Sample records for dynamic shape factor

  1. Measurement of Size-dependent Dynamic Shape Factors of Quartz Particles in Two Flow Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, Jennifer M.; Bell, David M.; Imre, D.

    2016-08-02

    Understanding and modeling the behavior of quartz dust particles, commonly found in the atmosphere, requires knowledge of many relevant particles properties, including particle shape. This study uses a single particle mass spectrometer, a differential mobility analyzer, and an aerosol particle mass analyzer to measure quartz aerosol particles mobility, aerodynamic, and volume equivalent diameters, mass, composition, effective density, and dynamic shape factor as a function of particle size, in both the free molecular and transition flow regimes. The results clearly demonstrate that dynamic shape factors can vary significantly as a function of particle size. For the quartz samples studied here, themore » dynamic shape factors increase with size, indicating that larger particles are significantly more aspherical than smaller particles. In addition, dynamic shape factors measured in the free-molecular (χv) and transition (χt) flow regimes can be significantly different, and these differences vary with the size of the quartz particles. For quartz, χv of small (d < 200 nm) particles is 1.25, while χv of larger particles (d ~ 440 nm) is 1.6, with a continuously increasing trend with particle size. In contrast χt, of small particles starts at 1.1 increasing slowly to 1.34 for 550 nm diameter particles. The multidimensional particle characterization approach used here goes beyond determination of average properties for each size, to provide additional information about how the particle dynamic shape factor may vary even for particles with the same mass and volume equivalent diameter.« less

  2. Capillary-tube-based extension of thermoacoustic theory for a random medium

    NASA Astrophysics Data System (ADS)

    Roh, Heui-Seol; Raspet, Richard; Bass, Henry E.

    2005-09-01

    Thermoacoustic theory for a single capillary tube is extended to random bulk medium on the basis of capillary tubes. The characteristics of the porous stack inside the resonator such as the tortuosity, dynamic shape factor, and porosity are introduced for the extension of wave equation by following Attenborough's approach. Separation of the dynamic shape factor for the viscous and thermal effect is adopted and scaling using the dynamic shape factor and tortuosity factor is demonstrated. The theoretical and experimental comparison of thermoviscous functions in reticulated vitreous carbon (RVC) and aluminum foam shows reasonable agreement. The extension is useful for investigations of the properties of a stack with arbitrary shapes of non-parallel pores.

  3. Dynamic Magnification Factor in a Box-Shape Steel Girder

    NASA Astrophysics Data System (ADS)

    Rahbar-Ranji, A.

    2014-01-01

    The dynamic effect of moving loads on structures is treated as a dynamic magnification factor when resonant is not imminent. Studies have shown that the calculated magnification factors from field measurements could be higher than the values specified in design codes. It is the main aim of present paper to investigate the applicability and accuracy of a rule-based expression for calculation of dynamic magnification factor for lifting appliances used in marine industry. A steel box shape girder of a crane is considered and transient dynamic analysis using computer code ANSYS is implemented. Dynamic magnification factor is calculated for different loading conditions and compared with rule-based equation. The effects of lifting speeds, acceleration, damping ratio and position of cargo are examined. It is found that rule-based expression underestimate dynamic magnification factor.

  4. Axisymmetric elastodynamic response from normal and radial impact of layered composites with embedded penny-shaped cracks

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress factors for a through-crack.

  5. Parallel capillary-tube-based extension of thermoacoustic theory for random porous media.

    PubMed

    Roh, Heui-Seol; Raspet, Richard; Bass, Henry E

    2007-03-01

    Thermoacoustic theory is extended to stacks made of random bulk media. Characteristics of the porous stack such as the tortuosity and dynamic shape factors are introduced into the thermoacoustic wave equation in the low reduced frequency approximation. Basic thermoacoustic equations for a bulk porous medium are formulated analogously to the equations for a single pore. Use of different dynamic shape factors for the viscous and thermal effects is adopted and scaling using the dynamic shape factors and tortuosity is demonstrated. Comparisons of the calculated and experimentally derived thermoacoustic properties of reticulated vitreous carbon and aluminum foam show good agreement. A consistent mathematical model of sound propagation in a random porous medium with an imposed temperature is developed. This treatment leads to an expression for the coefficient of the temperature gradient in terms of scaled cylindrical thermoviscous functions.

  6. Normal and radial impact of composites with embedded penny-shaped cracks

    NASA Technical Reports Server (NTRS)

    Sih, G. C.

    1979-01-01

    A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. The material properties of the layers are chosen such that the crack lies in a layer of matrix material while the surrounding material possesses the average elastic properties of a two-phase medium consisting of a large number of fibers embedded in the matrix. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress intensity factors for a through-crack.

  7. Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin

    2007-09-01

    Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.

  8. Rotational Dynamics of Proteins from Spin Relaxation Times and Molecular Dynamics Simulations.

    PubMed

    Ollila, O H Samuli; Heikkinen, Harri A; Iwaï, Hideo

    2018-06-14

    Conformational fluctuations and rotational tumbling of proteins can be experimentally accessed with nuclear spin relaxation experiments. However, interpretation of molecular dynamics from the experimental data is often complicated, especially for molecules with anisotropic shape. Here, we apply classical molecular dynamics simulations to interpret the conformational fluctuations and rotational tumbling of proteins with arbitrarily anisotropic shape. The direct calculation of spin relaxation times from simulation data did not reproduce the experimental data. This was successfully corrected by scaling the overall rotational diffusion coefficients around the protein inertia axes with a constant factor. The achieved good agreement with experiments allowed the interpretation of the internal and overall dynamics of proteins with significantly anisotropic shape. The overall rotational diffusion was found to be Brownian, having only a short subdiffusive region below 0.12 ns. The presented methodology can be applied to interpret rotational dynamics and conformation fluctuations of proteins with arbitrary anisotropic shape. However, a water model with more realistic dynamical properties is probably required for intrinsically disordered proteins.

  9. Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.

    PubMed

    Hurst, Travis; Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2018-05-10

    The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.

  10. Linking genetic and environmental factors in amphibian disease risk

    PubMed Central

    Savage, Anna E; Becker, Carlos G; Zamudio, Kelly R

    2015-01-01

    A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L. yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source–sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines. PMID:26136822

  11. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic shape factors in both the transition and vacuum regime can be derived. The measured dynamic shape factors of quartz agree quite well with the spheroidal shape distributions derived through studies of the optical properties.

  12. Dynamics of Bacterial Gene Regulatory Networks.

    PubMed

    Shis, David L; Bennett, Matthew R; Igoshin, Oleg A

    2018-05-20

    The ability of bacterial cells to adjust their gene expression program in response to environmental perturbation is often critical for their survival. Recent experimental advances allowing us to quantitatively record gene expression dynamics in single cells and in populations coupled with mathematical modeling enable mechanistic understanding on how these responses are shaped by the underlying regulatory networks. Here, we review how the combination of local and global factors affect dynamical responses of gene regulatory networks. Our goal is to discuss the general principles that allow extrapolation from a few model bacteria to less understood microbes. We emphasize that, in addition to well-studied effects of network architecture, network dynamics are shaped by global pleiotropic effects and cell physiology.

  13. Molecular Dynamics Simulations Reveal an Interplay between SHAPE Reagent Binding and RNA Flexibility.

    PubMed

    Mlýnský, Vojtěch; Bussi, Giovanni

    2018-01-18

    The function of RNA molecules usually depends on their overall fold and on the presence of specific structural motifs. Chemical probing methods are routinely used in combination with nearest-neighbor models to determine RNA secondary structure. Among the available methods, SHAPE is relevant due to its capability to probe all RNA nucleotides and the possibility to be used in vivo. However, the structural determinants for SHAPE reactivity and its mechanism of reaction are still unclear. Here molecular dynamics simulations and enhanced sampling techniques are used to predict the accessibility of nucleotide analogs and larger RNA structural motifs to SHAPE reagents. We show that local RNA reconformations are crucial in allowing reagents to reach the 2'-OH group of a particular nucleotide and that sugar pucker is a major structural factor influencing SHAPE reactivity.

  14. An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor

    2015-02-01

    The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.

  15. User's manual for CNVUFAC, the general dynamics heat-transfer radiation view factor program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, R. L.

    CNVUFAC, the General Dynamics heat-transfer radiation veiw factor program, has been adapted for use on the LLL CDC 7600 computer system. The input and output have been modified, and a node incrementing logic was included to make the code compatible with the TRUMP thermal analyzer and related codes. The program performs the multiple integration necessary to evaluate the geometric black-body radiaton node to node view factors. Card image output that contains node number and view factor information is generated for input into the related program GRAY. Program GRAY is then used to include the effects of gray-body emissivities and multiplemore » reflections, generating the effective gray-body view factors usable in TRUMP. CNVUFAC uses an elemental area summation scheme to evaluate the multiple integrals. The program permits shadowing and self-shadowing. The basic configuration shapes that can be considered are cylinders, cones, spheres, ellipsoids, flat plates, disks, toroids, and polynomials of revolution. Portions of these shapes can also be considered.« less

  16. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  17. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE PAGES

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.; ...

    2016-03-04

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  18. Shaping the Latitudinal Diversity Gradient: New Perspectives from a Synthesis of Paleobiology and Biogeography.

    PubMed

    Jablonski, David; Huang, Shan; Roy, Kaustuv; Valentine, James W

    2017-01-01

    An impediment to understanding the origin and dynamics of the latitudinal diversity gradient (LDG)-the most pervasive large-scale biotic pattern on Earth-has been the tendency to focus narrowly on a single causal factor when a more synthetic, integrative approach is needed. Using marine bivalves as a model system and drawing on other systems where possible, we review paleobiologic and biogeographic support for two supposedly opposing views, that the LDG is shaped primarily by (a) local environmental factors that determine the number of species and higher taxa at a given latitude (in situ hypotheses) or (b) the entry of lineages arising elsewhere into a focal region (spatial dynamics hypotheses). Support for in situ hypotheses includes the fit of present-day diversity trends in many clades to such environmental factors as temperature and the correlation of extinction intensities in Pliocene bivalve faunas with net regional temperature changes. Support for spatial dynamics hypotheses includes the age-frequency distribution of bivalve genera across latitudes, which is consistent with an out-of-the-tropics dynamic, as are the higher species diversities in temperate southeastern Australia and southeastern Japan than in the tropical Caribbean. Thus, both in situ and spatial dynamics processes must shape the bivalve LDG and are likely to operate in other groups as well. The relative strengths of the two processes may differ among groups showing similar LDGs, but dissecting their effects will require improved methods of integrating fossil data with molecular phylogenies. We highlight several potential research directions and argue that many of the most dramatic biotic patterns, past and present, are likely to have been generated by diverse, mutually reinforcing drivers.

  19. Cholera in the 21st century.

    PubMed

    Charles, Richelle C; Ryan, Edward T

    2011-10-01

    This review will focus on recent advances in our understanding of biologic and environmental factors that shape current cholera outbreaks, advances in our understanding of host-pathogen interactions during cholera, and recent evolution of current treatment and cholera prevention strategies. New research studies have improved our understanding of a number of dynamic factors that shape the ecology of Vibrio cholerae and influence its transmission, including the role of lytic bacteriophage, biofilm formation, a hyperinfectious state of human-passaged V. cholerae, and the impact of severe weather events. Provision of safe water and improved sanitation continue to be the mainstays of preventing cholera transmission; however, the role of cholera vaccination as a control measure in both endemic and epidemic settings is evolving. Recent advances in our understanding of long-lived protective immunity after natural infection may aid in the global efforts to control cholera. Improved understanding of factors associated with protective immunity and dynamic factors associated with cholera outbreaks may lead to improved control and prevention strategies for cholera.

  20. Multiscale modeling of sickle anemia blood blow by Dissipative Partice Dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    A multi-scale model for sickle red blood cell is developed based on Dissipative Particle Dynamics (DPD). Different cell morphologies (sickle, granular, elongated shapes) typically observed in in vitro and in vivo are constructed and the deviations from the biconcave shape is quantified by the Asphericity and Elliptical shape factors. The rheology of sickle blood is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. However, the vaso-occulusion phenomenon, reported in a recent microfluid experiment, is not observed in the pipe flow system unless the adhesive interactions between sickle blood cells and endothelium properly introduced into the model.

  1. Assessing intra- and inter-regional climate effects on Douglas-fir biomass dynamics in Oregon and Washington, USA

    Treesearch

    David M. Bell; Andrew N. Gray

    2016-01-01

    While ecological succession shapes contemporary forest structure and dynamics, other factors like forest structure (dense vs. sparse canopies) and climate may alter structural trajectories. To assess potential sources of variation in structural trajectories, we examined proportional biomass change for a regionally dominant tree species, Douglas-fir (...

  2. Heterogeneous Intracellular Trafficking Dynamics of Brain-Derived Neurotrophic Factor Complexes in the Neuronal Soma Revealed by Single Quantum Dot Tracking

    PubMed Central

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A.; Vu, Tania Q.

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide understanding of how the molecular mechanisms underlying intracellular ligand-receptor trafficking shape cell signaling under conditions of both healthy and dysfunctional neurological disease models. PMID:24732948

  3. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  4. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling

    PubMed Central

    Ray, Poulomi; Chapman, Susan C.

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis. PMID:26237312

  5. Effect of molecular shape on rotation under severe confinement

    DOE PAGES

    Dhiman, Indu; Bhowmik, Debsindhu; Shrestha, Utsab R.; ...

    2018-01-31

    Orientational structure and dynamics of molecules is known to be affected by confinement in space comparable in size to the molecule itself. ZSM-5 with porous channels of ≈0.55 nm is such a porous medium, which offers a strict spatial confinement on low molecular weight hydrocarbons. An important factor that determines these properties is the shape of the confined molecules. In this work, we employed molecular dynamics simulation to study the orientational structure and dynamics of four molecules that differ in shape but have similar kinetic diameters and moments of inertia, confined in ZSM-5. The effect of molecular shape on themore » orientational structure and dynamics of propane, acetonitrile, acetaldehyde and acetone in ZSM-5 is studied by means of probing the differences in the orientational distribution of molecules in the ZSM-5 channels, and extracting time scales of the decay of correlation functions related to rotational motion. Orientational correlation functions of all the four molecules exhibit two regimes of rotational motion. While the short time regime represents free rotation of the molecules before they collide with the pore walls, the long time orientational jumps driven by inter-channel migrations give rise to a very slow varying second regime. Of the molecules studied, orientational structure and dynamics of propane is found to be least affected by confinement under ZSM-5, whereas charge and shape asymmetry of other molecules makes their interchannel migration-driven rotation slow. The time scales involved in the rotational motion for the molecules studied are compared with similar studies reported in literature. Lastly, this study reveals the important role that molecular shape plays in the behavior of confined molecules.« less

  6. Effect of molecular shape on rotation under severe confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhiman, Indu; Bhowmik, Debsindhu; Shrestha, Utsab R.

    Orientational structure and dynamics of molecules is known to be affected by confinement in space comparable in size to the molecule itself. ZSM-5 with porous channels of ≈0.55 nm is such a porous medium, which offers a strict spatial confinement on low molecular weight hydrocarbons. An important factor that determines these properties is the shape of the confined molecules. In this work, we employed molecular dynamics simulation to study the orientational structure and dynamics of four molecules that differ in shape but have similar kinetic diameters and moments of inertia, confined in ZSM-5. The effect of molecular shape on themore » orientational structure and dynamics of propane, acetonitrile, acetaldehyde and acetone in ZSM-5 is studied by means of probing the differences in the orientational distribution of molecules in the ZSM-5 channels, and extracting time scales of the decay of correlation functions related to rotational motion. Orientational correlation functions of all the four molecules exhibit two regimes of rotational motion. While the short time regime represents free rotation of the molecules before they collide with the pore walls, the long time orientational jumps driven by inter-channel migrations give rise to a very slow varying second regime. Of the molecules studied, orientational structure and dynamics of propane is found to be least affected by confinement under ZSM-5, whereas charge and shape asymmetry of other molecules makes their interchannel migration-driven rotation slow. The time scales involved in the rotational motion for the molecules studied are compared with similar studies reported in literature. Lastly, this study reveals the important role that molecular shape plays in the behavior of confined molecules.« less

  7. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales

    PubMed Central

    Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias

    2016-01-01

    Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625

  8. Some Static Oscillatory and Free Body Tests of Blunt Bodies at Low Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Lichtenstein, Jacob H.; Fisher, Lewis R.; Scher, Stanley H.; Lawrence, George F.

    1959-01-01

    Some blunt-body shapes considered suitable for entry into the earth's atmosphere were tested by both static and oscillatory methods in the Langley stability tunnel. In addition, free-fall tests of some similar models were made in the Langley 20-foot free-spinning tunnel. The results of the tests show that increasing the flare of the body shape increased the dynamic stability and that for flat-faced shapes increasing the corner radius increased the stability. The test data from the Langley stability tunnel were used to compute the damping factor for the models tested in the langley 20-foot free-spinning tunnel. For these cases in which the damping factor was low, -1/2 or less, the stability was critical and sensitive to disturbance. When the damping factor was about -2, damping was generally obtained.

  9. ‘I am treated well if I adhere to my HIV medication’: putting patient–provider interactions in context through insights from qualitative research in five sub-Saharan African countries

    PubMed Central

    Renju, Jenny; Bonnington, Oliver; Wamoyi, Joyce; Nyamukapa, Constance; Seeley, Janet; Wringe, Alison

    2017-01-01

    Objectives The nature of patient–provider interactions and communication is widely documented to significantly impact on patient experiences, treatment adherence and health outcomes. Yet little is known about the broader contextual factors and dynamics that shape patient–provider interactions in high HIV prevalence and limited-resource settings. Drawing on qualitative research from five sub-Saharan African countries, we seek to unpack local dynamics that serve to hinder or facilitate productive patient–provider interactions. Methods This qualitative study, conducted in Kisumu (Kenya), Kisesa (Tanzania), Manicaland (Zimbabwe), Karonga (Malawi) and uMkhanyakude (South Africa), draws upon 278 in-depth interviews with purposively sampled people living with HIV with different diagnosis and treatment histories, 29 family members of people who died due to HIV and 38 HIV healthcare workers. Data were collected using topic guides that explored patient testing and antiretroviral therapy treatment journeys. Thematic analysis was conducted, aided by NVivo V.8.0 software. Results Our analysis revealed an array of inter-related contextual factors and power dynamics shaping patient–provider interactions. These included (1) participants’ perceptions of roles and identities of ‘self’ and ‘other’; (2) conformity or resistance to the ‘rules of HIV service engagement’ and a ‘patient-persona’; (3) the influence of significant others’ views on service provision; and (4) resources in health services. We observed that these four factors/dynamics were located in the wider context of conceptualisations of power, autonomy and structure. Conclusion Patient–provider interaction is complex, multidimensional and deeply embedded in wider social dynamics. Multiple contextual domains shape patient–provider interactions in the context of HIV in sub-Saharan Africa. Interventions to improve patient experiences and treatment adherence through enhanced interactions need to go beyond the existing focus on patient–provider communication strategies. PMID:28736392

  10. Factorization and fitting of molecular scattering information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, R.; Kouri, D.J.; Green, S.

    1977-12-15

    The factorization of cross sections of various kinds resulting from the infinite order sudden approximation is considered in detail. Unlike the earlier study of Goldflam, Green, and Kouri, we base the present analysis on the factored IOS T-matrix rather than on the S-matrix. This enables us to obtain somewhat simpler expressions. For example, we show that the factored IOS approximation to the Arthurs--Dalgarno T-matrix involves products of dynamical coefficients T/sup L//sub l/ and Percival--Seaton coefficients f/sub L/(jlvertical-barj/sub 0/l/sub 0/vertical-barJ). It is shown that an optical theorem exists for the T/sub l//sup L/ dynamical coefficients of the T-matrix. The differential scatteringmore » amplitudes are shown to factor into dynamical coefficients q/sub L/(chi) times spectroscopic factors that are independent of the dynamics (potential). Then a generalized form of the Parker--Pack result for ..sigma../sub j/(dsigma/dR)(j/sub 0/..-->..j) is derived. It is also shown that the IOS approximation for (dsigma/dR)(j/sub 0/..-->..j) factors into sums of spectroscopic coefficients times the differential cross sections out of j/sub 0/=0. The IOS integral cross sections factor into spectroscopic coefficients times the integral cross sections out of j/sub 0/=0. The factored IOS general phenomenological cross sections are rederived using the T-matrix approach and are shown to equal sums of Percival--Seaton coefficients timesthe inelastic integral cross section out of initial rotor state j/sub 0/ = 0. This suggests that experimental measurements of line shapes and/or NMR spin--lattice relaxation can be used to directly give inelastic state-to-state degeneracy averaged integral cross sections whenever the IOS is a good approximation. Factored IOS expressions for viscosity and diffusion are derived and shown to potentially yield additional information beyond that contained in line shapes.« less

  11. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data compression algorithm with the established techniques found in scientific literature have shown promising results. PMID:24571620

  12. A dynamic processes study of PM retention by trees under different wind conditions.

    PubMed

    Xie, Changkun; Kan, Liyan; Guo, Jiankang; Jin, Sijia; Li, Zhigang; Chen, Dan; Li, Xin; Che, Shengquan

    2018-02-01

    Particulate matter (PM) is one of the most serious environmental problems, exacerbating respiratory and vascular illnesses. Plants have the ability to reduce non-point source PM pollution through retention on leaves and branches. Studies of the dynamic processes of PM retention by plants and the mechanisms influencing this process will help to improve the efficiency of urban greening for PM reduction. We examined dynamic processes of PM retention and the major factors influencing PM retention by six trees with different branch structure characteristics in wind tunnel experiments at three different wind speeds. The results showed that the changes of PM numbers retained by plant leaves over time were complex dynamic processes for which maximum values could exceed minimum values by over 10 times. The average value of PM measured in multiple periods and situations can be considered a reliable indicator of the ability of the plant to retain PM. The dynamic processes were similar for PM 10 and PM 2.5 . They could be clustered into three groups simulated by continually-rising, inverse U-shaped, and U-shaped polynomial functions, respectively. The processes were the synthetic effect of characteristics such as species, wind speed, period of exposure and their interactions. Continually-rising functions always explained PM retention in species with extremely complex branch structure. Inverse U-shaped processes explained PM retention in species with relatively simple branch structure and gentle wind. The U-shaped processes mainly explained PM retention at high wind speeds and in species with a relatively simple crown. These results indicate that using plants with complex crowns in urban greening and decreasing wind speed in plant communities increases the chance of continually-rising or inverse U-shaped relationships, which have a positive effect in reducing PM pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dynamics of simultaneously impinging drops on a dry surface: Role of inhomogeneous wettability and impact shape.

    PubMed

    Ashoke Raman, K

    2018-04-15

    The quality of the printed lines in applications such as ink-jet printing and additive manufacturing is affected by the interactions between the impinging drops. Impact shape and the inhomogeneity in surface wettability govern the spreading and recoiling dynamics of the interacting drops. Hence, understanding the role of these factors on the interaction dynamics is essential to optimize these applications. Phase-field based lattice Boltzmann method solver has been employed to investigate the interaction dynamics of two simultaneously impinging drops onto a dry surface. A geometry-based contact angle scheme is used to model the moving contact line. Numerical simulations reveal that the previously identified interaction modes (Raman et al., 2017) are sensitive to the contact angle hysteresis, resulting in different impact outcomes. Two different interaction mechanisms have been discerned when drops impinge on a surface with a wettability gradient. It is shown that the deviation from the spherical geometry of the impact shape leads to different spreading behaviors and droplet morphology around the connecting region. With the increase in the cross-sectional aspect ratio, the interaction dynamics of oblate-oblate combination is similar to its spherical counterpart, albeit at a faster recoiling rate. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Shifting gears: dynamic muscle shape changes and force-velocity behavior in the medial gastrocnemius.

    PubMed

    Dick, Taylor J M; Wakeling, James M

    2017-12-01

    When muscles contract, they bulge in thickness or in width to maintain a (nearly) constant volume. These dynamic shape changes are tightly linked to the internal constraints placed on individual muscle fibers and play a key functional role in modulating the mechanical performance of skeletal muscle by increasing its range of operating velocities. Yet to date we have a limited understanding of the nature and functional implications of in vivo dynamic muscle shape change under submaximal conditions. This study determined how the in vivo changes in medial gastrocnemius (MG) fascicle velocity, pennation angle, muscle thickness, and subsequent muscle gearing varied as a function of force and velocity. To do this, we obtained recordings of MG tendon length, fascicle length, pennation angle, and thickness using B-mode ultrasound and muscle activation using surface electromyography during cycling at a range of cadences and loads. We found that that increases in contractile force were accompanied by reduced bulging in muscle thickness, reduced increases in pennation angle, and faster fascicle shortening. Although the force and velocity of a muscle contraction are inversely related due to the force-velocity effect, this study has shown how dynamic muscle shape changes are influenced by force and not influenced by velocity. NEW & NOTEWORTHY During movement, skeletal muscles contract and bulge in thickness or width. These shape changes play a key role in modulating the performance of skeletal muscle by increasing its range of operating velocities. Yet to date the underlying mechanisms associated with muscle shape change remain largely unexplored. This study identified muscle force, and not velocity, as the mechanistic driving factor to allow for muscle gearing to vary depending on the contractile conditions during human cycling. Copyright © 2017 the American Physiological Society.

  15. Surf-zone Underwater Robotic Demonstration Platform

    DTIC Science & Technology

    2014-01-01

    dynamically advantageous shape for a robotic system. To address locomotive factors ARA completed a research and technical study based on an Archimedes ...effective hull shape. To study mobility and traction a propulsion system based on an Archimedes screw drive was used. A drive design based on an... Archimedes screw was chosen because of its ability to operate in various mediums with varying flow rates. A test bed was designed and assembled in order to

  16. Predicting conformational ensembles and genome-wide transcription factor binding sites from DNA sequences.

    PubMed

    Andrabi, Munazah; Hutchins, Andrew Paul; Miranda-Saavedra, Diego; Kono, Hidetoshi; Nussinov, Ruth; Mizuguchi, Kenji; Ahmad, Shandar

    2017-06-22

    DNA shape is emerging as an important determinant of transcription factor binding beyond just the DNA sequence. The only tool for large scale DNA shape estimates, DNAshape was derived from Monte-Carlo simulations and predicts four broad and static DNA shape features, Propeller twist, Helical twist, Minor groove width and Roll. The contributions of other shape features e.g. Shift, Slide and Opening cannot be evaluated using DNAshape. Here, we report a novel method DynaSeq, which predicts molecular dynamics-derived ensembles of a more exhaustive set of DNA shape features. We compared the DNAshape and DynaSeq predictions for the common features and applied both to predict the genome-wide binding sites of 1312 TFs available from protein interaction quantification (PIQ) data. The results indicate a good agreement between the two methods for the common shape features and point to advantages in using DynaSeq. Predictive models employing ensembles from individual conformational parameters revealed that base-pair opening - known to be important in strand separation - was the best predictor of transcription factor-binding sites (TFBS) followed by features employed by DNAshape. Of note, TFBS could be predicted not only from the features at the target motif sites, but also from those as far as 200 nucleotides away from the motif.

  17. Dynamic shape transitions in the sdg boson model

    NASA Astrophysics Data System (ADS)

    Kuyucak, S.

    The dynamic evolution of shapes in the sdg interacting boson model is investigated using the angular momentum projected mean field theory. Deformed nuclei are found to be quite stable against shape changes but transitional nuclei could exhibit dynamic shape transitions in the region L = 10-20. Conditions of existence and experimental signatures for dynamic shape transitions are discussed together with a likely candidate, 192Os.

  18. Feasibility analysis of system dynamics for inland maritime logistics.

    DOT National Transportation Integrated Search

    2014-02-01

    In the last decades, a number of factors have re-shaped the shipping industry, including the growth of international trade, the emergence of new markets, and the development of multimodal supply chains. This has led maritime transportation system, wh...

  19. The Role of Shape Complementarity in the Protein-Protein Interactions

    PubMed Central

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-01-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody–antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity. PMID:24253561

  20. The Role of Shape Complementarity in the Protein-Protein Interactions

    NASA Astrophysics Data System (ADS)

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-11-01

    We use a dissipative particle dynamic simulation to investigate the effects of shape complementarity on the protein-protein interactions. By monitoring different kinds of protein shape-complementarity modes, we gave a clear mechanism to reveal the role of the shape complementarity in the protein-protein interactions, i.e., when the two proteins with shape complementarity approach each other, the conformation of lipid chains between two proteins would be restricted significantly. The lipid molecules tend to leave the gap formed by two proteins to maximize the configuration entropy, and therefore yield an effective entropy-induced protein-protein attraction, which enhances the protein aggregation. In short, this work provides an insight into understanding the importance of the shape complementarity in the protein-protein interactions especially for protein aggregation and antibody-antigen complexes. Definitely, the shape complementarity is the third key factor affecting protein aggregation and complex, besides the electrostatic-complementarity and hydrophobic complementarity.

  1. Precession relaxation of viscoelastic oblate rotators

    NASA Astrophysics Data System (ADS)

    Frouard, Julien; Efroimsky, Michael

    2018-01-01

    Perturbations of all sorts destabilize the rotation of a small body and leave it in a non-principal spin state. In such a state, the body experiences alternating stresses generated by the inertial forces. This yields nutation relaxation, i.e. evolution of the spin towards the principal rotation about the maximal-inertia axis. Knowledge of the time-scales needed to damp the nutation is crucial in studies of small bodies' dynamics. In the literature hitherto, nutation relaxation has always been described with aid of an empirical quality factor Q introduced to parametrize the energy dissipation rate. Among the drawbacks of this approach was its inability to describe the dependence of the relaxation rate upon the current nutation angle. This inability stemmed from our lack of knowledge of the quality factor's dependence on the forcing frequency. In this article, we derive our description of nutation damping directly from the rheological law obeyed by the material. This renders us the nutation damping rate as a function of the current nutation angle, as well as of the shape and the rheological parameters of the body. In contradistinction from the approach based on an empirical Q factor, our development gives a zero damping rate in the spherical-shape limit. Our method is generic and applicable to any shape and to any linear rheological law. However, to simplify the developments, here we consider a dynamically oblate rotator with a Maxwell rheology.

  2. A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feron, K., E-mail: Krishna.Feron@csiro.au; Fell, C. J.; CSIRO Energy Flagship, Newcastle, NSW 2300

    2014-12-07

    We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known tomore » remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects.« less

  3. Mistletoe Berry Outline Mapping with a Path Curve Function and Recording the Circadian Rhythm of Their Phenotypic Shape Change

    PubMed Central

    Derbidge, Renatus; Baumgartner, Stephan; Heusser, Peter

    2016-01-01

    This paper presents a discovery: the change of the outline shape of mistletoe (Viscum album ssp. album) berries in vivo and in situ during ripening. It was found that a plant organ that is usually considered to merely increase in size actually changes shape in a specific rhythmic fashion. We introduce a new approach to chronobiological research on a macro-phenotypic scale to trace changes over long periods of time (with a resolution from hours to months) by using a dynamic form-determining parameter called Lambda (λ). λ is known in projective geometry as a measure for pertinent features of the outline shapes of egg-like forms, so called path curves. Ascertained circadian changes of form were analyzed for their correlation with environmental factors such as light, temperature, and other weather influences. Certain weather conditions such as sky cover, i.e., sunshine minutes per hour, have an impact on the amplitude of the daily change in form. The present paper suggests a possible supplement to established methods in chronobiology, as in this case the dynamic of form-change becomes a measurable feature, displaying a convincing accordance between mathematical rule and plant shape. PMID:27933073

  4. Shape matters: Lifecycle of cooperative patches promotes cooperation in bulky populations

    PubMed Central

    Misevic, Dusan; Frénoy, Antoine; Lindner, Ariel B; Taddei, François

    2015-01-01

    Natural cooperative systems take many forms, ranging from one-dimensional cyanobacteria arrays to fractal-like biofilms. We use in silico experimental systems to study a previously overlooked factor in the evolution of cooperation, physical shape of the population. We compare the emergence and maintenance of cooperation in populations of digital organisms that inhabit bulky (100 × 100 cells) or slender (4 × 2500) toroidal grids. Although more isolated subpopulations of secretors in a slender population could be expected to favor cooperation, we find the opposite: secretion evolves to higher levels in bulky populations. We identify the mechanistic explanation for the shape effect by analyzing the lifecycle and dynamics of cooperator patches, from their emergence and growth, to invasion by noncooperators and extinction. Because they are constrained by the population shape, the cooperator patches expand less in slender than in bulky populations, leading to fewer cooperators, less public good secretion, and generally lower cooperation. The patch dynamics and mechanisms of shape effect are robust across several digital cooperation systems and independent of the underlying basis for cooperation (public good secretion or a cooperation game). Our results urge for a greater consideration of population shape in the study of the evolution of cooperation across experimental and modeling systems. PMID:25639379

  5. A Tour Through Shape Dynamic Black Holes

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel

    Shape dynamics is a classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Despite these differences, shape dynamics and general relativity generically predict the same dynamics--there exist gauge-fixings of each theory that ensure agreement with the other. However, these gauge-fixing conditions are not necessarily globally well-defined and it is therefore possible to find solutions of the shape dynamics equations of motion that agree with general relativity on some open neighborhoods, but which have different global structures. In particular, the black hole solutions of the two theories disagree globally. Understanding these novel "shape dynamic black holes" is the primary goal of this thesis.

  6. Atomic detail brownian dynamics simulations of concentrated protein solutions with a mean field treatment of hydrodynamic interactions.

    PubMed

    Mereghetti, Paolo; Wade, Rebecca C

    2012-07-26

    High macromolecular concentrations are a distinguishing feature of living organisms. Understanding how the high concentration of solutes affects the dynamic properties of biological macromolecules is fundamental for the comprehension of biological processes in living systems. In this paper, we describe the implementation of mean field models of translational and rotational hydrodynamic interactions into an atomically detailed many-protein brownian dynamics simulation method. Concentrated solutions (30-40% volume fraction) of myoglobin, hemoglobin A, and sickle cell hemoglobin S were simulated, and static structure factors, oligomer formation, and translational and rotational self-diffusion coefficients were computed. Good agreement of computed properties with available experimental data was obtained. The results show the importance of both solvent mediated interactions and weak protein-protein interactions for accurately describing the dynamics and the association properties of concentrated protein solutions. Specifically, they show a qualitative difference in the translational and rotational dynamics of the systems studied. Although the translational diffusion coefficient is controlled by macromolecular shape and hydrodynamic interactions, the rotational diffusion coefficient is affected by macromolecular shape, direct intermolecular interactions, and both translational and rotational hydrodynamic interactions.

  7. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    PubMed

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Selection of stationary phase particle geometry using X-ray computed tomography and computational fluid dynamics simulations.

    PubMed

    Schmidt, Irma; Minceva, Mirjana; Arlt, Wolfgang

    2012-02-17

    The X-ray computed tomography (CT) is used to determine local parameters related to the column packing homogeneity and hydrodynamics in columns packed with spherically and irregularly shaped particles of same size. The results showed that the variation of porosity and axial dispersion coefficient along the column axis is insignificant, compared to their radial distribution. The methodology of using the data attained by CT measurements to perform a CFD simulation of a batch separation of model binary mixtures, with different concentration and separation factors is demonstrated. The results of the CFD simulation study show that columns packed with spherically shaped particles provide higher yield in comparison to columns packed with irregularly shaped particles only below a certain value of the separation factor. The presented methodology can be used for selecting a suited packing material for a particular separation task. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. How cells explore shape space: a quantitative statistical perspective of cellular morphogenesis.

    PubMed

    Yin, Zheng; Sailem, Heba; Sero, Julia; Ardy, Rico; Wong, Stephen T C; Bakal, Chris

    2014-12-01

    Through statistical analysis of datasets describing single cell shape following systematic gene depletion, we have found that the morphological landscapes explored by cells are composed of a small number of attractor states. We propose that the topology of these landscapes is in large part determined by cell-intrinsic factors, such as biophysical constraints on cytoskeletal organization, and reflects different stable signaling and/or transcriptional states. Cell-extrinsic factors act to determine how cells explore these landscapes, and the topology of the landscapes themselves. Informational stimuli primarily drive transitions between stable states by engaging signaling networks, while mechanical stimuli tune, or even radically alter, the topology of these landscapes. As environments fluctuate, the topology of morphological landscapes explored by cells dynamically adapts to these fluctuations. Finally we hypothesize how complex cellular and tissue morphologies can be generated from a limited number of simple cell shapes. © 2014 WILEY Periodicals, Inc.

  10. Interactive lesion segmentation with shape priors from offline and online learning.

    PubMed

    Shepherd, Tony; Prince, Simon J D; Alexander, Daniel C

    2012-09-01

    In medical image segmentation, tumors and other lesions demand the highest levels of accuracy but still call for the highest levels of manual delineation. One factor holding back automatic segmentation is the exemption of pathological regions from shape modelling techniques that rely on high-level shape information not offered by lesions. This paper introduces two new statistical shape models (SSMs) that combine radial shape parameterization with machine learning techniques from the field of nonlinear time series analysis. We then develop two dynamic contour models (DCMs) using the new SSMs as shape priors for tumor and lesion segmentation. From training data, the SSMs learn the lower level shape information of boundary fluctuations, which we prove to be nevertheless highly discriminant. One of the new DCMs also uses online learning to refine the shape prior for the lesion of interest based on user interactions. Classification experiments reveal superior sensitivity and specificity of the new shape priors over those previously used to constrain DCMs. User trials with the new interactive algorithms show that the shape priors are directly responsible for improvements in accuracy and reductions in user demand.

  11. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    PubMed

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  12. Prediction of inspiratory flow shapes during sleep with a mathematic model of upper airway forces.

    PubMed

    Aittokallio, Tero; Gyllenberg, Mats; Saaresranta, Tarja; Polo, Olli

    2003-11-01

    To predict the airflow dynamics during sleep using a mathematic model that incorporates a number of static and dynamic upper airway forces, and to compare the numerical results to clinical flow data recorded from patients with sleep-disordered breathing on and off various treatment options. Upper airway performance was modeled in virtual subjects characterized by parameter settings that describe common combinations of risk factors predisposing to upper airway collapse during sleep. The treatments effect were induced by relevant changes of the initial parameter values. Computer simulations at our website (http://www.utu.fi/ml/sovmat/bio/). Risk factors considered in the simulation settings were sex, obesity, pharyngeal collapsibility, and decreased phasic activity of pharyngeal muscles. The effects of weight loss, pharyngeal surgery, nasal continuous positive airway pressure, and respiratory stimulation on the inspiratory flow characteristics were tested with the model. Numerical predictions were investigated by means of 3 measurable inspiratory airflow characteristics: initial slope, total volume, and flow shape. The model was able to reproduce the inspiratory flow shape characteristics that have previously been described in the literature. Simulation results also supported the observations that a multitude of factors underlie the pharyngeal collapse and, therefore, certain medical therapies that are effective in some conditions may prove ineffective in others. A mathematic model integrating the current knowledge of upper airway physiology is able to predict individual treatment responses. The model provides a framework for designing novel and potentially feasible treatment alternatives for sleep-disordered breathing.

  13. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments.

    PubMed

    Díaz-Muñoz, Samuel L

    2017-01-01

    Infection of more than one virus in a host, coinfection, is common across taxa and environments. Viral coinfection can enable genetic exchange, alter the dynamics of infections, and change the course of viral evolution. Yet, a systematic test of the factors explaining variation in viral coinfection across different taxa and environments awaits completion. Here I employ three microbial data sets of virus-host interactions covering cross-infectivity, culture coinfection, and single-cell coinfection (total: 6,564 microbial hosts, 13,103 viruses) to provide a broad, comprehensive picture of the ecological and biological factors shaping viral coinfection. I found evidence that ecology and virus-virus interactions are recurrent factors shaping coinfection patterns. Host ecology was a consistent and strong predictor of coinfection across all three data sets: cross-infectivity, culture coinfection, and single-cell coinfection. Host phylogeny or taxonomy was a less consistent predictor, being weak or absent in the cross-infectivity and single-cell coinfection models, yet it was the strongest predictor in the culture coinfection model. Virus-virus interactions strongly affected coinfection. In the largest test of superinfection exclusion to date, prophage sequences reduced culture coinfection by other prophages, with a weaker effect on extrachromosomal virus coinfection. At the single-cell level, prophage sequences eliminated coinfection. Virus-virus interactions also increased culture coinfection with ssDNA-dsDNA coinfections >2× more likely than ssDNA-only coinfections. The presence of CRISPR spacers was associated with a ∼50% reduction in single-cell coinfection in a marine bacteria, despite the absence of exact spacer matches in any active infection. Collectively, these results suggest the environment bacteria inhabit and the interactions among surrounding viruses are two factors consistently shaping viral coinfection patterns. These findings highlight the role of virus-virus interactions in coinfection with implications for phage therapy, microbiome dynamics, and viral infection treatments.

  14. Fundamental Design Principles for Transcription-Factor-Based Metabolite Biosensors.

    PubMed

    Mannan, Ahmad A; Liu, Di; Zhang, Fuzhong; Oyarzún, Diego A

    2017-10-20

    Metabolite biosensors are central to current efforts toward precision engineering of metabolism. Although most research has focused on building new biosensors, their tunability remains poorly understood and is fundamental for their broad applicability. Here we asked how genetic modifications shape the dose-response curve of biosensors based on metabolite-responsive transcription factors. Using the lac system in Escherichia coli as a model system, we built promoter libraries with variable operator sites that reveal interdependencies between biosensor dynamic range and response threshold. We developed a phenomenological theory to quantify such design constraints in biosensors with various architectures and tunable parameters. Our theory reveals a maximal achievable dynamic range and exposes tunable parameters for orthogonal control of dynamic range and response threshold. Our work sheds light on fundamental limits of synthetic biology designs and provides quantitative guidelines for biosensor design in applications such as dynamic pathway control, strain optimization, and real-time monitoring of metabolism.

  15. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope.

    PubMed

    Sader, John E; Lu, Jianing; Mulvaney, Paul

    2014-11-01

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied - in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry - neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration.

  16. Extinction rates in tumour public goods games.

    PubMed

    Gerlee, Philip; Altrock, Philipp M

    2017-09-01

    Cancer evolution and progression are shaped by cellular interactions and Darwinian selection. Evolutionary game theory incorporates both of these principles, and has been proposed as a framework to understand tumour cell population dynamics. A cornerstone of evolutionary dynamics is the replicator equation, which describes changes in the relative abundance of different cell types, and is able to predict evolutionary equilibria. Typically, the replicator equation focuses on differences in relative fitness. We here show that this framework might not be sufficient under all circumstances, as it neglects important aspects of population growth. Standard replicator dynamics might miss critical differences in the time it takes to reach an equilibrium, as this time also depends on cellular turnover in growing but bounded populations. As the system reaches a stable manifold, the time to reach equilibrium depends on cellular death and birth rates. These rates shape the time scales, in particular, in coevolutionary dynamics of growth factor producers and free-riders. Replicator dynamics might be an appropriate framework only when birth and death rates are of similar magnitude. Otherwise, population growth effects cannot be neglected when predicting the time to reach an equilibrium, and cell-type-specific rates have to be accounted for explicitly. © 2017 The Authors.

  17. Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ-deficient cells.

    PubMed

    Shiomi, Daisuke; Toyoda, Atsushi; Aizu, Tomoyuki; Ejima, Fumio; Fujiyama, Asao; Shini, Tadasu; Kohara, Yuji; Niki, Hironori

    2013-03-01

    RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process. © 2013 Blackwell Publishing Ltd.

  18. Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ-deficient cells

    PubMed Central

    Shiomi, Daisuke; Toyoda, Atsushi; Aizu, Tomoyuki; Ejima, Fumio; Fujiyama, Asao; Shini, Tadasu; Kohara, Yuji; Niki, Hironori

    2013-01-01

    RodZ interacts with MreB and both factors are required to maintain the rod shape of Escherichia coli. The assembly of MreB into filaments regulates the subcellular arrangement of a group of enzymes that synthesizes the peptidoglycan (PG) layer. However, it is still unknown how polymerization of MreB determines the rod shape of bacterial cells. Regulatory factor(s) are likely to be involved in controlling the function and dynamics of MreB. We isolated suppressor mutations to partially recover the rod shape in rodZ deletion mutants and found that some of the suppressor mutations occurred in mreB. All of the mreB mutations were in or in the vicinity of domain IA of MreB. Those mreB mutations changed the property of MreB filaments in vivo. In addition, suppressor mutations were found in the periplasmic regions in PBP2 and RodA, encoded by mrdA and mrdB genes. Similar to MreB and RodZ, PBP2 and RodA are pivotal to the cell wall elongation process. Thus, we found that mutations in domain IA of MreB and in the periplasmic domain of PBP2 and RodA can restore growth and rod shape to ΔrodZ cells, possibly by changing the requirements of MreB in the process. PMID:23301723

  19. Shape dynamics and Mach's principles: Gravity from conformal geometrodynamics

    NASA Astrophysics Data System (ADS)

    Gryb, Sean

    2012-04-01

    In this PhD thesis, we develop a new approach to classical gravity starting from Mach's principles and the idea that the local shape of spatial configurations is fundamental. This new theory, "shape dynamics", is equivalent to general relativity but differs in an important respect: shape dynamics is a theory of dynamic conformal 3-geometry, not a theory of spacetime. Equivalence is achieved by trading foliation invariance for local conformal invariance (up to a global scale). After the trading, what is left is a gauge theory invariant under 3d diffeomorphisms and conformal transformations that preserve the volume of space. The local canonical constraints are linear and the constraint algebra closes with structure constants. Shape dynamics, thus, provides a novel new starting point for quantum gravity. The procedure for the trading of symmetries was inspired by a technique called "best matching". We explain best matching and its relation to Mach's principles. The key features of best matching are illustrated through finite dimensional toy models. A general picture is then established where relational theories are treated as gauge theories on configuration space. Shape dynamics is then constructed by applying best matching to conformal geometry. We then study shape dynamics in more detail by computing its Hamiltonian and Hamilton-Jacobi functional perturbatively. This thesis is intended as a pedagogical but complete introduction to shape dynamics and the Machian ideas that led to its discovery. The reader is encouraged to start with the introduction, which gives a conceptual outline and links to the relevant sections in the text for a more rigorous exposition. When full rigor is lacking, references to the literature are given. It is hoped that this thesis may provide a starting point for anyone interested in learning about shape dynamics.

  20. Memory effects in soap film arrangements

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas; Dorbolo, Stephane; Lumay, Geoffroy; Schockmel, Julien; Noirhomme, Martial

    2012-02-01

    We report experiments on soap film configurations in a triangular prism for which the shape factor can be changed continuously. Two stable configurations can be observed for a range of the shape factor h. A hysteretic behaviour is found, due to the occurence of another local minima in the free energy. Experiments demonstrate that soap films can be trapped in a particular configuration being different from a global surface minimization. This metastability can be evidenced from a geometrical model based on idealized structures. Depending on the configuration, providing clues on the structural relaxations taking place into 3D foams, such as T1 rearrangements. The composition of the liquid is also investigated leading to dynamical picture of the transition. (Phys. Rev. E 83, 021403 (2011))

  1. Social Network Analysis of International Student Mobility: Uncovering the Rise of Regional Hubs

    ERIC Educational Resources Information Center

    Kondakci, Yasar; Bedenlier, Svenja; Zawacki-Richter, Olaf

    2018-01-01

    Research on the patterns of international student mobility and the dynamics shaping these patterns has been dominated by studies reflecting a Western orientation, discourse, and understanding. Considering political, economic, cultural, historical, and ecological factors, this study argues that international student mobility is not only an issue of…

  2. Determination of Visual Figure and Ground in Dynamically Deforming Shapes

    ERIC Educational Resources Information Center

    Barenholtz, Elan; Feldman, Jacob

    2006-01-01

    Figure/ground assignment--determining which part of the visual image is foreground and which background--is a critical step in early visual analysis, upon which much later processing depends. Previous research on the assignment of figure and ground to opposing sides of a contour has almost exclusively involved static geometric factors--such as…

  3. Assessing forest fragmentation metrics from forest inventory cluster samples

    Treesearch

    Christoph Kleinn

    2000-01-01

    Fragmentation of forest area plays an important role in the ongoing discussion of forest dynamics and biological and ecosystem diversity. Among its contributing factors are size, shape, number, and spatial arrangement of forest patches. Several metrics and indexes are in use, predominantly in quantitative landscape ecology. An important area of interest is the...

  4. International Sexual Partnerships May Be Shaped by Sexual Histories and Socioeconomic Status.

    PubMed

    Truong, Hong-Ha M; Mehrotra, Megha; Montoya, Orlando; Lama, Javier R; Guanira, Juan V; Casapía, Martín; Veloso, Valdiléa G; Buchbinder, Susan P; Mayer, Kenneth H; Chariyalertsak, Suwat; Schechter, Mauro; Bekker, Linda-Gail; Kallás, Esper G; Grant, Robert M

    2017-05-01

    Exchange sex and higher education were associated with an increased likelihood of international sexual partnerships (ISPs). Exchange sex and older age were associated with an increased likelihood of condomless sex in ISPs. Educational and socioeconomic factors may create unbalanced power dynamics that influence exchange sex and condomless sex in ISPs.

  5. Large-Scale Economic Change and Youth Development: The Case of Urban China

    ERIC Educational Resources Information Center

    Yoshikawa, Hirokazu; Way, Niobe; Chen, Xinyin

    2012-01-01

    Social ecological and dynamic systems theories propose that human development is shaped by the cumulative impact of social interactions in proximal and distal settings, which are themselves influenced by social and economic forces. The understanding of the links between microsystem-level factors (such as parenting styles and parent-child…

  6. Population changes in residential clusters in Japan.

    PubMed

    Sekiguchi, Takuya; Tamura, Kohei; Masuda, Naoki

    2018-01-01

    Population dynamics in urban and rural areas are different. Understanding factors that contribute to local population changes has various socioeconomic and political implications. In the present study, we use population census data in Japan to examine contributors to the population growth of residential clusters between years 2005 and 2010. The data set covers the entirety of Japan and has a high spatial resolution of 500 × 500 m2, enabling us to examine population dynamics in various parts of the country (urban and rural) using statistical analysis. We found that, in addition to the area, population density, and age, the shape of the cluster and the spatial distribution of inhabitants within the cluster are significantly related to the population growth rate of a residential cluster. Specifically, the population tends to grow if the cluster is "round" shaped (given the area) and the population is concentrated near the center rather than periphery of the cluster. Combination of the present results and analysis framework with other factors that have been omitted in the present study, such as migration, terrain, and transportation infrastructure, will be fruitful.

  7. Feedback tracking control for dynamic morphing of piezocomposite actuated flexible wings

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Zhou, Wenya; Wu, Zhigang

    2018-03-01

    Aerodynamic properties of flexible wings can be improved via shape morphing using piezocomposite materials. Dynamic shape control of flexible wings is investigated in this study by considering the interactions between structural dynamics, unsteady aerodynamics and piezo-actuations. A novel antisymmetric angle-ply bimorph configuration of piezocomposite actuators is presented to realize coupled bending-torsional shape control. The active aeroelastic model is derived using finite element method and Theodorsen unsteady aerodynamic loads. A time-varying linear quadratic Gaussian (LQG) tracking control system is designed to enhance aerodynamic lift with pre-defined trajectories. Proof-of-concept simulations of static and dynamic shape control are presented for a scaled high-aspect-ratio wing model. Vibrations of the wing and fluctuations in aerodynamic forces are caused by using the static voltages directly in dynamic shape control. The lift response has tracked the trajectories well with favorable dynamic morphing performance via feedback tracking control.

  8. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein.

    PubMed

    Defeu Soufo, Hervé Joël; Reimold, Christian; Linne, Uwe; Knust, Tobias; Gescher, Johannes; Graumann, Peter L

    2010-02-16

    We show that translation initiation factor EF-Tu plays a second important role in cell shape maintenance in the bacterium Bacillus subtilis. EF-Tu localizes in a helical pattern underneath the cell membrane and colocalizes with MreB, an actin-like cytoskeletal element setting up rod cell shape. The localization of MreB and of EF-Tu is interdependent, but in contrast to the dynamic MreB filaments, EF-Tu structures are more static and may serve as tracks for MreB filaments. In agreement with this idea, EF-Tu and MreB interact in vivo and in vitro. Lowering of the EF-Tu levels had a minor effect on translation but a strong effect on cell shape and on the localization of MreB, and blocking of the function of EF-Tu in translation did not interfere with the localization of MreB, showing that, directly or indirectly, EF-Tu affects the cytoskeletal MreB structure and thus serves two important functions in a bacterium.

