis is one of the most frequent chronic complications after radioactive iodine (RAI) therapy for thyroid cancer. To evaluate the long-term effects of RAI ablation on salivary gland function, we investigated scintigraphic changes in salivary glands by direct comparison of two salivary gland scintigraphies (SGSs) taken before and at 5 years after an RAI ablation. SGS was performed just before RAI ablation (pre-SGS) and ∼5 years after RAI ablation (F/U SGS) in 213 subjects who underwent thyroidectomy for thyroid cancer. The uptake score (U score) was graded, and the ejection fraction (EF) was quantified for the parotid and submandibular glands at pre-SGS and F/U SGS. Changes in salivary gland function were graded as mild, moderate, or severe according to the differences in U score and EF between the two SGSs. Xerostomia was assessed and compared with the SGS findings. Worsening of the U score was observed in 182 of 852 salivary glands (total: 21.3%; mild: 4.2%, moderate: 7.4%, severe: 9.7%), and 47.4% of the patients had a worsening U score for at least one of four salivary glands. A decrease in EF was observed in 173 of 852 salivary glands (total: 20.3%; mild: 5.4%, moderate: 6.8%, severe: 8.1%), and 43.7% of the patients experienced a decrease in the EF of at least one of the four salivary glands. Bilateral parotid gland dysfunction was the most commonly observed condition. Thirty-five (16.4%) patients complained of xerostomia at 5 years after RAI ablation. Scintigraphic changes in salivary gland function and xerostomia were more common in patients receiving 5.55 GBq, compared with 3.7 GBq. Xerostomia was more common in patients with submandibular gland dysfunction than those with parotid gland dysfunction (68.8% vs. 33.3%, p<0.05). The number of dysfunctional salivary glands was correlated with xerostomia (p<0.01). About 20% of the salivary glands were dysfunctional on SGS 5 years after a single RAI ablation, especially in patients who received higher doses of RAI. While parotid glands are more susceptible to (131)I-related damage, xerostomia was more associated with submandibular gland dysfunction and the prevalence of dysfunctional salivary glands.

  11. Increased relatedness among the neighboring plants from seedling to adult stages in carnaúba wax palm.

    PubMed

    Vieira, F A; Sousa, R F; Fajardo, C G; Brandão, M M

    2016-12-19

    The objective of this study was to assess the spatial genetic structure (SGS) at different life stages (cohorts) in a remnant population (N = 101) of Copernicia prunifera in the semiarid region of northeastern Brazil. Using seven inter-simple sequence repeat molecular markers, we were able to analyze 93 loci with 100% polymorphism. Seedlings had the highest level of genetic diversity (H E = 0.411, H O = 0.599), followed by juveniles (H E = 0.394, H O = 0.579) and adults (H E = 0.267, H O = 0.427). Based on analysis of molecular variance, the majority of genetic variations were observed to occur within the life stages (93.42%) rather than between the life stages (6.58%). We found a recent reduction in the population size (bottleneck) based on the number of loci with heterozygosity excess for the two models used (infinite allele = 92 and stepwise = 91). All the life stages showed significant SGS, with positive and significant kinship values. Sp values were 0.040 for seedlings, 0.093 for juveniles, 0.156 for adults, and 0.053 for the total population. We found an increase in SGS from the seedling to adult stages, indicating that the plants were from related adult progenitors. Data from this study can be used in designing effective management and conservation strategies for the species.

  12. Clonal growth and fine-scale genetic structure in tanoak (Notholithocarpus densiflorus: Fagaceae)

    Treesearch

    Richard S. Dodd; Wasima Mayer; Alejandro Nettel; Zara Afzal-Rafii

    2013-01-01

    The combination of sprouting and reproduction by seed can have important consequences on fine-scale spatial distribution of genetic structure (SGS). SGS is an important consideration for species’ restoration because it determines the minimum distance among seed trees to maximize genetic diversity while not prejudicing locally adapted genotypes. Local environmental...

  13. Geo-spatial analysis of the temporal trends of kharif crop phenology metrics over India and its relationships with rainfall parameters.

    PubMed

    Chakraborty, Abhishek; Seshasai, M V R; Dadhwal, V K

    2014-07-01

    The Global Inventory Modeling and Mapping Studies bimonthly Normalized Difference Vegetation Index (NDVI) data of 8 × 8 km spatial resolution for the period of 1982-2006 were analyzed to detect the trends of crop phenology metrics (start of the growing season (SGS), seasonal NDVI amplitude (AMP), seasonally integrated NDVI (SiNDVI)) during kharif season (June to October) and their relationships with the amount of rainfall and the number of rainy days over Indian subcontinent. Direction and magnitude of trends were analyzed at pixel level using the Mann-Kendall test and further assessed at meteorological subdivision level using field significance test (α = 0.1). Significant pre-occurrence of the SGS was observed over northern (Punjab, Haryana) and central (Marathwada, Vidarbha and Madhya Maharashtra) parts, whereas delay was found over southern (Rayalaseema, Coastal Andhra Pradesh) and eastern (Bihar, Gangetic West Bengal and Sub-Himalayan West Bengal) parts of India. North, west, and central India showed significant increasing trends of SiNDVI, corroborating the kharif food grain production performance during the time frame. Significant temporal correlation (α = 0.1) between the rainfall/number of rainy days and crop phenology metrics was observed over the rainfed region of India. About 35-40 % of the study area showed significant correlation between the SGS and the rainfall/number of rainy days during June to August. June month rainfall/number of rainy days was found to be the most sensitive to the SGS. The amount of rainfall and the number of rainy days during monsoon were found to have significant influence over the SiNDVI in 24-30 % of the study area. The crop phenology metrics had significant correlation with the number of rainy days over the larger areas than that of the rainfall amount.

  14. Solar Spectral Irradiance Variability of Some Chromospheric Emission Lines Through the Solar Activity Cycles 21-23

    NASA Astrophysics Data System (ADS)

    Göker, Ü. D.; Gigolashvili, M. Sh.; Kapanadze, N.

    2017-06-01

    A study of variations of solar spectral irradiance (SSI) in the wavelength ranges 121.5 nm-300.5 nm for the period 1981-2009 is presented. We used various data for ultraviolet (UV) spectral lines and international sunspot number (ISSN) from interactive data centers such as SME (NSSDC), UARS (GDAAC), SORCE (LISIRD) and SIDC, respectively. We reduced these data by using the MATLAB software package. In this respect, we revealed negative correlations of intensities of UV (289.5 nm-300.5 nm) spectral lines originating in the solar chromosphere with the ISSN index during the unusually prolonged minimum between the solar activity cycles (SACs) 23 and 24. We also compared our results with the variations of solar activity indices obtained by the ground-based telescopes. Therefore, we found that plage regions decrease while facular areas are increasing in SAC 23. However, the decrease in plage regions is seen in small sunspot groups (SGs), contrary to this, these regions in large SGs are comparable to previous SACs or even larger as is also seen in facular areas. Nevertheless, negative correlations between ISSN and SSI data indicate that these variations are in close connection with the classes of sunspots/SGs, faculae and plage regions. Finally, we applied the time series analysis of spectral lines corresponding to the wavelengths 121.5 nm-300.5 nm and made comparisons with the ISSN data. We found an unexpected increase in the 298.5 nm line for the Fe II ion. The variability of Fe II ion 298.5 nm line is in close connection with the facular areas and plage regions, and the sizes of these solar surface indices play an important role for the SSI variability, as well. So, we compared the connection between the sizes of faculae and plage regions, sunspots/SGs, chemical elements and SSI variability. Our future work will be the theoretical study of this connection and developing of a corresponding model.

  15. Effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia rebaudiana for Steviol glycoside production.

    PubMed

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2014-03-01

    Steviol glycosides are natural non-caloric sweeteners which are extracted from the leaves of Stevia rebaudiana plant. Present study deals the effect of salts (NaCl and Na2CO3) on callus and suspension culture of Stevia plant for steviol glycoside (SGs) production. Yellow-green and compact calli obtained from in vitro raised Stevia leaves sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of NaCl (0.05-0.20%) and Na2CO3 (0.0125-0.10%) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension biomass cultured on salts showed less growth as well as browning of medium when compared with control. Quantification of SGs content in callus culture (collected on 15th day) and suspension cultures (collected at 10th and 15th days) treated with and without salts were analyzed by HPLC. It was found that abiotic stress induced by the salts increased the concentration of SGs significantly. In callus, the quantity of SGs got increased from 0.27 (control) to 1.43 and 1.57% with 0.10% NaCl, and 0.025% Na2CO3, respectively. However, in case of suspension culture, the same concentrations of NaCl and Na2CO3 enhanced the SGs content from 1.36 (control) to 2.61 and 5.14%, respectively, on the 10th day.

  16. Plant Ontogeny, Spatial Distance, and Soil Type Influence Patterns of Relatedness in a Common Amazonian Tree

    PubMed Central

    Barbosa, Carlos Eduardo A.; Misiewicz, Tracy M.; Fine, Paul V. A.; Costa, Flávia R. C.

    2013-01-01

    The formation of spatial genetic structure (SGS) may originate from different patterns of seed deposition in the landscape, and is mostly determined by seed dispersal limitation. After dispersal, mechanisms such as filtering by environmental factors or attack by herbivores/pathogens throughout plant development stages, and potentially either disrupt or intensify SGS patterns. We investigated how the genotype of Protium subserratum (Burseraceae), a common tree species in the Ducke Reserve, Brazil, is distributed across the landscape. We used seven microsatellite markers to assess the SGS among plants at different life stages and in different environments. By quantifying the patterns of relatedness among plants of different sizes, we inferred the ontogenetic stage in which SGS changes occurred, and compared these effects across soil types. Relatedness among seedlings decreased when distance between seedlings increased, especially for the youngest seedlings. However, this trend was not continued by older plants, as relatedness values were higher among neighboring individuals of the juvenile and adult size class. Contrasting relatedness patterns between seedlings and larger individuals suggests a trade-off between the negative effects of being near closely-related adults (e.g. due to herbivore and pathogen attack) and the advantage of being in a site favorable to establishment. We also found that soil texture strongly influenced density-dependence patterns, as young seedlings in clay soils were more related to each other than were seedlings in bottomland sandy soils, suggesting that the mechanisms that create and maintain patterns of SGS within a population may interact with environmental heterogeneity. PMID:23667502

  17. Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART.

    PubMed

    Wiegand, Ann; Spindler, Jonathan; Hong, Feiyu F; Shao, Wei; Cyktor, Joshua C; Cillo, Anthony R; Halvas, Elias K; Coffin, John M; Mellors, John W; Kearney, Mary F

    2017-05-02

    Little is known about the fraction of human immunodeficiency virus type 1 (HIV-1) proviruses that express unspliced viral RNA in vivo or about the levels of HIV RNA expression within single infected cells. We developed a sensitive cell-associated HIV RNA and DNA single-genome sequencing (CARD-SGS) method to investigate fractional proviral expression of HIV RNA (1.3-kb fragment of p6, protease, and reverse transcriptase) and the levels of HIV RNA in single HIV-infected cells from blood samples obtained from individuals with viremia or individuals on long-term suppressive antiretroviral therapy (ART). Spiking experiments show that the CARD-SGS method can detect a single cell expressing HIV RNA. Applying CARD-SGS to blood mononuclear cells in six samples from four HIV-infected donors (one with viremia and not on ART and three with viremia suppressed on ART) revealed that an average of 7% of proviruses (range: 2-18%) expressed HIV RNA. Levels of expression varied from one to 62 HIV RNA molecules per cell (median of 1). CARD-SGS also revealed the frequent expression of identical HIV RNA sequences across multiple single cells and across multiple time points in donors on suppressive ART consistent with constitutive expression of HIV RNA in infected cell clones. Defective proviruses were found to express HIV RNA at levels similar to those proviruses that had no obvious defects. CARD-SGS is a useful tool to characterize fractional proviral expression in single infected cells that persist despite ART and to assess the impact of experimental interventions on proviral populations and their expression.

  18. Grid Resolution Effects on LES of a Piloted Methane-Air Flame

    DTIC Science & Technology

    2009-05-20

    respectively. In the LES momen- tum equation , Eq.(3), the Smagorinsky model is used to obtain the deviatoric part of the unclosed SGS stress τi j... accurately predicted from integra- tion of their LES evolution equations ; and (ii), the flamelet parametrization should adequately approximate the... effect of the complex small-scale turbulence/chemistry interactions is modeled in an affordable way by a combustion model. A question of how a particular

  19. Nootropic agents stimulate neurogenesis. Brain Cells, Inc.: WO2007104035.

    PubMed

    Taupin, Philippe

    2009-05-01

    The application is in the field of adult neurogenesis, neural stem cells and cellular therapy. It aims to characterize the activity of nootropic agents on adult neurogenesis in vitro. Nootropic agents are substances improving cognitive and mental abilities. AMPA (alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate) and nootropic agents were assessed for the potential to differentiate human neural progenitor and stem cells into neuronal cells in vitro. They were also tested for their behavioural activity on the novel object recognition task. AMPA, piracetam, FK-960 and SGS-111 induce and stimulate neuronal differentiation of human-derived neural progenitor and stem cells. SGS-111 increases the number of visits to the novel object. The neurogenic activity of piracetam and SGS-111 is mediated through AMPA receptor. The neurogenic activity of SGS-111 may contribute and play a role in its nootropic activity. These results suggest that nootropic agents may elicit some of their effects through their neurogenic activity. The application claims the use of nootropic agents for their neurogenic activity and for the treatment of neurological diseases, disorders and injuries, by stimulating or increasing the generation of neuronal cells in the adult brain.

  20. Tangeretin sensitizes SGS1-deficient cells by inducing DNA damage.

    PubMed

    Chong, Shin Yen; Wu, Meng-Ying; Lo, Yi-Chen

    2013-07-03

    Tangeretin, a polymethoxyflavone found in citrus peel, has been shown to have antiatherogenic, anti-inflammatory, and anticarcinogenic properties. However, the underlying target pathways are not fully characterized. We investigated the tangeretin sensitivity of yeast (Saccharomyces cerevisiae) mutants for DNA damage response or repair pathways. We found that tangeretin treatment significantly reduced (p < 0.05) survival rate, induced preferential G1 phase accumulation, and elevated the DNA double-strand break (DSB) signal γH2A in DNA repair-defective sgs1Δ cells, but had no obvious effects on wild-type cells or mutants of the DNA damage checkpoint (including tel1Δ, sml1Δ mec1Δ, sml1Δ mec1Δ tel1Δ, and rad9Δ mutants). Additionally, microarray data indicated that tangeretin treatment up-regulates genes involved in nutritional processing and down-regulates genes related to RNA processing in sgs1Δ mutants. These results suggest tangeretin may sensitize SGS1-deficient cells by increasing a marker of DNA damage and by inducing G1 arrest and possibly metabolic stress. Thus, tangeretin may be suitable for chemosensitization of cancer cells lacking DSB-repair ability.

  1. Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites.

    PubMed

    Papadopulos, Andreas; Martin, Sally; Tomatis, Vanesa M; Gormal, Rachel S; Meunier, Frederic A

    2013-12-04

    Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites.

  2. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    ERIC Educational Resources Information Center

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  3. Large Eddy Simulation of Entropy Generation in a Turbulent Mixing Layer

    NASA Astrophysics Data System (ADS)

    Sheikhi, Reza H.; Safari, Mehdi; Hadi, Fatemeh

    2013-11-01

    Entropy transport equation is considered in large eddy simulation (LES) of turbulent flows. The irreversible entropy generation in this equation provides a more general description of subgrid scale (SGS) dissipation due to heat conduction, mass diffusion and viscosity effects. A new methodology is developed, termed the entropy filtered density function (En-FDF), to account for all individual entropy generation effects in turbulent flows. The En-FDF represents the joint probability density function of entropy, frequency, velocity and scalar fields within the SGS. An exact transport equation is developed for the En-FDF, which is modeled by a system of stochastic differential equations, incorporating the second law of thermodynamics. The modeled En-FDF transport equation is solved by a Lagrangian Monte Carlo method. The methodology is employed to simulate a turbulent mixing layer involving transport of passive scalars and entropy. Various modes of entropy generation are obtained from the En-FDF and analyzed. Predictions are assessed against data generated by direct numerical simulation (DNS). The En-FDF predictions are in good agreements with the DNS data.

  4. Comparison of AGE and Spectral Methods for the Simulation of Far-Wakes

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Rogers, M. M.; Kega, Dennis (Technical Monitor)

    1999-01-01

    Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This report demonstrates that a good compromise is possible with the Advected Grid Explicit (AGE) method. AGE has proven to be both efficient and accurate for simulating turbulent free-shear flows, including planar mixing layers and planar jets. Its efficiency results from its localized fully explicit finite difference formulation (Bisset 1998a,b) that is very straightforward to compute, outweighing the need for a fairly small timestep. Also, most of the successful simulations were slightly under-resolved, and therefore they were, in effect, large-eddy simulations (LES) without a sub-grid-scale (SGS) model, rather than direct numerical simulations (DNS). The principle is that the role of the smallest scales of turbulent motion (when the Reynolds number is not too low) is to dissipate turbulent energy, and therefore they do not have to be simulated when the numerical method is inherently dissipative at its resolution limits. Such simulations are termed 'auto-LES' (LES with automatic SGS modeling) in this report.

  5. Large-eddy simulation of nitrogen injection at trans- and supercritical conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Müller, Hagen; Pfitzner, Michael; Niedermeier, Christoph A.

    2016-01-15

    Large-eddy simulations (LESs) of cryogenic nitrogen injection into a warm environment at supercritical pressure are performed and real-gas thermodynamics models and subgrid-scale (SGS) turbulence models are evaluated. The comparison of different SGS models — the Smagorinsky model, the Vreman model, and the adaptive local deconvolution method — shows that the representation of turbulence on the resolved scales has a notable effect on the location of jet break-up, whereas the particular modeling of unresolved scales is less important for the overall mean flow field evolution. More important are the models for the fluid’s thermodynamic state. The injected fluid is either inmore » a supercritical or in a transcritical state and undergoes a pseudo-boiling process during mixing. Such flows typically exhibit strong density gradients that delay the instability growth and can lead to a redistribution of turbulence kinetic energy from the radial to the axial flow direction. We evaluate novel volume-translation methods on the basis of the cubic Peng-Robinson equation of state in the framework of LES. At small extra computational cost, their application considerably improves the simulation results compared to the standard formulation. Furthermore, we found that the choice of inflow temperature is crucial for the reproduction of the experimental results and that heat addition within the injector can affect the mean flow field in comparison to results with an adiabatic injector.« less

  6. Between-Site Differences in the Scale of Dispersal and Gene Flow in Red Oak

    PubMed Central

    Moran, Emily V.; Clark, James S.

    2012-01-01

    Background Nut-bearing trees, including oaks (Quercus spp.), are considered to be highly dispersal limited, leading to concerns about their ability to colonize new sites or migrate in response to climate change. However, estimating seed dispersal is challenging in species that are secondarily dispersed by animals, and differences in disperser abundance or behavior could lead to large spatio-temporal variation in dispersal ability. Parentage and dispersal analyses combining genetic and ecological data provide accurate estimates of current dispersal, while spatial genetic structure (SGS) can shed light on past patterns of dispersal and establishment. Methodology and Principal Findings In this study, we estimate seed and pollen dispersal and parentage for two mixed-species red oak populations using a hierarchical Bayesian approach. We compare these results to those of a genetic ML parentage model. We also test whether observed patterns of SGS in three size cohorts are consistent with known site history and current dispersal patterns. We find that, while pollen dispersal is extensive at both sites, the scale of seed dispersal differs substantially. Parentage results differ between models due to additional data included in Bayesian model and differing genotyping error assumptions, but both indicate between-site dispersal differences. Patterns of SGS in large adults, small adults, and seedlings are consistent with known site history (farmed vs. selectively harvested), and with long-term differences in seed dispersal. This difference is consistent with predator/disperser satiation due to higher acorn production at the low-dispersal site. While this site-to-site variation results in substantial differences in asymptotic spread rates, dispersal for both sites is substantially lower than required to track latitudinal temperature shifts. Conclusions Animal-dispersed trees can exhibit considerable spatial variation in seed dispersal, although patterns may be surprisingly constant over time. However, even under favorable conditions, migration in heavy-seeded species is likely to lag contemporary climate change. PMID:22563504

  7. Syntaxin-4 mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose-stimulated insulin secretion in human pancreatic beta cells.

    PubMed

    Xie, Li; Zhu, Dan; Dolai, Subhankar; Liang, Tao; Qin, Tairan; Kang, Youhou; Xie, Huanli; Huang, Ya-Chi; Gaisano, Herbert Y

    2015-06-01

    Of the four exocytotic syntaxins (Syns), much is now known about the role of Syn-1A (pre-docked secretory granules [SGs]) and Syn-3 (newcomer SGs) in insulin exocytosis. Some work was reported on Syn-4's role in biphasic glucose-stimulated insulin secretion (GSIS), but its precise role in insulin SG exocytosis remains unclear. In this paper we examine this role in human beta cells. Endogenous function of Syn-4 in human islets was assessed by knocking down its expression with lentiviral single hairpin RNA (lenti-shRNA)-RFP. Biphasic GSIS was determined by islet perifusion assay. Single-cell analysis of exocytosis of red fluorescent protein (RFP)-positive beta cells (exhibiting near-total depletion of Syn-4) was by patch clamp capacitance measurements (Cm) and total internal reflection fluorescence microscopy (TIRFM), the latter to further assess single SG behaviour. Co-immunoprecipitations were conducted on INS-1 cells to assess exocytotic complexes. Syn-4 knockdown (KD) of 77% in human islets caused a concomitant reduction in cognate Munc18c expression (46%) without affecting expression of other exocytotic proteins; this resulted in reduction of GSIS in the first phase (by 42%) and the second phase (by 40%). Cm of RFP-tagged Syn-4-KD beta cells showed severe inhibition in the readily releasable pool (by 71%) and mobilisation from reserve pools (by 63%). TIRFM showed that Syn-4-KD-induced inhibition of first-phase GSIS was attributed to reduction in exocytosis of both pre-docked and newcomer SGs (which undergo minimal residence or docking time at the plasma membrane before fusion). Second-phase inhibition was attributed to reduction in newcomer SGs. Stx-4 co-immunoprecipitated Munc18c, VAMP2 and VAMP8, suggesting that these exocytotic complexes may be involved in exocytosis of pre-docked and newcomer SGs. Syn-4 is involved in distinct molecular machineries that influence exocytosis of both pre-docked and newcomer SGs in a manner functionally redundant to Syn-1A and Syn-3, respectively; this underlies Syn-4's role in mediating portions of first-phase and second-phase GSIS.

  8. Using Recombinant Proteins from Lutzomyia longipalpis Saliva to Estimate Human Vector Exposure in Visceral Leishmaniasis Endemic Areas

    PubMed Central

    Souza, Ana Paula; Andrade, Bruno Bezerril; Aquino, Dorlene; Entringer, Petter; Miranda, José Carlos; Alcantara, Ruan; Ruiz, Daniel; Soto, Manuel; Teixeira, Clarissa R.; Valenzuela, Jesus G.; de Oliveira, Camila Indiani; Brodskyn, Cláudia Ida; Barral-Netto, Manoel; Barral, Aldina

    2010-01-01

    Background Leishmania is transmitted by female sand flies and deposited together with saliva, which contains a vast repertoire of pharmacologically active molecules that contribute to the establishment of the infection. The exposure to vector saliva induces an immune response against its components that can be used as a marker of exposure to the vector. Performing large-scale serological studies to detect vector exposure has been limited by the difficulty in obtaining sand fly saliva. Here, we validate the use of two sand fly salivary recombinant proteins as markers for vector exposure. Methodology/principal findings ELISA was used to screen human sera, collected in an area endemic for visceral leishmaniasis, against the salivary gland sonicate (SGS) or two recombinant proteins (rLJM11 and rLJM17) from Lutzomyia longipalpis saliva. Antibody levels before and after SGS seroconversion (n = 26) were compared using the Wilcoxon signed rank paired test. Human sera from an area endemic for VL which recognize Lu. longipalpis saliva in ELISA also recognize a combination of rLJM17 and rLJM11. We then extended the analysis to include 40 sera from individuals who were seropositive and 40 seronegative to Lu. longipalpis SGS. Each recombinant protein was able to detect anti-saliva seroconversion, whereas the two proteins combined increased the detection significantly. Additionally, we evaluated the specificity of the anti-Lu. longipalpis response by testing 40 sera positive to Lutzomyia intermedia SGS, and very limited (2/40) cross-reactivity was observed. Receiver-operator characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for the prediction of anti-SGS positivity. These ROC curves evidenced the superior performance of rLJM17+rLJM11. Predicted threshold levels were confirmed for rLJM17+rLJM11 using a large panel of 1,077 serum samples. Conclusion Our results show the possibility of substituting Lu. longipalpis SGS for two recombinant proteins, LJM17 and LJM11, in order to probe for vector exposure in individuals residing in endemic areas. PMID:20351785

  9. On the Effect of an Anisotropy-Resolving Subgrid-Scale Model on Turbulent Vortex Motions

    DTIC Science & Technology

    2014-09-19

    sense, the model by Abe (2013) can be named the ”stabilized mixed model” ( SMM , hereafter). Furthermore, considering the basic concept of the mixed model...with SMM . Further investigations of this ex- tended anisotropic SGS model will be necessary in fu- ture studies. 3 Computational Conditions Although the...basic capability of the SMM was val- idated by application to some test cases (Abe, 2013; Abe 2014), there still remain several points to be fur

  10. Large-Eddy Simulations of Atmospheric Flows Over Complex Terrain Using the Immersed-Boundary Method in the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Ma, Yulong; Liu, Heping

    2017-12-01

    Atmospheric flow over complex terrain, particularly recirculation flows, greatly influences wind-turbine siting, forest-fire behaviour, and trace-gas and pollutant dispersion. However, there is a large uncertainty in the simulation of flow over complex topography, which is attributable to the type of turbulence model, the subgrid-scale (SGS) turbulence parametrization, terrain-following coordinates, and numerical errors in finite-difference methods. Here, we upgrade the large-eddy simulation module within the Weather Research and Forecasting model by incorporating the immersed-boundary method into the module to improve simulations of the flow and recirculation over complex terrain. Simulations over the Bolund Hill indicate improved mean absolute speed-up errors with respect to previous studies, as well an improved simulation of the recirculation zone behind the escarpment of the hill. With regard to the SGS parametrization, the Lagrangian-averaged scale-dependent Smagorinsky model performs better than the classic Smagorinsky model in reproducing both velocity and turbulent kinetic energy. A finer grid resolution also improves the strength of the recirculation in flow simulations, with a higher horizontal grid resolution improving simulations just behind the escarpment, and a higher vertical grid resolution improving results on the lee side of the hill. Our modelling approach has broad applications for the simulation of atmospheric flows over complex topography.

  11. Comparison of Appendectomy Outcomes Between Senior General Surgeons and General Surgery Residents.

    PubMed

    Siam, Baha; Al-Kurd, Abbas; Simanovsky, Natalia; Awesat, Haitham; Cohn, Yahav; Helou, Brigitte; Eid, Ahmed; Mazeh, Haggi

    2017-07-01

    In some centers, the presence of a senior general surgeon (SGS) is obligatory in every procedure, including appendectomy, while in others it is not. There is a relative paucity in the literature of reports comparing the outcomes of appendectomies performed by unsupervised general surgery residents (GSRs) with those performed in the presence of an SGS. To compare the outcomes of appendectomies performed by SGSs with those performed by GSRs. A retrospective analysis was performed of all patients 16 years or older operated on for assumed acute appendicitis between January 1, 2008, and December 31, 2015. The cohort study compared appendectomies performed by SGSs and GSRs in the general surgical department of a teaching hospital. The primary outcome measured was the postoperative early and late complication rates. Secondary outcomes included time from emergency department to operating room, length of surgery, surgical technique (open or laparoscopic), use of laparoscopic staplers, and overall duration of postoperative antibiotic treatment. Among 1649 appendectomy procedures (mean [SD] patient age, 33.7 [13.3] years; 612 female [37.1%]), 1101 were performed by SGSs and 548 by GSRs. Analysis demonstrated no significant difference between the SGS group and the GSR group in overall postoperative early and late complication rates, the use of imaging techniques, time from emergency department to operating room, percentage of complicated appendicitis, postoperative length of hospital stay, and overall duration of postoperative antibiotic treatment. However, length of surgery was significantly shorter in the SGS group than in the GSR group (mean [SD], 39.9 [20.9] vs 48.6 [20.2] minutes; P < .001). This study demonstrates that unsupervised surgical residents may safely perform appendectomies, with no difference in postoperative early and late complication rates compared with those performed in the presence of an SGS.

  12. Paracrine Effects of Bone Marrow Soup Restore Organ Function, Regeneration, and Repair in Salivary Glands Damaged by Irradiation

    PubMed Central

    Tran, Simon D.; Liu, Younan; Xia, Dengsheng; Maria, Ola M.; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan

    2013-01-01

    Background There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. Methods To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as “BM Soup”) injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup’s donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. Results BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. Conclusion BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs. PMID:23637870

  13. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation.

    PubMed

    Tran, Simon D; Liu, Younan; Xia, Dengsheng; Maria, Ola M; Khalili, Saeed; Wang, Renee Wan-Jou; Quan, Vu-Hung; Hu, Shen; Seuntjens, Jan

    2013-01-01

    There are reports that bone marrow cell (BM) transplants repaired irradiated salivary glands (SGs) and re-established saliva secretion. However, the mechanisms of action behind these reports have not been elucidated. To test if a paracrine mechanism was the main effect behind this reported improvement in salivary organ function, whole BM cells were lysed and its soluble intracellular contents (termed as "BM Soup") injected into mice with irradiation-injured SGs. The hypothesis was that BM Soup would protect salivary cells, increase tissue neovascularization, function, and regeneration. Two minor aims were also tested a) comparing two routes of delivering BM Soup, intravenous (I.V.) versus intra-glandular injections, and b) comparing the age of the BM Soup's donors. The treatment-comparison group consisted of irradiated mice receiving injections of living whole BM cells. Control mice received irradiation and injections of saline or sham-irradiation. All mice were followed for 8 weeks post-irradiation. BM Soup restored salivary flow rates to normal levels, protected salivary acinar, ductal, myoepithelial, and progenitor cells, increased cell proliferation and blood vessels, and up-regulated expression of tissue remodeling/repair/regenerative genes (MMP2, CyclinD1, BMP7, EGF, NGF). BM Soup was as an efficient therapeutic agent as injections of live BM cells. Both intra-glandular or I.V. injections of BM Soup, and from both young and older mouse donors were as effective in repairing irradiated SGs. The intra-glandular route reduced injection frequency/dosage by four-fold. BM Soup, which contains only the cell by-products, can be advantageously used to repair irradiation-damaged SGs rather than transplanting whole live BM cells which carry the risk of differentiating into unwanted/tumorigenic cell types in SGs.

  14. Heteroduplex DNA Position Defines the Roles of the Sgs1, Srs2, and Mph1 Helicases in Promoting Distinct Recombination Outcomes

    PubMed Central

    Mitchel, Katrina; Lehner, Kevin; Jinks-Robertson, Sue

    2013-01-01

    The contributions of the Sgs1, Mph1, and Srs2 DNA helicases during mitotic double-strand break (DSB) repair in yeast were investigated using a gap-repair assay. A diverged chromosomal substrate was used as a repair template for the gapped plasmid, allowing mismatch-containing heteroduplex DNA (hDNA) formed during recombination to be monitored. Overall DSB repair efficiencies and the proportions of crossovers (COs) versus noncrossovers (NCOs) were determined in wild-type and helicase-defective strains, allowing the efficiency of CO and NCO production in each background to be calculated. In addition, the products of individual NCO events were sequenced to determine the location of hDNA. Because hDNA position is expected to differ depending on whether a NCO is produced by synthesis-dependent-strand-annealing (SDSA) or through a Holliday junction (HJ)–containing intermediate, its position allows the underlying molecular mechanism to be inferred. Results demonstrate that each helicase reduces the proportion of CO recombinants, but that each does so in a fundamentally different way. Mph1 does not affect the overall efficiency of gap repair, and its loss alters the CO-NCO by promoting SDSA at the expense of HJ–containing intermediates. By contrast, Sgs1 and Srs2 are each required for efficient gap repair, strongly promoting NCO formation and having little effect on CO efficiency. hDNA analyses suggest that all three helicases promote SDSA, and that Sgs1 and Srs2 additionally dismantle HJ–containing intermediates. The hDNA data are consistent with the proposed role of Sgs1 in the dissolution of double HJs, and we propose that Srs2 dismantles nicked HJs. PMID:23516370

  15. Single-cell analysis of HIV-1 transcriptional activity reveals expression of proviruses in expanded clones during ART

    PubMed Central

    Wiegand, Ann; Spindler, Jonathan; Hong, Feiyu F.; Shao, Wei; Cyktor, Joshua C.; Cillo, Anthony R.; Halvas, Elias K.; Coffin, John M.; Mellors, John W.; Kearney, Mary F.

    2017-01-01

    Little is known about the fraction of human immunodeficiency virus type 1 (HIV-1) proviruses that express unspliced viral RNA in vivo or about the levels of HIV RNA expression within single infected cells. We developed a sensitive cell-associated HIV RNA and DNA single-genome sequencing (CARD-SGS) method to investigate fractional proviral expression of HIV RNA (1.3-kb fragment of p6, protease, and reverse transcriptase) and the levels of HIV RNA in single HIV-infected cells from blood samples obtained from individuals with viremia or individuals on long-term suppressive antiretroviral therapy (ART). Spiking experiments show that the CARD-SGS method can detect a single cell expressing HIV RNA. Applying CARD-SGS to blood mononuclear cells in six samples from four HIV-infected donors (one with viremia and not on ART and three with viremia suppressed on ART) revealed that an average of 7% of proviruses (range: 2–18%) expressed HIV RNA. Levels of expression varied from one to 62 HIV RNA molecules per cell (median of 1). CARD-SGS also revealed the frequent expression of identical HIV RNA sequences across multiple single cells and across multiple time points in donors on suppressive ART consistent with constitutive expression of HIV RNA in infected cell clones. Defective proviruses were found to express HIV RNA at levels similar to those proviruses that had no obvious defects. CARD-SGS is a useful tool to characterize fractional proviral expression in single infected cells that persist despite ART and to assess the impact of experimental interventions on proviral populations and their expression. PMID:28416661

  16. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    Ulsig, Laura; Nichol, Caroline J.; Huemmrich, Karl F.; Landis, David R.; Middleton, Elizabeth M.; Lyapustin, Alexei I.; Mammarella, Ivan; Levula, Janne; Porcar-Castell, Albert

    2017-01-01

    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R (sup 2) equals 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R (sup 2) is greater than 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.

  17. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity

    USGS Publications Warehouse

    Hellgren, Olof; Atkinson, Carter T.; Bensch, Staffan; Albayrak, Tamer; Dimitrov, Dimitar; Ewen, John G.; Kim, Kyeong Soon; Lima, Marcos R.; Martin, Lynn; Palinauskas, Vaidas; Ricklefs, Robert; Sehgal, Ravinder N. M.; Gediminas, Valkiunas; Tsuda, Yoshio; Marzal, Alfonso

    2015-01-01

    Knowing the genetic variation that occurs in pathogen populations and how it is distributed across geographical areas is essential to understand parasite epidemiology, local patterns of virulence, and evolution of host-resistance. In addition, it is important to identify populations of pathogens that are evolutionarily independent and thus ‘free’ to adapt to hosts and environments. Here, we investigated genetic variation in the globally distributed, highly invasive avian malaria parasite Plasmodium relictum, which has several distinctive mitochondrial haplotyps (cyt b lineages, SGS1, GRW11 and GRW4). The phylogeography of P. relictum was accessed using the highly variable nuclear gene merozoite surface protein 1 (MSP1), a gene linked to the invasion biology of the parasite. We show that the lineage GRW4 is evolutionarily independent of GRW11 and SGS1 whereas GRW11 and SGS1 share MSP1 alleles and thus suggesting the presence of two distinct species (GRW4 versus SGS1 and GRW11). Further, there were significant differences in the global distribution of MSP1 alleles with differences between GRW4 alleles in the New and the Old World. For SGS1, a lineage formerly believed to have both tropical and temperate transmission, there were clear differences in MSP1 alleles transmitted in tropical Africa compared to the temperate regions of Europe and Asia. Further, we highlight the occurrence of multiple MSP1 alleles in GRW4 isolates from the Hawaiian Islands, where the parasite has contributed to declines and extinctions of endemic forest birds since it was introduced. This study stresses the importance of multiple independent loci for understanding patterns of transmission and evolutionary independence across avian malaria parasites.

