NASA Astrophysics Data System (ADS)
Falconer, R.; Radoslow, P.; Grinev, D.; Otten, W.
2009-04-01
Fungi play a pivital role in soil ecosystems contributing to plant productivity. The underlying soil physical and biological processes responsible for community dynamics are interrelated and, at present, poorly understood. If these complex processes can be understood then this knowledge can be managed with an aim to providing more sustainable agriculture. Our understanding of microbial dynamics in soil has long been hampered by a lack of a theoretical framework and difficulties in observation and quantification. We will demonstrate how the spatial and temporal dynamics of fungi in soil can be understood by linking mathematical modelling with novel techniques that visualise the complex structure of the soil. The combination of these techniques and mathematical models opens up new possibilities to understand how the physical structure of soil affects fungal colony dynamics and also how fungal dynamics affect soil structure. We will quantify, using X ray tomography, soil structure for a range of artificially prepared microcosms. We characterise the soil structures using soil metrics such as porosity, fractal dimension, and the connectivity of the pore volume. Furthermore we will use the individual based fungal colony growth model of Falconer et al. 2005, which is based on the physiological processes of fungi, to assess the effect of soil structure on microbial dynamics by qualifying biomass abundances and distributions. We demonstrate how soil structure can critically affect fungal species interactions with consequences for biological control and fungal biodiversity.
Modeling the Dynamics of Soil Structure and Water in Agricultural Soil
NASA Astrophysics Data System (ADS)
Weller, U.; Lang, B.; Rabot, E.; Stössel, B.; Urbanski, L.; Vogel, H. J.; Wiesmeier, M.; Wollschlaeger, U.
2017-12-01
The impact of agricultural management on soil functions is manifold and severe. It has both positive and adverse influence. Our goal is to develop model tools quantifying the agricultural impact on soil functions based on a mechanistic understanding of soil processes to support farmers and decision makers. The modeling approach is based on defining relevant soil components, i.e. soil matrix, macropores, organisms, roots and organic matter. They interact and form the soil's macroscopic properties and functions including water and gas dynamics, and biochemical cycles. Based on existing literature information we derive functional interaction processes and combine them in a network of dynamic soil components. In agricultural soils, a major issue is linked to changes in soil structure and their influence on water dynamics. Compaction processes are well studied in literature, but for the resilience due to root growth and activity of soil organisms the information is scarcer. We implement structural dynamics into soil water and gas simulations using a lumped model that is both coarse enough to allow extensive model runs while still preserving some important, yet rarely modeled phenomenons like preferential flow, hysteretic and dynamic behavior. For simulating water dynamics, at each depth, the model assumes water at different binding energies depending on soil structure, i.e. the pore size distribution. Non-equilibrium is postulated, meaning that free water may occur even if the soil is not fully saturated. All energy levels are interconnected allowing water to move, both within a spatial node, and between neighboring nodes (adding gravity). Structure dynamics alters the capacity of this water compartments, and the conductance of its connections. Connections are switched on and off depending on whether their sources contain water or their targets have free capacity. This leads to piecewise linear system behavior that allows fast calculation for extended time steps. Based on this concept, the dynamics of soil structure can be directly linked to soil water dynamics as a main driver for other soil processes. Further steps will include integration of temperature and solute leaching as well as defining the feedback of the water regime on the structure forming processes.
Future Carbon Dynamics of the Northern Rockies Ecoregion due to Climate Impacts and Fire Effects
NASA Astrophysics Data System (ADS)
Weller, U.; Lang, B.; Rabot, E.; Stössel, B.; Urbanski, L.; Vogel, H. J.; Wiesmeier, M.; Wollschlaeger, U.
2016-12-01
The impact of agricultural management on soil functions is manifold and severe. It has both positive and adverse influence. Our goal is to develop model tools quantifying the agricultural impact on soil functions based on a mechanistic understanding of soil processes to support farmers and decision makers. The modeling approach is based on defining relevant soil components, i.e. soil matrix, macropores, organisms, roots and organic matter. They interact and form the soil's macroscopic properties and functions including water and gas dynamics, and biochemical cycles. Based on existing literature information we derive functional interaction processes and combine them in a network of dynamic soil components. In agricultural soils, a major issue is linked to changes in soil structure and their influence on water dynamics. Compaction processes are well studied in literature, but for the resilience due to root growth and activity of soil organisms the information is scarcer. We implement structural dynamics into soil water and gas simulations using a lumped model that is both coarse enough to allow extensive model runs while still preserving some important, yet rarely modeled phenomenons like preferential flow, hysteretic and dynamic behavior. For simulating water dynamics, at each depth, the model assumes water at different binding energies depending on soil structure, i.e. the pore size distribution. Non-equilibrium is postulated, meaning that free water may occur even if the soil is not fully saturated. All energy levels are interconnected allowing water to move, both within a spatial node, and between neighboring nodes (adding gravity). Structure dynamics alters the capacity of this water compartments, and the conductance of its connections. Connections are switched on and off depending on whether their sources contain water or their targets have free capacity. This leads to piecewise linear system behavior that allows fast calculation for extended time steps. Based on this concept, the dynamics of soil structure can be directly linked to soil water dynamics as a main driver for other soil processes. Further steps will include integration of temperature and solute leaching as well as defining the feedback of the water regime on the structure forming processes.
Linking Carbon Flux Dynamics and Soil Structure in Dryland Soils
NASA Astrophysics Data System (ADS)
DeCarlo, K. F.; Caylor, K. K.
2016-12-01
Biological sources in the form of microbes and plants play a fundamental role in determining the magnitude of carbon flux. However, the geophysical structure of the soil (which the carbon must pass through before entering the atmosphere) often serves as a constraining entity, which has the potential to serve as instigators or mitigators of those carbon and hydrologic flux processes. We characterized soil carbon dynamics in three dryland soil systems: bioturbated soils, biocompacted soils, and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Structure of the soil systems, with a focus on the macro-crack structure, were characterized using a combined resin-casting/X-ray imaging technique. Results show fundamental differences in carbon dynamics between the different soil systems/structures: control soils have gaussian distributions of carbon flux that decrease with progressive drying of the soil, while biocompacted soils exhibit exponentially distributed fluxes that do not regularly decrease with increased drying of the soil. Bioturbated soils also exhibit an exponential distribution of carbon flux, though at a much higher magnitude. These differences are evaluated in the context of the underlying soil structure: while the control soils exhibit a shallow and narrow crack structure, the biocompacted soils exhibit a "systematic" crack network with moderate cracking intensity and large depth. The deep crack networks of the biocompacted soils may serve to physically enhance an otherwise weak source of carbon via advection and/or convection, inducing fluxes that are equal or greater than an otherwise carbon-rich soil. The bioturbated soils exhibit a "surficial" crack network that is shallow but extensive, but additionally have deep holes known to convectively vent carbon, which may explain their periodically large carbon fluxes. Our results suggest that variability in soil structure, as well as carbon source, plays a fundamental role in carbon flux dynamics, and the importance of evaluating biological carbon source and geophysical soil structure in a dryland environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin Leigh; Veeraraghavan, Swetha; Bolisetti, Chandrakanth
MASTODON has the capability to model stochastic nonlinear soil-structure interaction (NLSSI) in a dynamic probabilistic risk assessment framework. The NLSSI simulations include structural dynamics, time integration, dynamic porous media flow, nonlinear hysteretic soil constitutive models, geometric nonlinearities (gapping, sliding, and uplift). MASTODON is also the MOOSE based master application for dynamic PRA of external hazards.
Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt Turetsky
2010-01-01
Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...
Modelling soil-water dynamics in the rootzone of structured and water-repellent soils
NASA Astrophysics Data System (ADS)
Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent
2018-04-01
In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.
Differential effects of fine root morphology on water dynamics in the root-soil interface
NASA Astrophysics Data System (ADS)
DeCarlo, K. F.; Bilheux, H.; Warren, J.
2017-12-01
Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.
DOT National Transportation Integrated Search
2007-02-01
This research combines Particle Image Velocimetry (PIV) and transparent soil to investigate the dynamic rigid block and soil interaction. In order to get a low viscosity pore fluid for the transparent soil, 12 different types of chemical solvents wer...
NASA Astrophysics Data System (ADS)
Porporato, A. M.
2013-05-01
We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.
USDA-ARS?s Scientific Manuscript database
Many soil-inhabiting fungi are capable of surviving the dynamic soil microenvironment through the formation of resilient resting structures, such as thick-walled spores, melanized hyphae, and sclerotia. Verticillium dahliae is a soil-inhabiting, economically significant plant pathogenic fungus that ...
Model structures amplify uncertainty in predicted soil carbon responses to climate change.
Shi, Zheng; Crowell, Sean; Luo, Yiqi; Moore, Berrien
2018-06-04
Large model uncertainty in projected future soil carbon (C) dynamics has been well documented. However, our understanding of the sources of this uncertainty is limited. Here we quantify the uncertainties arising from model parameters, structures and their interactions, and how those uncertainties propagate through different models to projections of future soil carbon stocks. Both the vertically resolved model and the microbial explicit model project much greater uncertainties to climate change than the conventional soil C model, with both positive and negative C-climate feedbacks, whereas the conventional model consistently predicts positive soil C-climate feedback. Our findings suggest that diverse model structures are necessary to increase confidence in soil C projection. However, the larger uncertainty in the complex models also suggests that we need to strike a balance between model complexity and the need to include diverse model structures in order to forecast soil C dynamics with high confidence and low uncertainty.
The effect of total carbon on microscopic soil properties and implications for crop production
USDA-ARS?s Scientific Manuscript database
Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in mic...
Relationship between gaseous N dynamics and the hydraulic state of hierarchically structured soils
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Dörsch, Peter; Vogel, Hans-Jörg
2017-04-01
The inherent spatial heterogeneity of soil generates spatially distributed micro-sites with different local N gas (NO, N2O, N2) production and release rates. Moreover, local micro-site conditions and the pathways between them depend on soil moisture which itself is highly dynamic close to the soil surface. These relationships need to be taken into account for a quantitative understanding of soil denitrification and associated N gas dynamics. Soil structure has been recognized as a key factor to understand the high spatial variability of N gas emissions. In particular gaseous N release from soils depends on: i) the total denitrification rate, which is related to the spatial extent and distribution of anaerobic sites and ii) the probability of N2O to escape from the soil without being further reduced to N2. This impact of soil structure is typically ignored in studies with soil slurries or repacked soil. In this project we run well-defined mesocosm experiments on N gas dynamics with hierarchically structured, artificial soils in which the spatial distribution of substrate and denitrifiers is known exactly. Sintered, porous glass pellets are inoculated with strains of Paracoccus denitrificans and/or Agrobacterium tumefaciens and amended with nutrient solution. These pellets are embedded in coarse-grained sand within gas-tight columns under O2/He atmosphere. The pellets are either places in layers or randomly to create different patterns of N gas production sites and diffusion pathways. Denitrification occurs in the anaerobic centers of the porous pellets, while the partially saturated sand matrix controls the diffusive transport of N gases towards the headspace, where all relevant gas concentrations are monitored with gas chromatography. Water saturations are adjusted such that the diffusive pathways are either fully continuous or partially discontinuous. Preliminary results indicate that the water content exert a major control on the magnitude of denitrification, whereas the onset and dynamics are mainly controlled by the position of the substrate and the denitrifiers.
NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS
NASA Astrophysics Data System (ADS)
Bodner, G.; Loiskandl, W.; Kaul, H.-P.
2009-04-01
Soil structure is a dynamic property subject to numerous natural and human influences. It is recognized as fundamental for sustainable functioning of soil. Therefore knowledge of management impacts on the sensitive structural states of soil is decisive in order to avoid soil degradation. The stabilization of the soil's (macro)pore system and eventually the improvement of its infiltrability are essential to avoid runoff and soil erosion, particularly in view of an increasing probability of intense rainfall events. However structure-related soil properties generally have a high natural spatiotemporal variability that interacts with the potential influence of agricultural land use. This complicates a clear determination of management vs. environmental effects and requires adequate measurement methods, allowing a sufficient spatiotemporal resolution to estimate the impact of the targeted management factors within the natural dynamics of soil structure. A common method to assess structure-related soil hydraulic properties is tension infiltrometry. A major advantage of tension infiltrometer measurements is that no or only minimum soil disturbance is necessary and several structure-controlled water transmission properties can readily be derived. The method is more time- and cost-efficient compared to laboratory measurements of soil hydraulic properties, thus enabling more replications. Furthermore in situ measurements of hydraulic properties generally allow a more accurate reproduction of field soil water dynamics. The present study analyses the impact of two common agricultural management options on structure related hydraulic properties based on tension infiltrometer measurements. Its focus is the identification of the role of management within the natural spatiotemporal variability, particularly in respect to seasonal temporal dynamics. Two management approaches are analysed, (i) cover cropping as a "plant-based" agro-environmental measure, and (ii) tillage with different intensities including conventional tillage with a mouldboard plough, reduced tillage with a chisel plough and no-tillage. The results showed that the plant-based management measure of cover cropping had only minor influence on near-saturated hydraulic conductivity (kh) and flow weighted mean pore radius (λm). Substantial over-winter changes were found with a significant increase in kh and a reduction in the pore radius. A spatial trend in soil texture along the cover cropped slope resulted in a higher kh at lower pressure heads at the summit with higher fractions of coarse particles, while kh tended to be highest at the toeslope towards saturation. Cover crop management accounted for a maximum of 9.7% of the total variability in kh, with a decreasing impact towards the unsaturated range. A substantial difference to bare soil in the cover cropped treatments could be identified in relation to a stabilization of macro-pores over winter. The different tillage treatments had a substantial impact on near-saturated kh and pore radius. Although conventional tillage showed the highest values in kh and λm, settling of the soil after the ploughing event tended to reduce differences over time compared to the other tillage methods. The long-term no-tillage (10 years) however had the lowest values of kh at all measurement dates. The high contents of silt and fine sand probably resulted in soil densification that was not counterbalanced sufficiently by biological structure forming agents. The study could show that soil structure related hydraulic properties are subject to a substantial seasonal variability. A comprehensive assessment of agricultural measures such as tillage or cover cropping requires an estimate of these temporal dynamics and their interaction with the management strategies. Particularly for plant-based management measures such as cover cropping, which represent a less intense intervention in the structural states of the soil compared to tillage, this was evident, as the main mechanism revealed for this measure was structure stabilization over time. While spatial variability is mostly controlled in designed experiments, the role of temporal variability is often underestimated. From our study we concluded that (i) a proper understanding of processes involved in management effects on soil structure must take into consideration the dynamic nature of the respective soil properties, (ii) experimental planning for studies regarding management impacts on soil structure should allow an estimation of temporal variability, and (iii) for this purpose tension infiltrometry provides an efficient measurement tool to assess structure related soil hydraulic properties.
Song, Yang; Bian, Yongrong; Wang, Fang; Xu, Min; Ni, Ni; Yang, Xinglun; Gu, Chenggang; Jiang, Xin
2017-08-16
Amending soil with biochar is an effective soil remediation strategy for organic contaminants. This study investigated the dynamic effects of wheat straw biochar on the bacterial community structure during remediation by high-throughput sequencing. The wheat straw biochar amended into the soil significantly reduced the bioavailability and toxicity of polycyclic aromatic hydrocarbons (PAHs). Biochar amendment helped to maintain the bacterial diversity in the PAH-contaminated soil. The relationship between the immobilization of PAHs and the soil bacterial diversity fit a quadratic model. Before week 12 of the incubation, the incubation time was the main factor contributing to the changes in the soil bacterial community structure. However, biochar greatly affected the bacterial community structure after 12 weeks of amendment, and the effects were dependent upon the biochar type. Amendment with biochar mainly facilitated the growth of rare bacterial genera (relative abundance of 0.01-1%) in the studied soil. Therefore, the application of wheat straw biochar into PAH-contaminated soil can reduce the environmental risks of PAHs and benefit the soil microbial ecology.
NASA Astrophysics Data System (ADS)
Akgün, Mustafa; Gönenç, Tolga; Tunçel, Aykut; Pamukçu, Oya
2013-08-01
An earthquake is a natural disaster which cannot be predicted beforehand. The economic losses and casualties induced by earthquakes badly influence human life. In order to reduce these negative effects, buildings and structures should be designed to be earthquake resistant. In the design stage of earthquake-resistant structures, models of soil under dynamic conditions are used. The parameters that are required to account for soil dynamic models are shear wave velocity (Vs) values, stiffness, thickness, the number of layers, attenuation, rigidity and the depth to bedrock. These parameters are used to calculate an empirical transfer function, the bearing capacity of the soil and liquefaction. Within this context, these soil dynamic parameters should be obtained with the help of geophysical methods in situ, in the İzmir-Güzelbahçe region and its surrounds. The İzmir-Güzelbahçe region and its surrounds are located at the intersection point of two major faults (the İzmir fault and the Seferihisar fault). For this reason, soil dynamic parameters are variable in the lateral and vertical directions. These changes affect the soil Vs profiles. To identify the shear wave velocity (Vs) profile, common mid-point cross-correlation analysis of multi-channel surface-wave data (CMPCC MASW method), microtremor and microgravity methods can be used in common. As a result, when these three methods were evaluated together, it was concluded that the aforementioned region shows sudden lateral structure changes. Relying on these changes, the dynamic analyses that would be carried out to determine soil behavior at a possible earthquake site should be taken into consideration.
NASA Astrophysics Data System (ADS)
Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter
2010-05-01
An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively high abiotic and biotic dynamics of soil pore structure in the soil surface even during the very early development stages. The structure formation has potentially great effects on changing runoff and infiltration by forming sealing layers or preferential flow paths.
Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate
NASA Astrophysics Data System (ADS)
Quesada, C. A.; Phillips, O. L.; Schwarz, M.; Czimczik, C. I.; Baker, T. R.; Patiño, S.; Fyllas, N. M.; Hodnett, M. G.; Herrera, R.; Almeida, S.; Alvarez Dávila, E.; Arneth, A.; Arroyo, L.; Chao, K. J.; Dezzeo, N.; Erwin, T.; di Fiore, A.; Higuchi, N.; Honorio Coronado, E.; Jimenez, E. M.; Killeen, T.; Lezama, A. T.; Lloyd, G.; López-González, G.; Luizão, F. J.; Malhi, Y.; Monteagudo, A.; Neill, D. A.; Núñez Vargas, P.; Paiva, R.; Peacock, J.; Peñuela, M. C.; Peña Cruz, A.; Pitman, N.; Priante Filho, N.; Prieto, A.; Ramírez, H.; Rudas, A.; Salomão, R.; Santos, A. J. B.; Schmerler, J.; Silva, N.; Silveira, M.; Vásquez, R.; Vieira, I.; Terborgh, J.; Lloyd, J.
2012-06-01
Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin.
NASA Astrophysics Data System (ADS)
Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie
2017-08-01
The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.
NASA Astrophysics Data System (ADS)
Kaneda, Shogo; Hayashi, Kazuhiro; Hachimori, Wataru; Tamura, Shuji; Saito, Taiki
2017-10-01
In past earthquake disasters, numerous building structure piles were damaged by soil liquefaction occurring during the earthquake. Damage to these piles, because they are underground, is difficult to find. The authors aim to develop a monitoring method of pile damage based on superstructure dynamic response. This paper investigated the relationship between the damage of large cross section cementitious piles and the dynamic response of the super structure using a centrifuge test apparatus. A dynamic specimen used simple cross section pile models consisting of aluminum rod and mortar, a saturated soil (Toyoura sand) of a relative density of 40% and a super structure model of a natural period of 0.63sec. In the shaking table test under a 50G field (length scale of 1/50), excitation was a total of 3 motions scaled from the Rinkai wave at different amplitudes. The maximum acceleration of each of the excitations was 602gal, 336gal and 299gal. The centrifuge test demonstrated the liquefaction of saturated soil and the failure behavior of piles. In the test result, the damage of piles affected the predominant period of acceleration response spectrum on the footing of the superstructure.
Analysing Structure Dynamics in Arable Soils using X-ray Micro-Tomography
NASA Astrophysics Data System (ADS)
Schlüter, S.; Weller, U.; Vogel, H.-J.
2009-04-01
Structure is a dynamic property of soil. It interacts with many biotic and abiotic features and controls various soil functions. We analyzed soil structure within different plots of the ''Static Fertilisation Experiment'' at the agricultural research station in Bad Lauchstaedt (Germany) using X-ray micro tomography. The aim was to investigate in how far different levels of organic carbon, increased microbial activity and enhanced plant growth affects structural properties of an arable soil. Since 106 years one plot has experienced a constant application of farmyard manure and fertilisers, whereas the other has never been fertilised in this period. Intact soil cores from the chernozem soil at the two plots were taken from a depth of 5 to 15 cm (Ap-horizon) and 35 to 45 cm (Ah-horizon) to analyse structural changes with depth and in two different seasons (spring and summer) to investigate structure dynamics. The pore structure was analysed by quantifying the mean geometrical and topological characteristics of the pore network as a function of pore size. This was done by a combination of Minkowski functionals and morphological size distibution. For small structural features close to the image resolution the results clearly depend on the applied filtering technique and segmentation thresholds. Therefore the application of different image enhancement techniques is discussed. Furthermore, a new method for an automated determination of grey value thesholds for the segmentation of CT-images into pore space and solid is developed and evaluated. We highlight the relevance of image resolution for structure analysis. Results of the structure analysis reveal that the spring samples of the ploughed layer (Ap-horizon) from the fertilised plot have significantly higher macroporosities (P < 0.05) than those from the non-fertilised plot. The internal connectivity of the pore network is better in the fertilised plot and the pore size distribution was found to be different, too. The differences in porosity and pore connectivity increase from spring to summer. Both plots were compacted by a rolling machine in late winter. So the difference in structure dynamics is interpreted as an enhanced structure resiliency in the fertilised and carbon enriched plot after that compaction. A comparison with porosity features of a nearby reference profil under grassland demonstrates that the impact of tillage on pore structure is higher than the different contents in organic carbon. The carbon enriched horizon beneath the ploughed layer (Ah-horizon) shows no differences in pore size distribution and connectivity as a function of fertilisation. Thus, at that soil depth, no long-term effects of fertilization in terms of soil structure are detectable. Obviously, the highly different energy input during 106 years only affects the structure of the top soil.
NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS
Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...
Evaluation of dynamic response for monopole and hybrid wind mill tower
NASA Astrophysics Data System (ADS)
Shah, Hemal J.; Desai, Atul K.
2017-07-01
The wind mill towers are constructed using monopoles or lattice type tower. As the height of tower increases it gives more power but it becomes uneconomical, so in the present research work innovative wind mill tower such as combination of monopole and lattice tower is analyzed using FEM software. When the tall structures are constructed on soft soil it becomes dynamically sensitive so 3 types of soil such as hard, medium and soft soil is also modeled and the innovative tower is studied for different operating frequencies of wind turbine. From study it is concluded that the innovative tower will reduce resonance condition considering soil structure interaction.
Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay
NASA Astrophysics Data System (ADS)
Yu, Su Young; Choi, Han Suk; Lee, Seung Keon; Park, Kyu-Sik; Kim, Do Kyun
2015-06-01
In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.
Role of model structure on the response of soil biogeochemistry to hydro-climatic fluctuations
NASA Astrophysics Data System (ADS)
Manzoni, S.; Porporato, A.
2005-05-01
Soil carbon and nutrient cycles are strongly affected by hydro-climatic variability, which interacts with the internal ecosystem structure. Here we test the implications of biogeochemical model structure on such dynamics by extending an existing model by the authors and coworkers. When forced by hydro-climatic fluctuations, the different model structures induce specific preferential nutrient paths among the soil pools, which in turn affect nutrient distribution and availability to microbes and plants. In particular, if it is assumed that microbes can directly assimilate organic nitrogen, plants tend to be inferior competitors for nutrients even in well-watered conditions, while if a certain amount of organic nitrogen is assumed to be mineralized without being first incorporated into microbial cells, vegetation can be advantaged over a wide range of soil moisture values. We also investigate the intensification of competition for nutrients (e.g., nitrogen) between plant and soil microbial communities under extreme hydrologic conditions, such as droughts and intense storms. Frequent rainfall events may determine ideal soil moisture conditions for plant uptake, enhancing nitrogen leaching while lowering oxygen concentration and inhibiting microbial activity. During droughts, the soil water potential often drops to the point of hampering the plant nutrient uptake while still remaining high enough for microbial decomposition and nitrogen immobilization. The interplay of microbe and vegetation water stress is investigated in depth as it controls the ability of one community (e.g., plants or soil microbes) to establish competitive advantage on the other. The long-term effects of these dynamics of competition and nutrient allocation are explored under steady-state and stochastic soil moisture conditions to analyze the feedbacks between soil organic matter and vegetation dynamics.
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Moore, J.; Averill, C.; Abramoff, R. Z.; Bradford, M.; Classen, A. T.; Hartman, M. D.; Kivlin, S. N.; Luo, Y.; Mayes, M. A.; Morrison, E. W.; Riley, W. J.; Salazar, A.; Schimel, J.; Sridhar, B.; Tang, J.; Wang, G.; Wieder, W. R.
2016-12-01
Soil carbon (C) dynamics are crucial to understanding and predicting C cycle responses to global change and soil C modeling is a key tool for understanding these dynamics. While first order model structures have historically dominated this area, a recent proliferation of alternative model structures representing different assumptions about microbial activity and mineral protection is providing new opportunities to explore process uncertainties related to soil C dynamics. We conducted idealized simulations of soil C responses to warming and litter addition using models from five research groups that incorporated different sets of assumptions about processes governing soil C decomposition and stabilization. We conducted a meta-analysis of published warming and C addition experiments for comparison with simulations. Assumptions related to mineral protection and microbial dynamics drove strong differences among models. In response to C additions, some models predicted long-term C accumulation while others predicted transient increases that were counteracted by accelerating decomposition. In experimental manipulations, doubling litter addition did not change soil C stocks in studies spanning as long as two decades. This result agreed with simulations from models with strong microbial growth responses and limited mineral sorption capacity. In observations, warming initially drove soil C loss via increased CO2 production, but in some studies soil C rebounded and increased over decadal time scales. In contrast, all models predicted sustained C losses under warming. The disagreement with experimental results could be explained by physiological or community-level acclimation, or by warming-related changes in plant growth. In addition to the role of microbial activity, assumptions related to mineral sorption and protected C played a key role in driving long-term model responses. In general, simulations were similar in their initial responses to perturbations but diverged over decadal time scales. This suggests that more long-term soil experiments may be necessary to resolve important process uncertainties related to soil C storage. We also suggest future experiments examine how microbial activity responds to warming under a range of soil clay contents and in concert with changes in litter inputs.
Soil fungi colony growth and community dynamics
NASA Astrophysics Data System (ADS)
Falconer, Ruth E.; Kravchenko, Alexandra; Otten, Wilfred
2010-05-01
Fungi are a major player in soil functioning, they contribute to soil structure formation and shaping of plant communities through their role in nutrient cycling, pathogenesis and symbiosis. Theoretical approaches which have emerged over the years and improved considerably our understanding of above ground plant communities are still lacking below ground. A theoretical framework is needed, such that links soil physics, fungal biology and mathematical biology in order to understand fungal community dynamics and diversity in undisturbed soils. Such a framework is essential if we are to understand how environmental change or soil manipulation impacts biodiversity. Different land use and management practices significantly affect soil environmental characteristics crucial for fungal communities by contributing different quantities and qualities of biomass inputs, generating different levels of soil disturbance, influencing soil temperature and moisture regimes, and affecting structure and geometry of soil pore space. Differences in pore structures generated by long-term differences in land use and management are reflected in notable changes in soil physical and hydraulic properties, including soil porosity, hydraulic conductivity and water retention (Brye and Pirani, 2005). Changes in numbers, shapes, and distributions of soil macropores have been often observed (e.g., Pachepsky et al., 1996; Giménez et al., 1997; Udawatta et al., 2008). However, specific implications of these differences in pore structure and geometries for ability of pathogenic as well as non-pathogenic fungi to colonize soil have not yet been addressed. Recent advances in computed tomography and microscopy facilitate detailed examination of the inner pore structures of undisturbed soil samples as well as visualization of fungal mycelia. Such tools together with modelling generate a new level of understanding of the mechanisms governing fungal behaviour at microscopic scales, and for the first time allow us to examine species interactions in a 3D soil environment.
Geotechnical centrifuge use at University of Cambridge Geotechnical Centre, August-September 1991
NASA Astrophysics Data System (ADS)
Gilbert, Paul A.
1992-01-01
A geotechnical centrifuge applies elevated acceleration to small-scale soil models to simulate body forces and stress levels characteristic of full-size soil structures. Since the constitutive behavior of soil is stress level development, the centrifuge offers considerable advantage in studying soil structures using models. Several experiments were observed and described in relative detail, including experiments in soil dynamics and liquefaction study, an experiment investigation leaning towers on soft foundations, and an experiment investigating migration of hot pollutants through soils.
Farm-scale variation of soil quality indices and association with edaphic properties
USDA-ARS?s Scientific Manuscript database
Soil organisms are indicators of dynamic soil quality because their community structure and population density are sensitive to management changes. However, edaphic properties can also affect soil organisms and high spatial variability can confound their utility for soil evaluation. In the present...
Space-time modeling of soil moisture
NASA Astrophysics Data System (ADS)
Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio
2017-11-01
A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.
Green roof soil system affected by soil structural changes: A project initiation
NASA Astrophysics Data System (ADS)
Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal
2014-05-01
Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.
Toward more realistic projections of soil carbon dynamics by Earth system models
Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.
2016-01-01
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
Vibration control of a cluster of buildings through the Vibrating Barrier
NASA Astrophysics Data System (ADS)
Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.
2018-02-01
A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.
Jennifer Moore-Kucera; Richard P. Dick
2008-01-01
The impact and frequency of forest harvesting could significantly affect soil microbial community (SMC) structure and functioning. The ability of soil microorganisms to perform biogeochemical processes is critical for sustaining forest productivity and has a direct impact on decomposition dynamics and carbon storage potential. The Wind River Canopy Crane Research...
NASA Astrophysics Data System (ADS)
Eickhorst, Thilo; Schmidt, Hannes
2016-04-01
Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.
NASA Astrophysics Data System (ADS)
Roger-Estrade, Jean; Boizard, Hubert; Peigné, Josephine; Sasal, Maria Carolina; Guimaraes, Rachel; Piron, Denis; Tomis, Vincent; Vian, Jean-François; Cadoux, Stephane; Ralisch, Ricardo; Filho, Tavares; Heddadj, Djilali; de Battista, Juan; Duparque, Annie
2016-04-01
In France, agronomists have studied the effects of cropping systems on soil structure, using a field method based on a visual description of soil structure. The "profil cultural" method (Manichon and Gautronneau, 1987) has been designed to perform a field diagnostic of the effects of tillage and compaction on soil structure dynamics. This method is of great use to agronomists improving crop management for a better preservation of soil structure. However, this method was developed and mainly used in conventional tillage systems, with ploughing. As several forms of reduced, minimum and no tillage systems are expanding in many parts of the world, it is necessary to re-evaluate the ability of this method to describe and interpret soil macrostructure in unploughed situations. In unploughed fields, soil structure dynamics of untilled layers is mainly driven by compaction and regeneration by natural agents (climatic conditions, root growth and macrofauna) and it is of major importance to evaluate the importance of these natural processes on soil structure regeneration. These concerns have led us to adapt the standard method and to propose amendments based on a series of field observations and experimental work in different situations of cropping systems, soil types and climatic conditions. We improved the description of crack type and we introduced an index of biological activity, based on the visual examination of clods. To test the improved method, a comparison with the reference method was carried out and the ability of the "profil cultural" method to make a diagnosis was tested on five experiments in France, Brazil and Argentina. Using the improved method, the impact of cropping systems on soil functioning was better assessed when natural processes were integrated into the description.
NASA Astrophysics Data System (ADS)
Van Stan, J. T., II; Rosier, C. L.; Schrom, J. O.; Wu, T.; Reichard, J. S.; Kan, J.
2014-12-01
Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to understanding of patterns in nutrient cycling and related ecological services. Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via the "throughfall" mechanism), is it possible changes in SMC structure variability could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from a large gap (0% cover) to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils (p < 0.01). Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed (p < 0.05) in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). PCR-DGGE banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). Correlation analysis of DGGE banding patterns, throughfall dynamics, and soil chemistry yielded significant correlations (p < 0.05) between fungal communities and soil chemical properties significantly differing between canopy cover types (pH: r2 = 0.50; H+ %-base saturation: r2 = 0.48; Ca2+ %-base saturation: r2 = 0.43). Bacterial community structure correlated with throughfall NO3-, NH4+, and Ca2+ concentrations (r2 = 0.37, p = 0.16). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via the throughfall mechanism when canopies' biomass distribution is highly heterogeneous.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert.
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F; Li, Lin; Seely, Mary K
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months' continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert.
The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Li, Lin; Seely, Mary K.
2016-01-01
Soil moisture is a key variable in dryland ecosystems since it determines the occurrence and duration of vegetation water stress and affects the development of weather patterns including rainfall. However, the lack of ground observations of soil moisture and rainfall dynamics in many drylands has long been a major obstacle in understanding ecohydrological processes in these ecosystems. It is also uncertain to what extent rainfall controls soil moisture dynamics in fog dominated dryland systems. To this end, in this study, twelve to nineteen months’ continuous daily records of rainfall and soil moisture (from January 2014 to August 2015) obtained from three sites (one sand dune site and two gravel plain sites) in the Namib Desert are reported. A process-based model simulating the stochastic soil moisture dynamics in water-limited systems was used to study the relationships between soil moisture and rainfall dynamics. Model sensitivity in response to different soil and vegetation parameters under diverse soil textures was also investigated. Our field observations showed that surface soil moisture dynamics generally follow rainfall patterns at the two gravel plain sites, whereas soil moisture dynamics in the sand dune site did not show a significant relationship with rainfall pattern. The modeling results suggested that most of the soil moisture dynamics can be simulated except the daily fluctuations, which may require a modification of the model structure to include non-rainfall components. Sensitivity analyses suggested that soil hygroscopic point (sh) and field capacity (sfc) were two main parameters controlling soil moisture output, though permanent wilting point (sw) was also very sensitive under the parameter setting of sand dune (Gobabeb) and gravel plain (Kleinberg). Overall, the modeling results were not sensitive to the parameters in non-bounded group (e.g., soil hydraulic conductivity (Ks) and soil porosity (n)). Field observations, stochastic modeling results as well as sensitivity analyses provide soil moisture baseline information for future monitoring and the prediction of soil moisture patterns in the Namib Desert. PMID:27764203
Prescribed fire, soil nitrogen dynamics, and plant responses in a semiarid grassland
USDA-ARS?s Scientific Manuscript database
Fire is a key driver of the structure and function of grassland ecosystems. In arid and semiarid ecosystems, where moisture limits plant production more than light, fire can potentially affect ecosystem dynamics through changes in soil moisture, temperature, and nitrogen cycling, as well as through ...