  9. Olive Fruit Fly (Bactrocera oleae) Population Dynamics in the Eastern Mediterranean: Influence of Exogenous Uncertainty on a Monophagous Frugivorous Insect

    PubMed Central

    Ordano, Mariano; Engelhard, Izhar; Rempoulakis, Polychronis; Nemny-Lavy, Esther; Blum, Moshe; Yasin, Sami; Lensky, Itamar M.; Papadopoulos, Nikos T.; Nestel, David

    2015-01-01

    Despite of the economic importance of the olive fly (Bactrocera oleae) and the large amount of biological and ecological studies on the insect, the factors driving its population dynamics (i.e., population persistence and regulation) had not been analytically investigated until the present study. Specifically, our study investigated the autoregressive process of the olive fly populations, and the joint role of intrinsic and extrinsic factors molding the population dynamics of the insect. Accounting for endogenous dynamics and the influences of exogenous factors such as olive grove temperature, the North Atlantic Oscillation and the presence of potential host fruit, we modeled olive fly populations in five locations in the Eastern Mediterranean region. Our models indicate that the rate of population change is mainly shaped by first and higher order non-monotonic, endogenous dynamics (i.e., density-dependent population feedback). The olive grove temperature was the main exogenous driver, while the North Atlantic Oscillation and fruit availability acted as significant exogenous factors in one of the five populations. Seasonal influences were also relevant for three of the populations. In spite of exogenous effects, the rate of population change was fairly stable along time. We propose that a special reproductive mechanism, such as reproductive quiescence, allows populations of monophagous fruit flies such as the olive fly to remain stable. Further, we discuss how weather factors could impinge constraints on the population dynamics at the local level. Particularly, local temperature dynamics could provide forecasting cues for management guidelines. Jointly, our results advocate for establishing monitoring programs and for a major focus of research on the relationship between life history traits and populations dynamics. PMID:26010332

  10. Lattice Boltzmann simulations of settling behaviors of irregularly shaped particles

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Galindo-Torres, S. A.; Tang, Hongwu; Jin, Guangqiu; Scheuermann, A.; Li, Ling

    2016-06-01

    We investigated the settling dynamics of irregularly shaped particles in a still fluid under a wide range of conditions with Reynolds numbers Re varying between 1 and 2000, sphericity ϕ and circularity c both greater than 0.5, and Corey shape factor (CSF) less than 1. To simulate the particle settling process, a modified lattice Boltzmann model combined with a turbulence module was adopted. This model was first validated using experimental data for particles of spherical and cubic shapes. For irregularly shaped particles, two different types of settling behaviors were observed prior to particles reaching a steady state: accelerating and accelerating-decelerating, which could be distinguished by a critical CSF value of approximately 0.7. The settling dynamics were analyzed with a focus on the projected areas and angular velocities of particles. It was found that a minor change in the starting projected area, an indicator of the initial particle orientation, would not strongly affect the settling velocity for low Re. Periodic oscillations developed for all simulated particles when Re>100 . The amplitude of these oscillations increased with Re. However, the periods were not sensitive to Re. The critical Re that defined the transition between the steady and periodically oscillating behaviors depended on the inertia tensor. In particular, the maximum eigenvalue of the inertia tensor played a major role in signaling this transition in comparison to the intermediate and minimum eigenvalues.

  11. FtsZ rings and helices: physical mechanisms for the dynamic alignment of biopolymers in rod-shaped bacteria.

    PubMed

    Fischer-Friedrich, Elisabeth; Friedrich, Benjamin M; Gov, Nir S

    2012-02-01

    In many bacterial species, the protein FtsZ forms a cytoskeletal ring that marks the future division site and scaffolds the division machinery. In rod-shaped bacteria, most frequently membrane-attached FtsZ rings or ring fragments are reported and occasionally helices. By contrast, axial FtsZ clusters have never been reported. In this paper, we investigate theoretically how dynamic FtsZ aggregates align in rod-shaped bacteria. We study systematically different physical mechanisms that affect the alignment of FtsZ polymers using a computational model that relies on autocatalytic aggregation of FtsZ filaments at the membrane. Our study identifies a general tool kit of physical and geometrical mechanisms by which rod-shaped cells align biopolymer aggregates. Our analysis compares the relative impact of each mechanism on the circumferential alignment of FtsZ as observed in rod-shaped bacteria. We determine spontaneous curvature of FtsZ polymers and axial confinement of FtsZ on the membrane as the strongest factors. Including Min oscillations in our model, we find that these stabilize axial and helical clusters on short time scales, but promote the formation of an FtsZ ring at the cell middle at longer times. This effect could provide an explanation to the long standing puzzle of transiently observed oscillating FtsZ helices in Escherichia coli cells prior to cell division.

  12. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    NASA Astrophysics Data System (ADS)

    Král, Robert; Nitsch, Karel

    2015-10-01

    Influence of growth conditions, i.e. temperature gradient in the furnace and the pulling rate, on the position and the shape of the crystal/melt interface during vertical Bridgman growth was studied. The position and the shape of the crystal/melt interface are a key factor for describing the final quality of growing crystal. Following two methods for characterization of its position and shape were used: (i) direct observation and (ii) direct temperature field measurement during simulated vertical Bridgman growth. As a model compound a lead chloride is used. Three different ampoule positions in two different temperature gradients in the furnace and two experimental arrangements - stationary (0 mm/h pulling rate) and dynamic (3 mm/h pulling rate) were analyzed. Obtained temperature data were projected as 2D planar cut under radial symmetry and denoted as isolevels. Their further conversion by linear approximation into isotherms allowed detail analysis of heat conditions in the system during simulated growth by comparison of isotherms 500 °C (m.p. of lead chloride) at different growth conditions.

  13. Temporal Dynamics of the Driving Factors of Urban Landscape Change of Addis Ababa During the Past Three Decades.

    PubMed

    Zewdie, Meskerem; Worku, Hailu; Bantider, Amare

    2018-01-01

    Mapping and quantifying urban landscape dynamics and the underlying driving factors are crucial for devising appropriate policies, especially in cities of developing countries where the change is rapid. This study analyzed three decades (1984-2014) of land use land cover change of Addis Ababa using Landsat imagery and examined the underlying factors and their temporal dynamics through expert interview using Analytic Hierarchy Process (AHP). Classification results revealed that urban area increased by 50%, while agricultural land and forest decreased by 34 and 16%, respectively. The driving factors operated differently during the pre and post-1991 period. The year 1991 was chosen because it marked government change in the country resulting in policy change. Policy had the highest influence during the pre-1991 period. Land use change in this period was associated with the housing sector as policies and institutional setups were permissive to this sector. Population growth and in-migration were also important factors. Economic factors played significant role in the post-1991 period. The fact that urban land has a market value, the growth of private investment, and the speculated property market were among the economic factors. Policy reforms since 2003 were also influential to the change. Others such as accessibility, demography, and neighborhood factors were a response to economic factors. All the above-mentioned factors had vital role in shaping the urban pattern of the city. These findings can help planners and policymakers to better understand the dynamic relationship of urban land use and the driving factors to better manage the city.

  14. Temporal Dynamics of the Driving Factors of Urban Landscape Change of Addis Ababa During the Past Three Decades

    NASA Astrophysics Data System (ADS)

    Zewdie, Meskerem; Worku, Hailu; Bantider, Amare

    2018-01-01

    Mapping and quantifying urban landscape dynamics and the underlying driving factors are crucial for devising appropriate policies, especially in cities of developing countries where the change is rapid. This study analyzed three decades (1984-2014) of land use land cover change of Addis Ababa using Landsat imagery and examined the underlying factors and their temporal dynamics through expert interview using Analytic Hierarchy Process (AHP). Classification results revealed that urban area increased by 50%, while agricultural land and forest decreased by 34 and 16%, respectively. The driving factors operated differently during the pre and post-1991 period. The year 1991 was chosen because it marked government change in the country resulting in policy change. Policy had the highest influence during the pre-1991 period. Land use change in this period was associated with the housing sector as policies and institutional setups were permissive to this sector. Population growth and in-migration were also important factors. Economic factors played significant role in the post-1991 period. The fact that urban land has a market value, the growth of private investment, and the speculated property market were among the economic factors. Policy reforms since 2003 were also influential to the change. Others such as accessibility, demography, and neighborhood factors were a response to economic factors. All the above-mentioned factors had vital role in shaping the urban pattern of the city. These findings can help planners and policymakers to better understand the dynamic relationship of urban land use and the driving factors to better manage the city.

  15. Cognitive Appraisals of Alcohol Use in Early Adolescence: Psychosocial Predictors and Reciprocal Associations with Alcohol Use

    ERIC Educational Resources Information Center

    Colder, Craig R.; Read, Jennifer P.; Wieczorek, William F.; Eiden, Rina D.; Lengua, Liliana J.; Hawk, Larry W., Jr.; Trucco, Elisa M.; Lopez-Vergara, Hector I.

    2017-01-01

    Early adolescence is a dynamic period for the development of alcohol appraisals (expected outcomes of drinking and subjective evaluations of expected outcomes), yet the literature provides a limited understanding of psychosocial factors that shape these appraisals during this period. This study took a comprehensive view of alcohol appraisals and…

  16. International Sexual Partnerships May Be Shaped by Sexual Histories and Socioeconomic Status

    PubMed Central

    Truong, Hong-Ha M.; Mehrotra, Megha; Montoya, Orlando; Lama, Javier R.; Guanira, Juan V.; Casapía, Martín; Veloso, Valdiléa G.; Buchbinder, Susan P.; Mayer, Kenneth H.; Chariyalertsak, Suwat; Schechter, Mauro; Bekker, Linda-Gail; Kallás, Esper G.; Grant, Robert M.

    2017-01-01

    Exchange sex and higher education were associated with an increased likelihood of international sexual partnerships (ISPs). Exchange sex and older age were associated with an increased likelihood of condomless sex in ISPs. Educational and socioeconomic factors may create unbalanced power dynamics that influence exchange sex and condomless sex in ISPs. PMID:28407648

  17. Wavefront control performance modeling with WFIRST shaped pupil coronagraph testbed

    NASA Astrophysics Data System (ADS)

    Zhou, Hanying; Nemati, Bijian; Krist, John; Cady, Eric; Kern, Brian; Poberezhskiy, Ilya

    2017-09-01

    NASA's WFIRST mission includes a coronagraph instrument (CGI) for direct imaging of exoplanets. Significant improvement in CGI model fidelity has been made recently, alongside a testbed high contrast demonstration in a simulated dynamic environment at JPL. We present our modeling method and results of comparisons to testbed's high order wavefront correction performance for the shaped pupil coronagraph. Agreement between model prediction and testbed result at better than a factor of 2 has been consistently achieved in raw contrast (contrast floor, chromaticity, and convergence), and with that comes good agreement in contrast sensitivity to wavefront perturbations and mask lateral shear.

  18. Dynamic Testing of a Pre-stretched Flexible Tube for Identifying the Factors Affecting Modal Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Madhusudanan; Rajan, Akash; Basanthvihar Raghunathan, Binulal; Kochupillai, Jayaraj

    2017-08-01

    Experimental modal analysis is the primary tool for obtaining the fundamental dynamic characteristics like natural frequency, mode shape and modal damping ratio that determine the behaviour of any structure under dynamic loading conditions. This paper discusses about a carefully designed experimental method for calculating the dynamic characteristics of a pre-stretched horizontal flexible tube made of polyurethane material. The factors that affect the modal parameter estimation like the application time of shaker excitation, pause time between successive excitation cycles, averaging and windowing of measured signal, as well as the precautions to be taken during the experiment are explained in detail. The modal parameter estimation is done using MEscopeVESTM software. A finite element based pre-stressed modal analysis of the flexible tube is also done using ANSYS ver.14.0 software. The experimental and analytical results agreed well. The proposed experimental methodology may be extended for carrying out the modal analysis of many flexible structures like inflatables, tires and membranes.

  19. Membrane tension and cytoskeleton organization in cell motility.

    PubMed

    Sens, Pierre; Plastino, Julie

    2015-07-15

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  20. Otolith shape lends support to the sensory drive hypothesis in rockfishes.

    PubMed

    Tuset, V M; Otero-Ferrer, J L; Gómez-Zurita, J; Venerus, L A; Stransky, C; Imondi, R; Orlov, A M; Ye, Z; Santschi, L; Afanasiev, P K; Zhuang, L; Farré, M; Love, M S; Lombarte, A

    2016-10-01

    The sensory drive hypothesis proposes that environmental factors affect both signalling dynamics and the evolution of signals and receivers. Sound detection and equilibrium in marine fishes are senses dependent on the sagittae otoliths, whose morphological variability appears intrinsically linked to the environment. The aim of this study was to understand if and which environmental factors could be conditioning the evolution of this sensory structure, therefore lending support to the sensory drive hypothesis. Thus, we analysed the otolith shape of 42 rockfish species (Sebastes spp.) to test the potential associations with the phylogeny, biological (age), ecological (feeding habit and depth distribution) and biogeographical factors. The results showed strong differences in the otolith shapes of some species, noticeably influenced by ecological and biogeographical factors. Moreover, otolith shape was clearly conditioned by phylogeny, but with a strong environmental effect, cautioning about the use of this structure for the systematics of rockfishes or other marine fishes. However, our most relevant finding is that the data supported the sensory drive hypothesis as a force promoting the radiation of the genus Sebastes. This hypothesis holds that adaptive divergence in communication has significant influence relative to other life history traits. It has already been established in Sebastes for visual characters and organs; our results showed that it applies to otolith transformations as well (despite the clear influence of feeding and depth), expanding the scope of the hypothesis to other sensory structures. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  1. Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms.

    PubMed

    Zhang, Ying; Jing, Linkai; Liu, Jian; Li, Chuanhui; Fan, Jixing; Wang, Shengzhang; Li, Haiyun; Yang, Xinjian

    2016-08-01

    To identify clinical, morphological, and hemodynamic independent characteristic factors that discriminate posterior communicating artery (PCoA) aneurysm rupture status. 173 patients with single PCoA aneurysms (108 ruptured, 65 unruptured) between January 2012 and June 2014 were retrospectively collected. Patient-specific models based on their three-dimensional digital subtraction angiography images were constructed and analyzed by a computational fluid dynamic method. All variables were analyzed by univariate analysis and multivariate logistic regression analysis. Two clinical factors (younger age and atherosclerosis), three morphological factors (higher aspect ratio, bifurcation type, and irregular shape), and six hemodynamic factors (lower mean and minimum wall shear stress, higher oscillatory shear index, a greater portion of area under low wall shear stress, unstable and complex flow pattern) were significantly associated with PCoA aneurysm rupture. Independent factors characterizing the rupture status were identified as age (OR 0.956, p=0.015), irregular shape (OR 6.709, p<0.001), and minimum wall shear stress (OR 0.001, p=0.038). We combined clinical, morphological, and hemodynamic characteristics analysis and found the three strongest independent factors for PCoA aneurysm rupture were younger age, irregular shape, and low minimum wall shear stress. This may be useful for guiding risk assessments and subsequent treatment decisions for PCoA aneurysms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Cellular organization of pre-mRNA splicing factors in several tissues. Changes in the uterus by hormone action.

    PubMed

    George-Téllez, R; Segura-Valdez, M L; González-Santos, L; Jiménez-García, L F

    2002-05-01

    In the mammalian cell nucleus, splicing factors are distributed in nuclear domains known as speckles or splicing factor compartments (SFCs). In cultured cells, these domains are dynamic and reflect transcriptional and splicing activities. We used immunofluorescence and confocal microscopy to monitor whether splicing factors in differentiated cells display similar features. Speckled patterns are observed in rat hepatocytes, beta-cells, bronchial and intestine epithelia and also in three cell types of the uterus. Moreover, the number, distribution and sizes of the speckles vary among them. In addition, we studied variations in the circular form (shape) of speckles in uterine cells that are transcriptionally modified by a hormone action. During proestrus of the estral cycle, speckles are irregular in shape while in diestrus I they are circular. Experimentally, in castrated rats luminal epithelial cells show a pattern where speckles are dramatically rounded, but they recover their irregular shape rapidly after an injection of estradiol. The same results were observed in muscle and gland epithelial cells of the uterus. We concluded that different speckled patterns are present in various cells types in differentiated tissues and that these patterns change in the uterus depending upon the presence or absence of hormones such as estradiol.

  3. Analyses and Comparison of Solar Air Heater with Various Rib Roughness using Computational Fluid Dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Kumar, K. Ravi; Cheepu, Muralimohan; Srinivas, B.; Venkateswarlu, D.; Pramod Kumar, G.; Shiva, Apireddi

    2018-03-01

    In solar air heater, artificial roughness on absorber plate become prominent technique to improving heat transfer rate of air flowing passage as a result of laminar sublayer. The selection of rib geometries plays important role on friction characteristics and heat transfer rate. Many researchers studying the roughness shapes over the years to investigate the effect of geometries on the performance of friction factor and heat transfer of the solar air heater. The present study made an attempt to develop the different rib shapes utilised for creating artificial rib roughness and its comparison to investigate higher performance of the geometries. The use of computational fluid dynamics software resulted in correlation of friction factor and heat transfer rate. The simulations studies were performed on 2D computational fluid dynamics model and analysed to identify the most effective parameters of relative roughness of the height, width and pitch on major considerations of friction factor and heat transfer. The Reynolds number is varied in a range from 3000 to 20000, in the current study and modelling has conducted on heat transfer and turbulence phenomena by using Reynolds number. The modelling results showed the formation of strong vortex in the main stream flow due to the right angle triangle roughness over the square, rectangle, improved rectangle and equilateral triangle geometries enhanced the heat transfer extension in the solar air heater. The simulation of the turbulence kinetic energy of the geometry suggests the local turbulence kinetic energy has been influenced strongly by the alignments of the right angle triangle.

  4. Spatiotemporal variation in deer browse and tolerance in a woodland herb

    Treesearch

    Holly R. Prendeville; Janet C. Steven; Laura F. Galloway

    2015-01-01

    Herbivory can shape the dynamics of plant populations, including effects on survival and reproduction, and is in turn affected by environmental factors that vary in space and time. White-tailed deer are significant herbivores in North America that have been broadly documented to affect plant reproductive success. If variation in the frequency and impact of herbivory by...

  5. Gene-Environment Interactions across Development: Exploring DRD2 Genotype and Prenatal Smoking Effects on Self-Regulation

    ERIC Educational Resources Information Center

    Wiebe, Sandra A.; Espy, Kimberly Andrews; Stopp, Christian; Respass, Jennifer; Stewart, Peter; Jameson, Travis R.; Gilbert, David G.; Huggenvik, Jodi I.

    2009-01-01

    Genetic factors dynamically interact with both pre- and postnatal environmental influences to shape development. Considerable attention has been devoted to gene-environment interactions (G x E) on important outcomes (A. Caspi & T. E. Moffitt, 2006). It is also important to consider the possibility that these G x E effects may vary across…

  6. Formulating, Identifying and Estimating the Technology of Cognitive and Noncognitive Skill Formation

    ERIC Educational Resources Information Center

    Cunha, Flavio; Heckman, James J.

    2008-01-01

    This paper estimates models of the evolution of cognitive and noncognitive skills and explores the role of family environments in shaping these skills at different stages of the life cycle of the child. Central to this analysis is identification of the technology of skill formation. We estimate a dynamic factor model to solve the problem of…

  7. Reconfigurable and Reprocessable Thermoset Shape Memory Polymer with Synergetic Triple Dynamic Covalent Bonds.

    PubMed

    Wang, Yongwei; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-04-20

    Degradable shape memory polymers (SMPs), especially for polyurethane-based SMPs, have shown great potential for biomedical applications. How to reasonably fabricate SMPs with the ideal combination of degradability, shape reconfigurability, and reprocessability is a critical issue and remains a challenge for medical disposable materials. Herein, a shape memory poly(urethane-urea) with synergetic triple dynamic covalent bonds is reported via embedding polycaprolactone unit into poly(urethane-urea) with the hindered urea dynamic bond. The single polymer network is biodegradable, thermadapt, and reprocessable, without sacrificing the outstanding shape memory performance. Such a shape memory network with plasticity and reprocessability is expected to have significant and positive impact on the medical device industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characterization of the Modal Characteristics of Structures Operating in Dense Liquid Oxygen Turbopumps

    NASA Technical Reports Server (NTRS)

    Chiu, Joseph; Brown, Andrew M.

    2017-01-01

    A number of valuable conclusions can be drawn from this study. First, knockdown factors for a specific fluid are not constant but instead are dependent on the mode shape, although the largest this variability gets is about 10% for LOX, the densest fluid. The factors decrease the most for lower frequency shapes and less for higher ones. It follows, therefore, that mode number mismatch between air and fluid operation becomes not only possible, but common, as a knockdown factor for a particular mode shape may be higher than for another mode shape. Since this is a function of added mass, the mismatch is more prevalent for higher density fluids, but it initiates even for very low density ones. Another important conclusion reached is that it appears that the basic mode shapes of a structure do not change if it is fully symmetric, which includes its geometry and boundary conditions. There is some indication of small changes in the relative magnitudes within the mode shape. This conclusion is evident in the results from the cantilever rectangular plate and the inducer, which are not symmetric, and the fixed-fixed plate and the annular disk, which are. For non-symmetric structures, though, the mode shapes almost universally change for dense fluids, as shown by the very low MAC calculations. For the inducer in particular, the changes follow a trend of reduced parabolic and sine wavelengths with increasing density. It is critical to recognize the change in mode shape for several reasons. First, model updating with modal test becomes problematic if the shapes change. Second, design to avoid resonance is highly critical on the mode shape for modes other than the primary ones, as resonance is only a factor when the excitation shape matches the mode shape. Finally, application of the modal superposition method of forced response analysis is dependent on the use of accurate mode shapes. A more-refined assessment of the "knockdown" factor values and ranges than any previously reported in the literature for a realistic engineering structure is also presented in this paper. This data is of tremendous benefit for preliminary analysis and design, where a quick estimate is necessary. These results are important not just for rocket engine turbomachinery, but for water pumps and turbines, propellers, and any other structure operating in a heavy fluid with dynamic excitation. The clear avenue for future work for this endeavor is to expand the analytical techniques discussed in the literature to develop analytical expressions and justification for the mode shape changes and associated frequency knockdowns. These expressions must be able to accurately predict the functional relationship to the shapes, which will enable accurate tracing of the mode number from vacuum analysis (or testing in air) to analysis and operation in the intended fluid environment.

  9. Hydrodynamic damping and stiffness prediction in Francis turbine runners using CFD

    NASA Astrophysics Data System (ADS)

    Nennemann, Bernd; Monette, Christine; Chamberland-Lauzon, Joël

    2016-11-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid- to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon has to be considered carefully during the design phase to avoid operational issues on the prototype machine. The RSI dynamic response amplitudes of the runner are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. All three of the above factors are significantly influenced by both mechanical and hydraulic parameters. The prediction of the first two factors has been largely documented in the literature. However, the prediction of hydro-dynamic damping has only recently and only partially been treated. Two mode-based approaches (modal work and coupled single degree of freedom) for the prediction of flow-added dynamic parameters using separate finite element analyses (FEA) in still water and unsteady computational fluid dynamic (CFD) analyses are presented. The modal motion is connected to the time resolved CFD calculation by means of dynamic mesh deformation. This approach has partially been presented in a previous paper applied to a simplified hydrofoil. The present work extends the approach to Francis runners under RSI loading. In particular the travelling wave mode shapes of turbine runners are considered. Reasonable agreement with experimental results is obtained in parts of the operating range.

  10. Maternal telomere length inheritance in the king penguin.

    PubMed

    Reichert, S; Rojas, E R; Zahn, S; Robin, J-P; Criscuolo, F; Massemin, S

    2015-01-01

    Telomeres are emerging as a biomarker for ageing and survival, and are likely important in shaping life-history trade-offs. In particular, telomere length with which one starts in life has been linked to lifelong survival, suggesting that early telomere dynamics are somehow related to life-history trajectories. This result highlights the importance of determining the extent to which telomere length is inherited, as a crucial factor determining early life telomere length. Given the scarcity of species for which telomere length inheritance has been studied, it is pressing to assess the generality of telomere length inheritance patterns. Further, information on how this pattern changes over the course of growth in individuals living under natural conditions should provide some insight on the extent to which environmental constraints also shape telomere dynamics. To fill this gap partly, we followed telomere inheritance in a population of king penguins (Aptenodytes patagonicus). We tested for paternal and maternal influence on chick initial telomere length (10 days old after hatching), and how these relationships changed with chick age (at 70, 200 and 300 days old). Based on a correlative approach, offspring telomere length was positively associated with maternal telomere length early in life (at 10 days old). However, this relationship was not significant at older ages. These data suggest that telomere length in birds is maternally inherited. Nonetheless, the influence of environmental conditions during growth remained an important factor shaping telomere length, as the maternal link disappeared with chicks' age.

  11. Impact of height and shape of building roof on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  12. Morphable Word Clouds for Time-Varying Text Data Visualization.

    PubMed

    Chi, Ming-Te; Lin, Shih-Syun; Chen, Shiang-Yi; Lin, Chao-Hung; Lee, Tong-Yee

    2015-12-01

    A word cloud is a visual representation of a collection of text documents that uses various font sizes, colors, and spaces to arrange and depict significant words. The majority of previous studies on time-varying word clouds focuses on layout optimization and temporal trend visualization. However, they do not fully consider the spatial shapes and temporal motions of word clouds, which are important factors for attracting people's attention and are also important cues for human visual systems in capturing information from time-varying text data. This paper presents a novel method that uses rigid body dynamics to arrange multi-temporal word-tags in a specific shape sequence under various constraints. Each word-tag is regarded as a rigid body in dynamics. With the aid of geometric, aesthetic, and temporal coherence constraints, the proposed method can generate a temporally morphable word cloud that not only arranges word-tags in their corresponding shapes but also smoothly transforms the shapes of word clouds over time, thus yielding a pleasing time-varying visualization. Using the proposed frame-by-frame and morphable word clouds, people can observe the overall story of a time-varying text data from the shape transition, and people can also observe the details from the word clouds in frames. Experimental results on various data demonstrate the feasibility and flexibility of the proposed method in morphable word cloud generation. In addition, an application that uses the proposed word clouds in a simulated exhibition demonstrates the usefulness of the proposed method.

  13. Development of Control Models and a Robust Multivariable Controller for Surface Shape Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winters, Scott Eric

    2003-06-18

    Surface shape control techniques are applied to many diverse disciplines, such as adaptive optics, noise control, aircraft flutter control and satellites, with an objective to achieve a desirable shape for an elastic body by the application of distributed control forces. Achieving the desirable shape is influenced by many factors, such as, actuator locations, sensor locations, surface precision and controller performance. Building prototypes to complete design optimizations or controller development can be costly or impractical. This shortfall, puts significant value in developing accurate modeling and control simulation approaches. This thesis focuses on the field of adaptive optics, although these developments havemore » the potential for application in many other fields. A static finite element model is developed and validated using a large aperture interferometer system. This model is then integrated into a control model using a linear least squares algorithm and Shack-Hartmann sensor. The model is successfully exercised showing functionality for various wavefront aberrations. Utilizing a verified model shows significant value in simulating static surface shape control problems with quantifiable uncertainties. A new dynamic model for a seven actuator deformable mirror is presented and its accuracy is proven through experiment. Bond graph techniques are used to generate the state space model of the multi-actuator deformable mirror including piezo-electric actuator dynamics. Using this verified model, a robust multi-input multi-output (MIMO) H ∞ controller is designed and implemented. This controller proved superior performance as compared to a standard proportional-integral controller (PI) design.« less

  14. Design of a dynamic sonar emitter inspired by hipposiderid bats.

    PubMed

    Yang, Luhui; Yu, Allison; Mueller, Rolf

    2018-06-19

    The ultrasonic emission in the biosonar systems of bats such as the Old World leaf-nosed bats (family Hipposideridae) and the related horseshoe bats (family Rhinolophidae) is characterized by a unique dynamics where baffle shapes ("noseleaves") deform while diffracting the outgoing wave packets. As of now, nothing comparable to this dynamics has been used in any related engineering application (e.g., sonar or radar). Prior work with simple concave baffle shapes has demonstrated an impact of the dynamics on the emission characteristics, but it has remained unclear if this was simply due to the change in aperture size or also influenced by geometrical shape detail. Hence, it has also remained unclear if the time-variant effects reported so far could be further enhanced through different static and dynamic geometries. To address this issue, we have created a dynamic emission baffle with biomimetic shape detail modeled after Pratt's roundleaf bats (\\textit{Hipposideros pratti}). The impact of this shape's dynamic deformation on the time-variant emission characteristics was evaluated by virtue of the gradient magnitude and the entropy in the gradient orientation. The results have shown that the dynamics resulted in much larger gradients in a signal representation that changed jointly over direction and time. © 2018 IOP Publishing Ltd.

  15. Development of a new connection for precast concrete walls subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Vaghei, Ramin; Hejazi, Farzad; Taheri, Hafez; Jaafar, Mohd Saleh; Aziz, Farah Nora Aznieta Abdul

    2017-01-01

    The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.

  16. Exploring Race Based Differences in Patterns of Life-Course Criminality

    PubMed Central

    Markowitz, Michael W.; Salvatore, Christopher

    2013-01-01

    A persistent issue facing criminologists is the challenge of developing theoretical models that provide comprehensive explanations of the onset and persistence of criminality. One promising theory to develop over the last 30 years has been life-course theory. Using multivariate analysis of variance the main question posed in this research, do elements of social development shape the trajectory of persistent offending in a race-neutral fashion, or are the dynamics shaping life-course criminality unique for people of color, was examined. The results provide a number of useful insights into the relationship between race, life-course transition factors, and longitudinal patterns of criminality. PMID:23436952

  17. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms

    NASA Astrophysics Data System (ADS)

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-01

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  18. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms.

    PubMed

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-09-09

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.

  19. Wind interference effect on an octagonal plan shaped tall building due to square plan shaped tall buildings

    NASA Astrophysics Data System (ADS)

    Kar, Rony; Dalui, Sujit Kumar

    2016-03-01

    The variation of pressure at the faces of the octagonal plan shaped tall building due to interference of three square plan shaped tall building of same height is analysed by computational fluid dynamics module, namely ANSYS CFX for 0° wind incidence angle only. All the buildings are closely spaced (distance between two buildings varies from 0.4 h to 2 h, where h is the height of the building). Different cases depending upon the various positions of the square plan shaped buildings are analysed and compared with the octagonal plan shaped building in isolated condition. The comparison is presented in the form of interference factors (IF) and IF contours. Abnormal pressure distribution is observed in some cases. Shielding and channelling effect on the octagonal plan shaped building due to the presence of the interfering buildings are also noted. In the interfering condition the pressure distribution at the faces of the octagonal plan shaped building is not predictable. As the distance between the principal octagonal plan shaped building and the third square plan shaped interfering building increases the behaviour of faces becomes more systematic. The coefficient of pressure (C p) for each face of the octagonal plan shaped building in each interfering case can be easily found if we multiply the IF with the C p in the isolated case.

  20. SEIPS 2.0: a human factors framework for studying and improving the work of healthcare professionals and patients.

    PubMed

    Holden, Richard J; Carayon, Pascale; Gurses, Ayse P; Hoonakker, Peter; Hundt, Ann Schoofs; Ozok, A Ant; Rivera-Rodriguez, A Joy

    2013-01-01

    Healthcare practitioners, patient safety leaders, educators and researchers increasingly recognise the value of human factors/ergonomics and make use of the discipline's person-centred models of sociotechnical systems. This paper first reviews one of the most widely used healthcare human factors systems models, the Systems Engineering Initiative for Patient Safety (SEIPS) model, and then introduces an extended model, 'SEIPS 2.0'. SEIPS 2.0 incorporates three novel concepts into the original model: configuration, engagement and adaptation. The concept of configuration highlights the dynamic, hierarchical and interactive properties of sociotechnical systems, making it possible to depict how health-related performance is shaped at 'a moment in time'. Engagement conveys that various individuals and teams can perform health-related activities separately and collaboratively. Engaged individuals often include patients, family caregivers and other non-professionals. Adaptation is introduced as a feedback mechanism that explains how dynamic systems evolve in planned and unplanned ways. Key implications and future directions for human factors research in healthcare are discussed.

  1. Shape Distributions of Nonlinear Dynamical Systems for Video-Based Inference.

    PubMed

    Venkataraman, Vinay; Turaga, Pavan

    2016-12-01

    This paper presents a shape-theoretic framework for dynamical analysis of nonlinear dynamical systems which appear frequently in several video-based inference tasks. Traditional approaches to dynamical modeling have included linear and nonlinear methods with their respective drawbacks. A novel approach we propose is the use of descriptors of the shape of the dynamical attractor as a feature representation of nature of dynamics. The proposed framework has two main advantages over traditional approaches: a) representation of the dynamical system is derived directly from the observational data, without any inherent assumptions, and b) the proposed features show stability under different time-series lengths where traditional dynamical invariants fail. We illustrate our idea using nonlinear dynamical models such as Lorenz and Rossler systems, where our feature representations (shape distribution) support our hypothesis that the local shape of the reconstructed phase space can be used as a discriminative feature. Our experimental analyses on these models also indicate that the proposed framework show stability for different time-series lengths, which is useful when the available number of samples are small/variable. The specific applications of interest in this paper are: 1) activity recognition using motion capture and RGBD sensors, 2) activity quality assessment for applications in stroke rehabilitation, and 3) dynamical scene classification. We provide experimental validation through action and gesture recognition experiments on motion capture and Kinect datasets. In all these scenarios, we show experimental evidence of the favorable properties of the proposed representation.

  2. NMR and molecular dynamics study of the size, shape, and composition of reverse micelles in a cetyltrimethylammonium bromide (CTAB)/n-hexane/pentanol/water microemulsion.

    PubMed

    Mills, Amanda J; Wilkie, John; Britton, Melanie M

    2014-09-11

    The size, shape, and composition of reverse micelles (RMs) in a cetyltrimethylammonium bromide (CTAB)/pentanol/n-hexane/water microemulsion were investigated using pulsed gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) measurements and molecular modeling. PGSTE data were collected at observation times (Δ) of 10, 40, and 450 ms. At long observation times, CTAB and pentanol exhibited single diffusion coefficients. However, at short (Δ ≤ 40 ms) observation times both CTAB and pentanol exhibited slow and fast diffusion coefficients. These NMR data indicate that both CTAB and pentanol molecules reside in different environments within the microemulsion and that there is exchange between regions on the millisecond time scale. Molecular dynamic simulations of the CTAB RM, in a solvent box containing n-hexane and pentanol, produced an ellipsoid shaped RM. Using structural parameters from these simulations and the Stokes-Einstein relation, the structure factor and dimensions of the reverse micelle were determined. Analysis of the composition of the interphase also showed that there was a variation in the ratio of surfactant to cosurfactant molecules depending on the curvature of the interphase.

  3. Simultaneous Modeling of the Thermophysical and Dynamical Evolution of Saturn's Icy Satellites

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence V.; Castillo-Rogez, J. C.; Matson, D. L.; Sotin, C.; Lunine, J. I.

    2007-10-01

    This poster describes the methodology we use in modeling the geophysical and dynamical evolution of the icy satellites of Saturn. For each of the model's modules we identify the relevant physical, chemical, mineralogical, and material science principals that are used. Then we present the logic of the modeling approach and its implementation. The main modules handle thermal, geological, and dynamical processes. Key parameters such as temperature, thermal conductivity, rigidity, viscosity, Young's modulus, dynamic Love number k2, and frequency-dependent dissipation factor Q(ω) are transmitted between the modules in the course of calculating an evolutionary sequence. Important initial conditions include volatile and nonvolatile compositions, formation time, rotation period and shape, orbital eccentricity and semimajor axis, and temperature and porosity profiles. The thermal module treats the thermal effects of accretion, melting of ice, differentiation and tidal dissipation. Heat transfer is by conduction only because in the cases thus far studied the criterion for convection is not met. The geological module handles the evolution of porosity, shape, and lithospheric strength. The dynamical module calculates despinning and orbital evolution. Chief outputs include the orbital evolution, the interior temperatures as a function of time and depth, and other parameters of interest such as k2, and Q(ω) as a function of time. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  4. Epigenetic Regulation of Myeloid Cells

    PubMed Central

    IVASHKIV, LIONEL B.; PARK, SUNG HO

    2017-01-01

    Epigenetic regulation in myeloid cells is crucial for cell differentiation and activation in response to developmental and environmental cues. Epigenetic control involves posttranslational modification of DNA or chromatin, and is also coupled to upstream signaling pathways and transcription factors. In this review, we summarize key epigenetic events and how dynamics in the epigenetic landscape of myeloid cells shape the development, immune activation, and innate immune memory. PMID:27337441

  5. Dynamic laser beam shaping for material processing using hybrid holograms

    NASA Astrophysics Data System (ADS)

    Liu, Dun; Wang, Yutao; Zhai, Zhongsheng; Fang, Zheng; Tao, Qing; Perrie, Walter; Edwarson, Stuart P.; Dearden, Geoff

    2018-06-01

    A high quality, dynamic laser beam shaping method is demonstrated by displaying a series of hybrid holograms onto a spatial light modulator (SLM), while each one of the holograms consists of a binary grating and a geometric mask. A diffraction effect around the shaped beam has been significantly reduced. Beam profiles of arbitrary shape, such as square, ring, triangle, pentagon and hexagon, can be conveniently obtained by loading the corresponding holograms on the SLM. The shaped beam can be reconstructed in the range of 0.5 mm at the image plane. Ablation on a polished stainless steel sample at the image plane are consistent with the beam shape at the diffraction near-field. The ±1st order and higher order beams can be completely removed when the grating period is smaller than 160 μm. The local energy ratio of the shaped beam observed by the CCD camera is up to 77.67%. Dynamic processing at 25 Hz using different shapes has also been achieved.

  6. Casting Control of Floating-films into Ribbon-shape Structure by modified Dynamic FTM

    NASA Astrophysics Data System (ADS)

    Tripathi, A.; Pandey, M.; Nagamatsu, S.; Pandey, S. S.; Hayase, S.; Takashima, W.

    2017-11-01

    We have developed a new method to obtain Ribbon-shaped floating films via dynamic casting of floating-film and transfer method (dynamic-FTM). Dynamic-FTM is a unique method to prepare oriented thin-film of conjugated polymers (CPs) which is quick and easy. This method has several advantages as compared to the other conventional casting procedure to prepare oriented CP films. In the conventional dynamic FTM appearance of large scale circular orientation poses difficulty not only for practical applications but also hinders the detailed analysis of the orientation mechanism. In this present work, pros and cons of this newly proposed ribbon-shaped floating-film have been discussed in detail from those of the conventional floating-film prepared by dynamic-FTM.

  7. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho-ROCK-myosin II signaling pathway to ensure formation of a basal constriction.

    PubMed

    Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie; Hassel, Monika

    2017-07-01

    Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto- and endodermal epithelia is unknown. Histological sections and staining of F-actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F-actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Our data suggest an essential role of FGFR and a Rho-ROCK-myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502-516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  8. Minimizing structural vibrations with Input Shaping (TM)

    NASA Technical Reports Server (NTRS)

    Singhose, Bill; Singer, Neil

    1995-01-01

    A new method for commanding machines to move with increased dynamic performance was developed. This method is an enhanced version of input shaping, a patented vibration suppression algorithm. This technique intercepts a command input to a system command that moves the mechanical system with increased performance and reduced residual vibration. This document describes many advanced methods for generating highly optimized shaping sequences which are tuned to particular systems. The shaping sequence is important because it determines the trade off between move/settle time of the system and the insensitivity of the input shaping algorithm to variations or uncertainties in the machine which can be controlled. For example, a system with a 5 Hz resonance that takes 1 second to settle can be improved to settle instantaneously using a 0.2 shaping sequence (thus improving settle time by a factor of 5). This system could vary by plus or minus 15% in its natural frequency and still have no apparent vibration. However, the same system shaped with a 0.3 second shaping sequence could tolerate plus or minus 40% or more variation in natural frequency. This document describes how to generate sequences that maximize performance, sequences that maximize insensitivity, and sequences that trade off between the two. Several software tools are documented and included.

  9. A Direct, Quantitative Connection between Molecular Dynamics Simulations and Vibrational Probe Line Shapes.

    PubMed

    Xu, Rosalind J; Blasiak, Bartosz; Cho, Minhaeng; Layfield, Joshua P; Londergan, Casey H

    2018-05-17

    A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the "buried" probe site. This methodology should be widely applicable to vibrational probes in many environments.

  10. Quantum simulation of ultrafast dynamics using trapped ultracold atoms.

    PubMed

    Senaratne, Ruwan; Rajagopal, Shankari V; Shimasaki, Toshihiko; Dotti, Peter E; Fujiwara, Kurt M; Singh, Kevin; Geiger, Zachary A; Weld, David M

    2018-05-25

    Ultrafast electronic dynamics are typically studied using pulsed lasers. Here we demonstrate a complementary experimental approach: quantum simulation of ultrafast dynamics using trapped ultracold atoms. Counter-intuitively, this technique emulates some of the fastest processes in atomic physics with some of the slowest, leading to a temporal magnification factor of up to 12 orders of magnitude. In these experiments, time-varying forces on neutral atoms in the ground state of a tunable optical trap emulate the electric fields of a pulsed laser acting on bound charged particles. We demonstrate the correspondence with ultrafast science by a sequence of experiments: nonlinear spectroscopy of a many-body bound state, control of the excitation spectrum by potential shaping, observation of sub-cycle unbinding dynamics during strong few-cycle pulses, and direct measurement of carrier-envelope phase dependence of the response to an ultrafast-equivalent pulse. These results establish cold-atom quantum simulation as a complementary tool for studying ultrafast dynamics.

  11. Superfluidity in Strongly Interacting Fermi Systems with Applications to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Khodel, Vladimir

    The rotational dynamics and cooling history of neutron stars is influenced by the superfluid properties of nucleonic matter. In this thesis a novel separation technique is applied to the analysis of the gap equation for neutron matter. It is shown that the problem can be recast into two tasks: solving a simple system of linear integral equations for the shape functions of various components of the gap function and solving a system of non-linear algebraic equations for their scale factors. Important simplifications result from the fact that the ratio of the gap amplitude to the Fermi energy provides a small parameter in this problem. The relationship between the analytic structure of the shape functions and the density interval for the existence of superfluid gap is discussed. It is shown that in 1S0 channel the position of the first zero of the shape function gives an estimate of the upper critical density. The relation between the resonant behavior of the two-neutron interaction in this channel and the density dependence of the gap is established. The behavior of the gap in the limits of low and high densities is analyzed. Various approaches to calculation of the scale factors are considered: model cases, angular averaging, and perturbation theory. An optimization-based approach is proposed. The shape functions and scale factors for Argonne υ14 and υ18 potentials are determined in singlet and triplet channels. Dependence of the solution on the value of effective mass and medium polarization is studied.

  12. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain

    PubMed Central

    de la Torre-Ubieta, Luis; Bonni, Azad

    2012-01-01

    The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems. PMID:21982366

  13. The Distinct Character of a Capital? From Formality to Regularity of Our Ancient Capitals

    NASA Astrophysics Data System (ADS)

    Kelly, T.

    2018-04-01

    Many cities were shaped by dynamics political and commercial factors and man-made layers whereas other capitals have been modeled spontaneously by natural influence, London is great sample of this approach and was described as a natural city planned over decades by many hands with great appreciation to natural terrain. Contrary mode is obvious in China where several factors behind the distinct identity of Chinese architecture and urban planning. Among those influences are the Metaphysics Philosophies or Emperor guidance who encouraged uniformity in many aspects in China including city planning. The aim of this paper is to highlight the impact of various forces and mankind dogmas in shaping up a unique character of famous capitals. Hence London and Beijing are the two contradictory case studies subject to deep analysis in parallel with other theories such as Yin - Yan and Fengs Shui principles, to examine their impacts on urban planning in China.

  14. Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gessner, Manuel; Schlawin, Frank; Buchleitner, Andreas

    2015-06-07

    We devise a phase-coherent three-pulse protocol to probe the polariton dynamics in a trapped-ion quantum simulation. In contrast to conventional nonlinear signals, the presented scheme does not change the number of excitations in the system, allowing for the investigation of the dynamics within an N-excitation manifold. In the particular case of a filling factor one (N excitations in an N-ion chain), the proposed interaction induces coherent transitions between a delocalized phonon superfluid and a localized atomic insulator phase. Numerical simulations of a two-ion chain demonstrate that the resulting two-dimensional spectra allow for the unambiguous identification of the distinct phases, andmore » the two-dimensional line shapes efficiently characterize the relevant decoherence mechanism.« less

  15. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way to Reversibly Concentrate Functionalized Nanoparticles

    PubMed Central

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-01-01

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercapto-benzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na+, K+, tetramethylamonium cation TMA+, trisamonium cation TRS+, Cl−, and OH−). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of non-spherical composite ions such as TRS+ in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles. PMID:26581232

  16. Aspheric Solute Ions Modulate Gold Nanoparticle Interactions in an Aqueous Solution: An Optimal Way To Reversibly Concentrate Functionalized Nanoparticles.

    PubMed

    Villarreal, Oscar D; Chen, Liao Y; Whetten, Robert L; Demeler, Borries

    2015-12-17

    Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.

  17. The relation between the mass-to-light ratio and the relaxation state of globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; Sills, A.; van de Ven, G.; Sippel, A. C.

    2017-08-01

    The internal dynamics of globular clusters (GCs) is strongly affected by two-body interactions that bring the systems to a state of partial energy equipartition. Using a set of Monte Carlo clusters simulations, we investigate the role of the onset of energy equipartition in shaping the mass-to-light ratio (M/L) in GCs. Our simulations show that the M/L profiles cannot be considered constant and their specific shape strongly depends on the dynamical age of the clusters. Dynamically younger clusters display a central peak up to M/L ≃ 25 M⊙/L⊙ caused by the retention of dark remnants; this peak flattens out for dynamically older clusters. Moreover, we find that also the global values of M/L correlate with the dynamical state of a cluster quantified as either the number of relaxation times a system has experienced nrel or the equipartition parameter meq: clusters closer to full equipartition (higher nrel or lower meq) display a lower M/L. We show that the decrease of M/L is primarily driven by the dynamical ejection of dark remnants, rather than by the escape of low-mass stars. The predictions of our models are in good agreement with observations of GCs in the Milky Way and M31, indicating that differences in relaxation state alone can explain variations of M/L up to a factor of ≃3. Our characterization of the M/L as a function of relaxation state is of primary relevance for the application and interpretation of dynamical models.

  18. Phytoplankton dynamics of a subtropical reservoir controlled by the complex interplay among hydrological, abiotic, and biotic variables.

    PubMed

    Kuo, Yi-Ming; Wu, Jiunn-Tzong

    2016-12-01

    This study was conducted to identify the key factors related to the spatiotemporal variations in phytoplankton abundance in a subtropical reservoir from 2006 to 2010 and to assist in developing strategies for water quality management. Dynamic factor analysis (DFA), a dimension-reduction technique, was used to identify interactions between explanatory variables (i.e., environmental variables) and abundance (biovolume) of predominant phytoplankton classes. The optimal DFA model significantly described the dynamic changes in abundances of predominant phytoplankton groups (including dinoflagellates, diatoms, and green algae) at five monitoring sites. Water temperature, electrical conductivity, water level, nutrients (total phosphorus, NO 3 -N, and NH 3 -N), macro-zooplankton, and zooplankton were the key factors affecting the dynamics of aforementioned phytoplankton. Therefore, transformations of nutrients and reactions between water quality variables and aforementioned processes altered by hydrological conditions may also control the abundance dynamics of phytoplankton, which may represent common trends in the DFA model. The meandering shape of Shihmen Reservoir and its surrounding rivers caused a complex interplay between hydrological conditions and abiotic and biotic variables, resulting in phytoplankton abundance that could not be estimated using certain variables. Additional water quality and hydrological variables at surrounding rivers and monitoring plans should be executed a few days before and after reservoir operations and heavy storm, which would assist in developing site-specific preventive strategies to control phytoplankton abundance.

  19. LGBT Family Lawyers and Same-Sex Marriage Recognition: How Legal Change Shapes Professional Identity and Practice.

    PubMed

    Baumle, Amanda K

    2018-01-10

    Lawyers who practice family law for LGBT clients are key players in the tenuous and evolving legal environment surrounding same-sex marriage recognition. Building on prior research on factors shaping the professional identities of lawyers generally, and activist lawyers specifically, I examine how practice within a rapidly changing, patchwork legal environment shapes professional identity for this group of lawyers. I draw on interviews with 21 LGBT family lawyers to analyze how the unique features of LGBT family law shape their professional identities and practice, as well as their predictions about the development of the practice in a post-Obergefell world. Findings reveal that the professional identities and practice of LGBT family lawyers are shaped by uncertainty, characteristics of activist lawyering, community membership, and community service. Individual motivations and institutional forces work to generate a professional identity that is resilient and dynamic, characterized by skepticism and distrust coupled with flexibility and creativity. These features are likely to play a role in the evolution of the LGBT family lawyer professional identity post-marriage equality.

  20. A review of malaria transmission dynamics in forest ecosystems

    PubMed Central

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  1. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics

    PubMed Central

    Le Garrec, Jean-François; Ivanovitch, Kenzo D; Raphaël, Etienne; Bangham, J Andrew; Torres, Miguel; Coen, Enrico; Mohun, Timothy J

    2017-01-01

    How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects. PMID:29179813

  2. The low-degree shape of Mercury

    NASA Astrophysics Data System (ADS)

    Perry, Mark E.; Neumann, Gregory A.; Phillips, Roger J.; Barnouin, Olivier S.; Ernst, Carolyn M.; Kahan, Daniel S.; Solomon, Sean C.; Zuber, Maria T.; Smith, David E.; Hauck, Steven A.; Peale, Stanton J.; Margot, Jean-Luc; Mazarico, Erwan; Johnson, Catherine L.; Gaskell, Robert W.; Roberts, James H.; McNutt, Ralph L.; Oberst, Juergen

    2015-09-01

    The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Elevation measurements of the northern hemisphere acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, combined with 378 occultations of radio signals from the spacecraft in the planet's southern hemisphere, reveal the low-degree shape of Mercury. Mercury's mean radius is 2439.36 ± 0.02 km, and there is a 0.14 km offset between the planet's centers of mass and figure. Mercury is oblate, with a polar radius 1.65 km less than the mean equatorial radius. The difference between the semimajor and semiminor equatorial axes is 1.25 km, with the long axis oriented 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is also oblate and elongated, but it deviates from a sphere by a factor of 10 less than Mercury's shape, implying compensation of elevation variations on a global scale.

  3. Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Joung, Tae-Hwan; Sammut, Karl; He, Fangpo; Lee, Seung-Keon

    2012-03-01

    Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys™. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters

  4. The study of the dynamics of erythrocytes under the influence of an external electric field

    NASA Astrophysics Data System (ADS)

    Mamaeva, Sargylana N.; Maksimov, Georgy V.; Antonov, Stepan R.

    2017-11-01

    A mathematical model is considered for the determination of the surface charge of an erythrocyte with its shape approximated by a surface of revolution of the second order, and the investigation of the dynamics of erythrocytes under the influence of an external electric field. In the first part of this work, the electrical surface charge of the erythrocyte of the patient was calculated with the assumption that the change in the shape and size of the red blood cells leads to stabilization of the electric field, providing a normal electrostatic repulsion. In the second part of the work, the research results of dynamics of changes in the morphology of erythrocytes under the influence of an external electric field depending on the values of their surface charge and resistance of blood plasma is presented. In the course of the work, the dependence of the surface charge of red blood cells from their shape and size is presented. The determination of the relationship between the value of the charge field and the surface of erythrocytes in norm and in pathology is shown. The dependence of the velocity of the erythrocytes on the characteristics of the external electric field, surface charge of the erythrocyte and properties of the medium is obtained. The results of this study can be applied indirectly to diagnose diseases and to develop recommendations for experimental studies of hemodynamics under the influence of various external physical factors.