  18. A Medicago truncatula rdr6 allele impairs transgene silencing and endogenous phased siRNA production but not development.

    PubMed

    Bustos-Sanmamed, Pilar; Hudik, Elodie; Laffont, Carole; Reynes, Christelle; Sallet, Erika; Wen, Jiangqi; Mysore, Kirankumar S; Camproux, Anne-Claude; Hartmann, Caroline; Gouzy, Jérome; Frugier, Florian; Crespi, Martin; Lelandais-Brière, Christine

    2014-12-01

    RNA-dependent RNA polymerase 6 (RDR6) and suppressor of gene silencing 3 (SGS3) act together in post-transcriptional transgene silencing mediated by small interfering RNAs (siRNAs) and in biogenesis of various endogenous siRNAs including the tasiARFs, known regulators of auxin responses and plant development. Legumes, the third major crop family worldwide, has been widely improved through transgenic approaches. Here, we isolated rdr6 and sgs3 mutants in the model legume Medicago truncatula. Two sgs3 and one rdr6 alleles led to strong developmental defects and impaired biogenesis of tasiARFs. In contrast, the rdr6.1 homozygous plants produced sufficient amounts of tasiARFs to ensure proper development. High throughput sequencing of small RNAs from this specific mutant identified 354 potential MtRDR6 substrates, for which siRNA production was significantly reduced in the mutant. Among them, we found a large variety of novel phased loci corresponding to protein-encoding genes or transposable elements. Interestingly, measurement of GFP expression revealed that post-transcriptional transgene silencing was reduced in rdr6.1 roots. Hence, this novel mis-sense mutation, affecting a highly conserved amino acid residue in plant RDR6s, may be an interesting tool both to analyse endogenous pha-siRNA functions and to improve transgene expression, at least in legume species. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. A GPU-accelerated implicit meshless method for compressible flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Le; Ma, Zhi-Hua; Chen, Hong-Quan; Cao, Cheng

    2018-05-01

    This paper develops a recently proposed GPU based two-dimensional explicit meshless method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit algorithm to further improve the computational efficiency. The capability of the original 2D meshless code is extended to deal with 3D complex compressible flow problems. To resolve the inherent data dependency of the standard LU-SGS method, which causes thread-racing conditions destabilizing numerical computation, a generic rainbow coloring method is presented and applied to organize the computational points into different groups by painting neighboring points with different colors. The original LU-SGS method is modified and parallelized accordingly to perform calculations in a color-by-color manner. The CUDA Fortran programming model is employed to develop the key kernel functions to apply boundary conditions, calculate time steps, evaluate residuals as well as advance and update the solution in the temporal space. A series of two- and three-dimensional test cases including compressible flows over single- and multi-element airfoils and a M6 wing are carried out to verify the developed code. The obtained solutions agree well with experimental data and other computational results reported in the literature. Detailed analysis on the performance of the developed code reveals that the developed CPU based implicit meshless method is at least four to eight times faster than its explicit counterpart. The computational efficiency of the implicit method could be further improved by ten to fifteen times on the GPU.

  20. Review of HIV Pre exposure prophylaxis (PrEP) and example of HIV PrEP Toolkit

    DTIC Science & Technology

    2017-08-28

    Research Division may pay for your basic journal publishing charges (to include costs for tables and black and white photos). We cannot pay for...USAF, BSC Director, Clinical Investigations & Research Support Warrior Medics - Mission Ready Patient Focused PROCESSING OF PROFESSIONAL MEDICAL...SGS O&M); SGS R&D: Tri-Service Nursing Research Program (TSNRP); Defense Medical Research & Development Program (DMRDP); NIH; Congressionally

  1. Massively parallel pyrosequencing of the mitochondrial genome with the 454 methodology in forensic genetics.

    PubMed

    Mikkelsen, Martin; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels

    2014-09-01

    of sequencing of whole mitochondrial genome, HV1 and HV2 DNA with the second generation system (SGS) Roche 454 GS Junior were compared with results of Sanger sequencing and SNP typing with SNaPshot single base extension detected with MALDI-TOF and capillary electrophoresis. We investigated the performance of the software analysis of the data, reproducibility, ability to sequence homopolymeric regions, detection of mixtures and heteroplasmy as well as the implications of the depth of coverage. We found full reproducibility between samples sequenced twice with SGS. We found close to full concordance between the mtDNA sequences of 26 samples obtained with (1) the 454 SGS method using a depth of coverage above 100 and (2) Sanger sequencing and SNP typing. The discrepancies were primarily observed in homopolymeric regions. The 454 SGS method was able to sequence 95% of the reads correctly in homopolymers up to 4 bases, and up to 6 bases could be sequenced with similar success if the results were carefully, visually inspected. The 454 technology was able to detect mixtures or heteroplasmy of approximately 10%. We detected previously unreported heteroplasmy in the GM9947A component of the NIST human mitochondrial DNA SRM-2392 standard reference material. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of second-generation sequencing of 19 dilated cardiomyopathy genes for clinical applications.

    PubMed

    Gowrisankar, Sivakumar; Lerner-Ellis, Jordan P; Cox, Stephanie; White, Emily T; Manion, Megan; LeVan, Kevin; Liu, Jonathan; Farwell, Lisa M; Iartchouk, Oleg; Rehm, Heidi L; Funke, Birgit H

    2010-11-01

    Medical sequencing for diseases with locus and allelic heterogeneities has been limited by the high cost and low throughput of traditional sequencing technologies. "Second-generation" sequencing (SGS) technologies allow the parallel processing of a large number of genes and, therefore, offer great promise for medical sequencing; however, their use in clinical laboratories is still in its infancy. Our laboratory offers clinical resequencing for dilated cardiomyopathy (DCM) using an array-based platform that interrogates 19 of more than 30 genes known to cause DCM. We explored both the feasibility and cost effectiveness of using PCR amplification followed by SGS technology for sequencing these 19 genes in a set of five samples enriched for known sequence alterations (109 unique substitutions and 27 insertions and deletions). While the analytical sensitivity for substitutions was comparable to that of the DCM array (98%), SGS technology performed better than the DCM array for insertions and deletions (90.6% versus 58%). Overall, SGS performed substantially better than did the current array-based testing platform; however, the operational cost and projected turnaround time do not meet our current standards. Therefore, efficient capture methods and/or sample pooling strategies that shorten the turnaround time and decrease reagent and labor costs are needed before implementing this platform into routine clinical applications.

  3. Perception of safety is a prerequisite for the association between neighbourhood green qualities and physical activity: Results from a cross-sectional study in Sweden.

    PubMed

    Weimann, Hanna; Rylander, Lars; van den Bosch, Matilda Annerstedt; Albin, Maria; Skärbäck, Erik; Grahn, Patrik; Björk, Jonas

    2017-05-01

    In this study, we assess how the Scania Green Score (SGS5), and the five distinct perceived neighbourhood green dimensions within this area-aggregated index (1km 2 squares), is associated with self-reported physical activity and general health, and if perceived safety and social coherence has a moderating effect. Two independent surveys, both conducted in Scania, Sweden, was used for data on SGS5 and health outcomes (N=28 198 and N=23 693), respectively. SGS5 was more clearly associated with physical activity (OR 1.06; 95% CI 1.02-1.10) than with general health (OR 1.02; 95% CI 1.00-1.04). This association was moderated by safety (p for interaction <0.001); SGS5 was positively associated with physical activity only among individuals who perceived high safety in their neighbourhood (OR 1.07; 95% CI 1.02-1.11). No moderating effect was seen for social coherence. Among specific dimensions, cultural history was positively associated with both physical activity and general health. Our results suggest that perception of safety is a prerequisite for the positive effects of neighbourhood green qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. NDA BATCH 2002-02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Livermore National Laboratory

    2009-12-09

    QC sample results (daily background checks, 20-gram and 100-gram SGS drum checks) were within acceptable criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on 5 drums with IDs LL85101099TRU, LL85801147TRU, LL85801109TRU, LL85300999TRU and LL85500979TRU. All replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. Note that the batch covered 5 weeks of SGS measurements from 23-Jan-2002 through 22-Feb-2002. Data packet for SGS Batch 2002-02 generated using gamma spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with established control limits.more » The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable. An Expert Review was performed on the data packet between 28-Feb-02 and 09-Jul-02 to check for potential U-235, Np-237 and Am-241 interferences and address drum cases where specific scan segments showed Se gamma ray transmissions for the 136-keV gamma to be below 0.1 %. Two drums in the batch showed Pu-238 at a relative mass ratio more than 2% of all the Pu isotopes.« less

  5. Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation.

    PubMed

    Tseng, Yu-Heng; Meneveau, Charles; Parlange, Marc B

    2006-04-15

    Modeling air pollutant transport and dispersion in urban environments is especially challenging due to complex ground topography. In this study, we describe a large eddy simulation (LES) tool including a new dynamic subgrid closure and boundary treatment to model urban dispersion problems. The numerical model is developed, validated, and extended to a realistic urban layout. In such applications fairly coarse grids must be used in which each building can be represented using relatively few grid-points only. By carrying out LES of flow around a square cylinder and of flow over surface-mounted cubes, the coarsest resolution required to resolve the bluff body's cross section while still producing meaningful results is established. Specifically, we perform grid refinement studies showing that at least 6-8 grid points across the bluff body are required for reasonable results. The performance of several subgrid models is also compared. Although effects of the subgrid models on the mean flow are found to be small, dynamic Lagrangian models give a physically more realistic subgrid-scale (SGS) viscosity field. When scale-dependence is taken into consideration, these models lead to more realistic resolved fluctuating velocities and spectra. These results set the minimum grid resolution and subgrid model requirements needed to apply LES in simulations of neutral atmospheric boundary layer flow and scalar transport over a realistic urban geometry. The results also illustrate the advantages of LES over traditional modeling approaches, particularly its ability to take into account the complex boundary details and the unsteady nature of atmospheric boundary layer flow. Thus LES can be used to evaluate probabilities of extreme events (such as probabilities of exceeding threshold pollutant concentrations). Some comments about computer resources required for LES are also included.

  6. Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjiva Lele

    2012-10-01

    The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNSmore » databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.« less

  7. Multi-zonal Navier-Stokes code with the LU-SGS scheme

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Yoon, S.

    1993-01-01

    The LU-SGS (lower upper symmetric Gauss Seidel) algorithm has been implemented into the Compressible Navier-Stokes, Finite Volume (CNSFV) code and validated with a multizonal Navier-Stokes simulation of a transonic turbulent flow around an Onera M6 transport wing. The convergence rate and robustness of the code have been improved and the computational cost has been reduced by at least a factor of 2 over the diagonal Beam-Warming scheme.

  8. RNA Recognition and Stress Granule Formation by TIA Proteins

    PubMed Central

    Waris, Saboora; Wilce, Matthew Charles James; Wilce, Jacqueline Anne

    2014-01-01

    Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression of a subset of genes, but allows the expression of heatshock proteins that have a protective effect in the cell. The importance of SGs is seen in several disease states in which SG function is disrupted. Fundamental to SG formation are the T cell restricted intracellular antigen (TIA) proteins (TIA-1 and TIA-1 related protein (TIAR)), that both directly bind to target RNA and self-associate to seed the formation of SGs. Here a summary is provided of the current understanding of the way in which TIA proteins target specific mRNA, and how TIA self-association is triggered under conditions of cellular stress. PMID:25522169

  9. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity

    PubMed Central

    Philippaert, Koenraad; Pironet, Andy; Mesuere, Margot; Sones, William; Vermeiren, Laura; Kerselaers, Sara; Pinto, Sílvia; Segal, Andrei; Antoine, Nancy; Gysemans, Conny; Laureys, Jos; Lemaire, Katleen; Gilon, Patrick; Cuypers, Eva; Tytgat, Jan; Mathieu, Chantal; Schuit, Frans; Rorsman, Patrik; Talavera, Karel; Voets, Thomas; Vennekens, Rudi

    2017-01-01

    Steviol glycosides (SGs), such as stevioside and rebaudioside A, are natural, non-caloric sweet-tasting organic molecules, present in extracts of the scrub plant Stevia rebaudiana, which are widely used as sweeteners in consumer foods and beverages. TRPM5 is a Ca2+-activated cation channel expressed in type II taste receptor cells and pancreatic β-cells. Here we show that stevioside, rebaudioside A and their aglycon steviol potentiate the activity of TRPM5. We find that SGs potentiate perception of bitter, sweet and umami taste, and enhance glucose-induced insulin secretion in a Trpm5-dependent manner. Daily consumption of stevioside prevents development of high-fat-diet-induced diabetic hyperglycaemia in wild-type mice, but not in Trpm5−/− mice. These results elucidate a molecular mechanism of action of SGs and identify TRPM5 as a potential target to prevent and treat type 2 diabetes. PMID:28361903

  10. Large Eddy Simulation of Wall-Bounded Turbulent Flows with the Lattice Boltzmann Method: Effect of Collision Model, SGS Model and Grid Resolution

    NASA Astrophysics Data System (ADS)

    Pradhan, Aniruddhe; Akhavan, Rayhaneh

    2017-11-01

    Effect of collision model, subgrid-scale model and grid resolution in Large Eddy Simulation (LES) of wall-bounded turbulent flows with the Lattice Boltzmann Method (LBM) is investigated in turbulent channel flow. The Single Relaxation Time (SRT) collision model is found to be more accurate than Multi-Relaxation Time (MRT) collision model in well-resolved LES. Accurate LES requires grid resolutions of Δ+ <= 4 in the near-wall region, which is comparable to Δ+ <= 2 required in DNS. At larger grid resolutions SRT becomes unstable, while MRT remains stable but gives unacceptably large errors. LES with no model gave errors comparable to the Dynamic Smagorinsky Model (DSM) and the Wall Adapting Local Eddy-viscosity (WALE) model. The resulting errors in the prediction of the friction coefficient in turbulent channel flow at a bulk Reynolds Number of 7860 (Reτ 442) with Δ+ = 4 and no-model, DSM and WALE were 1.7%, 2.6%, 3.1% with SRT, and 8.3% 7.5% 8.7% with MRT, respectively. These results suggest that LES of wall-bounded turbulent flows with LBM requires either grid-embedding in the near-wall region, with grid resolutions comparable to DNS, or a wall model. Results of LES with grid-embedding and wall models will be discussed.

  11. Large eddy simulation of turbulent premixed combustion using tabulated detailed chemistry and presumed probability density function

    NASA Astrophysics Data System (ADS)

    Zhang, Hongda; Han, Chao; Ye, Taohong; Ren, Zhuyin

    2016-03-01

    A method of chemistry tabulation combined with presumed probability density function (PDF) is applied to simulate piloted premixed jet burner flames with high Karlovitz number using large eddy simulation. Thermo-chemistry states are tabulated by the combination of auto-ignition and extended auto-ignition model. To evaluate the predictive capability of the proposed tabulation method to represent the thermo-chemistry states under the condition of different fresh gases temperature, a-priori study is conducted by performing idealised transient one-dimensional premixed flame simulations. Presumed PDF is used to involve the interaction of turbulence and flame with beta PDF to model the reaction progress variable distribution. Two presumed PDF models, Dirichlet distribution and independent beta distribution, respectively, are applied for representing the interaction between two mixture fractions that are associated with three inlet streams. Comparisons of statistical results show that two presumed PDF models for the two mixture fractions are both capable of predicting temperature and major species profiles, however, they are shown to have a significant effect on the predictions for intermediate species. An analysis of the thermo-chemical state-space representation of the sub-grid scale (SGS) combustion model is performed by comparing correlations between the carbon monoxide mass fraction and temperature. The SGS combustion model based on the proposed chemistry tabulation can reasonably capture the peak value and change trend of intermediate species. Aspects regarding model extensions to adequately predict the peak location of intermediate species are discussed.

  12. Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Porté-Agel, Fernando

    2013-02-01

    A recently-developed large-eddy simulation framework is validated and used to investigate turbulent flow within and above wind farms under neutral conditions. Two different layouts are considered, consisting of thirty wind turbines occupying the same total area and arranged in aligned and staggered configurations, respectively. The subgrid-scale (SGS) turbulent stress is parametrized using a tuning-free Lagrangian scale-dependent dynamic SGS model. The turbine-induced forces are modelled using two types of actuator-disk models: (a) the `standard' actuator-disk model (ADM-NR), which calculates only the thrust force based on one-dimensional momentum theory and distributes it uniformly over the rotor area; and (b) the actuator-disk model with rotation (ADM-R), which uses blade-element momentum theory to calculate the lift and drag forces (that produce both thrust and rotation), and distributes them over the rotor disk based on the local blade and flow characteristics. Validation is performed by comparing simulation results with turbulence measurements collected with hot-wire anemometry inside and above an aligned model wind farm placed in a boundary-layer wind tunnel. In general, the ADM-R model yields improved predictions compared with the ADM-NR in the wakes of all the wind turbines, where including turbine-induced flow rotation and accounting for the non-uniformity of the turbine-induced forces in the ADM-R appear to be important. Another advantage of the ADM-R model is that, unlike the ADM-NR, it does not require a priori specification of the thrust coefficient (which varies within a wind farm). Finally, comparison of simulations of flow through both aligned and staggered wind farms shows important effects of farm layout on the flow structure and wind-turbine performance. For the limited-size wind farms considered in this study, the lateral interaction between cumulated wakes is stronger in the staggered case, which results in a farm wake that is more homogeneous in the spanwise direction, thus resembling more an internal boundary layer. Inside the staggered farm, the relatively longer separation between consecutive downwind turbines allows the wakes to recover more, exposing the turbines to higher local wind speeds (leading to higher turbine efficiency) and lower turbulence intensity levels (leading to lower fatigue loads), compared with the aligned farm. Above the wind farms, the area-averaged velocity profile is found to be logarithmic, with an effective wind-farm aerodynamic roughness that is larger for the staggered case.

  13. A path-level exact parallelization strategy for sequential simulation

    NASA Astrophysics Data System (ADS)

    Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.

    2018-01-01

    Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.

  14. A time-compressed simulated geomagnetic storm influences the nest-exiting flight angles of the stingless bee Tetragonisca angustula

    NASA Astrophysics Data System (ADS)

    Esquivel, D. M. S.; Corrêa, A. A. C.; Vaillant, O. S.; de Melo, V. Bandeira; Gouvêa, G. S.; Ferreira, C. G.; Ferreira, T. A.; Wajnberg, E.

    2014-03-01

    Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.

  15. A time-compressed simulated geomagnetic storm influences the nest-exiting flight angles of the stingless bee Tetragonisca angustula.

    PubMed

    Esquivel, D M S; Corrêa, A A C; Vaillant, O S; de Melo, V Bandeira; Gouvêa, G S; Ferreira, C G; Ferreira, T A; Wajnberg, E

    2014-03-01

    Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.

  16. Management of the science ground segment for the Euclid mission

    NASA Astrophysics Data System (ADS)

    Zacchei, Andrea; Hoar, John; Pasian, Fabio; Buenadicha, Guillermo; Dabin, Christophe; Gregorio, Anna; Mansutti, Oriana; Sauvage, Marc; Vuerli, Claudio

    2016-07-01

    Euclid is an ESA mission aimed at understanding the nature of dark energy and dark matter by using simultaneously two probes (weak lensing and baryon acoustic oscillations). The mission will observe galaxies and clusters of galaxies out to z 2, in a wide extra-galactic survey covering 15000 deg2, plus a deep survey covering an area of 40 deg². The payload is composed of two instruments, an imager in the visible domain (VIS) and an imager-spectrometer (NISP) covering the near-infrared. The launch is planned in Q4 of 2020. The elements of the Euclid Science Ground Segment (SGS) are the Science Operations Centre (SOC) operated by ESA and nine Science Data Centres (SDCs) in charge of data processing, provided by the Euclid Consortium (EC), formed by over 110 institutes spread in 15 countries. SOC and the EC started several years ago a tight collaboration in order to design and develop a single, cost-efficient and truly integrated SGS. The distributed nature, the size of the data set, and the needed accuracy of the results are the main challenges expected in the design and implementation of the SGS. In particular, the huge volume of data (not only Euclid data but also ground based data) to be processed in the SDCs will require distributed storage to avoid data migration across SDCs. This paper describes the management challenges that the Euclid SGS is facing while dealing with such complexity. The main aspect is related to the organisation of a geographically distributed software development team. In principle algorithms and code is developed in a large number of institutes, while data is actually processed at fewer centers (the national SDCs) where the operational computational infrastructures are maintained. The software produced for data handling, processing and analysis is built within a common development environment defined by the SGS System Team, common to SOC and ECSGS, which has already been active for several years. The code is built incrementally through different levels of maturity, going from prototypes (developed mainly by scientists) to production code (engineered and tested at the SDCs). A number of incremental challenges (infrastructure, data processing and integrated) have been included in the Euclid SGS test plan to verify the correctness and accuracy of the developed systems.

  17. The structural genes for three Drosophila glue proteins reside at a single polytene chromosome puff locus.

    PubMed Central

    Crowley, T E; Bond, M W; Meyerowitz, E M

    1983-01-01

    The polytene chromosome puff at 68C on the Drosophila melanogaster third chromosome is thought from genetic experiments to contain the structural gene for one of the secreted salivary gland glue polypeptides, sgs-3. Previous work has demonstrated that the DNA included in this puff contains sequences that are transcribed to give three different polyadenylated RNAs that are abundant in third-larval-instar salivary glands. These have been called the group II, group III, and group IV RNAs. In the experiments reported here, we used the nucleotide sequence of the DNA coding for these RNAs to predict some of the physical and chemical properties expected of their protein products, including molecular weight, amino acid composition, and amino acid sequence. Salivary gland polypeptides with molecular weights similar to those expected for the 68C RNA translation products, and with the expected degree of incorporation of different radioactive amino acids, were purified. These proteins were shown by amino acid sequencing to correspond to the protein products of the 68C RNAs. It was further shown that each of these proteins is a part of the secreted salivary gland glue: the group IV RNA codes for the previously described sgs-3, whereas the group II and III RNAs code for the newly identified glue polypeptides sgs-8 and sgs-7. Images PMID:6406838

  18. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  19. Turbulent Swirling Flow in Combustor/Exhaust Nozzle Systems

    DTIC Science & Technology

    1991-03-29

    simplify the specifica- tion and generation of the computational mesh as well as efficiently utilize all of the computat;’rnal cells . DUMPSTER was applied to...iteration at each cell in a zone when the k - E model is not activated. LIMPKE ............. This subroutine performs the forward sweep of the LU-SGS...iteration at each cell in a zone when the k-( model is activated. LUDRV .............. This is the controller subroutine that calls the LIMP, UIMP

  20. Immunization with LJM11 salivary protein protects against infection with Leishmania braziliensis in the presence of Lutzomyia longipalpis saliva.

    PubMed

    Cunha, Jurema M; Abbehusen, Melissa; Suarez, Martha; Valenzuela, Jesus; Teixeira, Clarissa R; Brodskyn, Cláudia I

    2018-01-01

    Leishmania is transmitted in the presence of sand fly saliva. Protective immunity generated by saliva has encouraged identification of a vector salivary-based vaccine. Previous studies have shown that immunization with LJM11, a salivary protein from Lutzomyia longipalpis, is able to induce a Th1 immune response and protect mice against bites of Leishmania major-infected Lutzomyia longipalpis. Here, we further investigate if immunization with LJM11 recombinant protein is able to confer cross-protection against infection with Leishmania braziliensis associated with salivary gland sonicate (SGS) from Lutzomyia intermedia or Lu. longipalpis. Mice immunized with LJM11 protein exhibited an increased production of anti-LJM11 IgG, IgG1 and IgG2a and a DTH response characterized by an inflammatory infiltrate with the presence of CD4 + IFN-γ + T cells. LJM11-immunized mice were intradermally infected in the ear with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia SGS. A significant reduction of parasite numbers in the ear and lymph node in the group challenged with L. braziliensis plus Lu. longipalpis SGS was observed, but not when the challenge was performed with L. braziliensis plus Lu. intermedia SGS. A higher specific production of IFN-γ and absence of IL-10 by lymph node cells were only observed in LJM11 immunized mice after infection. After two weeks, a similar frequency of CD4 + IFN-γ + T cells was detected in LJM11 and BSA groups challenged with L. braziliensis plus Lu. longipalpis SGS, suggesting that early events possibly triggered by immunization are essential for protection against Leishmania infection. Our findings support the specificity of saliva-mediated immune responses and reinforce the importance of identifying cross-protective salivary antigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Activation of Stimulator of Interferon Genes (STING) and Sjögren Syndrome.

    PubMed

    Papinska, J; Bagavant, H; Gmyrek, G B; Sroka, M; Tummala, S; Fitzgerald, K A; Deshmukh, U S

    2018-03-01

    Sjögren syndrome (SS), a chronic autoimmune disorder causing dry mouth, adversely affects the overall oral health in patients. Activation of innate immune responses and excessive production of type I interferons (IFNs) play a critical role in the pathogenesis of this disorder. Recognition of nucleic acids by cytosolic nucleic acid sensors is a major trigger for the induction of type I IFNs. Upon activation, cytosolic DNA sensors can interact with the stimulator of interferon genes (STING) protein, and activation of STING causes increased expression of type I IFNs. The role of STING activation in SS is not known. In this study, to investigate whether the cytosolic DNA sensing pathway influences SS development, female C57BL/6 mice were injected with a STING agonist, dimethylxanthenone-4-acetic acid (DMXAA). Salivary glands (SGs) were studied for gene expression and inflammatory cell infiltration. SG function was evaluated by measuring pilocarpine-induced salivation. Sera were analyzed for cytokines and autoantibodies. Primary SG cells were used to study the expression and activation of STING. Our data show that systemic DMXAA treatment rapidly induced the expression of Ifnb1, Il6, and Tnfa in the SGs, and these cytokines were also elevated in circulation. In contrast, increased Ifng gene expression was dominantly detected in the SGs. The type I innate lymphoid cells present within the SGs were the major source of IFN-γ, and their numbers increased significantly within 3 d of treatment. STING expression in SGs was mainly observed in ductal and interstitial cells. In primary SG cells, DMXAA activated STING and induced IFN-β production. The DMXAA-treated mice developed autoantibodies, sialoadenitis, and glandular hypofunction. Our study demonstrates that activation of the STING pathway holds the potential to initiate SS. Thus, apart from viral infections, conditions that cause cellular perturbations and accumulation of host DNA within the cytosol should also be considered as possible triggers for SS.

  2. An Experimental Investigation of the Structural Dynamics of a Torsionally Soft Rotor in Vacuum.

    DTIC Science & Technology

    1986-07-01

    attached to the blades for the present test program were of G1356 material supplied by Piezo Electric Products. They were made of lead zirconate...titanate ceramic material with nickel surface electrodes. The elements, nominally measuring 1.0 x 0.5 x 0.010 inch, were epoxied directly to the upper...DAMPING- 0.53 Z RECURO Me. 221 :&CORD ND. 2Z2 RECORD NO. 23) O23 MUg 1 (MLI 6) Ku 2 I.D Si MuM 3 (1A 80 R"T 26 1U SG AP $S SCM AP VMS SGS AMP P94 SGC

  3. Aggregation of SND1 in Stress Granules is Associated with the Microtubule Cytoskeleton During Heat Shock Stimulus.

    PubMed

    Shao, Jie; Gao, Fei; Zhang, Bingbing; Zhao, Meng; Zhou, Yunli; He, Jinyan; Ren, Li; Yao, Zhi; Yang, Jie; Su, Chao; Gao, Xingjie

    2017-12-01

    Stress granules (SGs) are dynamic dense structures in the cytoplasm that form in response to a variety of environmental stress stimuli. Staphylococcal nuclease and Tudor domain containing 1 (SND1) is a type of RNA-binding protein and has been identified as a transcriptional co-activator. Our previous studies have shown that SND1 is a component of the stress granule, which forms under stress conditions. Here, we observed that SND1 granules were often surrounded by ɑ-tubulin-microtubules in 45°C-treated HeLa cells at 15 min or colocalized with microtubules at 30 or 45 min. Furthermore, Nocodazole-mediated microtubule depolymerization could significantly affect the efficient recruitment of SND1 proteins to the SGs during heat shock stress. In addition, the 45°C heat shock mediated the enhancement of eIF2α phosphorylation, which was not affected by treatment with Nocodazole, an agent that disrupts the cytoskeleton. The intact microtubule cytoskeletal tracks are important for the efficient assembly of SND1 granules under heat shock stress and may facilitate SND1 shuttling between cytoplasmic RNA foci. Anat Rec, 300:2192-2199, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. Copyright © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  4. Ultralow-phase-noise millimetre-wave signal generator assisted with an electro-optics-modulator-based optical frequency comb

    PubMed Central

    Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.

    2016-01-01

    Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040

  5. Seroconversion of sentinel chickens as a biomarker for monitoring exposure to visceral Leishmaniasis

    PubMed Central

    Soares, Bárbara Ribeiro; Souza, Ana Paula Almeida; Prates, Deboraci Brito; de Oliveira, Camila I.; Barral-Netto, Manoel; Miranda, José Carlos; Barral, Aldina

    2013-01-01

    Leishmania infantum chagasi causes visceral leishmaniasis (VL); it is transmitted by the sand fly Lutzomyia longipalpis that injects saliva and parasites into the host's skin during a blood meal. Chickens represent an important blood source for sand flies and their presence in the endemic area is often cited as a risk factor for VL transmission. However, the role of chickens in VL epidemiology has not been well defined. Here, we tested if chicken antibodies against Lu. longipalpis salivary gland sonicate (SGS) could be used as markers of exposure to sand fly bites. All naturally exposed chickens in a VL endemic area in Brazil developed anti-SGS IgY antibodies. Interestingly, Lu. longipalpis recombinant salivary proteins rLJM17 and rLJM11 were also able to detect anti-SGS IgY antibodies. Taken together, these results show that chickens can be used to monitor the presence of Lu. longipalpis in the peri-domiciliary area in VL endemic regions, when used as sentinel animals. PMID:23912591

  6. Seroconversion of sentinel chickens as a biomarker for monitoring exposure to visceral leishmaniasis.

    PubMed

    Soares, Bárbara Ribeiro; Souza, Ana Paula Almeida; Prates, Deboraci Brito; de Oliveira, Camila I; Barral-Netto, Manoel; Miranda, José Carlos; Barral, Aldina

    2013-01-01

    Leishmania infantum chagasi causes visceral leishmaniasis (VL); it is transmitted by the sand fly Lutzomyia longipalpis that injects saliva and parasites into the host's skin during a blood meal. Chickens represent an important blood source for sand flies and their presence in the endemic area is often cited as a risk factor for VL transmission. However, the role of chickens in VL epidemiology has not been well defined. Here, we tested if chicken antibodies against Lu. longipalpis salivary gland sonicate (SGS) could be used as markers of exposure to sand fly bites. All naturally exposed chickens in a VL endemic area in Brazil developed anti-SGS IgY antibodies. Interestingly, Lu. longipalpis recombinant salivary proteins rLJM17 and rLJM11 were also able to detect anti-SGS IgY antibodies. Taken together, these results show that chickens can be used to monitor the presence of Lu. longipalpis in the peri-domiciliary area in VL endemic regions, when used as sentinel animals.

  7. Recent operating experiences with steam generators in Japanese NPPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashima, Seiji

    1997-02-01

    In 1994, the Genkai-3 of Kyushu Electric Power Co., Inc. and the Ikata-3 of Shikoku Electric Power Co., Inc. started commercial operation, and now 22 PWR plants are being operated in Japan. Since the first PWR plant now 22 PWR plants are being operated in was started to operate, Japanese PWR plants have had an operating experience of approx. 280 reactor-years. During that period, many tube degradations have been experienced in steam generators (SGs). And, in 1991, the steam generator tube rupture (SGTR) occurred in the Mihama-2 of Kansai Electric Power Co., Inc. However, the occurrence of tube degradation ofmore » SGs has been decreased by the instructions of the MITI as regulatory authorities, efforts of Electric Utilities, and technical support from the SG manufacturers. Here the author describes the recent SGs in Japan about the following points. (1) Recent Operating Experiences (2) Lessons learned from Mihama-2 SGTR (3) SG replacement (4) Safety Regulations on SG (5) Research and development on SG.« less

  8. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    NASA Astrophysics Data System (ADS)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  9. The accelerated site technology deployment program presents the segmented gate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE

    2000-02-24

    The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The papermore » uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.« less

  10. Framework for the Integration of Multi-Instrument Pipelines in the BepiColombo Science Operations Control System

    NASA Astrophysics Data System (ADS)

    Pérez-López, F.; Vallejo, J. C.; Martínez, S.; Ortiz, I.; Macfarlane, A.; Osuna, P.; Gill, R.; Casale, M.

    2015-09-01

    BepiColombo is an interdisciplinary ESA mission to explore the planet Mercury in cooperation with JAXA. The mission consists of two separate orbiters: ESA's Mercury Planetary Orbiter (MPO) and JAXA's Mercury Magnetospheric Orbiter (MMO), which are dedicated to the detailed study of the planet and its magnetosphere. The MPO scientific payload comprises eleven instruments packages covering different disciplines developed by several European teams. This paper describes the design and development approach of the framework required to support the operation of the distributed BepiColombo MPO instruments pipelines, developed and operated from different locations, but designed as a single entity. An architecture based on primary-redundant configuration, fully integrated into the BepiColombo Science Operations Control System (BSCS), has been selected, where some instrument pipelines will be operated from the instrument team's data processing centres, having a pipeline replica that can be run from the Science Ground Segment (SGS), while others will be executed as primary pipelines from the SGS, adopting the SGS the pipeline orchestration role.

  11. Small-Scale Dissipation in Binary-Species Transitional Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2011-01-01

    Motivated by large eddy simulation (LES) modeling of supercritical turbulent flows, transitional states of databases obtained from direct numerical simulations (DNS) of binary-species supercritical temporal mixing layers were examined to understand the subgrid-scale dissipation, and its variation with filter size. Examination of the DSN-scale domain- averaged dissipation confirms previous findings that, out of the three modes of viscous, temperature and species-mass dissipation, the species-mass dissipation is the main contributor to the total dissipation. The results revealed that the percentage of species-mass by total dissipation is nearly invariant across species systems and initial conditions. This dominance of the species-mass dissipation is due to high-density-gradient magnitude (HDGM) regions populating the flow under the supercritical conditions of the simulations; such regions have also been observed in fully turbulent supercritical flows. The domain average being the result of both the local values and the extent of the HDGM regions, the expectations were that the response to filtering would vary with these flow characteristics. All filtering here is performed in the dissipation range of the Kolmogorov spectrum, at filter sizes from 4 to 16 times the DNS grid spacing. The small-scale (subgrid scale, SGS) dissipation was found by subtracting the filtered-field dissipation from the DNS-field dissipation. In contrast to the DNS dissipation, the SGS dissipation is not necessarily positive; negative values indicate backscatter. Backscatter was shown to be spatially widespread in all modes of dissipation and in the total dissipation (25 to 60 percent of the domain). The maximum magnitude of the negative subgrid- scale dissipation was as much as 17 percent of the maximum positive subgrid- scale dissipation, indicating that, not only is backscatter spatially widespread in these flows, but it is considerable in magnitude and cannot be ignored for the purposes of LES modeling. The Smagorinsky model, for example, is unsuited for modeling SGS fluxes in the LES because it cannot render backscatter. With increased filter size, there is only a modest decrease in the spatial extent of backscatter. The implication is that even at large LES grid spacing, the issue of backscatter and related SGS-flux modeling decisions are unavoidable. As a fraction of the total dissipation, the small-scale dissipation is between 10 and 30 percent of the total dissipation for a filter size that is four times the DNS grid spacing, with all OH cases bunched at 10 percent, and the HN cases spanning 24 30 percent. A scale similarity was found in that the domain-average proportion of each small-scale dissipation mode, with respect to the total small-scale dissipation, is very similar to equivalent results at the DNS scale. With increasing filter size, the proportion of the small-scale dissipation in the dissipation increases substantially, although not quite proportionally. When the filter size increases by four-fold, 52 percent for all OH runs, and 70 percent for HN runs, of the dissipation is contained in the subgrid-scale portion with virtually no dependence on the initial conditions of the DNS. The indications from the dissipation analysis are that modeling efforts in LES of thermodynamically supercritical flows should be focused primarily on mass-flux effects, with temperature and viscous effects being secondary. The analysis also reveals a physical justification for scale-similarity type models, although the suitability of these will need to be confirmed in a posteriori studies.