Water regime history drives responses of soil Namib Desert microbial communities to wetting events
NASA Astrophysics Data System (ADS)
Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A.
2015-07-01
Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel “dry condition” control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.
Water regime history drives responses of soil Namib Desert microbial communities to wetting events.
Frossard, Aline; Ramond, Jean-Baptiste; Seely, Mary; Cowan, Don A
2015-07-21
Despite the dominance of microorganisms in arid soils, the structures and functional dynamics of microbial communities in hot deserts remain largely unresolved. The effects of wetting event frequency and intensity on Namib Desert microbial communities from two soils with different water-regime histories were tested over 36 days. A total of 168 soil microcosms received wetting events mimicking fog, light rain and heavy rainfall, with a parallel "dry condition" control. T-RFLP data showed that the different wetting events affected desert microbial community structures, but these effects were attenuated by the effects related to the long-term adaptation of both fungal and bacterial communities to soil origins (i.e. soil water regime histories). The intensity of the water pulses (i.e. the amount of water added) rather than the frequency of wetting events had greatest effect in shaping bacterial and fungal community structures. In contrast to microbial diversity, microbial activities (enzyme activities) showed very little response to the wetting events and were mainly driven by soil origin. This experiment clearly demonstrates the complexity of microbial community responses to wetting events in hyperarid hot desert soil ecosystems and underlines the dynamism of their indigenous microbial communities.
Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein
2011-01-01
Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...
USDA-ARS?s Scientific Manuscript database
Soil microorganisms play essential roles in soil organic matter dynamics and nutrient cycling in agroecosystems and have been used as soil quality indicators. The response of soil microbial communities to land management is complex and the long-term impacts of cropping systems on soil microbes is l...
Soil fungal communities respond to grassland plant community richness and soil edaphics
USDA-ARS?s Scientific Manuscript database
Fungal communities in soil have significant influences on terrestrial ecosystem dynamics, yet our understanding of the drivers of fungal diversity and community structure in soil is limited. Fungal communities associated with the rhizosphere of four native perennial grassland plant species grown in ...
Faunal Drivers of Soil Flux Dynamics via Alterations in Crack Structure
NASA Astrophysics Data System (ADS)
DeCarlo, Keita; Caylor, Kelly
2016-04-01
Organismal activity, in addition to its role in ecological feedbacks, has the potential to serve as instigators or enhancers of atmospheric and hydrologic processes via alterations in soil structural regimes. We investigated the biomechanical effect of faunal activity on soil carbon dynamics via changes in soil crack structure, focusing on three dryland soil systems: bioturbated, biocompacted and undisturbed soils. Carbon fluxes were characterized using a closed-system respiration chamber, with CO2 concentration differences measured using an infrared gas analyzer (IRGA). Results show that faunal influences play a divergent biomechanics role in bulk soil cracking: bioturbation induced by belowground fauna creates "surficial" (shallow, large, well-connected) networks relative to the "systematic" (deep, moderate, poorly connected) networks created by aboveground fauna. The latter also shows a "memory" of past wetting/drying events in the consolidated soil through a crack layering effect. These morphologies further drive differences in soil carbon flux: under dry conditions, bioturbated and control soils show a persistently high and low mean carbon flux, respectively, while biocompacted soils show a large diurnal trend, with daytime lows and nighttime highs comparable to the control and bioturbated soils, respectively. Overall fluxes under wet conditions are considerably higher, but also more variable, though higher mean fluxes are observed in the biocompacted and bioturbated soils. Our results suggest that the increased surface area in the bioturbated soils create enhanced but constant diffusive processes, whereas the increased thermal gradient in the biocompacted soils create novel convective processes that create high fluxes that are diurnal in nature.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-03-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models.
You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin
2016-01-01
Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871
NASA Astrophysics Data System (ADS)
Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice
2017-04-01
In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".
Toward more realistic projections of soil carbon dynamics by Earth system models
Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...
2016-01-21
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less
Freeze-Thaw Cycles Effects on Soil Compaction in a Clay Loam
NASA Astrophysics Data System (ADS)
Jabro, J.; Evans, R.; Iversen, W.
2012-04-01
Inappropriate soil management practices and heavier farm machinery and equipment have led to an increase in soil compaction in the last two decades prompting increased global concern regarding the impact of soil compaction on crop production and soil quality in modern mechanized agriculture. A 3-yr comprehensive study was established to evaluate the dynamic of freeze-thaw cycles on soil compaction in a clay loam soil. Plots of frozen soils were compared with plots where soils were prevented from freezing with electrically heated blankets commonly used on concrete. Results showed that frequent freeze-thaw cycles over the winter alleviated a majority of soil compaction at the 0 - 20 cm depth. Soil penetration resistance in compacted soils was reduced by 73 and 68% over the winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to dynamic effects of freeze-thaw cycles on soil structure and particles configuration. In unfrozen compacted soils, the penetration resistance was also reduced by 50 and 60% over winter at the 0 - 10 and 10 - 20 cm depths, respectively, due to the biology of soil, microbial activity, and disruptive effects of shrink-swell cycles. These results have demonstrated of how repeated freeze-thaw cycles can alleviate soil compaction, alter soil physical quality and create optimal soil conditions required for profitable growth of agricultural crops. The results from this study will save growers considerable time, money and energy currently required to alleviate soil compaction using other methods such as sub-soiling and deep tillage. We believe that Mother Nature provides ways to reverse soil compaction and improve soil structure and aggregation through the dynamic of freeze-thaw cycles that soils in Montana and other parts of the country go through each year. We concluded that the Mother Nature is the most effective and cheapest way to alleviate soil compaction.
Grau-Andrés, Roger; Davies, G Matt; Waldron, Susan; Scott, E Marian; Gray, Alan
2017-12-15
Variation in the structure of ground fuels, i.e. the moss and litter (M/L) layer, may be an important control on fire severity in heather moorlands and thus influence vegetation regeneration and soil carbon dynamics. We completed experimental fires in a Calluna vulgaris-dominated heathland to study the role of the M/L layer in determining (i) fire-induced temperature pulses into the soil and (ii) post-fire soil thermal dynamics. Manually removing the M/L layer before burning increased fire-induced soil heating, both at the soil surface and 2 cm below. Burnt plots where the M/L layer was removed simulated the fuel structure after high severity fires where ground fuels are consumed but the soil does not ignite. Where the M/L layer was manually removed, either before or after the fire, post-fire soil thermal dynamics showed larger diurnal and seasonal variation, as well as similar patterns to those observed after wildfires, compared to burnt plots where the M/L layer was not manipulated. We used soil temperatures to explore potential changes in post-fire soil respiration. Simulated high fire severity (where the M/L layer was manually removed) increased estimates of soil respiration in warm months. With projected fire regimes shifting towards higher severity fires, our results can help land managers develop strategies to balance ecosystem services in Calluna-dominated habitats. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Creamer, C. A.; Boutton, T. W.; Filley, T. R.
2009-12-01
Woody plant encroachment (WPE) into savannas and grasslands is a global phenomenon that alters soil organic matter (SOM) dynamics through changes in litter quality and quantity, soil structure, microbial ecology, and soil hydrology. To elucidate the controls upon microbial accessibility to SOM, bulk soils from a chronosequence of progressive WPE into native grasslands at the Texas A&M Agricultural Experimental Station La Copita Research Area were incubated for one year. The quantity and stable carbon isotope composition of respired CO2, plant biopolymer chemistry in SOM, and microbial community structure were tracked. Respiration rates declined steadily over the course of the experiment with 15-25% of the total CO2 respired released in the first month of incubation. Between 8 and 18% of the total carbon was mineralized to CO2 throughout the incubation. After day 84 a significantly (p < 0.05) greater portion of carbon was mineralized from soils of older woody clusters (34-86 years) than from soils of younger clusters (14-23 years) and the native grassland. Approximately 80% of patterns seen in cumulative CO2 loss could be explained by the proportions of macro- and micro-aggregates within each soil, suggesting soil structure is a major controlling factor of respiration rates. Despite documented carbon accrual within La Copita soils due to WPE, we observed no evidence of enhanced carbon stabilization in these respiration experiments. In fact, a greater proportion of total carbon was lost from the soil of mature woody stands than from young stands, suggesting carbon accumulation observed with WPE may be due to greater input rates or microbial dynamics not captured in the laboratory incubation. A cluster approximately 34 years in age represents a transition point in WPE where respiration dynamics become distinct between grassland and wooded elements. By day 84 of the incubation CO2 respired from all soils was depleted with respect to bulk SOM (1.5 to 5‰) and this pattern remained for the rest of the incubation. As the depletion of CO2 relative to bulk SOM was observed in grassland and cluster soils, we hypothesized the depleted signature resulted from the utilization of depleted biopolymers, specifically lignin, cutin and suberin, as hypothesized by others. Quantitative and isotopic comparisons of these monomers prior to and following the incubation will determine if selective compound utilization is a reason for this depletion. The results discussed herein provide important insights into the dynamics of SOM accrual with WPE as well as respiration dynamics during laboratory incubations.
Hydrologic dynamics and ecosystem structure.
Rodríguez-Iturbe, I
2003-01-01
Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.
AggModel: A soil organic matter model with measurable pools for use in incubation studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segoli, Moran; De Gryze, S.; Dou, Fugen
2013-01-01
Current soil organic matter (SOM) models are empirical in nature by employing few conceptual SOM pools that have a specific turnover time, but that are not measurable and have no direct relationship with soil structural properties. Most soil particles are held together in aggregates and the number, size and stability of these aggregates significantly affect the size and amount of organic matter contained in these aggregates, and its susceptibility to decomposition. While it has been shown that soil aggregates and their dynamics can be measured directly in the laboratory and in the field, the impact of soil aggregate dynamics onmore » SOM decomposition has not been explicitly incorporated in ecosystem models. Here, we present AggModel, a conceptual and simulation model that integrates soil aggregate and SOM dynamics. In AggModel, we consider unaggregated and microaggregated soil that can exist within or external to macroaggregated soil. Each of the four aggregate size classes contains particulate organic matter and mineral-associated organic matter fractions. We used published data from laboratory incubations to calibrate and validate the biological and environmental effects on the rate of formation and breakdown of macroaggregates and microaggregates, and the organic matter dynamics within these different aggregate fractions. After calibration, AggModel explained more than 70% of the variation in aggregate masses and over 90% of the variation in aggregate-associated carbon. The model estimated the turnover time of macroaggregates as 32 days and 166 days for microaggregates. Sensitivity analysis of AggModel parameterization supported the notion that macroaggregate turnover rate has a strong control over microaggregate masses and, hence, carbon sequestration. In addition to AggModel being a proof-of-concept, the advantage of a model that is based on measurable SOM fractions is that its internal structure and dynamics can be directly calibrated and validated by using experimental data. In conclusion, AggModel successfully incorporates the explicit representation for the turnover of soil aggregates and their influence on SOM dynamics and can form the basis for new SOM modules within existing ecosystem models.« less
Zhang, Xiao; Liu, Shirong; Li, Xiangzhen; Wang, Jingxin; Ding, Qiong; Wang, Hui; Tian, Chao; Yao, Minjie; An, Jiaxing; Huang, Yongtao
2016-03-01
To understand the temporal responses of soil prokaryotic communities to clear-cutting disturbance, we examined the changes in soil bacterial and archaeal community composition, structure and diversity along a chronosequence of forest successional restoration using high-throughput 16S rRNA gene sequencing. Our results demonstrated that clear-cutting significantly altered soil bacterial community structure, while no significant shifts of soil archaeal communities were observed. The hypothesis that soil bacterial communities would become similar to those of surrounding intact primary forest with natural regeneration was supported by the shifts in the bacterial community composition and structure. Bacterial community diversity patterns induced by clear-cutting were consistent with the intermediate disturbance hypothesis. Dynamics of bacterial communities was mostly driven by soil properties, which collectively explained more than 70% of the variation in bacterial community composition. Community assembly data revealed that clear-cutting promoted the importance of the deterministic processes in shaping bacterial communities, coinciding with the resultant low resource environments. But assembly processes in the secondary forest returned a similar level compared to the intact primary forest. These findings suggest that bacterial community dynamics may be predictable during the natural recovery process. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D
2015-01-01
There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.
Environmental and management impacts on temporal variability of soil hydraulic properties
NASA Astrophysics Data System (ADS)
Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.
2012-04-01
Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10 cm) showed a similar time course as a moving average of rainfall. Drying induced a decrease in conductivity while wetting of the soil resulted in higher conductivity values. Approaching saturation however, the drying phase showed a different behaviour with increasing values of hydraulic conductivity. This may be explained probably by formation of cracks acting as large macropores. We concluded that aggregate coalescence as a function of capillary forces and soil rheologic properties (cf. Or et al., 2002) are a main predictor of temporal dynamics of near saturated soil hydraulic properties while different plant covers only had a minor effect on the observed system dynamics. Or, D., Ghezzehei, T.A. 2002. Modeling post-tillage soil structural dynamics. a review. Soil Till Res. 64, 41-59.
NASA Technical Reports Server (NTRS)
Cheng, R. Y. K.
1977-01-01
The aircraft structural crash behavior and occupant survivability for aircraft crashes on a soil surface was studied. The results of placement, compaction, and maintenance of two soil test beds are presented. The crators formed by the aircraft after each test are described.
Yando, Erik S.; Osland, Michael J.; Hester, Mark H.
2018-01-01
Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.
Yando, E S; Osland, M J; Hester, M W
2018-05-01
Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.
Liu, Yuan; Hou, Qianqian; Liu, Wanru; Meng, Yawen; Wang, Guangli
2015-08-01
Buprofezin is a commonly used chemical with satisfactory biological activity against sucking insect pests, but its disposal can cause serious environmental problems. To study the feasibility of remedying contamination by buprofezin, microcosm experiments were carried out to study the effects of various concentrations of buprofezin and Sphingobium sp. LY-6 on soil bacterial communities in soils collected from vegetable fields. In this experiment, the results showed that buprofezin was effectively degraded by Sphingobium sp. LY-6 in incubation soils. Comparing to non-incubated soils, the cumulative degradation ratio of buprofezin was significantly increased, up to the extent of 85 and 51%, in the initial concentration of 10 and 100 mg kg(-1). The abundance and community structure of the bacterial communities were analysed by real-time PCR (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The findings suggest that buprofezin had a negative effect on soil bacterial community, and decreases in bacterial abundance were observed in the later part of the incubation period. The bacterial community structure and diversity shifted significantly at each sampling time. In conclusion, the buprofezin-degrading strain LY-6 played a major role in the bioremediation of the buprofezin-contaminated soil and influenced the dynamics and structure of the bacterial community, demonstrating the great potential of exogenous microorganisms for soil remediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Ahlström, Anders; Allison, Steven D.
Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less
Kravchenko, Alexandra; Falconer, Ruth E; Grinev, Dmitri; Otten, Wilfred
2011-06-01
Despite the importance of fungi in soil functioning they have received comparatively little attention, and our understanding of fungal interactions and communities is lacking. This study aims to combine a physiologically based model of fungal growth with digitized images of internal pore volume of samples of undisturbed soil from contrasting management practices to determine the effect of physical structure on fungal growth dynamics. We quantified pore geometries of the undisturbed-soil samples from two contrasting agricultural practices, conventionally plowed (chisel plow) (CT) and no till (NT), and from native-species vegetation land use on land that was taken out of production in 1989 (NS). Then we modeled invasion of a fungal species within the soil samples and evaluated the role of soil structure on the progress of fungal colonization of the soil pore space. The size of the studied pores was > or =110 microm. The dynamics of fungal invasion was quantified through parameters of a mathematical model fitted to the fungal invasion curves. Results indicated that NT had substantially lower porosity and connectivity than CT and NS soils. For example, the largest connected pore volume occupied 79% and 88% of pore space in CT and NS treatments, respectively, while it only occupied 45% in NT. Likewise, the proportion of pore space available to fungal colonization was much greater in NS and CT than in NT treatment, and the dynamics of the fungal invasion differed among the treatments. The relative rate of fungal invasion at the onset of simulation was higher in NT samples, while the invasion followed a more sigmoidal pattern with relatively slow invasion rates at the initial time steps in NS and CT samples. Simulations allowed us to elucidate the contribution of physical structure to the rates and magnitudes of fungal invasion processes. It appeared that fragmented pore space disadvantaged fungal invasion in soils under long-term no-till, while large connected pores in soils under native vegetation or in tilled agriculture promoted the invasion.
Four millennia of woodland structure and dynamics at the Arctic treeline of eastern Canada.
Auger, Sarah; Payette, Serge
2010-05-01
Paleoecological analysis using complementary indicators of vegetation and soil can provide spatially explicit information on ecological processes influencing trajectories of long-term ecosystem change. Here we document the structure and dynamics of an old-growth woodland before and after its inception 1000 years ago. We infer vegetation and soil characteristics from size and age distributions of black spruce (Picea mariana (Mill.) B.S.P.), soil properties, plant fossils, and paleosols. Radiocarbon ages of charcoal on the ground and in the soil indicate that the fire return interval was approximately 300 years between 2750 and 1000 cal. yr BP. No fire evidence was found before and after this period despite the presence of spruce since 4200 cal. yr BP. The size structures of living and dead spruce suggest that the woodland is in equilibrium with present climate in absence of fire. Tree establishment and mortality occurred regularly since the last fire event around 950 cal. yr BP. Both layering and occasional seeding have contributed to stabilize the spatial distribution of spruce over the past 1000 years. Since initial afforestation, soil development has been homogenized by the changing spatial distribution of spruce following each fire. We conclude that the history of the woodland is characterized by vegetation shifts associated with fire and soil disturbances and by millennial-scale maintenance of the woodland's structure despite changing climatic conditions.