  5. Experimental study of effects of forebody geometry on high angle of attack static and dynamic stability and control

    NASA Technical Reports Server (NTRS)

    Brandon, J. M.; Murri, D. G.; Nguyen, L. T.

    1986-01-01

    A series of low-speed wind tunnel tests on a generic airplane model with a cylindrical fuselage were made to investigate the effects of forebody shape and fitness ratio, and fuselage/wing proximity on static and dynamic lateral/directional stability. In addition, some preliminary testing to determine the effectiveness of deflectable forebody strakes for high angle of attack yaw control was conducted. During the stability investigation, 11 forebodies were tested including three different cross-sectional shapes with fineness ratios of 2, 3, and 4. In addition, the wing was tested at two longitudinal positions to provide a substantial variation in forebody/wing proximity. Conventional force tests were conducted to determine static stability characteristics, and single-degree-of-freedom free-to-roll tests were conducted to study the wing rock characteristics of the model with the various forebodies. Flow visualization data were obtained to aid in the analysis of the complex flow phenomena involved. The results show that the forebody cross-sectional shape and fineness ratio and forebody/wing proximity can strongly affect both static and dynamic (roll) stability at high angles of attack. These characteristics result from the impact of these factors on forebody vortex development, the behavior of the vortices in sideslip, and their interaction with the wing flow field. Preliminary results from the deflectable strake investigation indicated that forebody flow control using this concept can provide very large yaw control moments at stall and post-stall angles of attack.

  6. Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Gupta, Anupam K.; Zhu, Hongxiao; Pannala, Mittu; Gillani, Uzair S.; Fu, Yanqing; Caspers, Philip; Buck, John R.

    2017-04-01

    Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20 %), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.

  7. Dynamic Substrate for the Physical Encoding of Sensory Information in Bat Biosonar.

    PubMed

    Müller, Rolf; Gupta, Anupam K; Zhu, Hongxiao; Pannala, Mittu; Gillani, Uzair S; Fu, Yanqing; Caspers, Philip; Buck, John R

    2017-04-14

    Horseshoe bats have dynamic biosonar systems with interfaces for ultrasonic emission (reception) that change shape while diffracting the outgoing (incoming) sound waves. An information-theoretic analysis based on numerical and physical prototypes shows that these shape changes add sensory information (mutual information between distant shape conformations <20%), increase the number of resolvable directions of sound incidence, and improve the accuracy of direction finding. These results demonstrate that horseshoe bats have a highly effective substrate for dynamic encoding of sensory information.

  8. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    PubMed

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.

  9. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    PubMed Central

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  10. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics.

    PubMed

    Goswami, Anjali; Binder, Wendy J; Meachen, Julie; O'Keefe, F Robin

    2015-04-21

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.

  11. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics

    PubMed Central

    Goswami, Anjali; Binder, Wendy J.; Meachen, Julie; O’Keefe, F. Robin

    2015-01-01

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change. PMID:25901310

  12. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.

    PubMed

    Liu, Duo-Neng; Hou, Zhong-Xi; Guo, Zheng; Yang, Xi-Xiang; Gao, Xian-Zhong

    2017-01-30

    Albatrosses can make use of the dynamic soaring technique extracting energy from the wind field to achieve large-scale movement without a flap, which stimulates interest in effortless flight with small unmanned aerial vehicles (UAVs). However, mechanisms of energy harvesting in terms of the energy transfer from the wind to the flyer (albatross or UAV) are still indeterminate and controversial when using different reference frames in previous studies. In this paper, the classical four-phase Rayleigh cycle, includes sequentially upwind climb, downwind turn, downwind dive and upwind turn, is introduced in analyses of energy gain with the albatross's equation of motions and the simulated trajectory in dynamic soaring. Analytical and numerical results indicate that the energy gain in the air-relative frame mostly originates from large wind gradients at lower part of the climb and dive, while the energy gain in the inertial frame comes from the lift vector inclined to the wind speed direction during the climb, dive and downwind turn at higher altitude. These two energy-gain mechanisms are not equivalent in terms of energy sources and reference frames but have to be simultaneously satisfied in terms of the energy-neutral dynamic soaring cycle. For each reference frame, energy-loss phases are necessary to connect energy-gain ones. Based on these four essential phases in dynamic soaring and the albatrosses' flight trajectory, different dynamic soaring patterns are schematically depicted and corresponding optimal trajectories are computed. The optimal dynamic soaring trajectories are classified into two closed patterns including 'O' shape and '8' shape, and four travelling patterns including 'Ω' shape, 'α' shape, 'C' shape and 'S' shape. The correlation among these patterns are analysed and discussed. The completeness of the classification for different patterns is confirmed by listing and summarising dynamic soaring trajectories shown in studies over the past decades.

  13. Deformation and dynamics of red blood cells in flow through cylindrical microchannels.

    PubMed

    Fedosov, Dmitry A; Peltomäki, Matti; Gompper, Gerhard

    2014-06-28

    The motion of red blood cells (RBCs) in microcirculation plays an important role in blood flow resistance and in the cell partitioning within a microvascular network. Different shapes and dynamics of RBCs in microvessels have been previously observed experimentally including the parachute and slipper shapes. We employ mesoscale hydrodynamic simulations to predict the phase diagram of shapes and dynamics of RBCs in cylindrical microchannels, which serve as idealized microvessels, for a wide range of channel confinements and flow rates. A rich dynamical behavior is found, with snaking and tumbling discocytes, slippers performing a swinging motion, and stationary parachutes. We discuss the effects of different RBC states on the flow resistance, and the influence of RBC properties, characterized by the Föppl-von Kármán number, on the shape diagram. The simulations are performed using the same viscosity for both external and internal fluids surrounding a RBC; however, we discuss how the viscosity contrast would affect the shape diagram.

  14. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.

    PubMed

    Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J

    2012-10-01

    Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.

  15. Post-hit dynamics of price limit hits in the Chinese stock markets

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Wang, Yue; Li, Ming-Xia

    2017-01-01

    Price limit trading rules are useful to cool off traders short-term trading mania on individual stocks. The price dynamics approaching the limit boards are known as the magnet effect. However, the price dynamics after opening price limit hits are not well investigated. Here, we provide a detailed analysis on the price dynamics after the hits of up-limit or down-limit is open based on all A-share stocks traded in the Chinese stock markets. A "W" shape is found in the expected return, which reveals high probability of a continuous price limit hit on the following day. We also find that price dynamics after opening limit hits are dependent on the market trends. The time span of continuously hitting the price limit is found to an influence factor of the expected profit after the limit hit is open. Our analysis provides a better understanding of the price dynamics around the limit boards and contributes potential practical values for investors.

  16. Characteristics of a dynamic holographic sensor for shape control of a large reflector

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Cox, David E.

    1991-01-01

    Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.

  17. Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Rotors

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.

    1981-01-01

    The dynamic response characteristics of the vertical axis wind turbine (VAWT) rotor are important factors governing the safety and fatigue life of VAWT systems. The principal problems are the determination of critical rotor speeds (resonances) and the assessment of forced vibration response amplitudes. The solution to these problems is complicated by centrifugal and Coriolis effects which can have substantial influence on rotor resonant frequencies and mode shapes. The primary tools now in use for rotor analysis are described and discussed. These tools include a lumped spring mass model (VAWTDYN) and also finite-element based approaches. The accuracy and completeness of current capabilities are also discussed.

  18. Exploring Context and the Factors Shaping Team-Based Primary Healthcare Policies in Three Canadian Provinces: A Comparative Analysis.

    PubMed

    Misfeldt, Renée; Suter, Esther; Mallinson, Sara; Boakye, Omenaa; Wong, Sabrina; Nasmith, Louise

    2017-08-01

    This paper discusses findings from a high-level scan of the contextual factors and actors that influenced policies on team-based primary healthcare in three Canadian provinces: British Columbia, Alberta and Saskatchewan. The team searched diverse sources (e.g., news reports, press releases, discussion papers) for contextual information relevant to primary healthcare teams. We also conducted qualitative interviews with key health system informants from the three provinces. Data from documents and interviews were analyzed qualitatively using thematic analysis. We then wrote narrative summaries highlighting pivotal policy and local system events and the influence of actors and context. Our overall findings highlight the value of reviewing the context, relationships and power dynamics, which come together and create "policy windows" at different points in time. We observed physician-centric policy processes with some recent moves to rebalance power and be inclusive of other actors and perspectives. The context review also highlighted the significant influence of changes in political leadership and prioritization in driving policies on team-based care. While this existed in different degrees in the three provinces, the push and pull of political and professional power dynamics shaped Canadian provincial policies governing team-based care. If we are to move team-based primary healthcare forward in Canada, the provinces need to review the external factors and the complex set of relationships and trade-offs that underscore the policy process. Copyright © 2017 Longwoods Publishing.

  19. How did the swiss cheese plant get its holes?

    PubMed

    Muir, Christopher D

    2013-02-01

    Adult leaf fenestration in "Swiss cheese" plants (Monstera Adans.) is an unusual leaf shape trait lacking a convincing evolutionary explanation. Monstera are secondary hemiepiphytes that inhabit the understory of tropical rainforests, where photosynthesis from sunflecks often makes up a large proportion of daily carbon assimilation. Here I present a simple model of leaf-level photosynthesis and whole-plant canopy dynamics in a stochastic light environment. The model demonstrates that leaf fenestration can reduce the variance in plant growth and thereby increase geometric mean fitness. This growth-variance hypothesis also suggests explanations for conspicuous ontogenetic changes in leaf morphology (heteroblasty) in Monstera, as well as the absence of leaf fenestration in co-occurring juvenile tree species. The model provides a testable hypothesis of the adaptive significance of a unique leaf shape and illustrates how variance in growth rate could be an important factor shaping plant morphology and physiology.

  20. A shape dynamical approach to holographic renormalization

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique; Gryb, Sean; Koslowski, Tim; Mercati, Flavio; Smolin, Lee

    2015-01-01

    We provide a bottom-up argument to derive some known results from holographic renormalization using the classical bulk-bulk equivalence of General Relativity and Shape Dynamics, a theory with spatial conformal (Weyl) invariance. The purpose of this paper is twofold: (1) to advertise the simple classical mechanism, trading off gauge symmetries, that underlies the bulk-bulk equivalence of General Relativity and Shape Dynamics to readers interested in dualities of the type of AdS/conformal field theory (CFT); and (2) to highlight that this mechanism can be used to explain certain results of holographic renormalization, providing an alternative to the AdS/CFT conjecture for these cases. To make contact with the usual semiclassical AdS/CFT correspondence, we provide, in addition, a heuristic argument that makes it plausible that the classical equivalence between General Relativity and Shape Dynamics turns into a duality between radial evolution in gravity and the renormalization group flow of a CFT. We believe that Shape Dynamics provides a new perspective on gravity by giving conformal structure a primary role within the theory. It is hoped that this work provides the first steps toward understanding what this new perspective may be able to teach us about holographic dualities.

  1. Vector-virus interactions and transmission dynamics of West Nile virus.

    PubMed

    Ciota, Alexander T; Kramer, Laura D

    2013-12-09

    West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission.

  2. Vector-Virus Interactions and Transmission Dynamics of West Nile Virus

    PubMed Central

    Ciota, Alexander T.; Kramer, Laura D.

    2013-01-01

    West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission. PMID:24351794

  3. Gendered Differences in the Perceived Risks and Benefits of Oral PrEP Among HIV Serodiscordant Couples in Kenya

    PubMed Central

    Carroll, Jennifer J.; Ngure, Kenneth; Heffron, Renee; Curran, Kathryn; Mugo, Nelly R.

    2016-01-01

    Pre-exposure prophylaxis (PrEP) is effective for preventing HIV among HIV serodiscordant heterosexual couples. Gender roles may influence perceived personal and social risks related to HIV prevention behaviors and may affect use of PrEP. In this study, interviews and focus groups were conducted with 68 individuals from 34 mutually disclosed serodiscordant heterosexual partnerships in Thika, Kenya. Socio-cultural factors that affect adherence to PrEP were explored using grounded analysis. Three factors were identified, which shape perceptions of PrEP: gendered power dynamics and control over decision-making in the household; conflicts between risk reduction strategies and male sexual desire; culture bound definitions of women’s work. Adherence to PrEP in the Partners PrEP Study was high; however, participants articulated conflicting interests related to PrEP in connection with traditional gender roles. The successful delivery of PrEP will require understanding of key social factors, particularly related to gender and dyadic dynamics around HIV serostatus. PMID:26754017

  4. Innovation implementation in the public sector: an integration of institutional and collective dynamics.

    PubMed

    Choi, Jin Nam; Chang, Jae Yoon

    2009-01-01

    The present study integrates institutional factors and employee-based collective processes as predictors of 2 key implementation outcomes: implementation effectiveness and innovation effectiveness (Klein, Conn, & Sorra, 2001). Specifically, the authors proposed that institutional factors shape employees' collective implementation efficacy and innovation acceptance. The authors further hypothesized that these employee-based collective processes mediate the effects of institutional factors on implementation outcomes. This integrative framework was examined in the context of 47 agencies and ministries of the Korean Government that were implementing a process innovation called E-Government. Three-wave longitudinal data were collected from 60 external experts and 1,732 government employees. The results reveal the importance of management support for collective implementation efficacy, which affected employees' collective acceptance of the innovation. As hypothesized, these collective employee dynamics mediated the effects of institutional enablers on successful implementation as well as the amount of long-term benefit that accrued to the agencies and ministries. (PsycINFO Database Record (c) 2009 APA, all rights reserved).

  5. Telepresence master glove controller for dexterous robotic end-effectors

    NASA Technical Reports Server (NTRS)

    Fisher, Scott S.

    1987-01-01

    This paper describes recent research in the Aerospace Human Factors Research Division at NASA's Ames Research Center to develop a glove-like, control and data-recording device (DataGlove) that records and transmits to a host computer in real time, and at appropriate resolution, a numeric data-record of a user's hand/finger shape and dynamics. System configuration and performance specifications are detailed, and current research is discussed investigating its applications in operator control of dexterous robotic end-effectors and for use as a human factors research tool in evaluation of operator hand function requirements and performance in other specialized task environments.

  6. The Dynamics of Germinal Centre Selection as Measured by Graph-Theoretical Analysis of Mutational Lineage Trees

    PubMed Central

    Dunn-Walters, Deborah K.; Belelovsky, Alex; Edelman, Hanna; Banerjee, Monica; Mehr, Ramit

    2002-01-01

    We have developed a rigorous graph-theoretical algorithm for quantifying the shape properties of mutational lineage trees. We show that information about the dynamics of hypermutation and antigen-driven clonal selection during the humoral immune response is contained in the shape of mutational lineage trees deduced from the responding clones. Age and tissue related differences in the selection process can be studied using this method. Thus, tree shape analysis can be used as a means of elucidating humoral immune response dynamics in various situations. PMID:15144020

  7. Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping

    2018-05-01

    Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.

  8. Gradient elution behavior of proteins in hydrophobic interaction chromatography with U-shaped retention factor curves.

    PubMed

    Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio

    2018-04-27

    Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.

    PubMed

    Moroni, L; de Wijn, J R; van Blitterswijk, C A

    2006-03-01

    One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.

  10. Extracting information from S-curves of language change

    PubMed Central

    Ghanbarnejad, Fakhteh; Gerlach, Martin; Miotto, José M.; Altmann, Eduardo G.

    2014-01-01

    It is well accepted that adoption of innovations are described by S-curves (slow start, accelerating period and slow end). In this paper, we analyse how much information on the dynamics of innovation spreading can be obtained from a quantitative description of S-curves. We focus on the adoption of linguistic innovations for which detailed databases of written texts from the last 200 years allow for an unprecedented statistical precision. Combining data analysis with simulations of simple models (e.g. the Bass dynamics on complex networks), we identify signatures of endogenous and exogenous factors in the S-curves of adoption. We propose a measure to quantify the strength of these factors and three different methods to estimate it from S-curves. We obtain cases in which the exogenous factors are dominant (in the adoption of German orthographic reforms and of one irregular verb) and cases in which endogenous factors are dominant (in the adoption of conventions for romanization of Russian names and in the regularization of most studied verbs). These results show that the shape of S-curve is not universal and contains information on the adoption mechanism. PMID:25339692

  11. SEIPS 2.0: A human factors framework for studying and improving the work of healthcare professionals and patients

    PubMed Central

    Holden, Richard J.; Carayon, Pascale; Gurses, Ayse P.; Hoonakker, Peter; Hundt, Ann Schoofs; Ozok, A. Ant; Rivera-Rodriguez, A. Joy

    2013-01-01

    Healthcare practitioners, patient safety leaders, educators, and researchers increasingly recognize the value of human factors/ergonomics and make use of the discipline’s person-centered models of sociotechnical systems. This paper first reviews one of the most widely used healthcare human factors systems models, the Systems Engineering Initiative for Patient Safety (SEIPS) model, and then introduces an extended model, “SEIPS 2.0.” SEIPS 2.0 incorporates three novel concepts into the original model: configuration, engagement, and adaptation. The concept of configuration highlights the dynamic, hierarchical, and interactive properties of sociotechnical systems, making it possible to depict how health-related performance is shaped at “a moment in time.” Engagement conveys that various individuals and teams can perform health-related activities separately and collaboratively. Engaged individuals often include patients, family caregivers, and other non-professionals. Adaptation is introduced as a feedback mechanism that explains how dynamic systems evolve in planned and unplanned ways. Key implications and future directions for human factors research in healthcare are discussed. PMID:24088063

  12. Socioeconomic Status and the Increased Prevalence of Autism in California

    PubMed Central

    King, Marissa D.; Bearman, Peter S.

    2011-01-01

    The prevalence of autism has increased precipitously—roughly 10-fold in the past 40 years—yet no one knows exactly what caused this dramatic rise. Using a large and representative dataset that spans the California birth cohorts from 1992 through 2000, we examine individual and community resources associated with the likelihood of an autism diagnosis over time. This allows us to identify key social factors that have contributed to increased autism prevalence. While individual-level factors, such as birth weight and parental education, have had a fairly constant effect on likelihood of diagnosis over time, we find that community-level resources drive increased prevalence. This study suggests that neighborhoods dynamically interact with the people living in them in different ways at different times to shape health outcomes. By treating neighborhoods as dynamic, we can better understand the changing socioeconomic gradient of autism and the increase in prevalence. PMID:21547238

  13. The Influence of Shaping Air Pressure of Pneumatic Spray Gun

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo

    2018-02-01

    The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.

  14. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria.

    PubMed

    Domínguez-Escobar, Julia; Chastanet, Arnaud; Crevenna, Alvaro H; Fromion, Vincent; Wedlich-Söldner, Roland; Carballido-López, Rut

    2011-07-08

    The peptidoglycan cell wall and the actin-like MreB cytoskeleton are major determinants of cell shape in rod-shaped bacteria. The prevailing model postulates that helical, membrane-associated MreB filaments organize elongation-specific peptidoglycan-synthesizing complexes along sidewalls. We used total internal reflection fluorescence microscopy to visualize the dynamic relation between MreB isoforms and cell wall synthesis in live Bacillus subtilis cells. During exponential growth, MreB proteins did not form helical structures. Instead, together with other morphogenetic factors, they assembled into discrete patches that moved processively along peripheral tracks perpendicular to the cell axis. Patch motility was largely powered by cell wall synthesis, and MreB polymers restricted diffusion of patch components in the membrane and oriented patch motion.

  15. Dynamics of satellites, asteroids, and rings

    NASA Technical Reports Server (NTRS)

    Dermott, Stanley F.

    1987-01-01

    Work is reported on: (1) the shapes and the internal structures of satellites; (2) the tidal heating of Miranda; (3) the dynamics of arc-like rings; and (4) the structure of the zodiacal cloud that was revealed by the Infrared Astronomy Satellite. Significant progress was made in determining the shape and internal structure of Mimas and in understanding the dynamical evolution of Miranda's orbit.

  16. The Importance of Patient-Specific Factors for Hepatic Drug Response and Toxicity

    PubMed Central

    Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Responses to drugs and pharmacological treatments differ considerably between individuals. Importantly, only 50%–75% of patients have been shown to react adequately to pharmacological interventions, whereas the others experience either a lack of efficacy or suffer from adverse events. The liver is of central importance in the metabolism of most drugs. Because of this exposed status, hepatotoxicity is amongst the most common adverse drug reactions and hepatic liabilities are the most prevalent reason for the termination of development programs of novel drug candidates. In recent years, more and more factors were unveiled that shape hepatic drug responses and thus underlie the observed inter-individual variability. In this review, we provide a comprehensive overview of different principle mechanisms of drug hepatotoxicity and illustrate how patient-specific factors, such as genetic, physiological and environmental factors, can shape drug responses. Furthermore, we highlight other parameters, such as concomitantly prescribed medications or liver diseases and how they modulate drug toxicity, pharmacokinetics and dynamics. Finally, we discuss recent progress in the field of in vitro toxicity models and evaluate their utility in reflecting patient-specific factors to study inter-individual differences in drug response and toxicity, as this understanding is necessary to pave the way for a patient-adjusted medicine. PMID:27754327

  17. HIV INFECTION AMONG FEMALE SEX WORKERS IN CONCENTRATED AND HIGH PREVALENCE EPIDEMICS: WHY A STRUCTURAL DETERMINANTS FRAMEWORK IS NEEDED

    PubMed Central

    Shannon, Kate; Goldenberg, Shira M.; Deering, Kathleen N.; Strathdee, Steffanie A.

    2014-01-01

    Purpose of review This article reviews the current state of the epidemiological literature on female sex work and HIV from the past 18 months. We offer a conceptual framework for structural HIV determinants and sex work that unpacks intersecting structural, interpersonal, and individual biological and behavioural factors. Recent findings Our review suggests that despite the heavy HIV burden among female sex workers (FSWs) globally, data on the structural determinants shaping HIV transmission dynamics have only begun to emerge. Emerging research suggests that factors operating at macrostructural (e.g., migration, stigma, criminalized laws), community organization (e.g., empowerment) and work environment levels (e.g., violence, policing, access to condoms HIV testing, HAART) act dynamically with interpersonal (e.g., dyad factors, sexual networks) and individual biological and behavioural factors to confer risks or protections for HIV transmission in female sex work. Summary Future research should be guided by a Structural HIV Determinants Framework to better elucidate the complex and iterative effects of structural determinants with interpersonal and individual biological and behavioural factors on HIV transmission pathways among FSWs, and meet critical gaps in optimal access to HIV prevention, treatment, and care for FSWs globally. PMID:24464089

  18. Shape Mode Analysis Exposes Movement Patterns in Biology: Flagella and Flatworms as Case Studies

    PubMed Central

    Werner, Steffen; Rink, Jochen C.; Riedel-Kruse, Ingmar H.; Friedrich, Benjamin M.

    2014-01-01

    We illustrate shape mode analysis as a simple, yet powerful technique to concisely describe complex biological shapes and their dynamics. We characterize undulatory bending waves of beating flagella and reconstruct a limit cycle of flagellar oscillations, paying particular attention to the periodicity of angular data. As a second example, we analyze non-convex boundary outlines of gliding flatworms, which allows us to expose stereotypic body postures that can be related to two different locomotion mechanisms. Further, shape mode analysis based on principal component analysis allows to discriminate different flatworm species, despite large motion-associated shape variability. Thus, complex shape dynamics is characterized by a small number of shape scores that change in time. We present this method using descriptive examples, explaining abstract mathematics in a graphic way. PMID:25426857

  19. Effect of Fractal Dimension on the Strain Behavior of Particulate Media

    NASA Astrophysics Data System (ADS)

    Altun, Selim; Sezer, Alper; Goktepe, A. Burak

    2016-12-01

    In this study, the influence of several fractal identifiers of granular materials on dynamic behavior of a flexible pavement structure as a particulate stratum is considered. Using experimental results and numerical methods as well, 15 different grain-shaped sands obtained from 5 different sources were analyzed as pavement base course materials. Image analyses were carried out by use of a stereomicroscope on 15 different samples to obtain quantitative particle shape information. Furthermore, triaxial compression tests were conducted to determine stress-strain and shear strength parameters of sands. Additionally, the dynamic response of the particulate media to standard traffic loads was computed using finite element modeling (FEM) technique. Using area-perimeter, line divider and box counting methods, over a hundred grains for each sand type were subjected to fractal analysis. Relationships among fractal dimension descriptors and dynamic strain levels were established for assessment of importance of shape descriptors of sands at various scales on the dynamic behavior. In this context, the advantage of fractal geometry concept to describe irregular and fractured shapes was used to characterize the sands used as base course materials. Results indicated that fractal identifiers can be preferred to analyze the effect of shape properties of sands on dynamic behavior of pavement base layers.

  20. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  1. Dynamics of droplet motion under electrowetting actuation.

    PubMed

    Annapragada, S Ravi; Dash, Susmita; Garimella, Suresh V; Murthy, Jayathi Y

    2011-07-05

    The static shape of droplets under electrowetting actuation is well understood. The steady-state shape of the droplet is obtained on the basis of the balance of surface tension and electrowetting forces, and the change in the apparent contact angle is well characterized by the Young-Lippmann equation. However, the transient droplet shape behavior when a voltage is suddenly applied across a droplet has received less attention. Additional dynamic frictional forces are at play during this transient process. We present a model to predict this transient behavior of the droplet shape under electrowetting actuation. The droplet shape is modeled using the volume of fluid method. The electrowetting and dynamic frictional forces are included as an effective dynamic contact angle through a force balance at the contact line. The model is used to predict the transient behavior of water droplets on smooth hydrophobic surfaces under electrowetting actuation. The predictions of the transient behavior of droplet shape and contact radius are in excellent agreement with our experimental measurements. The internal fluid motion is explained, and the droplet motion is shown to initiate from the contact line. An approximate mathematical model is also developed to understand the physics of the droplet motion and to describe the overall droplet motion and the contact line velocities. © 2011 American Chemical Society

  2. Experimental dynamic characterizations and modelling of disk vibrations for HDDs.

    PubMed

    Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua

    2008-01-01

    Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.

  3. Native and engineered sensors for Ca2+ and Zn2+: lessons from calmodulin and MTF1.

    PubMed

    Carpenter, Margaret C; Palmer, Amy E

    2017-05-09

    Ca 2+ and Zn 2+ dynamics have been identified as important drivers of physiological processes. In order for these dynamics to encode function, the cell must have sensors that transduce changes in metal concentration to specific downstream actions. Here we compare and contrast the native metal sensors: calmodulin (CaM), the quintessential Ca 2+ sensor and metal-responsive transcription factor 1 (MTF1), a candidate Zn 2+ sensor. While CaM recognizes and modulates the activity of hundreds of proteins through allosteric interactions, MTF1 recognizes a single DNA motif that is distributed throughout the genome regulating the transcription of many target genes. We examine how the different inorganic chemistries of these two metal ions may shape these different mechanisms transducing metal ion concentration into changing physiologic activity. In addition to native metal sensors, scientists have engineered sensors to spy on the dynamic changes of metals in cells. The inorganic chemistry of the metals shapes the possibilities in the design strategies of engineered sensors. We examine how different strategies to tune the affinities of engineered sensors mirror the strategies nature developed to sense both Ca 2+ and Zn 2+ in cells. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Revealing the arc dynamics in a gliding arc plasmatron: a better insight to improve CO2 conversion

    NASA Astrophysics Data System (ADS)

    Ramakers, Marleen; Medrano, Jose A.; Trenchev, Georgi; Gallucci, Fausto; Bogaerts, Annemie

    2017-12-01

    A gliding arc plasmatron (GAP) is very promising for CO2 conversion into value-added chemicals, but to further improve this important application, a better understanding of the arc behavior is indispensable. Therefore, we study here for the first time the dynamic arc behavior of the GAP by means of a high-speed camera, for different reactor configurations and in a wide range of operating conditions. This allows us to provide a complete image of the behavior of the gliding arc. More specifically, the arc body shape, diameter, movement and rotation speed are analyzed and discussed. Clearly, the arc movement and shape relies on a number of factors, such as gas turbulence, outlet diameter, electrode surface, gas contraction and buoyance force. Furthermore, we also compare the experimentally measured arc movement to a state-of-the-art 3D-plasma model, which predicts the plasma movement and rotation speed with very good accuracy, to gain further insight in the underlying mechanisms. Finally, we correlate the arc dynamics with the CO2 conversion and energy efficiency, at exactly the same conditions, to explain the effect of these parameters on the CO2 conversion process. This work is important for understanding and optimizing the GAP for CO2 conversion.

  5. Dominant modal decomposition method

    NASA Astrophysics Data System (ADS)

    Dombovari, Zoltan

    2017-03-01

    The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.

  6. Sliding down the U-shape? A dynamic panel investigation of the age-well-being relationship, focusing on young adults.

    PubMed

    Piper, Alan T

    2015-10-01

    Much of the work within economics attempting to understand the relationship between age and well-being has focused on the U-shape, whether it exists and, more recently, potential reasons for its existence. This paper focuses on one part of the lifecycle rather than the whole: young people. This focus offers a better understanding of the age-well-being relationship for young people, and helps with increasing general understanding regarding the U-shape itself. The empirical estimations employ both static and dynamic panel estimations, with the latter preferred for several reasons. The empirical results are in line with the U-shape, and the results from the dynamic analysis indicate that this result is a lifecycle effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The effect of progressive hypoxia on school structure and dynamics in Atlantic herring Clupea harengus.

    PubMed

    Domenici, Paolo; Ferrari, R Silvana; Steffensen, John F; Batty, Robert S

    2002-10-22

    The effect of progressive hypoxia on the structure and dynamics of herring (Clupea harengus) schools in laboratory conditions was investigated. The length, width and depth of schools of about 20 individuals were measured from video recordings to test the hypothesis that during hypoxia fish schools change their shape and volume. School shape (calculated as the ratios of length/depth, width/depth and length/width) did not change significantly during hypoxia. School length, width, depth, area and volume were all significantly increased at 20% oxygen saturation. Volume, area and width were more sensitive to hypoxia; volume and width were also increased at 25% and area at 30% oxygen saturation. The degree of position changing (shuffling) of individuals within the school was also analysed. Shuffling in normoxia was observed to occur largely through 'O-turn' manoeuvres, a 360( degrees )turn executed laterally to the school that allowed fishes in the front to move to the back. O-turn frequency during normoxia was 0.69 O-turns fish(-1) min(-1) but significantly decreased with hypoxia to 0.37 O-turns fish(-1) min(-1) at 30% oxygen saturation. Shuffling was also investigated by measuring the persistence time of individual herring in leading positions (i.e. the first half of the school). No significant changes occurred during hypoxia, indicating that the decrease in O-turn frequency does not affect shuffling rate during hypoxia, and that position shuffling in hypoxic conditions is mainly due to overtaking or falling back by individual fishes. School integrity and positional dynamics are the outcome of trade-offs among a number of biotic factors, such as food, predator defence, mating behaviour and various physical factors that may impose certain limits. Among these, our results indicate that oxygen level modulates schooling behaviour. Oxygen alters whole-school parameters at oxygen saturation values that can be encountered by herring in the field, indicating that oxygen availability is an important factor in the trade-offs that determine school volume. An increase in school volume in the wild may increase the oxygen available to each individual. However, shuffling rate is not affected by hypoxia, indicating that the internal dynamics of positioning is the result of the balance of other factors, for example related to the nutritional state of each individual fish as suggested by previous studies.

  8. Self-assembled indium arsenide quantum dots: Structure, formation dynamics, optical properties

    NASA Astrophysics Data System (ADS)

    Lee, Hao

    1998-12-01

    In this dissertation, we investigate the properties of InAs/GaAs quantum dots grown by molecular beam epitaxy. The structure and formation dynamics of InAs quantum dots are studied by a variety of structural characterization techniques. Correlations among the growth conditions, the structural characteristics, and the observed optical properties are explored. The most fundamental structural characteristic of the InAs quantum dots is their shape. Through detailed study of the reflection high energy electron diffraction patterns, we determined that self-assembled InAs islands possess a pyramidal shape with 136 bounding facets. Cross-sectional transmission electron microscopy images and atomic force microscopy images strongly support this model. The 136 model we proposed is the first model that is consistent with all reported shape features determined using different methods. The dynamics of coherent island formation is also studied with the goal of establishing the factors most important in determining the size, density, and the shape of self- organized InAs quantum dots. Our studies clearly demonstrate the roles that indium diffusion and desorption play in InAs island formation. An unexpected finding (from atomic force microscopy images) was that the island size distribution bifurcated during post- growth annealing. Photoluminescence spectra of the samples subjected to in-situ annealing prior to the growth of a capping layer show a distinctive double-peak feature. The power-dependence and temperature-dependence of the photoluminescence spectra reveals that the double- peak emission is associated with the ground-state transition of islands in two different size branches. These results confirm the island size bifurcation observed from atomic force microscopy images. The island size bifurcation provides a new approach to the control and manipulation of the island size distribution. Unexpected dependence of the photoluminescence line-shape on sample temperature and pump intensity was observed for samples grown at relatively high substrate temperatures. The behavior is modeled and explained in terms of competition between two overlapping transitions. The study underscores that the growth conditions can have a dramatic impact on the optical properties of the quantum dots. This dissertation includes both my previously published and unpublished authored materials.

  9. Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.

    2006-08-15

    In a previous contribution, we outlined a method for predicting (hydr)oxy-acid and oxide surface acidity constants based on three main factors: bond valence, Me?O bond ionicity, and molecular shape. Here electrostatics calculations and ab initio molecular dynamics simulations are used to qualitatively show that Me?O bond ionicity controls the extent to which the electrostatic work of proton removal departs from ideality, bond valence controls the extent of solvation of individual functional groups, and bond valence and molecular shape controls local dielectric response. These results are consistent with our model of acidity, but completely at odds with other methods of predictingmore » acidity constants for use in multisite complexation models. In particular, our ab initio molecular dynamics simulations of solvated monomers clearly indicate that hydrogen bonding between (hydr)oxo-groups and water molecules adjusts to obey the valence sum rule, rather than maintaining a fixed valence based on the coordination of the oxygen atom as predicted by the standard MUSIC model.« less

  10. Ultrathin thermoresponsive self-folding 3D graphene

    PubMed Central

    Xu, Weinan; Qin, Zhao; Chen, Chun-Teh; Kwag, Hye Rin; Ma, Qinli; Sarkar, Anjishnu; Buehler, Markus J.; Gracias, David H.

    2017-01-01

    Graphene and other two-dimensional materials have unique physical and chemical properties of broad relevance. It has been suggested that the transformation of these atomically planar materials to three-dimensional (3D) geometries by bending, wrinkling, or folding could significantly alter their properties and lead to novel structures and devices with compact form factors, but strategies to enable this shape change remain limited. We report a benign thermally responsive method to fold and unfold monolayer graphene into predesigned, ordered 3D structures. The methodology involves the surface functionalization of monolayer graphene using ultrathin noncovalently bonded mussel-inspired polydopamine and thermoresponsive poly(N-isopropylacrylamide) brushes. The functionalized graphene is micropatterned and self-folds into ordered 3D structures with reversible deformation under a full control by temperature. The structures are characterized using spectroscopy and microscopy, and self-folding is rationalized using a multiscale molecular dynamics model. Our work demonstrates the potential to design and fabricate ordered 3D graphene structures with predictable shape and dynamics. We highlight applicability by encapsulating live cells and creating nonlinear resistor and creased transistor devices. PMID:28989963

  11. Reconstruction of an Immune Dynamic Model to Simulate the Contrasting Role of Auxin and Cytokinin in Plant Immunity.

    PubMed

    Kaltdorf, Martin; Dandekar, Thomas; Naseem, Muhammad

    2017-01-01

    In order to increase our understanding of biological dependencies in plant immune signaling pathways, the known interactions involved in plant immune networks are modeled. This allows computational analysis to predict the functions of growth related hormones in plant-pathogen interaction. The SQUAD (Standardized Qualitative Dynamical Systems) algorithm first determines stable system states in the network and then use them to compute continuous dynamical system states. Our reconstructed Boolean model encompassing hormone immune networks of Arabidopsis thaliana (Arabidopsis) and pathogenicity factors injected by model pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) can be exploited to determine the impact of growth hormones in plant immunity. We describe a detailed working protocol how to use the modified SQUAD-package by exemplifying the contrasting effects of auxin and cytokinins in shaping plant-pathogen interaction.

  12. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila.

    PubMed

    Zheng, Huimei; Wang, Xuexiang; Guo, Pengfei; Ge, Wanzhong; Yan, Qinfeng; Gao, Weiqiang; Xi, Yongmei; Yang, Xiaohang

    2017-05-01

    In Drosophila, fat-body remodeling accompanied with fat mobilization is an ecdysone-induced dynamic process that only occurs during metamorphosis. Here, we show that the activated Drosophila platelet-derived growth factor/VEGF receptor (PVR) is sufficient to induce shape changes in the fat body, from thin layers of tightly conjugated polygonal cells to clusters of disaggregated round-shaped cells. These morphologic changes are reminiscent of those seen during early pupation upon initiation of fat-body remodeling. Activation of PVR also triggers an early onset of lipolysis and mobilization of internal storage, as revealed by the appearance of small lipid droplets and up-regulated lipolysis-related genes. We found that PVR displays a dynamic expression pattern in the fat body and peaks at the larval-prepupal transition under the control of ecdysone signaling. Removal of PVR, although it does not prevent ecdysone-induced fat-body remodeling, causes ecdysone signaling to be up-regulated. Our data reveal that PVR is active in a dual-secured mechanism that involves an ecdysone-induced fat-body remodeling pathway and a reinforced PVR pathway for effective lipid mobilization. Ectopic expression of activated c-kit-the mouse homolog of PVR in the Drosophila fat body-also results in a similar phenotype. This may suggest a novel function of c-kit as it relates to lipid metabolism in mammals.-Zheng, H., Wang, X., Guo, P., Ge, W., Yan, Q., Gao, W., Xi, Y., Yang, X. Premature remodeling of fat body and fat mobilization triggered by platelet-derived growth factor/VEGF receptor in Drosophila . © FASEB.

  13. What drives interaction strengths in complex food webs? A test with feeding rates of a generalist stream predator.

    PubMed

    Preston, Daniel L; Henderson, Jeremy S; Falke, Landon P; Segui, Leah M; Layden, Tamara J; Novak, Mark

    2018-05-08

    Describing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive relationship with prey taxon densities that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces.

    PubMed

    Gov, N S

    2018-05-26

    Eukaryote cells have flexible membranes that allow them to have a variety of dynamical shapes. The shapes of the cells serve important biological functions, both for cells within an intact tissue, and during embryogenesis and cellular motility. How cells control their shapes and the structures that they form on their surface has been a subject of intensive biological research, exposing the building blocks that cells use to deform their membranes. These processes have also drawn the interest of theoretical physicists, aiming to develop models based on physics, chemistry and nonlinear dynamics. Such models explore quantitatively different possible mechanisms that the cells can employ to initiate the spontaneous formation of shapes and patterns on their membranes. We review here theoretical work where one such class of mechanisms was investigated: the coupling between curved membrane proteins, and the cytoskeletal forces that they recruit. Theory indicates that this coupling gives rise to a rich variety of membrane shapes and dynamics, while experiments indicate that this mechanism appears to drive many cellular shape changes.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  15. Measuring Teachers' Attunement to Children's Friendships, Victimization, and Popularity Dynamics

    ERIC Educational Resources Information Center

    Madill, Rebecca; Zadzora, Kathleen; Gest, Scott D.

    2016-01-01

    Educational researchers have long recognized that teachers have an "invisible hand" with which they can subtly shape students' relationships. Through seating arrangements, instructional groups, and general classroom management strategies, teachers have many opportunities to shape friendships and status dynamics in the classroom. The…

  16. Shape dependent electronic structure and exciton dynamics in small In(Ga)As quantum dots

    NASA Astrophysics Data System (ADS)

    Gomis, J.; Martínez-Pastor, J.; Alén, B.; Granados, D.; García, J. M.; Roussignol, P.

    2006-12-01

    We present a study of the primary optical transitions and recombination dynamics in InGaAs self-assembled quantum nanostructures with different shape. Starting from the same quantum dot seeding layer, and depending on the overgrowth conditions, these new nanostructures can be tailored in shape and are characterized by heights lower than 2 nm and base lengths around 100 nm. The geometrical shape strongly influences the electronic and optical properties of these nanostructuctures. We measure for them ground state optical transitions in the range 1.25 1.35 eV and varying energy splitting between their excited states. The temperature dependence of the exciton recombination dynamics is reported focusing on the intermediate temperature regime (before thermal escape begins to be important). In this range, an important increase of the effective photoluminescence decay time is observed and attributed to the state filling and exciton thermalization between excited and ground states. A rate equation model is also developed reproducing quite well the observed exciton dynamics.

  17. Generalized five-dimensional dynamic and spectral factor analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Fakhri, Georges; Sitek, Arkadiusz; Zimmerman, Robert E.

    2006-04-15

    We have generalized the spectral factor analysis and the factor analysis of dynamic sequences (FADS) in SPECT imaging to a five-dimensional general factor analysis model (5D-GFA), where the five dimensions are the three spatial dimensions, photon energy, and time. The generalized model yields a significant advantage in terms of the ratio of the number of equations to that of unknowns in the factor analysis problem in dynamic SPECT studies. We solved the 5D model using a least-squares approach. In addition to the traditional non-negativity constraints, we constrained the solution using a priori knowledge of both time and energy, assuming thatmore » primary factors (spectra) are Gaussian-shaped with full-width at half-maximum equal to gamma camera energy resolution. 5D-GFA was validated in a simultaneous pre-/post-synaptic dual isotope dynamic phantom study where {sup 99m}Tc and {sup 123}I activities were used to model early Parkinson disease studies. 5D-GFA was also applied to simultaneous perfusion/dopamine transporter (DAT) dynamic SPECT in rhesus monkeys. In the striatal phantom, 5D-GFA yielded significantly more accurate and precise estimates of both primary {sup 99m}Tc (bias=6.4%{+-}4.3%) and {sup 123}I (-1.7%{+-}6.9%) time activity curves (TAC) compared to conventional FADS (biases=15.5%{+-}10.6% in {sup 99m}Tc and 8.3%{+-}12.7% in {sup 123}I, p<0.05). Our technique was also validated in two primate dynamic dual isotope perfusion/DAT transporter studies. Biases of {sup 99m}Tc-HMPAO and {sup 123}I-DAT activity estimates with respect to estimates obtained in the presence of only one radionuclide (sequential imaging) were significantly lower with 5D-GFA (9.4%{+-}4.3% for {sup 99m}Tc-HMPAO and 8.7%{+-}4.1% for {sup 123}I-DAT) compared to biases greater than 15% for volumes of interest (VOI) over the reconstructed volumes (p<0.05). 5D-GFA is a novel and promising approach in dynamic SPECT imaging that can also be used in other modalities. It allows accurate and precise dynamic analysis while compensating for Compton scatter and cross-talk.« less

  18. Nonspherical laser-induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Lim, Kang Yuan; Quinto-Su, Pedro A.; Klaseboer, Evert; Khoo, Boo Cheong; Venugopalan, Vasan; Ohl, Claus-Dieter

    2010-01-01

    The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40μm . In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles. The bubble dynamics is recorded with a high-speed camera at framing rates of up to 300000 frames per second. The observed bubble evolution is compared to predictions from an axisymmetric boundary element simulation which provides good qualitative agreement. Interesting dynamic features that are observed in both the experiment and simulation include the inversion of the major and minor axis for elliptical bubbles, the rotation of the shape for square bubbles, and the formation of a unidirectional jet for V-shaped bubbles. Further we demonstrate that specific bubble shapes can either be formed directly through the intensity distribution of a single laser focus, or indirectly using secondary bubbles that either confine the central bubble or coalesce with the main bubble. The former approach provides the ability to generate in principle any complex bubble geometry.

  19. Design of a dynamic sensor inspired by bat ears

    NASA Astrophysics Data System (ADS)

    Müller, Rolf; Pannala, Mittu; Reddy, O. Praveen K.; Meymand, Sajjad Z.

    2012-09-01

    In bats, the outer ear shapes act as beamforming baffles that create a spatial sensitivity pattern for the reception of the biosonar signals. Whereas technical receivers for wave-based signals usually have rigid geometries, the outer ears of some bat species, such as horseshoe bats, can undergo non-rigid deformations as a result of muscular actuation. It is hypothesized that these deformations provide the animals with a mechanism to adapt their spatial hearing sensitivity on short, sub-second time scales. This biological approach could be of interest to engineering as an inspiration for the design of beamforming devices that combine flexibility with parsimonious implementation. To explore this possibility, a biomimetic dynamic baffle was designed based on a simple shape overall geometry based on an average bat ear. This shape was augmented with three different biomimetic local shape features, a ridge on its exposed surface as well as a flap and an incision along its rim. Dynamic non-rigid deformations of the shape were accomplished through a simple actuation mechanism based on linear actuation inserted at a single point. Despite its simplicity, the prototype device was able to reproduce the dynamic functional characteristics that have been predicted for its biological paragon in a qualitative fashion.

  20. Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Hu, Zehua; Tang, Jinyuan; Zhong, Jue; Chen, Siyu; Yan, Haiyan

    2016-08-01

    A finite element node dynamic model of a high speed gear-rotor-bearing system considering the time-varying mesh stiffness, backlash, gyroscopic effect and transmission error excitation is developed. Different tooth profile modifications are introduced into the gear pair and corresponding time-varying mesh stiffness curves are obtained. Effects of the tooth profile modification on mesh stiffness are analyzed, and the natural frequencies and mode shapes of the gear-rotor-bearing transmission system are given. The dynamic responses with respect to a wide input speed region including dynamic factor, vibration amplitude near the bearing and dynamic transmission error are obtained by introducing the time-varying mesh stiffness in different tooth profile modification cases into the gear-rotor-bearing dynamic system. Effects of the tooth profile modification on the dynamic responses are studied in detail. The numerical simulation results show that both the short profile modification and the long profile modification can affect the mutation of the mesh stiffness when the number of engaging tooth pairs changes. A short profile modification with an appropriate modification amount can improve the dynamic property of the system in certain work condition.

  1. The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model

    NASA Astrophysics Data System (ADS)

    Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi

    2015-04-01

    Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.

  2. A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System

    PubMed Central

    Ye, Yong; Deng, Jiahao; Shen, Sanmin; Hou, Zhuo; Liu, Yuting

    2016-01-01

    A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU) with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape). A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 Vp−p/pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower); when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system. PMID:27196905

  3. Nonlinear 2D arm dynamics in response to continuous and pulse-shaped force perturbations.

    PubMed

    Happee, Riender; de Vlugt, Erwin; van Vliet, Bart

    2015-01-01

    Ample evidence exists regarding the nonlinearity of the neuromuscular system but linear models are widely applied to capture postural dynamics. This study quantifies the nonlinearity of human arm postural dynamics applying 2D continuous force perturbations (0.2-40 Hz) inducing three levels of hand displacement (5, 15, 45 mm RMS) followed by force-pulse perturbations inducing large hand displacements (up to 250 mm) in a position task (PT) and a relax task (RT) recording activity of eight shoulder and elbow muscles. The continuous perturbation data were used to analyze the 2D endpoint dynamics in the frequency domain and to identify reflexive and intrinsic parameters of a linear neuromuscular shoulder-elbow model. Subsequently, it was assessed to what extent the large displacements in response to force pulses could be predicted from the 'small amplitude' linear neuromuscular model. Continuous and pulse perturbation responses with varying amplitudes disclosed highly nonlinear effects. In PT, a larger continuous perturbation induced stiffening with a factor of 1.5 attributed to task adaptation evidenced by increased co-contraction and reflexive activity. This task adaptation was even more profound in the pulse responses where reflexes and displacements were strongly affected by the presence and amplitude of preceding continuous perturbations. In RT, a larger continuous perturbation resulted in yielding with a factor of 3.8 attributed to nonlinear mechanical properties as no significant reflexive activity was found. Pulse perturbations always resulted in yielding where a model fitted to the preceding 5-mm continuous perturbations predicted only 37% of the recorded peak displacements in RT and 79% in PT. This demonstrates that linear neuromuscular models, identified using continuous perturbations with small amplitudes, strongly underestimate displacements in pulse-shaped (e.g., impact) loading conditions. The data will be used to validate neuromuscular models including nonlinear muscular (e.g., Hill and Huxley) and reflexive components.

  4. Modeling of DNA-Mediated Self-Assembly from Anisotropic Nanoparticles: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Millan, Jaime; Girard, Martin; Brodin, Jeffrey; O'Brien, Matt; Mirkin, Chad; Olvera de La Cruz, Monica

    The programmable selectivity of DNA recognition constitutes an elegant scheme to self-assemble a rich variety of superlattices from versatile nanoscale building blocks, where the natural interactions between building blocks are traded by complementary DNA hybridization interactions. Recently, we introduced and validated a scale-accurate coarse-grained model for a molecular dynamics approach that captures the dynamic nature of DNA hybridization events and reproduces the experimentally-observed crystallization behavior of various mixtures of spherical DNA-modified nanoparticles. Here, we have extended this model to robustly reproduce the assembly of nanoparticles with the anisotropic shapes observed experimentally. In particular, we are interested in two different particle types: (i) regular shapes, namely the cubic and octahedral polyhedra shapes commonly observed in gold nanoparticles, and (ii) irregular shapes akin to those exhibited by enzymes. Anisotropy in shape can provide an analog to the atomic orbitals exhibited by conventional atomic crystals. We present results for the assembly of enzymes or anisotropic nanoparticles and the co-assembly of enzymes and nanoparticles.

  5. Insights into the Cell Shape Dynamics of Migrating Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Driscoll, Meghan; Homan, Tess; McCann, Colin; Parent, Carole; Fourkas, John; Losert, Wolfgang

    2010-03-01

    Dynamic cell shape is a highly visible manifestation of the interaction between the internal biochemical state of a cell and its external environment. We analyzed the dynamic cell shape of migrating cells using the model system Dictyostelium discoideum. Applying a snake algorithm to experimental movies, we extracted cell boundaries in each frame and followed local boundary motion over long time intervals. Using a local motion measure that corresponds to protrusive/retractive activity, we found that protrusions are intermittent and zig-zag, whereas retractions are more sustained and straight. Correlations of this local motion measure reveal that protrusions appear more localized than retractions. Using a local shape measure, curvature, we also found that small peaks in boundary curvature tend to originate at the front of cells and propagate backwards. We will review the possible cytoskeletal origin of these mechanical waves.

  6. Dynamics of Pure Shape, Relativity, and the Problem of Time

    NASA Astrophysics Data System (ADS)

    Barbour, Julian

    A new approach to the dynamics of the universe based on work by Ó Murchadha, Foster, Anderson and the author is presented. The only kinematics presupposed is the spatial geometry needed to define configuration spaces in purely relational terms. A new formulation of the relativity principle based on Poincarés analysis of the problem of absolute and relative motion (Machs principle) is given. The entire dynamics is based on shape and nothing else. It leads to much stronger predictions than standard Newtonian theory. For the dynamics of Riemannian 3-geometries on which matter fields also evolve, implementation of the new relativity principle establishes unexpected links between special relativity, general relativity and the gauge principle. They all emerge together as a self-consistent complex from a unified and completely relational approach to dynamics. A connection between time and scale invariance is established. In particular, the representation of general relativity as evolution of the shape of space leads to a unique dynamical definition of simultaneity. This opens up the prospect of a solution of the problem of time in quantum gravity on the basis of a fundamental dynamical principle.