  12. Distribution Profile of Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Channels in α and β Cells of Pancreas: Dominant Localization in Secretory Granules and Common Error in Identification of Secretory Granule Membranes.

    PubMed

    Hur, Yong Suk; Yoo, Seung Hyun

    2015-01-01

    The α and β cells of pancreatic islet release important hormones in response to intracellular Ca increases that result from Ca releases through the inositol 1,4,5-trisphoshate receptor (IP3R)/Ca channels. Yet no systematic studies on distribution of IP3R/Ca channels have been done, prompting us to investigate the distribution of all 3 IP3R isoforms. Immunogold electron microscopy was performed to determine the presence and the relative concentrations of all 3 IP3R isoforms in 2 major organelles secretory granules (SGs) and the endoplasmic reticulum of α and β cells of rat pancreas. All 3 IP3R isoforms were present in SG membranes of both cells, and the IP3R concentrations in SGs were ∼2-fold higher than those in the endoplasmic reticulum. Moreover, large halos shown in the electron microscope images of insulin-containing SGs of β cells were gap spaces that resulted from separation of granule membranes from the surrounding cytoplasm. These results strongly suggest the important roles of SGs in IP3-induced, Ca-dependent regulatory secretory pathway in pancreas. Moreover, the accurate location of SG membranes of β cells was further confirmed by the location of another integral membrane protein synaptotagmin V and of membrane phospholipid PI(4,5)P2.

  13. A space-time lower-upper symmetric Gauss-Seidel scheme for the time-spectral method

    NASA Astrophysics Data System (ADS)

    Zhan, Lei; Xiong, Juntao; Liu, Feng

    2016-05-01

    The time-spectral method (TSM) offers the advantage of increased order of accuracy compared to methods using finite-difference in time for periodic unsteady flow problems. Explicit Runge-Kutta pseudo-time marching and implicit schemes have been developed to solve iteratively the space-time coupled nonlinear equations resulting from TSM. Convergence of the explicit schemes is slow because of the stringent time-step limit. Many implicit methods have been developed for TSM. Their computational efficiency is, however, still limited in practice because of delayed implicit temporal coupling, multiple iterative loops, costly matrix operations, or lack of strong diagonal dominance of the implicit operator matrix. To overcome these shortcomings, an efficient space-time lower-upper symmetric Gauss-Seidel (ST-LU-SGS) implicit scheme with multigrid acceleration is presented. In this scheme, the implicit temporal coupling term is split as one additional dimension of space in the LU-SGS sweeps. To improve numerical stability for periodic flows with high frequency, a modification to the ST-LU-SGS scheme is proposed. Numerical results show that fast convergence is achieved using large or even infinite Courant-Friedrichs-Lewy (CFL) numbers for unsteady flow problems with moderately high frequency and with the use of moderately high numbers of time intervals. The ST-LU-SGS implicit scheme is also found to work well in calculating periodic flow problems where the frequency is not known a priori and needed to be determined by using a combined Fourier analysis and gradient-based search algorithm.

  14. Effects of voice-sparing cricotracheal resection on phonation in women.

    PubMed

    Tanner, Kristine; Dromey, Christopher; Berardi, Mark L; Mattei, Lisa M; Pierce, Jenny L; Wisco, Jonathan J; Hunter, Eric J; Smith, Marshall E

    2017-09-01

    Individuals with idiopathic subglottic stenosis (SGS) are at risk for voice disorders prior to and following surgical management. This study examined the nature and severity of voice disorders in patients with SGS before and after a revised cricotracheal resection (CTR) procedure designed to minimize adverse effects on voice function. Eleven women with idiopathic SGS provided presurgical and postsurgical audio recordings. Voice Handicap Index (VHI) scores were also collected. Cepstral, signal-to-noise, periodicity, and fundamental frequency (F 0 ) analyses were undertaken for connected speech and sustained vowel samples. Listeners made auditory-perceptual ratings of overall quality and monotonicity. Paired samples statistical analyses revealed that mean F 0 decreased from 215 Hz (standard deviation [SD] = 40 Hz) to 201 Hz (SD = 65 Hz) following surgery. In general, VHI scores decreased after surgery. Voice disorder severity based on the Cepstral Spectral Index of Dysphonia (KayPentax, Montvale, NJ) for sustained vowels decreased (improved) from 41 (SD = 41) to 25 (SD = 21) points; no change was observed for connected speech. Semitone SD (2.2 semitones) did not change from pre- to posttreatment. Auditory-perceptual ratings demonstrated similar results. These preliminary results indicate that this revised CTR procedure is promising in minimizing adverse voice effects while offering a longer-term surgical outcome for SGS. Further research is needed to determine causal factors for pretreatment voice disorders, as well as to optimize treatments in this population. 4. Laryngoscope, 127:2085-2092, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Superconducting gravimeters reveal unprecedented details of changes related to volcanic processes

    NASA Astrophysics Data System (ADS)

    Carbone, Daniele; Greco, Filippo; Cannavò, Flavio

    2017-04-01

    Continuous gravity measurements have been successfully carried out at a number of volcanoes around the world using spring gravimeters. Nevertheless, these instruments do not provide reliable measurements when used in continuous mode for weeks or more, because they are influenced by environmental factors and are subject to instrumental drift. Accordingly, most studies of continuous gravity at active volcanoes have focused on the analysis of changes over time-scales of minutes to a few days. An alternative to spring gravimeters for continuous measurements is given by superconducting gravimeters (SGs) that feature a much higher precision and stability than spring gravimeters. However, even the most portable SGs (e.g., the iGrav® by GWR) are not ideal for installation in the vicinity of active volcanic structures. Indeed, they require AC power at the installation site and some kind of hut or vault to house the instrumentation. At Mt. Etna, the installation of a mini-array of three SGs (distances of 3.5 to 15.5 km from the active craters) was begun in September 2014. To our knowledge, these are the first SGs ever installed on an active volcano. Signals from these instruments show hydrologically-induced components superimposed on small (a few microGal) gravity changes that are related to volcanic processes. Such changes, occurring over periods of minutes to weeks, would not be observable by spring gravimeters due to their intrinsic limitations regarding precision and long-term stability.

  16. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models.

    PubMed

    Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A; Frankel, Steven H

    2014-07-01

    In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, "Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow," J. Fluid Mech., 582, pp. 253-280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, "Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method," J. Comput. Phys., 227(13), pp. 6660-6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, "General Circulation Experiments With the Primitive Equations," Mon. Weather Rev., 91(10), pp. 99-164), recently developed Vreman model (Vreman, 2004, "An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications," Phys. Fluids, 16(10), pp. 3670-3681), and the Sigma model (Nicoud et al., 2011, "Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations," Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) ("OpenFOAM," http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo.

  17. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation.

    PubMed

    Finnen, Renée L; Hay, Thomas J M; Dauber, Bianca; Smiley, James R; Banfield, Bruce W

    2014-11-01

    In a previous study, it was observed that cells infected with herpes simplex virus 2 (HSV-2) failed to accumulate stress granules (SGs) in response to oxidative stress induced by arsenite treatment. As a follow-up to this observation, we demonstrate here that disruption of arsenite-induced SG formation by HSV-2 is mediated by a virion component. Through studies on SG formation in cells infected with HSV-2 strains carrying defective forms of UL41, the gene that encodes vhs, we identify vhs as a virion component required for this disruption. Cells infected with HSV-2 strains producing defective forms of vhs form SGs spontaneously late in infection. In addition to core SG components, these spontaneous SGs contain the viral immediate early protein ICP27 as well as the viral serine/threonine kinase Us3. As part of these studies, we reexamined the frameshift mutation known to reside within the UL41 gene of HSV-2 strain HG52. We demonstrate that this mutation is unstable and can rapidly revert to restore wild-type UL41 following low-multiplicity passaging. Identification of the involvement of virion-associated vhs in the disruption of SG formation will enable mechanistic studies on how HSV-2 is able to counteract antiviral stress responses early in infection. In addition, the ability of Us3 to localize to stress granules may indicate novel roles for this viral kinase in the regulation of translation. Eukaryotic cells respond to stress by rapidly shutting down protein synthesis and storing mRNAs in cytoplasmic stress granules (SGs). Stoppages in protein synthesis are problematic for all viruses as they rely on host cell machinery to synthesize viral proteins. Thus, many viruses target SGs for disruption or modification. Infection by herpes simplex virus 2 (HSV-2) was previously observed to disrupt SG formation induced by oxidative stress. In this follow-up study, we identify virion host shutoff protein (vhs) as a viral protein involved in this disruption. The identification of a specific viral protein involved in disrupting SG formation is a key step toward understanding how HSV-2 interacts with these antiviral structures. Additionally, this understanding may provide insights into the biology of SGs that may find application in studies on human motor neuron degenerative diseases, like amyotrophic lateral sclerosis (ALS), which may arise as a result of dysregulation of SG formation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. Learning in a game-based virtual environment: a comparative evaluation in higher education

    NASA Astrophysics Data System (ADS)

    Mayer, Igor; Warmelink, Harald; Bekebrede, Geertje

    2013-03-01

    The authors define the requirements and a conceptual model for comparative evaluation research of simulation games and serious games (SGs) in a learning context. A first operationalisation of the model was used to comparatively evaluate a suite of 14 SGs on varying topics played between 2004 and 2009 in 13 institutes of higher education in the Netherlands. The questions in this research were: what is the perceived learning effectiveness of the games and what factors explain it? How can we comparatively evaluate games for learning? Data were gathered through pre- and post-game questionnaires among 1000 students, leading to 500 useful datasets and 230 complete datasets for analysis (factor analysis, scaling, t-test and correlation analysis) to give an explorative, structural model. The findings are discussed and a number of propositions for further research are formulated. The conclusion of the analysis is that the students' motivation and attitudes towards game-based learning before the game, their actual enjoyment, their efforts during the game and the quality of the facilitator/teacher are most strongly correlated with their learning satisfaction. The degree to which the experiences during the game were translated back into the underlying theories significantly determines the students' learning satisfaction. The quality of the virtual game environment did not matter so much. The authors reflect upon the general methodology used and offer suggestions for further research and development.

  19. [Bayesian geostatistical prediction of soil organic carbon contents of solonchak soils in nor-thern Tarim Basin, Xinjiang, China.

    PubMed

    Wu, Wei Mo; Wang, Jia Qiang; Cao, Qi; Wu, Jia Ping

    2017-02-01

    Accurate prediction of soil organic carbon (SOC) distribution is crucial for soil resources utilization and conservation, climate change adaptation, and ecosystem health. In this study, we selected a 1300 m×1700 m solonchak sampling area in northern Tarim Basin, Xinjiang, China, and collected a total of 144 soil samples (5-10 cm). The objectives of this study were to build a Baye-sian geostatistical model to predict SOC content, and to assess the performance of the Bayesian model for the prediction of SOC content by comparing with other three geostatistical approaches [ordinary kriging (OK), sequential Gaussian simulation (SGS), and inverse distance weighting (IDW)]. In the study area, soil organic carbon contents ranged from 1.59 to 9.30 g·kg -1 with a mean of 4.36 g·kg -1 and a standard deviation of 1.62 g·kg -1 . Sample semivariogram was best fitted by an exponential model with the ratio of nugget to sill being 0.57. By using the Bayesian geostatistical approach, we generated the SOC content map, and obtained the prediction variance, upper 95% and lower 95% of SOC contents, which were then used to evaluate the prediction uncertainty. Bayesian geostatistical approach performed better than that of the OK, SGS and IDW, demonstrating the advantages of Bayesian approach in SOC prediction.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, H.R.

    This study examines several mechanisms by which the fatigue crack propagation (FCP) resistance of shear-yielding thermoset polymers can be improved. Specifically, this research has four objectives as follows: first, to develop a mechanistic understanding of the FCP behavior of rubber-modified thermoset polymers; second, to understand the effect of strength and shape of the inorganic fillers on the FCP resistance and micromechanisms in filled epoxy polymers; third, to elucidate the nature of the interactions among the crack-tip shielding mechanisms in thermoset polymers subjected to cyclic loading and synergistically toughened with both rubber and inorganic particles (i.e., hybrid composites); fourth, to studymore » the role of interfaces on the synergistic interactions in FCP behavior of hybrid composites. The model - matrix material consists of a diglycidyl ether of bisphenol A (DGEBA) based type epoxy cured with piperidine. Parallel to the first objective, the epoxy matrix was modified with rubber while changing volume fraction, type, and size of the rubber particles. To accomplish the second goal, the epoxy polymers were modified by a total 10 volume percent of either one of the following three types of inorganic modifiers: hollow glass spheres (HGS); solid glass spheres (SGS); and short glass fibers (SGF). The third goal was met by processing three different systems of hybrid epoxy composites modified by (1) CTBN rubber and HGS, (2) CTBN rubber and SGS, and (3) CTBN rubber and SGF. The total volume fraction of the two modifiers in each hybrid system was kept constant at 10 percent while systematically changing their ratio. To meet the fourth objective, the surface properties of the SGS particles in the hybrid system were altered using adhesion promoter. A mechanistic understanding of the FCP behavior of rubber-modified epoxies was achieved by relating fractographs to observed FCP behavior.« less

  1. Low-Resolution Structure of the Full-Length Barley (Hordeum vulgare) SGT1 Protein in Solution, Obtained Using Small-Angle X-Ray Scattering

    PubMed Central

    Taube, Michał; Pieńkowska, Joanna R.; Jarmołowski, Artur; Kozak, Maciej

    2014-01-01

    SGT1 is an evolutionarily conserved eukaryotic protein involved in many important cellular processes. In plants, SGT1 is involved in resistance to disease. In a low ionic strength environment, the SGT1 protein tends to form dimers. The protein consists of three structurally independent domains (the tetratricopeptide repeats domain (TPR), the CHORD- and SGT1-containing domain (CS), and the SGT1-specific domain (SGS)), and two less conserved variable regions (VR1 and VR2). In the present study, we provide the low-resolution structure of the barley (Hordeum vulgare) SGT1 protein in solution and its dimer/monomer equilibrium using small-angle scattering of synchrotron radiation, ab-initio modeling and circular dichroism spectroscopy. The multivariate curve resolution least-square method (MCR-ALS) was applied to separate the scattering data of the monomeric and dimeric species from a complex mixture. The models of the barley SGT1 dimer and monomer were formulated using rigid body modeling with ab-initio structure prediction. Both oligomeric forms of barley SGT1 have elongated shapes with unfolded inter-domain regions. Circular dichroism spectroscopy confirmed that the barley SGT1 protein had a modular architecture, with an α-helical TPR domain, a β-sheet sandwich CS domain, and a disordered SGS domain separated by VR1 and VR2 regions. Using molecular docking and ab-initio protein structure prediction, a model of dimerization of the TPR domains was proposed. PMID:24714665

  2. Onset of Spin Polarization in Four-Gate Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Jones, Alex

    A series of simulations which utilize a Non-equilibrium Green's function (NEGF) formalism is suggested which can provide indirect evidence of the fine and non-local electrostatic tuning of the onset of spin polarization in two closely spaced quantum point contacts (QPCs) that experience a phenomenon known as lateral spin-orbit coupling (LSOC). Each of the QPCs that create the device also has its own pair of side gates (SGs) which are in-plane with the device channel. Numerical simulations of the conductance of the two closely spaced QPCs or four-gate QPC are carried out for different biasing conditions applied to two leftmost and rightmost SGs. Conductance plots are then calculated as a function of the variable, Vsweep, which is the common sweep voltage applied to the QPC. When Vsweep is only applied to two of the four side gates, the plots show several conductance anomalies, i.e., below G0 = 2e2/h, characterized by intrinsic bistability, i.e., hysteresis loops due to a difference in the conductance curves for forward and reverse common voltage sweep simulations. The appearance of hysteresis loops is attributed to the co-existence of multistable spin textures in the narrow channel of the four-gate QPC. The shape, location, and number of hysteresis loops are very sensitive to the biasing conditions on the four SGs. The shape and size of the conductance anomalies and hysteresis loops are shown to change when the biasing conditions on the leftmost and rightmost SGs are swapped, a rectifying behavior providing an additional indirect evidence for the onset of spontaneous spin polarization in nanoscale devices made of QPCs. The results of the simulations reveal that the occurrence and fine tuning of conductance anomalies in QPC structures are highly sensitive to the non-local action of closely spaced SGs. It is therefore imperative to take into account this proximity effect in the design of all electrical spin valves making use of middle gates to fine tune the spin precession between QPC based spin injector and detector contacts.

  3. TIME DISTRIBUTIONS OF LARGE AND SMALL SUNSPOT GROUPS OVER FOUR SOLAR CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcik, A.; Yurchyshyn, V. B.; Abramenko, V.

    2011-04-10

    Here we analyze solar activity by focusing on time variations of the number of sunspot groups (SGs) as a function of their modified Zurich class. We analyzed data for solar cycles 20-23 by using Rome (cycles 20 and 21) and Learmonth Solar Observatory (cycles 22 and 23) SG numbers. All SGs recorded during these time intervals were separated into two groups. The first group includes small SGs (A, B, C, H, and J classes by Zurich classification), and the second group consists of large SGs (D, E, F, and G classes). We then calculated small and large SG numbers frommore » their daily mean numbers as observed on the solar disk during a given month. We report that the time variations of small and large SG numbers are asymmetric except for solar cycle 22. In general, large SG numbers appear to reach their maximum in the middle of the solar cycle (phases 0.45-0.5), while the international sunspot numbers and the small SG numbers generally peak much earlier (solar cycle phases 0.29-0.35). Moreover, the 10.7 cm solar radio flux, the facular area, and the maximum coronal mass ejection speed show better agreement with the large SG numbers than they do with the small SG numbers. Our results suggest that the large SG numbers are more likely to shed light on solar activity and its geophysical implications. Our findings may also influence our understanding of long-term variations of the total solar irradiance, which is thought to be an important factor in the Sun-Earth climate relationship.« less

  4. Ground Motion Prediction Equations for Western Saudi Arabia from a Reference Model

    NASA Astrophysics Data System (ADS)

    Kiuchi, R.; Mooney, W. D.; Mori, J. J.; Zahran, H. M.; Al-Raddadi, W.; Youssef, S.

    2017-12-01

    Western Saudi Arabia is surrounded by several active seismic zones such as the Red Sea and the Gulf of Aqaba where a destructive magnitude 7.3 event occurred in 1995. Over the last decade, the Saudi Geological Survey (SGS) has deployed a dense seismic network that has made it possible to monitor seismic activity more accurately. For example, the network has detected multiple seismic swarms beneath the volcanic fields in western Saudi Arabia. The most recent damaging event was a M5.7 earthquake that occurred in 2009 at Harrat Lunayyir. In terms of seismic hazard assessment, Zahran et al. (2015; 2016) presented a Probabilistic Seismic Hazard Assessment (PSHA) for western Saudi Arabia that was developed using published Ground Motion Prediction Equations (GMPEs) from areas outside of Saudi Arabia. In this study, we consider 41 earthquakes of M 3.0 - 5.4, recorded on 124 stations of the SGS network, to create a set of 442 peak ground acceleration (PGA) and peak ground velocity (PGV) records with a range of epicentral distances from 3 km to 400 km. We use the GMPE model BSSA14 (Boore et al., 2014) as a reference model to estimate our own best-fitting coefficients from a regression analysis using the events occurred in western Saudi Arabia. For epicentral distances less than 100 km, our best fitting model has different source scaling in comparison with the GMPE of BSSA14 adjusted for the California region. In addition, our model indicates that the peak amplitudes have less attenuation in western Saudi Arabia than in California.

  5. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana.

    PubMed

    Yoneda, Yuki; Nakashima, Hiroshi; Miyasaka, Juro; Ohdoi, Katsuaki; Shimizu, Hiroshi

    2017-05-01

    Stevia rebaudiana (Bertoni) Bertoni is a plant that biosynthesizes a group of natural sweeteners that are up to approximately 400 times sweeter than sucrose. The sweetening components of S. rebaudiana are steviol glycosides (SGs) that partially share their biosynthesis pathway with gibberellins (GAs). However, the molecular mechanisms through which SGs levels can be improved have not been studied. Therefore, transcription levels of several SG biosynthesis-related genes were analyzed under several light treatments involved in GA biosynthesis. We detected higher transcription of UGT85C2, which is one of the UDP-glycosyltransferases (UGTs) involved in catalyzing the sugar-transfer reaction, under red/far-red (R/FR) 1.22 light-emitting diodes (LEDs) and blue LEDs treatment. In this study, it was demonstrated that transcription levels of SG-related genes and the SGs content are affected by light treatments known to affect the GA contents. It is expected that this approach could serve as a practical way to increase SG contents using specific light treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies.

    PubMed

    Youn, Ji-Young; Dunham, Wade H; Hong, Seo Jung; Knight, James D R; Bashkurov, Mikhail; Chen, Ginny I; Bagci, Halil; Rathod, Bhavisha; MacLeod, Graham; Eng, Simon W M; Angers, Stéphane; Morris, Quaid; Fabian, Marc; Côté, Jean-François; Gingras, Anne-Claude

    2018-02-01

    mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The production, properties, and applications of thermostable steryl glucosidases.

    PubMed

    Aguirre, Andres; Eberhardt, Florencia; Hails, Guillermo; Cerminati, Sebastian; Castelli, María Eugenia; Rasia, Rodolfo M; Paoletti, Luciana; Menzella, Hugo G; Peiru, Salvador

    2018-02-21

    Extremophilic microorganisms are a rich source of enzymes, the enzymes which can serve as industrial catalysts that can withstand harsh processing conditions. An example is thermostable β-glucosidases that are addressing a challenging problem in the biodiesel industry: removing steryl glucosides (SGs) from biodiesel. Steryl glucosidases (SGases) must be tolerant to heat and solvents in order to function efficiently in biodiesel. The amphipathic nature of SGs also requires enzymes with an affinity for water/solvent interfaces in order to achieve efficient hydrolysis. Additionally, the development of an enzymatic process involving a commodity such as soybean biodiesel must be cost-effective, necessitating an efficient manufacturing process for SGases. This review summarizes the identification of microbial SGases and their applications, discusses biodiesel refining processes and the development of analytical methods for identifying and quantifying SGs in foods and biodiesel, and considers technologies for strain engineering and process optimization for the heterologous production of a SGase from Thermococcus litoralis. All of these technologies might be used for the production of other thermostable enzymes. Structural features of SGases and the feasibility of protein engineering for novel applications are explored.

  8. A diagonal implicit scheme for computing flows with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Imlay, Scott

    1990-01-01

    A new algorithm for solving steady, finite-rate chemistry, flow problems is presented. The new scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The source Jacobian matrix is replaced by a diagonal matrix which is tailored to account for the fastest reactions in the chemical system. A point-implicit procedure is discussed and then the algorithm is included into the LU-SGS scheme. Solutions are presented for hypervelocity reentry and Hydrogen-Oxygen combustion. For the LU-SGS scheme a CFL number in excess of 10,000 has been achieved.

  9. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris

    PubMed Central

    Piotti, A.; Satovic, Z.; de la Rosa, R.; Belaj, A.

    2017-01-01

    Abstract Background and Aims Wild olive (Olea europaea subsp. europaea var. sylvestris) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. Methods The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. Key Results The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. Conclusions Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources. PMID:28028015

  10. Pollen-mediated gene flow and fine-scale spatial genetic structure in Olea europaea subsp. europaea var. sylvestris.

    PubMed

    Beghè, D; Piotti, A; Satovic, Z; de la Rosa, R; Belaj, A

    2017-03-01

    Wild olive ( Olea europaea subsp. europaea var. sylvestris ) is important from an economic and ecological point of view. The effects of anthropogenic activities may lead to the genetic erosion of its genetic patrimony, which has high value for breeding programmes. In particular, the consequences of the introgression from cultivated stands are strongly dependent on the extent of gene flow and therefore this work aims at quantitatively describing contemporary gene flow patterns in wild olive natural populations. The studied wild population is located in an undisturbed forest, in southern Spain, considered one of the few extant hotspots of true oleaster diversity. A total of 225 potential father trees and seeds issued from five mother trees were genotyped by eight microsatellite markers. Levels of contemporary pollen flow, in terms of both pollen immigration rates and within-population dynamics, were measured through paternity analyses. Moreover, the extent of fine-scale spatial genetic structure (SGS) was studied to assess the relative importance of seed and pollen dispersal in shaping the spatial distribution of genetic variation. The results showed that the population under study is characterized by a high genetic diversity, a relatively high pollen immigration rate (0·57), an average within-population pollen dispersal of about 107 m and weak but significant SGS up to 40 m. The population is a mosaic of several intermingled genetic clusters that is likely to be generated by spatially restricted seed dispersal. Moreover, wild oleasters were found to be self-incompatible and preferential mating between some genotypes was revealed. Knowledge of the within-population genetic structure and gene flow dynamics will lead to identifying possible strategies aimed at limiting the effect of anthropogenic activities and improving breeding programmes for the conservation of olive tree forest genetic resources. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. Grass pollen counts, air pollution levels and allergic rhinitis severity.

    PubMed

    Annesi-Maesano, Isabella; Rouve, Sarah; Desqueyroux, Hélène; Jankovski, Roger; Klossek, Jean-Michel; Thibaudon, Michel; Demoly, Pascal; Didier, Alain

    2012-01-01

    Little is known about the relation between allergic rhinitis severity and airborne pollen in combination with air pollutants. To model the risk of suffering from severe seasonal allergic rhinitis (SAR) as a function of both pollen count and air pollution levels in a large nationwide sample of patients whose SAR was diagnosed by a physician and confirmed by skin prick test positivity or specific immunolglobulin E to common aeroallergens. The severity of SAR symptoms was estimated with the Symptomatic Global Score (SGS) among 36,397 patients suffering from an untreated and uncomplicated SAR between May and August 2004 in metropolitan France. Patients who had an SGS in the upper third quartile were classified as suffering from severe SAR. A multilevel model relating SAR severity, pollen and air pollution was used to take into account the hierarchical data structure. 18.9% of the 17,567 urban patients retained for the analysis suffered from severe rhinitis. At the Lag0 (day of the visit), a rise of 60 grass pollen grains/m(3) increased the risk of suffering from a severe SAR form by 8% in the multileveled model after adjusting for potential confounders and air pollution levels. Results were also confirmed in the subsample of individuals with documented sensitization to grass pollen. Grass pollen count aggravated SAR in terms of symptoms in our nationwide sample. These findings confirm the need for proper treatment and preventive measures in SAR patients sensitized to grass pollen. Copyright © 2012 S. Karger AG, Basel.

  12. Spatiotemporal Variability of Turbulence Kinetic Energy Budgets in the Convective Boundary Layer over Both Simple and Complex Terrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Raj K.; Berg, Larry K.; Pekour, Mikhail

    The assumption of sub-grid scale (SGS) horizontal homogeneity within a model grid cell, which forms the basis of SGS turbulence closures used by mesoscale models, becomes increasingly tenuous as grid spacing is reduced to a few kilometers or less, such as in many emerging high-resolution applications. Herein, we use the turbulence kinetic energy (TKE) budget equation to study the spatio-temporal variability in two types of terrain—complex (Columbia Basin Wind Energy Study [CBWES] site, north-eastern Oregon) and flat (ScaledWind Farm Technologies [SWiFT] site, west Texas) using the Weather Research and Forecasting (WRF) model. In each case six-nested domains (three domains eachmore » for mesoscale and large-eddy simulation [LES]) are used to downscale the horizontal grid spacing from 10 km to 10 m using the WRF model framework. The model output was used to calculate the values of the TKE budget terms in vertical and horizontal planes as well as the averages of grid cells contained in the four quadrants (a quarter area) of the LES domain. The budget terms calculated along the planes and the mean profile of budget terms show larger spatial variability at CBWES site than at the SWiFT site. The contribution of the horizontal derivative of the shear production term to the total production shear was found to be 45% and 15% of the total shear, at the CBWES and SWiFT sites, respectively, indicating that the horizontal derivatives applied in the budget equation should not be ignored in mesoscale model parameterizations, especially for cases with complex terrain with <10 km scale.« less

  13. Mapping soil textural fractions across a large watershed in north-east Florida.

    PubMed

    Lamsal, S; Mishra, U

    2010-08-01

    Assessment of regional scale soil spatial variation and mapping their distribution is constrained by sparse data which are collected using field surveys that are labor intensive and cost prohibitive. We explored geostatistical (ordinary kriging-OK), regression (Regression Tree-RT), and hybrid methods (RT plus residual Sequential Gaussian Simulation-SGS) to map soil textural fractions across the Santa Fe River Watershed (3585 km(2)) in north-east Florida. Soil samples collected from four depths (L1: 0-30 cm, L2: 30-60 cm, L3: 60-120 cm, and L4: 120-180 cm) at 141 locations were analyzed for soil textural fractions (sand, silt and clay contents), and combined with textural data (15 profiles) assembled under the Florida Soil Characterization program. Textural fractions in L1 and L2 were autocorrelated, and spatially mapped across the watershed. OK performance was poor, which may be attributed to the sparse sampling. RT model structure varied among textural fractions, and the model explained variations ranged from 25% for L1 silt to 61% for L2 clay content. Regression residuals were simulated using SGS, and the average of simulated residuals were used to approximate regression residual distribution map, which were added to regression trend maps. Independent validation of the prediction maps showed that regression models performed slightly better than OK, and regression combined with average of simulated regression residuals improved predictions beyond the regression model. Sand content >90% in both 0-30 and 30-60 cm covered 80.6% of the watershed area. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. The stress granule component G3BP is a novel interaction partner for the nuclear shuttle proteins of the nanovirus pea necrotic yellow dwarf virus and geminivirus abutilon mosaic virus.

    PubMed

    Krapp, Susanna; Greiner, Eva; Amin, Bushra; Sonnewald, Uwe; Krenz, Björn

    2017-01-02

    Stress granules (SGs) are structures within cells that regulate gene expression during stress response, e.g. viral infection. In mammalian cells assembly of SGs is dependent on the Ras-GAP SH3-domain-binding protein (G3BP). The C-terminal domain of the viral nonstructural protein 3 (nsP3) of Semliki Forest virus (SFV) forms a complex with mammalian G3BP and sequesters it into viral RNA replication complexes in a manner that inhibits the formation of SGs. The binding domain of nsP3 to HsG3BP was mapped to two tandem 'FGDF' repeat motifs close to the C-terminus of the viral proteins. It was speculated that plant viruses employ a similar strategy to inhibit SG function. This study identifies an Arabidopsis thaliana NTF2-RRM domain-containing protein as a G3BP-like protein (AtG3BP), which localizes to plant SGs. Moreover, the nuclear shuttle protein (NSP) of the begomovirus abutilon mosaic virus (AbMV), which harbors a 'FVSF'-motif at its C-terminal end, interacts with the AtG3BP-like protein, as does the 'FNGSF'-motif containing NSP of pea necrotic yellow dwarf virus (PNYDV), a member of the Nanoviridae family. We therefore propose that SG formation upon stress is conserved between mammalian and plant cells and that plant viruses may follow a similar strategy to inhibit plant SG function as it has been shown for their mammalian counterparts. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Picornavirus 2A protease regulates stress granule formation to facilitate viral translation

    PubMed Central

    Yang, Xiaodan; Hu, Zhulong; Fan, Shanshan; Zhang, Qiang; Zhong, Yi; Guo, Dong; Qin, Yali

    2018-01-01

    Stress granules (SGs) contain stalled messenger ribonucleoprotein complexes and are related to the regulation of mRNA translation. Picornavirus infection can interfere with the formation of SGs. However, the detailed molecular mechanisms and functions of picornavirus-mediated regulation of SG formation are not clear. Here, we found that the 2A protease of a picornavirus, EV71, induced atypical stress granule (aSG), but not typical stress granule (tSG), formation via cleavage of eIF4GI. Furthermore, 2A was required and sufficient to inhibit tSGs induced by EV71 infection, sodium arsenite, or heat shock. Infection of 2A protease activity-inactivated recombinant EV71 (EV71-2AC110S) failed to induce aSG formation and only induced tSG formation, which is PKR and eIF2α phosphorylation-dependent. By using a Renilla luciferase mRNA reporter system and RNA fluorescence in situ hybridization assay, we found that EV71-induced aSGs were beneficial to viral translation through sequestering only cellular mRNAs, but not viral mRNAs. In addition, we found that the 2A protease of other picornaviruses such as poliovirus and coxsackievirus also induced aSG formation and blocked tSG formation. Taken together, our results demonstrate that, on one hand, EV71 infection induces tSG formation via the PKR-eIF2α pathway, and on the other hand, 2A, but not 3C, blocks tSG formation. Instead, 2A induces aSG formation by cleaving eIF4GI to sequester cellular mRNA but release viral mRNA, thereby facilitating viral translation. PMID:29415027

  16. Acute and Chronic Changes in the Subglottis Induced by Graded CO2 Laser Injury in the Rabbit Airway*

    PubMed Central

    Otteson, Todd D.; Sandulache, Vlad C.; Barsic, Mark; DiSilvio, Gregory M.; Hebda, Patricia A.; Dohar, Joseph E.

    2010-01-01

    Objective To investigate the repair process following CO2 laser injury to the upper airway mucosa (UAM) during the development of chronic subglottic stenosis (SGS). Design Animals were assigned to either sham control (cricothyroidotomy only) or injured (cricothyroidotomy and posterior subglottic laser) groups using various CO2 laser exposures (8W, 12W, 16W) for 4 seconds. Subjects 24 New Zealand white rabbits. Interventions The subglottis was approached via cricothyroidotomy. Sham control airways were immediately closed while injured airways were subjected to graded CO2 laser exposures prior to closure. Airways were endoscopically monitored preoperatively, postoperatively, and on postoperative days 7,14,28,42,56,70 and 84. Animals were sacrificed at 14 and 84 days. Subglottic tissue was harvested for histological evaluation (re-epithelialization, extracellular matrix, vascularity and inflammation). Results 1) Increases in UAM thickness up to five times thicker than normal mucosa were observed, but were limited primarily to the lamina propria. The mucosal epithelium regenerated without chronic changes. Focal areas of cartilage repair were encountered acutely post-injury and to a greater extent in the chronic phases of repair. 2) Acutely, the thickened lamina propria was comprised of poorly organized extracellular matrix components and demonstrated increases in blood vessel size and number. 3) Histological changes present in the acute phase only partially resolved in progression to chronic SGS. Chronic SGS was characterized by thick collagen fiber bundles extending into the remodeled subglottic cartilage. Conclusions The CO2 laser induces acute changes to lamina propria architecture and vascularity which persist chronically. Elucidating responsible signaling pathways may facilitate the development of therapeutic agents to prevent or reduce the formation of SGS. PMID:18645117

  17. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana.

    PubMed

    Yang, Yongheng; Huang, Suzhen; Han, Yulin; Yuan, Haiyan; Gu, Chunsun; Wang, Zhongwei

    2015-01-01

    Plant growth and secondary metabolism are commonly regulated by external cues such as light, temperature and water availability. In this study, the influences of low and high temperatures, dehydration, photoperiods, and different growing stages on the changes of steviol glycosides (SGs) contents and transcription levels of fifteen genes involved in SGs biosynthesis of Stevia rebaudiana Bertoni were examined using HPLC and RT-PCR. The observations showed that the transcript levels of all the fifteen genes were maximum under 25 °C treatment, and the transcription of SrDXS, SrDXR, SrMCT, SrCMK, SrMDS, SrHDS, SrHDR, SrIDI, SrGGDPS, SrCPPS1, SrUGT85C2 and SrUGT76G1 were restrained both in low temperature (15 °C) and high temperature (35 °C). Most genes in SGs biosynthesis pathway exhibited down-regulation in dehydration. To elucidate the effect of photoperiods, the plants were treated by different simulated photoperiods (8 L/16 D, 1 0L/14 D, 14 L/10 D and 16 L/8 D), but no significant transcription changes were observed. In the study of growing stages, there were evident changes of SGs contents, and the transcript levels of all the fifteen genes were minimal in fast growing period, and exhibited evident increase both in flower-bud appearing stage and flowering stage. The obtained results strongly suggest that the effect of environmental cues on steviol glycosides contents and transcription of corresponding biosynthetic genes in S. rebaudiana is significant. It is worth to study deeply. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Biomass Yield and Steviol Glycoside Production in Callus and Suspension Culture of Stevia rebaudiana Treated with Proline and Polyethylene Glycol.