Self-organizing biochemical cycle in dynamic feedback with soil structure
NASA Astrophysics Data System (ADS)
Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy
2016-04-01
In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes formulated as a sum of state variables products, with no need to introduce any saturation functions, such as Mikhaelis-Menten type kinetics, inside the model. Analyzed dynamic soil model is being further developed to describe soil structure formation and its effect on organic matter decomposition at macro-scale, to predict changes with external perturbations. To link micro- and macro-scales we additionally model soil particles aggregation process. The results from local biochemical soil organic matter cycle serve as inputs to aggregation process, while the output aggregate size distributions define physical properties in the soil profile, these in turn serve as dynamic parameters in local biochemical cycles. The additional formulation is a system of non-linear ordinary differential equations, including Smoluchowski-type equations for aggregation and reaction kinetics equations for coagulation/adsorption/adhesion processes. Vasilyeva N.A., Ingtem J.G., Silaev D.A. Nonlinear dynamical model of microbial growth in soil medium. Computational Mathematics and Modeling, vol. 49, p.31-44, 2015 (in Russian). English version is expected in corresponding vol.27, issue 2, 2016.
NASA Astrophysics Data System (ADS)
Brecheisen, Z. S.; Richter, D. D., Jr.; Callaham, M.; Carrera-Martinez, R.; Heine, P.
2017-12-01
The pre-colonial Southern Piedmont was an incredibly stable CZ with erosion rates between 0.35-3m/Myr on a 4th order interfluve. With soils and saprolite weathered up to 30m in total depth bedrock with multi-million year residence times under continual forest cover prior to widespread agricultural disturbance. With this biogeomorphic stability came time for soil macroporosity and soil structure to be established and maintained by the activities of soil fauna, plant root growth and death, and tree-fall tip-up events serving to continually mix and aerate the soil. Greatly accelerated surficial agricultural erosion (ca. 1750-1930) has fundamentally altered the Calhoun Critical Zone Observatory forest community dynamics aboveground and the soil structure, hydrology, and biogeochemistry belowground. The arrival of the plow to the Southern Piedmont marked the destruction of soil structure, macropore networks, and many of the macroinvertebrate soil engineers. This transformation came via forest clearing, soil tilling, compaction, and wholesale soil erosion, with the region having lost an estimated average of 18cm of soil across the landscape. In the temporal LULC progression from hardwood forests, to cultivated farms, to reforestation, secondary forest soil structure is expected to remain altered compared to the reference hardwood ecosystems. The research presented herein seeks to quantify CZ soil structure regeneration in old-field pine soil profiles' Ksat, aggregation, texture, macro-invertebrates, and direct measurements of topsoil porosity using X-ray computed tomography analysis on 15cm soil cores.
NASA Astrophysics Data System (ADS)
Banwart, Steven; Menon, Manoj; Bernasconi, Stefano M.; Bloem, Jaap; Blum, Winfried E. H.; Souza, Danielle Maia de; Davidsdotir, Brynhildur; Duffy, Christopher; Lair, Georg J.; Kram, Pavel; Lamacova, Anna; Lundin, Lars; Nikolaidis, Nikolaos P.; Novak, Martin; Panagos, Panos; Ragnarsdottir, Kristin Vala; Reynolds, Brian; Robinson, David; Rousseva, Svetla; de Ruiter, Peter; van Gaans, Pauline; Weng, Liping; White, Tim; Zhang, Bin
2012-11-01
Growth in human population and demand for wealth creates ever-increasing pressure on global soils, leading to soil losses and degradation worldwide. Critical Zone science studies the impact linkages between these pressures, the resulting environmental state of soils, and potential interventions to protect soil and reverse degradation. New research on soil processes is being driven by the scientific hypothesis that soil processes can be described along a life cycle of soil development. This begins with formation of new soil from parent material, development of the soil profile, and potential loss of the developed soil functions and the soil itself under overly intensive anthropogenic land use, thus closing the cycle. Four Critical Zone Observatories in Europe have been selected focusing research at sites that represent key stages along the hypothetical soil life cycle; incipient soil formation, productive use of soil for farming and forestry, and decline of soil due to longstanding intensive agriculture. Initial results from the research show that soil develops important biogeochemical properties on the time scale of decades and that soil carbon and the development of favourable soil structure takes place over similar time scales. A new mathematical model of soil aggregate formation and degradation predicts that set-aside land at the most degraded site studied can develop substantially improved soil structure with the accumulation of soil carbon over a period of several years. Further results demonstrate the rapid dynamics of soil carbon; how quickly it can be lost, and also demonstrate how data from the CZOs can be used to determine parameter values for models at catchment scale. A structure for a new integrated Critical Zone model is proposed that combines process descriptions of carbon and nutrient flows, a simplified description of the soil food web, and reactive transport; all coupled with a dynamic model for soil structure and soil aggregation. This approach is proposed as a methodology to analyse data along the soil life cycle and test how soil processes and rates vary within, and between, the CZOs representing different life cycle stages. In addition, frameworks are discussed that will help to communicate the results of this science into a more policy relevant format using ecosystem service approaches.
USDA-ARS?s Scientific Manuscript database
Increasing application of carbon nanotubes (CNTs) triggers the need for an assessment of their effects on organisms in the environment. Soil microbial communities play a significant role in soil organic matter dynamics and nutrient cycling. This study evaluated the impacts of multi-walled carbon nan...
Development and Verification of the Soil-Pile Interaction Extension for SubDyn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, Rick R; Wendt, Fabian F
SubDyn is the substructure structural-dynamics module for the aero-hydro-servo-elastic tool FAST v8. SubDyn uses a finite-element model (FEM) to simulate complex multimember lattice structures connected to conventional turbines and towers, and it can make use of the Craig-Bampton model reduction. Here we describe the newly added capability to handle soil-pile stiffness and compare results for monopile and jacket-based offshore wind turbines as obtained with FAST v8, SACS, and EDP (the latter two are modeling software packages commonly used in the offshore oil and gas industry). The level of agreement in terms of modal properties and loads for the entire offshoremore » wind turbine components is excellent, thus allowing SubDyn and FAST v8 to accurately simulate offshore wind turbines on fixed-bottom structures and accounting for the effect of soil dynamics, thus reducing risk to the project.« less
Pore-scale water dynamics during drying and the impacts of structure and surface wettability
NASA Astrophysics Data System (ADS)
Cruz, Brian C.; Furrer, Jessica M.; Guo, Yi-Syuan; Dougherty, Daniel; Hinestroza, Hector F.; Hernandez, Jhoan S.; Gage, Daniel J.; Cho, Yong Ku; Shor, Leslie M.
2017-07-01
Plants and microbes secrete mucilage into soil during dry conditions, which can alter soil structure and increase contact angle. Structured soils exhibit a broad pore size distribution with many small and many large pores, and strong capillary forces in narrow pores can retain moisture in soil aggregates. Meanwhile, contact angle determines the water repellency of soils, which can result in suppressed evaporation rates. Although they are often studied independently, both structure and contact angle influence water movement, distribution, and retention in soils. Here drying experiments were conducted using soil micromodels patterned to emulate different aggregation states of a sandy loam soil. Micromodels were treated to exhibit contact angles representative of those in bulk soil (8.4° ± 1.9°) and the rhizosphere (65° ± 9.2°). Drying was simulated using a lattice Boltzmann single-component, multiphase model. In our experiments, micromodels with higher contact angle surfaces took 4 times longer to completely dry versus micromodels with lower contact angle surfaces. Microstructure influenced drying rate as a function of saturation and controlled the spatial distribution of moisture within micromodels. Lattice Boltzmann simulations accurately predicted pore-scale moisture retention patterns within micromodels with different structures and contact angles.
NASA Astrophysics Data System (ADS)
Garcia-Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Zistl-Schlingmann, Marcus; Kögel-Knabner, Ingrid
2017-04-01
C sequestration in mountainous grassland soils is regulated by physical, chemical and biological soil process. An improved knowledge of the relationship between these stabilization mechanisms is decisive to recommend the best management practices for climate change mitigation. In this regard, the identification of a successful indicator of soil structural improvement and C sequestration in mountainous grassland soils is necessary. Alpine and pre-alpine grassland soils in Bavaria represent a good example for mountainous grassland soils faced with climate change. We sampled grassland soils of the northern limestone alps in Bavaria along an elevation gradient from 550 to 1300 m above sea level. We analyzed C dynamics by a comparative analysis of the distribution of C according to aggregate size classes: large-macroaggregates (> 2000 µm), small-macroaggregates (250-2000 µm), microaggregates (63-250 µm), silt plus clay particles (<63 µm) and bulk soil. Our preliminary results showed higher C content and changed water-stable aggregate distribution in the high elevation sites compared to lower elevations. Magnesium carbonate seem to play an important role in stabilizing macroaggregates formed from fresh OM. In addition, the isolation of occluded microaggregates within macroaggregates will help us to improve our understanding on the effects of climate change on soil structure and on the sensitivity of different C stabilization mechanisms present in mountainous soils.
Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre
2014-11-15
Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic properties were optimized on one calibration year (2007/08) using pressure head, water content and lysimeter outflow data, and then tested on the whole 2004/2010 period. Lysimeter outflow and water content dynamics in the soil profile were correctly described for the whole period (model efficiency coefficient: 0.99) after some correction of LAI estimates for wheat (2005/06) and barley (2006/07). Using laboratory-measured degradation rates and assuming degradation only in the liquid phase caused large overestimation of simulated isoproturon losses in lysimeter outflow. A proper order of magnitude of isoproturon losses was obtained after considering that degradation occurred in solid (sorbed) phase at a rate 75% of that in liquid phase. Isoproturon concentrations were found to be highly sensitive to degradation rates. Neither the laboratory-measured isoproturon fate parameters nor the independently-derived soil hydraulic parameters could describe the actual multiannual field dynamics of water and isoproturon without calibration. However, once calibrated on a limited period of time (9 months), HYDRUS-2D was able to simulate the whole 6-year time series with good accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.
Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography
Vogel, Hans-Jörg
2016-01-01
Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other. PMID:27453995
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Allroggen, Niklas
2017-04-01
The missing vision into the subsurface appears to be a major limiting factor for our hydrological process understanding and theory development. Today, hydrology-related sciences have collected tremendous evidence for soils acting as drainage network and retention stores simultaneously in structured and self-organising domains. However, our present observation technology relies mainly on point-scale sensors, which integrate over a volume of unknown structures and is blind for their distribution. Although heterogeneity is acknowledged at all scales, it is rarely seen as inherent system property. At small scales (soil moisture probe) and at large scales (neutron probe) our measurements leave quite some ambiguity. Consequently, spatially and temporally continuous measurement of soil water states is essential for advancing our understanding and development of subsurface process theories. We present results from several irrigation experiments accompanied by 2D and 3D time-lapse GPR for the development of a novel technique to visualise and quantify water dynamics in the subsurface. Through the comparison of TDR, tracer and gravimetric measurement of soil moisture it becomes apparent that all sensor-based techniques are capable to record temporal dynamics, but are challenged to precisely quantify the measurements and to extrapolate them in space. At the same time excavative methods are very limited in temporal and spatial resolution. The application of non-invasive 4D GPR measurements complements the existing techniques and reveals structural and temporal dynamics simultaneously. By consequently increasing the density of the GPR data recordings in time and space, we find means to process the data also in the time-dimension. This opens ways to quantitatively analyse soil water dynamics in complex settings.
Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential
Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi
2013-01-01
The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259
Soil CO₂ dynamics in a tree island soil of the Pantanal: the role of soil water potential.
Johnson, Mark S; Couto, Eduardo Guimarães; Pinto, Osvaldo B; Milesi, Juliana; Santos Amorim, Ricardo S; Messias, Indira A M; Biudes, Marcelo Sacardi
2013-01-01
The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO₂ research has been conducted in this region. We evaluated soil CO₂ dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO₂ concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO₂ efflux and related environmental parameters. Soil CO₂ efflux during the study averaged 3.53 µmol CO₂ m⁻² s⁻¹, and was equivalent to an annual soil respiration of 1220 g C m⁻² y⁻¹. This efflux value, integrated over a year, is comparable to soil C stocks for 0-20 cm. Soil water potential was the measured parameter most strongly associated with soil CO₂ concentrations, with high CO₂ values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO₂ efflux from the tree island soil, with soil CO₂ dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO₂ efflux from soil. The annual flood arrives later, and saturates soil from below. While CO₂ concentrations in soil grew very high under both wetting mechanisms, the change in soil CO₂ efflux was only significant when soils were wet from above.
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-01-01
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota. PMID:27313139
NASA Astrophysics Data System (ADS)
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-06-01
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.
Ogura, Tatsuki; Date, Yasuhiro; Masukujane, Masego; Coetzee, Tidimalo; Akashi, Kinya; Kikuchi, Jun
2016-06-17
Effective use of agricultural residual biomass may be beneficial for both local and global ecosystems. Recently, biochar has received attention as a soil enhancer, and its effects on plant growth and soil microbiota have been investigated. However, there is little information on how the physical, chemical, and biological properties of soil amended with biochar are affected. In this study, we evaluated the effects of the incorporation of torrefied plant biomass on physical and structural properties, elemental profiles, initial plant growth, and metabolic and microbial dynamics in aridisol from Botswana. Hemicellulose in the biomass was degraded while cellulose and lignin were not, owing to the relatively low-temperature treatment in the torrefaction preparation. Water retentivity and mineral availability for plants were improved in soils with torrefied biomass. Furthermore, fertilization with 3% and 5% of torrefied biomass enhanced initial plant growth and elemental uptake. Although the metabolic and microbial dynamics of the control soil were dominantly associated with a C1 metabolism, those of the 3% and 5% torrefied biomass soils were dominantly associated with an organic acid metabolism. Torrefied biomass was shown to be an effective soil amendment by enhancing water retentivity, structural stability, and plant growth and controlling soil metabolites and microbiota.
Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.
Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen
2017-04-01
Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.
Frostegård, A; Petersen, S O; Bååth, E; Nielsen, T H
1997-01-01
Microbial community dynamics associated with manure hot spots were studied by using a model system consisting of a gel-stabilized mixture of soil and manure, placed between layers of soil, during a 3-week incubation period. The microbial biomass, measured as the total amount of phospholipid fatty acids (PLFA), had doubled within a 2-mm distance from the soil-manure interface after 3 days. Principal-component analyses demonstrated that this increase was accompanied by reproducible changes in the composition of PLFA, indicating changes in the microbial community structure. The effect of the manure was strongest in the 2-mm-thick soil layer closest to the interface, in which the PLFA composition was statistically significantly different (P < 0.05) from that of the unaffected soil layers throughout the incubation period. An effect was also observed in the soil layer 2 to 4 mm from the interface. The changes in microbial biomass and community structure were mainly attributed to the diffusion of dissolved organic carbon from the manure. During the initial period of microbial growth, PLFA, which were already more abundant in the manure than in the soil, increased in the manure core and in the 2-mm soil layer closest to the interface. After day 3, the PLFA composition of these layers gradually became more similar to that of the soil. The dynamics of individual PLFA suggested that both taxonomic and physiological changes occurred during growth. Examples of the latter were decreases in the ratios of 16:1 omega 7t to 16:1 omega 7c and of cyclopropyl fatty acids to their respective precursors, indicating a more active bacterial community. An inverse relationship between bacterial PLFA and the eucaryotic 20:4 PLFA (arachidonic acid) suggested that grazing was important. PMID:9172342
[Effect of pine plantations on soil arthropods in a high Andean forest].
León-Gamboa, Alba Lucía; Ramos, Carolina; García, Mary Ruth
2010-09-01
One of the most common problems in the Colombian mountains has been the replacement of native vegetation by pine plantations. Soil arthropods are a fundamental component of forest ecosystem, since they participate in the organic matter fragmentation, previous to decomposition. This role is more valuable in high altitude environments, where low temperatures limit the dynamics of biological processes, where the effects of pine plantations on soil arthropods are still not well-known. In a remnant of high-andean forest (Neusa - Colombia) and a pine plantation of about 50 years-old, it was evaluated the composition, richness and abundance of arthropods at surface (S), organic horizon (O) and mineral horizon (A) of soil, to establish the differences associated to the soil use transformation. It was used "Pitfall" sampling to register the movement of the epigeous fauna, and extraction by funnel Berlese for determining the fauna density from O and A horizons. The Shannon and Simpson indexes estimated the diversity at different places and horizons, and the trophic structure of the community was evaluated. Overall, there were collected 38 306 individuals from forest and 17 386 individuals from pine plantation, mainly distributed in Collembola (42.4%), Acari (27%), Diptera (17.6%) and Coleoptera (4.6%). The most important differences were given in the surface, where the mobilization in forest (86 individuals/day) almost triplicates the one in pine plantation (33 individuals/day). The differences in composition were given in Collembola, Araneae, Hemiptera, Homoptera and Hymenoptera. The dynamics of richness and abundance along the year had significant high values in the native forest than in the pine plantation. The general trophic structure was dominated by saprophagous (75%), followed by predators (14%) and phytophagous (9%), but in two layers of the pine plantation soil (S and O) this structural pattern was not given. Based on the results, it was concluded that pine plantations affect the diversity, composition, community dynamic and trophic structure of soil arthropods. Also, some estimators of soil stability give signals that these effects are reducing the ecosystem function in the region.