  7. Pair Potential That Reproduces the Shape of Isochrones in Molecular Liquids.

    PubMed

    Veldhorst, Arno A; Schrøder, Thomas B; Dyre, Jeppe C

    2016-08-18

    Many liquids have curves (isomorphs) in their phase diagrams along which structure, dynamics, and some thermodynamic quantities are invariant in reduced units. A substantial part of their phase diagrams is thus effectively one dimensional. The shapes of these isomorphs are described by a material-dependent function of density, h(ρ), which for real liquids is well approximated by a power law, ρ(γ). However, in simulations, a power law is not adequate when density changes are large; typical models, such as Lennard-Jones liquids, show that γ(ρ) ≡ d ln h(ρ)/d ln ρ is a decreasing function of density. This article presents results from computer simulations using a new pair potential that diverges at a nonzero distance and can be tuned to give a more realistic shape of γ(ρ). Our results indicate that the finite size of molecules is an important factor to take into account when modeling liquids over a large density range.

  8. Comparison of dynamic balance ability in healthy university students according to foot shape.

    PubMed

    Hyong, In Hyouk; Kang, Jong Ho

    2016-01-01

    [Purpose] This study aimed to compare dynamic balance ability according to foot shape, defined as normal, pronated, or supinated on the basis of the height of the medial arch. [Subjects] In this study, 14 subjects for the pronated foot group, 14 for the supinated foot group, and 14 for the normal foot group were selected from among 162 healthy university students by using the navicular drop test proposed by Brody. To measure dynamic balance ability, a star excursion balance test (SEBT) was conducted for each group, in which a cross-shaped line and lines at 45° in eight directions were drawn on the floor. In this study, only three directions were used, namely anterior, posterolateral, and posteromedial. The mean of the SEBT was calculated by measuring three times for each group, and the values were standardized using the following equation: measured value/leg length × 100. [Results] No significant differences in dynamic balance ability were found between the normal, pronated, and supinated foot groups. [Conclusion] No significant differences in dynamic balance ability according to the foot shape were found among the healthy university students with normal, pronated, and supinated feet.

  9. The Crystalline Dynamics of Spiral-Shaped Curves

    NASA Astrophysics Data System (ADS)

    Dudziński, Marcin; Górka, Przemysław

    2015-07-01

    We study the motion of spiral-shaped polygonal curves by crystalline curvature. We describe this dynamics by the corresponding infinitely dimensional system of ordinary differential equations and show that the considered model is uniquely solvable. Banach's Contraction Mapping Theorem and the Bellman-Gronwall inequality are the main tools applied in our proof.

  10. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Hantal, György; Picaud, Sylvain; Hoang, Paul N. M.; Voloshin, Vladimir P.; Medvedev, Nikolai N.; Jedlovszky, Pál

    2010-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.

  11. Extracting information from S-curves of language change.

    PubMed

    Ghanbarnejad, Fakhteh; Gerlach, Martin; Miotto, José M; Altmann, Eduardo G

    2014-12-06

    It is well accepted that adoption of innovations are described by S-curves (slow start, accelerating period and slow end). In this paper, we analyse how much information on the dynamics of innovation spreading can be obtained from a quantitative description of S-curves. We focus on the adoption of linguistic innovations for which detailed databases of written texts from the last 200 years allow for an unprecedented statistical precision. Combining data analysis with simulations of simple models (e.g. the Bass dynamics on complex networks), we identify signatures of endogenous and exogenous factors in the S-curves of adoption. We propose a measure to quantify the strength of these factors and three different methods to estimate it from S-curves. We obtain cases in which the exogenous factors are dominant (in the adoption of German orthographic reforms and of one irregular verb) and cases in which endogenous factors are dominant (in the adoption of conventions for romanization of Russian names and in the regularization of most studied verbs). These results show that the shape of S-curve is not universal and contains information on the adoption mechanism. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Cooperation among cancer cells as public goods games on Voronoi networks.

    PubMed

    Archetti, Marco

    2016-05-07

    Cancer cells produce growth factors that diffuse and sustain tumour proliferation, a form of cooperation that can be studied using mathematical models of public goods in the framework of evolutionary game theory. Cell populations, however, form heterogeneous networks that cannot be described by regular lattices or scale-free networks, the types of graphs generally used in the study of cooperation. To describe the dynamics of growth factor production in populations of cancer cells, I study public goods games on Voronoi networks, using a range of non-linear benefits that account for the known properties of growth factors, and different types of diffusion gradients. The results are surprisingly similar to those obtained on regular graphs and different from results on scale-free networks, revealing that network heterogeneity per se does not promote cooperation when public goods diffuse beyond one-step neighbours. The exact shape of the diffusion gradient is not crucial, however, whereas the type of non-linear benefit is an essential determinant of the dynamics. Public goods games on Voronoi networks can shed light on intra-tumour heterogeneity, the evolution of resistance to therapies that target growth factors, and new types of cell therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics

    PubMed Central

    Krylova, Olga; Earn, David J. D.

    2013-01-01

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced ‘susceptible–exposed–infectious–removed’ (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible–infectious–removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions. PMID:23676892

  14. Effects of the infectious period distribution on predicted transitions in childhood disease dynamics.

    PubMed

    Krylova, Olga; Earn, David J D

    2013-07-06

    The population dynamics of infectious diseases occasionally undergo rapid qualitative changes, such as transitions from annual to biennial cycles or to irregular dynamics. Previous work, based on the standard seasonally forced 'susceptible-exposed-infectious-removed' (SEIR) model has found that transitions in the dynamics of many childhood diseases result from bifurcations induced by slow changes in birth and vaccination rates. However, the standard SEIR formulation assumes that the stage durations (latent and infectious periods) are exponentially distributed, whereas real distributions are narrower and centred around the mean. Much recent work has indicated that realistically distributed stage durations strongly affect the dynamical structure of seasonally forced epidemic models. We investigate whether inferences drawn from previous analyses of transitions in patterns of measles dynamics are robust to the shapes of the stage duration distributions. As an illustrative example, we analyse measles dynamics in New York City from 1928 to 1972. We find that with a fixed mean infectious period in the susceptible-infectious-removed (SIR) model, the dynamical structure and predicted transitions vary substantially as a function of the shape of the infectious period distribution. By contrast, with fixed mean latent and infectious periods in the SEIR model, the shapes of the stage duration distributions have a less dramatic effect on model dynamical structure and predicted transitions. All these results can be understood more easily by considering the distribution of the disease generation time as opposed to the distributions of individual disease stages. Numerical bifurcation analysis reveals that for a given mean generation time the dynamics of the SIR and SEIR models for measles are nearly equivalent and are insensitive to the shapes of the disease stage distributions.

  15. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles - upscaling an aggregate biophysical model.

    PubMed

    Ebrahimi, Ali; Or, Dani

    2016-09-01

    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.

  16. The Small Muscle-Specific Protein Csl Modifies Cell Shape and Promotes Myocyte Fusion in an Insulin-like Growth Factor 1–Dependent Manner

    PubMed Central

    Palmer, Steve; Groves, Nicola; Schindeler, Aaron; Yeoh, Thomas; Biben, Christine; Wang, Cheng-Chun; Sparrow, Duncan B.; Barnett, Louise; Jenkins, Nancy A.; Copeland, Neal G.; Koentgen, Frank; Mohun, Tim; Harvey, Richard P.

    2001-01-01

    We have isolated a murine cDNA encoding a 9-kD protein, Chisel (Csl), in a screen for transcriptional targets of the cardiac homeodomain factor Nkx2-5. Csl transcripts were detected in atria and ventricles of the heart and in all skeletal muscles and smooth muscles of the stomach and pulmonary veins. Csl protein was distributed throughout the cytoplasm in fetal muscles, although costameric and M-line localization to the muscle cytoskeleton became obvious after further maturation. Targeted disruption of Csl showed no overt muscle phenotype. However, ectopic expression in C2C12 myoblasts induced formation of lamellipodia in which Csl protein became tethered to membrane ruffles. Migration of these cells was retarded in a monolayer wound repair assay. Csl-expressing myoblasts differentiated and fused normally, although in the presence of insulin-like growth factor (IGF)-1 they showed dramatically enhanced fusion, leading to formation of large dysmorphogenic “myosacs.” The activities of transcription factors nuclear factor of activated T cells (NFAT) and myocyte enhancer–binding factor (MEF)2, were also enhanced in an IGF-1 signaling–dependent manner. The dynamic cytoskeletal localization of Csl and its dominant effects on cell shape and behavior and transcription factor activity suggest that Csl plays a role in the regulatory network through which muscle cells coordinate their structural and functional states during growth, adaptation, and repair. PMID:11381084

  17. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  18. Dynamic profile of health investment and the evolution of elderly health.

    PubMed

    Lo, Te-Fen; Hsieh, Chee-Ruey

    2013-01-01

    A considerable number of studies have sought to examine the determinants of elderly health. Nevertheless, few of them incorporate a life-course perspective to analyze the dynamics of transition for both health conditions and their predictors. We utilize a nationally representative longitudinal data set of 4007 Taiwanese aged 60 or over and employ discrete-time duration models to investigate the association between annual mortality and its potential risk factors over a nearly twenty-year period (1989-2007). We place particular emphasis on the inherently dynamic character of Grossman's model, and specifically on how public and private health investment shape the personal health outcome over time. Our results support the hypothesis that depreciation rates depend on personal characteristics. In addition, we find that the dynamic profiles of both public and private health investment significantly influence the elderly mortality. An important implication of our study is that implementing universal health insurance and tobacco control programs are effective channels through which the government improves personal health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression

    NASA Astrophysics Data System (ADS)

    Linul, E.; Marsavina, L.; Voiconi, T.; Sadowski, T.

    2013-07-01

    Effect of density, loading rate, material orientation and temperature on dynamic compression behavior of rigid polyurethane foams are investigated in this paper. These parameters have a very important role, taking into account that foams are used as packing materials or dampers which require high energy impact absorption. The experimental study was carried out on closed-cell rigid polyurethane (PUR) foam specimens of different densities (100, 160 respectively 300 kg/m3), having a cubic shape. The specimens were subjected to uniaxial dynamic compression with loading rate in range of 1.37-3.25 m/s, using four different temperatures (20, 60, 90, 110°C) and two loading planes (direction (3) - rise direction and direction (2) - in plane). Experimental results show that Young's modulus, yield stress and plateau stress values increases with increasing density. One of the most significant effects of mechanical properties in dynamic compression of rigid PUR foams is the density, but also the loading speed, material orientation and temperature influences the behavior in compression

  20. Numerical simulation on pollutant dispersion from vehicle exhaust in street configurations.

    PubMed

    Yassin, Mohamed F; Kellnerová, R; Janour, Z

    2009-09-01

    The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.

  1. The similarity law for hypersonic flow and requirements for dynamic similarity of related bodies in free flight

    NASA Technical Reports Server (NTRS)

    Hamaker, Frank M; Neice, Stanford E; Wong, Thomas J

    1953-01-01

    The similarity law for nonsteady, inviscid, hypersonic flow about slender three-dimensional shapes is derived. Conclusions drawn are shown to be valid for rotational flow. Requirements for dynamic similarity of related shapes in free flight are obtained. The law is examined for steady flow about related three-dimensional shapes. Results of an experimental investigation of the pressures acting on two inclined cones are found to check the law as it applies to bodies of revolution.

  2. Parallel computation of GA search for the artery shape determinants with CFD

    NASA Astrophysics Data System (ADS)

    Himeno, M.; Noda, S.; Fukasaku, K.; Himeno, R.

    2010-06-01

    We studied which factors play important role to determine the shape of arteries at the carotid artery bifurcation by performing multi-objective optimization with computation fluid dynamics (CFD) and the genetic algorithm (GA). To perform it, the most difficult problem is how to reduce turn-around time of the GA optimization with 3D unsteady computation of blood flow. We devised two levels of parallel computation method with the following features: level 1: parallel CFD computation with appropriate number of cores; level 2: parallel jobs generated by "master", which finds quickly available job cue and dispatches jobs, to reduce turn-around time. As a result, the turn-around time of one GA trial, which would have taken 462 days with one core, was reduced to less than two days on RIKEN supercomputer system, RICC, with 8192 cores. We performed a multi-objective optimization to minimize the maximum mean WSS and to minimize the sum of circumference for four different shapes and obtained a set of trade-off solutions for each shape. In addition, we found that the carotid bulb has the feature of the minimum local mean WSS and minimum local radius. We confirmed that our method is effective for examining determinants of artery shapes.

  3. Influence of morphology and hemodynamic factors on rupture of multiple intracranial aneurysms: matched-pairs of ruptured-unruptured aneurysms located unilaterally on the anterior circulation.

    PubMed

    Zhang, Ying; Yang, Xinjian; Wang, Yang; Liu, Jian; Li, Chuanhui; Jing, Linkai; Wang, Shengzhang; Li, Haiyun

    2014-12-31

    The authors evaluated the impact of morphological and hemodynamic factors on the rupture of matched-pairs of ruptured-unruptured intracranial aneurysms on one patient's ipsilateral anterior circulation with 3D reconstruction model and computational fluid dynamic method simulation. 20 patients with intracranial aneurysms pairs on the same-side of anterior circulation but with different rupture status were retrospectively collected. Each pair was divided into ruptured-unruptured group. Patient-specific models based on their 3D-DSA images were constructed and analyzed. The relative locations, morphologic and hemodynamic factors of these two groups were compared. There was no significant difference in the relative bleeding location. The morphological factors analysis found that the ruptured aneurysms more often had irregular shape and had significantly higher maximum height and aspect ratio. The hemodynamic factors analysis found lower minimum wall shear stress (WSSmin) and more low-wall shear stress-area (LSA) in the ruptured aneurysms than that of the unruptured ones. The ruptured aneurysms more often had WSSmin on the dome. Intracranial aneurysms pairs with different rupture status on unilateral side of anterior circulation may be a good disease model to investigate possible characteristics linked to rupture independent of patient characteristics. Irregular shape, larger size, higher aspect ratio, lower WSSmin and more LSA may indicate a higher risk for their rupture.

  4. Storage of RF photons in minimal conditions

    NASA Astrophysics Data System (ADS)

    Cromières, J.-P.; Chanelière, T.

    2018-02-01

    We investigate the minimal conditions to store coherently a RF pulse in a material medium. We choose a commercial quartz as a memory support because it is a widely available component with a high Q-factor. Pulse storage is obtained by varying dynamically the light-matter coupling with an analog switch. This parametric driving of the quartz dynamics can be alternatively interpreted as a stopped-light experiment. We obtain an efficiency of 26%, a storage time of 209 μs and a time-to-bandwidth product of 98 by optimizing the pulse temporal shape. The coherent character of the storage is demonstrated. Our goal is to connect different types of memories in the RF and optical domain for quantum information processing. Our motivation is essentially fundamental.

  5. Micromachined single-level nonplanar polycrystalline SiGe thermal microemitters for infrared dynamic scene projection

    NASA Astrophysics Data System (ADS)

    Malyutenko, V. K.; Malyutenko, O. Yu.; Leonov, V.; Van Hoof, C.

    2009-05-01

    The technology for self-supported membraneless polycrystalline SiGe thermal microemitters, their design, and performance are presented. The 128-element arrays with a fill factor of 88% and a 2.5-μm-thick resonant cavity have been grown by low-pressure chemical vapor deposition and fabricated using surface micromachining technology. The 200-nm-thick 60×60 μm2 emitting pixels enforced with a U-shape profile pattern demonstrate a thermal time constant of 2-7 ms and an apparent temperature of 700 K in the 3-5 and 8-12 μm atmospheric transparency windows. The application of the devices to the infrared dynamic scene simulation and their benefit over conventional planar membrane-supported emitters are discussed.

  6. Alpine treeline of western North America: Linking organism-to-landscape dynamics

    USGS Publications Warehouse

    Malanson, George P.; Butler, David R.; Fagre, Daniel B.; Walsh, Stephen J; Tomback, Diana F.; Daniels, Lori D.; Resler, Lynn M.; Smith, William K.; Weiss, Daniel J.; Peterson, David L.; Bunn, Andrew G.; Hiemstra, Christopher A.; Liptzin, Daniel; Bourgeron, Patrick S.; Shen, Zehao; Millar, Constance I.

    2007-01-01

    Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree dieback—depend on microsite patterns. Growth forms affect wind and snow, and so develop positive and negative feedback loops that create these microsites. As a result, complex landscape patterns are generated at multiple spatial scales. Although these mechanistic processes are fundamentally the same for all forest-tundra ecotones across western North America, factors such as prior climate, underlying geology and geomorphology, and genetic constraints of dominant tree species lead to geographic differences in the responses of particular ecotones to climate change.

  7. Urban aerosols harbor diverse and dynamic bacterial populations

    PubMed Central

    Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.

    2007-01-01

    Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744

  8. A Coupled Approach for Structural Damage Detection with Incomplete Measurements

    NASA Technical Reports Server (NTRS)

    James, George; Cao, Timothy; Kaouk, Mo; Zimmerman, David

    2013-01-01

    This historical work couples model order reduction, damage detection, dynamic residual/mode shape expansion, and damage extent estimation to overcome the incomplete measurements problem by using an appropriate undamaged structural model. A contribution of this work is the development of a process to estimate the full dynamic residuals using the columns of a spring connectivity matrix obtained by disassembling the structural stiffness matrix. Another contribution is the extension of an eigenvector filtering procedure to produce full-order mode shapes that more closely match the measured active partition of the mode shapes using a set of modified Ritz vectors. The full dynamic residuals and full mode shapes are used as inputs to the minimum rank perturbation theory to provide an estimate of damage location and extent. The issues associated with this process are also discussed as drivers of near-term development activities to understand and improve this approach.

  9. The effect of molecular shape on oligomerization of hydrophobic drugs: Molecular simulations of ciprofloxacin and nutlin

    NASA Astrophysics Data System (ADS)

    Li, Jianguo; Beuerman, Roger; Verma, Chandra

    2018-03-01

    Molecular aggregation plays a significant role in modulating the solubility, permeability, and bioactivity of drugs. The propensity to aggregate depends on hydrophobicity and on molecular shape. Molecular dynamics simulations coupled with enhanced sampling methods are used to explore the early stages of oligomerization of two drug molecules which have a strong aggregation propensity, but with contrasting molecule shapes: the antibiotic ciprofloxacin and the anticancer drug Nutlin-3A. The planar shape of ciprofloxacin induces the formation of stable oligomers at all cluster sizes. The aggregation of ciprofloxacin is driven by two-body interactions, and transferring one ciprofloxacin molecule to an existing cluster involves the desolvation of two faces and the concomitant hydrophobic interactions between the two faces; thus, the corresponding free energy of oligomerization weakly depends on the oligomer size. By contrast, Nutlin-3A has a star-shape and hence can only form stable oligomers when the cluster size is greater than 8. Free energy simulations further confirmed that the free energy of oligomer formation for Nutlin-3A becomes more favorable as the oligomer becomes larger. The aggregation of star-shaped Nutlin-3A results from many-body interactions and hence the free energy of cluster formation is strongly dependent on the size. The findings of this study provide atomistic insights into how molecular shape modulates the aggregation behavior of molecules and may be factored into the design of drugs or nano-particles.

  10. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.

    PubMed

    Levant, Michael; Steinberg, Victor

    2016-12-01

    In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σ_{c} of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.

  11. Unsteady Newton-Busemann flow theory. I - Airfoils

    NASA Technical Reports Server (NTRS)

    Hui, W. H.; Tobak, M.

    1981-01-01

    Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.

  12. Entropy analysis of frequency and shape change in horseshoe bat biosonar

    NASA Astrophysics Data System (ADS)

    Gupta, Anupam K.; Webster, Dane; Müller, Rolf

    2018-06-01

    Echolocating bats use ultrasonic pulses to collect information about their environments. Some of this information is encoded at the baffle structures—noseleaves (emission) and pinnae (reception)—that act as interfaces between the bats' biosonar systems and the external world. The baffle beam patterns encode the direction-dependent sensory information as a function of frequency and hence represent a view of the environment. To generate diverse views of the environment, the bats can vary beam patterns by changes to (1) the wavelengths of the pulses or (2) the baffle geometries. Here we compare the variability in sensory information encoded by just the use of frequency or baffle shape dynamics in horseshoe bats. For this, we use digital and physical prototypes of both noseleaf and pinnae. The beam patterns for all prototypes were either measured or numerically predicted. Entropy was used as a measure to compare variability as a measure of sensory information encoding capacity. It was found that new information was acquired as a result of shape dynamics. Furthermore, the overall variability available for information encoding was similar in the case of frequency or shape dynamics. Thus, shape dynamics allows the horseshoe bats to generate diverse views of the environment in the absence of broadband biosonar signals.

  13. Experimental and LES investigation of premixed methane/air flame propagating in a tube with a thin obstacle

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Guo, Shilong; Li, Yanchao; Zhang, Yutao

    2017-03-01

    In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky-Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame-vortex interaction. In addition, the transition from "corrugated flamelets" to "thin reaction zones" is observed in the simulation.

  14. A computational approach for inferring the cell wall properties that govern guard cell dynamics.

    PubMed

    Woolfenden, Hugh C; Bourdais, Gildas; Kopischke, Michaela; Miedes, Eva; Molina, Antonio; Robatzek, Silke; Morris, Richard J

    2017-10-01

    Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd and Society for Experimental Biology.

  15. Mismatch in cation size causes rapid anion dynamics in solid electrolytes: the role of the Arrhenius pre-factor.

    PubMed

    Breuer, Stefan; Wilkening, Martin

    2018-03-28

    Crystalline ion conductors exhibiting fast ion dynamics are of utmost importance for the development of, e.g., sensors or rechargeable batteries. In some layer-structured or nanostructured compounds fluorine ions participate in remarkably fast self-diffusion processes. As has been shown earlier, F ion dynamics in nanocrystalline, defect-rich BaF 2 is much higher than that in the coarse-grained counterpart BaF 2 . The thermally metastable fluoride (Ba,Ca)F 2 , which can be prepared by joint high-energy ball milling of the binary fluorides, exhibits even better ion transport properties. While long-range ion dynamics has been studied recently, less information is known about local ion hopping processes to which 19 F nuclear magnetic resonance (NMR) spin-lattice relaxation is sensitive. The present paper aims at understanding ion dynamics in metastable, nanocrystalline (Ba,Ca)F 2 by correlating short-range ion hopping with long-range transport properties. Variable-temperature NMR line shapes clearly indicate fast and slow F spin reservoirs. Surprisingly, from an atomic-scale point of view increased ion dynamics at intermediate values of composition is reflected by increased absolute spin-lattice relaxation rates rather than by a distinct minimum in activation energy. Hence, the pre-factor of the underlying Arrhenius relation, which is determined by the number of mobile spins, the attempt frequency and entropy effects, is identified as the parameter that directly enhances short-range ion dynamics in metastable (Ba,Ca)F 2 . Concerted ion migration could also play an important role to explain the anomalies seen in NMR spin-lattice relaxation.

  16. Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI

    PubMed Central

    Pearson, William G.; Zumwalt, Ann C.

    2013-01-01

    Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608

  17. A design for a dynamic biomimetic sonarhead inspired by horseshoe bats.

    PubMed

    Caspers, Philip; Mueller, Rolf

    2018-05-24

    The noseleaf and pinnae of horseshoe bats (Rhinolophus ferrumequinum) have both been shown to actively deform during biosonar operation. Since these baffle structures directly affect the properties of the animal's biosonar system, this work mimics horseshoe bat sonar system with the goal of developing a platform to study the dynamic sensing principles horseshoe bats employ. Consequently, two robotic devices were developed to mimic the dynamic emission and reception characteristics of horseshoe bats. The noseleaf and pinnae shapes were modeled as smooth blanks matched to digital representations of a horseshoe bat specimen's noseleaf and pinnae. Local shape features mimicking structures on the pinnae and noseleaf were added digitally. Flexible baffles with local shape feature combinations were manufactured and paired with actuation mechanisms to mimic pinnae and noseleaf deformations in-vivo. Two noseleaves with and without local shape features were considered. Each noseleaf baffle was mounted to a platform called the dynamic emission head to actuate three surface elements of the baffle. Similarly, 12 pinna realizations composed of combinations of three local shape features were mounted to a platform called the dynamic reception head to deform the left and right pinnae independently. Motion of the noseleaf and pinnae were synchronized to the incoming and outgoing sonar waveform, and the joint time-frequency properties of the noseleaf and pinnae local feature combinations and combinations of the pinnae and noseleaf thereof were characterized across spatial direction. Amplitude modulations to the outgoing and incoming sonar pulse information across spatial direction were observed for all pinnae and noseleaf local shape feature combinations. Peak modulation variance generated by motion of the pinnae and combinations of the noseleaf and pinnae approached a white Gaussian noise variance bound. However, it was found the dynamic emitter generated less modulation than either the combined or reception scenarios. © 2018 IOP Publishing Ltd.

  18. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  19. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report

    PubMed Central

    2014-01-01

    Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments. PMID:24456711

  20. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report.

    PubMed

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2014-01-23

    The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments.

  1. Sensitivity of simulated englacial isochrones to uncertain subglacial boundary conditions in central West Antarctica: Implications for detecting changes in ice dynamics

    NASA Astrophysics Data System (ADS)

    Muldoon, Gail; Jackson, Charles S.; Young, Duncan A.; Quartini, Enrica; Cavitte, Marie G. P.; Blankenship, Donald D.

    2017-04-01

    Information about the extent and dynamics of the West Antarctic Ice Sheet during past glaciations is preserved inside ice sheets themselves. Ice cores are capable of retrieving information about glacial history, but they are spatially sparse. Ice-penetrating radar, on the other hand, has been used to map large areas of the West Antarctic Ice Sheet and can be correlated to ice core chronologies. Englacial isochronous layers observed in ice-penetrating radar are the result of variations in ice composition, fabric, temperature and other factors. The shape of these isochronous surfaces is expected to encode information about past and present boundary conditions and ice dynamics. Dipping of englacial layers, for example, may reveal the presence of rapid ice flow through paleo ice streams or high geothermal heat flux. These layers therefore present a useful testbed for hypotheses about paleo ice sheet conditions. However, hypothesis testing requires careful consideration of the sensitivity of layer shape to the competing forces of ice sheet boundary conditions and ice dynamics over time. Controlled sensitivity tests are best completed using models, however ice sheet models generally do not have the capability of simulating layers in the presence of realistic boundary conditions. As such, modeling 3D englacial layers for comparison to observations is difficult and requires determination of a 3D ice velocity field. We present a method of post-processing simulated 3D ice sheet velocities into englacial isochronous layers using an advection scheme. We then test the sensitivity of layer geometry to uncertain boundary conditions, including heterogeneous subglacial geothermal flux and bedrock topography. By identifying areas of the ice sheet strongly influenced by boundary conditions, it may be possible to isolate the signature of paleo ice dynamics in the West Antarctic ice sheet.

  2. The interplay between seasonality and density: consequences for female breeding decisions in a small cyclic herbivore

    PubMed Central

    2014-01-01

    Background Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. Results We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. Conclusions During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks. PMID:24886481

  3. The interplay between seasonality and density: consequences for female breeding decisions in a small cyclic herbivore.

    PubMed

    Pinot, Adrien; Gauffre, Bertrand; Bretagnolle, Vincent

    2014-05-28

    Cyclic rodent population dynamics are subjected to both intrinsic regulatory processes such as density-dependence and extrinsic environmental forcing. Among extrinsic factors, seasonal environmental variation is understood to facilitate cycles. In rodents, these processes have been studied mostly independently and their relative importance for population dynamics is poorly known. We performed a detailed analysis of common vole (Microtus arvalis) reproduction in a cyclic population using a spatially extensive data set over 17 years in central-western France. Environmental seasonality was the main source of explained variation in common vole reproduction. Additionally, inter-annual variation in the environment explained a smaller part of the variance in reproduction in spring and summer than in winter, whereas the effect of density was only found in autumn and winter. In particular, we detected a strong impact of plant productivity on fecundity during the breeding season, with low vegetation productivity being able to bring vole reproduction nearly to a halt. In contrast, vole reproduction during autumn and winter was mainly shaped by intrinsic factors, with only the longer and heavier females being able to reproduce. The effect of population density on reproduction was negative, mediated by direct negative effects on the proportion of breeders in autumn and winter during outbreak years and by a delayed negative effect on litter size the following year. During the main breeding season, variability of female vole reproduction is predominantly shaped by food resources, suggesting that only highly productive environment may induce vole outbreaks. During fall and winter, variability of female vole reproduction is mainly controlled by intrinsic factors, with high population density suppressing reproduction. This suggests, in this cyclic population, that negative direct density dependence on reproduction could explain winter declines after outbreaks.

  4. Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation

    PubMed Central

    Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu

    2015-01-01

    Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304

  5. Dynamics of biosonar systems in Horseshoe bats

    NASA Astrophysics Data System (ADS)

    Müller, R.

    2015-12-01

    Horseshoe bats have an active ultrasonic sonar system that allows the animals to navigate and hunt prey in structure-rich natural environments. The physical components of this biosonar system contain an unusual dynamics that could play a key role in achieving the animals' superior sensory performance. Horseshoe bat biosonar employs elaborate baffle shapes to diffract the outgoing and incoming ultrasonic wave packets; ultrasound is radiated from nostrils that are surrounded by noseleaves and received by large outer ears. Noseleaves and pinnae can be actuated while ultrasonic diffraction takes place. On the emission side, two noseleaf parts, the anterior leaf and the sella, have been shown to be in motion in synchrony with sound emission. On the reception side, the pinnae have been shown to change their shapes by up to 20% of their total length within ˜100 milliseconds. Due to these shape changes, diffraction of the incoming and outgoing waves is turned into a dynamic physical process. The dynamics of the diffraction process results in likewise dynamic device characteristics. If this additional dynamic dimension was found to enhance the encoding of sensory information substantially, horseshoe bat biosonar could be a model for the use of dynamic physical processes in sensing technology.

  6. Periodontology: past, present, perspectives.

    PubMed

    Slots, Jørgen

    2013-06-01

    Periodontitis is an infectious disease that affects the tooth-supporting tissues and exhibits a wide range of clinical, microbiological and immunological manifestations. The disease is associated with and is probably caused by a multifaceted dynamic interaction of specific infectious agents, host immune responses, harmful environmental exposure and genetic susceptibility factors. This volume of Periodontology 2000 covers key subdisciplines of periodontology, ranging from etiopathogeny to therapy, with emphasis on diagnosis, classification, epidemiology, risk factors, microbiology, immunology, systemic complications, anti-infective therapy, reparative treatment, self-care and affordability issues. Learned and unlearned concepts of periodontitis over the past 50 years have shaped our current understanding of the etiology of the disease and of clinical practice. © 2013 John Wiley & Sons A/S.

  7. Bud detachment in hydra requires activation of fibroblast growth factor receptor and a Rho–ROCK–myosin II signaling pathway to ensure formation of a basal constriction

    PubMed Central

    Holz, Oliver; Apel, David; Steinmetz, Patrick; Lange, Ellen; Hopfenmüller, Simon; Ohler, Kerstin; Sudhop, Stefanie

    2017-01-01

    Background: Hydra propagates asexually by exporting tissue into a bud, which detaches 4 days later as a fully differentiated young polyp. Prerequisite for detachment is activation of fibroblast growth factor receptor (FGFR) signaling. The mechanism which enables constriction and tissue separation within the monolayered ecto‐ and endodermal epithelia is unknown. Results: Histological sections and staining of F‐actin by phalloidin revealed conspicuous cell shape changes at the bud detachment site indicating a localized generation of mechanical forces and the potential enhancement of secretory functions in ectodermal cells. By gene expression analysis and pharmacological inhibition, we identified a candidate signaling pathway through Rho, ROCK, and myosin II, which controls bud base constriction and rearrangement of the actin cytoskeleton. Specific regional myosin phosphorylation suggests a crucial role of ectodermal cells at the detachment site. Inhibition of FGFR, Rho, ROCK, or myosin II kinase activity is permissive for budding, but represses myosin phosphorylation, rearrangement of F‐actin and constriction. The young polyp remains permanently connected to the parent by a broad tissue bridge. Conclusions: Our data suggest an essential role of FGFR and a Rho‐ROCK‐myosin II pathway in the control of cell shape changes required for bud detachment. Developmental Dynamics 246:502–516, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists PMID:28411398

  8. An intergenerational approach in the promotion of balance and strength for fall prevention - a mini-review.

    PubMed

    Granacher, Urs; Muehlbauer, Thomas; Gollhofer, Albert; Kressig, Reto W; Zahner, Lukas

    2011-01-01

    The risk of sustaining a fall is particularly high in children and seniors. Deficits in postural control and muscle strength either due to maturation, secular declines or biologic aging are two important intrinsic risk factors for falls. During life span, performance in variables of static postural control follows a U-shaped curve with children and seniors showing larger postural sway than healthy adults. Measures of dynamic postural control (i.e. gait speed) as well as isometric (i.e. maximal strength) and dynamic muscle strength (i.e. muscular power) follow an inverted U-shaped curve during life span, again with children and seniors showing deficits compared to adults. There is evidence that particularly balance and resistance training are effective in counteracting these neuromuscular constraints in both children and seniors. Further, these training regimens are able to reduce the rate of sustaining injuries and falls in these age groups. An intergenerational intervention approach is suggested to enhance the effectiveness of these training programs by improving compliance and increasing motivation of children and seniors exercising together. Thus, the objectives of this mini-review are: (1) to describe the epidemiology and etiology of falls in children and seniors; (2) to discuss training programs that counteract intrinsic fall risk factors by reducing the rate of falling, and (3) to present an intergenerational approach that has the potential to make training programs even more effective by including children and seniors together in one exercise group. Copyright © 2010 S. Karger AG, Basel.

  9. Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model.

    PubMed

    Albert, Philipp J; Schwarz, Ulrich S

    2014-06-03

    Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna

    NASA Astrophysics Data System (ADS)

    Piovesan, Mônica; Specht, Alexandre; Carneiro, Eduardo; Paula-Moraes, Silvana Vieira; Casagrande, Mirna Martins

    2018-03-01

    The identification of factors responsible for the population dynamics is fundamental for pest management, since losses can reach 18% of annual production. Besides regular seasonal environmental factors and crop managements, additional supra-annual meteorological phenomena can also affect population dynamics, although its relevance has been rarely investigated. Among crop pests, Spodoptera stands out due to its worldwide distribution, high degree of polyphagy, thus causing damages in several crops in the world. Aiming to distinguish the relevance of different factors shaping population dynamics of Spodoptera in an ecosystem constituted of dry and rainy seasons, the current study used circular statistics to identify phenological patterns and test if its population fluctuation is driven by El Niño-Southern Oscillation (ENSO) effect, seasonal meteorological parameters, and/or host plant availability. Samplings were done in an intercropping system, in the Brazilian Savanna, during the new moon cycles between July/2013 and June/2016. Species were recorded all year round, but demonstrated differently non-uniform distribution, being concentrated in different seasons of the year. Population fluctuations were mostly affected by the ENSO intensity, despite the contrasting seasonal meteorological variation or host plant availability in a 400-m radius. Studies involving the observation of supra-annual phenomena, although rare, reach similar conclusions in relation to Neotropical insect fauna. Therefore, it is paramount to have long-term sampling studies to obtain a more precise response of the pest populations towards the agroecosystem conditions.

  11. Hydration status and diurnal trophic interactions shape microbial community function in desert biocrusts

    NASA Astrophysics Data System (ADS)

    Kim, Minsu; Or, Dani

    2017-12-01

    Biological soil crusts (biocrusts) are self-organised thin assemblies of microbes, lichens, and mosses that are ubiquitous in arid regions and serve as important ecological and biogeochemical hotspots. Biocrust ecological function is intricately shaped by strong gradients of water, light, oxygen, and dynamics in the abundance and spatial organisation of the microbial community within a few millimetres of the soil surface. We report a mechanistic model that links the biophysical and chemical processes that shape the functioning of biocrust representative microbial communities that interact trophically and respond dynamically to cycles of hydration, light, and temperature. The model captures key features of carbon and nitrogen cycling within biocrusts, such as microbial activity and distribution (during early stages of biocrust establishment) under diurnal cycles and the associated dynamics of biogeochemical fluxes at different hydration conditions. The study offers new insights into the highly dynamic and localised processes performed by microbial communities within thin desert biocrusts.

  12. Self-sculpting of a dissolvable body due to gravitational convection

    NASA Astrophysics Data System (ADS)

    Davies Wykes, Megan S.; Huang, Jinzi Mac; Hajjar, George A.; Ristroph, Leif

    2018-04-01

    Natural sculpting processes such as erosion or dissolution often yield universal shapes that bear no imprint or memory of the initial conditions. Here we conduct laboratory experiments aimed at assessing the shape dynamics and role of memory for the simple case of a dissolvable boundary immersed in a fluid. Though no external flow is imposed, dissolution and consequent density differences lead to gravitational convective flows that in turn strongly affect local dissolving rates and shape changes, and we identify two distinct behaviors. A flat boundary dissolving from its lower surface tends to retain its overall shape (an example of near perfect memory) while bearing small-scale pits that reflect complex near-body flows. A boundary dissolving from its upper surface tends to erase its initial shape and form an upward spike structure that sharpens indefinitely. We propose an explanation for these different outcomes based on observations of the coupled shape dynamics, concentration fields, and flows.

  13. Shape selection in Landsat time series: A tool for monitoring forest dynamics

    Treesearch

    Gretchen G. Moisen; Mary C. Meyer; Todd A. Schroeder; Xiyue Liao; Karen G. Schleeweis; Elizabeth A. Freeman; Chris Toney

    2016-01-01

    We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of...

  14. Tear film dynamics with evaporation, wetting, and time-dependent flux boundary condition on an eye-shaped domain

    PubMed Central

    Li, Longfei; Braun, R. J.; Maki, K. L.; Henshaw, W. D.; King-Smith, P. E.

    2014-01-01

    We study tear film dynamics with evaporation on a wettable eye-shaped ocular surface using a lubrication model. The mathematical model has a time-dependent flux boundary condition that models the cycles of tear fluid supply and drainage; it mimics blinks on a stationary eye-shaped domain. We generate computational grids and solve the nonlinear governing equations using the OVERTURE computational framework. In vivo experimental results using fluorescent imaging are used to visualize the influx and redistribution of tears for an open eye. Results from the numerical simulations are compared with the experiment. The model captures the flow around the meniscus and other dynamic features of human tear film observed in vivo. PMID:24926191

  15. Geometric representation of spin correlations and applications to ultracold systems

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rick; Mirasola, Anthony E.; Hollingsworth, Jacob; White, Ian G.; Hazzard, Kaden R. A.

    2018-04-01

    We provide a one-to-one map between the spin correlations and certain three-dimensional shapes, analogous to the map between single spins and Bloch vectors, and demonstrate its utility. Much as one can reason geometrically about dynamics using a Bloch vector—e.g., a magnetic field causes it to precess and dissipation causes it to shrink—one can reason similarly about the shapes we use to visualize correlations. This visualization demonstrates its usefulness by unveiling the hidden structure in the correlations. For example, seemingly complex correlation dynamics can be described as simple motions of the shapes. We demonstrate the simplicity of the dynamics, which is obscured in conventional analyses, by analyzing several physical systems of relevance to cold atoms.

  16. Correlating hydrodynamic radii with that of two-dimensional nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Yuan; Kan, Yuwei; Clearfield, Abraham

    2015-12-21

    Dynamic light scattering (DLS) is one of the most adapted methods to measure the size of nanoparticles, as referred to the hydrodynamic radii (R{sub h}). However, the R{sub h} represents only that of three-dimensional spherical nanoparticles. In the present research, the size of two-dimensional (2D) nanoparticles of yttrium oxide (Y{sub 2}O{sub 3}) and zirconium phosphate (ZrP) was evaluated through comparing their hydrodynamic diameters via DLS with lateral sizes obtained using scanning and transmission electron microscopy. We demonstrate that the hydrodynamic radii are correlated with the lateral sizes of both square and circle shaped 2D nanoparticles. Two proportional coefficients, i.e., correctingmore » factors, are proposed for the Brownian motion status of 2D nanoparticles. The correction is possible by simplifying the calculation of integrals in the case of small thickness approximation. The correcting factor has great significance for investigating the translational diffusion behavior of 2D nanoparticles in a liquid and in effective and low-cost measurement in terms of size and morphology of shape-specific nanoparticles.« less

  17. Grain shape of basaltic ash populations: implications for fragmentation

    NASA Astrophysics Data System (ADS)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin

    2017-02-01

    Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within 45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.

  18. On the birefringence of healthy and malaria-infected red blood cells

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Aditya K.; Basu, Himanish; Dharmadhikari, Jayashree A.; Sharma, Shobhona; Mathur, Deepak

    2013-12-01

    The birefringence of a red blood cell (RBC) is quantitatively monitored as it becomes infected by a malarial parasite. Large changes occur in the cell's refractive index at different stages of malarial infection. The observed rotation of an optically trapped, malaria-infected RBC is not a simple function of shape distortion: the malarial parasite is found to itself exercise a profound influence on the rotational dynamics by inducing stage-specific birefringence. Our measurements shed new light on the competition between shape- and form-birefringence in RBCs. We demonstrate the possibility of using birefringence to establish very early stages of infected parasites and of assessing various factors that contribute to birefringence in normal and infected cells. Our results have implications for the development and use of noninvasive techniques of quantifying changes in cell properties induced by malaria disease pathology.

  19. Growth rate of a penny-shaped crack in hydraulic fracturing of rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Mura, T.; Keer, L.M.

    1976-10-10

    The stable growth of a crack created by the hydraulic pressurizing of a penny-shaped crack in a dry rock mass is investigated. The rock mass is infinitely extended, homogeneous, and isotropic. It is verified on the basis of the equations of fluid dynamics that the fracturing fluid cannot penetrate the entire domain of a crack when the crack is moving. The effects of various terms in the basic equations also are studied. The solution of some typical examples is given, and the significant effect of the stress intensity factor of the rock on the crack propagation is shown. When themore » crack is expanding under a constant flow rate, the classical solution by Sack is found to be approx. valid for very large cracks, and nevertheless the crack is stable. (11 refs.)« less

  20. Growth rate of a penny-shaped crack in hydraulic fracturing of rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, H.; Mura, T.; Keer, L.M.

    1976-10-10

    The stable growth of a crack created by the hydraulic pressurizing of a penny-shaped crack in a dry rock mass is investigated. The rock mass is infinitely extended, homogeneous, and isotropic. It is verified on the basis of the equations of fluid dynamics that the fracturing fluid cannot penetrate the entire domain of a crack when the crack is moving. The effects of various terms in the basic equations are also studied. The solution of some typical examples is given, and the significant effect of the stress intensity factor of the rock on the crack propagation is shown. When themore » crack is expanding under a constant flow rate, the classical solution by Sack is found to be approximately valid for very large cracks, and nevertheless the crack is stable.« less

  1. Electrohydrodynamics in nanochannels coated by mixed polymer brushes: effects of electric field strength and solvent quality

    NASA Astrophysics Data System (ADS)

    Cao, Qianqian; Tian, Xiu; You, Hao

    2018-04-01

    We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.

  2. Dynamic NMR under nonstationary conditions: Theoretical model, numerical calculation, and potential of application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babailov, S. P., E-mail: babajlov@niic.nsc.ru; National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050; Purtov, P. A.

    An expression has been derived for the time dependence of the NMR line shape for systems with multi-site chemical exchange in the absence of spin-spin coupling, in a zero saturation limit. The dynamics of variation of the NMR line shape with time is considered in detail for the case of two-site chemical exchange. Mathematical programs have been designed for numerical simulation of the NMR spectra of chemical exchange systems. The analytical expressions obtained are useful for NMR line shape simulations for systems with photoinduced chemical exchange.

  3. Dynamics of voids and their shapes in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Kei-ichi; Sakai, Nobuyuki; Triay, Roland, E-mail: maeda@waseda.jp, E-mail: nsakai@e.yamagata-u.ac.jp, E-mail: triay@cpt.univ-mrs.fr

    2011-08-01

    We investigate the dynamics of a single spherical void embedded in a Friedmann-Lemaitre universe, and analyze the void shape in the redshift space. We find that the void in the redshift space appears as an ellipse shape elongated along the line of sight (i.e., an opposite deformation to the Kaiser effect). Applying this result to observed void candidates at the redshift z ∼ 1-2, it may provide us with a new method to evaluate the cosmological parameters, in particular the value of a cosmological constant.

  4. Mass-Related Dynamical Barriers in Triatomic Reactions

    NASA Astrophysics Data System (ADS)

    Yanao, T.; Koon, W. S.; Marsden, J. E.

    2006-06-01

    A methodology is given to determine the effect of different mass distributions for triatomic reactions using the geometry of shape space. Atomic masses are incorporated into the non-Euclidean shape space metric after the separation of rotations. Using the equations of motion in this non-Euclidean shape space, an averaged field of velocity-dependent fictitious forces is determined. This force field, as opposed to the force arising from the potential, dominates branching ratios of isomerization dynamics of a triatomic molecule. This methodology may be useful for qualitative prediction of branching ratios in general triatomic reactions.

  5. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  6. Dynamics of acoustically levitated disk samples.

    PubMed

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gamma

  7. Dynamics of acoustically levitated disk samples

    NASA Astrophysics Data System (ADS)

    Xie, W. J.; Wei, B.

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King’s theory, and a larger force can be obtained for thin disks. When the disk aspect ratio γ is larger than a critical value γ*(≈1.9) and the disk radius a is smaller than the critical value a*(γ) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples (γ⩽γ*) can be formulated by the shape factor f(γ,a) when a⩽a*(γ) . It is found experimentally that a necessary condition of the acoustic field for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval Hn . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  8. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  9. Mechanical stress and network structure drive protein dynamics during cytokinesis.

    PubMed

    Srivastava, Vasudha; Robinson, Douglas N

    2015-03-02

    Cell-shape changes associated with processes like cytokinesis and motility proceed on several-second timescales but are derived from molecular events, including protein-protein interactions, filament assembly, and force generation by molecular motors, all of which occur much faster [1-4]. Therefore, defining the dynamics of such molecular machinery is critical for understanding cell-shape regulation. In addition to signaling pathways, mechanical stresses also direct cytoskeletal protein accumulation [5-7]. A myosin-II-based mechanosensory system controls cellular contractility and shape during cytokinesis and under applied stress [6, 8]. In Dictyostelium, this system tunes myosin II accumulation by feedback through the actin network, particularly through the crosslinker cortexillin I. Cortexillin-binding IQGAPs are major regulators of this system. Here, we defined the short timescale dynamics of key cytoskeletal proteins during cytokinesis and under mechanical stress, using fluorescence recovery after photobleaching and fluorescence correlation spectroscopy, to examine the dynamic interplay between these proteins. Equatorially enriched proteins including cortexillin I, IQGAP2, and myosin II recovered much more slowly than actin and polar crosslinkers. The mobility of equatorial proteins was greatly reduced at the furrow compared to the interphase cortex, suggesting their stabilization during cytokinesis. This mobility shift did not arise from a single biochemical event, but rather from a global inhibition of protein dynamics by mechanical-stress-associated changes in the cytoskeletal structure. Mechanical tuning of contractile protein dynamics provides robustness to the cytoskeletal framework responsible for regulating cell shape and contributes to cytokinesis fidelity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Spatio-temporal modelling of the NF-κB intracellular signalling pathway: the roles of diffusion, active transport, and cell geometry.

    PubMed

    Terry, Alan J; Chaplain, Mark A J

    2011-12-07

    The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    PubMed

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Landscape context and long-term tree influences shape the dynamics of forest-meadow ecotones in mountain ecosystems

    Treesearch

    R.E. Haugo; C.B. Halpern; J.D. Bakker

    2011-01-01

    Forest-meadow ecotones are prominent and dynamic features of mountain ecosystems. Understanding how vegetation changes are shaped by long-term interactions with trees and are mediated by the physical environment is critical to predicting future trends in biological diversity across these landscapes. We examined 26 yr of vegetation change (1983-2009) across 20 forest-...

  13. A Novel Shape Parameterization Approach

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  14. A lateral signalling pathway coordinates shape volatility during cell migration

    PubMed Central

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K.; Musiol, Martin; Won, Amy; Yip, Christopher M.; Plotnikov, Sergey V.; Wrana, Jeffrey L.

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1–Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  15. Dynamic representation of partially occluded objects in primate prefrontal and visual cortex

    PubMed Central

    Choi, Hannah; Shea-Brown, Eric

    2017-01-01

    Successful recognition of partially occluded objects is presumed to involve dynamic interactions between brain areas responsible for vision and cognition, but neurophysiological evidence for the involvement of feedback signals is lacking. Here, we demonstrate that neurons in the ventrolateral prefrontal cortex (vlPFC) of monkeys performing a shape discrimination task respond more strongly to occluded than unoccluded stimuli. In contrast, neurons in visual area V4 respond more strongly to unoccluded stimuli. Analyses of V4 response dynamics reveal that many neurons exhibit two transient response peaks, the second of which emerges after vlPFC response onset and displays stronger selectivity for occluded shapes. We replicate these findings using a model of V4/vlPFC interactions in which occlusion-sensitive vlPFC neurons feed back to shape-selective V4 neurons, thereby enhancing V4 responses and selectivity to occluded shapes. These results reveal how signals from frontal and visual cortex could interact to facilitate object recognition under occlusion. PMID:28925354

  16. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  17. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  18. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

    PubMed

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  19. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.

    2015-06-29

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The originmore » of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.« less

  20. Modeling the dynamics of shape generation and sensing by proteins on lipid membranes

    NASA Astrophysics Data System (ADS)

    Walani, Nikhil; Arroyo, Marino

    Lipid membranes are fluid surfaces with flexural resistance that interact with proteins to perform their function in a biological context. A set of these proteins are responsible for shaping the lipid membranes, or of sensing curvature. A large body of work has examined the curvature sensing and generation properties of these proteins. Even though such processes are fundamentally dynamical in cells and in in vitro reconstituted systems, theoretical and computational studies have largely focussed on equilibrium thermodynamics. In this work, we propose a theoretical framework based on Onsager's variational principle of irreversible thermodynamics that captures the dynamics of adsorption, diffusion, and shape generation or sensing of proteins on lipid surfaces. We acknowledge the funds from European Research Council CoG- 681434 to support this research.

  1. Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.

    1999-01-01

    The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.

  2. Shaped pupil coronagraphy for WFIRST: high-contrast broadband testbed demonstration

    NASA Astrophysics Data System (ADS)

    Cady, Eric; Balasubramanian, Kunjithapatham; Gersh-Range, Jessica; Kasdin, Jeremy; Kern, Brian; Lam, Raymond; Mejia Prada, Camilo; Moody, Dwight; Patterson, Keith; Poberezhskiy, Ilya; Riggs, A. J. Eldorado; Seo, Byoung-Joon; Shi, Fang; Tang, Hong; Trauger, John; Zhou, Hanying; Zimmerman, Neil

    2017-09-01

    The Shaped Pupil Coronagraph (SPC) is one of the two operating modes of the WFIRST coronagraph instrument. The SPC provides starlight suppression in a pair of wedge-shaped regions over an 18% bandpass, and is well suited for spectroscopy of known exoplanets. To demonstrate this starlight suppression in the presence of expected onorbit input wavefront disturbances, we have recently built a dynamic testbed at JPL analogous to the WFIRST flight instrument architecture, with both Hybrid Lyot Coronagraph (HLC) and SPC architectures and a Low Order Wavefront Sensing and Control (LOWFS/C) subsystem to apply, sense, and correct dynamic wavefront disturbances. We present our best up-to-date results of the SPC mode demonstration from the testbed, in both static and dynamic conditions, along with model comparisons. HLC results will be reported separately.

  3. Social and economic influences on human behavioural response in an emerging epidemic

    NASA Astrophysics Data System (ADS)

    Phang, P.; Wiwatanapataphee, B.; Wu, Y. H.

    2017-10-01

    The human behavioural changes have been recognized as an important key in shaping the disease spreading and determining the success of control measures in the course of epidemic outbreaks. However, apart from cost-benefit considerations, in reality, people are heterogeneous in their preferences towards adopting certain protective actions to reduce their risk of infection, and social norms have a function in individuals’ decision making. Here, we studied the interplay between the epidemic dynamics, imitation dynamics and the heterogeneity of individual protective behavioural response under the considerations of both economic and social factors, with a simple mathematical compartmental model and multi-population game dynamical replicator equations. We assume that susceptibles in different subpopulations have different preferences in adopting either normal or altered behaviour. By incorporating both intra- and inter-group social pressure, the outcome of the strategy distribution depends on the initial proportion of susceptible with normal and altered strategies in both subpopulations. The increase of additional cost to susceptible with altered behaviour will discourage people to take up protective actions and hence results in higher epidemic final size. For a specific cost of altered behaviour, the social group pressure could be a “double edge sword”, though. We conclude that the interplays between individual protective behaviour adoption, imitation and epidemic dynamics are necessarily complex if both economic and social factors act on populations with existing preferences.