    PubMed

    Gupta, Pratibha; Sharma, Satyawati; Saxena, Sanjay

    2015-06-01

    Enhanced production of steviol glycosides (SGs) was observed in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol (PEG). To study their effect, yellow-green and compact calli obtained from in vitro raised Stevia leaves were sub-cultured on MS medium supplemented with 2.0 mg l(-1) NAA and different concentrations of proline (2.5-10 mM) and PEG (2.5-10 %) for 2 weeks, and incubated at 24 ± 1 °C and 22.4 μmol m(-2) s(-1) light intensity provided by white fluorescent tubes for 16 h. Callus and suspension culture biomass (i.e. both fresh and dry weight content) was increased with 5 mM proline and 5 % PEG, while at further higher concentrations, they got reduced. Further, quantification of SGs content in callus (collected at 15th day) and suspension culture (collected at 10th and 15th day) treated with and without elicitors was analysed by HPLC. It was observed that chemical stress enhanced the production of SGs significantly. In callus, the content of SGs increased from 0.27 (control) to 1.09 and 1.83 % with 7.5 mM proline and 5 % PEG, respectively, which was about 4.0 and 7.0 times higher than control. However, in the case of suspension culture, the same concentrations of proline and polyethylene glycol enhanced the SG content from 1.36 (control) to 5.03 and 6.38 %, respectively, on 10th day which were 3.7 times and 4.7 times higher than control.

  19. DNA Resection at Chromosome Breaks Promotes Genome Stability by Constraining Non-Allelic Homologous Recombination

    PubMed Central

    Koshland, Douglas

    2012-01-01

    DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5′→3′ resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12–48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer. PMID:22479212

  20. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    NASA Astrophysics Data System (ADS)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  1. A Dynamic Eddy Viscosity Model for the Shallow Water Equations Solved by Spectral Element and Discontinuous Galerkin Methods

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Suckale, Jenny; Giraldo, Francis X.; Constantinescu, Emil

    2016-04-01

    We present the solution of the viscous shallow water equations where viscosity is built as a residual-based subgrid scale model originally designed for large eddy simulation of compressible [1] and stratified flows [2]. The necessity of viscosity for a shallow water model not only finds motivation from mathematical analysis [3], but is supported by physical reasoning as can be seen by an analysis of the energetics of the solution. We simulated the flow of an idealized wave as it hits a set of obstacles. The kinetic energy spectrum of this flow shows that, although the inviscid Galerkin solutions -by spectral elements and discontinuous Galerkin [4]- preserve numerical stability in spite of the spurious oscillations in the proximity of the wave fronts, the slope of the energy cascade deviates from the theoretically expected values. We show that only a sufficiently small amount of dynamically adaptive viscosity removes the unwanted high-frequency modes while preserving the overall sharpness of the solution. In addition, it yields a physically plausible energy decay. This work is motivated by a larger interest in the application of a shallow water model to the solution of tsunami triggered coastal flows. In particular, coastal flows in regions around the world where coastal parks made of mitigation hills of different sizes and configurations are considered as a means to deviate the power of the incoming wave. References [1] M. Nazarov and J. Hoffman (2013) "Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods" Int. J. Numer. Methods Fluids, 71:339-357 [2] S. Marras, M. Nazarov, F. X. Giraldo (2015) "Stabilized high-order Galerkin methods based on a parameter-free dynamic SGS model for LES" J. Comput. Phys. 301:77-101 [3] J. F. Gerbeau and B. Perthame (2001) "Derivation of the viscous Saint-Venant system for laminar shallow water; numerical validation" Discrete Contin. Dyn. Syst. Ser. B, 1:89?102 [4] F. X. Giraldo and M. Restelli (2010) "High-order semi-implicit time-integrators for a triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids, 63:1077-1102

  2. Targeting the Ca(2+) Sensor STIM1 by Exosomal Transfer of Ebv-miR-BART13-3p is Associated with Sjögren's Syndrome.

    PubMed

    Gallo, Alessia; Jang, Shyh-Ing; Ong, Hwei Ling; Perez, Paola; Tandon, Mayank; Ambudkar, Indu; Illei, Gabor; Alevizos, Ilias

    2016-08-01

    Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease that is associated with inflammation and dysfunction of salivary and lacrimal glands. The molecular mechanism(s) underlying this exocrinopathy is not known, although the syndrome has been associated with viruses, such as the Epstein Barr Virus (EBV). We report herein that an EBV-specific microRNA (ebv-miR-BART13-3p) is significantly elevated in salivary glands (SGs) of pSS patients and we show that it targets stromal interacting molecule 1 (STIM1), a primary regulator of the store-operated Ca(2+) entry (SOCE) pathway that is essential for SG function, leading to loss of SOCE and Ca(2+)-dependent activation of NFAT. Although EBV typically infects B cells and not salivary epithelial cells, ebv-miR-BART13-3p is present in both cell types in pSS SGs. Importantly, we further demonstrate that ebv-miR-BART13-3p can be transferred from B cells to salivary epithelial cells through exosomes and it recapitulates its functional effects on calcium signaling in a model system. Published by Elsevier B.V.

  3. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development

    PubMed Central

    Rella, Antonella; Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Shamseddine, Achraf A.; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T.; Luberto, Chiara; Del Poeta, Maurizio

    2015-01-01

    Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis. PMID:26322039

  4. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development.

    PubMed

    Rella, Antonella; Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Shamseddine, Achraf A; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T; Luberto, Chiara; Del Poeta, Maurizio

    2015-01-01

    Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4(+) T-cells dependent. Immunocompromised mice, which lack CD4(+) T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis.

  5. VizieR Online Data Catalog: SAMI Galaxy Survey: gas streaming (Cecil+, 2016)

    NASA Astrophysics Data System (ADS)

    Cecil, G.; Fogarty, L. M. R.; Richards, S.; Bland-Hawthorn, J.; Lange, R.; Moffett, A.; Catinella, B.; Cortese, L.; Ho, I.-T.; Taylor, E. N.; Bryant, J. J.; Allen, J. T.; Sweet, S. M.; Croom, S. M.; Driver, S. P.; Goodwin, M.; Kelvin, L.; Green, A. W.; Konstantopoulos, I. S.; Owers, M. S.; Lawrence, J. S.; Lorente, N. P. F.

    2016-08-01

    From the first ~830 targets observed in the SGS, we selected 344 rotationally supported galaxies having enough gas to map their CSC. We rejected 8 whose inclination angle to us is too small (i<20°) to be established reliably by photometry, and those very strongly barred or in obvious interactions. Finally, we rejected those whose CSC would be smeared excessively by our PSF (Sect. 2.3.1) because of large inclination (i>71°), compact size, or observed in atrocious conditions, leaving 163 SGS GAMA survey sub-sample and 15 "cluster" sub-sample galaxies with discs. (3 data files).

  6. NDA Batch 2002-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollister, R

    QC sample results (daily background check drum and 100-gram SGS check drum) were within acceptance criteria established by WIPP's Quality Assurance Objectives for TRU Waste Characterization. Replicate runs were performed on drum LL85501243TRU. Replicate measurement results are identical at the 95% confidence level as established by WIPP criteria. HWM NCAR No. 02-1000168 issued on 17-Oct-2002 regarding a partially dislodged Cd sheet filter on the HPGe coaxial detector. This physical geometry occurred on 01-Oct-2002 and was not corrected until 10-Oct-2002, during which period is inclusive of the present batch run of drums. Per discussions among the Independent Technical Reviewer, Expert Reviewermore » and the Technical QA Supervisor, as well as in consultation with John Fleissner, Technical Point of Contact from Canberra, the analytical results are technically reliable. All QC standard runs during this period were in control. Data packet for SGS Batch 2002-13 generated using passive gamma-ray spectroscopy with the Pu Facility SGS unit is technically reasonable. All QC samples are in compliance with establiShed control limits. The batch data packet has been reviewed for correctness, completeness, consistency and compliance with WIPP's Quality Assurance Objectives and determined to be acceptable.« less

  7. Translation suppression promotes stress granule formation and cell survival in response to cold shock

    PubMed Central

    Hofmann, Sarah; Cherkasova, Valeria; Bankhead, Peter; Bukau, Bernd; Stoecklin, Georg

    2012-01-01

    Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2α (eIF2α) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock–induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2α phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia. PMID:22875991

  8. Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting.

    PubMed

    Langston, Lance D; Symington, Lorraine S

    2005-06-15

    Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.

  9. West nile virus infections suppress early viral RNA synthesis and avoid inducing the cell stress granule response.

    PubMed

    Courtney, S C; Scherbik, S V; Stockman, B M; Brinton, M A

    2012-04-01

    West Nile virus (WNV) recently became endemic in the United States and is a significant cause of human morbidity and mortality. Natural WNV strain infections do not induce stress granules (SGs), while W956IC (a lineage 2/1 chimeric WNV infectious clone) virus infections produce high levels of early viral RNA and efficiently induce SGs through protein kinase R (PKR) activation. Additional WNV chimeric viruses made by replacing one or more W956IC genes with the lineage 1 Eg101 equivalent in the W956IC backbone were analyzed. The Eg-NS4b+5, Eg-NS1+3+4a, and Eg-NS1+4b+5 chimeras produced low levels of viral RNA at early times of infection and inefficiently induced SGs, suggesting the possibility that interactions between viral nonstructural proteins and/or between viral nonstructural proteins and cell proteins are involved in suppressing early viral RNA synthesis and membrane remodeling during natural WNV strain infections. Detection of exposed viral double-stranded RNA (dsRNA) in W956IC-infected cells suggested that the enhanced early viral RNA synthesis surpassed the available virus-induced membrane protection and allowed viral dsRNA to activate PKR.

  10. Effects of strain on the half-metallicity and spin gapless feature of Ti2YSi (Y = Fe, Co) alloys

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoguang; Li, Jincheng; Jin, Yingjiu

    2018-05-01

    Half-metals and spin gapless semiconductors (SGSs), which exhibit 100% spin polarization at the Fermi level, are considered important candidates for spintronics. Using first-principles calculations, we have investigated the effects of uniform strain and tetragonal distortion on the half-metallicity and spin gapless feature of inverse Heusler Ti2YSi (Y = Fe and Co) alloys. Results show that for uniform strains, the half-metallicity occurs in the ranges of lattice parameters from 5.938 Å to 6.535 Å for Ti2FeSi and from 5.924 Å to 6.840 Å for Ti2CoSi. Tetragonal distortions over the ranges of ‑2.0% to +2.5% and ‑2.6% to +4.1% could destroy the half-metallicity for Ti2FeSi and Ti2CoSi, respectively. On the other hand, Ti2CoSi is an SGS at lattice constants of 5.968-6.023 Å. An interesting finding is that Ti2CoSi reproduces the SGS character with increasing the lattice parameters to 6.784-6.840 Å. Small tetragonal distortions with ±0.2% will destroy the SGS character of Ti2CoSi.

  11. Cognitive and social influences on early prosocial behavior in two sociocultural contexts.

    PubMed

    Kärtner, Joscha; Keller, Heidi; Chaudhary, Nandita

    2010-07-01

    In this cross-cultural study, we tested 2 main hypotheses: first, that an early self-concept along with self-other differentiation is a universal precursor of prosocial behavior in 19-month-olds, and second, that the importance attached to relational socialization goals (SGs) concerning interpersonal responsiveness (obedience, prosocial behavior) is related to toddlers' prosocial behavior. Contrary to these predictions, the results show that mirror self-recognition, as an indicator of early self-concept, was correlated with toddlers' prosociality only in the Berlin sample (N = 38) and not in the Delhi sample (N = 39). As expected, however, Delhi mothers emphasized relational SGs more strongly than did Berlin mothers. There were no cross-cultural differences in toddlers' prosociality. On an individual level, mothers' emphasis on relational SGs (obedience) was a significant predictor of toddlers' prosocial behavior. On the basis of these results, we propose that situational helping behavior based on shared intentional relations provides an alternative developmental pathway for understanding toddlers' prosocial behavior. This view differs from the often-cited view that anticipating other people as autonomous intentional agents with their own psychological states gives rise to prosocial behavior in toddlers.

  12. Natriuretic peptide system in the rat submaxillary gland.

    PubMed

    Jankowski, M; Petrone, C; Tremblay, J; Gutkowska, J

    1996-04-09

    Natriuretic peptides and their receptors were characterized in rat submaxillary glands (SGs). Reverse phase-high performance liquid chromatography (HPLC) of rat SGs extracts revealed the presence of the 28-amino-acid (AA) circulating peptide ANP (Ser99-Tyr126) and the 126-AA prohormone (Asn1-Tyr126). The presence of ANP prohormone indicated that SGs are a site of ANP synthesis. Indeed, ANP mRNAs were demonstrated. ANP mRNA was 10 times lower than in the lung and only about 7 times lower than in the hypothalamus. ANP content in SG was determined as 30 +/- 8 ng/mg of protein (n = 7). In addition the presence of another member of the natriuretic peptide family, C-type natriuretic peptide (CNP), was found in SG. The CNP level of 293 +/- 38 pg/mg protein was significantly higher than in the lungs (44 +/- 6 pg/mg protein, P < 0.001, n = 5), but about 15 times lower than in hypothalamus (4.5 +/- 0.6 ng/mg protein, P < 0.001, n = 6). Both guanylyl cyclase and clearance receptors were expressed in SG. The presence of natriuretic peptide transcripts and their receptors suggests a role in rat SG functions.

  13. Large Eddy Simulation of Transitional Flow in an Idealized Stenotic Blood Vessel: Evaluation of Subgrid Scale Models

    PubMed Central

    Pal, Abhro; Anupindi, Kameswararao; Delorme, Yann; Ghaisas, Niranjan; Shetty, Dinesh A.; Frankel, Steven H.

    2014-01-01

    In the present study, we performed large eddy simulation (LES) of axisymmetric, and 75% stenosed, eccentric arterial models with steady inflow conditions at a Reynolds number of 1000. The results obtained are compared with the direct numerical simulation (DNS) data (Varghese et al., 2007, “Direct Numerical Simulation of Stenotic Flows. Part 1. Steady Flow,” J. Fluid Mech., 582, pp. 253–280). An inhouse code (WenoHemo) employing high-order numerical methods for spatial and temporal terms, along with a 2nd order accurate ghost point immersed boundary method (IBM) (Mark, and Vanwachem, 2008, “Derivation and Validation of a Novel Implicit Second-Order Accurate Immersed Boundary Method,” J. Comput. Phys., 227(13), pp. 6660–6680) for enforcing boundary conditions on curved geometries is used for simulations. Three subgrid scale (SGS) models, namely, the classical Smagorinsky model (Smagorinsky, 1963, “General Circulation Experiments With the Primitive Equations,” Mon. Weather Rev., 91(10), pp. 99–164), recently developed Vreman model (Vreman, 2004, “An Eddy-Viscosity Subgrid-Scale Model for Turbulent Shear Flow: Algebraic Theory and Applications,” Phys. Fluids, 16(10), pp. 3670–3681), and the Sigma model (Nicoud et al., 2011, “Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations,” Phys. Fluids, 23(8), 085106) are evaluated in the present study. Evaluation of SGS models suggests that the classical constant coefficient Smagorinsky model gives best agreement with the DNS data, whereas the Vreman and Sigma models predict an early transition to turbulence in the poststenotic region. Supplementary simulations are performed using Open source field operation and manipulation (OpenFOAM) (“OpenFOAM,” http://www.openfoam.org/) solver and the results are inline with those obtained with WenoHemo. PMID:24801556

  14. Portfolios in Stochastic Local Search: Efficiently Computing Most Probable Explanations in Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Roth, Dan; Wilkins, David C.

    2001-01-01

    Portfolio methods support the combination of different algorithms and heuristics, including stochastic local search (SLS) heuristics, and have been identified as a promising approach to solve computationally hard problems. While successful in experiments, theoretical foundations and analytical results for portfolio-based SLS heuristics are less developed. This article aims to improve the understanding of the role of portfolios of heuristics in SLS. We emphasize the problem of computing most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically, we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy Search (SGS). SGS supports the integration of different initialization operators (or initialization heuristics) and different search operators (greedy and noisy heuristics), thereby enabling new analytical and experimental results. Analytically, we introduce a novel Markov chain model tailored to portfolio-based SLS algorithms including SGS, thereby enabling us to analytically form expected hitting time results that explain empirical run time results. For a specific BN, we show the benefit of using a homogenous initialization portfolio. To further illustrate the portfolio approach, we consider novel additive search heuristics for handling determinism in the form of zero entries in conditional probability tables in BNs. Our additive approach adds rather than multiplies probabilities when computing the utility of an explanation. We motivate the additive measure by studying the dramatic impact of zero entries in conditional probability tables on the number of zero-probability explanations, which again complicates the search process. We consider the relationship between MAXSAT and MPE, and show that additive utility (or gain) is a generalization, to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain framework, we show that expected hitting time is a rational function - i.e. a ratio of two polynomials - of the probability of applying an additive search operator. Experimentally, we report on synthetically generated BNs as well as BNs from applications, and compare SGSs performance to that of Hugin, which performs BN inference by compilation to and propagation in clique trees. On synthetic networks, SGS speeds up computation by approximately two orders of magnitude compared to Hugin. In application networks, our approach is highly competitive in Bayesian networks with a high degree of determinism. In addition to showing that stochastic local search can be competitive with clique tree clustering, our empirical results provide an improved understanding of the circumstances under which portfolio-based SLS outperforms clique tree clustering and vice versa.

  15. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    NASA Astrophysics Data System (ADS)

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy for the multipurpose uses of spring water is proposed according to the integration of the land use and spring water temperatures. The study results indicate that OK, SGS, and GIS are capable of characterizing spring water temperatures and the suitability of multipurpose uses of spring water. SGS realizations are more robust than OK estimates for characterizing spring water temperatures. Furthermore, current land use is almost ideal in the Jiaosi Hot Spring Region according to the estimated spatial pattern of spring water temperatures. Keywords: Hot spring; Temperature; Land use; Ordinary kriging; Sequential Gaussian simulation; Geographical information system

  16. Emotional self-other voice processing in schizophrenia and its relationship with hallucinations: ERP evidence.

    PubMed

    Pinheiro, Ana P; Rezaii, Neguine; Rauber, Andréia; Nestor, Paul G; Spencer, Kevin M; Niznikiewicz, Margaret

    2017-09-01

    Abnormalities in self-other voice processing have been observed in schizophrenia, and may underlie the experience of hallucinations. More recent studies demonstrated that these impairments are enhanced for speech stimuli with negative content. Nonetheless, few studies probed the temporal dynamics of self versus nonself speech processing in schizophrenia and, particularly, the impact of semantic valence on self-other voice discrimination. In the current study, we examined these questions, and additionally probed whether impairments in these processes are associated with the experience of hallucinations. Fifteen schizophrenia patients and 16 healthy controls listened to 420 prerecorded adjectives differing in voice identity (self-generated [SGS] versus nonself speech [NSS]) and semantic valence (neutral, positive, and negative), while EEG data were recorded. The N1, P2, and late positive potential (LPP) ERP components were analyzed. ERP results revealed group differences in the interaction between voice identity and valence in the P2 and LPP components. Specifically, LPP amplitude was reduced in patients compared with healthy subjects for SGS and NSS with negative content. Further, auditory hallucinations severity was significantly predicted by LPP amplitude: the higher the SAPS "voices conversing" score, the larger the difference in LPP amplitude between negative and positive NSS. The absence of group differences in the N1 suggests that self-other voice processing abnormalities in schizophrenia are not primarily driven by disrupted sensory processing of voice acoustic information. The association between LPP amplitude and hallucination severity suggests that auditory hallucinations are associated with enhanced sustained attention to negative cues conveyed by a nonself voice. © 2017 Society for Psychophysiological Research.

  17. Evaluation of the scale dependent dynamic SGS model in the open source code caffa3d.MBRi in wall-bounded flows

    NASA Astrophysics Data System (ADS)

    Draper, Martin; Usera, Gabriel

    2015-04-01

    The Scale Dependent Dynamic Model (SDDM) has been widely validated in large-eddy simulations using pseudo-spectral codes [1][2][3]. The scale dependency, particularly the potential law, has been proved also in a priori studies [4][5]. To the authors' knowledge there have been only few attempts to use the SDDM in finite difference (FD) and finite volume (FV) codes [6][7], finding some improvements with the dynamic procedures (scale independent or scale dependent approach), but not showing the behavior of the scale-dependence parameter when using the SDDM. The aim of the present paper is to evaluate the SDDM in the open source code caffa3d.MBRi, an updated version of the code presented in [8]. caffa3d.MBRi is a FV code, second-order accurate, parallelized with MPI, in which the domain is divided in unstructured blocks of structured grids. To accomplish this, 2 cases are considered: flow between flat plates and flow over a rough surface with the presence of a model wind turbine, taking for this case the experimental data presented in [9]. In both cases the standard Smagorinsky Model (SM), the Scale Independent Dynamic Model (SIDM) and the SDDM are tested. As presented in [6][7] slight improvements are obtained with the SDDM. Nevertheless, the behavior of the scale-dependence parameter supports the generalization of the dynamic procedure proposed in the SDDM, particularly taking into account that no explicit filter is used (the implicit filter is unknown). [1] F. Porté-Agel, C. Meneveau, M.B. Parlange. "A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer". Journal of Fluid Mechanics, 2000, 415, 261-284. [2] E. Bou-Zeid, C. Meneveau, M. Parlante. "A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows". Physics of Fluids, 2005, 17, 025105 (18p). [3] R. Stoll, F. Porté-Agel. "Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain". Water Resources Research, 2006, 42, WO1409 (18 p). [4] J. Keissl, M. Parlange, C. Meneveau. "Field experimental study of dynamic Smagorinsky models in the atmospheric surface layer". Journal of the Atmospheric Science, 2004, 61, 2296-2307. [5] E. Bou-Zeid, N. Vercauteren, M.B. Parlange, C. Meneveau. "Scale dependence of subgrid-scale model coefficients: An a priori study". Physics of Fluids, 2008, 20, 115106. [6] G. Kirkil, J. Mirocha, E. Bou-Zeid, F.K. Chow, B. Kosovic, "Implementation and evaluation of dynamic subfilter - scale stress models for large - eddy simulation using WRF". Monthly Weather Review, 2012, 140, 266-284. [7] S. Radhakrishnan, U. Piomelli. "Large-eddy simulation of oscillating boundary layers: model comparison and validation". Journal of Geophysical Research, 2008, 113, C02022. [8] G. Usera, A. Vernet, J.A. Ferré. "A parallel block-structured finite volume method for flows in complex geometry with sliding interfaces". Flow, Turbulence and Combustion, 2008, 81, 471-495. [9] Y-T. Wu, F. Porté-Agel. "Large-eddy simulation of wind-turbine wakes: evaluation of turbine parametrisations". BoundaryLayerMeteorology, 2011, 138, 345-366.

  18. Specific sulfation and glycosylation—a structural combination for the anticoagulation of marine carbohydrates

    PubMed Central

    Pomin, Vitor H.; Mourão, Paulo A. S.

    2014-01-01

    Based on considered achievements of the last 25 years, specific combinations of sulfation patterns and glycosylation types have been proved to be key structural players for the anticoagulant activity of certain marine glycans. These conclusions were obtained from comparative and systematic analyses on the structure-anticoagulation relationships of chemically well-defined sulfated polysaccharides of marine invertebrates and red algae. These sulfated polysaccharides are known as sulfated fucans (SFs), sulfated galactans (SGs) and glycosaminoglycans (GAGs). The structural combinations necessary for the anticoagulant activities are the 2-sulfation in α-L-SGs, the 2,4-di-sulfation in α-L-fucopyranosyl units found as composing units of certain sea-urchin and sea-cucumber linear SFs, or as branching units of the fucosylated chondroitin sulfate, a unique GAG from sea-cucumbers. Another unique GAG type from marine organisms is the dermatan sulfate isolated from ascidians. The high levels of 4-sulfation at the galactosamine units combined with certain levels of 2-sulfation at the iduronic acid units is the anticoagulant structural requirements of these GAGs. When the backbones of red algal SGs are homogeneous, the anticoagulation is proportionally dependent of their sulfation content. Finally, 4-sulfation was observed to be the structural motif required to enhance the inhibition of thrombin via heparin cofactor-II by invertebrate SFs. PMID:24639954

  19. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes.

    PubMed

    Thomas, María G; Martinez Tosar, Leandro J; Loschi, Mariela; Pasquini, Juana M; Correale, Jorge; Kindler, Stefan; Boccaccio, Graciela L

    2005-01-01

    Staufen is a conserved double-stranded RNA-binding protein required for mRNA localization in Drosophila oocytes and embryos. The mammalian homologues Staufen 1 and Staufen 2 have been implicated in dendritic RNA targeting in neurons. Here we show that in rodent oligodendrocytes, these two proteins are present in two independent sets of RNA granules located at the distal myelinating processes. A third kind of RNA granules lacks Staufen and contains major myelin mRNAs. Myelin Staufen granules associate with microfilaments and microtubules, and their subcellular distribution is affected by polysome-disrupting drugs. Under oxidative stress, both Staufen 1 and Staufen 2 are recruited into stress granules (SGs), which are stress-induced organelles containing transiently silenced messengers. Staufen SGs contain the poly(A)-binding protein (PABP), the RNA-binding proteins HuR and TIAR, and small but not large ribosomal subunits. Staufen recruitment into perinuclear SGs is paralleled by a similar change in the overall localization of polyadenylated RNA. Under the same conditions, the distribution of recently transcribed and exported mRNAs is not affected. Our results indicate that Staufen 1 and Staufen 2 are novel and ubiquitous SG components and suggest that Staufen RNPs are involved in repositioning of most polysomal mRNAs, but not of recently synthesized transcripts, during the stress response.

  20. Biosensors and Biofuel Cells based on Vertically Aligned Carbon Nanotubes for Integrated Energy Sensing, Generation, and Storage (SGS) Systems

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke

    2010-03-01

    Diabetes is a growing health issue in the nation. Thus in-situ glucose sensors that can monitor the glucose level in our body are in high demand. Furthermore, it will be exciting if the excessive blood sugar can be converted into usable energy, and be stored in miniature batteries for applications. This will be the basis for an integrated energy sensing, generation, and storage (SGS) system in the future. Here we report the use of functionalized carbon nanotubes arrays as the glucose sensors as well as fuel cells that can convert glucose into energy. In principle, these devices can be integrated to detect excessive blood glucose and then convert the glucose into energy. They are also inline with our efforts on miniature 3D microbatteries using CNTs [1]. All these devices will be the basis for future SGS systems. Details of these results will be discussed in the meeting. [1] Wang et al., in 206^th Meeting of the Electrochemical Society, October 3-8, Honolulu, Hawaii (2004), Symposium Q1, abstract 1492. Y. K. Yap acknowledges supports from DARPA (DAAD17-03-C-0115), USDA (2007-35603-17740), and the Multi-Scale Technologies Institute (MuSTI) at MTU.

  1. Enterovirus Control of Translation and RNA Granule Stress Responses.

    PubMed

    Lloyd, Richard E

    2016-03-30

    Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.

  2. Clinical usefulness of the mDIXON Quant the method for estimation of the salivary gland fat fraction: comparison with MR spectroscopy.

    PubMed

    Kise, Yoshitaka; Chikui, Toru; Yamashita, Yasuo; Kobayashi, Koji; Yoshiura, Kazunori

    2017-08-01

    To estimate the fat fraction (FF) in the salivary glands (SGs) by the mDIXON method and the 1 H-MR spectroscopy (MRS) method, and to compare the results. 16 healthy volunteers were enrolled. mDIXON Quant and MRS (point-resolved spectroscopy: PRESS) with a single TE were employed to measure the FF in the parotid gland (PG) and submandibular gland (SMG). Multiple TEs were applied in 10 volunteers to correct for T 2 decay. In addition, we assumed that the 1.3 ppm peak accounted for 60% of the total fat peak and estimated the FF (MRS all) as a gold standard. On mDIXON Quant images, volumes of interest were set on the bilateral SGs and we obtained the FF (mDIXON) of each volume of interest. There was a strong correlation between the results of the mDIXON Quant method and the MRS (single TE) method (R 2 = 0.960, slope = 0.900). Using PRESS with multiple TEs, there was also a strong correlation between FF (mDIXON) and FF (MRS all) (R 2 = 0.963, slope = 1.18). FF (MRS all) was 24.9±12.7% in the PG and 4.5±3.0% in the SMG, while FF (mDIXON) was 29.4±16.2% in the PG and 6.4±4.7% in the SMG. There were no significant differences between the two methods, but the Bland-Altman plot showed that FF (mDIXON) was slightly larger than FF (MRS all) for small FF areas. The mDIXON Quant method could be clinically useful for evaluating the FF of SGs, but the absolute values need careful interpretation. Advance in knowledge: This study suggested the potential clinical usefulness of the mDIXON Quant method for the SGs.

  3. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill

    PubMed Central

    González-Martínez, Santiago C.; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G.; Verdú, Miguel; Pausas, Juli G.

    2017-01-01

    Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. PMID:28159988

  4. Quantitative analysis of protein and gene expression in salivary glands of Sjogren's-like disease NOD mice treated by bone marrow soup.

    PubMed

    Misuno, Kaori; Tran, Simon D; Khalili, Saeed; Huang, Junwei; Liu, Younan; Hu, Shen

    2014-01-01

    Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Whole BM cells were lysed and soluble intracellular contents ("BM Soup") were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.

  5. Quantitative Analysis of Protein and Gene Expression in Salivary Glands of Sjogren’s-Like Disease NOD Mice Treated by Bone Marrow Soup

    PubMed Central

    Misuno, Kaori; Khalili, Saeed; Huang, Junwei; Liu, Younan

    2014-01-01

    Background Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Methods Whole BM cells were lysed and soluble intracellular contents (“BM Soup”) were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. Results BM Soup restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. Conclusion BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment. PMID:24489858

  6. Attitudes Regarding Labial Hypertrophy and Labiaplasty: A Survey of Members of the Society of Gynecologic Surgeons and the North American Society for Pediatric and Adolescent Gynecology.

    PubMed

    Westermann, Lauren B; Oakley, Susan H; Mazloomdoost, Donna; Crisp, Catrina C; Kleeman, Steven D; Benbouajili, Janine M; Pauls, Rachel N

    2016-01-01

    The aim of this study was to describe gynecologists' attitudes toward labial hypertrophy and explore possible differences among providers for pediatric/adolescent patients. This was an institutional review board-approved, cross-sectional survey of physician attendees at 2 national meetings in 2014: the Society of Gynecologic Surgeons (SGS) and the North American Society for Pediatric and Adolescent Gynecology (NASPAG). The survey was designed to query demographics and impressions regarding labial hypertrophy and labiaplasty. Three hundred sixty-five surveys were completed (response rate, 50%); 268 were analyzed: 55% from SGS and 45% from NASPAG. Most were older than 41 years; 170 (63%) were women, and 93 (35%) were men. More men than women attended SGS (60%); however, women were the majority at NASPAG (94%).Most respondents believed labial hypertrophy to be infrequently reported and "a condition that impacts body image." Common symptoms were "discomfort with exercise" and "dissatisfaction with appearance naked." The majority felt this to impact sexual function "in some cases," citing "self-esteem" and "comfort" most often.Concerning therapies for provided labial hypertrophy, 83% of practitioners provide reassurance, whereas 77% would offer labiaplasty. Expertise with labiaplasty varied; 28% felt "very comfortable," and 11% felt "very uncomfortable."Provider preference for treatment differed based on meeting attendance. After logistic regression controlling for sex and age, attendance at SGS remained associated with offering labiaplasty (P = 0.001; odds ratio, 4.1; 95% confidence interval, 1.8-9.3), whereas NASPAG attendance was associated with providing reassurance (P = 0.008; odds ratio, 0.30; 95% confidence interval, 0.10-0.70). Although the majority surveyed view labial hypertrophy to be bothersome, gynecologists caring for our youngest patients are more likely to provide reassurance. Consensus guidelines are needed to aid practitioners in appropriate management of labial hypertrophy.

  7. Comparison of Genetic Structure of Epixylic Liverwort Crossocalyx hellerianus between Central European and Fennoscandian Populations.

    PubMed

    Holá, Eva; Košnar, Jiří; Kučera, Jan

    2015-01-01

    Patterns of genetic variation and spatial genetic structure (SGS) were investigated in Crossocalyx hellerianus, a strictly epixylic dioicous liverwort (Scapaniaceae s.l., Marchantiophyta). Studied populations were located in Fennoscandia and Central Europe, with localities differing in availability of substrate and the population connectivity, and their populations consequently different in size, density, and prevailing reproductive mode. A set of nine polymorphic microsatellites was successfully developed and used. Identical individuals were only found within populations. Especially in large populations, the majority of the individuals were genetically unique. Resampled number of genotypes, mean number of observed alleles per locus after rarefaction, and Nei's gene diversity in large populations reached high values and ranged between 4.41-4.97, 3.13-4.45, and 0.94-0.99, respectively. On the contrary, the values in small populations were lower and ranged between 1.00-4.42, 1.00-2.73, and 0.00-0.95, respectively. As expected, large populations were found to be more genetically diverse than small populations but relatively big diversity of genotypes was also found in small populations. This indicated that even small populations are important sources of genetic variation in bryophytes and processes causing loss of genetic variation might be compensated by other sources of variability, of which somatic mutations might play an important role. The presence of SGS was discovered in all populations. Large populations possessed less SGS, with individuals showing a pronounced decrease in kinship over 50 cm of distance. Apparent SGS of small populations even at distances up to 16 meters suggests the aggregation of similar genotypes, caused predominantly by the deposition of asexually formed gemmae. Although no strong kinship was detectable at the distances over 16 meters in both small and large populations, identical genotypes were occasionally detected at longer distances (20-80 m), suggesting effective dispersal of asexual propagules.

  8. Comparison of Genetic Structure of Epixylic Liverwort Crossocalyx hellerianus between Central European and Fennoscandian Populations

    PubMed Central

    Holá, Eva; Košnar, Jiří; Kučera, Jan

    2015-01-01

    Patterns of genetic variation and spatial genetic structure (SGS) were investigated in Crossocalyx hellerianus, a strictly epixylic dioicous liverwort (Scapaniaceae s.l., Marchantiophyta). Studied populations were located in Fennoscandia and Central Europe, with localities differing in availability of substrate and the population connectivity, and their populations consequently different in size, density, and prevailing reproductive mode. A set of nine polymorphic microsatellites was successfully developed and used. Identical individuals were only found within populations. Especially in large populations, the majority of the individuals were genetically unique. Resampled number of genotypes, mean number of observed alleles per locus after rarefaction, and Nei’s gene diversity in large populations reached high values and ranged between 4.41–4.97, 3.13–4.45, and 0.94–0.99, respectively. On the contrary, the values in small populations were lower and ranged between 1.00–4.42, 1.00–2.73, and 0.00–0.95, respectively. As expected, large populations were found to be more genetically diverse than small populations but relatively big diversity of genotypes was also found in small populations. This indicated that even small populations are important sources of genetic variation in bryophytes and processes causing loss of genetic variation might be compensated by other sources of variability, of which somatic mutations might play an important role. The presence of SGS was discovered in all populations. Large populations possessed less SGS, with individuals showing a pronounced decrease in kinship over 50 cm of distance. Apparent SGS of small populations even at distances up to 16 meters suggests the aggregation of similar genotypes, caused predominantly by the deposition of asexually formed gemmae. Although no strong kinship was detectable at the distances over 16 meters in both small and large populations, identical genotypes were occasionally detected at longer distances (20–80 m), suggesting effective dispersal of asexual propagules. PMID:26186214

  9. Amateur Spectroscopy: What is Achievable from the Backyard?

    NASA Astrophysics Data System (ADS)

    Mais, D. E.; Stencel, R. E.