DYNAMICS OF MINERAL STRUCTURES AND THE FATE OF METALS IN SOILS AND SEDIMENTS
Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction with reasonable ...
NASA Astrophysics Data System (ADS)
Lissy, Anne-Sophie; Sammartino, Stephane; Di Pietro, Liliana; Lecompte, François; Ruy, Stephane
2017-04-01
With climate change, preferential flow phenomenon in soil could be predominant in Mediterranean zone. Understanding this phenomenon becomes a fundamental issue for preserving the water resource in quantity (drinking water) and quality (pesticide content). Non-invasive imaging technics, as X-ray tomography, allow studying water infiltration in laboratory with time-lapse imaging to visualize preferential flow path in soil columns (Sammartino et al. 2012). The modeling of water flow with a dual porosity model (matrix and macropores) integrates these fast flow phenomena (Ilhem 2014). These models, however needs more explicit links with the soil structure. The comparison of experimental results of infiltration (dynamics images and mass data) and modeling could improve our comprehension of preferential flow phenomenon and allow a better integration of the functional macroporosity (i.e. which drains water infiltration during a rain event) in such mass transfer models (Sammartino et al. 2015). Soil columns (Ø 12 cm - hauteur 13 cm, clay-loamy & medium sandy loam) have been sampled in the field to preserve their structure (field plowed or not). Several rains have been simulated in the laboratory and the last one was performed in an X-ray medical scanner (Siemens Somatom® 128 slices) at the CIRE platform (INRA, Centre - Val de Loire). Total and functional macro porosities were identified from time lapse tridimensional images. Water dynamics in the porosities was characterized from the identification and analysis of voxels filled by water. With an image resolution of 350μm only water in the largest macropores can be identified. The modeling of these experiments was carried out via the VirtualSoil platform (UMR Emmah, Avignon; www6.inra.fr/vsoil) using a water flow model coupling Darcy-Richards and KDW equations (Di Pietro et al., 2003). The simulated water flux drained by macropores is similar to the experimental hydrograph obtained for rainfalls on soils close to the saturation. The model reproduced well the flow dynamics: (1) breakthrough time (arrival time of the first drop at the bottom of the column) and (2) the total drained water quantity. A sensitivity analysis of this model is in progress in order to determine the influence of each KDW parameters (two kinematic parameters and one dispersion parameter) and to probe where the functional soil structure could be accounted for in the model structure or in the model parameters. First results show that the kinematic parameters modify the breakthrough time and the slope of the drainage curve. Keywords: functional macroporosity, modeling, RX tomography, infiltration, Richards and KDW equations. Sammartino et al., 2012. A novel method to visualize and characterize preferential flow in undisturbed soil cores by using multislice helical CT. Vadose Zone Journal. Sammartino et Lissy, 2015. Identifying the functional macropore network related to preferential flow in structured soils, Vadose Zone Journal, vol. 14, no. 10. Di Pietro et al. 2003. Predicting preferential water flow in soils by traveling-dispersive waves. Journal of Hydrology (278), pp.64-75. Adel Ilhem (2014) - Modélisation des transferts d'eau dans les sols hétérogènes (internship report)
Seismic performance of spherical liquid storage tanks: a case study
NASA Astrophysics Data System (ADS)
Fiore, Alessandra; Demartino, Cristoforo; Greco, Rita; Rago, Carlo; Sulpizio, Concetta; Vanzi, Ivo
2018-02-01
Spherical storage tanks are widely used for various types of liquids, including hazardous contents, thus requiring suitable and careful design for seismic actions. On this topic, a significant case study is described in this paper, dealing with the dynamic analysis of a spherical storage tank containing butane. The analyses are based on a detailed finite element (FE) model; moreover, a simplified single-degree-of-freedom idealization is also set up and used for verification of the FE results. Particular attention is paid to the influence of sloshing effects and of the soil-structure interaction for which no special provisions are contained in technical codes for this reference case. Sloshing effects are investigated according to the current literature state of the art. An efficient methodology based on an "impulsive-convective" decomposition of the container-fluid motion is adopted for the calculation of the seismic force. With regard to the second point, considering that the tank is founded on piles, soil-structure interaction is taken into account by computing the dynamic impedances. Comparison between seismic action effects, obtained with and without consideration of sloshing and soil-structure interaction, shows a rather important influence of these parameters on the final results. Sloshing effects and soil-structure interaction can produce, for the case at hand, beneficial effects. For soil-structure interaction, this depends on the increase of the fundamental period and of the effective damping of the overall system, which leads to reduced design spectral values.
Soil Structure - A Neglected Component of Land-Surface Models
NASA Astrophysics Data System (ADS)
Fatichi, S.; Or, D.; Walko, R. L.; Vereecken, H.; Kollet, S. J.; Young, M.; Ghezzehei, T. A.; Hengl, T.; Agam, N.; Avissar, R.
2017-12-01
Soil structure is largely absent in most standard sampling and measurements and in the subsequent parameterization of soil hydraulic properties deduced from soil maps and used in Earth System Models. The apparent omission propagates into the pedotransfer functions that deduce parameters of soil hydraulic properties primarily from soil textural information. Such simple parameterization is an essential ingredient in the practical application of any land surface model. Despite the critical role of soil structure (biopores formed by decaying roots, aggregates, etc.) in defining soil hydraulic functions, only a few studies have attempted to incorporate soil structure into models. They mostly looked at the effects on preferential flow and solute transport pathways at the soil profile scale; yet, the role of soil structure in mediating large-scale fluxes remains understudied. Here, we focus on rectifying this gap and demonstrating potential impacts on surface and subsurface fluxes and system wide eco-hydrologic responses. The study proposes a systematic way for correcting the soil water retention and hydraulic conductivity functions—accounting for soil-structure—with major implications for near saturated hydraulic conductivity. Modification to the basic soil hydraulic parameterization is assumed as a function of biological activity summarized by Gross Primary Production. A land-surface model with dynamic vegetation is used to carry out numerical simulations with and without the role of soil-structure for 20 locations characterized by different climates and biomes across the globe. Including soil structure affects considerably the partition between infiltration and runoff and consequently leakage at the base of the soil profile (recharge). In several locations characterized by wet climates, a few hundreds of mm per year of surface runoff become deep-recharge accounting for soil-structure. Changes in energy fluxes, total evapotranspiration and vegetation productivity are less significant but they can reach up to 10% in specific locations. Significance for land-surface and hydrological modeling and implications for distributed domains are discussed.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-05-01
The sensitivity of polar regions to raising global temperatures is reflected in rapidly changing hydrological processes associated with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and stimulation of other soil-borne greenhouse gas emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and other environmental factors. Soil structural elements such as aggregates and layering affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hot spots). We developed a mechanistic individual-based model to quantify microbial activity dynamics in soil pore networks considering transport processes and enzymatic activity associated with methane production in soil. The model was upscaled from single aggregates to the soil profile where freezing/thawing provides macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged profile) for resolving methane production and oxidation rates. Methane transport pathways by diffusion and ebullition of bubbles vary with hydration dynamics. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability and enzyme activity) on long-term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
Bodner, G; Scholl, P; Loiskandl, W; Kaul, H-P
2013-08-01
Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (- 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r 2 = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters.
Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.
2013-01-01
Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average management induced changes in soil properties (e.g. cover crop introduction), a dynamic approach to hydrological modeling is required to capture over-seasonal (tillage driven) and short term (environmental driven) variability in hydraulic parameters. PMID:24748683
Effects of spatial variability of soil hydraulic properties on water dynamics
NASA Astrophysics Data System (ADS)
Gumiere, Silvio Jose; Caron, Jean; Périard, Yann; Lafond, Jonathan
2013-04-01
Soil hydraulic properties may present spatial variability and dependence at the scale of watersheds or fields even in man-made single soil structures, such as cranberry fields. The saturated hydraulic conductivity (Ksat) and soil moisture curves were measured at two depths for three cranberry fields (about 2 ha) at three different sites near Québec city, Canada. Two of the three studied fields indicate strong spatial dependence for Ksat values and soil moisture curves both in horizontal and vertical directions. In the summer of 2012, the three fields were equipped with 55 tensiometers installed at a depth of 0.10 m in a regular grid. About 20 mm of irrigation water were applied uniformly by aspersion to the fields, raising soil water content to near saturation condition. Soil water tension was measured once every hour during seven days. Geostatistical techniques such as co-kriging and cross-correlograms estimations were used to investigate the spatial dependence between variables. The results show that soil tension varied faster in high Ksat zones than in low Ksatones in the cranberry fields. These results indicate that soil water dynamic is strongly affected by the variability of saturated soil hydraulic conductivity, even in a supposed homogenous anthropogenic soil. This information may have a strong impact in irrigation management and subsurface drainage efficiency as well as other water conservation issues. Future work will involve 3D numerical modeling of the field water dynamics with HYDRUS software. The anticipated outcome will provide valuable information for the understanding of the effect of spatial variability of soil hydraulic properties on soil water dynamics and its relationship with crop production and water conservation.
Analysis of ramming settlement based on dissipative principle
NASA Astrophysics Data System (ADS)
Fu, Hao; Yu, Kaining; Chen, Changli; Li, Changrong; Wang, Xiuli
2018-03-01
The deformation of soil is a kind of dissipative structure under the action of dynamic compaction. The macroscopic performance of soil to steady state evolution is the change of ramming settlement in the process of dynamic compaction. based on the existing solution of dynamic compaction boundary problem, calculated ramming effectiveness (W) and ramming efficiency coefficient( η ). For the same soil, ramming efficiency coefficient is related to ramming factor λ = M/ρr3. By using the dissipative principle to analyze the law between ramming settlements and ramming times under different ramming energy and soil density, come to the conclusion that: Firstly, with the increase of ramming numbers, ramming settlement tends to a stable value, ramming effectiveness coefficient tends to a stable value. Secondly, under the condition of the same single ramming energy, the soil density of before ramming has effect on ramming effectiveness of previous ramming, almost no effect on ramming effectiveness of subsequent ramming. Thirdly, under the condition of the same soil density, different ramming energy correspond to different steady-state, the cumulative ramming settlement and steady-state increase with ramming energy.
Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator
NASA Astrophysics Data System (ADS)
Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.
2016-11-01
Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.
Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator
Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.
2016-01-01
Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization. PMID:27805014
Development of negative feedback during successive growth cycles of black cherry.
Packer, Alissa; Clay, Keith
2004-01-01
Negative feedback between plant and soil microbial communities can be a key determinant of vegetation structure and dynamics. Previous research has shown that negative feedback between black cherry (Prunus serotina) and soil pathogens is strongly distance dependent. Here, we investigate the temporal dynamics of negative feedback. To examine short-term changes, we planted successive cycles of seedlings in the same soil. We found that seedling mortality increased steadily with growth cycle when sterile background soil was inoculated with living field soil but not in controls inoculated with sterilized field soil. To examine long-term changes, we quantified negative feedback across successive growth cycles in soil inoculated with living field soil from a mature forest system (more than 70 years old) versus a younger successional site (ca. 25 years old). In both cases negative feedback developed similarly. Our results suggest that negative feedback can develop very quickly in forest systems, at the spatial scale of a single seedling. PMID:15058444
Dynamics of organic matter and microbial populations in amended soil: a multidisciplinary approach
NASA Astrophysics Data System (ADS)
Gigliotti, Giovanni; Pezzolla, Daniela; Zadra, Claudia; Albertini, Emidio; Marconi, Gianpiero; Turchetti, Benedetta; Buzzini, Pietro
2013-04-01
The application of organic amendments to soils, such as pig slurry, sewage sludge and compost is considered a tool for improving soil fertility and enhancing C stock. The addition of these different organic materials allows a good supply of nutrients for plants but also contributes to C sequestration, affects the microbial activity and the transformation of soil organic matter (SOM). Moreover, the addition of organic amendment has gained importance as a source of greenhouse gas (GHG) emissions and then as a cause of the "Global Warming". Therefore, it is important to investigate the factors controlling the SOM mineralization in order to improve soil C sequestration and decreasing at the same time the GHG emissions. The quality of organic matter added to the soil will play an important role in these dynamics, affecting the microbial activity and the changes in microbial community structure. A laboratory, multidisciplinary experiment was carried out to test the effect of the amendment by anaerobic digested livestock-derived organic materials on labile organic matter evolution and on dynamics of microbial population, this latter both in terms of consistence of microbial biomass, as well as in terms of microbial biodiversity. Different approaches were used to study the microbial community structure: chemical (CO2 fluxes, WEOC, C-biomass, PLFA), microbiological (microbial enumeration) and molecular (DNA extraction and Roche 454, Next Generation Sequencing, NGS). The application of fresh digestate, derived from the anaerobic treatment of animal wastes, affected the short-term dynamics of microbial community, as reflected by the increase of CO2 emissions immediately after the amendment compared to the control soil. This is probably due to the addition of easily available C added with the digestate, demonstrating that this organic material was only partially stabilized by the anaerobic process. In fact, the digestate contained a high amounts of available C, which led to increase WEOC concentration in digestate treated soil compared to the control soil. The depletion of C, likely due to the microbial activity, was confirmed by the gradual decrease of WEOC concentration in soils amended with digestate. The SUVA254 measurement showed an influence of digestate on the quality of soil WEOM, with higher values in the control rather than in the digestate amended soil, indicating a great amount of aromatic compounds in native SOM. The results of the PLFAs showed that the addition of digestate did not lead overall changes in the microbial community structure compared to the control, except for a shallow decrease of fungi. This probably suggests that the slow rate of mineralization of the organic matter added with digestate does not induce to a rapid shift of microbial community structure. The NGS showed the most important bacterial phyla and fungi species that were involved in the SOM turnover. Furthermore, this approach might be useful to trace the residence time of microbial pathogens supplied with digestates.
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-04-01
The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
RELATIONSHIP OF MICROBIAL COMMUNITY STRUCTURE AND CARBON DYNAMICS IN SOILS FROM BRAZILIAN SAVANNAS
Fertilization is a widespread management practice in savanna areas of central Brazil (Cerrado) that are undergoing rapid agricultural land use changes. We conducted field and laboratory studies in soils with added fertilizers to determine the effect that fertilization of native a...
[Effect of flooding time on community structure and abundance of Geobacteraceae in paddy soil].
You, Jiaohua; Xia, Shuhong; Wang, Baoli; Qu, Dong
2011-06-01
The dynamic characteristics of community structure and relative abundance of Geobacteraceae were investigated to understand their response to microbial iron (III) reducing in flooded paddy soil. The paddy soil was incubated anaerobically and the amount of Fe(II) was determined during the flooding incubation. We retrieved Geobacteraceae sequences from clone libraries constructed for different time points (1 h and day 1, 5, 10, 20 and 30) after flooding of the paddy soil. The diversity and community structure were analyzed by using RFLP method, and the relative abundance of Geobacteraceae was detected by real-time PCR. Microbial reduction of iron (III) changed greatly in early time and was stable after incubated for 20 d in paddy soil. The largest iron reduction potential was 10.16 mg/g with a Vmax of 1.064 mg/(g x d) at the time of 4.84 d whereas this process achieved plateau after 20 days flooding. Diversity of Geobacteraceae, given by alpha indices, fluctuated during the flooding incubation. Two peaks of diversity were observed in treatments of 5 d and 20 d respectively, while significant low diversity appeared in samples of 10 d and 30 d. Beta indices described the differences between community structures of Geobacteraceae and hence reflected the variation of the flooding situation over time. In all samples, 10 RFLP-based preponderant types were found, which fell into clade 1 and clade 2 of Geobacteraceae. The relative abundance of Geobacteraceae was the lowest in 1 d (1.20% ) and the highest in 20 d (4.54%). The dynamic variation of Geobacteraceae diversity, community structure and abundance are closely related to microbial iron (III) reducing in flooding paddy soil.
Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction
NASA Astrophysics Data System (ADS)
Galvín, P.; Romero, A.; Domínguez, J.
2010-11-01
In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.
Marcela Zalamea; Grizelle Gonzalez; Chien-Lu Ping; Gary Michaelson
2007-01-01
Decaying wood is an important structural and functional component of forests: it contributes to generate habitat diversity, acts as either sink or source of nutrients, and plays a preponderant role in soil formation. Thus, decaying wood might likely have measurable effects on chemical properties of the underlying soil.We hypothesized that decaying wood would have a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abate, G.; Massimino, M. R.; Maugeri, M.
The deep investigation of soil-foundation interaction behaviour during earthquakes represent one of the key-point for a right seismic design of structures, which can really behave well during earthquake, avoiding dangerous boundary conditions, such as weak foundations supporting the superstructures. The paper presents the results of the FEM modeling of a shaking table test involving a concrete shallow foundation resting on a Leighton Buzzard sand deposit. The numerical simulation is performed using a cap-hardening elasto-plastic constitutive model for the soil and specific soil-foundation contacts to allow slipping and up-lifting phenomena. Thanks to the comparison between experimental and numerical results, the powermore » and the limits of the proposed numerical model are focused. Some aspects of the dynamic soil-foundation interaction are also pointed out.« less
Broadbent, Eben N.; Almeyda Zambrano, Angélica M.; Asner, Gregory P.; Soriano, Marlene; Field, Christopher B.; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I.; Dirzo, Rodolfo; Giles, Larry
2014-01-01
Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ13C dynamics were largely constrained by plant species composition. Foliar δ15N had a significant negative correlation with both stand age and species successional status, – most likely resulting from a large initial biomass-burning enrichment in soil 15N and 13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession. PMID:24516525
Broadbent, Eben N; Almeyda Zambrano, Angélica M; Asner, Gregory P; Soriano, Marlene; Field, Christopher B; de Souza, Harrison Ramos; Peña-Claros, Marielos; Adams, Rachel I; Dirzo, Rodolfo; Giles, Larry
2014-01-01
Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ(13)C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ(13)C dynamics were largely constrained by plant species composition. Foliar δ(15)N had a significant negative correlation with both stand age and species successional status, - most likely resulting from a large initial biomass-burning enrichment in soil (15)N and (13)C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.