  4. Static and dynamic light scattering by red blood cells: A numerical study.

    PubMed

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard; Fedosov, Dmitry A

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods-multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring.

  5. Static and dynamic light scattering by red blood cells: A numerical study

    PubMed Central

    Mauer, Johannes; Peltomäki, Matti; Poblete, Simón; Gompper, Gerhard

    2017-01-01

    Light scattering is a well-established experimental technique, which gains more and more popularity in the biological field because it offers the means for non-invasive imaging and detection. However, the interpretation of light-scattering signals remains challenging due to the complexity of most biological systems. Here, we investigate static and dynamic scattering properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation methods—multi-particle collision dynamics and dissipative particle dynamics. Light scattering is studied for various membrane shear elasticities, bending rigidities, and RBC shapes (e.g., biconcave and stomatocyte). Simulation results from the two simulation methods show good agreement, and demonstrate that the static light scattering of a diffusing RBC is not very sensitive to the changes in membrane properties and moderate alterations in cell shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light scattering, the dynamic measurements can be employed to differentiate between the biconcave and stomatocytic RBC shapes and generally allow the differentiation based on the membrane properties. Our simulation results can be used for better understanding of light scattering by RBCs and the development of new non-invasive methods for blood-flow monitoring. PMID:28472125

  6. [Characteristics of soil respiration in Phyllostachys edulis forest in Wanmulin Natural Reserve and related affecting factors].

    PubMed

    Wang, Chao; Yang, Zhi-Jie; Chen, Guang-Shui; Fan, Yue-Xin; Liu, Qiang; Tian, Hao

    2011-05-01

    By using Li-Cor 8100 open soil carbon flux system, the dynamic changes of soil respiration rate in Phyllostachys edulis forest in Wanmulin Natural Reserve in Fujian Province of China were measured from January 2009 to December 2009, with the relationships between the dynamic changes and related affecting factors analyzed. The monthly variation of soil respiration rate in the forest presented a double peak curve, with the peaks appeared in June 2009 (6. 83 micromol x m(-2) x s(-1)) and September 2009 (5.59 micromol x m(-2) x s(-1)), and the seasonal variation of the soil respiration rate was significant, with the maximum in summer and the minimum in winter. The soil respiration rate had significant correlation with the soil temperature at depth 5 cm (P < 0.05), but no significant correlation with soil moisture (P > 0.05). The monthly variation of litter fall mass in the forest was in single peak shape, and there was a significantly positive correlation between the monthly litter fall mass and soil respiration rate (P < 0.05). Two-factor model of soil temperature and litter fall mass could explain 93.2% variation of the soil respiration rate.

  7. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    NASA Astrophysics Data System (ADS)

    Wereley, Norman M.; Perez, Colette; Choi, Young T.

    2018-05-01

    This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  8. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry

    PubMed Central

    Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian

    2017-01-01

    The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced. PMID:29215600

  9. Experiment M115: Special hematologic effects: Dynamic changes in red cell shape in response to the space-flight environment

    NASA Technical Reports Server (NTRS)

    Kimzey, S. L.; Burns, L. C.; Fischer, C. L.

    1974-01-01

    The significance of the transformations in red cell shape observed during the Skylab study must be considered relative to the limitation of man's participation in extended space flight missions. The results of this one study are not conclusive with respect to this question. Based on these examinations of red cells in normal, healthy men and based on other Skylab experiment data relative to the functional capacity of the red cells in vitro and the performance capacity of man as an integrated system, the changes observed would not appear to be the limiting factor in determining man's stay in space. However, the results of this experiment and the documented red cell mass loss during space flight raise serious questions at this time relative to the selection criteria utilized for passengers and crews of future space flights. Until the specific cause and impact of the red cell shape change on cell survival in vivo can be resolved, individuals with diagnosed hematologic abnormalities should not be considered as prime candidates for missions, especially those of longer duration.

  10. ELECTRON BEAM SHAPING AND ITS APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, Aliaksei

    Transverse and longitudinal electron beam shaping is a crucial part of high-brightness electron accelerator operations. In this dissertation, we report on the corresponding beam dynamics research conducted at Fermilab Accelerator Science and Technology facility (FAST) and Argonne Wakeeld Accelerator (AWA). We demonstrate an experimental method for spatial laser and electron beam shaping using microlens arrays (MLAs) at a photoinjector facility. Such a setup was built at AWA and resulted in transverse emittance reduction by a factor of 2. We present transverse emittance partitioning methods that were recently employed at FAST facility. A strongly coupled electron beam was generated in anmore » axial magnetic eld and accelerated in 1.3 GHz SRF cavities to 34 MeV. It was then decoupled in Round-To-Flat beam transformer and beams with emittance asymmetry ratio of 100 were generated. We introduce the new methods of measuring electron beam canonical angular momentum, beam transformer optimization and beam image analysis. We also describe a potential longitudinal space-charge amplier setup for FAST high-energy beamline. As an outcome, a broadband partially coherent radiation in the UV range could be generated.« less

  11. Three-Dimensional Shape Measurements of Specular Objects Using Phase-Measuring Deflectometry.

    PubMed

    Zhang, Zonghua; Wang, Yuemin; Huang, Shujun; Liu, Yue; Chang, Caixia; Gao, Feng; Jiang, Xiangqian

    2017-12-07

    The fast development in the fields of integrated circuits, photovoltaics, the automobile industry, advanced manufacturing, and astronomy have led to the importance and necessity of quickly and accurately obtaining three-dimensional (3D) shape data of specular surfaces for quality control and function evaluation. Owing to the advantages of a large dynamic range, non-contact operation, full-field and fast acquisition, high accuracy, and automatic data processing, phase-measuring deflectometry (PMD, also called fringe reflection profilometry) has been widely studied and applied in many fields. Phase information coded in the reflected fringe patterns relates to the local slope and height of the measured specular objects. The 3D shape is obtained by integrating the local gradient data or directly calculating the depth data from the phase information. We present a review of the relevant techniques regarding classical PMD. The improved PMD technique is then used to measure specular objects having discontinuous and/or isolated surfaces. Some influential factors on the measured results are presented. The challenges and future research directions are discussed to further advance PMD techniques. Finally, the application fields of PMD are briefly introduced.

  12. Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit.

    PubMed

    Zhang, Zhi-Bo; Wang, Qiu-Yue; Ke, Yu-Xi; Liu, Shi-Yu; Ju, Jian-Qi; Lim, Wendell A; Tang, Chao; Wei, Ping

    2017-11-22

    Although oscillatory circuits are prevalent in transcriptional regulation, it is unclear how a circuit's structure and the specific parameters that describe its components determine the shape of its oscillations. Here, we engineer a minimal, inducible human nuclear factor κB (NF-κB)-based system that is composed of NF-κB (RelA) and degradable inhibitor of NF-κB (IκBα), into the yeast, Saccharomyces cerevisiae. We define an oscillation's waveform quantitatively as a function of signal amplitude, rest time, rise time, and decay time; by systematically tuning RelA concentration, the strength of negative feedback, and the degradation rate of IκBα, we demonstrate that peak shape and frequency of oscillations can be controlled in vivo and predicted mathematically. In addition, we show that nested negative feedback loops can be employed to specifically tune the frequency of oscillations while leaving their peak shape unchanged. In total, this work establishes design principles that enable function-guided design of oscillatory signaling controllers in diverse synthetic biology applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Impact of building configuration on air quality in street canyon

    NASA Astrophysics Data System (ADS)

    Xie, Xiaomin; Huang, Zhen; Wang, Jia-song

    The objective of this study is to provide a simulation of emissions from vehicle exhausts in a street canyon within an urban environment. Standard, RNG and Chen-Kim k- ɛ turbulence models are compared with the wind tunnel measured data for optimization of turbulence model. In the first approach, the investigation is made into the effect of the different roof shapes and ambient building structures. The results indicate that the in-canyon vortex dynamics (e.g. vortex orientation) and the characteristics of pollutant dispersion are dependent on the roof shapes and ambient building structures strongly. A second set of calculations for a three-dimensional simulation of the street canyon setup was performed to investigate the influence of building geometry on pollutant dispersion. The validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (Studie on different roof geometries in a simplified urban environment, 1995). The studies give evidence that roof shapes, the ambient building configurations and building geometries are important factors determining the flow patterns and pollutant dispersion in street canyon.

  14. Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses

    NASA Astrophysics Data System (ADS)

    Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.

    We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.

  15. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  16. Polymorphism in Bacterial Flagella Suspensions

    NASA Astrophysics Data System (ADS)

    Schwenger, Walter J.

    Bacterial flagella are a type of biological polymer studied for its role in bacterial motility and the polymorphic transitions undertaken to facilitate the run and tumble behavior. The naturally rigid, helical shape of flagella gives rise to novel colloidal dynamics and material properties. This thesis studies methods in which the shape of bacterial flagella can be controlled using in vitro methods and the changes the shape of the flagella have on both single particle dynamics and bulk material properties. We observe individual flagellum in both the dilute and semidilute regimes to observe the effects of solvent condition on the shape of the filament as well as the effect the filament morphology has on reptation through a network of flagella. In addition, we present rheological measurements showing how the shape of filaments effects the bulk material properties of flagellar suspensions. We find that the individual particle dynamics in suspensions of flagella can vary with geometry from needing to reptate linearly via rotation for helical filaments to the prevention of long range diffusion for block copolymer filaments. Similarly, for bulk material properties of flagella suspensions, helical geometries show a dramatic enhancement in elasticity over straight filaments while block copolymers form an elastic gel without the aid of crosslinking agents.

  17. Scaling Laws for Shapes of Food Fragments by Human Mastication

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoki; Kohyama, Kaoru; Sasaki, Yo; Matsushita, Mitsugu

    2007-04-01

    Scaling property of the shape of fragments which were produced by masticating raw carrots has been studied experimentally and theoretically. Mastication experiments showed that most fragments have more or less isotropic shapes which are independent of the number of chewing strokes, whereas larger fragments than a crossover size have complicated shapes. Since the crossover size had the structure which was dependent on the number of chewing strokes, we have tried to propose dynamic scaling hypothesis analogous to the case of growing self-affine interface. It was found that the dynamic scaling yields fairly accurate values of the scaling exponents. Our results will provide a new observation and insight of not only sequential fragmentation but also construction for physiological measurement.

  18. Universal shape characteristics for the mesoscopic star-shaped polymer via dissipative particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.

    2018-05-01

    In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.

  19. Multi-Body Dynamic Contact Analysis. Tool for Transmission Design SBIR Phase II Final Report

    DTIC Science & Technology

    2003-04-01

    shapes and natural frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using...COSMIC NASTRAN via modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by

  20. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  1. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2009-05-20

    TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE France : Factors Shaping Foreign Policy, and Issues in U.S.- French ...Z39-18 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Congressional Research Service Summary The factors that shape... French foreign policy have changed since the end of the Cold War. The perspectives of France and the United States have diverged in some cases. More

  2. Dynamic Stark broadening as the Dicke narrowing effect

    NASA Astrophysics Data System (ADS)

    Calisti, A.; Mossé, C.; Ferri, S.; Talin, B.; Rosmej, F.; Bureyeva, L. A.; Lisitsa, V. S.

    2010-01-01

    A very fast method to account for charged particle dynamics effects in calculations of spectral line shape emitted by plasmas is presented. This method is based on a formulation of the frequency fluctuation model (FFM), which provides an expression of the dynamic line shape as a functional of the static distribution of frequencies. Thus, the main numerical work rests on the calculation of the quasistatic Stark profile. This method for taking into account ion dynamics allows a very fast and accurate calculation of Stark broadening of atomic hydrogen high- n series emission lines. It is not limited to hydrogen spectra. Results on helium- β and Lyman- α lines emitted by argon in microballoon implosion experiment conditions compared with experimental data and simulation results are also presented. The present approach reduces the computer time by more than 2 orders of magnitude as compared with the original FFM with an improvement of the calculation precision, and it opens broad possibilities for its application in spectral line-shape codes.

  3. Exploring the Factors Contributing to Sibling Correlations in BMI: A Study Using the Panel Study of Income Dynamics

    PubMed Central

    Brown, Heather W.; Roberts, Jennifer

    2012-01-01

    Understanding the mechanisms contributing to correlated BMI outcomes in a social network such as siblings will help policy makers reduce the burden of disease associated with obesity. There are two potential mechanisms explaining correlated BMI outcomes in a biologically related social network: (i) time constant factors such as genetic heritability and habits formed during childhood and (ii) factors that change over time some of which are dependent on the frequency of interactions between the social network, for example, social norms shaped by the social network's shifting attitudes towards weight and behaviors related to weight, or environmental factors like opportunities for exercise. This study aims to distinguish between time constant factors from factors that are likely to change over time to gain a better understanding of the mechanisms explaining the correlation in sibling BMI. We exploit data from the Panel Study of Income Dynamics (PSID) over 1999–2007 estimating the correlation in BMI for adult siblings who currently live in separate households but grew-up in the same household and adolescent siblings currently living in the same household to isolate the influence of factors that change over time. The findings indicate that time constant factors explain some of the overall correlation in sibling BMI for both cohorts of siblings. Factors that change over time only significantly impact on the overall correlation in BMI for adolescent siblings suggesting if there is a social network influence on correlations in BMI this is facilitated by sharing the same household. PMID:22173572

  4. Dynamics in microbial communities: Unraveling mechanisms to identify principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopka, Allan; Lindemann, Stephen R.; Fredrickson, Jim K.

    2015-07-01

    Diversity begets higher order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richermore » network of community interactions, and it is this “system” that is the basis for higher order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions.« less

  5. Visualizing long-term single-molecule dynamics in vivo by stochastic protein labeling.

    PubMed

    Liu, Hui; Dong, Peng; Ioannou, Maria S; Li, Li; Shea, Jamien; Pasolli, H Amalia; Grimm, Jonathan B; Rivlin, Patricia K; Lavis, Luke D; Koyama, Minoru; Liu, Zhe

    2018-01-09

    Our ability to unambiguously image and track individual molecules in live cells is limited by packing of multiple copies of labeled molecules within the resolution limit. Here we devise a universal genetic strategy to precisely control copy number of fluorescently labeled molecules in a cell. This system has a dynamic range of ∼10,000-fold, enabling sparse labeling of proteins expressed at different abundance levels. Combined with photostable labels, this system extends the duration of automated single-molecule tracking by two orders of magnitude. We demonstrate long-term imaging of synaptic vesicle dynamics in cultured neurons as well as in intact zebrafish. We found axon initial segment utilizes a "waterfall" mechanism gating synaptic vesicle transport polarity by promoting anterograde transport processivity. Long-time observation also reveals that transcription factor hops between clustered binding sites in spatially restricted subnuclear regions, suggesting that topological structures in the nucleus shape local gene activities by a sequestering mechanism. This strategy thus greatly expands the spatiotemporal length scales of live-cell single-molecule measurements, enabling new experiments to quantitatively understand complex control of molecular dynamics in vivo.

  6. Dynamic preferential allocation to arbuscular mycorrhizal fungi explains fungal succession and coexistence.

    PubMed

    Bachelot, Benedicte; Lee, Charlotte T

    2018-02-01

    Evidence accumulates about the role of arbuscular mycorrhizal (AM) fungi in shaping plant communities, but little is known about the factors determining the biomass and coexistence of several types of AM fungi in a plant community. Here, using a consumer-resource framework that treats the relationship between plants and fungi as simultaneous, reciprocal exploitation, we investigated what patterns of dynamic preferential plant carbon allocation to empirically-defined fungal types (on-going partner choice) would be optimal for plants, and how these patterns depend on successional dynamics. We found that ruderal AM fungi can dominate under low steady-state nutrient availability, and competitor AM fungi can dominate at higher steady-state nutrient availability; these are conditions characteristic of early and late succession, respectively. We also found that dynamic preferential allocation alone can maintain a diversity of mutualists, suggesting that on-going partner choice is a new coexistence mechanism for mutualists. Our model can therefore explain both mutualist coexistence and successional strategy, providing a powerful tool to derive testable predictions. © 2017 by the Ecological Society of America.

  7. Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus).

    PubMed

    Berg, Florian; Almeland, Oda W; Skadal, Julie; Slotte, Aril; Andersson, Leif; Folkvord, Arild

    2018-01-01

    Atlantic herring, Clupea harengus, have complex population structures. Mixing of populations is known, but the extent of connectivity is still unclear. Phenotypic plasticity results in divergent phenotypes in response to environmental factors. A marked salinity gradient occurs from Atlantic Ocean (salinity 35) into the Baltic Sea (salinity range 2-12). Herring from both habitats display phenotypic and genetic variability. To explore how genetic factors and salinity influence phenotypic traits like growth, number of vertebrae and otolith shape an experimental population consisting of Atlantic purebreds and Atlantic/Baltic F1 hybrids were incubated and co-reared at two different salinities, 16 and 35, for three years. The F1-generation was repeatedly sampled to evaluate temporal variation. A von Bertalanffy growth model indicated that reared Atlantic purebreds had a higher maximum length (26.2 cm) than Atlantic/Baltic hybrids (24.8 cm) at salinity 35, but not at salinity 16 (25.0 and 24.8 cm, respectively). In contrast, Atlantic/Baltic hybrids achieved larger size-at-age than the wild caught Baltic parental group. Mean vertebral counts and otolith aspect ratios were higher for reared Atlantic purebreds than Atlantic/Baltic hybrids, consistent with the differences between parental groups. There were no significant differences in vertebral counts and otolith aspect ratios between herring with the same genotype but raised in different salinities. A Canonical Analysis of Principal Coordinates was applied to analyze the variation in wavelet coefficients that described otolith shape. The first discriminating axis identified the differences between Atlantic purebreds and Atlantic/Baltic hybrids, while the second axis represented salinity differences. Assigning otoliths based on genetic groups (Atlantic purebreds vs. Atlantic/Baltic hybrids) yielded higher classification success (~90%) than based on salinities (16 vs. 35; ~60%). Our results demonstrate that otolith shape and vertebral counts have a significant genetic component and are therefore useful for studies on population dynamics and connectivity.

  8. Mass spectrometric analysis and aerodynamic properties of various types of combustion-related aerosol particles

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Weimer, S.; Drewnick, F.; Borrmann, S.; Helas, G.; Gwaze, P.; Schmid, O.; Andreae, M. O.; Kirchner, U.

    2006-12-01

    Various types of combustion-related particles in the size range between 100 and 850 nm were analyzed with an aerosol mass spectrometer and a differential mobility analyzer. The measurements were performed with particles originating from biomass burning, diesel engine exhaust, laboratory combustion of diesel fuel and gasoline, as well as from spark soot generation. Physical and morphological parameters like fractal dimension, effective density, bulk density and dynamic shape factor were derived or at least approximated from the measurements of electrical mobility diameter and vacuum aerodynamic diameter. The relative intensities of the mass peaks in the mass spectra obtained from particles generated by a commercial diesel passenger car, by diesel combustion in a laboratory burner, and by evaporating and re-condensing lubrication oil were found to be very similar. The mass spectra from biomass burning particles show signatures identified as organic compounds like levoglucosan but also others which are yet unidentified. The aerodynamic behavior yielded a fractal dimension (Df) of 2.09 +/- 0.06 for biomass burning particles from the combustion of dry beech sticks, but showed values around three, and hence more compact particle morphologies, for particles from combustion of more natural oak. Scanning electron microscope images confirmed the finding that the beech combustion particles were fractal-like aggregates, while the oak combustion particles displayed a much more compact shape. For particles from laboratory combusted diesel fuel, a Df value of 2.35 was found, for spark soot particles, Df [approximate] 2.10. The aerodynamic properties of fractal-like particles from dry beech wood combustion indicate an aerodynamic shape factor [chi] that increases with electrical mobility diameter, and a bulk density of 1.92 g cm-3. An upper limit of [chi] [approximate] 1.2 was inferred for the shape factor of the more compact particles from oak combustion.

  9. Epidemiology of East Coast fever (Theileria parva infection) in Kenya: past, present and the future.

    PubMed

    Gachohi, John; Skilton, Rob; Hansen, Frank; Ngumi, Priscilla; Kitala, Philip

    2012-09-07

    In this article, we review the epidemiology of East Coast fever (ECF), a tick-borne infection of cattle, in Kenya. The major factors associated with epidemiology of ECF include the agro-ecological zone (AEZ), livestock production system (LPS) and both animal breed and age. These factors appear to influence the epidemiology of ECF through structured gradients. We further show that the gradients are dynamically shaped by socio-demographic and environmental processes. For a vector-borne disease whose transmission depends on environmental characteristics that influence vector dynamics, a change in the environment implies a change in the epidemiology of the disease. The review recommends that future ECF epidemiological studies should account for these factors and the dynamic interactions between them. In Kenya, ECF control has previously relied predominantly on tick control using acaricides and chemotherapy while ECF immunization is steadily being disseminated. We highlight the contribution of ECF epidemiology and economics in the design of production system and/or geographical area-specific integrated control strategies based on both the dynamic epidemiological risk of the disease and economic impacts of control strategies. In all production systems (except marginal areas), economic analyses demonstrate that integrated control in which ECF immunization is always an important component, can play an important role in the overall control of the disease. Indeed, Kenya has recently approved ECF immunization in all production systems (except in marginal areas). If the infrastructure of the vaccine production and distribution can be heightened, large ECF endemic areas are expected to be endemically stable and the disease controlled. Finally, the review points the way for future research by identifying scenario analyses as a critical methodology on which to base future investigations on how both dynamic livestock management systems and patterns of land use influence the dynamics and complexity of ECF epidemiology and the implications for control.

  10. Epidemiology of East Coast fever (Theileria parva infection) in Kenya: past, present and the future

    PubMed Central

    2012-01-01

    In this article, we review the epidemiology of East Coast fever (ECF), a tick-borne infection of cattle, in Kenya. The major factors associated with epidemiology of ECF include the agro-ecological zone (AEZ), livestock production system (LPS) and both animal breed and age. These factors appear to influence the epidemiology of ECF through structured gradients. We further show that the gradients are dynamically shaped by socio-demographic and environmental processes. For a vector-borne disease whose transmission depends on environmental characteristics that influence vector dynamics, a change in the environment implies a change in the epidemiology of the disease. The review recommends that future ECF epidemiological studies should account for these factors and the dynamic interactions between them. In Kenya, ECF control has previously relied predominantly on tick control using acaricides and chemotherapy while ECF immunization is steadily being disseminated. We highlight the contribution of ECF epidemiology and economics in the design of production system and/or geographical area-specific integrated control strategies based on both the dynamic epidemiological risk of the disease and economic impacts of control strategies. In all production systems (except marginal areas), economic analyses demonstrate that integrated control in which ECF immunization is always an important component, can play an important role in the overall control of the disease. Indeed, Kenya has recently approved ECF immunization in all production systems (except in marginal areas). If the infrastructure of the vaccine production and distribution can be heightened, large ECF endemic areas are expected to be endemically stable and the disease controlled. Finally, the review points the way for future research by identifying scenario analyses as a critical methodology on which to base future investigations on how both dynamic livestock management systems and patterns of land use influence the dynamics and complexity of ECF epidemiology and the implications for control. PMID:22958352

  11. Dynamic contact guidance of migrating cells

    NASA Astrophysics Data System (ADS)

    Losert, Wolfgang; Sun, Xiaoyu; Guven, Can; Driscoll, Meghan; Fourkas, John

    2014-03-01

    We investigate the effects of nanotopographical surfaces on the cell migration and cell shape dynamics of the amoeba Dictyostelium discoideum. Amoeboid motion exhibits significant contact guidance along surfaces with nanoscale ridges or grooves. We show quantitatively that nanoridges spaced 1.5 μm apart exhibit the greatest contact guidance efficiency. Using principal component analysis, we characterize the dynamics of the cell shape modulated by the coupling between the cell membrane and ridges. We show that motion parallel to the ridges is enhanced, while the turning, at the largest spatial scales, is suppressed. Since protrusion dynamics are principally governed by actin dynamics, we imaged the actin polymerization of cells on ridges. We found that actin polymerization occurs preferentially along nanoridges in a ``monorail'' like fashion. The ridges then provide us with a tool to study actin dynamics in an effectively reduced dimensional system.

  12. Modality-specific spectral dynamics in response to visual and tactile sequential shape information processing tasks: An MEG study using multivariate pattern classification analysis.

    PubMed

    Gohel, Bakul; Lee, Peter; Jeong, Yong

    2016-08-01

    Brain regions that respond to more than one sensory modality are characterized as multisensory regions. Studies on the processing of shape or object information have revealed recruitment of the lateral occipital cortex, posterior parietal cortex, and other regions regardless of input sensory modalities. However, it remains unknown whether such regions show similar (modality-invariant) or different (modality-specific) neural oscillatory dynamics, as recorded using magnetoencephalography (MEG), in response to identical shape information processing tasks delivered to different sensory modalities. Modality-invariant or modality-specific neural oscillatory dynamics indirectly suggest modality-independent or modality-dependent participation of particular brain regions, respectively. Therefore, this study investigated the modality-specificity of neural oscillatory dynamics in the form of spectral power modulation patterns in response to visual and tactile sequential shape-processing tasks that are well-matched in terms of speed and content between the sensory modalities. Task-related changes in spectral power modulation and differences in spectral power modulation between sensory modalities were investigated at source-space (voxel) level, using a multivariate pattern classification (MVPC) approach. Additionally, whole analyses were extended from the voxel level to the independent-component level to take account of signal leakage effects caused by inverse solution. The modality-specific spectral dynamics in multisensory and higher-order brain regions, such as the lateral occipital cortex, posterior parietal cortex, inferior temporal cortex, and other brain regions, showed task-related modulation in response to both sensory modalities. This suggests modality-dependency of such brain regions on the input sensory modality for sequential shape-information processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comprehensive dynamic analysis of a bladed disk-turborotor-bearing system

    NASA Astrophysics Data System (ADS)

    Kaushal, Ashok

    The dynamic behavior of a bladed disk-turborotor-bearing system is studied employing analytical, numerical, and experimental methods. The system consists of several subsystems such as turbine disk, blades, bearings, support pedestals etc. In order to completely understand the dynamic behavior of the turborotor system an appropriate model for each individual component of the system is first developed. The individual components are modeled to include various design parameters and the effect of these parameters on the vibrational behavior is studied. The vibration studies on the individual components are carried out using Rayleigh-Ritz method boundary characteristic orthogonal polynomials as assumed shape functions. The individual components are then assembled using the finite element technique. The turborotor system is studied from a system point of view and the natural frequencies and mode shapes are obtained for various rotational speeds. The results show that the natural frequencies of the system are different from those obtained by analyzing individual components, suggesting that a system approach must be adopted for proper design of a turborotor system. The amplitude of vibration and stresses due to harmonic and centrifugal loading on the blades and the disk are also obtained. The results indicate that for the turborotor speed of operation, the centrifugal loading is the major factor in determining the critical stresses in comparison to the gas forces on the blade modeled as harmonic loading. Experimental validation of the analytical model is carried out and suggestions for future work are given.

  14. Slip-mediated dewetting of polymer microdroplets

    PubMed Central

    McGraw, Joshua D.; Chan, Tak Shing; Maurer, Simon; Salez, Thomas; Benzaquen, Michael; Raphaël, Elie; Brinkmann, Martin; Jacobs, Karin

    2016-01-01

    Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slides against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap-shaped polystyrene microdroplets, with nonequilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using in situ atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient nonspherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition. PMID:26787903

  15. Preliminary flight-determined subsonic lift and drag characteristics of the X-29A forward-swept-wing airplane

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Huckabine, Thomas

    1989-01-01

    The X-29A subsonic lift and drag characteristics determined, met, or exceeded predictions, particularly with respect to the drag polar shapes. Induced drag levels were as great as 20 percent less than wind tunnel estimates, particularly at coefficients of lift above 0.8. Drag polar shape comparisons with other modern fighter aircraft showed the X-29A to have a better overall aircraft aerodynamic Oswald efficiency factor for the same aspect ratio. Two significant problems arose in the data reduction and analysis process. These included uncertainties in angle of attack upwash calibration and effects of maneuver dynamics on drag levels. The latter problem resulted from significantly improper control surface automatic camber control scheduling. Supersonic drag polar results were not obtained during this phase because of a lack of engine instrumentation to measure afterburner fuel flow.

  16. Long livestock farming history and human landscape shaping revealed by lake sediment DNA.

    PubMed

    Giguet-Covex, Charline; Pansu, Johan; Arnaud, Fabien; Rey, Pierre-Jérôme; Griggo, Christophe; Gielly, Ludovic; Domaizon, Isabelle; Coissac, Eric; David, Fernand; Choler, Philippe; Poulenard, Jérôme; Taberlet, Pierre

    2014-01-01

    The reconstruction of human-driven, Earth-shaping dynamics is important for understanding past human/environment interactions and for helping human societies that currently face global changes. However, it is often challenging to distinguish the effects of the climate from human activities on environmental changes. Here we evaluate an approach based on DNA metabarcoding used on lake sediments to provide the first high-resolution reconstruction of plant cover and livestock farming history since the Neolithic Period. By comparing these data with a previous reconstruction of erosive event frequency, we show that the most intense erosion period was caused by deforestation and overgrazing by sheep and cowherds during the Late Iron Age and Roman Period. Tracking plants and domestic mammals using lake sediment DNA (lake sedDNA) is a new, promising method for tracing past human practices, and it provides a new outlook of the effects of anthropogenic factors on landscape-scale changes.

  17. Neighborhood Age Structure and its Implications for Health

    PubMed Central

    2006-01-01

    Age structure at the neighborhood level is rarely considered in contextual studies of health. However, age structure can play a critical role in shaping community life, the availability of resources, and the opportunities for social engagement—all factors that, research suggests, have direct and indirect effects on health. Age structure can be theorized as a compositional effect and as a contextual effect. In addition, the dynamic nature of age structure and the utility of a life course perspective as applied to neighborhood effects research merits attention. Four Chicago neighborhoods are summarized to illustrate how age structure varies across small space, suggesting that neighborhood age structure should be considered a key structural covariate in contextual research on health. Considering age structure implies incorporating not only meaningful cut points for important age groups (e.g., proportion 65 years and over) but attention to the shape of the distribution as well. PMID:16865558

  18. Frequent inter-species transmission and geographic subdivision in avian influenza viruses from wild birds.

    PubMed

    Chen, Rubing; Holmes, Edward C

    2009-01-05

    Revealing the factors that shape the genetic structure of avian influenza viruses (AIVs) in wild bird populations is essential to understanding their evolution. However, the relationship between epidemiological dynamics and patterns of genetic diversity in AIV is not well understood, especially at the continental scale. To address this question, we undertook a phylogeographic analysis of complete genome sequences of AIV sampled from wild birds in North America. In particular, we asked whether host species, geographic location or sampling time played the major role in shaping patterns of viral genetic diversity. Strikingly, our analysis revealed no strong species effect, yet a significant viral clustering by time and place of sampling, as well as the circulation of multiple viral lineages in single locations. These results suggest that AIVs can readily infect many of the bird species that share breeding/feeding areas.

  19. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  20. The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy

    PubMed Central

    Giacobini, Mario; Pugliese, Andrea; Merler, Stefano; Rosà, Roberto

    2016-01-01

    Culex pipiens mosquito is a species widely spread across Europe and represents a competent vector for many arboviruses such as West Nile virus (WNV), which has been recently circulating in many European countries, causing hundreds of human cases. In order to identify the main determinants of the high heterogeneity in Cx. pipiens abundance observed in Piedmont region (Northwestern Italy) among different seasons, we developed a density-dependent stochastic model that takes explicitly into account the role played by temperature, which affects both developmental and mortality rates of different life stages. The model was calibrated with a Markov chain Monte Carlo approach exploring the likelihood of recorded capture data gathered in the study area from 2000 to 2011; in this way, we disentangled the role played by different seasonal eco-climatic factors in shaping the vector abundance. Illustrative simulations have been performed to forecast likely changes if temperature or density–dependent inputs would change. Our analysis suggests that inter-seasonal differences in the mosquito dynamics are largely driven by different temporal patterns of temperature and seasonal-specific larval carrying capacities. Specifically, high temperatures during early spring hasten the onset of the breeding season and increase population abundance in that period, while, high temperatures during the summer can decrease population size by increasing adult mortality. Higher densities of adult mosquitoes are associated with higher larval carrying capacities, which are positively correlated with spring precipitations. Finally, an increase in larval carrying capacity is expected to proportionally increase adult mosquito abundance. PMID:27105065

  1. A Target-Less Vision-Based Displacement Sensor Based on Image Convex Hull Optimization for Measuring the Dynamic Response of Building Structures.

    PubMed

    Choi, Insub; Kim, JunHee; Kim, Donghyun

    2016-12-08

    Existing vision-based displacement sensors (VDSs) extract displacement data through changes in the movement of a target that is identified within the image using natural or artificial structure markers. A target-less vision-based displacement sensor (hereafter called "TVDS") is proposed. It can extract displacement data without targets, which then serve as feature points in the image of the structure. The TVDS can extract and track the feature points without the target in the image through image convex hull optimization, which is done to adjust the threshold values and to optimize them so that they can have the same convex hull in every image frame and so that the center of the convex hull is the feature point. In addition, the pixel coordinates of the feature point can be converted to physical coordinates through a scaling factor map calculated based on the distance, angle, and focal length between the camera and target. The accuracy of the proposed scaling factor map was verified through an experiment in which the diameter of a circular marker was estimated. A white-noise excitation test was conducted, and the reliability of the displacement data obtained from the TVDS was analyzed by comparing the displacement data of the structure measured with a laser displacement sensor (LDS). The dynamic characteristics of the structure, such as the mode shape and natural frequency, were extracted using the obtained displacement data, and were compared with the numerical analysis results. TVDS yielded highly reliable displacement data and highly accurate dynamic characteristics, such as the natural frequency and mode shape of the structure. As the proposed TVDS can easily extract the displacement data even without artificial or natural markers, it has the advantage of extracting displacement data from any portion of the structure in the image.

  2. An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems

    NASA Astrophysics Data System (ADS)

    Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.

    2018-02-01

    By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.

  3. Autogenic succession and deterministic recovery following disturbance in soil bacterial communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurburg, Stephanie D.; Nunes, Inês; Stegen, James C.

    The response of bacterial communities to environmental change may affect local to global nutrient cycles; however the dynamics of these communities following disturbance are poorly understood, and are generally attributed to abiotic factors. Here, we subjected soil microcosms to a heat disturbance and followed the community composition of active bacteria over 50 days of recovery. Phylogenetic turnover patterns indicated that biotic interactions shaped the community during recovery, and that the disturbance imposed a strong selective pressure that persisted for up to 10 days, after which the importance of stochastic processes increased. Three successional stages were detected: a primary response (1-4more » days after disturbance) in which surviving taxa increased in abundance; a secondary response phase (10-29 days), during which community dynamics slowed down, and a stability phase (after 29 days), during which the community tended towards its original composition. Soil bacterial communities, despite their extreme diversity and functional redundancy, respond to disturbances like many macroecological systems and exhibit path-dependent, autogenic dynamics during secondary succession.« less

  4. The analysis of dynamic characteristics and wind-induced displacement response of space Beam String Structure

    NASA Astrophysics Data System (ADS)

    Chen, Yong Jian; Feng, Zhen Fa; Qi, Ai; Huang, Ying

    2018-06-01

    The Beam String Structure structural system, also called BSS, has the advantages of lighter dead weight and greater flexibility. The wind load is the main design control factor. The dynamic characteristics and wind-induced displacement response of BSS are studied by the finite element method. The roof structure of the stadium roof of the Fuzhou Olympic Sports Center is the engineering background. 1)The numerical model was built by ANSYS, by shape finding, determine the initial stress state of structural members such as external cables; 2)From the analysis of dynamic characteristics, the main mode of vibration is the vibration of cables; 3)The wind speed spectrum of MATLAB generation structure is obtained by AR method, the structural response of the structure under static wind load and fluctuating wind load is calculated. From the analysis result, considering the equivalent static wind load of BSS , the design of adverse wind is not safe, and the fluctuating wind load should be taken into account.

  5. Common species link global ecosystems to climate change: dynamical evidence in the planktonic fossil record.

    PubMed

    Hannisdal, Bjarte; Haaga, Kristian Agasøster; Reitan, Trond; Diego, David; Liow, Lee Hsiang

    2017-07-12

    Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans. © 2017 The Authors.

  6. Spiking, Bursting, and Population Dynamics in a Network of Growth Transform Neurons.

    PubMed

    Gangopadhyay, Ahana; Chakrabartty, Shantanu

    2018-06-01

    This paper investigates the dynamical properties of a network of neurons, each of which implements an asynchronous mapping based on polynomial growth transforms. In the first part of this paper, we present a geometric approach for visualizing the dynamics of the network where each of the neurons traverses a trajectory in a dual optimization space, whereas the network itself traverses a trajectory in an equivalent primal optimization space. We show that as the network learns to solve basic classification tasks, different choices of primal-dual mapping produce unique but interpretable neural dynamics like noise shaping, spiking, and bursting. While the proposed framework is general enough, in this paper, we demonstrate its use for designing support vector machines (SVMs) that exhibit noise-shaping properties similar to those of modulators, and for designing SVMs that learn to encode information using spikes and bursts. It is demonstrated that the emergent switching, spiking, and burst dynamics produced by each neuron encodes its respective margin of separation from a classification hyperplane whose parameters are encoded by the network population dynamics. We believe that the proposed growth transform neuron model and the underlying geometric framework could serve as an important tool to connect well-established machine learning algorithms like SVMs to neuromorphic principles like spiking, bursting, population encoding, and noise shaping.

  7. An exploration of the political economy dynamics shaping health worker incentives in three districts in Sierra Leone.

    PubMed

    Bertone, Maria Paola; Witter, Sophie

    2015-09-01

    The need for evidence-based practice calls for research focussing not only on the effectiveness of interventions and their translation into policies, but also on implementation processes and the factors influencing them, in particular for complex health system policies. In this paper, we use the lens of one of the health system's 'building blocks', human resources for health (HRH), to examine the implementation of official policies on HRH incentives and the emergence of informal practices in three districts of Sierra Leone. Our mixed-methods research draws mostly from 18 key informant interviews at district level. Data are organised using a political economy framework which focuses on the dynamic interactions between structure (context, historical legacies, institutions) and agency (actors, agendas, power relations) to show how these elements affect the HRH incentive practices in each district. It appears that the official policies are re-shaped both by implementation challenges and by informal practices emerging at local level as the result of the district-level dynamics and negotiations between District Health Management Teams (DHMTs) and nongovernmental organisations (NGOs). Emerging informal practices take the form of selective supervision, salary supplementations and per diems paid to health workers, and aim to ensure a better fit between the actors' agendas and the incentive package. Importantly, the negotiations which shape such practices are characterised by a substantial asymmetry of power between DHMTs and NGOs. In conclusion, our findings reveal the influence of NGOs on the HRH incentive package and highlight the need to empower DHMTs to limit the discrepancy between policies defined at central level and practices in the districts, and to reduce inequalities in health worker remuneration across districts. For Sierra Leone, these findings are now more relevant than ever as new players enter the stage at district level, as part of the Ebola response and post-Ebola reconstruction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Structural damage identification using damping: a compendium of uses and features

    NASA Astrophysics Data System (ADS)

    Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.

    2017-04-01

    The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.

  9. A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode

    NASA Astrophysics Data System (ADS)

    Karimi-Sibaki, E.; Kharicha, A.; Bohacek, J.; Wu, M.; Ludwig, A.

    2015-10-01

    This paper presents a numerical method to investigate the shape of tip and melt rate of an electrode during electroslag remelting process. The interactions between flow, temperature, and electromagnetic fields are taken into account. A dynamic mesh-based approach is employed to model the dynamic formation of the shape of electrode tip. The effect of slag properties such as thermal and electrical conductivities on the melt rate and electrode immersion depth is discussed. The thermal conductivity of slag has a dominant influence on the heat transfer in the system, hence on melt rate of electrode. The melt rate decreases with increasing thermal conductivity of slag. The electrical conductivity of slag governs the electric current path that in turn influences flow and temperature fields. The melting of electrode is a quite unstable process due to the complex interaction between the melt rate, immersion depth, and shape of electrode tip. Therefore, a numerical adaptation of electrode position in the slag has been implemented in order to achieve steady state melting. In fact, the melt rate, immersion depth, and shape of electrode tip are interdependent parameters of process. The generated power in the system is found to be dependent on both immersion depth and shape of electrode tip. In other words, the same amount of power was generated for the systems where the shapes of tip and immersion depth were different. Furthermore, it was observed that the shape of electrode tip is very similar for the systems running with the same ratio of power generation to melt rate. Comparison between simulations and experimental results was made to verify the numerical model.

  10. A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors

    NASA Technical Reports Server (NTRS)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.

  11. Nonstationary Influence of El Niño on the Synchronous Dengue Epidemics in Thailand

    PubMed Central

    Cazelles, Bernard; Chavez, Mario; McMichael, Anthony J; Hales, Simon

    2005-01-01

    Background Several factors, including environmental and climatic factors, influence the transmission of vector-borne diseases. Nevertheless, the identification and relative importance of climatic factors for vector-borne diseases remain controversial. Dengue is the world's most important viral vector-borne disease, and the controversy about climatic effects also applies in this case. Here we address the role of climate variability in shaping the interannual pattern of dengue epidemics. Methods and Findings We have analysed monthly data for Thailand from 1983 to 1997 using wavelet approaches that can describe nonstationary phenomena and that also allow the quantification of nonstationary associations between time series. We report a strong association between monthly dengue incidence in Thailand and the dynamics of El Niño for the 2–3-y periodic mode. This association is nonstationary, seen only from 1986 to 1992, and appears to have a major influence on the synchrony of dengue epidemics in Thailand. Conclusion The underlying mechanism for the synchronisation of dengue epidemics may resemble that of a pacemaker, in which intrinsic disease dynamics interact with climate variations driven by El Niño to propagate travelling waves of infection. When association with El Niño is strong in the 2–3-y periodic mode, one observes high synchrony of dengue epidemics over Thailand. When this association is absent, the seasonal dynamics become dominant and the synchrony initiated in Bangkok collapses. PMID:15839751

  12. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases

    PubMed Central

    Kilpatrick, A. Marm; Randolph, Sarah E.

    2013-01-01

    Emerging vector-borne diseases represent an important issue for global health. Many vector-borne pathogens have appeared in new regions in the past two decades, and many endemic diseases have increased in incidence. Although introductions and local emergence are frequently considered distinct processes, many emerging endemic pathogens are in fact invading at a local scale coincident with habitat change. We highlight key differences in the dynamics and disease burden that result from increased pathogen transmission following habitat change compared with the introduction of pathogens to new regions. Truly in situ emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles whereas pathogen invasion results from anthropogenic trade and travel and suitable conditions for a pathogen, including hosts, vectors, and climate. Once established, ecological factors related to vector characteristics shape the evolutionary selective pressure on pathogens that may result in increased use of humans as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that may be more effective in the long term. PMID:23200503

  13. Warmth of the Welcome: Attitudes toward Immigrants and Immigration Policy

    PubMed Central

    Fussell, Elizabeth

    2015-01-01

    Natives' attitudes toward immigrants and immigration policy are important factors in the context of reception of immigrants since they contribute to a warm or chilly welcome, which potentially shapes immigrant and ethnic identities and inter-group relations. Public opinion polls show a recent “warming” of Americans' traditional ambivalence about immigration. Empirical research on attitudes toward immigrants and racial groups formed by recent waves of immigrants resonate with the dynamic nature of Blumer's (1958) theory of prejudice as a sense of relative group position. To better understand this dynamism, research that intentionally contrasts study sites on conflict and contact conditions and the presence of absence of symbolic politics, as well as research with different native-born racial and ethnic groups, would reveal a broader range of natives' attitude formation processes and the role they play in immigrant reception. PMID:26966338

  14. Dynamics of proteins at low temperatures: fibrous vs. globular

    NASA Astrophysics Data System (ADS)

    Foucat, L.; Renou, J.-P.; Tengroth, C.; Janssen, S.; Middendorf, H. D.

    We have measured quasielastic neutron scattering from H2O-hydrated collagen and haemoglobin at T<=270K. The data consist of sets of nearly elastic peaks showing (i) Q,T-dependent decreases in window-integrated intensities Sqe(Q;T) proportional to effective Debye-Waller factors and (ii) small line-shape changes due to various types of proton motions with ns>τ>10 ps. Relative to haemoglobin, the 200-K dynamic transition is shifted upward by 20-25 K in collagen, and the T-dependence of m.-sq. displacements derived from Sqe(Q;T) suggests that in triple-helical systems there are three rather than two regimes: one up to around 120K (probably purely harmonic), an intermediate quasiharmonic region with a linear dependence up to 240K, followed by a steeper nonlinear rise similar to that in globular proteins.

  15. Global optimization for quantum dynamics of few-fermion systems

    NASA Astrophysics Data System (ADS)

    Li, Xikun; Pecak, Daniel; Sowiński, Tomasz; Sherson, Jacob; Nielsen, Anne E. B.

    2018-03-01

    Quantum state preparation is vital to quantum computation and quantum information processing tasks. In adiabatic state preparation, the target state is theoretically obtained with nearly perfect fidelity if the control parameter is tuned slowly enough. As this, however, leads to slow dynamics, it is often desirable to be able to carry out processes more rapidly. In this work, we employ two global optimization methods to estimate the quantum speed limit for few-fermion systems confined in a one-dimensional harmonic trap. Such systems can be produced experimentally in a well-controlled manner. We determine the optimized control fields and achieve a reduction in the ramping time of more than a factor of four compared to linear ramping. We also investigate how robust the fidelity is to small variations of the control fields away from the optimized shapes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasheninnikov, S. I.

    The equations of motion of a dust grain with non-spherical shape in plasma are generalized by incorporating the effects associated with propeller-like features of the grain's shape. For the grain shape close to rotationally symmetric, the stability of “stationary” (in terms of variables used in the grain dynamic equations) solutions are considered. It is found that propeller-like features of the grain's shape can crucially alter stability of such “stationary” states.

  17. Thermomechanical Response of Shape Memory Alloy Hybrid Composites. Degree awarded by Virginia Polytechnic Inst. and State Univ., Blackburg, Virginia, Nov. 2000.

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study examines the use of embedded shape memory alloy (SMA) actuators for adaptive control of the thermomechanical response of composite structures. A nonlinear thermomechanical model is presented for analyzing shape memory alloy hybrid composite (SMAHC) structures exposed to steady-state thermal and dynamic mechanical loads. Also presented are (1) fabrication procedures for SMAHC specimens, (2) characterization of the constituent materials for model quantification, (3) development of the test apparatus for conducting static and dynamic experiments on specimens with and without SMA, (4) discussion of the experimental results, and (5) validation of the analytical and numerical tools developed in the study. Excellent agreement is achieved between the predicted and measured SAMHC responses including thermal buckling, thermal post-buckling and dynamic response due to inertial loading. The validated model and thermomechanical analysis tools are used to demonstrate a variety of static and dynamic response behaviors including control of static (thermal buckling and post-buckling) and dynamic responses (vibration, sonic fatigue, and acoustic transmission). and SMAHC design considerations for these applications. SMAHCs are shown to have significant advantages over conventional response abatement approaches for vibration, sonic fatigue, and noise control.

  18. [Sectional structure of a tree. Model analysis of the vertical biomass distribution].

    PubMed

    Galitskiĭ, V V

    2010-01-01

    A model has been proposed for the architecture of a tree in which virtual trees appear rhythmically on the treetop. Each consecutive virtual tree is a part of the previous tree. The difference between two adjacent virtual trees is a section--an element of the real tree structure. In case of a spruce, the section represents a verticil of a stem with the corresponding internode. Dynamics of a photosynthesizing part of the physiologically active biomass of each section differ from the corresponding dynamics of the virtual trees and the whole real tree. If the tree biomass dynamics has a sigma-shaped form, then the section dynamics have to be bell-shaped. It means that the lower stem should accordingly become bare, which is typically observed in nature. Model analysis reveals the limiting, in the age, form of trees to be an "umbrella". It can be observed in nature and is an outcome of physical limitation of the tree height combined with the sigma-shaped form of the tree biomass dynamics. Variation of model parameters provides for various forms of the tree biomass distribution along the height, which can be associated with certain biological species of trees.

  19. Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion

    PubMed Central

    Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric

    2018-01-01

    The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes. PMID:29566355

  20. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    PubMed

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  1. Scale factor management in the studies of affine models of shockproof garment elements

    NASA Astrophysics Data System (ADS)

    Denisov, Oleg; Pleshko, Mikhail; Ponomareva, Irina; Merenyashev, Vitaliy

    2018-03-01

    New samples of protective garment for performing construction work at height require numerous tests in conditions close to real conditions of extreme vital activity. The article presents some results of shockproof garment element studies and a description of a patented prototype. The tests were carried out on a model which geometric dimensions were convenient for manufacturing it in a limited batch. In addition, the used laboratory equipment (for example, a unique power pendulum), blanks made of a titanium-nickel alloy with a shape memory effect also imposed their limitations. The problem of the adequacy of the obtained experimental results transfer to mass-produced products was solved using tools of the classical similarity theory. Scale factor management influence in the affine modeling of the shockproof element, studied on the basis of the equiatomic titanium-nickel alloy with the shape memory effect, allowed us to assume, with a sufficient degree of reliability, the technical possibility of extrapolating the results of experimental studies to full-scale objects for the formation of the initial data of the mathematical model of shockproof garment dynamics elastoplastic deformation (while observing the similarity of the features of external loading).

  2. Numerical performance analysis of quartz tuning fork-based force sensors

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Schwarz, Udo D.

    2017-01-01

    Quartz tuning fork-based force sensors where one prong is immobilized onto a holder while the other one is allowed to oscillate freely (‘qPlus’ configuration) are in widespread use for high-resolution scanning probe microscopy applications. Due to the small size of the tuning forks (≈3 mm) and the complexity of the sensor assemblies, the reliable and repeatable manufacturing of the sensors has been challenging. In this paper, we investigate the contribution of the amount and location of the epoxy glue used to attach the tuning fork to its holder on the sensor’s performance. Towards this end, we use finite element analysis to model the entire sensor assembly and to perform static and dynamic numerical simulations. Our analysis reveals that increasing the thickness of the epoxy layer between prong and holder results in a decrease of the sensor’s spring constant, eigenfrequency, and quality factor while showing an increasing deviation from oscillation in its primary modal shape. Adding epoxy at the sides of the tuning fork also leads to a degradation of the quality factor even though in this case, spring constant and eigenfrequency rise in tandem with a lessening of the deviation from its ideal modal shape.

  3. Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Newman, James C., III; Barnwell, Richard W.; Taylor, Arthur C., III; Hou, Gene J.-W.

    1998-01-01

    This paper presents a brief overview of some of the more recent advances in steady aerodynamic shape-design sensitivity analysis and optimization, based on advanced computational fluid dynamics. The focus here is on those methods particularly well- suited to the study of geometrically complex configurations and their potentially complex associated flow physics. When nonlinear state equations are considered in the optimization process, difficulties are found in the application of sensitivity analysis. Some techniques for circumventing such difficulties are currently being explored and are included here. Attention is directed to methods that utilize automatic differentiation to obtain aerodynamic sensitivity derivatives for both complex configurations and complex flow physics. Various examples of shape-design sensitivity analysis for unstructured-grid computational fluid dynamics algorithms are demonstrated for different formulations of the sensitivity equations. Finally, the use of advanced, unstructured-grid computational fluid dynamics in multidisciplinary analyses and multidisciplinary sensitivity analyses within future optimization processes is recommended and encouraged.