    2004-05-01

    Recent advances in technology have opened the doors for amateurs to potentially contribute in the area of spectroscopy. This is due to both a shift in the use of more sensitive CCD detectors and the recent availability of powerful and versatile spectrometers aimed at the amateur community. We will focus on the instrument produced by Santa Barbara Instrument Group (SBIG), the Self-Guided Spectrometer (SGS). This instrument appeared on the market about four years ago aimed at a sub group of amateurs. In conjunction with SBIG CCD cameras, the SGS is self-guiding in that it keeps the image of an object locked onto the entrance slit, which allows for long exposures to be taken. The SGS allows spectra to be obtained with only modest aperture instruments of stars down to 10-12 magnitude. In addition, the SGS features a dual grating carousal which, with the flip of a lever, allows you to obtain dispersions in the low-resolution mode ( 4 Angstroms/pixel) or higher resolution mode ( 1 Angstrom/pixel). In the low-resolution mode, about 3000 Angstrom coverage is obtained whereas in the high-resolution mode, about 750 Angstroms. The area of the visible and near infrared part of the spectrum you decide to obtain a spectrum is dialed in by the user. More recently, swappable grating carousals have allowed for gratings with even higher dispersions (0.5 -0.3 Angstroms/pixel). The lower resolution mode is useful for stellar classification and obtaining spectra of planetary nebula. In the high-resolution modes, many absorption lines are visible of atoms, ions and simple molecules. In addition, one can measure the Doppler shift of absorption and emission lines to determine velocities of approach or recession of objects along with rotation velocities of stars and planets. Our particular interests have focused on identifying chemical elements/ions and compounds in the atmospheres of stars and nebulae. The resolution and sensitivity of the instrument is such that we have been able to identify the unstable element technetium in certain S and C type stars along with anomalous 12C/13C ratios as measured by absorption bands of diatomic carbon (C2). Measurements of certain line intensity ratios in planetary nebula allows for the calculation of both the nebula temperature and electron density. Our presentation will go into detail on the use of the SGS, its calibration and some of the kinds of measurements that can be made with an amateur sized telescope equipped with such "off the shelf" instrument.

  10. On the impact index of synchronous generator displaced by DFIG on power system small-signal stability

    NASA Astrophysics Data System (ADS)

    Bi, J. T.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    As the maturity of wind power technology and the ageing and retirement of conventional synchronous generators, the displacement of synchronous generators by wind power generators would be a trend in the next few decades. The power system small-signal angular stability caused by the displacement is an urgent problem to be studied. The displacement of the SG by the DFIG includes withdrawing the dynamic interactions of the displaced SG and adding the dynamic interactions of the displacing DFIG. Based on this fact, a new index is proposed to predict the impact of the SG to be displaced by the DFIG on power system oscillation modes. The sensitivity index of the oscillation modes to the constant inertia of the displaced SGs, proposed in early literatures to estimate the dynamic impact of the SG being displaced by the DFIG, is also compared with the proposed index. The modified New England power system is adopted to show various results and conclusions. The proposed index can correctly identify the most dangerous and beneficial displacement to power system small-signal angular stability, and is very useful in practical applications.

  11. Time scales of biogeochemical and organismal responses to individual precipitation events

    NASA Astrophysics Data System (ADS)

    von Fischer, J. C.; Angert, A. L.; Augustine, D. J.; Brown, C.; Dijkstra, F. A.; Derner, J. D.; Hufbauer, R. A.; Fierer, N.; Milchunas, D. G.; Moore, J. C.; Steltzer, H.; Wallenstein, M. D.

    2010-12-01

    In temperate grasslands, spatial and intra-annual variability in the activity of plants and microbes are structured by patterns in the precipitation regime. While the effects of total annual precipitation have been well-explored, the ecological dynamics associated with individual precipitation events have not. Rainfall events induce a short-term pulse of soil respiration that may or may not be followed by stimulation of plant photosynthetic activity and growth. Because the underlying heterotrophic and autotrophic responses are interactive, respond over unique timescales and are sensitive to precipitation magnitude, it remains difficult to predict the hydrologic effects on net CO2 exchange. To develop a better mechanistic understanding of these processes, we conducted a synthetic, multi-investigator experiment to characterize the ecosystem responses to rainfall events of different sizes. Our work was conducted on the Shortgrass Steppe (SGS) LTER site over 7 days in June 2009, using 1cm and 2cm rainfall events, with controls and each treatment replicated 5 times in 2m x 2m plots. Our observations revealed both expected responses of plant activity and soil respiration, and surprising patterns in microbial enzyme activity and soil fauna population densities. Coupled with observed dynamics in 15N partitioning and kinetics, our findings provide empirical timescales for the complex ecological interactions that underlie the ecosystem responses to rainfall events. These results can be used to inform a new generation of ecosystem simulation models to more explicitly consider the time lags and interactions of different functional groups.

  12. Scale interactions of turbulence subjected to a straining relaxation destraining cycle

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Meneveau, Charles; Katz, Joseph

    2006-09-01

    The response of turbulence subjected to planar straining and de-straining is studied experimentally, and the impact of the applied distortions on the energy transfer across different length scales is quantified. The data are obtained using planar particle image velocimetry (PIV) in a water tank, in which high-Reynolds-number turbulence with very low mean velocity is generated by an array of spinning grids. Planar straining and de-straining mean flows are produced by pushing and pulling a rectangular piston towards, and away from, the bottom wall of the tank. The data are processed to yield the time evolution of Reynolds stresses, anisotropy tensors, turbulence kinetic energy production, and mean subgrid-scale (SGS) dissipation rate at various scales. During straining, the production rises rapidly. After the relaxation period the small-scale SGS stresses recover isotropy, but the Reynolds stresses still display significant anisotropy. Thus when destraining is applied, a strong negative production (mean backscatter) occurs, i.e. the turbulence returns kinetic energy to the mean flow. The SGS dissipation displays similar behaviour at large filter scales, but the mean backscatter gradually disappears with decreasing filter scales. Energy spectra are compared to predictions of rapid distortion theory (RDT). Good agreement is found for the initial response but, as expected for the time-scale ratios of the experiment, turbulence relaxation causes discrepancies between measurements and RDT at later times.

  13. Chymotrypsin with sialendoscopy-assisted surgery for the treatment of chronic obstructive parotitis.

    PubMed

    Sun, H-J; Xiao, J-Q; Qiao, Q-H; Bao, X; Wu, C-B; Zhou, Q

    2017-07-01

    Chronic obstructive parotitis (COP) is a common disease of the parotid gland. A total of 104 patients with COP were identified and randomized into a treatment group (52 cases) and a control group (52 cases). All patients underwent sialography and salivary gland scintigraphy (SGS) examinations before surgery. The patients in the treatment group received chymotrypsin combined with gentamicin via interventional sialendoscopy to irrigate the duct, and the control group received gentamicin alone. All patients were asked to record their pain on a visual analogue scale (VAS) before treatment and at 1 week, 2 weeks, 1 month, 3 months, and 6 months after surgery. The VAS score for pain intensity was decreased at 1 week post-treatment in both groups (P<0.05). Compared to the control group, the VAS score was lower in the treatment group at 1 week, 2 weeks, and 1 month post-treatment (P<0.05). The 6-month postoperative SGS results showed improved uptake and excretion in both groups (P<0.05). The treatment group exhibited higher scores for postoperative SGS excretion than the control group (P<0.05). The administration of chymotrypsin combined with gentamicin by sialendoscopy is effective for the treatment of non-stone-related COP and specifically improves the excretion function of the parotid gland. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. A prospective randomized clinical trial to investigate the effect of silicone gel sheeting (Cica-Care) on post-traumatic hypertrophic scar among the Chinese population.

    PubMed

    Li-Tsang, Cecilia W P; Lau, Joy C M; Choi, Jenny; Chan, Chetwyn C C; Jianan, Li

    2006-09-01

    This study aimed to determine the efficacy of silicone gel (Cica-Care) on severe post-traumatic hypertophic scars among the Chinese population. A randomized clinical trial (RCT) was conducted on 45 Chinese patients with post-traumatic hypertrophic scars. Twenty-two subjects were placed in the experimental group with silicone gel sheeting (SGS) applied 24h per day for 6 months while all subjects were taught to massage the scar daily for 15 min serving as the control intervention. Scar assessments were conducted regularly to measure the changes in thickness, pigmentation, vascularity, pliability, itchiness and pain. Two-way repeated ANOVA showed a significant difference between MT group and SGS group on scar thickness. The post hoc comparison analysis showed that the difference was significant at the post-2-month (p=0.008) and post-6-month (p<0.001) intervention. The SGS group also showed changes in pigmentation which resembled normal skin but no statistical significance was found. Pain, itchiness and pliability were also improved after intervention. This study indicated that silicone gel sheeting (Cica-Care) was effective to reduce thickness, pain, itchiness and pliability of the severe hypertrophic scar among the Chinese population. The moisturization effect of the tough and hard scar might contribute to the reduction of the skin thickness after 6 month's intervention.

  15. The effect of amphiphilic siloxane oligomers on fibroblast and keratinocyte proliferation and apoptosis.

    PubMed

    Lynam, Emily C; Xie, Yan; Loli, Bree; Dargaville, Tim R; Leavesley, David I; George, Graeme A; Upton, Zee

    2010-11-01

    The formation of hypertrophic scars (HSF) is a frequent medical outcome of wound repair and often requires further therapy with treatments such as silicone gel sheets (SGS) or apoptosis-inducing agents, including bleomycin. Although widely used, knowledge regarding SGS and their mode of action is limited. Preliminary research has shown that small amounts of amphiphilic silicone present in SGS have the ability to move into skin during treatment. We demonstrate herein that a commercially available analogue of these amphiphilic siloxane species, the rake copolymer GP226, decreases collagen synthesis on exposure to cultures of fibroblasts derived from HSF. By size exclusion chromatography, GP226 was found to be a mixture of siloxane species, containing five fractions of different molecular weight. By studies of collagen production, cell viability and proliferation, it was revealed that a low molecular weight fraction (fraction IV) was the most active, reducing the number of viable cells present after treatment and thereby reducing collagen production as a result. On exposure of fraction IV to human keratinocytes, viability and proliferation were also significantly affected. HSF undergoing apoptosis after application of fraction IV were also detected via real-time microscopy and by using the TUNEL assay. Taken together, these data suggests that these amphiphilic siloxanes could be potential non-invasive substitutes to apoptotic-inducing chemical agents that are currently used as scar treatments.

  16. Accelerating Sequential Gaussian Simulation with a constant path

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Raphaël; Mariethoz, Grégoire; Gravey, Mathieu; Gloaguen, Erwan; Holliger, Klaus

    2018-03-01

    Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational cost associated with determining the kriging weights. This problem is compounded by the fact that often many realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this problem is to keep the same simulation path for all realizations. This results in identical neighbourhood configurations and hence the kriging weights only need to be determined once and can then be re-used in all subsequent realizations. This approach is generally not recommended because it is expected to result in correlation between the realizations. Here, we challenge this common preconception and make the case for the use of a constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate reproduction of the covariance structure as well as computational efficiency.

  17. Glutathione-complexed [2Fe-2S] clusters function in Fe-S cluster storage and trafficking.

    PubMed

    Fidai, Insiya; Wachnowsky, Christine; Cowan, J A

    2016-10-01

    Glutathione-coordinated [2Fe-2S] complex is a non-protein-bound [2Fe-2S] cluster that is capable of reconstituting the human iron-sulfur cluster scaffold protein IscU. This complex demonstrates physiologically relevant solution chemistry and is a viable substrate for iron-sulfur cluster transport by Atm1p exporter protein. Herein, we report on some of the possible functional and physiological roles for this novel [2Fe-2S](GS4) complex in iron-sulfur cluster biosynthesis and quantitatively characterize its role in the broader network of Fe-S cluster transfer reactions. UV-vis and circular dichroism spectroscopy have been used in kinetic studies to determine second-order rate constants for [2Fe-2S] cluster transfer from [2Fe-2S](GS4) complex to acceptor proteins, such as human IscU, Schizosaccharomyces pombe Isa1, human and yeast glutaredoxins (human Grx2 and Saccharomyces cerevisiae Grx3), and human ferredoxins. Second-order rate constants for cluster extraction from these holo proteins were also determined by varying the concentration of glutathione, and a likely common mechanism for cluster uptake was determined by kinetic analysis. The results indicate that the [2Fe-2S](GS4) complex is stable under physiological conditions, and demonstrates reversible cluster exchange with a wide range of Fe-S cluster proteins, thereby supporting a possible physiological role for such centers.

  18. The role of gene flow in shaping genetic structures of the subtropical conifer species Araucaria angustifolia.

    PubMed

    Stefenon, V M; Gailing, O; Finkeldey, R

    2008-05-01

    The morphological features of pollen and seed of Araucaria angustifolia have led to the proposal of limited gene dispersal for this species. We used nuclear microsatellite and AFLP markers to assess patterns of genetic variation in six natural populations at the intra- and inter-population level, and related our findings to gene dispersal in this species. Estimates of both fine-scale spatial genetic structure (SGS) and migration rate suggest relatively short-distance gene dispersal. However, gene dispersal differed among populations, and effects of more efficient dispersal within population were observed in at least one stand. In addition, even though some seed dispersal may be aggregated in this principally barochorous species, reasonable secondary seed dispersal, presumably facilitated by animals, and overlap of seed shadows within populations is suggested. Overall, no correlation was observed between levels of SGS and inbreeding, density or age structure, except that a higher level of SGS was revealed for the population with a higher number of juvenile individuals. A low estimate for the number of migrants per generation between two neighbouring populations implies limited gene flow. We expect that stepping-stone pollen flow may have contributed to low genetic differentiation among populations observed in a previous survey. Thus, strategies for maintenance of gene flow among remnant populations should be considered in order to avoid degrading effects of population fragmentation on the evolution of A. angustifolia.

  19. Evaluation of a vortex-based subgrid stress model using DNS databases

    NASA Technical Reports Server (NTRS)

    Misra, Ashish; Lund, Thomas S.

    1996-01-01

    The performance of a SubGrid Stress (SGS) model for Large-Eddy Simulation (LES) developed by Misra k Pullin (1996) is studied for forced and decaying isotropic turbulence on a 32(exp 3) grid. The physical viability of the model assumptions are tested using DNS databases. The results from LES of forced turbulence at Taylor Reynolds number R(sub (lambda)) approximately equals 90 are compared with filtered DNS fields. Probability density functions (pdfs) of the subgrid energy transfer, total dissipation, and the stretch of the subgrid vorticity by the resolved velocity-gradient tensor show reasonable agreement with the DNS data. The model is also tested in LES of decaying isotropic turbulence where it correctly predicts the decay rate and energy spectra measured by Comte-Bellot & Corrsin (1971).

  20. Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widmer, F., E-mail: widmer@mps.mpg.de; Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen; Büchner, J.

    Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysicalmore » plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τ{sub t}. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τ{sub t} decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular resistivity η, as long as the initial level of turbulence is not too large. This implies that turbulence plays an important role to reach the limit of fast reconnection in large Reynolds number plasmas even for smaller amounts of turbulence.« less

  1. Teaching clinical reasoning and decision-making skills to nursing students: Design, development, and usability evaluation of a serious game.

    PubMed

    Johnsen, Hege Mari; Fossum, Mariann; Vivekananda-Schmidt, Pirashanthie; Fruhling, Ann; Slettebø, Åshild

    2016-10-01

    Serious games (SGs) are a type of simulation technology that may provide nursing students with the opportunity to practice their clinical reasoning and decision-making skills in a safe and authentic environment. Despite the growing number of SGs developed for healthcare professionals, few SGs are video based or address the domain of home health care. This paper aims to describe the design, development, and usability evaluation of a video based SG for teaching clinical reasoning and decision-making skills to nursing students who care for patients with chronic obstructive pulmonary disease (COPD) in home healthcare settings. A prototype SG was developed. A unified framework of usability called TURF (Task, User, Representation, and Function) and SG theory were employed to ensure a user-centered design. The educational content was based on the clinical decision-making model, Bloom's taxonomy, and a Bachelor of Nursing curriculum. A purposeful sample of six participants evaluated the SG prototype in a usability laboratory. Cognitive walkthrough evaluations, a questionnaire, and individual interviews were used for the usability evaluation. The data were analyzed using qualitative deductive content analysis based on the TURF framework elements and related usability heuristics. The SG was perceived as being realistic, clinically relevant, and at an adequate level of complexity for the intended users. Usability issues regarding functionality and the user-computer interface design were identified. However, the SG was perceived as being easy to learn, and participants suggested that the SG could serve as a supplement to traditional training in laboratory and clinical settings. Using video based scenarios with an authentic COPD patient and a home healthcare registered nurse as actors contributed to increased realism. Using different theoretical approaches in the SG design was considered an advantage of the design process. The SG was perceived as being useful, usable, and satisfying. The achievement of the desired functionality and the minimization of user-computer interface issues emphasize the importance of conducting a usability evaluation during the SG development process. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Increased fire frequency promotes stronger spatial genetic structure and natural selection at regional and local scales in Pinus halepensis Mill.

    PubMed

    Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam

    2017-04-01

    The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. Productivity and CO2 exchange of Great Plains ecoregions. I. Shortgrass steppe: Flux tower estimates

    USGS Publications Warehouse

    Gilmanov, Tagir G.; Morgan, Jack A.; Hanan, Niall P.; Wylie, Bruce K.; Rajan, Nithya; Smith, David P.; Howard, Daniel M.

    2017-01-01

    The shortgrass steppe (SGS) occupies the southwestern part of the Great Plains. Half of the land is cultivated, but significant areas remain under natural vegetation. Despite previous studies of the SGS carbon cycle, not all aspects have been completely addressed, including gross productivity, ecosystem respiration, and ecophysiological parameters. Our analysis of 1998 − 2007 flux tower measurements at five Bowen ratio–energy balance (BREB) and three eddy covariance (EC) sites characterized seasonal and interannual variability of gross photosynthesis and ecosystem respiration. Identification of the nonrectangular hyperbolic equation for the diurnal CO2 exchange, with vapor pressure deficit (VPD) limitation and exponential temperature response, quantified quantum yield α, photosynthetic capacity Amax, and respiration rate rd with variation ranges (19 \\< α \\< 51 mmol mol− 1, 0.48 \\< Amax \\< 2.1 mg CO2 m− 2 s− 1, 0.15 \\< rd \\< 0.49 mg CO2 m− 2 s− 1). Gross photosynthesis varied from 1 100 to 2 700 g CO2 m− 2 yr− 1, respiration from 900 to 3,000 g CO2 m− 2 yr− 1, and net ecosystem production from − 900 to + 700 g CO2 m− 2 yr− 1, indicating that SGS may switch from a sink to a source depending on weather. Comparison of the 2004 − 2006 measurements at two BREB and two parallel EC flux towers located at comparable SGS sites showed moderately higher photosynthesis, lower respiration, and higher net production at the BREB than EC sites. However, the difference was not related only to methodologies, as the normalized difference vegetation index at the BREB sites was higher than at the EC sites. Overall magnitudes and seasonal patterns at the BREB and the EC sites during the 3-yr period were similar, with trajectories within the ± 1.5 standard deviation around the mean of the four sites and mostly reflecting the effects of meteorology.

  4. Roles of exonucleases and translesion synthesis DNA polymerases during mitotic gap repair in yeast

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Transformation-based gap-repair assays have long been used to model the repair of mitotic double-strand breaks (DSBs) by homologous recombination in yeast. In the current study, we examine genetic requirements of two key processes involved in DSB repair: (1) the processive 5′-end resection that is required to efficiently engage a repair template and (2) the filling of resected ends by DNA polymerases. The specific gap-repair assay used allows repair events resolved as crossover versus noncrossover products to be distinguished, as well as the extent of heteroduplex DNA formed during recombination to be measured. To examine end resection, the efficiency and outcome of gap repair were monitored in the absence of the Exo1 exonuclease and the Sgs1 helicase. We found that either Exo1 or Sgs1 presence is sufficient to inhibit gap-repair efficiency over 10-fold, consistent with resection-mediated destruction of the introduced plasmid. In terms of DNA polymerase requirements for gap repair, we focused specifically on potential roles of the Pol ζ and Pol η translesion synthesis DNA polymerases. We found that both Pol ζ and Pol η are necessary for efficient gap repair and that each functions independently of the other. These polymerases may be either in the initiation of DNA synthesis from the an invading end, or in a gap-filling process that is required to complete recombination. PMID:24210827

  5. On the implicit density based OpenFOAM solver for turbulent compressible flows

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří

    The contribution deals with the development of coupled implicit density based solver for compressible flows in the framework of open source package OpenFOAM. However the standard distribution of OpenFOAM contains several ready-made segregated solvers for compressible flows, the performance of those solvers is rather week in the case of transonic flows. Therefore we extend the work of Shen [15] and we develop an implicit semi-coupled solver. The main flow field variables are updated using lower-upper symmetric Gauss-Seidel method (LU-SGS) whereas the turbulence model variables are updated using implicit Euler method.

  6. American woodcock migratory connectivity as indicated by hydrogen isotopes

    USGS Publications Warehouse

    Sullins, Daniel S.; Conway, Warren C.; Haukos, David A.; Hobson, Keith A.; Wassenaar, Leonard I; Comer, Christopher E.; Hung, I-Kuai

    2016-01-01

    To identify factors contributing to the long-term decline of American woodcock, a holistic understanding of range-wide population connectivity throughout the annual cycle is needed. We used band recovery data and isotopic composition of primary (P1) and secondary (S13) feathers to estimate population sources and connectivity among natal, early fall, and winter ranges of hunter-harvested juvenile American woodcock. We used P1 feathers from known-origin pre-fledged woodcock (n = 43) to create a hydrogenδ2Hf isoscape by regressing δ2Hf against expected growing-season precipitation (δ2Hp). Modeled δ2Hp values explained 79% of the variance in P1 δ2Hf values, indicating good model fit for estimating woodcock natal origins. However, a poor relationship (r2 = 0.23) between known-origin, S13 δ2Hf values, and expected δ2Hp values precluded assignment of early fall origins. We applied the δ2Hfisoscape to assign natal origins using P1 feathers from 494 hunter-harvested juvenile woodcock in the United States and Canada during 2010–2011 and 2011–2012 hunting seasons. Overall, 64% of all woodcock origins were assigned to the northernmost (>44°N) portion of both the Central and Eastern Management Regions. In the Eastern Region, assignments were more uniformly distributed along the Atlantic coast, whereas in the Central Region, most woodcock were assigned to origins within and north of the Great Lakes region. We compared our origin assignments to spatial coverage of the annual American woodcock Singing Ground Survey (SGS) and evaluated whether the survey effectively encompasses the entire breeding range. When we removed the inadequately surveyed Softwood shield Bird Conservation Region (BCR) from the northern portion of the SGS area, only 48% of juvenile woodcock originated in areas currently surveyed by the SGS. Of the individuals assigned to the northernmost portions of the breeding range, several were harvested in the southern extent of the wintering range. Based upon this latitudinal winter stratification, we examined whether woodcock employed a leapfrog migration strategy. Using δ2Hf values and band-recovery data, we found some support for this migration strategy hypothesis but not as a singular explanation. The large harvest derivation of individuals from the northernmost portions of the breeding range, and the difference in breeding distributions within each Management Region should be considered in future range-wide conservation and harvest management planning for American woodcock. 

  7. 78 FR 46595 - Accreditation of SGS North America, Inc., as a Commercial Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... accredited to test petroleum, petroleum products, organic chemicals and vegetable oils for customs purposes..., CA 94590, has been accredited to test petroleum, petroleum products, organic chemicals and vegetable...

  8. The influence of Ag content and annealing time on structural and optical properties of SGS antimony-germanate glass doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Zmojda, J.; Kochanowicz, M.; Miluski, P.; Baranowska, A.; Basa, A.; Jadach, R.; Sitarz, M.; Dorosz, D.

    2018-05-01

    A series of erbium doped SGS antimony-germanate glass embedding silver (Ag0) nanoparticles have been synthesized by a one-step melt-quench thermochemical reduction technique. The effect of NPs concentration and annealing time on the structural and photoluminescent (PL) properties were investigated. The Raman spectra as a function of temperature measured in-situ allow to determine the structural changes in vicinity of Ag+ ions and confirmed thermochemical reduction of Ag+ ions by Sb3+ ions. The surface plasmon resonance absorption band was evidenced near 450 nm. The impact of local field effect generated by Ag0 nanoparticles (NPs) and energy transfer from surface of silver NPs to trivalent erbium ions on near-infrared and up-conversion luminescence was described in terms of enhancement and quench phenomena.

  9. Large-eddy simulations of compressible convection on massively parallel computers. [stellar physics

    NASA Technical Reports Server (NTRS)

    Xie, Xin; Toomre, Juri

    1993-01-01

    We report preliminary implementation of the large-eddy simulation (LES) technique in 2D simulations of compressible convection carried out on the CM-2 massively parallel computer. The convective flow fields in our simulations possess structures similar to those found in a number of direct simulations, with roll-like flows coherent across the entire depth of the layer that spans several density scale heights. Our detailed assessment of the effects of various subgrid scale (SGS) terms reveals that they may affect the gross character of convection. Yet, somewhat surprisingly, we find that our LES solutions, and another in which the SGS terms are turned off, only show modest differences. The resulting 2D flows realized here are rather laminar in character, and achieving substantial turbulence may require stronger forcing and less dissipation.

  10. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  11. Comparing the physical demands of friendly matches and small-sided games in semiprofessional soccer players.

    PubMed

    Casamichana, David; Castellano, Julen; Castagna, Carlo

    2012-03-01

    This study compared the physical demands of friendly matches (FMs) and small-sided games (SGs) in semiprofessional soccer players by means of global positioning system technology. Twenty-seven semiprofessional soccer players were monitored during 7 FMs and 9 sessions involving different SGs. Their physical profile was described on the basis of 20 variables related to distances and frequencies at different running speeds, the number of accelerations, and through global indicators of workload such as the work:rest ratio, player workload, and the exertion index. Results showed significant differences (p < 0.01) between SGs and FMs for the following variables: overall workload (SG > FM); the distribution of the distance covered in the speed zones 7.0-12.9 km·h(-1) (SG > FM) and >21 km·h(-1) (FM > SG); the distribution of time spent in certain speed zones (FM > SG: 0.0-6.9 and >21 km·h(-1); FM > SG: 7.0-12.9 km·h(-1)). More sprints per hour of play were performed during FMs, with greater mean durations and distances, greater maximum durations and distances, and a greater frequency per hour of play for sprints of 10-40 and >40 m (p < 0.01). The frequency of repeated high-intensity efforts was higher during FM (p < 0.01). The results show that coaches and strength and conditioning professionals should consider FMs during their training routine to foster specific adaptations in the domain of high-intensity effort.

  12. Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Inoue, Michio

    The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine precision and it is speculated, but not demonstrated, that even larger Retheta could be achieved with quad- or higher-precision arithmetic. Second, the time series velocity signals obtained from LES within the logarithmic region of the zero-pressure gradient turbulent boundary layer are used in combination with an empirical, predictive inner--outer wall model [Marusic et al., "Predictive model for wall-bounded turbulent flow'', Science 329, 193 (2010)] to calculate the statistics of the fluctuating streamwise velocity in the inner region of the zero-pressure gradient turbulent boundary layer. Results, including spectra and moments up to fourth order, are compared with equivalent predictions using experimental time series, as well as with direct experimental measurements at Reynolds numbers Retau based on the friction velocity and the boundary layer thickness, Retau = 7,300, 13,600 and 19,000. LES combined with the wall model are then used to extend the inner-layer predictions to Reynolds numbers Retau = 62,000, 100,000 and 200,000 that lie within a gap in log(Retau) space between laboratory measurements and surface-layer, atmospheric experiments. The present results support a log-like increase in the near-wall peak of the streamwise turbulence intensities with Retau and also provide a means of extending LES results at large Reynolds numbers to the near-wall region of wall-bounded turbulent flows. Finally, we apply the wall model to LES of a turbulent boundary layer subject to an adverse pressure gradient. Computed statistics are found to be consistent with recent experiments and some Reynolds number similarity is observed over a range of two orders of magnitude.

  13. On the large eddy simulation of turbulent flows in complex geometry

    NASA Technical Reports Server (NTRS)

    Ghosal, Sandip

    1993-01-01

    Application of the method of Large Eddy Simulation (LES) to a turbulent flow consists of three separate steps. First, a filtering operation is performed on the Navier-Stokes equations to remove the small spatial scales. The resulting equations that describe the space time evolution of the 'large eddies' contain the subgrid-scale (sgs) stress tensor that describes the effect of the unresolved small scales on the resolved scales. The second step is the replacement of the sgs stress tensor by some expression involving the large scales - this is the problem of 'subgrid-scale modeling'. The final step is the numerical simulation of the resulting 'closed' equations for the large scale fields on a grid small enough to resolve the smallest of the large eddies, but still much larger than the fine scale structures at the Kolmogorov length. In dividing a turbulent flow field into 'large' and 'small' eddies, one presumes that a cut-off length delta can be sensibly chosen such that all fluctuations on a scale larger than delta are 'large eddies' and the remainder constitute the 'small scale' fluctuations. Typically, delta would be a length scale characterizing the smallest structures of interest in the flow. In an inhomogeneous flow, the 'sensible choice' for delta may vary significantly over the flow domain. For example, in a wall bounded turbulent flow, most statistical averages of interest vary much more rapidly with position near the wall than far away from it. Further, there are dynamically important organized structures near the wall on a scale much smaller than the boundary layer thickness. Therefore, the minimum size of eddies that need to be resolved is smaller near the wall. In general, for the LES of inhomogeneous flows, the width of the filtering kernel delta must be considered to be a function of position. If a filtering operation with a nonuniform filter width is performed on the Navier-Stokes equations, one does not in general get the standard large eddy equations. The complication is caused by the fact that a filtering operation with a nonuniform filter width in general does not commute with the operation of differentiation. This is one of the issues that we have looked at in detail as it is basic to any attempt at applying LES to complex geometry flows. Our principal findings are summarized.

  14. 78 FR 52557 - Approval of SGS North America, Inc., as a Commercial Gauger

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... petroleum, petroleum products, organic chemicals and vegetable oils for customs purposes for the next three... 77541, has been approved to gauge petroleum, petroleum products, organic chemicals and vegetable oils...

  15. Geostatistical conditional simulation for the assessment of contaminated land by abandoned heavy metal mining.

    PubMed

    Ersoy, Adem; Yunsel, Tayfun Yusuf; Atici, Umit

    2008-02-01

    Abandoned mine workings can undoubtedly cause varying degrees of contamination of soil with heavy metals such as lead and zinc has occurred on a global scale. Exposure to these elements may cause to harm human health and environment. In the study, a total of 269 soil samples were collected at 1, 5, and 10 m regular grid intervals of 100 x 100 m area of Carsington Pasture in the UK. Cell declustering technique was applied to the data set due to no statistical representativity. Directional experimental semivariograms of the elements for the transformed data showed that both geometric and zonal anisotropy exists in the data. The most evident spatial dependence structure of the continuity for the directional experimental semivariogram, characterized by spherical and exponential models of Pb and Zn were obtained. This study reports the spatial distribution and uncertainty of Pb and Zn concentrations in soil at the study site using a probabilistic approach. The approach was based on geostatistical sequential Gaussian simulation (SGS), which is used to yield a series of conditional images characterized by equally probable spatial distributions of the heavy elements concentrations across the area. Postprocessing of many simulations allowed the mapping of contaminated and uncontaminated areas, and provided a model for the uncertainty in the spatial distribution of element concentrations. Maps of the simulated Pb and Zn concentrations revealed the extent and severity of contamination. SGS was validated by statistics, histogram, variogram reproduction, and simulation errors. The maps of the elements might be used in the remediation studies, help decision-makers and others involved in the abandoned heavy metal mining site in the world.

  16. Enhanced Representation of Turbulent Flow Phenomena in Large-Eddy Simulations of the Atmospheric Boundary Layer using Grid Refinement with Pseudo-Spectral Numerics

    NASA Astrophysics Data System (ADS)

    Torkelson, G. Q.; Stoll, R., II

    2017-12-01

    Large Eddy Simulation (LES) is a tool commonly used to study the turbulent transport of momentum, heat, and moisture in the Atmospheric Boundary Layer (ABL). For a wide range of ABL LES applications, representing the full range of turbulent length scales in the flow field is a challenge. This is an acute problem in regions of the ABL with strong velocity or scalar gradients, which are typically poorly resolved by standard computational grids (e.g., near the ground surface, in the entrainment zone). Most efforts to address this problem have focused on advanced sub-grid scale (SGS) turbulence model development, or on the use of massive computational resources. While some work exists using embedded meshes, very little has been done on the use of grid refinement. Here, we explore the benefits of grid refinement in a pseudo-spectral LES numerical code. The code utilizes both uniform refinement of the grid in horizontal directions, and stretching of the grid in the vertical direction. Combining the two techniques allows us to refine areas of the flow while maintaining an acceptable grid aspect ratio. In tests that used only refinement of the vertical grid spacing, large grid aspect ratios were found to cause a significant unphysical spike in the stream-wise velocity variance near the ground surface. This was especially problematic in simulations of stably-stratified ABL flows. The use of advanced SGS models was not sufficient to alleviate this issue. The new refinement technique is evaluated using a series of idealized simulation test cases of neutrally and stably stratified ABLs. These test cases illustrate the ability of grid refinement to increase computational efficiency without loss in the representation of statistical features of the flow field.

  17. Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Grete, Philipp; Vlaykov, Dimitar G.; Schmidt, Wolfram; Schleicher, Dominik R. G.; Federrath, Christoph

    2015-02-01

    Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment—magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures—models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The SGS energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pressure ({{β }p}=0.25,1,2.5,5,25) and sonic Mach numbers ({{M}s}=2,2.5,4). Furthermore, we make a comparison to traditional, phenomenological eddy-viscosity and α -β -γ closures. We find only mediocre performance of the kinetic eddy-viscosity and α -β -γ closures, and that the magnetic eddy-viscosity closure is poorly correlated with the simulation data. Moreover, three of five coefficients of the traditional closures exhibit a significant spread in values. In contrast, our new closures demonstrate consistently high correlations and constant coefficient values over time and over the wide range of parameters tested. Important aspects in compressible MHD turbulence such as the bi-directional energy cascade, turbulent magnetic pressure and proper alignment of the EMF are well described by our new closures.

  18. 77 FR 69651 - Approval of SGS North America, Inc., as a Commercial Gauger

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ...), Sulphur, LA 70663, has been approved to gauge petroleum, petroleum products, organic chemicals and... 1500N, Washington, DC 20229, 202-344- 1060. Dated: November 14, 2012. Ira S. Reese, Executive Director...

  19. 77 FR 47430 - Approval of SGS North America, Inc., as a Commercial Gauger

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ..., TX 77592, has been approved to gauge petroleum, petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the provisions of 19 CFR 151.13. Anyone wishing to employ...

  20. Development and Validation of the Body-Focused Shame and Guilt Scale

    PubMed Central

    Weingarden, Hilary; Renshaw, Keith D.; Tangney, June P.; Wilhelm, Sabine

    2015-01-01

    Body shame is described as central in clinical literature on body dysmorphic disorder (BDD). However, empirical investigations of body shame within BDD are rare. One potential reason for the scarcity of such research may be that existing measures of body shame focus on eating and weight-based content. Within BDD, however, body shame likely focuses more broadly on shame felt in response to perceived appearance flaws in one’s body parts. We describe the development and validation of the Body-Focused Shame and Guilt Scale (BF-SGS), a measure of BDD-relevant body shame, across two studies: a two time-point study of undergraduates, and a follow-up study in two Internet-recruited clinical samples (BDD, obsessive compulsive disorder) and healthy controls. Across both studies, the BF-SGS shame subscale demonstrated strong reliability and construct validity, with Study 2 providing initial clinical norms. PMID:26640760

  1. KSC00padig072

    NASA Image and Video Library

    2000-11-02

    Center Director Roy Bridges addresses the audience at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center that will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS

  2. KSC-00padig072

    NASA Image and Video Library

    2000-11-02

    Center Director Roy Bridges addresses the audience at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center that will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS

  3. KSC-00padig073

    NASA Image and Video Library

    2000-11-02

    Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS) presents an award of appreciation to H.T. Everett, KSC Propellants manager, at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Center Director Roy Bridges;); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS

  4. KSC-00padig071

    NASA Image and Video Library

    2000-11-02

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, Ramon Lugo, acting executive director, JPMO , presents a plaque to Center Director Roy Bridges. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad

  5. KSC-00padig070

    NASA Image and Video Library

    2000-11-02

    Jerry Jorgensen welcomes the audience to the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. Jorgensen, with Space Gateway Support (SGS), is the pipeline project manager. To the right is Ramon Lugo, acting executive director, JPMO. Others at the ceremony were Center Director Roy Bridges; Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad

  6. KSC00padig071

    NASA Image and Video Library

    2000-11-02

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, Ramon Lugo, acting executive director, JPMO , presents a plaque to Center Director Roy Bridges. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad

  7. KSC00padig073

    NASA Image and Video Library

    2000-11-02

    Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS) presents an award of appreciation to H.T. Everett, KSC Propellants manager, at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Center Director Roy Bridges;); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS

  8. Peregrine

    PubMed Central

    Langevin, Stanley A.; Bent, Zachary W.; Solberg, Owen D.; Curtis, Deanna J.; Lane, Pamela D.; Williams, Kelly P.; Schoeniger, Joseph S.; Sinha, Anupama; Lane, Todd W.; Branda, Steven S.