Gavazov, Konstantin; Ingrisch, Johannes; Hasibeder, Roland; Mills, Robert T E; Buttler, Alexandre; Gleixner, Gerd; Pumpanen, Jukka; Bahn, Michael
2017-07-15
Seasonal snow cover provides essential insulation for mountain ecosystems, but expected changes in precipitation patterns and snow cover duration due to global warming can influence the activity of soil microbial communities. In turn, these changes have the potential to create new dynamics of soil organic matter cycling. To assess the effects of experimental snow removal and advanced spring conditions on soil carbon (C) and nitrogen (N) dynamics, and on the biomass and structure of soil microbial communities, we performed an in situ study in a subalpine grassland in the Austrian Alps, in conjunction with soil incubations under controlled conditions. We found substantial winter C-mineralisation and high accumulation of inorganic and organic N in the topsoil, peaking at snowmelt. Soil microbial biomass doubled under the snow, paralleled by a fivefold increase in its C:N ratio, but no apparent change in its bacteria-dominated community structure. Snow removal led to a series of mild freeze-thaw cycles, which had minor effects on in situ soil CO 2 production and N mineralisation. Incubated soil under advanced spring conditions, however, revealed an impaired microbial metabolism shortly after snow removal, characterised by a limited capacity for C-mineralisation of both fresh plant-derived substrates and existing soil organic matter (SOM), leading to reduced priming effects. This effect was transient and the observed recovery in microbial respiration and SOM priming towards the end of the winter season indicated microbial resilience to short-lived freeze-thaw disturbance under field conditions. Bacteria showed a higher potential for uptake of plant-derived C substrates during this recovery phase. The observed temporary loss in microbial C-mineralisation capacity and the promotion of bacteria over fungi can likely impede winter SOM cycling in mountain grasslands under recurrent winter climate change events, with plausible implications for soil nutrient availability and plant-soil interactions. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of vibration limits and mitigation techniques for urban construction : [summary].
DOT National Transportation Integrated Search
2013-10-01
Construction activities such as pile driving and : dynamic compaction of loose soils induce ground : and structure vibrations. Their effects may annoy : local populations, disturb sensitive equipment, or : reduce structures serviceability and dura...
Integrating microbial diversity in soil carbon dynamic models parameters
NASA Astrophysics Data System (ADS)
Louis, Benjamin; Menasseri-Aubry, Safya; Leterme, Philippe; Maron, Pierre-Alain; Viaud, Valérie
2015-04-01
Faced with the numerous concerns about soil carbon dynamic, a large quantity of carbon dynamic models has been developed during the last century. These models are mainly in the form of deterministic compartment models with carbon fluxes between compartments represented by ordinary differential equations. Nowadays, lots of them consider the microbial biomass as a compartment of the soil organic matter (carbon quantity). But the amount of microbial carbon is rarely used in the differential equations of the models as a limiting factor. Additionally, microbial diversity and community composition are mostly missing, although last advances in soil microbial analytical methods during the two past decades have shown that these characteristics play also a significant role in soil carbon dynamic. As soil microorganisms are essential drivers of soil carbon dynamic, the question about explicitly integrating their role have become a key issue in soil carbon dynamic models development. Some interesting attempts can be found and are dominated by the incorporation of several compartments of different groups of microbial biomass in terms of functional traits and/or biogeochemical compositions to integrate microbial diversity. However, these models are basically heuristic models in the sense that they are used to test hypotheses through simulations. They have rarely been confronted to real data and thus cannot be used to predict realistic situations. The objective of this work was to empirically integrate microbial diversity in a simple model of carbon dynamic through statistical modelling of the model parameters. This work is based on available experimental results coming from a French National Research Agency program called DIMIMOS. Briefly, 13C-labelled wheat residue has been incorporated into soils with different pedological characteristics and land use history. Then, the soils have been incubated during 104 days and labelled and non-labelled CO2 fluxes have been measured at ten sampling time in order to follow the dynamic of residue and soil organic matter mineralization. Diversity, structure and composition of microbial communities have been characterized before incubation time. The dynamic of carbon fluxes through CO2 emissions has been modelled through a simple model. Using statistical tools, relations between parameters of the model and microbial diversity indexes and/or pedological characteristics have been developed and integrated to the model. First results show that global diversity has an impact on the models parameters. Moreover, larger fungi diversity seems to lead to larger parameters representing decomposition rates and/or carbon use efficiencies than bacterial diversity. Classically, pedological factors such as soil pH and texture must also be taken into account.
The objective of this work was to evaluate the effects of fire regimes and vegetation cover on the structure and dynamics of soil microbial communities, through phospholipid fatty acid (PLFA) analysis. Comparisons were made between native areas with different woody covers ("cerra...
Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana
Steven D. Allison; Caroline Nielsen; R. Flint Hughes
2006-01-01
Like other N-fixing invasive species in Hawaii, Falcataria moluccana dramatically alters forest structure, litterfall quality and quantity, and nutrient dynamics. We hypothesized that these biogeochemical changes would also affect the soil microbial community and the extracellular enzymes responsible for carbon and nutrient mineralization. Across...
DOT National Transportation Integrated Search
2011-12-01
This study is concerned with developing new modeling tools for predicting the response of the new Kealakaha : Stream Bridge to static and dynamic loads, including seismic shaking. The bridge will span 220 meters, with the : deck structure being curve...
NASA Astrophysics Data System (ADS)
Xu, Bo; Wang, Jinniu; Wu, Ning; Wu, Yan; Shi, Fusun
2018-01-01
Soil microbial activity varies seasonally in frozen alpine soils during cold seasons and plays a crucial role in available N pool accumulation in soil. The intra- and interannual patterns of microbial and nutrient dynamics reflect the influences of changing weather factors, and thus provide important insights into the biogeochemical cycles and ecological functions of ecosystems. We documented the seasonal and interannual dynamics of soil microbial and available N in an alpine meadow in the eastern part of Qinghai-Tibet Plateau, China, between April 2011 and October 2013. Soil was collected in the middle of each month and analyzed for water content, microbial biomass C (MBC) and N (MBN), dissolved organic C and N, and inorganic N. Soil microbial community composition was measured by the dilution-plate method. Fungi and actinomycetes dominated the microbial community during the nongrowing seasons, and the proportion of bacteria increased considerably during the early growing seasons. Trends of consistently increasing MBC and available N pools were observed during the nongrowing seasons. MBC sharply declined during soil thaw and was accompanied by a peak in available N pool. Induced by changes in soil temperatures, significant shifts in the structures and functions of microbial communities were observed during the winter-spring transition and largely contributed to microbial reduction. The divergent seasonal dynamics of different N forms showed a complementary nutrient supply pattern during the growing season. Similarities between the interannual dynamics of microbial biomass and available N pools were observed, and soil temperature and water conditions were the primary environmental factors driving interannual fluctuations. Owing to the changes in climate, seasonal soil microbial activities and nutrient supply patterns are expected to change further, and these changes may have crucial implications for the productivity and biodiversity of alpine ecosystems.
A thermodynamic approach to link self-organization, preferential flow and rainfall-runoff behaviour
NASA Astrophysics Data System (ADS)
Zehe, E.; Ehret, U.; Blume, T.; Kleidon, A.; Scherer, U.; Westhoff, M.
2013-11-01
This study investigates whether a thermodynamically optimal hillslope structure can, if existent, serve as a first guess for uncalibrated predictions of rainfall-runoff. To this end we propose a thermodynamic framework to link rainfall-runoff processes and dynamics of potential energy, kinetic energy and capillary binding energy in catchments and hillslopes. The starting point is that hydraulic equilibrium in soil corresponds to local thermodynamic equilibrium (LTE), characterized by a local maximum entropy/minimum of free energy of soil water. Deviations from LTE occur either due to evaporative losses, which increase absolute values of negative capillary binding energy of soil water and reduce its potential energy, or due to infiltration of rainfall, which increases potential energy of soil water and reduces the strength of capillary binding energy. The amplitude and relaxation time of these deviations depend on climate, vegetation, soil hydraulic functions, topography and density of macropores. Based on this framework we analysed the free energy balance of hillslopes within numerical experiments that perturbed model structures with respect to the surface density of macropores. These model structures have been previously shown to allow successful long-term simulations of the water balances of the Weiherbach and the Malalcahuello catchments, which are located in distinctly different pedological and climatic settings. Our findings offer a new perspective on different functions of preferential flow paths depending on the pedological setting. Free energy dynamics of soil water in the cohesive soils of the Weiherbach is dominated by dynamics of capillary binding energy. Macropores act as dissipative wetting structures by enlarging water flows against steep gradients in soil water potential after long dry spells. This implies accelerated depletion of these gradients and faster relaxation back towards LTE. We found two local optima in macropore density that maximize reduction rates of free energy of soil water during rainfall-driven conditions. These two optima exist because reduction rates of free energy are, in this case, a second-order polynomial of the wetting rate, which implicitly depends on macroporosity. An uncalibrated long-term simulation of the water balance of the Weiherbach catchment based on the first optimum macroporosity performed almost as well as the best fit when macroporosity was calibrated to match rainfall-runoff. In the Malalcahuello catchment we did not find an apparent optimum density of macropores, because free energy dynamics of soil water during rainfall-driven conditions is dominated by increases of potential energy. Macropores act as dissipative drainage structures by enhancing export of potential energy. No optimum macropore density exists in this case because potential energy change rates scale linearly with the wetting rate. We found, however, a distinguished macroporosity that assures steady-state conditions of the potential energy balance of the soil, in the sense that average storage of potential energy is compensated by average potential energy export. This distinguished macroporosity was close to the value that yielded the best fit of rainfall-runoff behaviour during a calibration exercise and allowed a robust estimate of the annual runoff coefficient. Our findings are promising for predictions in ungauged catchments (PUB) as the optimal/distinguished model structures can serve as a first guess for uncalibrated predictions of rainfall-runoff. They also offer an alternative for classifying catchments according to their similarity of the free energy balance components.
Stress-strain state of the structure in the service area of underground railway
NASA Astrophysics Data System (ADS)
Barabash, M.; Bashinsky, Y.; Korjakins, A.
2017-10-01
The paper focuses on numerical study how vibration due to underground trains influences the load-bearing building structures. Diagrams of vibration levels for monolithic floor slab depending on frequency are obtained. Levels of vibrations on floor slabs and columns are measured. The simulation of dynamic load from underground railway onto load-bearing building structures is presented as an example with account of load transmission through the soil. Recommendations for generation of design model in dynamic analysis of structure are provided.
NASA Astrophysics Data System (ADS)
Tafazzoli, Nima
Seismic response of soil-structure systems has attracted significant attention for a long time. This is quite understandable with the size and the complexity of soil-structure systems. The focus of three important aspects of ESSI modeling could be on consistent following of input seismic energy and a number of energy dissipation mechanisms within the system, numerical techniques used to simulate dynamics of ESSI, and influence of uncertainty of ESSI simulations. This dissertation is a contribution to development of one such tool called ESSI Simulator. The work is being done on extensive verified and validated suite for ESSI Simulator. Verification and validation are important for high fidelity numerical predictions of behavior of complex systems. This simulator uses finite element method as a numerical tool to obtain solutions for large class of engineering problems such as liquefaction, earthquake-soil-structure-interaction, site effect, piles, pile group, probabilistic plasticity, stochastic elastic-plastic FEM, and detailed large scale parallel models. Response of full three-dimensional soil-structure-interaction simulation of complex structures is evaluated under the 3D wave propagation. Domain-Reduction-Method is used for applying the forces as a two-step procedure for dynamic analysis with the goal of reducing the large size computational domain. The issue of damping of the waves at the boundary of the finite element models is studied using different damping patterns. This is used at the layer of elements outside of the Domain-Reduction-Method zone in order to absorb the residual waves coming out of the boundary layer due to structural excitation. Extensive parametric study is done on dynamic soil-structure-interaction of a complex system and results of different cases in terms of soil strength and foundation embedment are compared. High efficiency set of constitutive models in terms of computational time are developed and implemented in ESSI Simulator. Efficiency is done based on simplifying the elastic-plastic stiffness tensor of the constitutive models. Almost in all the soil-structure systems, there are interface zones in contact with each other. These zones can get detached during the loading or can slip on each other. In this dissertation the frictional contact element is implemented in ESSI Simulator. Extended verification has been done on the implemented element. The interest here is the effect of slipping and gap opening at the interface of soil and concrete foundation on the soil-structure system behavior. In fact transferring the loads to structure is defined based on the contact areas which will affect the response of the system. The effect of gap openings and sliding at the interfaces are shown through application examples. In addition, dissipation of the seismic energy due to frictional sliding of the interface zones are studied. Application Programming Interface (API) and Domain Specific Language (DSL) are being developed to increase developer's and user's modeling and simulation capabilities. API describes software services developed by developers that are used by users. A domain-specific language (DSL) is a small language which usually focuses on a particular problem domain in software. In general DSL programs are translated to a common function or library which can be viewed as a tool to hide the details of the programming, and make it easier for the user to deal with the commands.
Recycling vs. stabilisation of soil sugars - a long-term laboratory incubation experiment
NASA Astrophysics Data System (ADS)
Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.
2015-06-01
Independent of its chemical structure carbon (C) persists in soil for several decades, controlled by stabilisation and recycling. To disentangle the importance of the two factors on the turnover dynamics of soil sugars, an important compound of soil organic matter (SOM), a three year incubation experiment was conducted on a silty loam soil under different types of land use (arable land, grassland and forest) by adding 13C-labeled glucose. The compound specific isotope analysis of soil sugars was used to examine the dynamics of different sugars during incubation. Sugar dynamics were dominated by a pool of high mean residence times (MRT) indicating that recycling plays an important role for sugars. However, this was not substantially affected by soil C content. Six months after label addition the contribution of the label was much higher for microbial biomass than for CO2 production for all examined soils, corroborating that substrate recycling was very effective within the microbial biomass. Two different patterns of tracer dynamics could be identified for different sugars: while fucose (fuc) and mannose (man) showed highest label contribution at the beginning of the incubation with a subsequent slow decline, galactose (gal) and rhamnose (rha) were characterised by slow label incorporation with subsequently constant levels, which indicates that recycling is dominating the dynamics of these sugars. This may correspond to (a) different microbial growing strategies (r and K-strategist) or (b) location within or outside the cell membrane (lipopolysaccharides vs. exopolysaccharides) and thus be subject of different re-use within the microbial food web. Our results show how the microbial community recycles substrate very effectively and that high losses of substrate only occur during initial stages after substrate addition.
G. Gonzalez; F.J. Rivera-Figueroa; W. Gould; S.A. Cantrell; J.R. Pérez-Jiménez
2014-01-01
In this study, we determine differences in total biomass of soil microorganisms and community structure (using the most probable number of bacteria (MPN) and the number of fungal genera) in patterned ground features (PGF) and adjacent vegetated soils (AVS) in mesic sites from three High Arctic islands in order to characterize microbial dynamics as affected by...
A multi-scale ''soil water structure'' model based on the pedostructure concept
NASA Astrophysics Data System (ADS)
Braudeau, E.; Mohtar, R. H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P.
2009-02-01
Current soil water models do not take into account the internal organization of the soil medium and, a fortiori, the physical interaction between the water film surrounding the solid particles of the soil structure, and the surface charges of this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water-structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. This article presents a soil water structure model, Kamel®, which was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounded infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated and compared to simulations of the more ideal characterization. The later comparison illustrates how Kamel® can be used and adapt to any case of soil data availability. As physically based model on soil structure, it may be used as a standard reference to evaluate other soil-water models and also pedotransfer functions at a given location or agronomical situation.
Tree root dynamics in montane and sub-alpine mixed forest patches.
Wang, Y; Kim, J H; Mao, Z; Ramel, M; Pailler, F; Perez, J; Rey, H; Tron, S; Jourdan, C; Stokes, A
2018-02-28
The structure of heterogeneous forests has consequences for their biophysical environment. Variations in the local climate significantly affect tree physiological processes. We hypothesize that forest structure also alters tree root elongation and longevity through temporal and spatial variations in soil temperature and water potential. We installed rhizotrons in paired vegetation communities of closed forest (tree islands) and open patches (canopy gaps), along a soil temperature gradient (elevations of 1400, 1700 and 2000 m) in a heterogeneous mixed forest. We measured the number of growing tree roots, elongation and mortality every month over 4 years. The results showed that the mean daily root elongation rate (RER) was not correlated with soil water potential but was significantly and positively correlated with soil temperature between 0 and 8 °C only. The RER peaked in spring, and a smaller peak was usually observed in the autumn. Root longevity was dependent on altitude and the season in which roots were initiated, and root diameter was a significant factor explaining much of the variability observed. The finest roots usually grew faster and had a higher risk of mortality in gaps than in closed forest. At 2000 m, the finest roots had a higher risk of mortality compared with the lower altitudes. The RER was largely driven by soil temperature and was lower in cold soils. At the treeline, ephemeral fine roots were more numerous, probably in order to compensate for the shorter growing season. Differences in soil climate and root dynamics between gaps and closed forest were marked at 1400 and 1700 m, but not at 2000 m, where canopy cover was more sparse. Therefore, heterogeneous forest structure and situation play a significant role in determining root demography in temperate, montane forests, mostly through impacts on soil temperature.