  4. Dynamic transport study of the plasmas with transport improvement in LHD and JT-60U

    NASA Astrophysics Data System (ADS)

    Ida, K.; Sakamoto, Y.; Inagaki, S.; Takenaga, H.; Isayama, A.; Matsunaga, G.; Sakamoto, R.; Tanaka, K.; Ide, S.; Fujita, T.; Funaba, H.; Kubo, S.; Yoshinuma, M.; Shimozuma, T.; Takeiri, Y.; Ikeda, K.; Michael, C.; Tokuzawa, T.; LHD experimental Group; JT-60 Team

    2009-01-01

    Transport analysis during the transient phase of heating (a dynamic transport study) applied to the plasma with internal transport barriers (ITBs) in the Large Helical Device (LHD) heliotron and the JT-60U tokamak is described. In the dynamic transport study the time of transition from the L-mode plasma to the ITB plasma is clearly determined by the onset of flattening of the temperature profile in the core region and a spontaneous phase transition from a zero curvature ITB (hyperbolic tangent shaped ITB) or a positive curvature ITB (concaved shaped ITB) to a negative curvature ITB (convex shaped ITB) and its back-transition are observed. The flattening of the core region of the ITB transition and the back-transition between a zero curvature ITB and a convex ITB suggest the strong interaction of turbulent transport in space.

  5. Catenaries in Drag

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Brato; Hanna, James

    2014-11-01

    Dynamical equilibria of towed cables and sedimenting filaments have been the targets of much numerical work; here, we provide analytical expressions for the configurations of a translating and axially moving string subjected to a uniform body force and local, linear, anisotropic drag forces. Generically, these configurations comprise a five-parameter family of planar shapes determined by the ratio of tangential (axial) and normal drag coefficients, the angle between the translational velocity and the body force, the relative magnitudes of translational and axial drag forces with respect to the body force, and a scaling parameter. This five-parameter family of shapes is, in fact, a degenerate six-parameter family of equilibria in which inertial forces rescale the tension in the string without affecting its shape. Each configuration is represented by a first order dynamical system for the tangential angle of the body. Limiting cases include the dynamic catenaries with or without drag, and purely sedimenting or towed strings.

  6. Design of membrane actuators based on ferromagnetic shape memory alloy composite for the synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang; Taya, Minoru; Kuga, Yasuo

    2004-07-01

    A new membrane actuator based on our previous diaphragm actuator was designed and constructed to improve the dynamic performance. The finite element analysis was used to estimate the frequency response of the composite membrane which will be driven close to its resonance to obtain a large stroke. The membrane is made of ferromagnetic shape memory alloy (FSMA) composite including a ferromagnetic soft iron pad and a superelastic grade of NiTi shape memory alloy (SMA). The actuation mechanism for the FSMA composite membrane of the actuator is the hybrid mechanism that we proposed previously. This membrane actuator is designed for a new synthetic jet actuator package that will be used for active flow control technology on airplane wings. Based on the FEM results, the new membrane actuator system was assembled and its static and dynamic performance was experimentally evaluated including the dynamic magnetic response of the hybrid magnet.

  7. Institutional resources for communicable disease control in Europe: diversity across time and place.

    PubMed

    Mätzke, Margitta

    2012-12-01

    This commentary discusses the causes and consequences of diversity in how European countries organize communicable disease control. Drawing on the historical record of the US Centers for Disease Control and Prevention, it first reviews the main explanations of that diversity, with a focus on the political dynamic of building institutional capacity in the field of public health. It then examines the significance of institutional diversity in the process of Europeanization, and closes with a few thoughts on factors that have shaped the development of communicable disease control capacities in the United States and the European Union.

  8. Investigation of atypical molten pool dynamics in tungsten carbide-cobalt during laser deposition using in-situ thermal imaging

    NASA Astrophysics Data System (ADS)

    Xiong, Yuhong; Hofmeister, William H.; Smugeresky, John E.; Delplanque, Jean-Pierre; Schoenung, Julie M.

    2012-01-01

    An atypical "swirling" phenomenon observed during the laser deposition of tungsten carbide-cobalt cermets by laser engineered net shaping (LENS®) was studied using in-situ high-speed thermal imaging. To provide fundamental insight into this phenomenon, the thermal behavior of pure cobalt during LENS was also investigated for comparison. Several factors were considered as the possible source of the observed differences. Of those, phase difference, material emissivity, momentum transfer, and free surface disruption from the powder jets, and, to a lesser extent, Marangoni convection were identified as the relevant mechanisms.

  9. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels.

    PubMed

    Ren, Tiantian; Boutin, Stan; Humphries, Murray M; Dantzer, Ben; Gorrell, Jamieson C; Coltman, David W; McAdam, Andrew G; Wu, Martin

    2017-12-21

    Our understanding of gut microbiota has been limited primarily to findings from human and laboratory animals, but what shapes the gut microbiota in nature remains largely unknown. To fill this gap, we conducted a comprehensive study of gut microbiota of a well-studied North American red squirrel (Tamiasciurus hudsonicus) population. Red squirrels are territorial, solitary, and live in a highly seasonal environment and therefore represent a very attractive system to study factors that drive the temporal and spatial dynamics of gut microbiota. For the first time, this study revealed significant spatial patterns of gut microbiota within a host population, suggesting limited dispersal could play a role in shaping and maintaining the structure of gut microbial communities. We also found a remarkable seasonal rhythm in red squirrel's gut microbial composition manifested by a tradeoff between relative abundance of two genera Oscillospira and Corpococcus and clearly associated with seasonal variation in diet availability. Our results show that in nature, environmental factors exert a much stronger influence on gut microbiota than host-associated factors including age and sex. Despite strong environmental effects, we found clear evidence of individuality and maternal effects, but host genetics did not seem to be a significant driver of the gut microbial communities in red squirrels. Taken together, the results of this study emphasize the importance of external ecological factors rather than host attributes in driving temporal and spatial patterns of gut microbiota in natural environment.

  10. Computation of magnetic suspension of maglev systems using dynamic circuit theory

    NASA Technical Reports Server (NTRS)

    He, J. L.; Rote, D. M.; Coffey, H. T.

    1992-01-01

    Dynamic circuit theory is applied to several magnetic suspensions associated with maglev systems. These suspension systems are the loop-shaped coil guideway, the figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. Mathematical models, which can be used for the development of computer codes, are provided for each of these suspension systems. The differences and similarities of the models in using dynamic circuit theory are discussed in the paper. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many electrodynamic suspension system design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper.

  11. Correlations among void shape distributions, dynamic damage mode, and loading kinetics [Correlations among spall void shape distributions, damage mode and shock loading kinetics

    DOE PAGES

    Brown, A. D.; Pham, Q.; Fortin, E. V.; ...

    2016-11-10

    Here, three-dimensional x-ray tomography (XRT) provides a nondestructive technique to characterize the size, shape, and location of damage in dynamically loaded metals. A shape-fitting method comprising the inertia tensors of individual damage sites was applied to study differences of spall damage development in face-centered-cubic (FCC) and hexagonal-closed-packed (HCP) multicrystals and for a suite of experiments on high-purity copper to examine the influence of loading kinetics on the spall damage process. Applying a volume-weighted average to the best-fit ellipsoidal aspect-ratios allows a quantitative assessment for determining the extent of damage coalescence present in a shocked metal. It was found that incipientmore » transgranular HCP spall damage nucleates in a lenticular shape and is heavily oriented along particular crystallographic slip directions. In polycrystalline materials, shape distributions indicate that a decrease in the tensile loading rate leads to a transition to coalesced damage dominance and that the plastic processes driving void growth are time dependent.« less

  12. Atomic quantum corrals for Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong Hongwei; Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190; Wu Biao

    2010-11-15

    We consider the dynamics of Bose-Einstein condensates in a corral-like potential. Compared to the electronic quantum corrals, the atomic quantum corrals have the advantages of allowing direct and convenient observation of the wave dynamics, together with adjustable interaction strength. Our numerical study shows that these advantages not only allow exploration of the rich dynamical structures in the density distribution but also make the corrals useful in many other aspects. In particular, the corrals for atoms can be arranged into a stadium shape for the experimental visualization of quantum chaos, which has been elusive with electronic quantum corrals. The density correlationmore » is used to describe quantitatively the dynamical quantum chaos. Furthermore, we find that the interatomic interaction can greatly enhance the dynamical quantum chaos, for example, inducing a chaotic behavior even in circle-shaped corrals.« less

  13. The piecewise-linear dynamic attenuator reduces the impact of count rate loss with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-01

    Photon counting x-ray detectors (PCXDs) offer several advantages compared to standard energy-integrating x-ray detectors, but also face significant challenges. One key challenge is the high count rates required in CT. At high count rates, PCXDs exhibit count rate loss and show reduced detective quantum efficiency in signal-rich (or high flux) measurements. In order to reduce count rate requirements, a dynamic beam-shaping filter can be used to redistribute flux incident on the patient. We study the piecewise-linear attenuator in conjunction with PCXDs without energy discrimination capabilities. We examined three detector models: the classic nonparalyzable and paralyzable detector models, and a ‘hybrid’ detector model which is a weighted average of the two which approximates an existing, real detector (Taguchi et al 2011 Med. Phys. 38 1089-102 ). We derive analytic expressions for the variance of the CT measurements for these detectors. These expressions are used with raw data estimated from DICOM image files of an abdomen and a thorax to estimate variance in reconstructed images for both the dynamic attenuator and a static beam-shaping (‘bowtie’) filter. By redistributing flux, the dynamic attenuator reduces dose by 40% without increasing peak variance for the ideal detector. For non-ideal PCXDs, the impact of count rate loss is also reduced. The nonparalyzable detector shows little impact from count rate loss, but with the paralyzable model, count rate loss leads to noise streaks that can be controlled with the dynamic attenuator. With the hybrid model, the characteristic count rates required before noise streaks dominate the reconstruction are reduced by a factor of 2 to 3. We conclude that the piecewise-linear attenuator can reduce the count rate requirements of the PCXD in addition to improving dose efficiency. The magnitude of this reduction depends on the detector, with paralyzable detectors showing much greater benefit than nonparalyzable detectors.

  14. Pore shape of honeycomb-patterned films: modulation and interfacial behavior.

    PubMed

    Wan, Ling-Shu; Ke, Bei-Bei; Zhang, Jing; Xu, Zhi-Kang

    2012-01-12

    The control of the pore size of honeycomb-patterned films has been more or less involved in most work on the topic of breath figures. Modulation of the pore shape was largely ignored, although it is important to applications in replica molding, filtration, particle assembly, and cell culture. This article reports a tunable pore shape for patterned films prepared from commercially available polystyrene (PS). We investigated the effects of solvents including tetrahydrofuran (THF) and chloroform (CF) and hydrophilic additives including poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA), poly(ethylene glycol) (PEG), and poly(N-vinyl pyrrolidone) (PVP). Water droplets on/in the polymer solutions were observed and analyzed for simulating the formation and stabilization of breath figures. Interfacial tensions of the studied systems were measured and considered as a main factor to modulate the pore shape. Results indicate that the pores gradually change from near-spherical to ellipsoidal with the increase of additive content when using CF as the solvent; however, only ellipsoidal pores are formed from the THF solution. It is demonstrated that the aggregation of the additives at the water/polymer solution interface is more efficient in the THF solution than that in the CF solution. This aggregation decreases the interfacial tension, stabilizes the condensed water droplets, and shapes the pores of the films. The results may facilitate our understanding of the dynamic breath figure process and provide a new pathway to prepare patterned films with different pore structures.

  15. Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population

    PubMed Central

    Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara

    2017-01-01

    Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804

  16. Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane.

    PubMed

    Garcia-Bernabé, A; Lidón-Roger, J V; Sanchis, M J; Díaz-Calleja, R; del Castillo, L F

    2015-10-01

    The dielectric and mechanical spectroscopies of acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane are reported in the frequency domain from 10(-2) to 10(6)Hz. This ester has been selected in this study for its predominant α relaxation with regard to the β relaxation, which can be neglected. This study consists of determining an interconversion algorithm between dielectric and mechanical measurements, given by using a relation between rotational and translational complex viscosities. These important viscosities were obtained from measures of the dielectric complex permittivity and by dynamic mechanical analysis, respectively. The definitions of rotational and translational viscosities were evaluated by means of fractional calculus, by using the fit parameters of the Havriliak-Negami empirical model obtained in the dielectric and mechanical characterization of the α relaxation. This interconversion algorithm is a generalization of the break of the Stokes-Einstein-Debye relationship. It uses a power law with an exponent defined as the shape factor, which modifies the translational viscosity. Two others factors are introduced for the interconversion, a shift factor, which displaces the translational viscosity in the frequency domain, and a scale factor, which makes equal values of the two viscosities. In this paper, the shape factor has been identified as the relation between the slopes of the moduli of the complex viscosities at higher frequency. This is interpreted as the degree of kinetic coupling between the molecular rotation and translational movements. Alternatively, another interconversion algorithm has been expressed by means of dielectric and mechanical moduli.

  17. L-shaped piezoelectric motor--part II: analytical modeling.

    PubMed

    Avirovik, Dragan; Karami, M Amin; Inman, Daniel; Priya, Shashank

    2012-01-01

    This paper develops an analytical model for an L-shaped piezoelectric motor. The motor structure has been described in detail in Part I of this study. The coupling of the bending vibration mode of the bimorphs results in an elliptical motion at the tip. The emphasis of this paper is on the development of a precise analytical model which can predict the dynamic behavior of the motor based on its geometry. The motor was first modeled mechanically to identify the natural frequencies and mode shapes of the structure. Next, an electromechanical model of the motor was developed to take into account the piezoelectric effect, and dynamics of L-shaped piezoelectric motor were obtained as a function of voltage and frequency. Finally, the analytical model was validated by comparing it to experiment results and the finite element method (FEM). © 2012 IEEE

  18. Physical Model of the Dynamic Instability in an Expanding Cell Culture

    PubMed Central

    Mark, Shirley; Shlomovitz, Roie; Gov, Nir S.; Poujade, Mathieu; Grasland-Mongrain, Erwan; Silberzan, Pascal

    2010-01-01

    Abstract Collective cell migration is of great significance in many biological processes. The goal of this work is to give a physical model for the dynamics of cell migration during the wound healing response. Experiments demonstrate that an initially uniform cell-culture monolayer expands in a nonuniform manner, developing fingerlike shapes. These fingerlike shapes of the cell culture front are composed of columns of cells that move collectively. We propose a physical model to explain this phenomenon, based on the notion of dynamic instability. In this model, we treat the first layers of cells at the front of the moving cell culture as a continuous one-dimensional membrane (contour), with the usual elasticity of a membrane: curvature and surface-tension. This membrane is active, due to the forces of cellular motility of the cells, and we propose that this motility is related to the local curvature of the culture interface; larger convex curvature correlates with a stronger cellular motility force. This shape-force relation gives rise to a dynamic instability, which we then compare to the patterns observed in the wound healing experiments. PMID:20141748

  19. A Study of Group Dynamics in Educational Leadership Cohort and Non-Cohort Groups

    ERIC Educational Resources Information Center

    Greenlee, Bobbie J.; Karanxha, Zorka

    2010-01-01

    The purpose of this study was to examine group dynamics of educational leadership students in cohorts and make comparisons with the group dynamics characteristics of non-cohort students. Cohorts have emerged as dynamic and adaptive entities with attendant group dynamic processes that shape collective learning and action. Cohort (n=42) and…

  20. Comparison of erythrocyte dynamics in shear flow under different stress-free configurations

    NASA Astrophysics Data System (ADS)

    Cordasco, Daniel; Yazdani, Alireza; Bagchi, Prosenjit

    2014-04-01

    An open question that has persisted for decades is whether the cytoskeleton of a red blood cell is stress-free or under a stress. This question is important in the context of theoretical modeling of cellular motion under a flowing condition where it is necessary to make an assumption about the stress-free state. Here, we present a 3D numerical study to compare the cell dynamics in a simple shear flow under two different stress-free states, a biconcave discocyte representing the resting shape of the cell, and a nearly spherical oblate shape. We find that whether the stress-free states make a significant difference or not depends on the viscosity of the suspending medium. If the viscosity is close to that of blood plasma, the two stress-free states do not show any significant difference in cell dynamics. However, when the suspending medium viscosity is well above that of the physiological range, as in many in vitro studies, the shear rate separating the tank-treading and tumbling dynamics is observed to be higher for the biconcave stress-free state than the spheroidal state. The former shows a strong shape oscillation with repeated departures from the biconcave shape, while the latter shows a nearly stable biconcave shape. It is found that the cell membrane in the biconcave stress-free state is under a compressive stress and a weaker bending force density, leading to a periodic compression of the cell. The shape oscillation then leads to a higher energy barrier against membrane tank-tread leading to an early transition to tumbling. However, if the cells are released with a large off-shear plane angle, the oscillations can be suppressed due to an azimuthal motion of the membrane along the vorticity direction leading to a redistribution of the membrane points and lowering of the energy barrier, which again results in a nearly similar behavior of the cells under the two different stress-free states. A variety of off-shear plane dynamics is observed, namely, rolling, kayaking, precession, and a new dynamics termed "hovering." For the physiological viscosity range, the shear-plane tumbling appears to be relatively less common, while the rolling is observed to be more stable.

  1. Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael

    2016-11-01

    Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the boundary. This insight is used to develop diagrams that delineate regions of stability from instability based on the breakup mechanism, in parameter ranges of ultrasound frequency and amplitude relevant to medical applications.

  2. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing

    PubMed Central

    Etournay, Raphaël; Popović, Marko; Merkel, Matthias; Nandi, Amitabha; Blasse, Corinna; Aigouy, Benoît; Brandl, Holger; Myers, Gene; Salbreux, Guillaume; Jülicher, Frank; Eaton, Suzanne

    2015-01-01

    How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing. DOI: http://dx.doi.org/10.7554/eLife.07090.001 PMID:26102528

  3. Oriented active shape models.

    PubMed

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks can be reduced by a factor of 3 in OASM over that in ASM; 3) OASM becomes largely independent of search range and initialization becomes automatic. All three benefits of OASM ensue mainly from the severe constraints brought in by the boundary-orientedness property of live wire and the globally optimal solution found by the 2-level dynamic programming algorithm.

  4. Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding

    PubMed Central

    Ware, Taylor; Hearon, Keith; Lonnecker, Alexander; Wooley, Karen L.; Maitland, Duncan J.; Voit, Walter

    2012-01-01

    Triple shape memory polymers (TSMPs) are a growing subset of a class of smart materials known as shape memory polymers, which are capable of changing shape and stiffness in response to a stimulus. A TSMP can change shapes twice and can fix two metastable shapes in addition to its permanent shape. In this work, a novel TSMP system comprised of both permanent covalent cross-links and supramolecular hydrogen bonding cross-links has been synthesized via a one-pot method. Triple shape properties arise from the combination of the glass transition of (meth)acrylate copolymers and the dissociation of self-complementary hydrogen bonding moieties, enabling broad and independent control of both glass transition temperature (Tg) and cross-link density. Specifically, ureidopyrimidone methacrylate and a novel monomer, ureidopyrimidone acrylate, were copolymerized with various alkyl acrylates and bisphenol A ethoxylate diacrylate. Control of Tg from 0 to 60 °C is demonstrated: concentration of hydrogen bonding moieties is varied from 0 to 40 wt %; concentration of the diacrylate is varied from 0 to 30 wt %. Toughness ranges from 0.06 to 0.14 MPa and is found to peak near 20 wt % of the supramolecular cross-linker. A widely tunable class of amorphous triple-shape memory polymers has been developed and characterized through dynamic and quasi-static thermomechanical testing to gain insights into the dynamics of supramolecular networks. PMID:22287811

  5. Soil Viral Communities Vary Temporally and along a Land Use Transect as Revealed by Virus-Like Particle Counting and a Modified Community Fingerprinting Approach (fRAPD)

    PubMed Central

    Narr, Anja; Nawaz, Ali; Wick, Lukas Y.; Harms, Hauke; Chatzinotas, Antonis

    2017-01-01

    Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors. PMID:29067022

  6. Modal Response of Trapezoidal Wing Structures Using Second Order Shape Sensitivities

    NASA Technical Reports Server (NTRS)

    Liu, Youhua; Kapania, Rakesh K.

    2000-01-01

    The modal response of wing structures is very important for assessing their dynamic response including dynamic aeroelastic instabilities. Moreover, in a recent study an efficient structural optimization approach was developed using structural modes to represent the static aeroelastic wing response (both displacement and stress). In this paper, the modal response of general trapezoidal wing structures is approximated using shape sensitivities up to the 2nd order. Also different approaches of computing the derivatives are investigated.

  7. Asymmetric nanoparticle may go "active" at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Nan; Tu, YuSong; Guo, Pan; Wan, RongZheng; Wang, ZuoWei; Fang, HaiPing

    2017-04-01

    Using molecular dynamics simulations, we show that an asymmetrically shaped nanoparticle in dilute solution possesses a spontaneously curved trajectory within a finite time interval, instead of the generally expected random walk. This unexpected dynamic behavior has a similarity to that of active matters, such as swimming bacteria, cells, or even fish, but is of a different physical origin. The key to the curved trajectory lies in the non-zero resultant force originated from the imbalance of the collision forces acted by surrounding solvent molecules on the asymmetrically shaped nanoparticle during its orientation regulation. Theoretical formulae based on microscopic observations have been derived to describe this non-zero force and the resulting motion of the asymmetrically shaped nanoparticle.

  8. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ferri, S.; Calisti, A.; Mossé, C.; Talin, B.; Lisitsa, V.

    2010-10-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  9. Boundaries steer the contraction of active gels

    NASA Astrophysics Data System (ADS)

    Schuppler, Matthias; Keber, Felix C.; Kröger, Martin; Bausch, Andreas R.

    2016-10-01

    Cells set up contractile actin arrays to drive various shape changes and to exert forces to their environment. To understand their assembly process, we present here a reconstituted contractile system, comprising F-actin and myosin II filaments, where we can control the local activation of myosin by light. By stimulating different symmetries, we show that the force balancing at the boundaries determine the shape changes as well as the dynamics of the global contraction. Spatially anisotropic attachment of initially isotropic networks leads to a self-organization of highly aligned contractile fibres, being reminiscent of the order formation in muscles or stress fibres. The observed shape changes and dynamics are fully recovered by a minimal physical model.

  10. Drivers of Macrofungi Community Structure Differ between Soil and Rotten-Wood Substrates in a Temperate Mountain Forest in China

    PubMed Central

    Chen, Yun; Svenning, Jens-Christian; Wang, Xueying; Cao, Ruofan; Yuan, Zhiliang; Ye, Yongzhong

    2018-01-01

    The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability. PMID:29410660

  11. Exploring Local Level Factors Shaping the Implementation of a Blended Learning Module for Information and Geospatial Literacy in Ontario

    ERIC Educational Resources Information Center

    Vine, Michelle M.; Chiappetta-Swanson, Catherine; Maclachlan, John; Brodeur, Jason J.; Bagg, Julianne

    2016-01-01

    The objectives of this research study were to examine local level factors shaping the implementation of a blended pedagogical approach for geospatial- and information-literacy, and to understand implementer satisfaction. As such, we addressed the following research questions: What local-level factors shape the implementation of the blended…

  12. In-flight dynamics of volcanic ballistic projectiles

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.

    2017-09-01

    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  13. Shape memory polymer network with thermally distinct elasticity and plasticity.

    PubMed

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.

  14. A Modification and Analysis of Lagrangian Trajectory Modeling and Granular Dynamics of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Long, Jason M.; Lane, John E.; Metzger, Philip T.

    2008-01-01

    A previously developed mathematical model is amended to more accurately incorporate the effects of lift and drag on single dust particles in order to predict their behavior in the wake of high velocity gas flow. The model utilizes output from a CFD or DSMC simulation of exhaust from a rocket nozzle hot gas jet. An extension of the Saffman equation for lift based on the research of McLaughlin (1991) and Mei (1992) is used, while an equation for the Magnus force modeled after the work of Oesterle (1994) and Tsuji et al (1985) is applied. A relationship for drag utilizing a particle shape factor (phi = 0.8) is taken from the work of Haider and Levenspiel (1989) for application to non-spherical particle dynamics. The drag equation is further adjusted to account for rarefaction and compressibility effects in rarefied and high Mach number flows according to the work of Davies (1945) and Loth (2007) respectively. Simulations using a more accurate model with the correction factor (Epsilon = 0.8 in a 20% particle concentration gas flow) given by Richardson and Zaki (1954) and Rowe (1961) show that particles have lower ejection angles than those that were previously calculated. This is more prevalent in smaller particles, which are shown through velocity and trajectory comparison to be more influenced by the flow of the surrounding gas. It is shown that particles are more affected by minor changes to drag forces than larger adjustments to lift forces, demanding a closer analysis of the shape and behavior of lunar dust particles and the composition of the surrounding gas flow.

  15. Many shades of green: the dynamic tropical forest–savannah transition zones

    PubMed Central

    Oliveras, Immaculada; Malhi, Yadvinder

    2016-01-01

    The forest–savannah transition is the most widespread ecotone in tropical areas, separating two of the most productive terrestrial ecosystems. Here, we review current understanding of the factors that shape this transition, and how it may change under various drivers of local or global change. At broadest scales, the location of the transition is shaped by water availability, mediated strongly at local scales by fire regimes, herbivory pressure and spatial variation in soil properties. The frequently dynamic nature of this transition suggests that forest and savannah can exist as alternative stable states, maintained and separated by fire–grass feedbacks and tree shade–fire suppression feedback. However, this theory is still contested and the relative contributions of the main biotic and abiotic drivers and their interactions are yet not fully understood. These drivers interplay with a wide range of ecological processes and attributes at the global, continental, regional and local scales. The evolutionary history of the biotic and abiotic drivers and processes plays an important role in the current distributions of these transitions as well as in their species composition and ecosystem functioning. This ecotone can be sensitive to shifts in climate and other driving factors, but is also potentially stabilized by negative feedback processes. There is abundant evidence that these transitions are shifting under contemporary global and local changes, but the direction of shift varies according to region. However, it still remains uncertain how these transitions will respond to rapid and multi-faceted ongoing current changes, and how increasing human influence will interact with these shifts. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502373

  16. Dynamical passage to approximate equilibrium shapes for spinning, gravitating rubble asteroids

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan; Jenkins, James T.; Burns, Joseph A.

    2009-03-01

    Many asteroids are thought to be particle aggregates held together principally by self-gravity. Here we study — for static and dynamical situations — the equilibrium shapes of spinning asteroids that are permitted for rubble piles. As in the case of spinning fluid masses, not all shapes are compatible with a granular rheology. We take the asteroid to always be an ellipsoid with an interior modeled as a rigid-plastic, cohesion-less material with a Drucker-Prager yield criterion. Using an approximate volume-averaged procedure, based on the classical method of moments, we investigate the dynamical process by which such objects may achieve equilibrium. We first collapse our dynamical approach to its statical limit to derive regions in spin-shape parameter space that allow equilibrium solutions to exist. At present, only a graphical illustration of these solutions for a prolate ellipsoid following the Drucker-Prager failure law is available [Sharma, I., Jenkins, J.T., Burns, J.A., 2005a. Bull. Am. Astron. Soc. 37, 643; Sharma, I., Jenkins, J.T., Burns, J.A., 2005b. Equilibrium shapes of ellipsoidal soil asteroids. In: García-Rojo, R., Hermann, H.J., McNamara, S. (Eds.), Proceedings of the 5th International Conference on Micromechanics of Granular Media, vol. 1. A.A. Balkema, UK; Holsapple, K.A., 2007. Icarus 187, 500-509]. Here, we obtain the equilibrium landscapes for general triaxial ellipsoids, as well as provide the requisite governing formulae. In addition, we demonstrate that it may be possible to better interpret the results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361] within the context of a Drucker-Prager material. The graphical result for prolate ellipsoids in the static limit is the same as those of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] because, when worked out, his final equations will match ours. This is because, though the formalisms to reach these expressions differ, in statics, at the lowest level of approximation, volume-averaging and the approach of Holsapple [Holsapple, K.A., 2007. Icarus 187, 500-509] coincide. We note that the approach applied here was obtained independently [Sharma, I., Jenkins, J.T., Burns, J.A., 2003. Bull. Am. Astron. Soc. 35, 1034; Sharma, I., 2004. Rotational Dynamics of Deformable Ellipsoids with Applications to Asteroids. Ph.D. thesis, Cornell University] and it provides a general, though approximate, framework that is amenable to systematic improvements and is flexible enough to incorporate the dynamical effects of a changing shape, different rheologies and complex rotational histories. To demonstrate our technique, we investigate the non-equilibrium dynamics of rigid-plastic, spinning, prolate asteroids to examine the simultaneous histories of shape and spin rate for rubble piles. We have succeeded in recovering most results of Richardson et al. [Richardson, D.C., Elankumaran, P., Sanderson, R.E., 2005. Icarus 173, 349-361], who obtained equilibrium shapes by studying numerically the passage into equilibrium of aggregates containing discrete, interacting, frictionless, spherical particles. Our mainly analytical approach aids in understanding and quantifying previous numerical simulations.

  17. Reconstruction of the in-plane mode shape of a rotating tire with a continuous scanning measurement using the Hilbert-Huang transform.

    PubMed

    Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter

    2015-02-01

    Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.

  18. Ultrafast transient absorption studies of hematite nanoparticles: the effect of particle shape on exciton dynamics.

    PubMed

    Fitzmorris, Bob C; Patete, Jonathan M; Smith, Jacqueline; Mascorro, Xiomara; Adams, Staci; Wong, Stanislaus S; Zhang, Jin Z

    2013-10-01

    Much progress has been made in using hematite (α-Fe2 O3 ) as a potentially practical and sustainable material for applications such as solar-energy conversion and photoelectrochemical (PEC) water splitting; however, recent studies have shown that the performance can be limited by a very short charge-carrier diffusion length or exciton lifetime. In this study, we performed ultrafast studies on hematite nanoparticles of different shapes to determine the possible influence of particle shape on the exciton dynamics. Nanorice, multifaceted spheroidal nanoparticles, faceted nanocubes, and faceted nanorhombohedra were synthesized and characterized by using SEM and XRD techniques. Their exciton dynamics were investigated by using femtosecond transient absorption (TA) spectroscopy. Although the TA spectral features differ for the four samples studied, their decay profiles are similar, which can be fitted with time constants of 1-3 ps, approximately 25 ps, and a slow nanosecond component extending beyond the experimental time window that was measured (2 ns). The results indicate that the overall exciton lifetime is weakly dependent on the shape of the hematite nanoparticles, even though the overall optical absorption and scattering are influenced by the particle shape. This study suggests that other strategies need to be developed to increase the exciton lifetime or to lengthen the exciton diffusion length in hematite nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coordination of Cellular Dynamics Contributes to Tooth Epithelium Deformations

    PubMed Central

    Morita, Ritsuko; Kihira, Miho; Nakatsu, Yousuke; Nomoto, Yohei; Ogawa, Miho; Ohashi, Kazumasa; Mizuno, Kensaku; Tachikawa, Tetsuhiko; Ishimoto, Yukitaka; Morishita, Yoshihiro; Tsuji, Takashi

    2016-01-01

    The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis. Cellular motility was higher in the regions with higher growth rates, while the mitotic orientation was significantly biased along the direction of tissue elongation in the epithelium. Further, these spatio-temporal patterns of cellular dynamics and tissue-level deformation were highly correlated with that of the activity of cofilin, which is an actin depolymerization factor, suggesting that the coordination of cellular dynamics via actin remodeling plays an important role in tooth epithelial morphogenesis. Our system enhances the understanding of how cellular behaviors are coordinated during ectodermal organogenesis, which cannot be observed from histological analyses. PMID:27588418

  20. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    PubMed

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  1. The representational dynamics of remembered projectile locations.

    PubMed

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko; Oliveira, Armando Mónica

    2013-12-01

    When people are instructed to locate the vanishing location of a moving target, systematic errors forward in the direction of motion (M-displacement) and downward in the direction of gravity (O-displacement) are found. These phenomena came to be linked with the notion that physical invariants are embedded in the dynamic representations generated by the perceptual system. We explore the nature of these invariants that determine the representational mechanics of projectiles. By manipulating the retention intervals between the target's disappearance and the participant's responses, while measuring both M- and O-displacements, we were able to uncover a representational analogue of the trajectory of a projectile. The outcomes of three experiments revealed that the shape of this trajectory is discontinuous. Although the horizontal component of such trajectory can be accounted for by perceptual and oculomotor factors, its vertical component cannot. Taken together, the outcomes support an internalization of gravity in the visual representation of projectiles.

  2. Membrane vesiculation induced by proteins of the dengue virus envelope studied by molecular dynamics simulations.

    PubMed

    de Oliveira Dos Santos Soares, Ricardo; Bortot, Leandro Oliveira; van der Spoel, David; Caliri, Antonio

    2017-12-20

    Biological membranes are continuously remodeled in the cell by specific membrane-shaping machineries to form, for example, tubes and vesicles. We examine fundamental mechanisms involved in the vesiculation processes induced by a cluster of envelope (E) and membrane (M) proteins of the dengue virus (DENV) using molecular dynamics simulations and a coarse-grained model. We show that an arrangement of three E-M heterotetramers (EM 3 ) works as a bending unit and an ordered cluster of five such units generates a closed vesicle, reminiscent of the virus budding process. In silico mutagenesis of two charged residues of the anchor helices of the envelope proteins of DENV shows that Arg-471 and Arg-60 are fundamental to produce bending stress on the membrane. The fine-tuning between the size of the EM 3 unit and its specific bending action suggests this protein unit is an important factor in determining the viral particle size.

  3. Evolutionary and ecological forces that shape the bacterial communities of the human gut

    PubMed Central

    Messer, Jeannette S.; Liechty, Emma R; Vogel, Olivia A.; Chang, Eugene B.

    2017-01-01

    Since microbes were first described in the mid-1600's, we have come to appreciate that they live all around and within us with both beneficial and detrimental effects on nearly every aspect of our lives. The human gastrointestinal tract is inhabited by a dynamic community of trillions of bacteria that constantly interact with each other and their human host. The acquisition of these bacteria is not stochastic, but determined by circumstance (environment), host rules (genetics, immune state, mucus, etc), and dynamic self-selection among microbes to form stable, resilient communities that are in balance with the host. In this review, we will discuss how these factors lead to formation of the gut bacterial community and influence its interactions with the host. We will also address how gut bacteria contribute to disease and how they could potentially be targeted to prevent and treat a variety of human ailments. PMID:28145439

  4. Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin Cytoskeleton.

    PubMed

    Hu, Hai; Juvekar, Ashish; Lyssiotis, Costas A; Lien, Evan C; Albeck, John G; Oh, Doogie; Varma, Gopal; Hung, Yin Pun; Ullas, Soumya; Lauring, Josh; Seth, Pankaj; Lundquist, Mark R; Tolan, Dean R; Grant, Aaron K; Needleman, Daniel J; Asara, John M; Cantley, Lewis C; Wulf, Gerburg M

    2016-01-28

    The phosphoinositide 3-kinase (PI3K) pathway regulates multiple steps in glucose metabolism and also cytoskeletal functions, such as cell movement and attachment. Here, we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A, and an increase in aldolase activity. Consistently, PI3K inhibitors, but not AKT, SGK, or mTOR inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point toward a master regulatory function of PI3K that integrates an epithelial cell's metabolism and its form, shape, and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Membrane vesiculation induced by proteins of the dengue virus envelope studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    de Oliveira dos Santos Soares, Ricardo; Oliveira Bortot, Leandro; van der Spoel, David; Caliri, Antonio

    2017-12-01

    Biological membranes are continuously remodeled in the cell by specific membrane-shaping machineries to form, for example, tubes and vesicles. We examine fundamental mechanisms involved in the vesiculation processes induced by a cluster of envelope (E) and membrane (M) proteins of the dengue virus (DENV) using molecular dynamics simulations and a coarse-grained model. We show that an arrangement of three E-M heterotetramers (EM3) works as a bending unit and an ordered cluster of five such units generates a closed vesicle, reminiscent of the virus budding process. In silico mutagenesis of two charged residues of the anchor helices of the envelope proteins of DENV shows that Arg-471 and Arg-60 are fundamental to produce bending stress on the membrane. The fine-tuning between the size of the EM3 unit and its specific bending action suggests this protein unit is an important factor in determining the viral particle size.

  6. Direct Measurements of Drag Forces in C. elegans Crawling Locomotion

    PubMed Central

    Rabets, Yegor; Backholm, Matilda; Dalnoki-Veress, Kari; Ryu, William S.

    2014-01-01

    With a simple and versatile microcantilever-based force measurement technique, we have probed the drag forces involved in Caenorhabditis elegans locomotion. As a worm crawls on an agar surface, we found that substrate viscoelasticity introduces nonlinearities in the force-velocity relationships, yielding nonconstant drag coefficients that are not captured by original resistive force theory. A major contributing factor to these nonlinearities is the formation of a shallow groove on the agar surface. We measured both the adhesion forces that cause the worm’s body to settle into the agar and the resulting dynamics of groove formation. Furthermore, we quantified the locomotive forces produced by C. elegans undulatory motions on a wet viscoelastic agar surface. We show that an extension of resistive force theory is able to use the dynamics of a nematode’s body shape along with the measured drag coefficients to predict the forces generated by a crawling nematode. PMID:25418179

  7. Phosphoinositide 3-Kinase Regulates Glycolysis through Mobilization of Aldolase from the Actin cytoskeleton

    PubMed Central

    Hu, Hai; Juvekar, Ashish; Lyssiotis, Costas A.; Lien, Evan C.; Albeck, John G.; Oh, Doogie; Varma, Gopal; Hung, Yin Pun; Ullas, Soumya; Lauring, Josh; Seth, Pankaj; Lundquist, Mark R.; Tolan, Dean R.; Grant, Aaron K.; Needleman, Daniel J.; Asara, John M.; Cantley, Lewis C.

    2016-01-01

    Summary The Phosphoinositide 3-Kinase (PI3K) pathway regulates multiple steps in glucose metabolism but also cytoskeletal functions, such as cell movement and attachment. Here we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A and an increase in aldolase activity. Consistently, PI3K-, but not AKT-, SGK- or mTOR-inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point towards a master regulatory function of PI3K that integrates an epithelial cell’s metabolism and its form, shape and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling. PMID:26824656

  8. Two-dimensional freezing criteria for crystallizing colloidal monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Ziren; Han Yilong; Alsayed, Ahmed M.

    Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At themore » freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.« less

  9. Shape measurement and vibration analysis of moving speaker cone

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Liu, Yuankun; Lehtonen, Petri

    2014-06-01

    Surface three-dimensional (3-D) shape information is needed for many fast processes such as structural testing of material, standing waves on loudspeaker cone, etc. Usually measurement is done from limited number of points using electrical sensors or laser distance meters. Fourier Transform Profilometry (FTP) enables fast shape measurement of the whole surface. Method is based on angled sinusoidal fringe pattern projection and image capturing. FTP requires only one image of the deformed fringe pattern to restore the 3-D shape of the measured object, which makes real-time or dynamic data processing possible. In our experiment the method was used for loudspeaker cone distortion measurement in dynamic conditions. For sound quality issues it is important that the whole cone moves in same phase and there are no partial waves. Our imaging resolution was 1280x1024 pixels and frame rate was 200 fps. Using our setup we found unwanted spatial waves in our sample cone.

  10. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE PAGES

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando; ...

    2015-04-10

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  11. Controlled Shape Memory Behavior of a Smectic Main-Chain Liquid Crystalline Elastomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Pruitt, Cole; Rios, Orlando

    Here, we describe how a smectic main-chain liquid crystalline elastomer (LCE), with controlled shape memory behavior, is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic carboxylic acid curing agent. Microstructures of the LCEs, including their liquid crystallinity and cross-linking density, are modified by adjusting the stoichiometric ratio of the reactants to tailor the thermomechanical properties and shape memory behavior of the material. Thermal and liquid crystalline properties of the LCEs, characterized using differential scanning calorimetry and dynamic mechanical analysis, and structural analysis, performed using small-angle and wide-angle X-ray scattering, show that liquid crystallinity, cross-linking density, and network rigiditymore » are strongly affected by the stoichiometry of the curing reaction. With appropriate structural modifications it is possible to tune the thermal, dynamic mechanical, and thermomechanical properties as well as the shape memory and thermal degradation behavior of LCEs.« less

  12. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres

    NASA Astrophysics Data System (ADS)

    Tzang, Omer; Caravaca-Aguirre, Antonio M.; Wagner, Kelvin; Piestun, Rafael

    2018-06-01

    Recent progress in wavefront shaping has enabled control of light propagation inside linear media to focus and image through scattering objects. In particular, light propagation in multimode fibres comprises complex intermodal interactions and rich spatiotemporal dynamics. Control of physical phenomena in multimode fibres and its applications are in their infancy, opening opportunities to take advantage of complex nonlinear modal dynamics. Here, we demonstrate a wavefront shaping approach for controlling nonlinear phenomena in multimode fibres. Using a spatial light modulator at the fibre input, real-time spectral feedback and a genetic algorithm optimization, we control a highly nonlinear multimode stimulated Raman scattering cascade and its interplay with four-wave mixing via a flexible implicit control on the superposition of modes coupled into the fibre. We show versatile spectrum manipulations including shifts, suppression, and enhancement of Stokes and anti-Stokes peaks. These demonstrations illustrate the power of wavefront shaping to control and optimize nonlinear wave propagation.

  13. Control of nitromethane photoionization efficiency with shaped femtosecond pulses.

    PubMed

    Roslund, Jonathan; Shir, Ofer M; Dogariu, Arthur; Miles, Richard; Rabitz, Herschel

    2011-04-21

    The applicability of adaptive femtosecond pulse shaping is studied for achieving selectivity in the photoionization of low-density polyatomic targets. In particular, optimal dynamic discrimination (ODD) techniques exploit intermediate molecular electronic resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The intensity bias typical of high-photon number, nonresonant ionization is accounted for by reference to a strictly intensity-dependent process. Closed-loop adaptive learning is then able to discover a pulse form that increases the ionization efficiency of nitromethane by ∼150%. The optimally induced molecular dynamics result from entry into a region of parameter space inaccessible with intensity-only control. Finally, the discovered pulse shape is demonstrated to interact with the molecular system in a coherent fashion as assessed from the asymmetry between the response to the optimal field and its time-reversed counterpart.

  14. Form follows function: the importance of endoplasmic reticulum shape.

    PubMed

    Westrate, L M; Lee, J E; Prinz, W A; Voeltz, G K

    2015-01-01

    The endoplasmic reticulum (ER) has a remarkably complex structure, composed of a single bilayer that forms the nuclear envelope, along with a network of sheets and dynamic tubules. Our understanding of the biological significance of the complex architecture of the ER has improved dramatically in the last few years. The identification of proteins and forces required for maintaining ER shape, as well as more advanced imaging techniques, has allowed the relationship between ER shape and function to come into focus. These studies have also revealed unexpected new functions of the ER and novel ER domains regulating alterations in ER dynamics. The importance of ER structure has become evident as recent research has identified diseases linked to mutations in ER-shaping proteins. In this review, we discuss what is known about the maintenance of ER architecture, the relationship between ER structure and function, and diseases associated with defects in ER structure.

  15. Assembly of Reconfigurable Colloidal Structures by Multidirectional Field-Induced Interactions.

    PubMed

    Bharti, Bhuvnesh; Velev, Orlin D

    2015-07-28

    Field-directed colloidal assembly has shown remarkable recent progress in increasing the complexity, degree of control, and multiscale organization of the structures. This has largely been achieved by using particles of complex shapes and polarizabilites (Janus, patchy, shaped, and faceted). We review the fundamentals of the interactions leading to the directed assembly of such structures, the ways to simulate the dynamics of the process, and the effect of particle size, shape, and properties on the type of structure obtained. We discuss how directional polarization interactions induced by external electric and magnetic fields can be used to assemble complex particles or particle mixtures into lattices of tailored structure. Examples of such systems include isotropic and anisotropic shaped particles with surface patches, which form networks and crystals of unusual symmetry by dipolar, quadrupolar, and multipolar interactions in external fields. The emerging trends in making reconfigurable and dynamic structures are discussed.

  16. Evaluation of a Singular Value Decomposition Approach for Impact Dynamic Data Correlation

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Lyle, Karen H.; Lessard, Wendy B.

    2003-01-01

    Impact dynamic tests are used in the automobile and aircraft industries to assess survivability of occupants during crash, to assert adequacy of the design, and to gain federal certification. Although there is no substitute for experimental tests, analytical models are often developed and used to study alternate test conditions, to conduct trade-off studies, and to improve designs. To validate results from analytical predictions, test and analysis results must be compared to determine the model adequacy. The mathematical approach evaluated in this paper decomposes observed time responses into dominant deformation shapes and their corresponding contribution to the measured response. To correlate results, orthogonality of test and analysis shapes is used as a criterion. Data from an impact test of a composite fuselage is used and compared to finite element predictions. In this example, the impact response was decomposed into multiple shapes but only two dominant shapes explained over 85% of the measured response

  17. Catastrophic depolymerization of microtubules driven by subunit shape change

    DOE PAGES

    Bollinger, Jonathan A.; Stevens, Mark J.

    2018-01-17

    We report that microtubules exhibit a dynamic instability between growth and catastrophic depolymerization. GTP-tubulin (αβ-dimer bound to GTP) self-assembles, but dephosphorylation of GTP- to GDP-tubulin within the tubule results in destabilization. While the mechanical basis for destabilization is not fully understood, one hypothesis is that dephosphorylation causes tubulin to change shape, frustrating bonds and generating stress. To test this idea, we perform molecular dynamics simulations of microtubules built from coarse-grained models of tubulin, incorporating a small compression of α-subunits associated with dephosphorylation in experiments. We find that this shape change induces depolymerization of otherwise stable systems via unpeeling “ram's horns”more » characteristic of microtubules. Depolymerization can be averted by caps with uncompressed α-subunits, i.e., GTP-rich end regions. Thus, the shape change is sufficient to yield microtubule behavior.« less

  18. How to resolve the SLOSS debate: lessons from species-diversity models.

    PubMed

    Tjørve, Even

    2010-05-21

    The SLOSS debate--whether a single large reserve will conserve more species than several small--of the 1970s and 1980s never came to a resolution. The first rule of reserve design states that one large reserve will conserve the most species, a rule which has been heavily contested. Empirical data seem to undermine the reliance on general rules, indicating that the best strategy varies from case to case. Modeling has also been deployed in this debate. We may divide the modeling approaches to the SLOSS enigma into dynamic and static approaches. Dynamic approaches, covered by the fields of island equilibrium theory of island biogeography and metapopulation theory, look at immigration, emigration, and extinction. Static approaches, such as the one in this paper, illustrate how several factors affect the number of reserves that will save the most species. This article approaches the effect of different factors by the application of species-diversity models. These models combine species-area curves for two or more reserves, correcting for the species overlap between them. Such models generate several predictions on how different factors affect the optimal number of reserves. The main predictions are: Fewer and larger reserves are favored by increased species overlap between reserves, by faster growth in number of species with reserve area increase, by higher minimum-area requirements, by spatial aggregation and by uneven species abundances. The effect of increased distance between smaller reserves depends on the two counteracting factors: decreased species density caused by isolation (which enhances minimum-area effect) and decreased overlap between isolates. The first decreases the optimal number of reserves; the second increases the optimal number. The effect of total reserve-system area depends both on the shape of the species-area curve and on whether overlap between reserves changes with scale. The approach to modeling presented here has several implications for conservational strategies. It illustrates well how the SLOSS enigma can be reduced to a question of the shape of the species-area curve that is expected or generated from reserves of different sizes and a question of overlap between isolates (or reserves). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Actuation of a robotic fish caudal fin for low reaction torque

    NASA Astrophysics Data System (ADS)

    Yun, Dongwon; Kim, Kyung-Soo; Kim, Soohyun; Kyung, Jinho; Lee, Sunghee

    2011-07-01

    In this paper, a novel caudal fin for actuating a robotic fish is presented. The proposed caudal fin waves in a vertical direction with a specific spatial shape, which is determined by a so-called shape factor. For a specific shape factor, a traveling wave with a vertical phase difference is formed on a caudal fin during fin motion. It will be shown by the analysis that the maximum reaction torque at the joint of a caudal fin varies depending on the shape factors. Compared with a conventional plate type caudal fin, the proposed fin with a shape factor of 2π can eliminate the reaction torque perfectly, while keeping the propulsion force unchanged. The benefits of the proposed fin will be demonstrated by experiments.

  20. Confounding environmental colour and distribution shape leads to underestimation of population extinction risk.

    PubMed

    Fowler, Mike S; Ruokolainen, Lasse

    2013-01-01

    The colour of environmental variability influences the size of population fluctuations when filtered through density dependent dynamics, driving extinction risk through dynamical resonance. Slow fluctuations (low frequencies) dominate in red environments, rapid fluctuations (high frequencies) in blue environments and white environments are purely random (no frequencies dominate). Two methods are commonly employed to generate the coloured spatial and/or temporal stochastic (environmental) series used in combination with population (dynamical feedback) models: autoregressive [AR(1)] and sinusoidal (1/f) models. We show that changing environmental colour from white to red with 1/f models, and from white to red or blue with AR(1) models, generates coloured environmental series that are not normally distributed at finite time-scales, potentially confounding comparison with normally distributed white noise models. Increasing variability of sample Skewness and Kurtosis and decreasing mean Kurtosis of these series alter the frequency distribution shape of the realised values of the coloured stochastic processes. These changes in distribution shape alter patterns in the probability of single and series of extreme conditions. We show that the reduced extinction risk for undercompensating (slow growing) populations in red environments previously predicted with traditional 1/f methods is an artefact of changes in the distribution shapes of the environmental series. This is demonstrated by comparison with coloured series controlled to be normally distributed using spectral mimicry. Changes in the distribution shape that arise using traditional methods lead to underestimation of extinction risk in normally distributed, red 1/f environments. AR(1) methods also underestimate extinction risks in traditionally generated red environments. This work synthesises previous results and provides further insight into the processes driving extinction risk in model populations. We must let the characteristics of known natural environmental covariates (e.g., colour and distribution shape) guide us in our choice of how to best model the impact of coloured environmental variation on population dynamics.

  1. A Facile Synthesis of Dynamic, Shape Changing Polymer Particles

    PubMed Central

    Klinger, Daniel; Wang, Cynthia; Connal, Luke A.; Audus, Debra J.; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L.; Fredrickson, Glenn H.; Kramer, Edward J.; Hawker, Craig J.

    2014-01-01

    We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles exhibiting a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric PS-b-P2VP in dispersed droplets. In a second step, the dynamic shape change is realized by crosslinking the P2VP domains, hereby connecting glassy PS discs with pH-sensitive hydrogel actuators. PMID:24700705

  2. Pairing-induced speedup of nuclear spontaneous fission

    NASA Astrophysics Data System (ADS)

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; Sheikh, J. A.; Baran, A.

    2014-12-01

    Background: Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. Purpose: To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. Methods: We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependent pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Results: Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. Conclusions: The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. Consequently, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.

  3. Pairing-induced speedup of nuclear spontaneous fission

    DOE PAGES

    Sadhukhan, Jhilam; Dobaczewski, J.; Nazarewicz, W.; ...