    2013-01-01

    Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows. PMID:23558773

  9. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, Ramon Lugo, acting executive director, JPMO , presents a plaque to Center Director Roy Bridges. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad.

  10. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS) presents an award of appreciation to H.T. Everett, KSC Propellants manager, at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Center Director Roy Bridges;); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS.

  11. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jerry Jorgensen welcomes the audience to the commissioning of a new high-pressure helium pipeline at Kennedy Space Center. Jorgensen, with Space Gateway Support (SGS), is the pipeline project manager. To the right is Ramon Lugo, acting executive director, JPMO. Others at the ceremony were Center Director Roy Bridges; Col. Samuel Dick, representative of the 45th Space Wing; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS. The pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile-long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad.

  12. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Center Director Roy Bridges addresses the audience at the commissioning of a new high-pressure helium pipeline at Kennedy Space Center that will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. The nine-mile- long buried pipeline will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS); Col. Samuel Dick, representative of the 45th Space Wing; Ramon Lugo, acting executive director, JPMO; David Herst, director, Delta IV Launch Sites; Pierre Dufour, president and CEO, Air Liquide America Corporation; and Michael Butchko, president, SGS.

  13. Ultra-Precision Measurement and Control of Angle Motion in Piezo-Based Platforms Using Strain Gauge Sensors and a Robust Composite Controller

    PubMed Central

    Liu, Lei; Bai, Yu-Guang; Zhang, Da-Li; Wu, Zhi-Gang

    2013-01-01

    The measurement and control strategy of a piezo-based platform by using strain gauge sensors (SGS) and a robust composite controller is investigated in this paper. First, the experimental setup is constructed by using a piezo-based platform, SGS sensors, an AD5435 platform and two voltage amplifiers. Then, the measurement strategy to measure the tip/tilt angles accurately in the order of sub-μrad is presented. A comprehensive composite control strategy design to enhance the tracking accuracy with a novel driving principle is also proposed. Finally, an experiment is presented to validate the measurement and control strategy. The experimental results demonstrate that the proposed measurement and control strategy provides accurate angle motion with a root mean square (RMS) error of 0.21 μrad, which is approximately equal to the noise level. PMID:23860316

  14. Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project.

    PubMed

    Zucchella, Chiara; Sinforiani, Elena; Tassorelli, Cristina; Cavallini, Elena; Tost-Pardell, Daniela; Grau, Sergi; Pazzi, Stefania; Puricelli, Stefano; Bernini, Sara; Bottiroli, Sara; Vecchi, Tomaso; Sandrini, Giorgio; Nappi, Giuseppe

    2014-01-01

    Conventional cognitive assessment is based on a pencil-and-paper neuropsychological evaluation, which is time consuming, expensive and requires the involvement of several professionals. Information and communication technology could be exploited to allow the development of tools that are easy to use, reduce the amount of data processing, and provide controllable test conditions. Serious games (SGs) have the potential to be new and effective tools in the management and treatment of cognitive impairments Serious games for screening pre-dementia conditions: from virtuality to reality? A pilot project in the elderly. Moreover, by adopting SGs in 3D virtual reality settings, cognitive functions might be evaluated using tasks that simulate daily activities, increasing the "ecological validity" of the assessment. In this commentary we report our experience in the creation of the Smart Aging platform, a 3D SGand virtual environment-based platform for the early identification and characterization of mild cognitive impairment.

  15. Modeling of Surface Geometric Structure State After Integratedformed Milling and Finish Burnishing

    NASA Astrophysics Data System (ADS)

    Berczyński, Stefan; Grochała, Daniel; Grządziel, Zenon

    2017-06-01

    The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after-milling SGS modeling enables substantial acceleration of the computing process. There is a visible reduction of the Ra parameter value for milled and burnished surfaces as the burnishing force rises. The tests determined an optimal burnishing force at a level of 500 N (lowest Ra = 0.24 μm). Further increase in the value of burnishing force turned out not to affect the surface roughness, which is consistent with the results obtained from experimental studies.

  16. Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model

    NASA Astrophysics Data System (ADS)

    Wen, Xu; Luo, Kun; Jin, Hanhui; Fan, Jianren

    2017-09-01

    An extended flamelet/progress variable (EFPV) model for simulating pulverised coal combustion (PCC) in the context of large eddy simulation (LES) is proposed, in which devolatilisation, char surface reaction and radiation are all taken into account. The pulverised coal particles are tracked in the Lagrangian framework with various sub-models and the sub-grid scale (SGS) effects of turbulent velocity and scalar fluctuations on the coal particles are modelled by the velocity-scalar joint filtered density function (VSJFDF) model. The presented model is then evaluated by LES of an experimental piloted coal jet flame and comparing the numerical results with the experimental data and the results from the eddy break up (EBU) model. Detailed quantitative comparisons are carried out. It is found that the proposed model performs much better than the EBU model on radial velocity and species concentrations predictions. Comparing against the adiabatic counterpart, we find that the predicted temperature is evidently lowered and agrees well with the experimental data if the conditional sampling method is adopted.

  17. Effect of salinity on gene expression, morphological and biochemical characteristics of stevia rebaudiana Bertoni under in vitro conditions.

    PubMed

    Fallah, F; Nokhasi, F; Ghaheri, M; Kahrizi, D; Beheshti Ale Agha, A; Ghorbani, T; Kazemi, E; Ansarypour, Z

    2017-08-15

    Stevia rebaudiana Bertoni is a famous medicinal plant for its low calorific value compounds which are named steviol glycosides (SGs) and they are 150-300 times sweeter than sugar. Among various SGs, stevioside and rebaudioside A considered to be the main sweetening compounds.  Soil salinity is one of the most essential stress in the world. Salinity affects the survival and yield of crops. In current study the effects of salinity and osmotic stress caused by different concentration of NaCl (0, 20, 40, 60 and 80 mM) on morphological traits, genes expressionand amount of both stevioside and rebaudioside Aunder in vitro conditions has been investigated. The morphological traits such as bud numbers, root numbers, shoot length (after 15 and 30 days) were evaluated. With increasing salinity, the values of all studied morphological traits decreased. To investigation of UGT74G1 and UGT76G1 genes expression that are involved in the synthesis of SGs, RT-PCR was done and there were significant differences between all media. The highest expression of both genes was observed in plantlets grown on MS media (with NaCl-free). Also, the lowest amounts of gene expression of the both genes were seen in MS+ 60 mM NaCl. Based on HPLC results, the highest amount of both stevioside and rebaudioside A were observed in plantlets grown in MS media (with NaCl-free). Finally, it can be concluded that stevia can survive under salt stress, but it has the best performance in the lower salinity.

  18. Structure and modeling of turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, E.A.

    The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scalemore » motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).« less

  19. Impact of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl.

    PubMed

    Cloutier, D; Kanashiro, M; Ciampi, A Y; Schoen, D J

    2007-02-01

    Selective logging may impact patterns of genetic diversity within populations of harvested forest tree species by increasing distances separating conspecific trees, and modifying physical and biotic features of the forest habitat. We measured levels of gene diversity, inbreeding, pollen dispersal and spatial genetic structure (SGS) of an Amazonian insect-pollinated Carapa guianensis population before and after commercial selective logging. Similar levels of gene diversity and allelic richness were found before and after logging in both the adult and the seed generations. Pre- and post-harvest outcrossing rates were high, and not significantly different from one another. We found no significant levels of biparental inbreeding either before or after logging. Low levels of pollen pool differentiation were found, and the pre- vs. post-harvest difference was not significant. Pollen dispersal distance estimates averaged between 75 m and 265 m before logging, and between 76 m and 268 m after logging, depending on the value of tree density and the dispersal model used. There were weak and similar levels of differentiation of allele frequencies in the adults and in the pollen pool, before and after logging occurred, as well as weak and similar pre- and post-harvest levels of SGS among adult trees. The large neighbourhood sizes estimated suggest high historical levels of gene flow. Overall our results indicate that there is no clear short-term genetic impact of selective logging on this population of C. guianensis.

  20. Flow and Temperature Distribution Evaluation on Sodium Heated Large-sized Straight Double-wall-tube Steam Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisohara, Naoyuki; Moribe, Takeshi; Sakai, Takaaki

    2006-07-01

    The sodium heated steam generator (SG) being designed in the feasibility study on commercialized fast reactor cycle systems is a straight double-wall-tube type. The SG is large sized to reduce its manufacturing cost by economics of scale. This paper addresses the temperature and flow multi-dimensional distributions at steady state to obtain the prospect of the SG. Large-sized heat exchanger components are prone to have non-uniform flow and temperature distributions. These phenomena might lead to tube buckling or tube to tube-sheet junction failure in straight tube type SGs, owing to tubes thermal expansion difference. The flow adjustment devices installed in themore » SG are optimized to prevent these issues, and the temperature distribution properties are uncovered by analysis methods. The analysis model of the SG consists of two parts, a sodium inlet distribution plenum (the plenum) and a heat transfer tubes bundle region (the bundle). The flow and temperature distributions in the plenum and the bundle are evaluated by the three-dimensional code 'FLUENT' and the two dimensional thermal-hydraulic code 'MSG', respectively. The MSG code is particularly developed for sodium heated SGs in JAEA. These codes have revealed that the sodium flow is distributed uniformly by the flow adjustment devices, and that the lateral tube temperature distributions remain within the allowable temperature range for the structural integrity of the tubes and the tube to tube-sheet junctions. (authors)« less

  1. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk

    PubMed Central

    Curtin, Karen; Rajamanickam, Venkatesh; Jayabalan, David; Atanackovic, Djordje; Rajkumar, S. Vincent; Kumar, Shaji; Slager, Susan; Galia, Perrine; Demangel, Delphine; Salama, Mohamed; Joseph, Vijai; Lipkin, Steven M.; Dumontet, Charles; Vachon, Celine M.

    2018-01-01

    The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance–a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits. PMID:29389935

  2. Novel pedigree analysis implicates DNA repair and chromatin remodeling in multiple myeloma risk.

    PubMed

    Waller, Rosalie G; Darlington, Todd M; Wei, Xiaomu; Madsen, Michael J; Thomas, Alun; Curtin, Karen; Coon, Hilary; Rajamanickam, Venkatesh; Musinsky, Justin; Jayabalan, David; Atanackovic, Djordje; Rajkumar, S Vincent; Kumar, Shaji; Slager, Susan; Middha, Mridu; Galia, Perrine; Demangel, Delphine; Salama, Mohamed; Joseph, Vijai; McKay, James; Offit, Kenneth; Klein, Robert J; Lipkin, Steven M; Dumontet, Charles; Vachon, Celine M; Camp, Nicola J

    2018-02-01

    The high-risk pedigree (HRP) design is an established strategy to discover rare, highly-penetrant, Mendelian-like causal variants. Its success, however, in complex traits has been modest, largely due to challenges of genetic heterogeneity and complex inheritance models. We describe a HRP strategy that addresses intra-familial heterogeneity, and identifies inherited segments important for mapping regulatory risk. We apply this new Shared Genomic Segment (SGS) method in 11 extended, Utah, multiple myeloma (MM) HRPs, and subsequent exome sequencing in SGS regions of interest in 1063 MM / MGUS (monoclonal gammopathy of undetermined significance-a precursor to MM) cases and 964 controls from a jointly-called collaborative resource, including cases from the initial 11 HRPs. One genome-wide significant 1.8 Mb shared segment was found at 6q16. Exome sequencing in this region revealed predicted deleterious variants in USP45 (p.Gln691* and p.Gln621Glu), a gene known to influence DNA repair through endonuclease regulation. Additionally, a 1.2 Mb segment at 1p36.11 is inherited in two Utah HRPs, with coding variants identified in ARID1A (p.Ser90Gly and p.Met890Val), a key gene in the SWI/SNF chromatin remodeling complex. Our results provide compelling statistical and genetic evidence for segregating risk variants for MM. In addition, we demonstrate a novel strategy to use large HRPs for risk-variant discovery more generally in complex traits.

  3. Effect of grid resolution on large eddy simulation of wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Rezaeiravesh, S.; Liefvendahl, M.

    2018-05-01

    The effect of grid resolution on a large eddy simulation (LES) of a wall-bounded turbulent flow is investigated. A channel flow simulation campaign involving a systematic variation of the streamwise (Δx) and spanwise (Δz) grid resolution is used for this purpose. The main friction-velocity-based Reynolds number investigated is 300. Near the walls, the grid cell size is determined by the frictional scaling, Δx+ and Δz+, and strongly anisotropic cells, with first Δy+ ˜ 1, thus aiming for the wall-resolving LES. Results are compared to direct numerical simulations, and several quality measures are investigated, including the error in the predicted mean friction velocity and the error in cross-channel profiles of flow statistics. To reduce the total number of channel flow simulations, techniques from the framework of uncertainty quantification are employed. In particular, a generalized polynomial chaos expansion (gPCE) is used to create metamodels for the errors over the allowed parameter ranges. The differing behavior of the different quality measures is demonstrated and analyzed. It is shown that friction velocity and profiles of the velocity and Reynolds stress tensor are most sensitive to Δz+, while the error in the turbulent kinetic energy is mostly influenced by Δx+. Recommendations for grid resolution requirements are given, together with the quantification of the resulting predictive accuracy. The sensitivity of the results to the subgrid-scale (SGS) model and varying Reynolds number is also investigated. All simulations are carried out with second-order accurate finite-volume-based solver OpenFOAM. It is shown that the choice of numerical scheme for the convective term significantly influences the error portraits. It is emphasized that the proposed methodology, involving the gPCE, can be applied to other modeling approaches, i.e., other numerical methods and the choice of SGS model.

  4. High order spectral volume and spectral difference methods on unstructured grids

    NASA Astrophysics Data System (ADS)

    Kannan, Ravishekar

    The spectral volume (SV) and the spectral difference (SD) methods were developed by Wang and Liu and their collaborators for conservation laws on unstructured grids. They were introduced to achieve high-order accuracy in an efficient manner. Recently, these methods were extended to three-dimensional systems and to the Navier Stokes equations. The simplicity and robustness of these methods have made them competitive against other higher order methods such as the discontinuous Galerkin and residual distribution methods. Although explicit TVD Runge-Kutta schemes for the temporal advancement are easy to implement, they suffer from small time step limited by the Courant-Friedrichs-Lewy (CFL) condition. When the polynomial order is high or when the grid is stretched due to complex geometries or boundary layers, the convergence rate of explicit schemes slows down rapidly. Solution strategies to remedy this problem include implicit methods and multigrid methods. A novel implicit lower-upper symmetric Gauss-Seidel (LU-SGS) relaxation method is employed as an iterative smoother. It is compared to the explicit TVD Runge-Kutta smoothers. For some p-multigrid calculations, combining implicit and explicit smoothers for different p-levels is also studied. The multigrid method considered is nonlinear and uses Full Approximation Scheme (FAS). An overall speed-up factor of up to 150 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Euler equations for the 3rd order SD method. A study of viscous flux formulations was carried out for the SV method. Three formulations were used to discretize the viscous fluxes: local discontinuous Galerkin (LDG), a penalty method and the 2nd method of Bassi and Rebay. Fourier analysis revealed some interesting advantages for the penalty method. These were implemented in the Navier Stokes solver. An implicit and p-multigrid method was also implemented for the above. An overall speed-up factor of up to 1500 is obtained using a three-level p-multigrid LU-SGS approach in comparison with the single level explicit method for the Navier-Stokes equations. The SV method was also extended to turbulent flows. The RANS based SA model was used to close the Reynolds stresses. The numerical results are very promising and indicate that the approaches have great potentials for 3D flow problems.

  5. 78 FR 18999 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... petroleum products, organic chemicals and vegetable oils for customs purposes for the next three years as of... and petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with...

  6. 78 FR 18620 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... petroleum products, organic chemicals and vegetable oils for customs purposes for the next three years as of... petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance...

  7. 78 FR 31970 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... petroleum products, organic chemicals and vegetable oils for customs purposes for the next three years as of... petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the...

  8. 78 FR 66757 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-06

    ... petroleum products, organic chemicals and vegetable oils for customs purposes for the next three years as of... petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the...

  9. 78 FR 30321 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-22

    ... petroleum products, organic chemicals and vegetable oils for customs purposes for the next three years as of... petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the...

  10. 78 FR 19000 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... petroleum products, organic chemicals and vegetable oils for customs purposes for the next three years as of... petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the...

  11. 77 FR 38076 - U.S. Customs and Border Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... CFR 151.12 and 19 CFR 151.13, SGS North America, Inc., 3735 W. Airline Hwy., Reserve, LA 70084, has... Pennsylvania Avenue NW., Suite 1500N, Washington, DC 20229, 202-344- 1060. Dated: June 18, 2012. Ira S. Reese...

  12. 76 FR 9809 - Approval of SGS North America, Inc., as a Commercial Gauger

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Border Protection by calling (202) 344-1060. The inquiry may also be sent to [email protected] . Please... Pennsylvania Avenue, NW., Suite 1500N, Washington, DC 20229, 202-344- 1060. Dated: February 10, 2011. Ira S...

  13. Translational control of aberrant stress responses as a hallmark of cancer.

    PubMed

    El-Naggar, Amal M; Sorensen, Poul H

    2018-04-01

    Altered mRNA translational control is emerging as a critical factor in cancer development and progression. Targeting specific elements of the translational machinery, such as mTORC1 or eIF4E, is emerging as a new strategy for innovative cancer therapy. While translation of most mRNAs takes place through cap-dependent mechanisms, a sub-population of cellular mRNA species, particularly stress-inducible mRNAs with highly structured 5'-UTR regions, are primarily translated through cap-independent mechanisms. Intriguingly, many of these mRNAs encode proteins that are involved in tumour cell adaptation to microenvironmental stress, and thus linked to aggressive behaviour including tumour invasion and metastasis. This necessitates a rigorous search for links between microenvironmental stress and aggressive tumour phenotypes. Under stress, cells block global protein synthesis to preserve energy while maintaining selective synthesis of proteins that support cell survival. One highly conserved mechanism to regulate protein synthesis under cell stress is to sequester mRNAs into cytosolic aggregates called stress granules (SGs), where their translation is silenced. SGs confer survival advantages and chemotherapeutic resistance to tumour cells under stress. Recently, it has been shown that genetically blocking SG formation dramatically reduces tumour invasive and metastatic capacity in vivo. Therefore, targeting SG formation might represent a potential treatment strategy to block cancer metastasis. Here, we present the critical link between selective mRNA translation, stress adaptation, SGs, and tumour progression. Further, we also explain how deciphering mechanisms of selective mRNA translation occurs under cell stress holds great promise for the identification of new targets in the treatment of cancer. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Synaptotagmin-7 Functions to Replenish Insulin Granules for Exocytosis in Human Islet β-Cells.

    PubMed

    Dolai, Subhankar; Xie, Li; Zhu, Dan; Liang, Tao; Qin, Tairan; Xie, Huanli; Kang, Youhou; Chapman, Edwin R; Gaisano, Herbert Y

    2016-07-01

    Synaptotagmin (Syt)-7, a major component of the exocytotic machinery in neurons, is also the major Syt in rodent pancreatic β-cells shown to mediate glucose-stimulated insulin secretion (GSIS). However, Syt-7's precise exocytotic actions in β-cells remain unknown. We show that Syt-7 is abundant in human β-cells. Adenovirus-short hairpin RNA knockdown (KD) of Syt-7 in human islets reduced first- and second-phase GSIS attributed to the reduction of exocytosis of predocked and newcomer insulin secretory granules (SGs). Glucose stimulation expectedly induced Syt-7 association in a Ca(2+)-dependent manner with syntaxin-3 and syntaxin-1A soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes known to mediate exocytosis of newcomer and predocked SGs, respectively. However, Syt-7-KD did not disrupt SNARE complex assembly. Instead, electron microscopy analysis showed that Syt-7-KD reduced the recruitment of SGs to the plasma membrane after glucose-stimulated depletion, which could not be rescued by glucagon-like peptide 1 pretreatment. To assess the possibility that this new action of Syt-7 on SG recruitment may involve calmodulin (CaM), pretreatment of islets with CaM blocker calmidazolium showed effects very similar to those of Syt-7-KD. Syt-7 therefore plays a novel more dominant function in the replenishment of releasable SG pools in human β-cells than its previously purported role in exocytotic fusion per se. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress.

    PubMed

    Garaigorta, Urtzi; Heim, Markus H; Boyd, Bryan; Wieland, Stefan; Chisari, Francis V

    2012-10-01

    Stress granules (SGs) are cytoplasmic structures that are induced in response to environmental stress, including viral infections. Here we report that hepatitis C virus (HCV) triggers the appearance of SGs in a PKR- and interferon (IFN)-dependent manner. Moreover, we show an inverse correlation between the presence of stress granules and the induction of IFN-stimulated proteins, i.e., MxA and USP18, in HCV-infected cells despite high-level expression of the corresponding MxA and USP18 mRNAs, suggesting that interferon-stimulated gene translation is inhibited in stress granule-containing HCV-infected cells. Finally, in short hairpin RNA (shRNA) knockdown experiments, we found that the stress granule proteins T-cell-restricted intracellular antigen 1 (TIA-1), TIA1-related protein (TIAR), and RasGAP-SH3 domain binding protein 1 (G3BP1) are required for efficient HCV RNA and protein accumulation at early time points in the infection and that G3BP1 and TIA-1 are required for intracellular and extracellular infectious virus production late in the infection, suggesting that they are required for virus assembly. In contrast, TIAR downregulation decreases extracellular infectious virus titers with little effect on intracellular RNA content or infectivity late in the infection, suggesting that it is required for infectious particle release. Collectively, these results illustrate that HCV exploits the stress granule machinery at least two ways: by inducing the formation of SGs by triggering PKR phosphorylation, thereby downregulating the translation of antiviral interferon-stimulated genes, and by co-opting SG proteins for its replication, assembly, and egress.

  16. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    PubMed

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  17. Evaluation of the effect of compression therapy using surgical gloves on nanoparticle albumin-bound paclitaxel-induced peripheral neuropathy: a phase II multicenter study by the Kamigata Breast Cancer Study Group.

    PubMed

    Tsuyuki, Shigeru; Senda, Noriko; Kanng, Yookija; Yamaguchi, Ayane; Yoshibayashi, Hiroshi; Kikawa, Yuichiro; Katakami, Nobuyuki; Kato, Hironori; Hashimoto, Takashi; Okuno, Toshitaka; Yamauchi, Akira; Inamoto, Takashi

    2016-11-01

    To investigate the efficacy of using surgical glove (SG) compression therapy to prevent nanoparticle albumin-bound paclitaxel (nab-PTX)-induced peripheral neuropathy. Patients with primary and recurrent breast cancer who received 260 mg/m 2 of nab-PTX were eligible for this case-control study. Patients wore two SGs of the same size, i.e., one size smaller than the size that fit their dominant hand, for only 90 min. They did not wear two SGs on the non-dominant hand, which served as the control hand. Peripheral neuropathy was evaluated at each treatment cycle using common terminology criteria for adverse events (CTCAE) version 4.0 and the Patient Neurotoxicity Questionnaire. The temperature of each fingertip of the compression SG-protected hand and control hand was measured using thermography. Between August 2013 and January 2016, 43 patients were enrolled and 42 were evaluated. The occurrence rates of CTCAE grade 2 or higher sensory and motor peripheral neuropathies were significantly lower for SG-protected hands than for control hands (sensory neuropathy 21.4 vs. 76.1 %; motor neuropathy 26.2 vs. 57.1 %). No patients withdrew from this study because they could not tolerate the compression from the SGs. SG compression therapy significantly decreased the temperature of each fingertip by 1.6-2.2 °C as compared with the temperature before chemotherapy (p < 0.0001). SG compression therapy is effective for reducing nab-PTX-induced peripheral neuropathy. The nab-PTX exposure to the peripheral nerve may be decreased because the SG decreases microvascular flow to the fingertip.

  18. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors

    PubMed Central

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E.; Cao, Mengjun

    2016-01-01

    Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. Significance In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. PMID:27458264

  19. 77 FR 12865 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ..., VA 23602, has been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the provisions of 19 CFR 151.12 and 19...

  20. 76 FR 9808 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... calling (202) 344-1060. The inquiry may also be sent to [email protected] . Please reference the Web site..., 1300 Pennsylvania Avenue, NW., Suite 1500N, Washington, DC 20229, 202-344- 1060. Dated: February 10...

  1. 76 FR 9807 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    .... Customs and Border Protection by calling (202) 344-1060. The inquiry may also be sent to [email protected] Protection, 1300 Pennsylvania Avenue, NW., Suite 1500N, Washington, DC 20229, 202-344- 1060. Dated: February...

  2. 75 FR 13770 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... Protection by calling (202) 344-1060. The inquiry may also be sent to [email protected] . Please reference... Protection, 1300 Pennsylvania Avenue, NW., Suite 1500N, Washington, DC 20229, 202-344- 1060. Dated: March 16...

  3. 77 FR 47428 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the provisions of 19 CFR 151.12 and 19 CFR 151.13. Anyone...

  4. Effects of visibility and types of the ground surface on the muscle activities of the vastus medialis oblique and vastus lateralis

    PubMed Central

    Park, Jeong-ki; Lee, Dong-yeop; Kim, Jin-Seop; Hong, Ji-Heon; You, Jae-Ho; Park, In-mo

    2015-01-01

    [Purpose] The purpose of this study was to compare the effects of visibility and types of ground surface (stable and unstable) during the performance of squats on the muscle activities of the vastus medialis oblique (VMO) and vastus lateralis (VL). [Subjects and Methods] The subjects were 25 healthy adults in their 20s. They performed squats under four conditions: stable ground surface (SGS) with vision-allowed; unstable ground surface (UGS) with vision-allowed; SGS with vision-blocked; and UGS with vision-blocked. The different conditions were performed on different days. Surface electromyogram (EMG) values were recorded. [Results] The most significant difference in the activity of the VMO and VL was observed when the subjects performed squats on the UGS, with their vision blocked. [Conclusion] For the selective activation of the VMO, performing squats on an UGS was effective, and it was more effective when subjects’ vision was blocked. PMID:26356407

  5. KSC-00padig074

    NASA Image and Video Library

    2000-11-02

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO

  6. KSC-00padig075

    NASA Image and Video Library

    2000-11-02

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO

  7. KSC00padig075

    NASA Image and Video Library

    2000-11-02

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch’s worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO

  8. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants cut the lines to helium-filled balloons. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  9. Commissioning of a new helium pipeline

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At the commissioning of a new high-pressure helium pipeline at Kennedy Space Center, participants watch as helium-filled balloons take to the sky after their lines were cut. From left, they are Center Director Roy Bridges; Michael Butchko, president, SGS; Pierre Dufour, president and CEO, Air Liquide America Corporation; David Herst, director, Delta IV Launch Sites; Pamela Gillespie, executive administrator, office of Congressman Dave Weldon; and Col. Samuel Dick, representative of the 45th Space Wing. The nine-mile-long buried pipeline will service launch needs at the new Delta IV Complex 37 at Cape Canaveral Air Force Station. It will also serve as a backup helium resource for Shuttle launches. Nearly one launch's worth of helium will be available in the pipeline to support a Shuttle pad in an emergency. The line originates at the Helium Facility on KSC and terminates in a meter station at the perimeter of the Delta IV launch pad. Others at the ceremony were Jerry Jorgensen, pipeline project manager, Space Gateway Support (SGS), and Ramon Lugo, acting executive director, JPMO.

  10. Peregrine: A rapid and unbiased method to produce strand-specific RNA-Seq libraries from small quantities of starting material.

    PubMed

    Langevin, Stanley A; Bent, Zachary W; Solberg, Owen D; Curtis, Deanna J; Lane, Pamela D; Williams, Kelly P; Schoeniger, Joseph S; Sinha, Anupama; Lane, Todd W; Branda, Steven S

    2013-04-01

    Use of second generation sequencing (SGS) technologies for transcriptional profiling (RNA-Seq) has revolutionized transcriptomics, enabling measurement of RNA abundances with unprecedented specificity and sensitivity and the discovery of novel RNA species. Preparation of RNA-Seq libraries requires conversion of the RNA starting material into cDNA flanked by platform-specific adaptor sequences. Each of the published methods and commercial kits currently available for RNA-Seq library preparation suffers from at least one major drawback, including long processing times, large starting material requirements, uneven coverage, loss of strand information and high cost. We report the development of a new RNA-Seq library preparation technique that produces representative, strand-specific RNA-Seq libraries from small amounts of starting material in a fast, simple and cost-effective manner. Additionally, we have developed a new quantitative PCR-based assay for precisely determining the number of PCR cycles to perform for optimal enrichment of the final library, a key step in all SGS library preparation workflows.

  11. Football (soccer) safety equipment use and parental attitudes toward safety equipment in a community youth sports program.

    PubMed

    Khodaee, Morteza; Fetters, Michael D; Gorenflo, Daniel W

    2011-04-01

    While a growing number of children are playing football (soccer), there are limited data on prevalence of injuries, actual use of football safety equipment (SE), and parental attitudes about football SE. We distributed a self-administered survey by mail to parents of all players enrolled in a community recreation youth football program. Parents of 865 children responded. Overall, 32 (3.7%) children were reported as having injuries requiring medical/dental evaluation. Upper/lower extremities were the most commonly injured sites. Shinguards (SGs) were the only equipment commonly used. While there was high parental support for SG use (97.4%) and moderate support for mouthguards (MGs; 53.8%), there was less support for other SE. Many parents were unfamiliar with available SE, but they were mostly willing to pay for it. In a community youth sports program, reports of football injuries were low as was the use of football SE other than SGs.

  12. A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae

    PubMed Central

    Chakraborty, Ujani; George, Carolyn M.; Lyndaker, Amy M.; Alani, Eric

    2016-01-01

    Single-strand annealing (SSA) is an important homologous recombination mechanism that repairs DNA double strand breaks (DSBs) occurring between closely spaced repeat sequences. During SSA, the DSB is acted upon by exonucleases to reveal complementary sequences that anneal and are then repaired through tail clipping, DNA synthesis, and ligation steps. In baker’s yeast, the Msh DNA mismatch recognition complex and the Sgs1 helicase act to suppress SSA between divergent sequences by binding to mismatches present in heteroduplex DNA intermediates and triggering a DNA unwinding mechanism known as heteroduplex rejection. Using baker’s yeast as a model, we have identified new factors and regulatory steps in heteroduplex rejection during SSA. First we showed that Top3-Rmi1, a topoisomerase complex that interacts with Sgs1, is required for heteroduplex rejection. Second, we found that the replication processivity clamp proliferating cell nuclear antigen (PCNA) is dispensable for heteroduplex rejection, but is important for repairing mismatches formed during SSA. Third, we showed that modest overexpression of Msh6 results in a significant increase in heteroduplex rejection; this increase is due to a compromise in Msh2-Msh3 function required for the clipping of 3′ tails. Thus 3′ tail clipping during SSA is a critical regulatory step in the repair vs. rejection decision; rejection is favored before the 3′ tails are clipped. Unexpectedly, Msh6 overexpression, through interactions with PCNA, disrupted heteroduplex rejection between divergent sequences in another recombination substrate. These observations illustrate the delicate balance that exists between repair and replication factors to optimize genome stability. PMID:26680658

  13. Ebola Virus Does Not Induce Stress Granule Formation during Infection and Sequesters Stress Granule Proteins within Viral Inclusions.

    PubMed

    Nelson, Emily V; Schmidt, Kristina M; Deflubé, Laure R; Doğanay, Sultan; Banadyga, Logan; Olejnik, Judith; Hume, Adam J; Ryabchikova, Elena; Ebihara, Hideki; Kedersha, Nancy; Ha, Taekjip; Mühlberger, Elke

    2016-08-15

    A hallmark of Ebola virus (EBOV) infection is the formation of viral inclusions in the cytoplasm of infected cells. These viral inclusions contain the EBOV nucleocapsids and are sites of viral replication and nucleocapsid maturation. Although there is growing evidence that viral inclusions create a protected environment that fosters EBOV replication, little is known about their role in the host response to infection. The cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation and translational arrest mediated by the phosphorylation of a translation initiation factor, the α subunit of eukaryotic initiation factor 2 (eIF2α). Here, we show that selected SG proteins are sequestered within EBOV inclusions, where they form distinct granules that colocalize with viral RNA. These inclusion-bound (IB) granules are functionally and structurally different from canonical SGs. Formation of IB granules does not indicate translational arrest in the infected cells. We further show that EBOV does not induce formation of canonical SGs or eIF2α phosphorylation at any time postinfection but is unable to fully inhibit SG formation induced by different exogenous stressors, including sodium arsenite, heat, and hippuristanol. Despite the sequestration of SG marker proteins into IB granules, canonical SGs are unable to form within inclusions, which we propose might be mediated by a novel function of VP35, which disrupts SG formation. This function is independent of VP35's RNA binding activity. Further studies aim to reveal the mechanism for SG protein sequestration and precise function within inclusions. Although progress has been made developing antiviral therapeutics and vaccines against the highly pathogenic Ebola virus (EBOV), the cellular mechanisms involved in EBOV infection are still largely unknown. To better understand these intracellular events, we investigated the cellular stress response, an antiviral pathway manipulated by many viruses. We show that EBOV does not induce formation of stress granules (SGs) in infected cells and is therefore unrestricted by their concomitant translational arrest. We identified SG proteins sequestered within viral inclusions, which did not impair protein translation. We further show that EBOV is unable to block SG formation triggered by exogenous stress early in infection. These findings provide insight into potential targets of therapeutic intervention. Additionally, we identified a novel function of the interferon antagonist VP35, which is able to disrupt SG formation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Getting a Second Chance

    ERIC Educational Resources Information Center

    Davidow, Julia A.

    2006-01-01

    In this article, the author discusses the Student in Good Standing Contract (SGS), a program designed to help the students at Ocean Township High School in Monmouth County, New Jersey renew themselves, rebuild their self-confidence, and commit to learning. Once a student is identified as violating the school disciplinary policy and is suspended…

  15. A Frame-Reflective Discourse Analysis of Serious Games

    ERIC Educational Resources Information Center

    Mayer, Igor; Warmelink, Harald; Zhou, Qiqi

    2016-01-01

    The authors explore how framing theory and the method of frame-reflective discourse analysis provide foundations for the emerging discipline of serious games (SGs) research. Starting with Wittgenstein's language game and Berger and Luckmann's social constructivist view on science, the authors demonstrate why a definitional or taxonomic approach to…

  16. Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainsla, Lakhan, E-mail: lakhanbainsla@gmail.com, E-mail: suresh@phy.iitb.ac.in; Suresh, K. G., E-mail: lakhanbainsla@gmail.com, E-mail: suresh@phy.iitb.ac.in

    2016-09-15

    Half-metallic ferromagnetic (HMF) materials show high spin polarization and are therefore interesting to researchers due to their possible applications in spintronic devices. In these materials, while one spin sub band has a finite density of states at the Fermi level, the other sub band has a gap. Because of their high Curie temperature (T{sub C}) and tunable electronic structure, HMF Heusler alloys have a special importance among the HMF materials. Full Heusler alloys with the stoichiometric composition X{sub 2}YZ (where X and Y are the transition metals and Z is a sp element) have the cubic L2{sub 1} structure withmore » four interpenetrating fcc sublattices. When each of these four fcc sublattices is occupied by different atoms (XX′YZ), a quaternary Heusler structure with different structural symmetries (space group F-43m, #216) is obtained. Recently, these equiatomic quaternary Heusler alloys (EQHAs) with 1:1:1:1 stoichiometry have attracted a lot of attention due to their superior magnetic and transport properties. A special class of HMF materials identified recently is known as spin gapless semiconductors (SGS). The difference in this case, compared with HMFs, is that the density of states for one spin band is just zero at the Fermi level, while the other has a gap as in the case of HMFs. Some of the reported SGS materials belong to EQHAs family. This review is dedicated to almost all reported materials belonging to EQHAs family. The electronic structure and hence the physical properties of Heusler alloys strongly depend on the degree of structural order and distribution of the atoms in the crystal lattice. A variety of experimental techniques has been used to probe the structural parameters and degree of order in these alloys. Their magnetic properties have been investigated using the conventional methods, while the spin polarization has been probed by point contact Andreev reflection technique. The experimentally obtained values of saturation magnetization are found to be in agreement with those estimated using the Slater-Pauling rule in most of the cases. Electrical resistivity and Hall measurements are being used to distinguish between SGS and HMF nature in detail. The current spin polarization value, P = 0.70 ± 0.01, for CoFeMnGe is found to be highest among the EQHAs. CoFeMnSi and CoFeCrGa are found to show SGS behavior with high Curie temperatures, thus making them suitable substitutes for diluted magnetic semiconductors. CoRuFeSi is found to have the highest T{sub C} among EQHAs. Theoretical prediction of magnetic properties on the basis of electronic structure calculations has also been reported in a few systems, which are also discussed in this review. Thus, this review presents a consolidated picture of the magnetic and spintronic properties of this important, but relatively new class of Heusler alloys. It is expected that this will stimulate further interest in these alloys, thereby paving the way for the identification of more HMF and SGS materials. As a result of this, it is expected that more efficient spintronic devices using these alloys would emerge in the near future.« less

  17. Simulating Energy, Water and Carbon Fluxes at the Shortgrass Steppe Long Term Ecological Research (LTER) Site

    NASA Astrophysics Data System (ADS)

    Beltran-Przekurat, A. B.; Pielke, R. A.; Morgan, J. A.; Burke, I. C.