Pepe-Ranney, Charles; Campbell, Ashley N.; Koechli, Chantal N.; ...
2016-05-12
We explored microbial contributions to decomposition using a sophisticated approach to DNA Stable Isotope Probing (SIP). Our experiment evaluated the dynamics and ecological characteristics of functionally defined microbial groups that metabolize labile and structural C in soils. We added to soil a complex amendment representing plant derived organic matter substituted with either 13C-xylose or 13C-cellulose to represent labile and structural C pools derived from abundant components of plant biomass. We found evidence for 13C-incorporation into DNA from 13C-xylose and 13C-cellulose in 49 and 63 operational taxonomic units (OTUs), respectively. The types of microorganisms that assimilated 13C in the 13C-xylose treatmentmore » changed over time being predominantly Firrnicutes at day 1 followed by Bacteroidetes at day 3 and then Actinobacteria at day 7. These 13C-labeling dynamics suggest labile C traveled through different trophic levels. In contrast, microorganisms generally metabolized cellulose-C after 14 days and did not change to the same extent in phylogenetic composition over time. Furthermore, microorganisms that metabolized cellulose-C belonged to poorly characterized but cosmopolitan soil lineages including Verrucomicrobia, Chlorotlexi, and Planctomycetes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pepe-Ranney, Charles; Campbell, Ashley N.; Koechli, Chantal N.
We explored microbial contributions to decomposition using a sophisticated approach to DNA Stable Isotope Probing (SIP). Our experiment evaluated the dynamics and ecological characteristics of functionally defined microbial groups that metabolize labile and structural C in soils. We added to soil a complex amendment representing plant derived organic matter substituted with either 13C-xylose or 13C-cellulose to represent labile and structural C pools derived from abundant components of plant biomass. We found evidence for 13C-incorporation into DNA from 13C-xylose and 13C-cellulose in 49 and 63 operational taxonomic units (OTUs), respectively. The types of microorganisms that assimilated 13C in the 13C-xylose treatmentmore » changed over time being predominantly Firrnicutes at day 1 followed by Bacteroidetes at day 3 and then Actinobacteria at day 7. These 13C-labeling dynamics suggest labile C traveled through different trophic levels. In contrast, microorganisms generally metabolized cellulose-C after 14 days and did not change to the same extent in phylogenetic composition over time. Furthermore, microorganisms that metabolized cellulose-C belonged to poorly characterized but cosmopolitan soil lineages including Verrucomicrobia, Chlorotlexi, and Planctomycetes.« less
Strong, Aaron L; Johnson, Tera P; Chiariello, Nona R; Field, Christopher B
2017-05-01
Numerous studies have demonstrated that soil respiration rates increase under experimental warming, although the long-term, multiyear dynamics of this feedback are not well constrained. Less is known about the effects of single, punctuated events in combination with other longer-duration anthropogenic influences on the dynamics of soil carbon (C) loss. In 2012 and 2013, we assessed the effects of decadal-scale anthropogenic global change - warming, increased nitrogen (N) deposition, elevated carbon dioxide (CO 2 ), and increased precipitation - on soil respiration rates in an annual-dominated Mediterranean grassland. We also investigated how controlled fire and an artificial wet-up event, in combination with exposure to the longer-duration anthropogenic global change factors, influenced the dynamics of C cycling in this system. Decade-duration surface soil warming (1-2 °C) had no effect on soil respiration rates, while +N addition and elevated CO 2 concentrations increased growing-season soil CO 2 efflux rates by increasing annual aboveground net primary production (NPP) and belowground fine root production, respectively. Low-intensity experimental fire significantly elevated soil CO 2 efflux rates in the next growing season. Based on mixed-effects modeling and structural equation modeling, low-intensity fire increased growing-season soil respiration rates through a combination of three mechanisms: large increases in soil temperature (3-5 °C), significant increases in fine root production, and elevated aboveground NPP. Our study shows that in ecosystems where soil respiration has acclimated to moderate warming, further increases in soil temperature can stimulate greater soil CO 2 efflux. We also demonstrate that punctuated short-duration events such as fire can influence soil C dynamics with implications for both the parameterization of earth system models (ESMs) and the implementation of climate change mitigation policies that involve land-sector C accounting. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lavaud, A.; Chabbi, A.; Croue, J. P.
2009-04-01
It is commonly accepted that dissolved organic carbon (DOC) is the bio-available fraction of the largest amount of soil organic matter (SOM), even if it does represent only a very small proportion. Because most of the studies on DOC dynamics were mainly restricted to forest soils, studies on the factors governing the dynamics of DOC in deep soil horizons (>1 m) in arable system are still very little limited. The objective of this work is to better define the proportion of DOC in deep soil horizons and indicate their main characteristics and structural properties. The study was conducted on the long term observatory for environmental research- biogeochemical cycles and biodiversity Lusignan site). DOC collected using lysimeters plates inserted to a depth of 105 cm was fractionated into 3 fractions using the two column array of XAD-8 and XAD-4 resins. The HPO (hydrophobic) fraction (i.e. humic substances) isolated from the XAD-8 resin, the TPH (Transphilic) fraction from the XAD-4 resin and the HPI (hydrophilic) fraction which corresponds to the DOC that does not adsorbed onto the two resins under the acid condition used (pH 2). DOM adsorbed onto the resins is recovered with a 75%/25% acetonitrile/water mixture and lyophilized. Depend on the amount of material; the chemical composition of DOC was performed using UV254 nm, fluorescence EEM, NMR and HPSEC/UV/COD. The results show that the concentration and structural properties of DOC in deep soil horizon were similar to those of groundwater (low SUVA (1.2 m-1.L.mg C-1), structures composed mainly of low molecular weight). Because of the relatively recent establishment of the treatment, the monitoring of the dynamics of the DOC concentrations did not show significant differences between arable and grassland. However, the temporal dynamic shows a slight increase in the DOC content regardless of the of land use. DOC concentrations between winter and the middle of spring tend to double going from 1 to 2.5 mg / L and then to 4-5 mg / L in summer time. The structural analysis reveals significant input of terpenoid derived organic matter was confirmed in the HPO fraction of DOC a results supported by the data of 13C NMR, Infra Red and Micro Scale Sealed Vessel / pyrolysis GC / MS. The chromatographic profiles obtained by flash pyrolysis GC / MS highlight the presence of phenol and alkyl phenols, generally attributed to structures polyhydroxyaromatiques (lignin / tannins), but acetamide, pyrolysis product of amino sugars constituents of the wall microbial cells. The thermochimiolyse (TMAH) / GC / MS confirmed the presence of hydroxy aromatic structures in the extracts, however, their precise origin (lignin, tannins ...) remains uncertain. The results so far indicate that the DOC in deep soil horizons is marked by low aromaticity and dominated by small size molecules. This would consist of carbon derived from terpenoids, lignin degraded and amino sugars.
Soil microbial community successional patterns during forest ecosystem restoration.
Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V
2011-09-01
Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.
Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†
Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.
2011-01-01
Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890
NASA Astrophysics Data System (ADS)
Yuliani; Rahayu, Y. S.
2018-01-01
Calcium is the largest mineral in calcareous soils. High levels of calcium carbonate lead to phosphate deposition. Nutrient deficiencies in calcareous soil (mainly Phosphate and Nitrogen) resulted only certain crops with a wide range of tolerances that can grow. Meanwhile, dynamics nutrient in calcareous soils also depend on the topography and decomposition of the litter in the growing vegetation. The purpose of this study was to describe the pattern of nutrient enhancement and soil-texture structures on calcareous soils after littering the teak leaves, Rhizobium and Vesicular Arbuscular Mycorrhiza. The research parameters were the concentration of N, P, K; C/N ratio, humid acid content, and soil structure, which measured at days 30, 60, and 85 of soil decomposition process. The results showed that at days 30, the texture and structure of the soil tend to be stable (porosity 31.2, DMR 1.93, moisture content 0.36, sandy clay) while at days 85 has been very stable (porosity 49.8; Water content 0.28, sandy clay). While C and N organic, N and K concentration at days 30 showed low value (C organic 1.03, N 0.12, K 0.49, C / N ratio 9). This condition is almost unchanged at days 85. While the P value shows very high value (60.53) at days 30 although after 60 days the P content showed a decrease.
1987-07-14
RD-RISE 368 CENTRIFUGAL AND NUMERICAL MODELING OF BURIED STRUCTURES 1/3 VOLUME 2 DYNAMIC..(U) COLORADO UNIV AT BOULDER DEPT OF CIVIL ENVIRONMENTAL...20332-6448 ELEMENT NO NO. NO ACCESSION NO 61102F 2302 Cl 11 TITLE (Include Security Classification) (U) Centrifugal and Numerical Modeling of Buried ...were buried in a dry sand and tested in the centrifuge to simulate the effects of gravity-induced overburden stresses which played a major role in
Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community.
Hortal, S; Lozano, Y M; Bastida, F; Armas, C; Moreno, J L; Garcia, C; Pugnaire, F I
2017-12-19
Competition is a key process that determines plant community structure and dynamics, often mediated by nutrients and water availability. However, the role of soil microorganisms on plant competition, and the links between above- and belowground processes, are not well understood. Here we show that the effects of interspecific plant competition on plant performance are mediated by feedbacks between plants and soil bacterial communities. Each plant species selects a singular community of soil microorganisms in its rhizosphere with a specific species composition, abundance and activity. When two plant species interact, the resulting soil bacterial community matches that of the most competitive plant species, suggesting strong competitive interactions between soil bacterial communities as well. We propose a novel mechanism by which changes in belowground bacterial communities promoted by the most competitive plant species influence plant performance and competition outcome. These findings emphasise the strong links between plant and soil communities, paving the way to a better understanding of plant community dynamics and the effects of soil bacterial communities on ecosystem functioning and services.
NASA Astrophysics Data System (ADS)
Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.
2010-12-01
Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in response to global change factors may be misleading if they do not account for the depth change in the soil mixing cells.
Seismology in civil engineering
NASA Astrophysics Data System (ADS)
Dvorak, A.
Properties of soils and rocks exposed to vibrations in the practice of civil engineering are examined. Seismic and dynamic field investigations, determination of seismic and dynamic modulus of elasticity, coefficients of damping and absorption are studied. Seismic effects of blasting and of other sources of vibrations on structures and persons, application of rock-noise and dynamic tests of piles are studied.
Effects of drought on forest soil structure and hydrological soil functions
NASA Astrophysics Data System (ADS)
Gimbel, K.; Puhlmann, H.; Weiler, M.
2012-04-01
Climate change is predicted to severely affect precipitation patterns across central Europe. Soil structure is closely linked to the activity of soil microbiota and plant roots, which modify flow pathways along roots, organic matter and water repellence of soils. Through shrinkage and fracturing of soil aggregates, soil structure is also responding to changing climate (in particular drought) conditions. We investigate the possible effects on biogeochemical and hydropedological processes in response to predicted future reduced precipitation, and the interaction of these processes with the biodiversity of the forest understorey and soil biota. The hypotheses of this study are: (i) drought causes a change in soil structure, which affects hydrological soil functions (water infiltration, uptake and redistribution); (ii) changes in rooting patterns and microbial community composition, in response to drought, influence the hydrological soil functions. To test our hypotheses, we built adaptive roofing systems on nine sites in Germany, which allow a flexible reduction of precipitation in order to achieve the long-term minimum precipitation of a site. Here we present first measurements of our repeated measuring/sampling campaign, which will be conducted over a period of three years. The aim of our experiments is to analyze soil pore architecture and related flow and transport behaviour with dye tracer sprinkling experiments, soil column experiments with stable isotope (deuterium, oxygen-18) enriched water, computed tomography at soil monoliths (~70 l) and multi-step outflow experiments with 100 ml soil cores. Finally, we sketch our idea how to relate the observed temporal changes of soil structure and hydrological soil functions to the observed dynamics of hydrometeorological site conditions, soil moisture and desiccation as well as changes in rooting patterns, herb layer and soil microbiotic communities. The results of this study may help to assess future behavior of the plant-soil-water-microbiology-system and may help to adjust models to predict future response to different precipitation patterns as well as help coping with existing and future emerging challenges in forest management.
NASA Astrophysics Data System (ADS)
Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.
2015-10-01
Independent of its chemical structure carbon (C) persists in soil for several decades, controlled by stabilization and recycling. To disentangle the importance of the two factors on the turnover dynamics of soil sugars, an important compound of soil organic matter (SOM), a 3-year incubation experiment was conducted on a silty loam soil under different types of land use (arable land, grassland and forest) by adding 13C-labelled glucose. The compound-specific isotope analysis of soil sugars was used to examine the dynamics of different sugars during incubation. Sugar dynamics were dominated by a pool of high mean residence times (MRT) indicating that recycling plays an important role for sugars. However, this was not substantially affected by soil C content. Six months after label addition the contribution of the label was much higher for microbial biomass than for CO2 production for all examined land use types, corroborating that substrate recycling was very effective within the microbial biomass. Two different patterns of tracer dynamics could be identified for different sugars: while fucose and mannose showed highest label contribution at the beginning of the incubation with a subsequent slow decline, galactose and rhamnose were characterized by slow label incorporation with subsequently constant levels, which indicates that recycling is dominating the dynamics of these sugars. This may correspond to (a) different microbial growing strategies (r and K-strategist) or (b) location within or outside the cell membrane (lipopolysaccharides vs. exopolysaccharides) and thus be subject of different re-use within the microbial food web. Our results show how the microbial community recycles substrate very effectively and that high losses of substrate only occur during initial stages after substrate addition. This study indicates that recycling is one of the major processes explaining the high MRT observed for many SOM fractions and thus is crucial for understanding the global soil C cycle.
Iwaoka, Chikae; Imada, Shogo; Taniguchi, Takeshi; Du, Sheng; Yamanaka, Norikazu; Tateno, Ryunosuke
2018-05-01
Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.
Coppotelli, B M; Ibarrolaza, A; Del Panno, M T; Morelli, I S
2008-02-01
The effects of the inoculant strain Sphingomonas paucimobilis 20006FA (isolated from a phenanthrene-contaminated soil) on the dynamics and structure of microbial communities and phenanthrene elimination rate were studied in soil microcosms artificially contaminated with phenanthrene. The inoculant managed to be established from the first inoculation as it was evidenced by denaturing gradient gel electrophoresis analysis, increasing the number of cultivable heterotrophic and PAH-degrading cells and enhancing phenanthrene degradation. These effects were observed only during the inoculation period. Nevertheless, the soil biological activity (dehydrogenase activity and CO(2) production) showed a late increase. Whereas gradual and successive changes in bacterial community structures were caused by phenanthrene contamination, the inoculation provoked immediate, significant, and stable changes on soil bacterial community. In spite of the long-term establishment of the inoculated strain, at the end of the experiment, the bioaugmentation did not produce significant changes in the residual soil phenanthrene concentration and did not improve the residual effects on the microbial soil community.
NASA Astrophysics Data System (ADS)
Van Stan, John; Rosier, Carl; Moore, Leslie; Gay, Trent; Reichard, James; Wu, Tiehang; Kan, Jinjun
2015-04-01
Identifying spatiotemporal influences on soil microbial community (SMC) structure is critical to our understanding of patterns in biogeochemical cycling and related ecological services (e.g., plant community structure, water quality, response to environmental change). Since forest canopy structure alters the spatiotemporal patterning of precipitation water and solute supplies to soils (via "throughfall"), is it possible that changes in SMC structure could arise from modifications in canopy elements? Our study investigates this question by monitoring throughfall water and dissolved ion supply to soils beneath a continuum of canopy structure: from large gaps (0% cover), to bare Quercus virginiana Mill. (southern live oak) canopy (~50-70%), to heavy Tillandsia usneoides L. (Spanish moss) canopy (>90% cover). Throughfall water supply diminished with increasing canopy cover, yet increased washoff/leaching of Na+, Cl-, PO43-, and SO42- from the canopy to the soils. Presence of T. usneoides diminished throughfall NO3-, but enhanced NH4+, concentrations supplied to subcanopy soils. The mineral soil horizon (0-10 cm) sampled in triplicate from locations receiving throughfall water and solutes from canopy gaps, bare canopy, and T. usneoides-laden canopy significantly differed in soil chemistry parameters (pH, Ca2+, Mg2+, CEC). Polymerase Chain Reaction-Denaturant Gradient Gel Electrophoresis (PCR-DGGE) banding patterns beneath similar canopy covers (experiencing similar throughfall dynamics) also produced high similarities per ANalyses Of SIMilarity (ANO-SIM), and clustered together when analyzed by Nonmetric Multidimensional Scaling (NMDS). These results suggest that modifications of forest canopy structures are capable of affecting mineral-soil horizon SMC structure via throughfall when canopies' biomass distribution is highly heterogeneous. As SMC structure, in many instances, relates to functional diversity, we suggest that future research seek to identify functional diversity shifts (e.g., nitrogen transformation) in response to canopy structural alterations of throughfall water/solute concentration
Grandy, A Stuart; Neff, Jason C
2008-10-15
Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions <53 microm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions.