    2014-12-22

    Collective inertia is strongly influenced at the level crossing at which the quantum system changes its microscopic configuration diabatically. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of these configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of 264Fm and 240Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density functional SkM* and a density-dependentmore » pairing interaction. Along with shape variables, proton and neutron pairing correlations are taken as collective coordinates. The collective inertia tensor is calculated within the nonperturbative cranking approximation. The fission paths are obtained by using the least action principle in a four-dimensional collective space of shape and pairing coordinates. Pairing correlations are enhanced along the minimum-action fission path. For the symmetric fission of 264Fm, where the effect of triaxiality on the fission barrier is large, the geometry of the fission pathway in the space of the shape degrees of freedom is weakly impacted by pairing. This is not the case for 240Pu, where pairing fluctuations restore the axial symmetry of the dynamic fission trajectory. The minimum-action fission path is strongly impacted by nucleonic pairing. In some cases, the dynamical coupling between shape and pairing degrees of freedom can lead to a dramatic departure from the static picture. As a result, in the dynamical description of nuclear fission, particle-particle correlations should be considered on the same footing as those associated with shape degrees of freedom.« less

  4. Complex-shaped solar sails: A study of the coupled attitude and trajectory dynamics

    NASA Astrophysics Data System (ADS)

    van de Kolk, Christel Brigitte

    The concept of solar sailing is to reflect sunlight of a large surface in space to generate a low thrust, but constantly present, force. By varying the angle between sail normal and incident sunlight, a solar sail can fly inward (to the sun) and outward. The lifetime of a solar sail is not limited by the amount of fuel it can carry, since its fuel is sunlight. Degradation of the reflective surface, due to micrometeorite impact, etc, is the main limiting factor for the lifetime, but it is safe to say that the lifetime of a solar sail will be decades. This extensive lifetime and the possibility of inward and outward travel within the solar system, make solar sails good candidates for cargo missions within our solar system. They are less useful for manned flight, due to the long flight times of solar sail propelled vehicles. For example, the flight time from Earth to Mars is about a year. The solar sails studied previously were flat, single surfaces. The required stiffness and rigidity are provided by either a supporting structure or by spinning the sail. What both concepts have in common is that it was assumed that the attitude dynamics and trajectory dynamics were uncoupled. This assumption eliminates an entire family of promising flight modes in which the coupled motion provides automatic passive attitude dynamics and control. The research presented here will focus on the development of a full 3 dimensional model for the coupled attitude/trajectory dynamics problem of a complex shaped solar sail. This model will then be used to investigate the possible trajectory types and the stability of the attitude dynamics. It will be shown that it is possible to fly either inward to the Sun or out away from the Sun, depending on the dimensions of the individual sail planes and the angle between the two sail planes. However, passive attitude stability for all three axes will not be possible. The roll motion about the sail-sun line is unstable and some form of active control will be needed here.

  5. Random Matrix Theory in molecular dynamics analysis.

    PubMed

    Palese, Luigi Leonardo

    2015-01-01

    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae)

    PubMed Central

    2011-01-01

    Background Quantitative studies of the variation of disparity during ontogeny exhibited by the radiation of coral reef fishes are lacking. Such studies dealing with the variation of disparity, i.e. the diversity of organic form, over ontogeny could be a first step in detecting evolutionary mechanisms in these fishes. The damselfishes (Pomacentridae) have a bipartite life-cycle, as do the majority of demersal coral reef fishes. During their pelagic dispersion phase, all larvae feed on planktonic prey. On the other hand, juveniles and adults associated with the coral reef environment show a higher diversity of diets. Using geometric morphometrics, we study the ontogenetic dynamic of shape disparity of different head skeletal units (neurocranium, suspensorium and opercle, mandible and premaxilla) in this fish family. We expected that larvae of different species might be relatively similar in shapes. Alternatively, specialization may become notable even in the juvenile and adult phase. Results The disparity levels increase significantly throughout ontogeny for each skeletal unit. At settlement, all larval shapes are already species-specific. Damselfishes show high levels of ontogenetic allometry during their post-settlement growth. The divergence of allometric patterns largely explains the changes in patterns and levels of shape disparity over ontogeny. The rate of shape change and the length of ontogenetic trajectories seem to be less variable among species. We also show that the high levels of shape disparity at the adult stage are correlated to a higher level of ecological and functional diversity in this stage. Conclusion Diversification throughout ontogeny of damselfishes results from the interaction among several developmental novelties enhancing disparity. The bipartite life-cycle of damselfishes exemplifies a case where the variation of environmental factors, i.e. the transition from the more homogeneous oceanic environment to the coral reef offering a wide range of feeding habits, promotes increasing shape disparity of the head skeleton over the ontogeny of fishes. PMID:21450094

  7. Synthesis characterisation series of newly fabricated type II CdSe CdSe/CdTe nanocrystals and their optical properties

    NASA Astrophysics Data System (ADS)

    Ahmed, A. S.; Christopher, W.

    2018-03-01

    Nanocrystalline semiconductors exhibit different properties due to two basic factors. They possess high surface to volume ratio and the actual size of particle can determine the electronic and physical properties of the material. The small size results in an observable quantum confinement effect, defined by the increasing bandgap accompanied by the quantization of the energy levels to discrete values. In present work we have synthesized the series of cadmium selenide/cadmium telluride (CdSe/CdTe) core/shell and CdSe/CdTe/CdS core/shell/shell to investigate the biexciton energy through transient absorption measurements. These structures are type II nanocrystals are with a hole in the shell and the electron confined to the core. We specifically investigate the effect of nanoparticle shape on the electronic structure and ultrafast electronic dynamics in the band-edge exciton states of CdSe quantum dots, nanorods, and nanoplatelets. Particle size was chosen to enable straightforward comparisons of the effects of particle shape on the spectra and dynamics without retuning the laser source. In our results the Uv-vis showed only a mild redshift in the first excitonic an elongated tail with increasing shell thickness. High resolution Transmission Electron Microscopy (HRTEM) shows the slight agglomeration of the nanocrystals but still the size distribution was calculate able. Spherical small crystals ranging from 5.9 nm to 10 nm are observed. CdTe/CdSe structures were quasi spherical with a rough diameter 6 nm with some little agglomerated structure. . The spherical nanocrystals could be peanut shaped oriented along the c axis or the spherical only, which could explain the two peak emission. p-XRD results indicate the predominant wurtzite structure throughout.

  8. Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization.

    PubMed

    Defeu Soufo, Hervé Joël; Graumann, Peter L

    2005-03-03

    Bacterial actin-like proteins have been shown to perform essential functions in several aspects of cellular physiology. They affect cell growth, cell shape, chromosome segregation and polar localization of proteins, and localize as helical filaments underneath the cell membrane. Bacillus subtilis MreB and Mbl have been shown to perform dynamic motor like movements within cells, extending along helical tracks in a time scale of few seconds. In this work, we show that Bacillus subtilis MreB has a dual role, both in the formation of rod cell shape, and in chromosome segregation, however, its function in cell shape is distinct from that of MreC. Additionally, MreB is important for the localization of the replication machinery to the cell centre, which becomes aberrant soon after depletion of MreB. 3D image reconstructions suggest that frequently, MreB filaments consist of several discontinuous helical filaments with varying length. The localization of MreB was abnormal in cells with decondensed chromosomes, as well as during depletion of Mbl, MreBH and of the MreC/MreD proteins, which we show localize to the cell membrane. Thus, proper positioning of MreB filaments depends on and is affected by a variety of factors in the cell. Our data provide genetic and cytological links between MreB and the membrane, as well as with other actin like proteins, and further supports the connection of MreB with the chromosome. The functional dependence on MreB of the localization of the replication machinery suggests that the replisome is not anchored at the cell centre, but is positioned in a dynamic manner.

  9. Dynamics of proteins aggregation. I. Universal scaling in unbounded media

    NASA Astrophysics Data System (ADS)

    Zheng, Size; Javidpour, Leili; Shing, Katherine S.; Sahimi, Muhammad

    2016-10-01

    It is well understood that in some cases proteins do not fold correctly and, depending on their environment, even properly-folded proteins change their conformation spontaneously, taking on a misfolded state that leads to protein aggregation and formation of large aggregates. An important factor that contributes to the aggregation is the interactions between the misfolded proteins. Depending on the aggregation environment, the aggregates may take on various shapes forming larger structures, such as protein plaques that are often toxic. Their deposition in tissues is a major contributing factor to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and prion. This paper represents the first part in a series devoted to molecular simulation of protein aggregation. We use the PRIME, a meso-scale model of proteins, together with extensive discontinuous molecular dynamics simulation to study the aggregation process in an unbounded fluid system, as the first step toward MD simulation of the same phenomenon in crowded cellular environments. Various properties of the aggregates have been computed, including dynamic evolution of aggregate-size distribution, mean aggregate size, number of peptides that contribute to the formation of β sheets, number of various types of hydrogen bonds formed in the system, radius of gyration of the aggregates, and the aggregates' diffusivity. We show that many of such quantities follow dynamic scaling, similar to those for aggregation of colloidal clusters. In particular, at long times the mean aggregate size S(t) grows with time as, S(t) ˜ tz, where z is the dynamic exponent. To our knowledge, this is the first time that the qualitative similarity between aggregation of proteins and colloidal aggregates has been pointed out.

  10. Oscillatory shear response of moisture barrier coatings containing clay of different shape factor.

    PubMed

    Kugge, C; Vanderhoek, N; Bousfield, D W

    2011-06-01

    Oscillatory shear rheology of barrier coatings based on dispersed styrene-butadiene latex and clay of various shape factors or aspect ratio has been explored. Barrier performance of these coatings when applied to paperboard has been assessed in terms of water vapour transmission rates and the results related to shape factor, dewatering and critical strain. It has been shown that a system based on clay with high shape factor gives a lower critical strain, dewatering and water vapour transmission rate compared with clays of lower shape factor. The dissipated energy, as calculated from an amplitude sweep, indicated no attractive interaction between clay and latex implying a critical strain that appears to be solely dependent on the shape factor at a constant volume fraction. Particle size distribution was shown to have no effect on the critical strain while coatings of high elasticity exhibited high yield strains as expected. The loss modulus demonstrated strain hardening before the elastic to viscous transition. The loss modulus peak was identified by a maximum strain which was significantly lower for a coating based on clay with a high shape factor. The characteristic elastic time was found to vary between 0.6 and 1.3s. The zero shear viscosity of barrier dispersion coatings were estimated from the characteristic elastic time and the characteristic modulus to be of the order of 25-100 Pa s. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Quality of the log-geometric distribution extrapolation for smaller undiscovered oil and gas pool size

    USGS Publications Warehouse

    Chenglin, L.; Charpentier, R.R.

    2010-01-01

    The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.

  12. The role of pre-oedipal and oedipal factors in psychic life.

    PubMed

    Kancyper, Luis

    2006-02-01

    The Oedipus complex, a basic concept in Freudian theory, is an essential factor in the constitution of the human subject. It plays a key role in the structuring of the personality and in the orientation of desire. It is the oedipal triangular structure that precedes the pre-oedipal situation (in a logical, not chronological, order), and not vice versa. The oedipal structure exists before the infant's biological birth. It is present in the parents' desires and identifications, which inexorably fall upon each subject. That is why the author believes that it is necessary to leave behind a solipsistic reading of the nuclear complex of neuroses--a reading that is based solely on Oedipus's drive nucleus--and take a joint and comprehensive view of Laius's and Jocasta's histories and traumatic experiences, which were invested in their son. Among these three vertices, a dynamic set of forces emerges whereby a basic, original unconscious field phantasy is created that bears a unique narrative and an invisible and hermetic web made of passions and beliefs, scandals and secrets. This phantasy gives shape to an unrepeatable oedipal structure in each subject, a structure that articulates with the effects of the narcissistic and fraternal dynamic and may determine the subject's fate. This paper develops the following issues: 1) Oedipus, victimizer or victim?; 2) the generational confrontation as dynamic field; and 3) neuroses with a preponderance of dualistic relationships.

  13. Optimal Dynamic Detection of Explosives (ODD-EX)

    DTIC Science & Technology

    2011-12-29

    2. Control of nitromethane photoionization efficiency with shaped femtosecond pulses, J. Roslund, O. Shir, A. Dogariu, R. Miles, H. Rabitz, J. Chem...feedback loop. 2. Control of nitromethane photoionization efficiency with shaped femtosecond pulses, J. Roslund, O. Shir, A. Dogariu, R. Miles, H. Rabitz...resonances that allow a significant increase in the photoionization efficiency of nitromethane with shaped near-infrared femtosecond pulses. The

  14. ShapeSelectForest: a new r package for modeling landsat time series

    Treesearch

    Mary Meyer; Xiyue Liao; Gretchen Moisen; Elizabeth Freeman

    2015-01-01

    We present a new R package called ShapeSelectForest recently posted to the Comprehensive R Archival Network. The package was developed to fit nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral...

  15. An examination of flame shape related to convection heat transfer in deep-fuel beds

    Treesearch

    Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney

    2010-01-01

    Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....

  16. Anode optimization for miniature electronic brachytherapy X-ray sources using Monte Carlo and computational fluid dynamic codes

    PubMed Central

    Khajeh, Masoud; Safigholi, Habib

    2015-01-01

    A miniature X-ray source has been optimized for electronic brachytherapy. The cooling fluid for this device is water. Unlike the radionuclide brachytherapy sources, this source is able to operate at variable voltages and currents to match the dose with the tumor depth. First, Monte Carlo (MC) optimization was performed on the tungsten target-buffer thickness layers versus energy such that the minimum X-ray attenuation occurred. Second optimization was done on the selection of the anode shape based on the Monte Carlo in water TG-43U1 anisotropy function. This optimization was carried out to get the dose anisotropy functions closer to unity at any angle from 0° to 170°. Three anode shapes including cylindrical, spherical, and conical were considered. Moreover, by Computational Fluid Dynamic (CFD) code the optimal target-buffer shape and different nozzle shapes for electronic brachytherapy were evaluated. The characterization criteria of the CFD were the minimum temperature on the anode shape, cooling water, and pressure loss from inlet to outlet. The optimal anode was conical in shape with a conical nozzle. Finally, the TG-43U1 parameters of the optimal source were compared with the literature. PMID:26966563

  17. Free Surface Relaxations of Star-Shaped Polymer Films

    DOE PAGES

    Glynos, Emmanouil; Johnson, Kyle J.; Frieberg, Bradley; ...

    2017-11-28

    Here, the surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 degrees above the bulk glass transition temperature Tmore » $$bulk\\atop{g}$$. This behavior, exhibited by star-shaped polystyrenes (SPSs) with functionality f = 8 arms and molecular weights per arm M arm < M e (M e is the entanglement molecular weight), is shown by molecular dynamics simulations to be associated with a preferential localization of these macromolecules at the free surface. This new phenomenon is in notable contrast to that of linear chain polymer thin film systems where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk T$$bulk\\atop{g}$$. Finally, evidence of the slow surface dynamics, compared to the bulk, for temperatures well above T g and at length and time scales not associated with the glass transition has not previously been reported for polymers.« less

  18. Wave energy absorption by a floating air bag

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Chaplin, J. R.; Greaves, D. M.; Hann, M.

    2017-02-01

    A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape.

  19. Dynamics of nonspherical microbubble oscillations above instability threshold

    NASA Astrophysics Data System (ADS)

    Guédra, Matthieu; Cleve, Sarah; Mauger, Cyril; Blanc-Benon, Philippe; Inserra, Claude

    2017-12-01

    Time-resolved dynamics of nonspherical oscillations of micrometer-sized bubbles are captured and analyzed using high-speed imaging. The axisymmetry of the bubble shape is ensured with certainty for the first time from the recordings of two synchronous high-speed cameras located at 90∘. The temporal dynamics of finite-amplitude nonspherical oscillations are then analyzed for various acoustic pressures above the instability threshold. The experimental results are compared with recent theories accounting for nonlinearities and mode coupling, highlighting particular effects inherent to these mechanisms (saturation of the instability, triggering of nonparametric shape modes). Finally, the amplitude of the nonspherical oscillations is given as function of the driving pressure both for quadrupolar and octupolar bubbles.

  20. Dark field differential dynamic microscopy enables accurate characterization of the roto-translational dynamics of bacteria and colloidal clusters

    NASA Astrophysics Data System (ADS)

    Cerbino, Roberto; Piotti, Davide; Buscaglia, Marco; Giavazzi, Fabio

    2018-01-01

    Micro- and nanoscale objects with anisotropic shape are key components of a variety of biological systems and inert complex materials, and represent fundamental building blocks of novel self-assembly strategies. The time scale of their thermal motion is set by their translational and rotational diffusion coefficients, whose measurement may become difficult for relatively large particles with small optical contrast. Here we show that dark field differential dynamic microscopy is the ideal tool for probing the roto-translational Brownian motion of anisotropic shaped particles. We demonstrate our approach by successful application to aqueous dispersions of non-motile bacteria and of colloidal aggregates of spherical particles.

  1. Large Scale Brownian Dynamics of Confined Suspensions of Rigid Particles

    NASA Astrophysics Data System (ADS)

    Donev, Aleksandar; Sprinkle, Brennan; Balboa, Florencio; Patankar, Neelesh

    2017-11-01

    We introduce new numerical methods for simulating the dynamics of passive and active Brownian colloidal suspensions of particles of arbitrary shape sedimented near a bottom wall. The methods also apply for periodic (bulk) suspensions. Our methods scale linearly in the number of particles, and enable previously unprecedented simulations of tens to hundreds of thousands of particles. We demonstrate the accuracy and efficiency of our methods on a suspension of boomerang-shaped colloids. We also model recent experiments on active dynamics of uniform suspensions of spherical microrollers. This work was supported in part by the National Science Foundation under award DMS-1418706, and by the U.S. Department of Energy under award DE-SC0008271.

  2. Brownian dynamics simulation of rigid particles of arbitrary shape in external fields.

    PubMed

    Fernandes, Miguel X; de la Torre, José García

    2002-12-01

    We have developed a Brownian dynamics simulation algorithm to generate Brownian trajectories of an isolated, rigid particle of arbitrary shape in the presence of electric fields or any other external agents. Starting from the generalized diffusion tensor, which can be calculated with the existing HYDRO software, the new program BROWNRIG (including a case-specific subprogram for the external agent) carries out a simulation that is analyzed later to extract the observable dynamic properties. We provide a variety of examples of utilization of this method, which serve as tests of its performance, and also illustrate its applicability. Examples include free diffusion, transport in an electric field, and diffusion in a restricting environment.

  3. The relationship between hand anthropometrics, total grip strength and individual finger force for various handle shapes.

    PubMed

    Kong, Yong-Ku; Kim, Dae-Min

    2015-01-01

    The design and shape of hand tool handles are critical factors for preventing musculoskeletal disorders (MSDs) caused by the use of hand tools. We explored how these factors are related to total force and individual finger force in males and females with various hand anthropometrics. Using the MFFM system, we assessed four indices of anthropometry, and measured total force and individual finger force on various handle designs and shapes. Both total force and individual finger force were significant according to gender and handle shape. Total grip strength to the handle shape indicated the greatest strength with D shape and the least with A shape. From the regression analysis of hand anthropometric indices, the value of R was respectably high at 0.608-0.696. The current study examined the gender and handle shape factors affecting grip strength based on the force measurements from various handle types, in terms of influence on different hand anthropometric indices.

  4. Dynamic characteristics of a pump-turbine during hydraulic transients of a model pumped-storage system: 3D CFD simulation

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.

    2014-03-01

    The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.

  5. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

    NASA Astrophysics Data System (ADS)

    Sun, Chunya; Song, Baowei; Wang, Peng

    2015-11-01

    Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

  6. The complex-scaled multiconfigurational spin-tensor electron propagator method for low-lying shape resonances in Be-, Mg- and Ca-

    NASA Astrophysics Data System (ADS)

    Tsogbayar, Tsednee; Yeager, Danny L.

    2017-01-01

    We further apply the complex scaled multiconfigurational spin-tensor electron propagator method (CMCSTEP) for the theoretical determination of resonance parameters with electron-atom systems including open-shell and highly correlated (non-dynamical correlation) atoms and molecules. The multiconfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented by Yeager and his coworkers for real space gives very accurate and reliable ionization potentials and electron affinities. CMCSTEP uses a complex scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of the electronic coordinates are scaled by a complex factor. CMCSTEP is designed for determining resonances. We apply CMCSTEP to get the lowest 2P (Be-, Mg-) and 2D (Mg-, Ca-) shape resonances using several different basis sets each with several complete active spaces. Many of these basis sets we employ have been used by others with different methods. Hence, we can directly compare results with different methods but using the same basis sets.

  7. Quantifying the abnormal hemodynamics of sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  8. Interfaces of Malignant and Immunologic Clonal Dynamics in Ovarian Cancer.

    PubMed

    Zhang, Allen W; McPherson, Andrew; Milne, Katy; Kroeger, David R; Hamilton, Phineas T; Miranda, Alex; Funnell, Tyler; Little, Nicole; de Souza, Camila P E; Laan, Sonya; LeDoux, Stacey; Cochrane, Dawn R; Lim, Jamie L P; Yang, Winnie; Roth, Andrew; Smith, Maia A; Ho, Julie; Tse, Kane; Zeng, Thomas; Shlafman, Inna; Mayo, Michael R; Moore, Richard; Failmezger, Henrik; Heindl, Andreas; Wang, Yi Kan; Bashashati, Ali; Grewal, Diljot S; Brown, Scott D; Lai, Daniel; Wan, Adrian N C; Nielsen, Cydney B; Huebner, Curtis; Tessier-Cloutier, Basile; Anglesio, Michael S; Bouchard-Côté, Alexandre; Yuan, Yinyin; Wasserman, Wyeth W; Gilks, C Blake; Karnezis, Anthony N; Aparicio, Samuel; McAlpine, Jessica N; Huntsman, David G; Holt, Robert A; Nelson, Brad H; Shah, Sohrab P

    2018-05-07

    High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Stepwise self-assembly of C60 mediated by atomic scale moiré magnifiers

    NASA Astrophysics Data System (ADS)

    Gruznev, D. V.; Matetskiy, A. V.; Bondarenko, L. V.; Utas, O. A.; Zotov, A. V.; Saranin, A. A.; Chou, J. P.; Wei, C. M.; Lai, M. Y.; Wang, Y. L.

    2013-04-01

    Self-assembly of atoms or molecules on a crystal surface is considered one of the most promising methods to create molecular devices. Here we report a stepwise self-assembly of C60 molecules into islands with unusual shapes and preferred sizes on a gold-indium-covered Si(111) surface. Specifically, 19-mer islands prefer a non-compact boomerang shape, whereas hexagonal 37-mer islands exhibit extraordinarily enhanced stability and abundance. The stepwise self-assembly is mediated by the moiré interference between an island with its underlying lattice, which essentially maps out the adsorption-energy landscape of a C60 on different positions of the surface with a lateral magnification factor and dictates the probability for the subsequent attachment of C60 to an island’s periphery. Our discovery suggests a new method for exploiting the moiré interference to dynamically assist the self-assembly of particles and provides an unexplored tactic of engineering atomic scale moiré magnifiers to facilitate the growth of monodispersed mesoscopic structures.

  10. Molecular dynamics simulations of single siloxane dendrimers: Molecular structure and intramolecular mobility of terminal groups

    NASA Astrophysics Data System (ADS)

    Kurbatov, A. O.; Balabaev, N. K.; Mazo, M. A.; Kramarenko, E. Yu.

    2018-01-01

    Molecular dynamics simulations of two types of isolated siloxane dendrimers of various generations (from the 2nd to the 8th) have been performed for temperatures ranging from 150 K to 600 K. The first type of dendrimer molecules has short spacers consisting of a single oxygen atom. In the dendrimers of the second type, spacers are longer and comprised of two oxygen atoms separated by a single silicon atom. A comparative analysis of molecular macroscopic parameters such as the gyration radius and the shape factor as well as atom distributions within dendrimer interior has been performed for varying generation number, temperature, and spacer length. It has been found that the short-spacer dendrimers of the 7th and 8th generations have a stressed central part with elongated bonds and deformed valence angles. Investigation of the time evolution of radial displacements of the terminal Si atoms has shown that a fraction of the Si groups have a reduced mobility. Therefore, rather long time trajectories (of the order of tens of nanoseconds) are required to study dendrimer intramolecular dynamics.

  11. Nonlinear dynamic analysis of rigid rotor supported by gas foil bearings: Effects of gas film and foil structure on subsynchronous vibrations

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyang; Feng, Kai; Liu, Tianyu; Lyu, Peng; Zhang, Tao

    2018-07-01

    Highly nonlinear subsynchronous vibrations are the main causing factors of failure in gas foil bearing (GFB)-rotor systems. Thus, investigating the vibration generation mechanisms and the relationship between subsynchronous vibrations and GFBs is necessary to ensure the healthy operation of rotor systems. In this study, an integrated nonlinear dynamic model with the consideration of shaft motion, unsteady gas film, and deformations of foil structure is established to investigate the effect of gas film and foil structure on system subsynchronous response. One test rig of GFB-rotor system is developed for model comparison. High agreement is shown between the prediction and test data, especially in the frequency domain. The nonlinear dynamic response is analyzed using waterfall plots, operation deflection shapes, journal orbits, Poincaré maps, and fast Fourier transforms. The parameter studies reveal that subsynchronous vibrations are highly related to gas film and foil structure. Subsynchronous vibrations can be adjusted by parameters such as bump stiffness, nominal clearance, and static loads. Therefore, gas foil bearing parameters should be carefully adjusted by system manufacturers to achieve the best rotordynamic performance.

  12. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  13. Alternative Shapes and Shaping Techniques for Enhanced Transformer Ratios in Beam Driven Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    The transformer ration of collinear beam-driven techniques can be significantly improved by shaping the current profile of the drive bunch. To date, several current shapes have been proposed to increase the transformer ratio and produce quasi-uniform energy loss within the drive bunch. Some of these tailoring techniques are possible as a results of recent beam-dynamics advances, e.g., transverse-to-longitudinal emittance exchanger. In ths paper, we propose an alternative class of longitudinal shapes that enable high transformer ratio and uniform energy loss across the drive bunch. We also suggest a simple method based on photocathode-laser shaping and passive shaping in wakefield structuremore » to realize shape close to the theoretically optimized current profiles.« less

  14. Shape memory polymer network with thermally distinct elasticity and plasticity

    PubMed Central

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices. PMID:26824077

  15. The Role of River Morphodynamic Disturbance and Groundwater Hydrology As Driving Factors of Riparian Landscape Patterns in Mediterranean Rivers.

    PubMed

    Rivaes, Rui; Pinheiro, António N; Egger, Gregory; Ferreira, Teresa

    2017-01-01

    Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect.

  16. The Role of River Morphodynamic Disturbance and Groundwater Hydrology As Driving Factors of Riparian Landscape Patterns in Mediterranean Rivers

    PubMed Central

    Rivaes, Rui; Pinheiro, António N.; Egger, Gregory; Ferreira, Teresa

    2017-01-01

    Fluvial disturbances, especially floods and droughts, are the main drivers of the successional patterns of riparian vegetation. Those disturbances control the riparian landscape dynamics through the direct interaction between flow and vegetation. The main aim of this work is to investigate the specific paths by which fluvial disturbances, distributed by its components of groundwater hydrology (grndh) and morphodynamic disturbance (mrphd), drive riparian landscape patterns as characterized by the location (position in the river corridor) and shape (physical form of the patch) of vegetation patches in Mediterranean rivers. Specifically, this work assesses how the different components of fluvial disturbances affect these features in general and particularly in each succession phase of riparian vegetation. grndh and mrphd were defined by time and intensity weighted indexes calculated, respectively, from the mean annual water table elevations and the annual maximum instantaneous discharge shear stresses of the previous decade. The interactions between riparian landscape features and fluvial disturbances were assessed by confirmatory factor analysis using structural equation modeling. Two hypothetical models for patch location and shape were conceptualized and tested against empirical data collected from 220 patches at four different study sites. Both models were successfully fitted, meaning that they adequately depicted the relationships between the variables. Furthermore, the models achieved a good adjustment for the observed data, based on the evaluation of several approximate fit indexes. The patch location model explained approximately 80% of the patch location variability, demonstrating that the location of the riparian patches is primarily driven by grndh, while the mrphd had very little effect on this feature. In a multigroup analysis regarding the succession phases of riparian vegetation, the fitted model explained more than 68% of the variance of the data, confirming the results of the general model. The patch shape model explained nearly 13% of the patch shape variability, in which the disturbances came to have less influence on driving this feature. However, grndh continues to be the primary driver of riparian vegetation between the two disturbance factors, despite the proportional increase of the mrphd effect to approximately a third of the grndh effect. PMID:28979278

  17. Optimal control of multiphoton ionization dynamics of small alkali aggregates

    NASA Astrophysics Data System (ADS)

    Lindinger, A.; Bartelt, A.; Lupulescu, C.; Vajda, S.; Woste, Ludger

    2003-11-01

    We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters like wavelength range or its phase and amplitude; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photo-chemical process. First, we present the vibrational dynamics of bound electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced ioniziation experiments were carried out. The controllability of 3-photon ionization pathways is investigated on the model-like systems NaK and K2. A closed learning loop for adaptive feedback control is used to find the optimal fs pulse shape. Sinusoidal parameterizations of the spectral phase modulation are investigated in regard to the obtained optimal field. By reducing the number of parameters and thereby the complexity of the phase moduation, optimal pulse shapes can be generated that carry fingerprints of the molecule's dynamical properties. This enables to find "understandable" optimal pulse forms and offers the possiblity to gain insight into the photo-induced control process. Characteristic motions of the involved wave packets are proposed to explain the optimized dynamic dissociation pathways.

  18. Effects of altering heel wedge properties on gait with the Intrepid Dynamic Exoskeletal Orthosis.

    PubMed

    Ikeda, Andrea J; Fergason, John R; Wilken, Jason M

    2018-06-01

    The Intrepid Dynamic Exoskeletal Orthosis is a custom-made dynamic response carbon fiber device. A heel wedge, which sits in the shoe, is an integral part of the orthosis-heel wedge-shoe system. Because the device restricts ankle movement, the system must compensate to simulate plantarflexion and allow smooth forward progression during gait. To determine the influence of wedge height and durometer on the walking gait of individuals using the Intrepid Dynamic Exoskeletal Orthosis. Repeated measures. Twelve individuals walked over level ground with their Intrepid Dynamic Exoskeletal Orthosis and six different heel wedges of soft or firm durometer and 1, 2, or 3 cm height. Center of pressure velocity, joint moments, and roll-over shape were calculated for each wedge. Height and durometer significantly affected time to peak center of pressure velocity, time to peak internal dorsiflexion and knee extension moments, time to ankle moment zero crossing, and roll-over shape center of curvature anterior-posterior position. Wedge height had a significant influence on peak center of pressure velocity, peak dorsiflexion moment, time to peak knee extension moment, and roll-over shape radius and vertical center of curvature. Changes in wedge height and durometer systematically affected foot loading. Participants preferred wedges which produced ankle moment zero crossing timing, peak internal knee extension moment timing, and roll-over shape center of curvature anterior-posterior position close to that of able-bodied individuals. Clinical relevance Adjusting the heel wedge is a simple, straightforward way to adjust the orthosis-heel wedge-shoe system. Changing wedge height and durometer significantly alters loading of the foot and has great potential to improve an individual's gait.

  19. The contrasting phylodynamics of human influenza B viruses.

    PubMed

    Vijaykrishna, Dhanasekaran; Holmes, Edward C; Joseph, Udayan; Fourment, Mathieu; Su, Yvonne C F; Halpin, Rebecca; Lee, Raphael T C; Deng, Yi-Mo; Gunalan, Vithiagaran; Lin, Xudong; Stockwell, Timothy B; Fedorova, Nadia B; Zhou, Bin; Spirason, Natalie; Kühnert, Denise; Bošková, Veronika; Stadler, Tanja; Costa, Anna-Maria; Dwyer, Dominic E; Huang, Q Sue; Jennings, Lance C; Rawlinson, William; Sullivan, Sheena G; Hurt, Aeron C; Maurer-Stroh, Sebastian; Wentworth, David E; Smith, Gavin J D; Barr, Ian G

    2015-01-16

    A complex interplay of viral, host, and ecological factors shapes the spatio-temporal incidence and evolution of human influenza viruses. Although considerable attention has been paid to influenza A viruses, a lack of equivalent data means that an integrated evolutionary and epidemiological framework has until now not been available for influenza B viruses, despite their significant disease burden. Through the analysis of over 900 full genomes from an epidemiological collection of more than 26,000 strains from Australia and New Zealand, we reveal fundamental differences in the phylodynamics of the two co-circulating lineages of influenza B virus (Victoria and Yamagata), showing that their individual dynamics are determined by a complex relationship between virus transmission, age of infection, and receptor binding preference. In sum, this work identifies new factors that are important determinants of influenza B evolution and epidemiology.

  20. Simulation of transverse modes with their intrinsic Landau damping for bunched beams in the presence of space charge

    DOE PAGES

    Macridin, Alexandru; Burov, Alexey; Stern, Eric; ...

    2015-07-22

    Transverse dipole modes in bunches with space charge are simulated using the synergia accelerator modeling package and analyzed with dynamic mode decomposition. The properties of the first three space charge modes, including their shape, damping rates, and tune shifts are described over the entire range of space charge strength. As a result, the intrinsic Landau damping predicted and estimated in 2009 by one of the authors is confirmed with a reasonable scaling factor of ≃2.4. For the KV distribution, very good agreement with PATRIC simulations performed by Kornilov and Boine-Frankenheim is obtained.

  1. A life cycle model of public policy issues in health care: the importance of strategic issues management.

    PubMed

    Rakich, J S; Feit, M D

    2001-01-01

    Public policy affects health and social services organizations. Senior management has a responsibility to prevent inappropriate demands of stakeholders from predominating and to influence the outcome of public policy to the benefit of their organization through the strategic issues management process. This article presents a public policy issue life cycle model, life-cycle stages and suggested strategies, paths issues can take in the life cycle, and factors that affect issue paths. An understanding of these dynamics can aid senior managers in shaping and changing public policy issues and lessening external environment threats to their organization.

  2. Axi-symmetric patterns of active polar filaments on spherical and composite surfaces

    NASA Astrophysics Data System (ADS)

    Srivastava, Pragya; Rao, Madan

    2014-03-01

    Experiments performed on Fission Yeast cells of cylindrical and spherical shapes, rod-shaped bacteria and reconstituted cylindrical liposomes suggest the influence of cell geometry on patterning of cortical actin. A theoretical model based on active hydrodynamic description of cortical actin that includes curvature-orientation coupling predicts spontaneous formation of acto-myosin rings, cables and nodes on cylindrical and spherical geometries [P. Srivastava et al, PRL 110, 168104(2013)]. Stability and dynamics of these patterns is also affected by the cellular shape and has been observed in experiments performed on Fission Yeast cells of spherical shape. Motivated by this, we study the stability and dynamics of axi-symmetric patterns of active polar filaments on the surfaces of spherical, saddle shaped and conical geometry and classify the stable steady state patterns on these surfaces. Based on the analysis of the fluorescence images of Myosin-II during ring slippage we propose a simple mechanical model for ring-sliding based on force balance and make quantitative comparison with the experiments performed on Fission Yeast cells. NSF Grant DMR-1004789 and Syracuse Soft Matter Program.

  3. The dynamics and shapes of a viscous sheet spreading on a moving liquid bath

    NASA Astrophysics Data System (ADS)

    Sebilleau, J.; Lebon, L.; Limat, L.; Quartier, L.; Receveur, M.

    2010-10-01

    We investigate the shape and dynamics of a floating viscous sheet formed by a jet falling on a static or moving bath under partial wetting conditions. For a static bath, the viscous sheet has a circular shape and spreads with a uniform thickness that is surprisingly larger than the static Langmuir equilibrium thickness. This thickening effect seems to be linked to a peculiarity of the oil used for the bath, which is in situation of total wetting on the sheet surface, and climbs the sheet a bit like a macroscopic "precursor film" that increases dissipation at the sheet perimeter. For a moving bath, the viscous sheet evolves from an ellipse to a ribbon, a transient remarkable pear shape being observed between these two states. A simple kinematic model of advection of the spreading sheet by the bath predicts very well the characteristics of the ribbon regime. Convected sheets whose shape is reminiscent of pendant drops in 2D are also observed at higher bath velocity, with interesting pinch off phenomena.

  4. CO{sub 2} isolated line shapes by classical molecular dynamics simulations: Influence of the intermolecular potential and comparison with new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larcher, G.; Tran, H., E-mail: ha.tran@lisa.u-pec.fr; Schwell, M.

    2014-02-28

    Room temperature absorption spectra of various transitions of pure CO{sub 2} have been measured in a broad pressure range using a tunable diode-laser and a cavity ring-down spectrometer, respectively, in the 1.6 μm and 0.8 μm regions. Their spectral shapes have been calculated by requantized classical molecular dynamics simulations. From the time-dependent auto-correlation function of the molecular dipole, including Doppler and collisional effects, spectral shapes are directly computed without the use of any adjusted parameter. Analysis of the spectra calculated using three different anisotropic intermolecular potentials shows that the shapes of pure CO{sub 2} lines, in terms of both themore » Lorentz widths and non-Voigt effects, slightly depend on the used potential. Comparisons between these ab initio calculations and the measured spectra show satisfactory agreement for all considered transitions (from J = 6 to J = 46). They also show that non-Voigt effects on the shape of CO{sub 2} transitions are almost independent of the rotational quantum number of the considered lines.« less

  5. On the ability of plant life-history strategies to shape bio-geomorphologic interactions

    NASA Astrophysics Data System (ADS)

    Schwarz, Christian; van Belzen, Jim; Zhu, ZhenChang; Bouma, Tjeerd; van de Koppel, Johan; Gourgue, Olivier; Temmerman, Stijn

    2017-04-01

    Previous work studying bio-geomorphologic interactions in intertidal habitats underlined the importance of wetland vegetation shaping their environment (e.g. tidal channel networks). Up to this point the potential of wetland vegetation to shape their environment was linked to their physical plant properties, such as stiffness, stem diameter or stem density. However the effect of life-history strategies, i.e. the mode of plant proliferation such as sexual reproduction from seeds, non-sexual lateral expansion or a combination of the former two was hitherto ignored. We present numerical experiments based on a wetland ecosystem present in the Western Scheldt Estuary (SW, the Netherlands) showing the importance of life-history strategies shaping bio-geomorphologic interactions. We specifically compare two extremes in life-history strategies, (1) one species solely establishing from seeds and relying on their mass recruitment (Salicornia europea); And a second species (Spartina anglica) which relies on a mixed establishment strategy consisting of seed dispersal and asexual lateral expansion through tillering, with a very low seed recruitment success per year. Based on conducted numerical experiments using TELEMAC2D we show that the Spartina-case facilitates relative low channel densities with pronounced channel networks, whereas the Salicornia-case favors high channel densities with less pronounced intertidal channels. The conducted numerical experiments are the first indication showing that plant proliferation strategies exert a major control on emerging patterns in bio-geomorphologic systems. This provides a deeper understanding in the constraining factors and dynamics shaping the emergence and resilience of bio-geomorphologic systems.

  6. Dynamics and Control of a Quadrotor with Active Geometric Morphing

    NASA Astrophysics Data System (ADS)

    Wallace, Dustin A.

    Quadrotors are manufactured in a wide variety of shapes, sizes, and performance levels to fulfill a multitude of roles. Robodub Inc. has patented a morphing quadrotor which will allow active reconfiguration between various shapes for performance optimization across a wider spectrum of roles. The dynamics of the system are studied and modeled using Newtonian Mechanics. Controls are developed and simulated using both Linear Quadratic and Numerical Nonlinear Optimal control for a symmetric simplificiation of the system dynamics. Various unique vehicle capabilities are investigated, including novel single-throttle flight control using symmetric geometric morphing, as well as recovery from motor loss by reconfiguring into a trirotor configuration. The system dynamics were found to be complex and highly nonlinear. All attempted control strategies resulted in controllability, suggesting further research into each may lead to multiple viable control strategies for a physical prototype.

  7. Shape regularized active contour based on dynamic programming for anatomical structure segmentation

    NASA Astrophysics Data System (ADS)

    Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra

    2005-04-01

    We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.

  8. Active turnover regulates pattern formation and stress transmission in disordered acto-myosin networks

    NASA Astrophysics Data System (ADS)

    McCall, Patrick; Stam, Samantha; Kovar, David; Gardel, Margaret

    The shape and mechanics of animal cells are controlled by a dynamic, thin network of semiflexible actin filaments and myosin-II motor proteins called the actomyosin cortex. Motor-generated stresses in the cortex drive changes in cell shape during cell division and morphogenesis, while dynamic turnover of actin filaments dissipates stress. The relative effects that force generation, force dissipation, and disassembly and reassembly of material have on motion in these networks are unknown. We find that cross-linked actin networks in vitro contract under myosin-generated stresses, resulting in partial filament disassembly, the formation of asters, and clustering of myosin motors. We observe a rapid restoration of uniform polymer density in the presence of the assembly factors which catalyze network turnover through elongation of severed actin filaments. When severing is accelerated further by the addition of a severing protein, network contraction and motor clustering are dramatically suppressed. We test the relative effects of material regeneration and force transmission using image analysis, and conclude that the dominant mechanism for this effect is relatively short-lived stresses that do not propagate over considerable distance or push network deformation into the nonlinear contractile regime we have previously characterized. Our results present a framework to understand cytoskeletal active matter that are influenced by a complex interplay between stress generation, network reorganization, and polymer turnover.

  9. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities.

    PubMed

    Neuenkamp, Lena; Moora, Mari; Öpik, Maarja; Davison, John; Gerz, Maret; Männistö, Minna; Jairus, Teele; Vasar, Martti; Zobel, Martin

    2018-01-25

    Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. Disease Risk in a Dynamic Environment: The Spread of Tick-Borne Pathogens in Minnesota, USA

    PubMed Central

    Robinson, Stacie J.; Neitzel, David F.; Moen, Ronald A.; Craft, Meggan E.; Hamilton, Karin E.; Johnson, Lucinda B.; Mulla, David J.; Munderloh, Ulrike G.; Redig, Patrick T.; Smith, Kirk E.; Turner, Clarence L.; Umber, Jamie K.; Pelican, Katharine M.

    2015-01-01

    As humans and climate change alter the landscape, novel disease risk scenarios emerge. Understanding the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease threats in a dynamic environment. Tick-borne diseases present an important public health concern and incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-borne diseases includes strong ties with environmental factors that influence host availability, vector abundance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest communities predict rising risk of tick-borne disease. PMID:25281302

  11. Virioplankton dynamics are related to eutrophication levels in a tropical urbanized bay

    PubMed Central

    Cabral, Anderson S.; Lessa, Mariana M.; Junger, Pedro C.; Thompson, Fabiano L.; Paranhos, Rodolfo

    2017-01-01

    Virioplankton are an important and abundant biological component of marine and freshwater ecosystems. Often overlooked, aquatic viruses play an important role in biogeochemical cycles on a global scale, infecting both autotrophic and heterotrophic microbes. Viral diversity, abundance, and viral interactions at different trophic levels in aqueous environments are not well understood. Tropical ecosystems are less frequently studied than temperate ecosystems, but could provide new insights into how physical and chemical variability can shape or force microbial community changes. In this study, we found high viral abundance values in Guanabara Bay relative to other estuaries around the world. Viral abundance was positively correlated with bacterioplankton abundance and chlorophyll a concentrations. Moreover, prokaryotic and viral abundance were positively correlated with eutrophication, especially in surface waters. These results provide novel baseline data on the quantitative distribution of aquatic viruses in tropical estuaries. They also provide new information on a complex and dynamic relationship in which environmental factors influence the abundance of bacterial hosts and consequently their viruses. Guanabara Bay is characterized by spatial and seasonal variations, and the eutrophication process is the most important factor explaining the structuring of virioplankton abundance and distribution in this tropical urbanized bay. PMID:28362842

  12. Physics of the saturation of particle acceleration in relativistic magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2018-05-01

    We investigate the saturation of particle acceleration in relativistic reconnection using two-dimensional particle-in-cell simulations at various magnetizations σ. We find that the particle energy spectrum produced in reconnection quickly saturates as a hard power law that cuts off at γ ≈ 4σ, confirming previous work. Using particle tracing, we find that particle acceleration by the reconnection electric field in X-points determines the shape of the particle energy spectrum. By analysing the current sheet structure, we show that physical cause of saturation is the spontaneous formation of secondary magnetic islands that can disrupt particle acceleration. By comparing the size of acceleration regions to the typical distance between disruptive islands, we show that the maximum Lorentz factor produced in reconnection is γ ≈ 5σ, which is very close to what we find in our particle energy spectra. We also show that the dynamic range in Lorentz factor of the power-law spectrum in reconnection is ≤40. The hardness of the power law combined with its narrow dynamic range implies that relativistic reconnection is capable of producing the hard narrow-band flares observed in the Crab nebula but has difficulty producing the softer broad-band prompt gamma-ray burst emission.

  13. The data not collected on community forestry

    PubMed Central

    Oldekop, Johan A.; Cronkleton, Peter; Etue, Emily; Newton, Peter; Russel, Aaron J.M.; Tjajadi, Januarti Sinarra; Zhou, Wen; Agrawal, Arun

    2016-01-01

    Abstract Conservation and development practitioners increasingly promote community forestry as a way to conserve ecosystem services, consolidate resource rights, and reduce poverty. However, outcomes of community forestry have been mixed; many initiatives failed to achieve intended objectives. There is a rich literature on institutional arrangements of community forestry, but there has been little effort to examine the role of socioeconomic, market, and biophysical factors in shaping both land‐cover change dynamics and individual and collective livelihood outcomes. We systematically reviewed the peer‐reviewed literature on community forestry to examine and quantify existing knowledge gaps in the community‐forestry literature relative to these factors. In examining 697 cases of community forest management (CFM), extracted from 267 peer‐reviewed publications, we found 3 key trends that limit understanding of community forestry. First, we found substantial data gaps linking population dynamics, market forces, and biophysical characteristics to both environmental and livelihood outcomes. Second, most studies focused on environmental outcomes, and the majority of studies that assessed socioeconomic outcomes relied on qualitative data, making comparisons across cases difficult. Finally, there was a heavy bias toward studies on South Asian forests, indicating that the literature on community forestry may not be representative of decentralization policies and CFM globally. PMID:27060464

  14. Disease risk in a dynamic environment: the spread of tick-borne pathogens in Minnesota, USA.

    PubMed

    Robinson, Stacie J; Neitzel, David F; Moen, Ronald A; Craft, Meggan E; Hamilton, Karin E; Johnson, Lucinda B; Mulla, David J; Munderloh, Ulrike G; Redig, Patrick T; Smith, Kirk E; Turner, Clarence L; Umber, Jamie K; Pelican, Katharine M

    2015-03-01

    As humans and climate change alter the landscape, novel disease risk scenarios emerge. Understanding the complexities of pathogen emergence and subsequent spread as shaped by landscape heterogeneity is crucial to understanding disease emergence, pinpointing high-risk areas, and mitigating emerging disease threats in a dynamic environment. Tick-borne diseases present an important public health concern and incidence of many of these diseases are increasing in the United States. The complex epidemiology of tick-borne diseases includes strong ties with environmental factors that influence host availability, vector abundance, and pathogen transmission. Here, we used 16 years of case data from the Minnesota Department of Health to report spatial and temporal trends in Lyme disease (LD), human anaplasmosis, and babesiosis. We then used a spatial regression framework to evaluate the impact of landscape and climate factors on the spread of LD. Finally, we use the fitted model, and landscape and climate datasets projected under varying climate change scenarios, to predict future changes in tick-borne pathogen risk. Both forested habitat and temperature were important drivers of LD spread in Minnesota. Dramatic changes in future temperature regimes and forest communities predict rising risk of tick-borne disease.

  15. Income Inequality and Happiness: An Inverted U-Shaped Curve.

    PubMed

    Yu, Zonghuo; Wang, Fei

    2017-01-01

    Numerous studies agree that income inequality, rather than absolute income, is an important predictor of happiness. However, its specific role has been controversial. We argue that income inequality and happiness should exhibit an inverted U-shaped relationship due to the dynamic competing process between two effects: when income inequality is relatively low, the signal effect will be the dominating factor, in which individuals feel happy because they consider income inequality as a signal of social mobility and expect upward mobility; however, if income inequality level increases beyond a critical point, the jealousy effect will become the dominating factor, in which individuals tend to be unhappy because they are disillusioned about the prospect of upward mobility and jealous of their wealthier peers. This hypothesis is tested in a longitudinal dataset on the United States and a cross-national dataset on several European countries. In both datasets, the Gini coefficient (a common index of a society's income inequality) and its quadratic term were significant predictors of personal happiness. Further examinations of the quadratic relationships showed that the signal effect was only presented in the European data, while the jealousy effect was presented in both datasets. These findings shed new light on our understanding of the relationship between income inequality and personal happiness.

  16. Income Inequality and Happiness: An Inverted U-Shaped Curve

    PubMed Central

    Yu, Zonghuo; Wang, Fei

    2017-01-01

    Numerous studies agree that income inequality, rather than absolute income, is an important predictor of happiness. However, its specific role has been controversial. We argue that income inequality and happiness should exhibit an inverted U-shaped relationship due to the dynamic competing process between two effects: when income inequality is relatively low, the signal effect will be the dominating factor, in which individuals feel happy because they consider income inequality as a signal of social mobility and expect upward mobility; however, if income inequality level increases beyond a critical point, the jealousy effect will become the dominating factor, in which individuals tend to be unhappy because they are disillusioned about the prospect of upward mobility and jealous of their wealthier peers. This hypothesis is tested in a longitudinal dataset on the United States and a cross-national dataset on several European countries. In both datasets, the Gini coefficient (a common index of a society’s income inequality) and its quadratic term were significant predictors of personal happiness. Further examinations of the quadratic relationships showed that the signal effect was only presented in the European data, while the jealousy effect was presented in both datasets. These findings shed new light on our understanding of the relationship between income inequality and personal happiness. PMID:29225588

  17. Linking the Epigenome with Exposure Effects and ...

    EPA Pesticide Factsheets

    The epigenome is a dynamic mediator of gene expression that shapes the way that cells, tissues, and organisms respond to their environment. Initial studies in the emerging field of “toxicoepigenetics” have described either the impact of an environmental exposure on the epigenome or the association of epigenetic signatures with the onset or progression of disease: however, the majority of these pioneering studies examined the relationship between discrete epigenetic modifications and the effects of a single environmental factor. While these data provide critical blocks with which we construct our understanding of the role of the epigenome in susceptibility and disease, they are akin to individual letters in a complex alphabet that is used to compose the language of the epigenome. Advancing the use of epigenetic data to gain a more comprehensive understanding of the mechanisms underlying exposure effects, identify susceptible populations, and inform the next generation of risk management depends on our ability to integrate these data in a way that accounts for their cumulative impact on gene regulation. Here we will review current examples demonstrating associations between the epigenetic impacts of intrinsic factors, such as such as age, genetics, and sex, and environmental exposures shape the epigenome and susceptibility, to exposure effects and disease. We will also demonstrate how the “epigenetic seed and soil'' model can be used as a conceptua

  18. Relaxation process of the discharge channel near the anode in long air gaps under positive impulse voltages

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangen; He, Junjia; Luo, Bing; Jia, Lei; Yang, Yongchao; Xiao, Pei

    2017-12-01

    The relaxation process of the discharge channel near the anode in a long air gap was observed using a Schlieren system with a temporal resolution of 5 µs and a spatial resolution of 70 µm. The dynamic characteristics of the decay process in the vicinity of the anode are obtained. The discharge channel evolves just as a growing mushroom in nature during the relaxation phase. Two physical quantities, angle θ and velocity v, are defined to describe the process in this paper. The average value of the angle and velocity under lightning impulses are 71.7° and 3.3 m s-1 respectively, while 7.7 m s-1 under switching impulses. A simplified model was established to simulate the formation of mushroom-shaped channel. The simulation and experimental results show that the formation and development of the mushroom-shaped channel are due to two factors. One is the convection of the high temperature and high pressure air near the anode produced by the first corona discharge; the other is the ionic migration. These two factors result in the phenomena that the cooling process in the vicinity of the anode is much more efficient than further into the gap, whereas the thermal conductivity of the anode may have little contribution to that.

  19. Determining the standoff distance of the bow shock: Mach number dependence and use of models

    NASA Technical Reports Server (NTRS)

    Farris, M. H.; Russell, C. T.

    1994-01-01

    We explore the factors that determine the bow shock standoff distance. These factors include the parameters of the solar wind, as well as the size and shape of the obstacle. In this report we develop a semiempirical Mach number relation for the bow shock standoff distance in order to take into account the shock's behavior at low Mach numbers. This is done by determining which properties of the shock are most important in controlling the standoff distance and using this knowledge to modify the current Mach number relation. While the present relation has proven useful at higher Mach numbers, it has lacked effectiveness at the low Mach number limit. We also analyze the bow shock dependence upon the size and shape of the obstacle, noting that it is most appropriate to compare the standoff distance of the bow shock to the radius of curvature of the obstacle, as opposed to the distance from the focus of the object to the nose. Last, we focus our attention on the use of bow shock models in determining the standoff distance. We note that the physical behavior of the shock must correctly be taken into account, specifically the behavior as a function of solar wind dynamic pressure; otherwise, erroneous results can be obtained for the bow shock standoff distance.