    2005-12-01

    Coupled atmospheric-biospheric models are a particularly valuable tool for studying the potential effects of land-use and land-cover changes on the near-surface atmosphere since the atmosphere and biosphere are allowed to dynamically interact through the surface and canopy energy balance. GEMRAMS is a coupled atmospheric-biospheric model comprised of an atmospheric model, RAMS, and an ecophysiological process-based model, GEMTM. In the first part of this study, the soil-vegetation-atmosphere-transfer (SVAT) scheme, LEAF2, from RAMS, coupled with GEMTM, are used to simulate energy, water and carbon fluxes over different cropping systems (winter wheat and irrigated corn) and over a mixed C3/C4 shortgrass prairie located at the USDA-ARS Central Plains Experimental Range near Nunn, Colorado, the LTER Shortgrass Steppe site. The new SVAT scheme, GEMLEAF, is forced with air temperature and humidity, wind speed and photosynthetic active radiation (PAR). Calculated canopy temperature and relative humidity, soil moisture and temperature and PAR are used to compute sunlit/shaded leaf photosynthesis (for C3 and C4 plant types) and respiration. Photosynthate is allocated to leaves, shoots, roots and reproductive organs with variable partition coefficients, which are functions of soil water conditions. As water stress increases, the fraction of photosynthate allocated to root growth increases. Leaf area index (LAI) is estimated from daily leaf biomass growth, using the vegetation-prescribed specific leaf area. Canopy conductance, computed and based on photosynthesis and relative humidity, is used to calculate latent heat flux. Simulated energy and CO2 fluxes are compared to observations collected using Bowen ratio flux towers during two growing seasons. Seasonality of the fluxes reflecting different plant phenologies agrees well with the observed patterns. In the second part of this study, simulations for two clear days are performed with GEMRAMS over a model domain centered at the SGS site. Simulated spatial differences in the energy fluxes can be associated with the highly heterogeneous landscape in this area.

  18. Comparison of Various Turbulence Models for Unsteady Flow around a Finite Circular Cylinder at Re=20000

    NASA Astrophysics Data System (ADS)

    Zhang, Di

    2017-10-01

    This paper compares the performance of eight Reynolds-Averaged Navier-Stokes (RANS) two-equation turbulence models and two sub-grid scale (SGS) large eddy simulation (LES) models in the scenario of unsteady flow around a finite circular cylinder at an aspect ratio (AR) of 1.0 and a Reynolds number of Re=20000. It is found that, among all the eight RANS turbulence models considered, the K-Omega-SST model (viz. SST-V2003) developed by Menter et al. [1, 2] possesses the best overall performance (being closest to the numerical results of the two LES models considered, which can be deemed as the quasi-exact solution in view of the very fine computational mesh employed by the two LES models in this study) in terms of the mean surface pressure coefficient distribution (i.e. C p ), the mean drag coefficient (i.e. C d ), the mean streamline profiles in some characteristic planes (such as the mid-height plane and the symmetry plane of the cylinder) and the distribution of mean bed-shear-stress amplification on the bottom wall.

  19. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process.

    PubMed

    Secundino, Nagila Francinete Costa; Chaves, Barbara Aparecida; Orfano, Alessandra Silva; Silveira, Karine Renata Dias; Rodrigues, Nilton Barnabe; Campolina, Thais Bonifácio; Nacif-Pimenta, Rafael; Villegas, Luiz Eduardo Martinez; Silva, Breno Melo; Lacerda, Marcus Vinícius Guimarães; Norris, Douglas Eric; Pimenta, Paulo Filemon Paolucci

    2017-07-20

    Zika disease has transformed into a serious global health problem due to the rapid spread of the arbovirus and alarming severity including congenital complications, microcephaly and Guillain-Barré syndrome. Zika virus (ZIKV) is primarily transmitted to humans through the bite of an infective mosquito, with Aedes aegypti being the main vector. We successfully developed a ZIKV experimental transmission model by single infectious Ae. aegypti bite to a laboratory mouse using circulating Brazilian strains of both arbovirus and vector. Mosquitoes were orally infected and single Ae. aegypti were allowed to feed on mouse ears 14 days post-infection. Additionally, salivary gland (SG) homogenates from infected mosquitoes were intrathoracically inoculated into naïve Ae. aegypti. Mosquito and mouse tissue samples were cultured in C6/36 cells and processed by quantitative real-time PCR. A total of 26 Ae. aegypti were allowed to feed individually on mouse ears. Of these, 17 mosquitoes fed, all to full engorgement. The transmission rate of ZIKV by bite from these engorged mosquitoes to mouse ears was 100%. The amount of virus inoculated into the ears by bites ranged from 2 × 10 2 -2.1 × 10 10 ZIKV cDNA copies and was positively correlated with ZIKV cDNA quantified from SGs dissected from mosquitoes post-feeding. Replicating ZIKV was confirmed in macerated SGs (2.45 × 10 7 cDNA copies), mouse ear tissue (1.15 × 10 3 cDNA copies, and mosquitoes 14 days post-intrathoracic inoculation (1.49 × 10 7 cDNA copies) by cytopathic effect in C6/36 cell culture and qPCR. Our model illustrates successful transmission of ZIKV by an infectious mosquito bite to a live vertebrate host. This approach offers a comprehensive tool for evaluating the development of infection in and transmission from mosquitoes, and the vertebrate-ZIKV interaction and progression of infection following a natural transmission process.

  20. Fbis report. Science and technology: Economic review, September 19, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-19

    ;Partial Contents: Germany: Braunschweig University Tests Organic Semiconductors; France: Ariane-5 Tests Suspended; First Tests in Euro-Russian RECORD Rocket Engine Program; France: Renault`s Multi-Model Assembly Line Presented; Germany: New High Speed Trains Under Development; France: Matra Test Drone, Missile Systems; France: Experimental Project for Automobile Recycling; Germany: Survey of Flexible Manufacturing Developments; Germany: Heinrich Hertz Institute Produces Polymer-Based Circuit; French Firms Introduce Computerized Control Room for Nuclear Plants; German Machine Tool Industry Calls for Information Technology Projects; Germany: R&D Achievements in Digital HDTV Reported; Hungary: Secondary Telecommunications Networks Described; EU: Mergers in Pharmaceutical Industry Reported; SGS-Thomson Business Performance Analyzed; Germany`s Siemensmore » Invest Heavily in UK Semiconductor Plant.« less

  1. Large-Eddy Simulation of Aeroacoustic Applications

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Sochacki, James S.

    1999-01-01

    This report summarizes work accomplished under a one-year NASA grant from NASA Langley Research Center (LaRC). The effort culminates three years of NASA-supported research under three consecutive one-year grants. The period of support was April 6, 1998, through April 5, 1999. By request, the grant period was extended at no-cost until October 6, 1999. Its predecessors have been directed toward adapting the numerical tool of large-eddy simulation (LES) to aeroacoustic applications, with particular focus on noise suppression in subsonic round jets. In LES, the filtered Navier-Stokes equations are solved numerically on a relatively coarse computational grid. Residual stresses, generated by scales of motion too small to be resolved on the coarse grid, are modeled. Although most LES incorporate spatial filtering, time-domain filtering affords certain conceptual and computational advantages, particularly for aeroacoustic applications. Consequently, this work has focused on the development of subgrid-scale (SGS) models that incorporate time-domain filters.

  2. Development Of A Navier-Stokes Computer Code

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Kwak, Dochan

    1993-01-01

    Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.

  3. Participatory and Transformative Engagement in Libraries and Museums: Exploring and Expanding the Salzburg Curriculum

    ERIC Educational Resources Information Center

    Lankes, R. David; Stephens, Michael; Arjona, Melissa

    2015-01-01

    During a program titled "Libraries and Museums in an Era of Participatory Culture," co-sponsored by the Salzburg Global Seminar (SGS) and the Institute of Museum and Library Services (IMLS), one of the discussion groups developed recommendations for skills needed by librarians and museum professionals in today's connected and…

  4. Cognitive and Social Influences on Early Prosocial Behavior in Two Sociocultural Contexts

    ERIC Educational Resources Information Center

    Kartner, Joscha; Keller, Heidi; Chaudhary, Nandita

    2010-01-01

    In this cross-cultural study, we tested 2 main hypotheses: first, that an early self-concept along with self-other differentiation is a universal precursor of prosocial behavior in 19-month-olds, and second, that the importance attached to relational socialization goals (SGs) concerning interpersonal responsiveness (obedience, prosocial behavior)…

  5. The Research and Evaluation of Serious Games: Toward a Comprehensive Methodology

    ERIC Educational Resources Information Center

    Mayer, Igor; Bekebrede, Geertje; Harteveld, Casper; Warmelink, Harald; Zhou, Qiqi; van Ruijven, Theo; Lo, Julia; Kortmann, Rens; Wenzler, Ivo

    2014-01-01

    The authors present the methodological background to and underlying research design of an ongoing research project on the scientific evaluation of serious games and/or computer-based simulation games (SGs) for advanced learning. The main research questions are: (1) what are the requirements and design principles for a comprehensive social…

  6. BatMis: a fast algorithm for k-mismatch mapping.

    PubMed

    Tennakoon, Chandana; Purbojati, Rikky W; Sung, Wing-Kin

    2012-08-15

    Second-generation sequencing (SGS) generates millions of reads that need to be aligned to a reference genome allowing errors. Although current aligners can efficiently map reads allowing a small number of mismatches, they are not well suited for handling a large number of mismatches. The efficiency of aligners can be improved using various heuristics, but the sensitivity and accuracy of the alignments are sacrificed. In this article, we introduce Basic Alignment tool for Mismatches (BatMis)--an efficient method to align short reads to a reference allowing k mismatches. BatMis is a Burrows-Wheeler transformation based aligner that uses a seed and extend approach, and it is an exact method. Benchmark tests show that BatMis performs better than competing aligners in solving the k-mismatch problem. Furthermore, it can compete favorably even when compared with the heuristic modes of the other aligners. BatMis is a useful alternative for applications where fast k-mismatch mappings, unique mappings or multiple mappings of SGS data are required. BatMis is written in C/C++ and is freely available from http://code.google.com/p/batmis/

  7. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression

    PubMed Central

    Lyons, Shawn M.; Achorn, Chris; Kedersha, Nancy L.; Anderson, Paul J.; Ivanov, Pavel

    2016-01-01

    Stress-induced angiogenin (ANG)-mediated tRNA cleavage promotes a cascade of cellular events that starts with production of tRNA-derived stress-induced RNAs (tiRNAs) and culminates with enhanced cell survival. This stress response program relies on a subset tiRNAs that inhibit translation initiation and induce the assembly of stress granules (SGs), cytoplasmic ribonucleoprotein complexes with cytoprotective and pro-survival properties. SG-promoting tiRNAs bear oligoguanine motifs at their 5′-ends, assemble G-quadruplex-like structures and interact with the translational silencer YB-1. We used CRISPR/Cas9-based genetic manipulations and biochemical approaches to examine the role of YB-1 in tiRNA-mediated translational repression and SG assembly. We found that YB-1 directly binds to tiRNAs via its cold shock domain. This interaction is required for packaging of tiRNA-repressed mRNAs into SGs but is dispensable for tiRNA-mediated translational repression. Our studies reveal the functional role of YB-1 in the ANG-mediated stress response program. PMID:27174937

  8. Smc5/6-Mms21 Prevents and Eliminates Inappropriate Recombination Intermediates in Meiosis

    PubMed Central

    Xaver, Martin; Huang, Lingzhi; Chen, Doris; Klein, Franz

    2013-01-01

    Repairing broken chromosomes via joint molecule (JM) intermediates is hazardous and therefore strictly controlled in most organisms. Also in budding yeast meiosis, where production of enough crossovers via JMs is imperative, only a subset of DNA breaks are repaired via JMs, closely regulated by the ZMM pathway. The other breaks are repaired to non-crossovers, avoiding JM formation, through pathways that require the BLM/Sgs1 helicase. “Rogue” JMs that escape the ZMM pathway and BLM/Sgs1 are eliminated before metaphase by resolvases like Mus81-Mms4 to prevent chromosome nondisjunction. Here, we report the requirement of Smc5/6-Mms21 for antagonizing rogue JMs via two mechanisms; destabilizing early intermediates and resolving JMs. Elimination of the Mms21 SUMO E3-ligase domain leads to transient JM accumulation, depending on Mus81-Mms4 for resolution. Absence of Smc6 leads to persistent rogue JMs accumulation, preventing chromatin separation. We propose that the Smc5/6-Mms21 complex antagonizes toxic JMs by coordinating helicases and resolvases at D-Loops and HJs, respectively. PMID:24385936

  9. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae.

    PubMed

    Iwaki, Aya; Kawai, Takao; Yamamoto, Yosuke; Izawa, Shingo

    2013-03-01

    Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates.

  10. Biomass Conversion Inhibitors Furfural and 5-Hydroxymethylfurfural Induce Formation of Messenger RNP Granules and Attenuate Translation Activity in Saccharomyces cerevisiae

    PubMed Central

    Iwaki, Aya; Kawai, Takao; Yamamoto, Yosuke

    2013-01-01

    Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates. PMID:23275506

  11. [Review of Second Generation Sequencing and Its Application in Forensic Genetics].

    PubMed

    Zhang, S H; Bian, Y N; Zhao, Q; Li, C T

    2016-08-01

    The rapid development of second generation sequencing (SGS) within the past few years has led to the increasement of data throughput and read length while at the same time brought down substantially the sequencing cost. This made new breakthrough in the area of biology and ushered the forensic genetics into a new era. Based on the history of sequencing application in forensic genetics, this paper reviews the importance of sequencing technologies for genetic marker detection. The application status and potential of SGS in forensic genetics are discussed based on the already explored SGS platforms of Roche, Illumina and Life Technologies. With these platforms, DNA markers (SNP, STR), RNA markers (mRNA, microRNA) and whole mtDNA can be sequenced. However, development and validation of application kits, maturation of analysis software, connection to the existing databases and the possible ethical issues occurred with big data will be the key factors that determine whether this technology can substitute or supplement PCR-CE, the mature technology, and be widely used for cases detection. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  12. Star-formation complexes in the `galaxy-sized' supergiant shell of the galaxy Holmberg I

    NASA Astrophysics Data System (ADS)

    Egorov, Oleg V.; Lozinskaya, Tatiana A.; Moiseev, Alexei V.; Smirnov-Pinchukov, Grigory V.

    2018-05-01

    We present the results of observations of the galaxy Holmberg I carried out at the Russian 6-m telescope in the narrow-band imaging, long-slit spectroscopy, and scanning Fabry-Perot interferometer modes. A detailed analysis of gas kinematics, ionization conditions, and metallicity of star-forming regions in the galaxy is presented. The aim of the paper is to analyse the propagation of star formation in the galaxy and to understand the role of the ongoing star formation in the evolution of the central `galaxy-sized' supergiant H I shell (SGS), where all regions of star formation are observed. We show that star formation in the galaxy occurs in large unified complexes rather than in individual giant H II regions. Evidence of the triggered star formation is observed both on scales of individual complexes and of the whole galaxy. We identified two supernova-remnant candidates and one late-type WN star and analysed their spectrum and surrounding-gas kinematics. We provide arguments indicating that the SGS in Holmberg I is destructing by the influence of star formation occurring on its rims.

  13. RPA coordinates DNA end resection and prevents formation of DNA hairpins.

    PubMed

    Chen, Huan; Lisby, Michael; Symington, Lorraine S

    2013-05-23

    Replication protein A (RPA) is an essential eukaryotic single-stranded DNA binding protein with a central role in DNA metabolism. RPA directly participates in DNA double-strand break repair by stimulating 5'-3' end resection by the Sgs1/BLM helicase and Dna2 endonuclease in vitro. Here we investigated the role of RPA in end resection in vivo, using a heat-inducible degron system that allows rapid conditional depletion of RPA in Saccharomyces cerevisiae. We found that RPA depletion eliminated both the Sgs1-Dna2- and Exo1-dependent extensive resection pathways and synergized with mre11Δ to prevent end resection. The short single-stranded DNA tails formed in the absence of RPA were unstable due to 3' strand loss and the formation of fold-back hairpin structures that required resection initiation and Pol32-dependent DNA synthesis. Thus, RPA is required to generate ssDNA, and also to protect ssDNA from degradation and inappropriate annealing that could lead to genome rearrangements. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Identification of host response signatures of infection.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branda, Steven S.; Sinha, Anupama; Bent, Zachary

    2013-02-01

    Biological weapons of mass destruction and emerging infectious diseases represent a serious and growing threat to our national security. Effective response to a bioattack or disease outbreak critically depends upon efficient and reliable distinguishing between infected vs healthy individuals, to enable rational use of scarce, invasive, and/or costly countermeasures (diagnostics, therapies, quarantine). Screening based on direct detection of the causative pathogen can be problematic, because culture- and probe-based assays are confounded by unanticipated pathogens (e.g., deeply diverged, engineered), and readily-accessible specimens (e.g., blood) often contain little or no pathogen, particularly at pre-symptomatic stages of disease. Thus, in addition to themore » pathogen itself, one would like to detect infection-specific host response signatures in the specimen, preferably ones comprised of nucleic acids (NA), which can be recovered and amplified from tiny specimens (e.g., fingerstick draws). Proof-of-concept studies have not been definitive, however, largely due to use of sub-optimal sample preparation and detection technologies. For purposes of pathogen detection, Sandia has developed novel molecular biology methods that enable selective isolation of NA unique to, or shared between, complex samples, followed by identification and quantitation via Second Generation Sequencing (SGS). The central hypothesis of the current study is that variations on this approach will support efficient identification and verification of NA-based host response signatures of infectious disease. To test this hypothesis, we re-engineered Sandia's sophisticated sample preparation pipelines, and developed new SGS data analysis tools and strategies, in order to pioneer use of SGS for identification of host NA correlating with infection. Proof-of-concept studies were carried out using specimens drawn from pathogen-infected non-human primates (NHP). This work provides a strong foundation for large-scale, highly-efficient efforts to identify and verify infection-specific host NA signatures in human populations.« less

  15. Arsenite-induced stress granule formation is inhibited by elevated levels of reduced glutathione in West Nile virus-infected cells

    PubMed Central

    Basu, Mausumi; Courtney, Sean C.

    2017-01-01

    Oxidative stress activates the cellular kinase HRI, which then phosphorylates eIF2α, resulting in stalled translation initiation and the formation of stress granules (SGs). SG assembly redirects cellular translation to stress response mRNAs and inhibits cap-dependent viral RNA translation. Flavivirus infections were previously reported to induce oxidative stress in infected cells but flavivirus-infected cells paradoxically develop resistance to arsenite (Ars)-induced SG formation with time after infection. This resistance was previously postulated to be due to sequestration of the SG protein Caprin1 by Japanese encephalitis virus capsid protein. However, Caprin1 did not co-localize with West Nile virus (WNV) capsid protein in infected cells. Other stressors induced SGs with equal efficiency in mock- and WNV-infected cells indicating the intrinsic ability of cells to assemble SGs was not disabled. Induction of both reactive oxygen species (ROS) and the antioxidant response was detected at early times after WNV-infection. The transcription factors, Nrf2 and ATF4, which activate antioxidant genes, were upregulated and translocated to the nucleus. Knockdown of Nrf2, ATF4 or apoptosis-inducing factor (AIF), a mitochondrial protein involved in regenerating intracellular reduced glutathione (GSH) levels, with siRNA or treatment of cells with buthionine sulphoximine, which induces oxidative stress by inhibiting GSH synthesis, decreased intracellular GSH levels and increased the number of SG-positive, infected cells. Mitochondria were protected from Ars-induced damage by WNV infection until late times in the infection cycle. The results indicate that the increase in virus-induced ROS levels is counterbalanced by a virus-induced antioxidant response that is sufficient to also overcome the increase in ROS induced by Ars treatment and prevent Ars-induced SG assembly and mitochondrial damage. The virus-induced alterations in the cellular redox status appear to provide benefits for the virus during its lifecycle. PMID:28241074

  16. Cross-reactions in IgM ELISA tests to Legionella pneumophila sg1 and Bordetella pertussis among children suspected of legionellosis; potential impact of vaccination against pertussis?

    PubMed

    Pancer, Katarzyna Wanda

    2015-01-01

    The objective of this study was preliminary evaluation of IgM cross-reaction in sera collected from children hospitalized because of suspected legionellosis. Sera with positive IgM results to L. pneumophila sgs1-7, B. pertussis or with simultaneous detection of IgM antibodies to L. pneumophila sgs1-7 and B. pertussis, or IgM to L. pneumophila sgs1-7 and M. pneumoniae in routine tests, were selected. In total, an adapted pre-absorption test was used for the serological confirmation of legionellosis in the sera of 19 children suspected of legionellosis, and also in 3 adult persons with confirmed Legionnaires' disease. Sera were pre-absorbed with antigens of L. pneumophila sg1, B. pertussis or both, and tested by ELISA tests. The reduction of IgM antibody level by pre-absorption with antigen/antigens was determined. Reduction of anti-Lpsgs1-7 IgM by pre-absorption with L.pneumophila sg1 antigen ranged from 1.5 to 80, and reduction of anti-Bp IgM by pre-absorption with B. pertussis ranged from 2.0 to 23.8. Reduction by both antigens varied depending on the age of the patients: among children <4 yrs.old, the reduction of anti-B. pertussis IgM by both antigens was higher than for B. pertussis antigen alone. Based on the high difference (≥ 2 times) between reduction by L.pneumophila sg1 and by B. pertussis antigen, legionellosis was confirmed in 8/19 children. The majority of them also indicated IgM positive/borderline results for B. pertussis or M.pneumoniae in routine ELISA tests. As a preliminary, we posed a hypothesis of a potential impact of an anti-pertussis vaccination on the results obtained in anti-L. pneumophila ELISA IgM tests among young children.

  17. Nursing students' perceptions of a video-based serious game's educational value: A pilot study.

    PubMed

    Johnsen, Hege M; Fossum, Mariann; Vivekananda-Schmidt, Pirashanthie; Fruhling, Ann; Slettebø, Åshild

    2018-03-01

    Despite an increasing number of serious games (SGs) in nursing education, few evaluation studies specifically address their educational value in terms of face, content, and construct validity. To assess nursing students' perceptions of a video-based SG in terms of face, content, and construct validity. In addition, the study assessed perceptions of usability, individual factors, and preferences regarding future use. A pilot study was conducted. An SG prototype was implemented as part of two simulation courses in nursing education: one for home health care and one for hospital medical-surgical wards. The SG aimed to teach clinical reasoning and decision-making skills to nursing students caring for patients with chronic obstructive pulmonary disease. A total of 249second-year nursing students participated in pilot testing of the SG. A paper-based survey was used to assess students' perceptions of the SG's educational value. Overall, students from both simulation courses perceived the SG as educationally valuable and easy to use. No significant differences were found in perceptions of educational value between nursing students with previous healthcare experience versus those with none. However, significantly more students in the home healthcare simulation course indicated that the SG tested their clinical reasoning and decision-making skills. Students from both the medical-surgical and home healthcare simulation courses suggested that more video-based SGs should be developed and used in nursing education. Overall, the survey results indicate that the participants perceived the SG as educationally valuable, and that the SG has potential as an educational tool in nursing education, especially in caring for patients with chronic diseases and in home healthcare simulation. Showing a SG's educational value and user acceptance among nursing students may justify the development and application of more SGs in nursing education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Spatial interpolation of forest conditions using co-conditional geostatistical simulation

    Treesearch

    H. Todd Mowrer

    2000-01-01

    In recent work the author used the geostatistical Monte Carlo technique of sequential Gaussian simulation (s.G.s.) to investigate uncertainty in a GIS analysis of potential old-growth forest areas. The current study compares this earlier technique to that of co-conditional simulation, wherein the spatial cross-correlations between variables are included. As in the...

  19. Diffuse CO_{2} and ^{222}Rn degassing monitoring of Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Alonso, Mar; Sagiya, Takeshi; Meneses-Gutiérrez, Ángela; Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Melián, Gladys; Padilla, Germán D.

    2017-04-01

    Mt. Ontake (3067 m.a.s.l.) is a stratovolcano located in central Honsu and around 100 Km northeast of Nagoya, Japan, with the last eruption occurring on September 27, 2014, killing 57 people, and creating a 7-10 km high ash plume (Kagoshima et. al., 2016). There were no significant earthquakes that might have warned authorities in the lead up to the phreatic eruption, caused by ground water flashing to steam in a hydrothermal explosion. At the time of the eruption there was no operational geochemical surveillance program. In order to contribute to the strengthening of this program, the Disaster Mitigation Research Center of Nagoya University and the Volcanological Institute of Canary Islands started a collaborative program. To do so, an automatic geochemical station was installed at Ontake volcano and a survey of diffuse CO2efflux and other volatiles was carried out at the surface environment of selected areas of the volcano. The station was installed 10.9 km east away from the eruptive vent, where some earthquakes occurred, and consists of a soil radon (Rn) monitor (SARAD RTM-2010-2) able to measure 222Rn and 220Rn activities. Monitoring of radon is an important geochemical tool to forecast earthquakes and volcanic eruptions due to its geochemical properties. Rn ascends from the lower to the upper part of earth's crust mainly through cracks or faults and its transport needs the existence of a naturally occurring flux of a carrier gas. Regarding to the soil gas survey, it was carried out in August 2016 with 183 measurement points performed in an area of 136 km2. Measurements of soil CO2 efflux were carried out following the accumulation chamber method by means of a portable soil CO2 efflux instrument. To estimate the total CO2 output, sequential Gaussian simulation (sGs) was used allowing the interpolation of the measured variable at not-sampled sites and assess the uncertainly of the total diffuse emission of carbon dioxide estimated for the entire studied area. The total emission rate of diffuse CO2 efflux was expressed as the mean value of 100 equiprobable sGs realizations, and its uncertainly was considered as one standard deviation of the 100 emission rates obtained after the sGs procedure. Soil CO2 efflux values ranged from 0.266 gm-2d-1 up to 66.238 gm-2d-1 with an average value of 23.350 gm-2d-1. The estimated average value for the total diffuse CO2 released for the Mt. Ontake volcanic complex during this study was 3,149 ± 98 td-1, with the main contributions arising from the NE zone of the complex. It is expected for future surveys to increase the density of sampling points and to sample the areas near the crater in order to obtain a better approximation of the diffuse CO2 efflux emission as well as obtain a long-term evolution to understand the dynamics of diffuse CO2 emission and its relationship with the volcanic activity of Mt. Ontake.

  20. Integrative monitoring of water storage variations at the landscape-scale with an iGrav superconducting gravimeter in a field enclosure

    NASA Astrophysics Data System (ADS)

    Guntner, A.; Reich, M.; Mikolaj, M.; Creutzfeldt, B.; Schroeder, S.; Wziontek, H.

    2017-12-01

    In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and related storage dynamics beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. We present the first outdoor deployment of an iGrav superconducting gravimeter (SG) in a minimized field enclosure on a wet-temperate grassland site for integrative monitoring of water storage changes. It is shown that the system performs similarly precise as SGs that have hitherto been deployed in observatory buildings, but with higher sensitivity to hydrological variations in the surroundings of the instrument. Gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur, and thus the field SG system directly observes the total water storage change in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily time scales. With about 99% and 85% of the gravity signal originating within a radius of 4000 and 200 meter around the instrument, respectively, the setup paves the road towards gravimetry as a continuous hydrological field monitoring technique for water storage dynamics at the landscape scale.

  1. Application of Hybrid Real-Time Power System Simulator for Designing and Researching of Relay Protection and Automation

    NASA Astrophysics Data System (ADS)

    Borovikov, Yu S.; Sulaymanov, A. O.; Andreev, M. V.

    2015-10-01

    Development, research and operation of smart grids (SG) with active-adaptive networks (AAS) are actual tasks for today. Planned integration of high-speed FACTS devices greatly complicates complex dynamic properties of power systems. As a result the operating conditions of equipment of power systems are significantly changing. Such situation creates the new actual problem of development and research of relay protection and automation (RPA) which will be able to adequately operate in the SGs and adapt to its regimes. Effectiveness of solution of the problem depends on using tools - different simulators of electric power systems. Analysis of the most famous and widely exploited simulators led to the conclusion about the impossibility of using them for solution of the mentioned problem. In Tomsk Polytechnic University developed the prototype of hybrid multiprocessor software and hardware system - Hybrid Real-Time Power System Simulator (HRTSim). Because of its unique features this simulator can be used for solution of mentioned tasks. This article introduces the concept of development and research of relay protection and automation with usage of HRTSim.

  2. Steam generators regulatory practices and issues in Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, C.; Castelao, C.; Ruiz-Colino, J.

    1997-02-01

    This paper presents the actual status of Spanish Steam Generator tubes, actions developed by PWR plant owners and submitted to CSN, and regulatory activities related to tube degradation mechanisms analysis; NDT tube inspection techniques; tube, tubesheet and TSPs integrity studies; tube plugging/repair criteria; preventive and corrective measures including whole SGs replacement; tube leak measurement methods and other operational aspects.

  3. 78 FR 52556 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... petroleum products, organic chemicals and vegetable oils for customs purposes for the next three years as of..., LA 70087, has been approved to gauge and accredited to test petroleum and petroleum products, organic chemicals and vegetable oils for customs purposes, in accordance with the provisions of 19 CFR 151.12 and 19...

  4. The Use of a Serious Game and Academic Performance of Undergraduate Accounting Students: An Empirical Analysis

    ERIC Educational Resources Information Center

    Malaquias, Rodrigo Fernandes; Malaquias, Fernanda Francielle de Oliveira; Borges, Dermeval M., Jr.; Zambra, Pablo

    2018-01-01

    The literature on serious games (SGs) indicates that they are very useful tools to improve the teaching/learning process. In this paper, we analyze some potential benefits of a SG on academic performance of undergraduate accounting students. The database is comprised of scores obtained by students during an undergraduate discipline related with…

  5. 75 FR 17428 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Protection by calling (202) 344-1060. The inquiry may also be sent to [email protected] . Please reference..., 1300 Pennsylvania Avenue, NW., Suite 1500N, Washington, DC 20229, 202-344- 1060. Dated: March 26, 2010. Ira S. Reese, Executive Director, Laboratories and Scientific Services. [FR Doc. 2010-7685 Filed 4-5...

  6. Mapping Learning and Game Mechanics for Serious Games Analysis

    ERIC Educational Resources Information Center

    Arnab, Sylvester; Lim, Theodore; Carvalho, Maira B.; Bellotti, Francesco; de Freitas, Sara; Louchart, Sandy; Suttie, Neil; Berta, Riccardo; De Gloria, Alessandro

    2015-01-01

    Although there is a consensus on the instructional potential of Serious Games (SGs), there is still a lack of methodologies and tools not only for design but also to support analysis and assessment. Filling this gap is one of the main aims of the Games and Learning Alliance (http://www.galanoe.eu) European Network of Excellence on Serious Games,…

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharel, P.; Herran, J.; Lukashev, P.

    Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics). Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero.more » Here, this discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.« less

  8. Patterns of gene flow in Encholirium horridum L.B.Sm., a monocarpic species of Bromeliaceae from Brazil.

    PubMed

    Hmeljevski, Karina Vanessa; dos Reis, Maurício Sedrez; Forzza, Rafaela Campostrini

    2015-01-01

    Encholirium horridum is a bromeliad that occurs exclusively on inselbergs in the Atlantic Forest biome of Brazil. These rock outcrops form natural islands that isolate populations from each other. We investigated gene flow by pollen through paternity analyses of a bromeliad population in an area of approximately 2 ha in Espírito Santo State, Brazil. To that end, seed rosettes and seedlings were genotyped using nuclear microsatellite loci. A plot was also established from the same population and specimens were genotyped to evaluate their fine-scale spatial genetic structure (SGS) through analyses of spatial autocorrelation and clonal growth. Paternity analysis indicated that 80% of the attributed progenitors of the genotyped seedlings were from inside the study area. The pollen dispersal distances within the area were restricted (mean distance of 45.5 m, varying from 3 to 156 m) and fine-scale SGS was weak (F(ij) = 0.0122, P < 0.001; Sp = 0.009). Clonal growth was found to be a rare event, supporting the monocarpy of this species. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. The BepiColombo Archive Core System (BACS)

    NASA Astrophysics Data System (ADS)

    Macfarlane, A. J.; Osuna, P.; Pérez-López, F.; Vallejo, J. C.; Martinez, S.; Arviset, C.; Casale, M.

    2015-09-01

    BepiColombo is an interdisciplinary ESA mission to explore the planet Mercury in cooperation with JAXA. The mission consists of two separate orbiters: ESA's Mercury Planetary Orbiter (MPO) and JAXA's Mercury Magnetospheric Orbiter (MMO), which are dedicated to the detailed study of the planet and its magnetosphere. The MPO scientific payload comprises 11 instruments covering different scientific disciplines developed by several European teams. The MPO science operations will be prepared by the MPO Science Ground Segment (SGS) located at the European Space Astronomy Centre (ESAC) in Madrid. The BepiColombo Archive Core System (BACS) will be the central archive in which all mission operational data will be stored and is being developed by the Science Archives and Virtual Observatory Team (SAT) also at ESAC. The BACS will act as one of the modular subsystems within the BepiColombo Science Operations Control System (BSCS), (Vallejo 2014; Pérez-López 2014) which is under the responsibility of the SGS, with the purpose of facilitating the information exchange of data and metadata between the other subsystems of the BSCS as well as with the MPO Instrument Teams. This paper gives an overview of the concept and design of the BACS and how it integrates into the science ground segment workflow.

  10. Exploring the functional significance of sterol glycosyltransferase enzymes.

    PubMed

    Singh, Gaurav; Dhar, Yogeshwar Vikram; Asif, Mehar Hasan; Misra, Pratibha

    2018-01-01

    Steroidal alkaloids (SAs) are widely synthesized and distributed in plants manifesting as natural produce endowed with potential for medicinal, pesticidal and other high-value usages. Glycosylation of these SAs raises complex and diverse glycosides in plant cells that indeed govern numerous functional aspects. During the glycosylation process of these valuable metabolites, the addition of carbohydrate molecule(s) is catalyzed by enzymes known as sterol glycosyltransferases (SGTs), commonly referred to as UGTs, leading to the production of steryl glycosides (SGs). The ratio of SGs and nonglyco-conjugated SAs are different in different plant species, however, their biosynthesis in the cell is controlled by different environmental factors. The aim of this review is to evaluate the current SGT enzyme research and the functional consequences of glycomodification of SAs on the physiology and plant development, which together are associated with the plant's primary processes. Pharmaceutical, industrial, and other potential uses of saponins have also been discussed and their use in therapeutics has been unveiled by in silico analysis. The field of biotransformation or conversion of nonglycosylated to glycosylated phytosterols by the activity of SGTs, making them soluble, available and more useful for humankind is the new field of interest towards drug therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Design, Fabrication, and Experimental Validation of Novel Flexible Silicon-Based Dry Sensors for Electroencephalography Signal Measurements.

    PubMed

    Yu, Yi-Hsin; Lu, Shao-Wei; Liao, Lun-De; Lin, Chin-Teng

    2014-01-01

    Many commercially available electroencephalography (EEG) sensors, including conventional wet and dry sensors, can cause skin irritation and user discomfort owing to the foreign material. The EEG products, especially sensors, highly prioritize the comfort level during devices wear. To overcome these drawbacks for EEG sensors, this paper designs Societe Generale de Surveillance S [Formula: see text] A [Formula: see text] (SGS)-certified, silicon-based dry-contact EEG sensors (SBDSs) for EEG signal measurements. According to the SGS testing report, SBDSs extract does not irritate skin or induce noncytotoxic effects on L929 cells according to ISO10993-5. The SBDS is also lightweight, flexible, and nonirritating to the skin, as well as capable of easily fitting to scalps without any skin preparation or use of a conductive gel. For forehead and hairy sites, EEG signals can be measured reliably with the designed SBDSs. In particular, for EEG signal measurements at hairy sites, the acicular and flexible design of SBDS can push the hair aside to achieve satisfactory scalp contact, as well as maintain low skin-electrode interface impedance. Results of this paper demonstrate that the proposed sensors perform well in the EEG measurements and are feasible for practical applications.