  20. Design and Printing Strategies in 3D Bioprinting of Cell-Hydrogels: A Review.

    PubMed

    Lee, Jia Min; Yeong, Wai Yee

    2016-11-01

    Bioprinting is an emerging technology that allows the assembling of both living and non-living biological materials into an ideal complex layout for further tissue maturation. Bioprinting aims to produce engineered tissue or organ in a mechanized, organized, and optimized manner. Various biomaterials and techniques have been utilized to bioprint biological constructs in different shapes, sizes and resolutions. There is a need to systematically discuss and analyze the reported strategies employed to fabricate these constructs. We identified and discussed important design factors in bioprinting, namely shape and resolution, material heterogeneity, and cellular-material remodeling dynamism. Each design factors are represented by the corresponding process capabilities and printing parameters. The process-design map will inspire future biomaterials research in these aspects. Design considerations such as data processing, bio-ink formulation and process selection are discussed. Various printing and crosslinking strategies, with relevant applications, are also systematically reviewed. We categorized them into 5 general bioprinting strategies, including direct bioprinting, in-process crosslinking, post-process crosslinking, indirect bioprinting and hybrid bioprinting. The opportunities and outlook in 3D bioprinting are highlighted. This review article will serve as a framework to advance computer-aided design in bioprinting technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A protocol for the creation of useful geometric shape metrics illustrated with a newly derived geometric measure of leaf circularity.

    PubMed

    Krieger, Jonathan D

    2014-08-01

    I present a protocol for creating geometric leaf shape metrics to facilitate widespread application of geometric morphometric methods to leaf shape measurement. • To quantify circularity, I created a novel shape metric in the form of the vector between a circle and a line, termed geometric circularity. Using leaves from 17 fern taxa, I performed a coordinate-point eigenshape analysis to empirically identify patterns of shape covariation. I then compared the geometric circularity metric to the empirically derived shape space and the standard metric, circularity shape factor. • The geometric circularity metric was consistent with empirical patterns of shape covariation and appeared more biologically meaningful than the standard approach, the circularity shape factor. The protocol described here has the potential to make geometric morphometrics more accessible to plant biologists by generalizing the approach to developing synthetic shape metrics based on classic, qualitative shape descriptors.

  2. Coherent control of alkali cluster fragmentation dynamics

    NASA Astrophysics Data System (ADS)

    Lindinger, Albrecht; Lupulescu, Cosmin; Bartelt, Andreas; Vajda, Štefan; Wöste, Ludger

    2003-06-01

    Metal clusters exhibit extraordinary chemical and catalytic properties, which sensitively depend upon their size. This behavior makes them interesting candidates for the real-time analysis of ultrafast photo-induced processes—ultimately leading to coherent control scenarii. We have performed transient multi-photon ionization experiments on small alkali clusters of different size in order to probe their wave packet dynamics, structural reorientations, charge transfers and dissociative events in different vibrationally excited electronic states including their ground state. The observed processes were highly dependent on the irradiated pulse parameters, like its phase, amplitude and duration; an emphasis to employ a feedback control system for generating the optimum pulse shapes. Their spectral and temporal behavior reflects interesting properties about the investigated system and the irradiated photochemical process. We present first the vibrational dynamics of bound, dissociated, and pre-dissociated electronically excited states of alkali dimers and trimers. The scheme for observing the wave packet dynamics in the electronic ground state using stimulated Raman-pumping is shown. Since the employed pulse parameters significantly influence the efficiency of the irradiated dynamic pathways photo-induced fragmentation experiments on bifurcating reaction channels were carried out. In these experiments different branching ionization and fragmentation pathways of electronically excited Na 2K were investigated. By employing an evolutionary algorithm for optimizing the phase and amplitude of the applied laser field, the yield of the resulting parent or fragment ions could significantly be influenced and interesting features could be concluded from the obtained optimum pulse shapes revealing the characteristic molecular oscillation period. Moreover, the influence on the optimal pulse shape due to fragmentation from larger clusters into NaK is obtained. The substructure of the optimal pulse shape thereby offers new insight into the fragmentation channel during the control process. Characteristic motions of the involved wave packets are proposed, in order to explain the optimized dynamic dissociation pathways.

  3. Dynamic phase coexistence in glass-forming liquids.

    PubMed

    Pastore, Raffaele; Coniglio, Antonio; Ciamarra, Massimo Pica

    2015-07-09

    One of the most controversial hypotheses for explaining the heterogeneous dynamics of glasses postulates the temporary coexistence of two phases characterized by a high and by a low diffusivity. In this scenario, two phases with different diffusivities coexist for a time of the order of the relaxation time and mix afterwards. Unfortunately, it is difficult to measure the single-particle diffusivities to test this hypothesis. Indeed, although the non-Gaussian shape of the van-Hove distribution suggests the transient existence of a diffusivity distribution, it is not possible to infer from this quantity whether two or more dynamical phases coexist. Here we provide the first direct observation of the dynamical coexistence of two phases with different diffusivities, by showing that in the deeply supercooled regime the distribution of the single-particle diffusivities acquires a transient bimodal shape. We relate this distribution to the heterogeneity of the dynamics and to the breakdown of the Stokes-Einstein relation, and we show that the coexistence of two dynamical phases occurs up to a timescale growing faster than the relaxation time on cooling, for some of the considered models. Our work offers a basis for rationalizing the dynamics of supercooled liquids and for relating their structural and dynamical properties.

  4. Environmental factors that shape biofilm formation.

    PubMed

    Toyofuku, Masanori; Inaba, Tomohiro; Kiyokawa, Tatsunori; Obana, Nozomu; Yawata, Yutaka; Nomura, Nobuhiko

    2016-01-01

    Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell's decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

  5. Hand shape selection in pantomimed grasping: Interaction between the dorsal and the ventral visual streams and convergence on the ventral premotor area

    PubMed Central

    Makuuchi, Michiru; Someya, Yoshiaki; Ogawa, Seiji; Takayama, Yoshihiro

    2011-01-01

    In visually guided grasping, possible hand shapes are computed from the geometrical features of the object, while prior knowledge about the object and the goal of the action influence both the computation and the selection of the hand shape. We investigated the system dynamics of the human brain for the pantomiming of grasping with two aspects accentuated. One is object recognition, with the use of objects for daily use. The subjects mimed grasping movements appropriate for an object presented in a photograph either by precision or power grip. The other is the selection of grip hand shape. We manipulated the selection demands for the grip hand shape by having the subjects use the same or different grip type in the second presentation of the identical object. Effective connectivity analysis revealed that the increased selection demands enhance the interaction between the anterior intraparietal sulcus (AIP) and posterior inferior temporal gyrus (pITG), and drive the converging causal influences from the AIP, pITG, and dorsolateral prefrontal cortex to the ventral premotor area (PMv). These results suggest that the dorsal and ventral visual areas interact in the pantomiming of grasping, while the PMv integrates the neural information of different regions to select the hand posture. The present study proposes system dynamics in visually guided movement toward meaningful objects, but further research is needed to examine if the same dynamics is found also in real grasping. PMID:21739528

  6. Speed and direction changes induce the perception of animacy in 7-month-old infants

    PubMed Central

    Träuble, Birgit; Pauen, Sabina; Poulin-Dubois, Diane

    2014-01-01

    A large body of research has documented infants’ ability to classify animate and inanimate objects based on static or dynamic information. It has been shown that infants less than 1 year of age transfer animacy-specific expectations from dynamic point-light displays to static images. The present study examined whether basic motion cues that typically trigger judgments of perceptual animacy in older children and adults lead 7-month-olds to infer an ambiguous object’s identity from dynamic information. Infants were tested with a novel paradigm that required inferring the animacy status of an ambiguous moving shape. An ambiguous shape emerged from behind a screen and its identity could only be inferred from its motion. Its motion pattern varied distinctively between scenes: it either changed speed and direction in an animate way, or it moved along a straight path at a constant speed (i.e., in an inanimate way). At test, the identity of the shape was revealed and it was either consistent or inconsistent with its motion pattern. Infants looked longer on trials with the inconsistent outcome. We conclude that 7-month-olds’ representations of animates and inanimates include category-specific associations between static and dynamic attributes. Moreover, these associations seem to hold for simple dynamic cues that are considered minimal conditions for animacy perception. PMID:25346712

  7. A minimal model of predator–swarm interactions

    PubMed Central

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-01-01

    We propose a minimal model of predator–swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a ‘weak’ predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by ‘confusing’ the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator–prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd. PMID:24598204

  8. A minimal model of predator-swarm interactions.

    PubMed

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  9. Isophote Shapes Of Early-Type Galaxies In Massive Clusters At Z 1 And 0

    NASA Astrophysics Data System (ADS)

    Mitsuda, Kazuma; Doi, Mamoru; Morokuma, Tomoki; Suzuki, Nao; Yasuda, Naoki; Perlmutter, Saul; Aldering, Greg; Meyers, Joshua

    2017-06-01

    Dynamics of early-type galaxies (ETGs), whether they are supported by rotation or dispersion, is a clue to understand their assembly history. We compare the isophote shape parameter a4 between z ˜ 1 and 0 as a proxy for dynamics to investigate the epoch at which the dynamical properties are established. We create cluster ETG samples with stellar masses of log(M✽/M⦿) ≥ 10.5 with spectroscopic redshifts. We have 130 ETGs from the Hubble Space Telescope Cluster Supernova Survey for z ˜ 1 and 355 ETGs from the Sloan Digital Sky Survey for z ˜ 0. We find similar dependence of the a4 parameter on the mass at z ˜ 1 and 0; the main population changes from disky (a4 > 0) to boxy (a4 ≤ 0) at a critical mass of log(M✽/M⦿) 11.5 with the massive end dominated by boxy ETGs. The disky ETG fraction is consistent between these redshifts. Although uncertainties are large, the results suggest that the isophote shapes and probably dynamical properties of cluster ETGs are already in place at z > 1 and do not significantly evolve in z < 1, despite significant size evolution. The constant disky fraction imply that the processes responsible for the size evolution is not enough violent to convert the dynamical properties of ETGs.

  10. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Astrophysics Data System (ADS)

    Dehne, Hans J.

    1991-05-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  11. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Technical Reports Server (NTRS)

    Dehne, Hans J.

    1991-01-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  12. Dynamics of film. [two dimensional continua theory

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1979-01-01

    The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.

  13. Strong-field two-photon transition by phase shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkyung; Lim, Jongseok; Ahn, Jaewook

    2010-08-15

    We demonstrate the ultrafast coherent control of a nonlinear two-photon absorption in a dynamically shifted energy level structure. We use a spectrotemporal laser-pulse shaping that is programed to preserve the resonant absorption condition during the intense laser-field interaction. Experiments carried out in the strong-field regime of two-photon absorption in the ground state of atomic cesium reveal that the analytically obtained offset and curvature of a laser spectrum compensate the effect of both static and dynamic energy shifts of the given light-atom interaction.

  14. Autodetachment dynamics of acrylonitrile anion revealed by 2D electron impact spectra

    NASA Astrophysics Data System (ADS)

    Regeta, Khrystyna; Allan, Michael

    2014-04-01

    We have measured the elastic and vibrationally inelastic differential cross sections in acrylonitrile at the scattering angle of 135°. We have found out that the bands at 2.9 and 4.4 eV are shape resonances, while sharp structures in the region 0 -0.5 eV are either boomerang structure of a shape resonance or vibrational Feshbach resonances. We gain detailed view of the autodetachment dynamics from a 2D spectrum where cross section is plotted against the incident energy and the energy loss.

  15. Microplastic pollution in the surface waters of Italian Subalpine Lakes.

    PubMed

    Sighicelli, Maria; Pietrelli, Loris; Lecce, Francesca; Iannilli, Valentina; Falconieri, Mauro; Coscia, Lucia; Di Vito, Stefania; Nuglio, Simone; Zampetti, Giorgio

    2018-05-01

    Plastic debris incidence in marine environment was already highlighted in the early 1970s. Over the last decade, microplastic pollution in the environment has received increasing attention and is now an emerging research area. Many studies have focused on quantifying microplastic abundance in the marine environment, while there are relatively few data on microplastic occurrence in freshwater environment. Recent studies have reported high concentrations of microplastics in lakes and rivers, although the understanding of several factors influencing source, transport and fate is still limited. This study compares different lakes and the common factors, which could influence the occurrence and distribution of microplastics. The three subalpine lakes monitored include Lake Maggiore, Iseo and Garda. The selected sampling transects reflect the hydrologic conditions, the morphometric characteristics of these lakes, and other factors influencing the release of plastics debris in lakes. Particles of microplastics (<5 mm) were found in all sampled surfaces. The particles collected were classified depending on their number, shape and composition. The shape distribution showed the dominating occurrence of fragments (73.7%). The chemical composition of all examined samples clearly shows dominating presence of polyethylene (45%), polystyrene (18%) and polypropylene (15%). The results provide significant relations among the different contribution of direct and diffuse sources to the quantity of microplastics, highlighting the importance of understanding the spatial distribution dynamics of microplastics within a lake system that acts as a sink and source of plastic particles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Thermal Actuation Based 3-DoF Non-Resonant Microgyroscope Using MetalMUMPs

    PubMed Central

    Shakoor, Rana Iqtidar; Bazaz, Shafaat Ahmed; Kraft, Michael; Lai, Yongjun; Masood ul Hassan, Muhammad

    2009-01-01

    High force, large displacement and low voltage consumption are a primary concern for microgyroscopes. The chevron-shaped thermal actuators are unique in terms of high force generation combined with the large displacements at a low operating voltage in comparison with traditional electrostatic actuators. A Nickel based 3-DoF micromachined gyroscope comprising 2-DoF drive mode and 1-DoF sense mode oscillator utilizing the chevron-shaped thermal actuators is presented here. Analytical derivations and finite element simulations are carried out to predict the performance of the proposed device using the thermo-physical properties of electroplated nickel. The device sensitivity is improved by utilizing the dynamical amplification of the oscillation in 2-DoF drive mode using an active-passive mass configuration. A comprehensive theoretical description, dynamics and mechanical design considerations of the proposed gyroscopes model are discussed in detail. Parametric optimization of gyroscope, its prototype modeling and fabrication using MetalMUMPs has also been investigated. Dynamic transient simulation results predicted that the sense mass of the proposed device achieved a drive displacement of 4.1μm when a sinusoidal voltage of 0.5V is applied at 1.77 kHz exhibiting a mechanical sensitivity of 1.7μm /°/s in vacuum. The wide bandwidth frequency response of the 2-DoF drive mode oscillator consists of two resonant peaks and a flat region of 2.11 kHz between the peaks defining the operational frequency region. The sense mode resonant frequency can lie anywhere within this region and therefore the amplitude of the response is insensitive to structural parameter variations, enhancing device robustness against such variations. The proposed device has a size of 2.2 × 2.6 mm2, almost one third in comparison with existing M-DoF vibratory gyroscope with an estimated power consumption of 0.26 Watts. These predicted results illustrate that the chevron-shaped thermal actuator has a large voltage-stroke ratio shifting the paradigm in MEMS gyroscope design from the traditional interdigitated comb drive electrostatic actuator. These actuators have low damping compared to electrostatic comb drive actuators which may result in high quality factor microgyroscopes operating at atmospheric pressure. PMID:22574020

  17. Liquid behavior of cross-linked actin bundles.

    PubMed

    Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L

    2017-02-28

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bollinger, Jonathan A.; Stevens, Mark J.

    We report that microtubules exhibit a dynamic instability between growth and catastrophic depolymerization. GTP-tubulin (αβ-dimer bound to GTP) self-assembles, but dephosphorylation of GTP- to GDP-tubulin within the tubule results in destabilization. While the mechanical basis for destabilization is not fully understood, one hypothesis is that dephosphorylation causes tubulin to change shape, frustrating bonds and generating stress. To test this idea, we perform molecular dynamics simulations of microtubules built from coarse-grained models of tubulin, incorporating a small compression of α-subunits associated with dephosphorylation in experiments. We find that this shape change induces depolymerization of otherwise stable systems via unpeeling “ram's horns”more » characteristic of microtubules. Depolymerization can be averted by caps with uncompressed α-subunits, i.e., GTP-rich end regions. Thus, the shape change is sufficient to yield microtubule behavior.« less

  19. A functional interplay between the small GTPase Rab11a and mitochondria-shaping proteins regulates mitochondrial positioning and polarization of the actin cytoskeleton downstream of Src family kinases.

    PubMed

    Landry, Marie-Claude; Champagne, Claudia; Boulanger, Marie-Chloé; Jetté, Alexandra; Fuchs, Margit; Dziengelewski, Claire; Lavoie, Josée N

    2014-01-24

    It is believed that mitochondrial dynamics is coordinated with endosomal traffic rates during cytoskeletal remodeling, but the mechanisms involved are largely unknown. The adenovirus early region 4 ORF4 protein (E4orf4) subverts signaling by Src family kinases (SFK) to perturb cellular morphology, membrane traffic, and organellar dynamics and to trigger cell death. Using E4orf4 as a model, we uncovered a functional connection between mitochondria-shaping proteins and the small GTPase Rab11a, a key regulator of polarized transport via recycling endosomes. We found that E4orf4 induced dramatic changes in the morphology of mitochondria along with their mobilization at the vicinity of a polarized actin network typifying E4orf4 action, in a manner controlled by SFK and Rab11a. Mitochondrial remodeling was associated with increased proximity between Rab11a and mitochondrial membranes, changes in fusion-fission dynamics, and mitochondrial relocalization of the fission factor dynamin-related protein 1 (Drp1), which was regulated by the Rab11a effector protein FIP1/RCP. Knockdown of FIP1/RCP or inhibition of Drp1 markedly impaired mitochondrial remodeling and actin assembly, involving Rab11a-mediated mitochondrial dynamics in E4orf4-induced signaling. A similar mobilization of mitochondria near actin-rich structures was mediated by Rab11 and Drp1 in viral Src-transformed cells and contributed to the biogenesis of podosome rosettes. These findings suggest a role for Rab11a in the trafficking of Drp1 to mitochondria upon SFK activation and unravel a novel functional interplay between Rab11a and mitochondria during reshaping of the cell cytoskeleton, which would facilitate mitochondria redistribution near energy-requiring actin-rich structures.

  20. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials

    PubMed Central

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I.; Seghi, Robert R.

    2013-01-01

    An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors. PMID:27175036

  1. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials.

    PubMed

    Lekesiz, Huseyin; Katsube, Noriko; Rokhlin, Stanislav I; Seghi, Robert R

    2013-08-15

    An effective spring stiffness approximation is proposed for a hexagonal array of coplanar penny shaped cracks located at the interface between two dissimilar solids. The approximation is based on the factorization of the solution on the material dissimilarity factor, the crack interaction factor and the effective spring stiffness solution for non-interacting cracks in a homogeneous material. Such factorization is exact and was validated for 2D collinear cracks between two dissimilar solids. The crack interaction factor is obtained using a recently developed model for stress intensity factors for an array of coplanar penny shaped cracks in a homogeneous material; also the material dissimilarity function recently obtained for non-interacting penny shaped crack at the interface between two dissimilar materials is employed. The obtained solution is useful for an assessment by ultrasonic measurements of the interface stiffness in bonded structures for monitoring the interfacial microdamage growth due to mechanical loading and environmental factors.

  2. Simulation of Heterogeneous Atom Probe Tip Shapes Evolution during Field Evaporation Using a Level Set Method and Different Evaporation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Li, Dongsheng; Xu, Wei

    2015-04-01

    In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results ofmore » the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.« less

  3. A Computational Fluid-Dynamics Assessment of the Improved Performance of Aerodynamic Rain Gauges

    NASA Astrophysics Data System (ADS)

    Colli, Matteo; Pollock, Michael; Stagnaro, Mattia; Lanza, Luca G.; Dutton, Mark; O'Connell, Enda

    2018-02-01

    The airflow surrounding any catching-type rain gauge when impacted by wind is deformed by the presence of the gauge body, resulting in the acceleration of wind above the orifice of the gauge, which deflects raindrops and snowflakes away from the collector (the wind-induced undercatch). The method of mounting a gauge with the collector at or below the level of the ground, or the use of windshields to mitigate this effect, is often not practicable. The physical shape of a gauge has a significant impact on its collection efficiency. In this study, we show that appropriate "aerodynamic" shapes are able to reduce the deformation of the airflow, which can reduce undercatch. We have employed computational fluid-dynamic simulations to evaluate the time-averaged airflow realized around "aerodynamic" rain gauge shapes when impacted by wind. Terms of comparison are provided by the results obtained for two standard "conventional" rain gauge shapes. The simulations have been run for different wind speeds and are based on a time-averaged Reynolds-Averaged Navier-Stokes model. The shape of the aerodynamic gauges is shown to have a positive impact on the time-averaged airflow patterns observed around the orifice compared to the conventional shapes. Furthermore, the turbulent air velocity fields for the aerodynamic shapes present "recirculating" structures, which may improve the particle-catching capabilities of the gauge collector.

  4. Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback.

    PubMed

    Hongray, Thotreithem; Balakrishnan, Janaki

    2016-12-01

    A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (T rest ) is estimated analytically.

  5. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  6. Dynamics of internal models in game players

    NASA Astrophysics Data System (ADS)

    Taiji, Makoto; Ikegami, Takashi

    1999-10-01

    A new approach for the study of social games and communications is proposed. Games are simulated between cognitive players who build the opponent’s internal model and decide their next strategy from predictions based on the model. In this paper, internal models are constructed by the recurrent neural network (RNN), and the iterated prisoner’s dilemma game is performed. The RNN allows us to express the internal model in a geometrical shape. The complicated transients of actions are observed before the stable mutually defecting equilibrium is reached. During the transients, the model shape also becomes complicated and often experiences chaotic changes. These new chaotic dynamics of internal models reflect the dynamical and high-dimensional rugged landscape of the internal model space.

  7. Dynamics of Aqueous Foam Drops

    NASA Technical Reports Server (NTRS)

    Akhatov, Iskander; McDaniel, J. Gregory; Holt, R. Glynn

    2001-01-01

    We develop a model for the nonlinear oscillations of spherical drops composed of aqueous foam. Beginning with a simple mixture law, and utilizing a mass-conserving bubble-in-cell scheme, we obtain a Rayleigh-Plesset-like equation for the dynamics of bubbles in a foam mixture. The dispersion relation for sound waves in a bubbly liquid is then coupled with a normal modes expansion to derive expressions for the frequencies of eigenmodal oscillations. These eigenmodal (breathing plus higher-order shape modes) frequencies are elicited as a function of the void fraction of the foam. A Mathieu-like equation is obtained for the dynamics of the higher-order shape modes and their parametric coupling to the breathing mode. The proposed model is used to explain recently obtained experimental data.

  8. Dynamics of soil biogeochemical gas emissions shaped by remolded aggregate sizes and carbon configurations under hydration cycles.

    PubMed

    Ebrahimi, Ali; Or, Dani

    2018-01-01

    Changes in soil hydration status affect microbial community dynamics and shape key biogeochemical processes. Evidence suggests that local anoxic conditions may persist and support anaerobic microbial activity in soil aggregates (or in similar hot spots) long after the bulk soil becomes aerated. To facilitate systematic studies of interactions among environmental factors with biogeochemical emissions of CO 2 , N 2 O and CH 4 from soil aggregates, we remolded silt soil aggregates to different sizes and incorporated carbon at different configurations (core, mixed, no addition). Assemblies of remolded soil aggregates of three sizes (18, 12, and 6 mm) and equal volumetric proportions were embedded in sand columns at four distinct layers. The water table level in each column varied periodically while obtaining measurements of soil GHG emissions for the different aggregate carbon configurations. Experimental results illustrate that methane production required prolonged inundation and highly anoxic conditions for inducing measurable fluxes. The onset of unsaturated conditions (lowering water table) resulted in a decrease in CH 4 emissions while temporarily increasing N 2 O fluxes. Interestingly, N 2 O fluxes were about 80% higher form aggregates with carbon placement in center (anoxic) core compared to mixed carbon within aggregates. The fluxes of CO 2 were comparable for both scenarios of carbon sources. These experimental results highlight the importance of hydration dynamics in activating different GHG production and affecting various transport mechanisms about 80% of total methane emissions during lowering water table level are attributed to physical storage (rather than production), whereas CO 2 emissions (~80%) are attributed to biological activity. A biophysical model for microbial activity within soil aggregates and profiles provides a means for results interpretation and prediction of trends within natural soils under a wide range of conditions. © 2017 John Wiley & Sons Ltd.

  9. Decoupled evolution of floral traits and climatic preferences in a clade of Neotropical Gesneriaceae.

    PubMed

    Serrano-Serrano, Martha Liliana; Perret, Mathieu; Guignard, Maïté; Chautems, Alain; Silvestro, Daniele; Salamin, Nicolas

    2015-11-10

    Major factors influencing the phenotypic diversity of a lineage can be recognized by characterizing the extent and mode of trait evolution between related species. Here, we compared the evolutionary dynamics of traits associated with floral morphology and climatic preferences in a clade composed of the genera Codonanthopsis, Codonanthe and Nematanthus (Gesneriaceae). To test the mode and specific components that lead to phenotypic diversity in this group, we performed a Bayesian phylogenetic analysis of combined nuclear and plastid DNA sequences and modeled the evolution of quantitative traits related to flower shape and size and to climatic preferences. We propose an alternative approach to display graphically the complex dynamics of trait evolution along a phylogenetic tree using a wide range of evolutionary scenarios. Our results demonstrated heterogeneous trait evolution. Floral shapes displaced into separate regimes selected by the different pollinator types (hummingbirds versus insects), while floral size underwent a clade-specific evolution. Rates of evolution were higher for the clade that is hummingbird pollinated and experienced flower resupination, compared with species pollinated by bees, suggesting a relevant role of plant-pollinator interactions in lowland rainforest. The evolution of temperature preferences is best explained by a model with distinct selective regimes between the Brazilian Atlantic Forest and the other biomes, whereas differentiation along the precipitation axis was characterized by higher rates, compared with temperature, and no regime or clade-specific patterns. Our study shows different selective regimes and clade-specific patterns in the evolution of morphological and climatic components during the diversification of Neotropical species. Our new graphical visualization tool allows the representation of trait trajectories under parameter-rich models, thus contributing to a better understanding of complex evolutionary dynamics.

  10. Dynamical clustering of red blood cells in capillary vessels.

    PubMed

    Boryczko, Krzysztof; Dzwinel, Witold; Yuen, David A

    2003-02-01

    We have modeled the dynamics of a 3-D system consisting of red blood cells (RBCs), plasma and capillary walls using a discrete-particle approach. The blood cells and capillary walls are composed of a mesh of particles interacting with harmonic forces between nearest neighbors. We employ classical mechanics to mimic the elastic properties of RBCs with a biconcave disk composed of a mesh of spring-like particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, translational and angular momenta. Realistic behavior of blood cells is modeled by considering RBCs and plasma flowing through capillaries of various shapes. Three types of vessels are employed: a pipe with a choking point, a curved vessel and bifurcating capillaries. There is a strong tendency to produce RBC clusters in capillaries. The choking points and other irregularities in geometry influence both the flow and RBC shapes, considerably increasing the clotting effect. We also discuss other clotting factors coming from the physical properties of blood, such as the viscosity of the plasma and the elasticity of the RBCs. Modeling has been carried out with adequate resolution by using 1 to 10 million particles. Discrete particle simulations open a new pathway for modeling the dynamics of complex, viscoelastic fluids at the microscale, where both liquid and solid phases are treated with discrete particles. Figure A snapshot from fluid particle simulation of RBCs flowing along a curved capillary. The red color corresponds to the highest velocity. We can observe aggregation of RBCs at places with the most stagnant plasma flow.

  11. Dynamics of cultural transmission in Native Americans of the high Great Plains.

    PubMed

    Lycett, Stephen J

    2014-01-01

    Culture is a phenomenon shared by all humans. Attempts to understand how dynamic factors affect the origin and distribution of cultural elements are, therefore, of interest to all humanity. As case studies go, understanding the distribution of cultural elements in Native American communities during the historical period of the Great Plains would seem a most challenging one. Famously, there is a mixture of powerful internal and external factors, creating-for a relatively brief period in time-a seemingly distinctive set of shared elements from a linguistically diverse set of peoples. This is known across the world as the "Great Plains culture." Here, quantitative analyses show how different processes operated on two sets of cultural traits among nine High Plains groups. Moccasin decorations exhibit a pattern consistent with geographically-mediated between-group interaction. However, group variations in the religious ceremony of the Sun Dance also reveal evidence of purifying cultural selection associated with historical biases, dividing down ancient linguistic lines. The latter shows that while the conglomeration of "Plains culture" may have been a product of merging new ideas with old, combined with cultural interchange between groups, the details of what was accepted, rejected or elaborated in each case reflected preexisting ideological biases. Although culture may sometimes be a "melting pot," the analyses show that even in highly fluid situations, cultural mosaics may be indirectly shaped by historical factors that are not always obvious.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glynos, Emmanouil; Johnson, Kyle J.; Frieberg, Bradley

    The surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 K above the bulk glass transition temperature Tgbulk. This behavior, exhibited by star-shaped polystyrenes with functionality f=8 arms and molecular weights per arm Marm

  13. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  14. Liquid droplets of cross-linked actin filaments

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret

    Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.

  15. Stabilizing detached Bridgman melt crystal growth: Proportional-integral feedback control

    NASA Astrophysics Data System (ADS)

    Yeckel, Andrew; Daoutidis, Prodromos; Derby, Jeffrey J.

    2012-10-01

    The dynamics, operability limits, and tuning of a proportional-integral feedback controller to stabilize detached vertical Bridgman crystal growth are analyzed using a capillary model of shape stability. The manipulated variable is the pressure difference between upper and lower vapor spaces, and the controlled variable is the gap width at the triple-phase line. Open and closed loop dynamics of step changes in these state variables are analyzed under both shape stable and shape unstable growth conditions. Effects of step changes in static contact angle and growth angle are also studied. Proportional and proportional-integral control can stabilize unstable growth, but only within tight operability limits imposed by the narrow range of allowed meniscus shapes. These limits are used to establish safe operating ranges of controller gain. Strong nonlinearity of the capillary model restricts the range of perturbations that can be stabilized, and under some circumstances, stabilizes a spurious operating state far from the set point. Stabilizing detachment at low growth angle proves difficult and becomes impossible at zero growth angle.

  16. Opto-numerical procedures supporting dynamic lower limbs monitoring and their medical diagnosis

    NASA Astrophysics Data System (ADS)

    Witkowski, Marcin; Kujawińska, Malgorzata; Rapp, Walter; Sitnik, Robert

    2006-01-01

    New optical full-field shape measurement systems allow transient shape capture at rates between 15 and 30 Hz. These frequency rates are enough to monitor controlled movements used e.g. for medical examination purposes. In this paper we present a set of algorithms which may be applied for processing of data gathered by fringe projection method implemented for lower limbs shape measurement. The purpose of presented algorithms is to locate anatomical structures based on the limb shape and its deformation in time. The algorithms are based on local surface curvature calculation and analysis of curvature maps changes during the measurement sequence. One of anatomical structure of high medical interest that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. Therefore the usefulness of the algorithms developed was proven at examples of patella localization and monitoring.

  17. Modulational instability, beak-shaped rogue waves, multi-dark-dark solitons and dynamics in pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Zhang, Guoqiang; Yan, Zhenya; Wen, Xiao-Yong

    2017-07-01

    The integrable coupled nonlinear Schrödinger equations with four-wave mixing are investigated. We first explore the conditions for modulational instability of continuous waves of this system. Secondly, based on the generalized N -fold Darboux transformation (DT), beak-shaped higher-order rogue waves (RWs) and beak-shaped higher-order rogue wave pairs are derived for the coupled model with attractive interaction in terms of simple determinants. Moreover, we derive the simple multi-dark-dark and kink-shaped multi-dark-dark solitons for the coupled model with repulsive interaction through the generalizing DT. We explore their dynamics and classifications by different kinds of spatial-temporal distribution structures including triangular, pentagonal, 'claw-like' and heptagonal patterns. Finally, we perform the numerical simulations to predict that some dark solitons and RWs are stable enough to develop within a short time. The results would enrich our understanding on nonlinear excitations in many coupled nonlinear wave systems with transition coupling effects.

  18. Structures and Dynamics of Social Networks: Selection, Influence, and Self-Organization

    ERIC Educational Resources Information Center

    Go, Myong-Hyun

    2010-01-01

    This dissertation studies the social structures and dynamics of human networks: how peers at the micro level and physical environments at the macro level interact with the individual preferences and attributes and shape social dynamics. It is composed of three parts. The first essay, "Friendship Choices and Group Effects in Adolescent…

  19. Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds.

    PubMed

    Raffalt, P C; Guul, M K; Nielsen, A N; Puthusserypady, S; Alkjær, T

    2017-03-08

    The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior-posterior and mediolateral centre of mass accelerations which coincided with the most energy-efficient walking speed. Furthermore, the dynamics of the joint angle trajectories and the muscle activation strategy was closely linked to the functional role and biomechanical constraints of the joints.

  20. Conservative boundary conditions for 3D gas dynamics problems

    NASA Technical Reports Server (NTRS)

    Gerasimov, B. P.; Karagichev, A. B.; Semushin, S. A.

    1986-01-01

    A method is described for 3D-gas dynamics computer simulation in regions of complicated shape by means of nonadjusted rectangular grids providing unified treatment of various problems. Some test problem computation results are given.

  1. A study of sedimentation and aggregation of volcanic particles based on experiments carried out with a vertical wind tunnel

    NASA Astrophysics Data System (ADS)

    Bagheri, G.; Bonadonna, C.; Manzella, I.; Pontelandolfo, P.; Haas, P.

    2012-12-01

    A complete understanding and parameterization of both particle sedimentation and particle aggregation require systematic and detailed laboratory investigations performed in controlled conditions. For this purpose, a dedicated 4-meter-high vertical wind tunnel has been designed and constructed at the University of Geneva in collaboration with the Groupe de compétence en mécanique des fluides et procédés énergétiques (CMEFE). Final design is a result of Computational Fluid Dynamics simulations combined with laboratory tests. With its diverging test section, the tunnel is designed to suspend particles of different shapes and sizes in order to study the aero-dynamical behavior of volcanic particles and their collision and aggregation. In current set-up, velocities between 5.0 to 27 ms-1 can be obtained, which correspond to typical volcanic particles with diameters between 10 to 40 mm. A combination of Particle Tracking Velocimetry (PTV) and statistical methods is used to derive particle terminal velocity. The method is validated using smooth spherical particles with known drag coefficient. More than 120 particles of different shapes (i.e. spherical, regular and volcanic) and compositions are 3D-scanned and almost 1 million images of their suspension in the test section of wind tunnel are recorded by a high speed camera and analyzed by a PTV code specially developed for the wind tunnel. Measured values of terminal velocity for tested particles are between 3.6 and 24.9 ms-1 which corresponds to Reynolds numbers between 8×103 and 1×105. In addition to the vertical wind tunnel, an apparatus with height varying between 0.5 and 3.5 m has been built to measure terminal velocity of micrometric particles in Reynolds number between 4 and 100. In these experiments, particles are released individually in the air at top of the apparatus and their terminal velocities are measured at the bottom of apparatus by a combination of high-speed camera imaging and PTV post-analyzing. Effects of shape, porosity and orientation of the particles on their terminal velocity are studied. Various shape factors are measured based on different methods, such as 3D-scanning, 2D-image processing, SEM image analysis, caliper measurements, pycnometer and buoyancy tests. Our preliminary experiments on non-smooth spherical particles and irregular particles reveal some interesting aspects. First, the effect of surface roughness and porosity is more important for spherical particles than for regular non-spherical and irregular particles. Second, results underline how, the aero-dynamical behavior of individual irregular particles is better characterized by a range of values of drag coefficients instead of a single value. Finally, since all the shape factors are calculated precisely for each individual particle, the resulted database can provide important information to benchmark and improve existing terminal-velocity models. Modifications of the wind tunnel, i.e. very low air speed (0.03-5.0 ms-1) for suspension of micrometric particles, and of the PTV code, i.e. multiple particle tracking and collision counting, have also been performed in combination to the installation of a particle charging device, a controlled humidifier and a high-power chiller (to reach values down to -20 °C) in order to investigate both wet and dry aggregation of volcanic particles.

  2. Memory effects in nanoparticle dynamics and transport

    NASA Astrophysics Data System (ADS)

    Sanghi, Tarun; Bhadauria, Ravi; Aluru, N. R.

    2016-10-01

    In this work, we use the generalized Langevin equation (GLE) to characterize and understand memory effects in nanoparticle dynamics and transport. Using the GLE formulation, we compute the memory function and investigate its scaling with the mass, shape, and size of the nanoparticle. It is observed that changing the mass of the nanoparticle leads to a rescaling of the memory function with the reduced mass of the system. Further, we show that for different mass nanoparticles it is the initial value of the memory function and not its relaxation time that determines the "memory" or "memoryless" dynamics. The size and the shape of the nanoparticle are found to influence both the functional-form and the initial value of the memory function. For a fixed mass nanoparticle, increasing its size enhances the memory effects. Using GLE simulations we also investigate and highlight the role of memory in nanoparticle dynamics and transport.

  3. Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals

    NASA Astrophysics Data System (ADS)

    Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.

    2017-08-01

    We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.

  4. LASER BIOLOGY: Optomechanical tests of hydrated biological tissues subjected to laser shaping

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2008-03-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light.

  5. Mind-body relationships in elite apnea divers during breath holding: a study of autonomic responses to acute hypoxemia

    PubMed Central

    Laurino, Marco; Menicucci, Danilo; Mastorci, Francesca; Allegrini, Paolo; Piarulli, Andrea; Scilingo, Enzo P.; Bedini, Remo; Pingitore, Alessandro; Passera, Mirko; L'Abbate, Antonio; Gemignani, Angelo

    2011-01-01

    The mental control of ventilation with all associated phenomena, from relaxation to modulation of emotions, from cardiovascular to metabolic adaptations, constitutes a psychophysiological condition characterizing voluntary breath-holding (BH). BH induces several autonomic responses, involving both autonomic cardiovascular and cutaneous pathways, whose characterization is the main aim of this study. Electrocardiogram and skin conductance (SC) recordings were collected from 14 elite divers during three conditions: free breathing (FB), normoxic phase of BH (NPBH) and hypoxic phase of BH (HPBH). Thus, we compared a set of features describing signal dynamics between the three experimental conditions: from heart rate variability (HRV) features (in time and frequency-domains and by using nonlinear methods) to rate and shape of spontaneous SC responses (SCRs). The main result of the study rises by applying a Factor Analysis to the subset of features significantly changed in the two BH phases. Indeed, the Factor Analysis allowed to uncover the structure of latent factors which modeled the autonomic response: a factor describing the autonomic balance (AB), one the information increase rate (IIR), and a latter the central nervous system driver (CNSD). The BH did not disrupt the FB factorial structure, and only few features moved among factors. Factor Analysis indicates that during BH (1) only the SC described the emotional output, (2) the sympathetic tone on heart did not change, (3) the dynamics of interbeats intervals showed an increase of long-range correlation that anticipates the HPBH, followed by a drop to a random behavior. In conclusion, data show that the autonomic control on heart rate and SC are differentially modulated during BH, which could be related to a more pronounced effect on emotional control induced by the mental training to BH. PMID:22461774

  6. Gender, Work, and Health for Trans Health Providers: A Focus on Transmen

    PubMed Central

    MacDonnell, Judith A.; Grigorovich, Alisa

    2012-01-01

    Well-documented health research points to trans people's vulnerability to health inequities that are linked to deeply embedded structural and social determinants of health. Gender and work, as social determinants of health for trans people, both shape and are shaped by multiple factors such as support networks, social environments, income and social status, shelter, and personal health practices. There is a gap in the nursing literature in regards to research on work and health for diverse trans people and a virtual silence on the particular issues of trans-identified health providers. This qualitative study used comparative life history methodology and purposeful sampling to examine links among work, career, and health for transmen who are health providers. Semistructured interviews were completed with four Canadian transmen involved in health care professional and/or practice contexts with diverse professions, age, work, and transitioning experiences. Critical gender analysis showed that unique and gender-related critical events and influences shape continuities and discontinuities in their careerlives. This strength-based approach foregrounds how resilience and growth emerged through participants' articulation with everyday gender dynamics. These findings have implications for nursing research, education, and practice that include an understanding of how trans providers “do transgender work” and supporting them in that process. PMID:23316387

  7. Error Model and Compensation of Bell-Shaped Vibratory Gyro

    PubMed Central

    Su, Zhong; Liu, Ning; Li, Qing

    2015-01-01

    A bell-shaped vibratory angular velocity gyro (BVG), inspired by the Chinese traditional bell, is a type of axisymmetric shell resonator gyroscope. This paper focuses on development of an error model and compensation of the BVG. A dynamic equation is firstly established, based on a study of the BVG working mechanism. This equation is then used to evaluate the relationship between the angular rate output signal and bell-shaped resonator character, analyze the influence of the main error sources and set up an error model for the BVG. The error sources are classified from the error propagation characteristics, and the compensation method is presented based on the error model. Finally, using the error model and compensation method, the BVG is calibrated experimentally including rough compensation, temperature and bias compensation, scale factor compensation and noise filter. The experimentally obtained bias instability is from 20.5°/h to 4.7°/h, the random walk is from 2.8°/h1/2 to 0.7°/h1/2 and the nonlinearity is from 0.2% to 0.03%. Based on the error compensation, it is shown that there is a good linear relationship between the sensing signal and the angular velocity, suggesting that the BVG is a good candidate for the field of low and medium rotational speed measurement. PMID:26393593

  8. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

    PubMed Central

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim

    2016-01-01

    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. PMID:27216789

  9. Structure and dynamics of H2+ near the dissociation threshold: A combined experimental and computational investigation

    NASA Astrophysics Data System (ADS)

    Beyer, Maximilian; Merkt, Frédéric

    2016-12-01

    The pulsed-field-ionization zero-kinetic-energy photoelectron spectrum of H2 has been recorded in the vicinity of the dissociative-ionization threshold following three-photon excitation via selected rotational levels of the B1 Σu+ (v = 19) and H ‾ 1 Σg+ (v = 11) intermediate states. The spectra consist of transitions to bound levels of the X+2 Σg+ state of H2+ with v+ in the range 14-19 and N+ in the range 0-9, of the A+2 Σu+ state with v+ = 0 and N+ = 0-2, and of shape resonances corresponding to the X+(v+ = 17, N+ = 7) and X+(v+ = 18, N+ = 4) quasibound levels. Calculations of the level structure of H2+ have been carried out and the influence of adiabatic, nonadiabatic, relativistic and radiative corrections on the positions of these levels, and in the case of the shape resonances also on their widths, has been investigated. Different methods of calculating the widths and profiles of the shape resonances have been tested for comparison with the experimental observations. Slow oscillations of the dissociative-ionization yield have been observed and reflect, in first approximation, the Franck-Condon factors of the X+, A+ ← H ‾ bound - free transitions.

  10. Long-term dynamics emerging in floodplains and deltas from the interactions between hydrology and society in a changing climate

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, Giuliano; Viglione, Alberto; Yan, Kun; Brandimarte, Luigia; Blöschl, Günter

    2014-05-01

    Economic losses and fatalities associated to flood events have increased dramatically over the past decades. This situation might worsen in the near future because of rapid urbanization of many floodplains and deltas, along with enhancement of flood water levels as a result of human interventions, climate variability or sea level rise. To explore future dynamics, we developed a novel approach, which takes into account the dynamic nature of flood risk by an explicit treatment of the interactions and feedbacks between the hydrological and social components of flood risk (i.e. probability of flooding, and potential adverse consequences). In particular, we developed a socio-hydrological model that allows considering how the frequency and magnitude of flooding shapes the evolution of societies, while, at the same time, dynamic societies shape the frequency and magnitude of flooding. We then use this model to simulate long-term dynamics of different types of societies under hydrological change, e.g. increasing flood frequency. Based on the study of long-term dynamics of different floodplains and deltas around the world (e.g. Netherlands, Bangladesh), we identify two main typologies of flood-shaped societies: i) techno-societies, which "fight floods", and typically deal with risk by building and strengthening flood protection structures, such as levees or dikes; and ii) green-societies, which "lives with floods", and mainly cope with risk via adaptation measures, such as resettling out of flood prone areas. The outcomes of this study are relevant for the management of deltas and floodplains as they allow a comparison of long-term dynamics between diverse types of societies in terms of robustness to hydrological change.

  11. Genome-wide analysis of promoter architecture in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Landolin, Jane M.; Brown, James B.

    2010-10-20

    Core promoters are critical regions for gene regulation in higher eukaryotes. However, the boundaries of promoter regions, the relative rates of initiation at the transcription start sites (TSSs) distributed within them, and the functional significance of promoter architecture remain poorly understood. We produced a high-resolution map of promoters active in the Drosophila melanogaster embryo by integrating data from three independent and complementary methods: 21 million cap analysis of gene expression (CAGE) tags, 1.2 million RNA ligase mediated rapid amplification of cDNA ends (RLMRACE) reads, and 50,000 cap-trapped expressed sequence tags (ESTs). We defined 12,454 promoters of 8037 genes. Our analysismore » indicates that, due to non-promoter-associated RNA background signal, previous studies have likely overestimated the number of promoter-associated CAGE clusters by fivefold. We show that TSS distributions form a complex continuum of shapes, and that promoters active in the embryo and adult have highly similar shapes in 95% of cases. This suggests that these distributions are generally determined by static elements such as local DNA sequence and are not modulated by dynamic signals such as histone modifications. Transcription factor binding motifs are differentially enriched as a function of promoter shape, and peaked promoter shape is correlated with both temporal and spatial regulation of gene expression. Our results contribute to the emerging view that core promoters are functionally diverse and control patterning of gene expression in Drosophila and mammals.« less

  12. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.

    PubMed

    Versteegden, Luuk R; van Kampen, Kenny A; Janke, Heinz P; Tiemessen, Dorien M; Hoogenkamp, Henk R; Hafmans, Theo G; Roozen, Edwin A; Lomme, Roger M; van Goor, Harry; Oosterwijk, Egbert; Feitz, Wout F; van Kuppevelt, Toin H; Daamen, Willeke F

    2017-04-01

    Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression and chemical crosslinking, mimicking the folding pattern observed in many tubular organs. In rest, the lumen is closed but it opens upon increase of luminal pressure, e.g. when fluids pass. Human epithelial cells seeded on the luminal side adhered well and were compatible with voiding dynamics in a bioreactor. Collagen scaffolds with radial elasticity may be useful in the regeneration of dynamic tubular organs. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. France: Factors Shaping Foreign Policy, and Issues in U.S.-French Relations

    DTIC Science & Technology

    2008-05-21

    view, France should seek a balance that embraces diversity yet preserves a degree of uniformity that sustains the French “identity.” He believes that...Order Code RL32464 France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations Updated May 21, 2008 Paul Gallis Specialist in... France : Factors Shaping Foreign Policy, and Issues in U.S.- French Relations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  14. Investigation of sliding DNA clamp dynamics by single-molecule fluorescence, mass spectrometry and structure-based modeling

    PubMed Central

    Gadkari, Varun V; Harvey, Sophie R; Raper, Austin T; Chu, Wen-Ting; Wang, Jin; Wysocki, Vicki H; Suo, Zucai

    2018-01-01

    Abstract Proliferating cell nuclear antigen (PCNA) is a trimeric ring-shaped clamp protein that encircles DNA and interacts with many proteins involved in DNA replication and repair. Despite extensive structural work to characterize the monomeric, dimeric, and trimeric forms of PCNA alone and in complex with interacting proteins, no structure of PCNA in a ring-open conformation has been published. Here, we use a multidisciplinary approach, including single-molecule Förster resonance energy transfer (smFRET), native ion mobility-mass spectrometry (IM-MS), and structure-based computational modeling, to explore the conformational dynamics of a model PCNA from Sulfolobus solfataricus (Sso), an archaeon. We found that Sso PCNA samples ring-open and ring-closed conformations even in the absence of its clamp loader complex, replication factor C, and transition to the ring-open conformation is modulated by the ionic strength of the solution. The IM-MS results corroborate the smFRET findings suggesting that PCNA dynamics are maintained in the gas phase and further establishing IM-MS as a reliable strategy to investigate macromolecular motions. Our molecular dynamic simulations agree with the experimental data and reveal that ring-open PCNA often adopts an out-of-plane left-hand geometry. Collectively, these results implore future studies to define the roles of PCNA dynamics in DNA loading and other PCNA-mediated interactions. PMID:29529283

  15. International Space Station Model Correlation Analysis

    NASA Technical Reports Server (NTRS)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.

  16. Activated dynamics in dense fluids of attractive nonspherical particles. II. Elasticity, barriers, relaxation, fragility, and self-diffusion

    NASA Astrophysics Data System (ADS)

    Tripathy, Mukta; Schweizer, Kenneth S.

    2011-04-01

    In paper II of this series we apply the center-of-mass version of Nonlinear Langevin Equation theory to study how short-range attractive interactions influence the elastic shear modulus, transient localization length, activated dynamics, and kinetic arrest of a variety of nonspherical particle dense fluids (and the spherical analog) as a function of volume fraction and attraction strength. The activation barrier (roughly the natural logarithm of the dimensionless relaxation time) is predicted to be a rich function of particle shape, volume fraction, and attraction strength, and the dynamic fragility varies significantly with particle shape. At fixed volume fraction, the barrier grows in a parabolic manner with inverse temperature nondimensionalized by an onset value, analogous to what has been established for thermal glass-forming liquids. Kinetic arrest boundaries lie at significantly higher volume fractions and attraction strengths relative to their dynamic crossover analogs, but their particle shape dependence remains the same. A limited universality of barrier heights is found based on the concept of an effective mean-square confining force. The mean hopping time and self-diffusion constant in the attractive glass region of the nonequilibrium phase diagram is predicted to vary nonmonotonically with attraction strength or inverse temperature, qualitatively consistent with recent computer simulations and colloid experiments.

  17. The shape of velocity dispersion profiles and the dynamical state of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Costa, A. P.; Ribeiro, A. L. B.; de Carvalho, R. R.

    2018-01-01

    Motivated by the existence of the relationship between the dynamical state of clusters and the shape of the velocity dispersion profiles (VDPs), we study the VDPs for Gaussian (G) and non-Gaussian (NG) systems for a subsample of clusters from the Yang catalogue. The groups cover a redshift interval of 0.03 ≤ z ≤ 0.1 with halo mass ≥1014 M⊙. We use a robust statistical method, Hellinger Distance, to classify the dynamical state of the systems according to their velocity distribution. The stacked VDP of each class, G and NG, is then determined using either Bright or Faint galaxies. The stacked VDP for G groups displays a central peak followed by a monotonically decreasing trend which indicates a predominance of radial orbits, with the Bright stacked VDP showing lower velocity dispersions in all radii. The distinct features we find in NG systems are manifested not only by the characteristic shape of VDP, with a depression in the central region, but also by a possible higher infall rate associated with galaxies in the Faint stacked VDP.

  18. Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Geiselhart, Karl

    2011-01-01

    This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft with a focus on fuselage shaping.A low-boom configuration that is based on low-fidelity analysis is used as the baseline. The fuselage shape is modified iteratively to obtain a configuration with an equivalent-area distribution derived from computational fluid dynamics analysis that attempts to match a predetermined low-boom target area distribution and also yields a low-boom ground signature. The ground signature of the final configuration is calculated by using a state-of-the-art computational-fluid-dynamics-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the computational fluid dynamics equivalent-area distribution. This result supports the validity of low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.

  19. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    PubMed Central

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-01-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure. PMID:28382948

  20. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    NASA Astrophysics Data System (ADS)

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-04-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.

Top