  12. Association of seminal plasma motility inhibitors/semenogelins with sperm in asthenozoospermia-infertile men.

    PubMed

    Terai, K; Yoshida, K; Yoshiike, M; Fujime, M; Iwamoto, T

    2010-01-01

    Seminal plasma motility inhibitors (SPMIs) are proteinase-resistant fragments of semenogelin I and II (Sgs), which are the major proteins of semen coagulum. SPMIs inhibit the motility of spermatozoa, and Sgs are thought to be natural regulators of human sperm function. The mechanism underlying sperm motility regulation and its association with defective motility in infertile men remain unclear. The purpose of this study was to investigate the association between SPMIs and spermatozoa in infertile men with asthenozoospermia. Fifty-four semen samples from 37 asthenozoospermic patients and 17 samples from 9 normal healthy subjects were analyzed. Spermatozoa, washed by Percoll density gradients, were immunostained with anti-SPMI antibody and subjected to flow cytometric analysis. The proportion of spermatozoa labeled with the antibody and the average intensity of fluorescence labeling per spermatozoa were analyzed in relation to the parameters used for semen analysis. A significant negative correlation was found between sperm motility and the proportion (R = -0.68) and intensity (R = -0.38) of labeling. These results suggest that SPMIs remain on the sperm surface after liquefaction. This might account for some disorders of sperm motility observed in infertile men with asthenozoospermia. Copyright © 2010 S. Karger AG, Basel.

  13. A data-driven approach to {{\\rm{\\pi }}}^{0},{\\rm{\\eta }} and {{\\rm{\\eta }}}^{\\prime} single and double Dalitz decays

    NASA Astrophysics Data System (ADS)

    Escribano, Rafel; Gonzàlez-Solís, Sergi

    2018-01-01

    The dilepton invariant mass spectra and integrated branching ratios of the single and double Dalitz decays {\\mathscr{P}}\\to {{{l}}}+{{{l}}}-{{γ }} and {\\mathscr{P}}\\to {{{l}}}+{{{l}}}-{{{l}}}+{{{l}}}- ({\\mathscr{P}}={{{π }}}0,{{η }},{{{η }}}\\prime; {{l}}={{e}} or {{μ }}) are predicted by means of a data-driven approach based on the use of rational approximants applied to {{{π }}}0,{{η }} and {{{η }}}\\prime transition form factor experimental data in the space-like region. Supported by the FPI scholarship BES-2012-055371 (S.G-S), the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya under grant 2014 SGR 1450, the Ministerio de Ciencia e Innovación under grant FPA2011-25948, the Ministerio de Economía y Competitividad under grants CICYT-FEDER-FPA 2014-55613-P and SEV-2012-0234, the Spanish Consolider-Ingenio 2010 Program CPAN (CSD2007-00042), and the European Commission under program FP7-INFRASTRUCTURES-2011-1 (283286) S.G-S also Received Support from the CAS President’s International Fellowship Initiative for Young International Scientist (2017PM0031)

  14. Performance of NDA techniques on a vitrified waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, J.R.; Veazey, G.W.; Prettyman, T.H.

    1997-11-01

    Rocky Flats Environmental Technology Site (RFETS) is currently considering the use of vitrified transuranic (TRU)-waste forms for the final disposition of several waste materials. To date, however, little nondestructive assay (NDA) data have been acquired in the general NDA community to assist in this endeavor. This paper describes the efforts to determine constraints and operating parameters for using NDA instrumentation on vitrified waste. The present study was conducted on a sample composed of a plutonium-contaminated ash, similar to that found in the RFETS inventory, and a borosilicate-based glass. The vitrified waste item was fabricated at Los Alamos National Laboratory (LANL)more » using methods and equipment similar to those being proposed by RFETS to treat their ash material. The focus of this study centered on the segmented gamma scanner (SGS) with 1/2-inch collimation, a technique that is presently available at RFETS. The accuracy and precision of SGS technology was evaluated, with particular attention to bias issues involving matrix geometry, homogeneity, and attenuation. Tomographic gamma scanning was utilized in the determination of the waste form homogeneity. A thermal neutron technique was also investigated and comparisons made with the gamma results.« less

  15. Numerical modeling of the transitional boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Ivanov, Dimitry; Chorny, Andrei

    2015-11-01

    Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.

  16. Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification.

    PubMed

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Giorgi, Elena E; Blair, Lily M; Learn, Gerald H; Hahn, Beatrice H; Alter, Harvey J; Busch, Michael P; Fierer, Daniel S; Ribeiro, Ruy M; Perelson, Alan S; Bhattacharya, Tanmoy; Shaw, George M

    2016-01-01

    Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective vaccine, which could be facilitated by a precise molecular identification of transmitted/founder (T/F) viral genomes and their progeny. We used single-genome sequencing to show that inferred HCV T/F sequences in recipients were identical to viral sequences in their respective donors and that viral genomes generally evolved early in infection according to a simple model of random sequence evolution. Altogether, the findings validate T/F genome inferences and illustrate how T/F sequence identification can illuminate studies of HCV transmission, immunopathogenesis, drug resistance development, and vaccine protection, including sieving effects on breakthrough virus strains. Copyright © 2015 Li et al.

  17. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.

    PubMed

    Premnath, Kannan N; Pattison, Martin J; Banerjee, Sanjoy

    2009-02-01

    In this paper, we present a framework based on the generalized lattice Boltzmann equation (GLBE) using multiple relaxation times with forcing term for eddy capturing simulation of wall-bounded turbulent flows. Due to its flexibility in using disparate relaxation times, the GLBE is well suited to maintaining numerical stability on coarser grids and in obtaining improved solution fidelity of near-wall turbulent fluctuations. The subgrid scale (SGS) turbulence effects are represented by the standard Smagorinsky eddy viscosity model, which is modified by using the van Driest wall-damping function to account for reduction of turbulent length scales near walls. In order to be able to simulate a wider class of problems, we introduce forcing terms, which can represent the effects of general nonuniform forms of forces, in the natural moment space of the GLBE. Expressions for the strain rate tensor used in the SGS model are derived in terms of the nonequilibrium moments of the GLBE to include such forcing terms, which comprise a generalization of those presented in a recent work [Yu, Comput. Fluids 35, 957 (2006)]. Variable resolutions are introduced into this extended GLBE framework through a conservative multiblock approach. The approach, whose optimized implementation is also discussed, is assessed for two canonical flow problems bounded by walls, viz., fully developed turbulent channel flow at a shear or friction Reynolds number (Re) of 183.6 based on the channel half-width and three-dimensional (3D) shear-driven flows in a cubical cavity at a Re of 12 000 based on the side length of the cavity. Comparisons of detailed computed near-wall turbulent flow structure, given in terms of various turbulence statistics, with available data, including those from direct numerical simulations (DNS) and experiments showed good agreement. The GLBE approach also exhibited markedly better stability characteristics and avoided spurious near-wall turbulent fluctuations on coarser grids when compared with the single-relaxation-time (SRT)-based approach. Moreover, its implementation showed excellent parallel scalability on a large parallel cluster with over a thousand processors.

  18. On the Computation of Sound by Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Streett, Craig L.; Sarkar, Sutanu

    1997-01-01

    The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound. The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency) part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T(sub ij). The rms fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound; separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations.

  19. 77 FR 25728 - Accreditation and Approval of SGS North America, Inc., as a Commercial Gauger and Laboratory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... perform may be directed to the U.S. Customs and Border Protection by calling (202) 344-1060. The inquiry... Pennsylvania Avenue NW., Suite 1500N, Washington, DC 20229, 202-344- 1060. Dated: April 18, 2012. Ira S. Reese, Executive Director. [FR Doc. 2012-10408 Filed 4-30-12; 8:45 am] BILLING CODE 9111-14-P ...

  20. Modeling distortion of HIT by an Actuator Disk in a periodic domain

    NASA Astrophysics Data System (ADS)

    Ghate, Aditya; Ghaisas, Niranjan; Lele, Sanjiva

    2017-11-01

    We study the distortion of incompressible, homogeneous isotropic turbulence (HIT) by a dragging actuator disk with a fixed thrust coefficient (under the large Reynolds number limit), using Large Eddy Simulation (LES). The HIT inflow is tailored to ensure that the largest length scales in the flow are smaller than the actuator disk diameter in order to minimize the meandering of the turbulent wake and isolate the length scales that undergo distortion. The numerical scheme (Fourier collocation with dealiasing) and the SGS closure (anisotropic minimum dissipation model) are carefully selected to minimize numerical artifacts expected due to the inviscid assumption. The LES is used to characterize the following 3 properties of the flow a) distortion of HIT due to the expanding streamtube resulting in strong anisotropy, b) turbulent pressure modulation across the actuator disk, and the c) turbulent wake state. Finally, we attempt to model the initial distortion and the pressure modulation using a WKB variant of RDT solved numerically using a set of discrete Gabor modes. Funding provided by Precourt Institute for Energy at Stanford University.

  1. Climate Simulations from Super-parameterized and Conventional General Circulation Models with a Third-order Turbulence Closure

    NASA Astrophysics Data System (ADS)

    Xu, Kuan-Man; Cheng, Anning

    2014-05-01

    A high-resolution cloud-resolving model (CRM) embedded in a general circulation model (GCM) is an attractive alternative for climate modeling because it replaces all traditional cloud parameterizations and explicitly simulates cloud physical processes in each grid column of the GCM. Such an approach is called "Multiscale Modeling Framework." MMF still needs to parameterize the subgrid-scale (SGS) processes associated with clouds and large turbulent eddies because circulations associated with planetary boundary layer (PBL) and in-cloud turbulence are unresolved by CRMs with horizontal grid sizes on the order of a few kilometers. A third-order turbulence closure (IPHOC) has been implemented in the CRM component of the super-parameterized Community Atmosphere Model (SPCAM). IPHOC is used to predict (or diagnose) fractional cloudiness and the variability of temperature and water vapor at scales that are not resolved on the CRM's grid. This model has produced promised results, especially for low-level cloud climatology, seasonal variations and diurnal variations (Cheng and Xu 2011, 2013a, b; Xu and Cheng 2013a, b). Because of the enormous computational cost of SPCAM-IPHOC, which is 400 times of a conventional CAM, we decided to bypass the CRM and implement the IPHOC directly to CAM version 5 (CAM5). IPHOC replaces the PBL/stratocumulus, shallow convection, and cloud macrophysics parameterizations in CAM5. Since there are large discrepancies in the spatial and temporal scales between CRM and CAM5, IPHOC used in CAM5 has to be modified from that used in SPCAM. In particular, we diagnose all second- and third-order moments except for the fluxes. These prognostic and diagnostic moments are used to select a double-Gaussian probability density function to describe the SGS variability. We also incorporate a diagnostic PBL height parameterization to represent the strong inversion above PBL. The goal of this study is to compare the simulation of the climatology from these three models (CAM5, CAM5-IPHOC and SPCAM-IPHOC), with emphasis on low-level clouds and precipitation. Detailed comparisons of scatter diagrams among the monthly-mean low-level cloudiness, PBL height, surface relative humidity and lower tropospheric stability (LTS) reveal the relative strengths and weaknesses for five coastal low-cloud regions among the three models. Observations from CloudSat and CALIPSO and ECMWF Interim reanalysis are used as the truths for the comparisons. We found that the standard CAM5 underestimates cloudiness and produces small cloud fractions at low PBL heights that contradict with observations. CAM5-IPHOC tends to overestimate low clouds but the ranges of LTS and PBL height variations are most realistic. SPCAM-IPHOC seems to produce most realistic results with relatively consistent results from one region to another. Further comparisons with other atmospheric environmental variables will be helpful to reveal the causes of model deficiencies so that SPCAM-IPHOC results will provide guidance to the other two models.

  2. Does public reporting influence antibiotic and injection prescribing to all patients? A cluster-randomized matched-pair trial in china.

    PubMed

    Liu, Chenxi; Zhang, Xinping; Wang, Xuan; Zhang, Xiaopeng; Wan, Jie; Zhong, Fangying

    2016-06-01

    The inappropriate use and overuse of antibiotics and injections are serious threats to global population, and the public reporting of health care performance (PRHCP) has been an important instrument for improving the quality of care. However, existing evidence shows a mixed effect of PRHCP. This study is to explore the potential effectiveness of PRHCP that contributes to the convincing evidence of health policy and reform.This study was undertaken in Qian Jiang City, applying a matched-pair cluster-randomized trial. Twenty primary care institutions were treated as clusters and were matched into 10 pairs. Clusters in each pair were randomly assigned into a control or an intervention group. Physicians' prescribing information was publicly reported to patients and physicians monthly in the intervention group from October 2013. A total of 748,632 outpatient prescriptions were included for difference-in-difference (DID) regression model and subgroups (SGs) analysis.Overall, PRHCP intervention led to a slight reduction in the use of combined antibiotics (odds ratio [OR] = 0.870, P < 0.001) and slowed the average expenditure increase of patients (coefficient = -0.051, P < 0.001). SG analysis showed the effect of PRHCP varied among patients with different characteristics. PRHCP decreased the probability of prescriptions requiring antibiotics, combined antibiotics, and injections of patients aged 18 to 64 years old (OR < 1), and all results were statistically significant. By contrast, the results of elderly and minor patients with health insurance showed that PRHCP increased their probability of prescriptions requiring antibiotics and injections. PRHCP slowed the increase of average expenditure of most SGs.PRHCP intervention can influence the prescribing pattern of physicians. Patient factors such as age and health insurance influence the effect of PRHCP intervention, which imply that PRHCP should be designed for different patients. Patient education, aiming at radically changing attitudes toward antibiotics and injections, should be taken to promote the effectiveness of public reporting in China.

  3. Pulsed eddy current inspection of broach support plates in steam generators

    NASA Astrophysics Data System (ADS)

    Mokros, Sarah Gwendolyn

    Steam Generators (SGs) are a critical component of nuclear reactors, employing thousands of SG tubes to convert heat generated in the reactor core into useable energy. SG tubes are supported at numerous locations by Broach Support Plates (BSPs) that have trefoil shaped holes, which prevent excessive tube vibrations, while allowing water to easily flow through the support structures. A number of degradation modes occur in SGs, such as SG tube fretting, cracking or denting, requiring periodic inspection. Currently, conventional Eddy Current Testing (ECT) is used to non-destructively assess the condition of SG tubes and components. However, as reactors age, new modes of degradation will likely appear that may be difficult to detect and characterize using conventional ECT, such as wall loss in BSPs and build-up of corrosion products, which typically form as a hard sludge called magnetite. Pulsed Eddy Current (PEC) technologies are an emerging technique that is presented in this work as a method to further advance inspection techniques used in CANDURTM nuclear reactors. A PEC probe was designed to inspect the unique shape of the trefoil shaped hole to detect and characterize wall loss and the presence of magnetite in A516 carbon steel BSPs with trefoil shaped holes from within 15.9 mm (5/8") Alloy-800 SG tubes. PEC was also used to observe how measurements of wall loss were affected by the presence of magnetite. This work presents Finite Element Method (FEM) simulations and experimental results collected to observe these degradation modes. The probe was demonstrated to be capable of detecting far side wall loss as low as 20%, locating and characterizing the relative permeability of magnetite, and of detecting wall loss when magnetite was present. FEM simulations and experimental results were found to be in good agreement, suggesting that additional investigations of the effects of BSP degradation on PEC signal response may also be performed using FEM models.

  4. Reparameterization of PAM50 Expression Identifies Novel Breast Tumor Dimensions and Leads to Discovery of a Genome-Wide Significant Breast Cancer Locus at 12q15.

    PubMed

    Madsen, Michael J; Knight, Stacey; Sweeney, Carol; Factor, Rachel; Salama, Mohamed; Stijleman, Inge J; Rajamanickam, Venkatesh; Welm, Bryan E; Arunachalam, Sasi; Jones, Brandt; Rachamadugu, Rakesh; Rowe, Kerry; Cessna, Melissa H; Thomas, Alun; Kushi, Lawrence H; Caan, Bette J; Bernard, Philip S; Camp, Nicola J

    2018-06-01

    Background: Breast tumor subtyping has failed to provide impact in susceptibility genetics. The PAM50 assay categorizes breast tumors into: Luminal A, Luminal B, HER2-enriched and Basal-like. However, tumors are often more complex than simple categorization can describe. The identification of heritable tumor characteristics has potential to decrease heterogeneity and increase power for gene finding. Methods: We used 911 sporadic breast tumors with PAM50 expression data to derive tumor dimensions using principal components (PC). Dimensions in 238 tumors from high-risk pedigrees were compared with the sporadic tumors. Proof-of-concept gene mapping, informed by tumor dimension, was performed using Shared Genomic Segment (SGS) analysis. Results: Five dimensions (PC1-5) explained the majority of the PAM50 expression variance: three captured intrinsic subtype, two were novel (PC3, PC5). All five replicated in 745 TCGA tumors. Both novel dimensions were significantly enriched in the high-risk pedigrees (intrinsic subtypes were not). SGS gene-mapping in a pedigree identified a 0.5 Mb genome-wide significant region at 12q15 This region segregated through 32 meioses to 8 breast cancer cases with extreme PC3 tumors ( P = 2.6 × 10 -8 ). Conclusions: PC analysis of PAM50 gene expression revealed multiple independent, quantitative measures of tumor diversity. These tumor dimensions show evidence for heritability and potential as powerful traits for gene mapping. Impact: Our study suggests a new approach to describe tumor expression diversity, provides new avenues for germline studies, and proposes a new breast cancer locus. Similar reparameterization of expression patterns may inform other studies attempting to model the effects of tumor heterogeneity. Cancer Epidemiol Biomarkers Prev; 27(6); 644-52. ©2018 AACR . ©2018 American Association for Cancer Research.

  5. Serious Games as New Educational Tools: How Effective Are They? A Meta-Analysis of Recent Studies

    ERIC Educational Resources Information Center

    Girard, C.; Ecalle, J.; Magnan, A.

    2013-01-01

    Computer-assisted learning is known to be an effective tool for improving learning in both adults and children. Recent years have seen the emergence of the so-called "serious games (SGs)" that are flooding the educational games market. In this paper, the term "serious games" is used to refer to video games (VGs) intended to serve a useful purpose.…

  6. Coherent quantum transport in hybrid Nb-InGaAs-Nb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Delfanazari, Kaveh; Puddy, R.; Ma, P.; Cao, M.; Yi, T.; Gul, Y.; Farrer, I.; Ritchie, D.; Joyce, H.; Kelly, M.; Smith, C.

    Because of the recently reported detection of Majorana fermions states at the superconductor-semiconductor (S-Sm) interface in InAs nanowire devices, the study of hybrid structures has received renewed interest. In this paper we present experimental results on proximity induced superconductivity in a high-mobility two-dimensional electron gas in InGaAs heterostructures. Eight symmetric S-Sm-S Josephson junctions were fabricated on a single InGaAs chip and each junction was measured individually using a lock-in measurement technique. The superconducting electrodes were made of Niobium (Nb). The measurements were carried out in a dilution fridge with a base temperature of 40 mK, and the quantum transport of junctions were measured below 800 mK. Owing to Andreev reflections at the S-Sm interfaces, the differential resistance (dV/dI) versus V curve shows the well-known subharmonic energy gap structure (SGS) at V = 2ΔNb/ne. The SGS features suppressed significantly with increasing temperature and magnetic field, leading to a shift of the SGSs toward zero bias. Our result paves the way for development of highly transparent hybrid S-Sm-S junctions and coherent circuits for quantum devices capable of performing quantum logic and processing functions.

  7. Comparative Microstrain Study of Internal Hexagon and Plateau Design of Short Implants Under Vertical Loading.

    PubMed

    Nishioka, Renato Sussumu; Rodrigues, Vinicius Anéas; De Santis, Leandro Ruivo; Nishioka, Gabriela Nogueira De Melo; Santos, Vivian Mayumi Miyazaki; Souza, Francisley Ávila

    2016-02-01

    To quantify microstrain development during axial loading using strain gauge analysis for short implants, varying the type of fixture-abutment joint and thread design. An internal hexagon implant (4 × 8 mm) and a plateau design implant (4 × 8 mm) were embedded on the center of 10 polyurethane blocks with dimensions of 190 × 30 × 12 mm. The respective abutments were screwed onto the implants. Four strain gauges (SGs) were bonded onto the surface of each block, and 4 vertical SGs were bonded onto the side of each block. Axial load of 30 kgf was applied for 10 seconds in the center of each implant. The data were analyzed statistically by analysis of variance for repeated measures and Tukey test (P < 0.05). The interaction between implant and region factors have been statistically significant (P = 0.0259). Tukey test revealed a difference on plateau's horizontal region. The cervical region presented higher microstrain values, when compared with the medium and apical regions of the implants. Within the purpose of the study, the type of fixture-abutment joint is a relevant factor to affect the amount of stress/strain in bone simulation. The microstrain development was concentrated on the cervical region of the implant.

  8. Profiling of Human Acquired Immunity Against the Salivary Proteins of Phlebotomus papatasi Reveals Clusters of Differential Immunoreactivity

    PubMed Central

    Geraci, Nicholas S.; Mukbel, Rami M.; Kemp, Michael T.; Wadsworth, Mariha N.; Lesho, Emil; Stayback, Gwen M.; Champion, Matthew M.; Bernard, Megan A.; Abo-Shehada, Mahmoud; Coutinho-Abreu, Iliano V.; Ramalho-Ortigão, Marcelo; Hanafi, Hanafi A.; Fawaz, Emadeldin Y.; El-Hossary, Shabaan S.; Wortmann, Glenn; Hoel, David F.; McDowell, Mary Ann

    2014-01-01

    Phlebotomus papatasi sand flies are among the primary vectors of Leishmania major parasites from Morocco to the Indian subcontinent and from southern Europe to central and eastern Africa. Antibody-based immunity to sand fly salivary gland proteins in human populations remains a complex contextual problem that is not yet fully understood. We profiled the immunoreactivities of plasma antibodies to sand fly salivary gland sonicates (SGSs) from 229 human blood donors residing in different regions of sand fly endemicity throughout Jordan and Egypt as well as 69 US military personnel, who were differentially exposed to P. papatasi bites and L. major infections in Iraq. Compared with plasma from control region donors, antibodies were significantly immunoreactive to five salivary proteins (12, 26, 30, 38, and 44 kDa) among Jordanian and Egyptian donors, with immunoglobulin G4 being the dominant anti-SGS isotype. US personnel were significantly immunoreactive to only two salivary proteins (38 and 14 kDa). Using k-means clustering, donors were segregated into four clusters distinguished by unique immunoreactivity profiles to varying combinations of the significantly immunogenic salivary proteins. SGS-induced cellular proliferation was diminished among donors residing in sand fly-endemic regions. These data provide a clearer picture of human immune responses to sand fly vector salivary constituents. PMID:24615125

  9. Contrasting Pathology of the Stress Granule Proteins TIA-1 and G3BP in Tauopathies

    PubMed Central

    Vanderweyde, Tara; Yu, Haung; Varnum, Megan; Liu-Yesucevitz, Liqun; Citro, Allison; Ikezu, Tsuneya; Duff, Karen; Wolozin, Benjamin

    2012-01-01

    Stress induces aggregation of RNA-binding proteins to form inclusions, termed stress granules (SGs). Recent evidence suggests that SG proteins also colocalize with neuropathological structures, but whether this occurs in Alzheimer’s disease is unknown. We examined the relationship between SG proteins and neuropathology in brain tissue from P301L Tau transgenic mice, as well as in cases of Alzheimer’s disease and FTDP-17. The pattern of SG pathology differs dramatically based on the RNA-binding protein examined. SGs positive for T-cell intracellular antigen-1 (TIA-1) or tristetraprolin (TTP) initially do not colocalize with tau pathology, but then merge with tau inclusions as disease severity increases. In contrast, G3BP (ras GAP-binding protein) identifies a novel type of molecular pathology that shows increasing accumulation in neurons with increasing disease severity, but often is not associated with classic markers of tau pathology. TIA-1 and TTP both bind phospho-tau, and TIA-1 overexpression induces formation of inclusions containing phospho-tau. These data suggest that SG formation might stimulate tau pathophysiology. Thus, study of RNA-binding proteins and SG biology highlights novel pathways interacting with the pathophysiology of AD, providing potentially new avenues for identifying diseased neurons and potentially novel mechanisms regulating tau biology. PMID:22699908

  10. Lattice constant changes leading to significant changes of the spin-gapless features and physical nature in a inverse Heusler compound Zr2MnGa

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong

    2017-12-01

    The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.

  11. Acculturation, self-construal, mental and physical health: an explorative study of East Asian students in Germany.

    PubMed

    Shim, Gayoung; Freund, Henning; Stopsack, Malte; Kämmerer, Annette; Barnow, Sven

    2014-08-01

    The present study explores acculturation and its associated aspects of two East Asian student groups with different levels of exposure to German culture (100 international students from East Asian countries [IS]; 61 second generation students of East Asian descent [SGS]). First, we investigated the relationships between acculturation, self-construal, depressive and somatic symptoms, and differences between the student groups in these variables. Second, the four acculturation types (integration, assimilation, separation and marginalization) were examined regarding their relationship to self-construal and health outcomes. The results showed that the acculturation dimensions (mainstream, heritage) were relevant to the level of depressive symptoms for IS which was not the case for SGS. Furthermore, IS reported more somatic symptoms whereas there was no difference between the two groups in the level of depressive symptoms. In the analysis of acculturation types, assimilated and integrated students were characterized by high independent self-construal, while separated and integrated students showed high interdependent self-construal. Assimilated students displayed the least depressive symptoms of all acculturation groups. This study highlights different characteristics of East Asian students in acculturation, self-construal and health outcomes, and discusses the complexity of the relationships between acculturation types and health. © 2013 International Union of Psychological Science.

  12. 2C-Methyl- D- erythritol 2,4-cyclodiphosphate synthase from Stevia rebaudiana Bertoni is a functional gene.

    PubMed

    Kumar, Hitesh; Singh, Kashmir; Kumar, Sanjay

    2012-12-01

    Stevia [Stevia rebaudiana (Bertoni)] is a perennial herb which accumulates sweet diterpenoid steviol glycosides (SGs) in its leaf tissue. SGs are synthesized by 2C-methyl-D-erythritol 4-phosphate (MEP) pathway. Of the various enzymes of the MEP pathway, 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MDS) (encoded by MDS) catalyzes the cyclization of 4-(cytidine 5' diphospho)-2C-methyl-D-erythritol 2-phosphate into 2C-methyl-D-erythritol 2,4-cyclodiphosphate. Complementation of the MDS knockout mutant strain of Escherichia coli, EB370 with putative MDS of stevia (SrMDS) rescued the lethal mutant, suggesting SrMDS to be a functional gene. Experiments conducted in plant growth chamber and in the field suggested SrMDS to be a light regulated gene. Indole 3-acetic acid (IAA; 50, 100 μM) down-regulated the expression of SrMDS at 4 h of the treatment, whereas, abscisic acid did not modulate its expression. A high expression of SrMDS was observed during the light hours of the day as compared to the dark hours. The present work established functionality of SrMDS and showed the role of light and IAA in regulating expression of SrMDS.

  13. Johnston Atoll Plutonium Contaminated Soil Cleanup Project. 5th quarterly report, 1 August 94 to 31 October 1994. Technical report, 1 August-31 October 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doane, R.W.; Grant, R.H.

    1996-09-01

    Thermo NUtech is the prime contractor for the Defense Nuclear Agency (DNA), responsible for the operation and maintenance of the Johnston Atoll plutonium Contaminated Soil Cleanup Project. During this production period, the Scope of Work included movement of soil to and from the plant, processing contaminated soil through the Segmented Gate System (SGS) and Soil Washing System, packaging of waste soil for shipment, identification and implementation of process improvements, data collection and validation, and compliance with all applicable regulations governing environmental safety and health. The SGS utilizes arrays of sensitive radiation detectors coupled with sophisticated computer software to segregate contaminatedmore » soil from a moving feed supply on conveyor belts. Contaminated soil is diverted to a `hot path` for plutonium particles greater than 5000 Becquerels or to a supplemental soil washing process designed to remove dispersed low leve%l contamination from a soil faction consisting of very small particles. Low to intermediate levels of contamination are removed from the soil to meet DNA`s criteria for unrestricted use of less than 500 Becquerels per kilogram of soil, with no hot particles. The low level concentrate is expected to be packaged for shipment to an approved defense waste disposal site.« less

  14. Rescue of sarcoglycan mutations by inhibition of endoplasmic reticulum quality control is associated with minimal structural modifications.

    PubMed

    Soheili, Tayebeh; Gicquel, Evelyne; Poupiot, Jérôme; N'Guyen, Luu; Le Roy, Florence; Bartoli, Marc; Richard, Isabelle

    2012-02-01

    Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein. © 2011 Wiley Periodicals, Inc.

  15. Effect of disorder on the magnetic and electronic structure of a prospective spin-gapless semiconductor MnCrVAl

    DOE PAGES

    Kharel, P.; Herran, J.; Lukashev, P.; ...

    2016-12-19

    Recent discovery of a new class of materials, spin-gapless semiconductors (SGS), has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics). Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero.more » Here, this discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.« less

  16. Emerging roles for conjugated sterols in plants.

    PubMed

    Ferrer, Albert; Altabella, Teresa; Arró, Montserrat; Boronat, Albert

    2017-07-01

    In plants, sterols are found in free form (free sterols, FSs) and conjugated as steryl esters (SEs), steryl glycosides (SGs) and acyl steryl glycosides (ASGs). Conjugated sterols are ubiquitously found in plants but their relative contents highly differ among species and their profile may change in response to developmental and environmental cues. SEs play a central role in membrane sterol homeostasis and also represent a storage pool of sterols in particular plant tissues. SGs and ASGs are main components of the plant plasma membrane (PM) that specifically accumulate in lipid rafts, PM microdomains known to mediate many relevant cellular processes. There are increasing evidences supporting the involvement of conjugated sterols in plant stress responses. In spite of this, very little is known about their metabolism. At present, only a limited number of genes encoding enzymes participating in conjugated sterol metabolism have been cloned and characterized in plants. The aim of this review is to update the current knowledge about the tissue and cellular distribution of conjugated sterols in plants and the enzymes involved in their biosynthesis. We also discuss novel aspects on the role of conjugated sterols in plant development and stress responses recently unveiled using forward- and reverse-genetic approaches. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Neural control of salivary glands in ixodid ticks.

    PubMed

    Šimo, Ladislav; Zitňan, Dušan; Park, Yoonseong

    2012-04-01

    Studies of tick salivary glands (SGs) and their components have produced a number of interesting discoveries over the last four decades. However, the precise neural and physiological mechanisms controlling SG secretion remain enigmatic. Major studies of SG control have identified and characterized many pharmacological and biological compounds that activate salivary secretion, including dopamine (DA), octopamine, γ-aminobutyric acid (GABA), ergot alkaloids, pilocarpine (PC), and their pharmacological relatives. Specifically, DA has shown the most robust activities in various tick species, and its effect on downstream actions in the SGs has been extensively studied. Our recent work on a SG dopamine receptor has aided new interpretations of previous pharmacological studies and provided new concepts for SG control mechanisms. Furthermore, our recent studies have suggested that multiple neuropeptides are involved in SG control. Myoinhibitory peptide (MIP) and SIFamide have been identified in the neural projections reaching the basal cells of acini types II and III. Pigment-dispersing factor (PDF)-immunoreactive neural projections reach type II acini, and RFamide- and tachykinin-immunoreactive projections reach the SG ducts, but the chemical nature of the latter three immunoreactive substances are unidentified yet. Here, we briefly review previous pharmacological studies and provide a revised summary of SG control mechanisms in ticks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.

    PubMed

    Kermah, Michael; Franke, Angelinus C; Adjei-Nsiah, Samuel; Ahiabor, Benjamin D K; Abaidoo, Robert C; Giller, Ken E

    2017-11-01

    Smallholder farmers in the Guinea savanna practise cereal-legume intercropping to mitigate risks of crop failure in mono-cropping. The productivity of cereal-legume intercrops could be influenced by the spatial arrangement of the intercrops and the soil fertility status. Knowledge on the effect of soil fertility status on intercrop productivity is generally lacking in the Guinea savanna despite the wide variability in soil fertility status in farmers' fields, and the productivity of within-row spatial arrangement of intercrops relative to the distinct-row systems under on-farm conditions has not been studied in the region. We studied effects of maize-legume spatial intercropping patterns and soil fertility status on resource use efficiency, crop productivity and economic profitability under on-farm conditions in the Guinea savanna. Treatments consisted of maize-legume intercropped within-row, 1 row of maize alternated with one row of legume, 2 rows of maize alternated with 2 rows of legume, a sole maize crop and a sole legume crop. These were assessed in the southern Guinea savanna (SGS) and the northern Guinea savanna (NGS) of northern Ghana for two seasons using three fields differing in soil fertility in each agro-ecological zone. Each treatment received 25 kg P and 30 kg K ha -1 at sowing, while maize received 25 kg (intercrop) or 50 kg (sole) N ha -1 at 3 and 6 weeks after sowing. The experiment was conducted in a randomised complete block design with each block of treatments replicated four times per fertility level at each site. Better soil conditions and rainfall in the SGS resulted in 48, 38 and 9% more maize, soybean and groundnut grain yield, respectively produced than in the NGS, while 11% more cowpea grain yield was produced in the NGS. Sole crops of maize and legumes produced significantly more grain yield per unit area than the respective intercrops of maize and legumes. Land equivalent ratios (LERs) of all intercrop patterns were greater than unity indicating more efficient and productive use of environmental resources by intercrops. Sole legumes intercepted more radiation than sole maize, while the interception by intercrops was in between that of sole legumes and sole maize. The intercrop however converted the intercepted radiation more efficiently into grain yield than the sole crops. Economic returns were greater for intercrops than for either sole crop. The within-row intercrop pattern was the most productive and lucrative system. Larger grain yields in the SGS and in fertile fields led to greater economic returns. However, intercropping systems in poorly fertile fields and in the NGS recorded greater LERs (1.16-1.81) compared with fertile fields (1.07-1.54) and with the SGS. This suggests that intercropping is more beneficial in less fertile fields and in more marginal environments such as the NGS. Cowpea and groundnut performed better than soybean when intercropped with maize, though the larger absolute grain yields of soybean resulted in larger net benefits.

  19. Processing plutonium-contaminated soil on Johnston Atoll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroney, K.; Moroney, J. III; Turney, J.

    1994-07-01

    This article describes a cleanup project to process plutonium- and americium-contaminated soil on Johnston Atoll for volume reduction. Thermo Analytical`s (TMA`s) segmented gate system (SGS) for this remedial operation has been in successful on-site operation since 1992. Topics covered include the basis for development, a description of the Johnston Atoll; the significance of results; the benefits of the technology; applicability to other radiologically contaminated sites. 7 figs., 1 tab.

  20. Stochastic four-way coupling of gas-solid flows for Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Curran, Thomas; Denner, Fabian; van Wachem, Berend

    2017-11-01

    The interaction of solid particles with turbulence has for long been a topic of interest for predicting the behavior of industrially relevant flows. For the turbulent fluid phase, Large Eddy Simulation (LES) methods are widely used for their low computational cost, leaving only the sub-grid scales (SGS) of turbulence to be modelled. Although LES has seen great success in predicting the behavior of turbulent single-phase flows, the development of LES for turbulent gas-solid flows is still in its infancy. This contribution aims at constructing a model to describe the four-way coupling of particles in an LES framework, by considering the role particles play in the transport of turbulent kinetic energy across the scales. Firstly, a stochastic model reconstructing the sub-grid velocities for the particle tracking is presented. Secondly, to solve particle-particle interaction, most models involve a deterministic treatment of the collisions. We finally introduce a stochastic model for estimating the collision probability. All results are validated against fully resolved DNS-DPS simulations. The final goal of this contribution is to propose a global stochastic method adapted to two-phase LES simulation where the number of particles considered can be significantly increased. Financial support from PetroBras is gratefully acknowledged.

Top