Designing sustainable soils in Earth's critical zone
NASA Astrophysics Data System (ADS)
Banwart, Steven Allan; de Souza, Danielle Maia; Menon, Manoj; Nikolaidis, Nikolaos; Panagos, Panos; Vala Ragnardsdottir, Kristin; Rousseva, Svelta; van Gaans, Pauline
2014-05-01
The demographic drivers of increasing human population and wealth are creating tremendous environmental pressures from growing intensity of land use, resulting in soil and land degradation worldwide. Environmental services are provided through multiple soil functions that include biomass production, water storage and transmission, nutrient transformations, contaminant attenuation, carbon and nitrogen storage, providing habitat and maintaining the genetic diversity of the land environment. One of the greatest challenges of the 21st century is to identify key risks to soil, and to design mitigation strategies to manage these risks and to enhance soil functions that can last into the future. The scientific study of Earth's Critical Zone (CZ), the thin surface layer that extends vertically from the top of the tree canopy to the bottom of aquifers, provides an essential integrating scientific framework to study, protect and enhance soil functions. The research hypothesis is that soil structure, the geometric architecture of solids, pores and biomass, is a critical indicator and essential factor of productive soil functions. The experimental design selects a network of Critical Zone Observatories (CZOs) as advanced field research sites along a gradient of land use intensity in order to quantify soil structure and soil processes that dictate the flows and transformations of material and energy as soil functions. The CZOs focus multidisciplinary expertise on soil processes, field observation and data interpretation, management science and ecological economics. Computational simulation of biophysical processes provides a quantitative method of integration for the range of theory and observations that are required to quantify the linkages between changes in soil structure and soil functions. Key results demonstrate that changes in soil structure can be quantified through the inputs of organic carbon and nitrogen from plant productivity and microbial activity, coupled with particle aggregation dynamics and organic matter mineralization. Simulation results show that soil structure is highly dynamic and is sensitive to organic matter production and minearlisation rates as influenced by vegetation, tillage and organic carbon amendments. These results point to a step-change in the capability to design soil management and land use through computational simulation. This approach of "sustainability by design" describes the mechanistic process linkages that exist between the above-ground inputs to the CZ and the internal processes that produce soil functions. This approach provides a rational, scientific approach to selecting points of intervention with the CZ in order to design methods to mitigate soil threats and to enhance and sustain vital soil functions. Furthermore, this approach provides a successful pilot study to the use of international networks of CZOs as a planetary-scale laboratory to test the response of CZ process rates along gradients of global environmental change - and to test adaptation strategies to manage the risks arising from the CZ impacts. Acknowledgements. The authors acknowledge the substantial contributions of the entire team of investigators and funding of the SoilTrEC project (EC FP7, agreement no. 244118; www.soiltrec.eu).
[Community structure of soil fauna in Eucalyptus grandis plantations at different slope locations].
Zhao, Yu; Zhong, Yu; Zhang, Jian; Yang, Wan-qin
2010-09-01
To understand the effects of slope location on the community structure of soil fauna in Eucalyptus grandis plantation, an investigation was made on the soil fauna in 3 E. grandis plantations at different slope locations in the hilly area of Sichuan Province from January to October 2009. A total of 39,2762 individuals were observed, belonging to 146 groups, 7 phyla, 16 classes, and 31 orders. The community composition, trophic group, diversity, and seasonal dynamics of soil fauna in the plantations all varied with slope. The abundance of macro-fauna, xeric meso- and micro-fauna, saprophagous macro-fauna, and omnivorous xeric meso- and micro-fauna increased with the decrease of slope, indicating that soil fauna had sensitive responses to the soil environmental factors affected by slope. Significant differences in the diversity of soil saprophagous macro-fauna and hygrophilous meso- and micro-fauna were observed at different slope locations, suggesting that these two faunal groups could be used as the indicators of the habitat heterogeneity of E. grandis plantations at different slope. Overall, slope location had definite effects on the community structure and distribution of soil fauna in the E. grandis plantations, but the effects were not statistically significant.
Wang, Pei; Li, Xiao-Yan; Wang, Lixin; Wu, Xiuchen; Hu, Xia; Fan, Ying; Tong, Yaqin
2018-06-04
Previous evapotranspiration (ET) partitioning studies have usually neglected competitions and interactions between antagonistic plant functional types. This study investigated whether shrubs and grasses have divergent ET partition dynamics impacted by different water-use patterns, canopy structures, and physiological properties in a shrub-encroached steppe ecosystem in Inner Mongolia, China. The soil water-use patterns of shrubs and grasses have been quantified by an isotopic tracing approach and coupled into an improved multisource energy balance model to partition ET fluxes into soil evaporation, grass transpiration, and shrub transpiration. The mean fractional contributions to total ET were 24 ± 13%, 20 ± 4%, and 56 ± 16% for shrub transpiration, grass transpiration, and soil evaporation respectively during the growing season. Difference in ecohydrological connectivity and leaf development both contributed to divergent transpiration partitioning between shrubs and grasses. Shrub-encroachment processes result in larger changes in the ET components than in total ET flux, which could be well explained by changes in canopy resistance, an ecosystem function dominated by the interaction of soil water-use patterns and ecosystem structure. The analyses presented here highlight the crucial effects of vegetation structural changes on the processes of land-atmosphere interaction and climate feedback. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Tian, Baoyu; Wang, Chunxiang; Lv, Ruirui; Zhou, Junxiong; Li, Xin; Zheng, Yi; Jin, Xiangyu; Wang, Mengli; Ye, Yongxia; Huang, Xinyi; Liu, Ping
2014-01-01
The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.
Root carbon decomposition and microbial biomass response at different soil depths
NASA Astrophysics Data System (ADS)
Rumpel, C.
2012-12-01
The relationship between root litter addition and soil organic matter (SOM) formation in top- versus subsoils is unknown. The aim of this study was to investigate root litter decomposition and stabilisation in relation to microbial parameters in different soil depths. Our conceptual approach included incubation of 13C-labelled wheat roots at 30, 60 and 90 cm soil depth for 36 months under field conditions. Quantitative root carbon contribution to SOM was assessed, changes of bulk root chemistry studied by solid-state 13C NMR spectroscopy and lignin content and composition was assessed after CuO oxidation. Compound-specific isotope analysis allowed to assess the role of root lignin for soil C storage in the different soil depths. Microbial biomass and community structure was determined after DNA extraction. After three years of incubation, O-alkyl C most likely assigned to polysaccharides decreased in all soil depth compared to the initial root material. The degree of root litter decomposition assessed by the alkyl/O-alkyl ratio decreased with increasing soil depth, while aryl/O-alkyl ratio was highest at 60 cm depth. Root-derived lignin showed depth specific concentrations (30 < 90 < 60 cm). Its composition was soil depth independent suggesting that microbial communities in all three soil depths had similar degradation abilities. Microbial biomass C and fungi contribution increased after root litter addition. Their community structure changed after root litter addition and showed horizon specific dynamics. Our study shows that root litter addition can contribute to C storage in subsoils but did not influence C storage in topsoil. We conclude that specific conditions of single soil horizons have to be taken into account if root C dynamics are to be fully understood.
Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, R.; Parmelee, R.; Carreiro, M.
1995-09-01
The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the adundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lowermore » in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.« less
Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuperman, R.; Parmelee, R.; Carreiro, M.
1995-06-01
The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the abundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lowermore » in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.« less
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine
2016-04-01
Implementing various compost amendments and tillage practices has a large influence on soil structure and can create heterogeneities at the plot/field scale. While tillage affects soil physical properties, compost application influences also chemical properties like pesticide sorption and degradation. A long-term field experiment called "QualiAgro" (https://www6.inra.fr/qualiagro_eng/), conducted since 1998 aims at characterizing the agronomic value of urban waste composts and their environmental impacts. A modeling study was carried out using HYDRUS-2D for the 2004-2010 period to confront the effects of two different compost types combined with the presence of heterogeneities due to tillage in terms of water and isoproturon dynamics in soil. A municipal solid waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have been applied to experimental plots and compared to a control plot without any compost addition (CONT). Two wick lysimeters, 5 TDR probes, and 7 tensiometers were installed per plot to monitor water and isoproturon dynamics. In the ploughed layer, four zones with differing soil structure were identified: compacted clods (Δ), non-compacted soil (Γ), interfurrows (IF), and the plough pan (PP). These different soil structural zones were implemented into HYDRUS-2D according to field observation and using measured soil hydraulic properties. Lysimeter data showed (2004 -2010 period) that the CONT plot had the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and SGW plot (979 mm). HYDRUS-2D was able to describe cumulative water outflow after calibration of soil hydraulic properties, for the whole 2004-2010 period with a model efficiency value of 0.99 for all three plots. Isoproturon leaching showed had the largest cumulative value in the CONT plot (21.31 μg) while similar cumulated isoproturon leachings were measured in the SGW (0.663 μg) and MSW (0.245 μg) plots. The model was able to simulate isoproturon leaching patterns except for the large preferential flow events that were observed in the MSW and CONT plots. The timing of these preferential flow events could be reproduced by the model but not their magnitude. Additional simulations were carried out, assuming temporal variation of the IPU degradation rate to explain the leaching events observed at the end of the monitoring period (2010). Modeling results indicate that spatial and temporal variations in pesticide degradation rate due to tillage and compost application play a major role in the dynamics of isoproturon leaching. Both types of compost were found to reduce isoproturon leaching on the long-term (6 years) duration of the field experiment. Keywords: Compost amendment; Soil heterogeneity; Conventional tillage; Water flow; Isoproturon; HYDRUS-2D
NASA Astrophysics Data System (ADS)
Rosier, C. L.; Van Stan, J. T., II; Trammell, T. L.
2017-12-01
Urbanization alters environmental conditions such as temperature, moisture, carbon (C) and nitrogen (N) deposition affecting critical soil processes (e.g., C storage). Urban soils experience elevated N deposition (e.g., transportation, industry) and decreased soil moisture via urban heat island that can subsequently alter soil microbial community structure and activity. However, there is a critical gap in understanding how increased temperatures and pollutant deposition influences soil microbial community structure and soil C/N cycling in urban forests. Furthermore, canopy structural differences between individual tree species is a potentially important mechanism facilitating the deposition of pollutants to the soil. The overarching goal of this study is to investigate the influence of urbanization and tree species structural differences on the bacterial and fungal community and C and N content of soils experiencing a gradient of urbanization pressures (i.e., forest edge to interior; 150-m). Soil cores (1-m depth) were collected near the stem (< 0.5 meter) of two tree species with contrasting canopy and bark structure (Fagus grandifolia, vs. Liriodendron tulipifera), and evaluated for soil microbial structure via metagenomic analysis and soil C/N content. We hypothesize that soil moisture constraints coupled with increases in recalcitrant C will decrease gram negative bacteria (i.e., dependent on labile C) while increasing saprophytic fungal community abundance (i.e., specialist consuming recalcitrant C) within both surface and subsurface soils experiencing the greatest urban pressure (i.e., forest edge). We further expect trees located on the edge of forest fragments will maintain greater surface soil (< 20 cm) C concentrations due to decreased soil moisture constraining microbial activity (e.g., slower decay), and increased capture of recalcitrant C stocks from industrial/vehicle emission sources (e.g., black C). Our initial results support our hypotheses that urbanization alters soil microbial community composition via reduced soil moisture and carbon storage potential via deposition gradients. Further analyses will answer important questions regarding how individual tree species alters urban soil C storage, N retention, and microbial dynamics.
Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure
Skvortsova, Elena B.; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity. PMID:26010779
Universal spatial correlation functions for describing and reconstructing soil microstructure.
Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity.
Subsurface and terrain controls on runoff generation in deep soil landscapes
NASA Astrophysics Data System (ADS)
Mallard, John; McGlynn, Brian; Richter, Daniel
2017-04-01
Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete despite the prevalence of this setting worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA. The Piedmont region of the United States extends east of the Appalachians from Maryland to Alabama, and is home to some of the most rapid population growth in the country. Regional and local relief is modest, although the landscape is highly dissected and local slope can be quite variable. The region's soils are ancient, deeply weathered, and characterized by sharp changes in hydrologic properties due to concentration of clay in the Bt horizon. Despite a mild climate and consistent precipitation, seasonally variable energy availability and deciduous tree cover create a strong evapotranspiration mediated seasonal hydrologic dynamic: while moist soils and extended stream networks are typical of the late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. To elucidate the control of the complex vertical and planform structure of this region, as well as the strongly seasonal subsurface hydrology, on runoff generation, we installed a network of nested, shallow groundwater wells across an ephemeral to first-order watershed to continuously measure internal water levels. We also recorded local precipitation and discharge at the outlet of this watershed, a similar adjacent watershed, and in the second to third order downstream watershed. Subsurface water dynamics varied spatially, vertically, and seasonally. Shallow depths and landscape positions with minimal contributing area exhibited flashier dynamics comparable to the stream hydrographs while positions with more contributing area exhibited relatively muted dynamics. Most well positions showed minimal response to precipitation throughout the summer, and even occasionally observed response rarely co-occurred with streamflow generation. Our initial findings suggest that characterizing the terrain of a watershed must be coupled with the subsurface soil hydrology in order to understand spatiotemporal patterns of streamflow generation in regions possessing both complex vertical structure and terrain.
Importance of vegetation dynamics for future terrestrial carbon cycling
NASA Astrophysics Data System (ADS)
Ahlström, Anders; Xia, Jianyang; Arneth, Almut; Luo, Yiqi; Smith, Benjamin
2015-05-01
Terrestrial ecosystems currently sequester about one third of anthropogenic CO2 emissions each year, an important ecosystem service that dampens climate change. The future fate of this net uptake of CO2 by land based ecosystems is highly uncertain. Most ecosystem models used to predict the future terrestrial carbon cycle share a common architecture, whereby carbon that enters the system as net primary production (NPP) is distributed to plant compartments, transferred to litter and soil through vegetation turnover and then re-emitted to the atmosphere in conjunction with soil decomposition. However, while all models represent the processes of NPP and soil decomposition, they vary greatly in their representations of vegetation turnover and the associated processes governing mortality, disturbance and biome shifts. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality, and the associated turnover. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the Coupled Model Intercomparison Project Phase 5 ensemble under RCP8.5 radiative forcing. By exchanging carbon cycle processes between these 13 simulations we quantified the relative roles of three main driving processes of the carbon cycle; (I) NPP, (II) vegetation dynamics and turnover and (III) soil decomposition, in terms of their contribution to future carbon (C) uptake uncertainties among the ensemble of climate change scenarios. We found that NPP, vegetation turnover (including structural shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33%, respectively, of uncertainties in modelled global C-uptake. Uncertainty due to vegetation turnover was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by biome shifts, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
NASA Astrophysics Data System (ADS)
Xu, X.; Song, C.; Wang, Y.; Ricciuto, D. M.; Lipson, D.; Shi, X.; Zona, D.; Song, X.; Yuan, F.; Oechel, W. C.; Thornton, P. E.
2017-12-01
A microbial model is introduced for simulating microbial mechanisms controlling soil carbon and nitrogen biogeochemical cycling and methane fluxes. The model is built within the CN (carbon-nitrogen) framework of Community Land Model 4.5, named as CLM-Microbe to emphasize its explicit representation of microbial mechanisms to biogeochemistry. Based on the CLM4.5, three new pools were added: bacteria, fungi, and dissolved organic matter. It has 11 pools and 34 transitional processes, compared with 8 pools and 9 transitional flow in the CLM4.5. The dissolve organic carbon was linked with a new microbial functional group based methane module to explicitly simulate methane production, oxidation, transport and their microbial controls. Comparing with CLM4.5-CN, the CLM-Microbe model has a number of new features, (1) microbial control on carbon and nitrogen flows between soil carbon/nitrogen pools; (2) an implicit representation of microbial community structure as bacteria and fungi; (3) a microbial functional-group based methane module. The model sensitivity analysis suggests the importance of microbial carbon allocation parameters on soil biogeochemistry and microbial controls on methane dynamics. Preliminary simulations validate the model's capability for simulating carbon and nitrogen dynamics and methane at a number of sites across the globe. The regional application to Asia has verified the model in simulating microbial mechanisms in controlling methane dynamics at multiple scales.
Flow Partitioning in Fully Saturated Soil Aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.
2014-03-30
Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flowmore » among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates was larger than 18 micron. Inter-aggregate pores continued to be the dominant flow pathways even at much smaller spacing; intra-aggregate flow was less than 10% of the total flow when the inter- and intra-aggregate pore sizes were comparable. Such studies are making it possible to identify which model upscaling assumptions are realistic and what computational methods are required for detailed numerical investigation of microbial carbon cycling dynamics in soil systems.« less
Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics
NASA Astrophysics Data System (ADS)
Armenise, Elena; Simmons, Robert W.; Ahn, Sujung; Garbout, Amin; Doerr, Stefan H.; Mooney, Sacha J.; Sturrock, Craig J.; Ritz, Karl
2018-01-01
This study delivers new insights into rainfall-induced seal formation through a novel approach in the use of X-ray Computed Tomography (CT). Up to now seal and crust thickness have been directly quantified mainly through visual examination of sealed/crusted surfaces, and there has been no quantitative method to estimate this important property. X-ray CT images were quantitatively analysed to derive formal measures of seal and crust thickness. A factorial experiment was established in the laboratory using open-topped microcosms packed with soil. The factors investigated were soil type (three soils: silty clay loam - ZCL, sandy silt loam - SZL, sandy loam - SL) and rainfall duration (2-14 min). Surface seal formation was induced by applying artificial rainfall events, characterised by variable duration, but constant kinetic energy, intensity, and raindrop size distribution. Soil porosities derived from CT scans were used to quantify the thickness of the rainfall-induced surface seals and reveal temporal seal micro-morphological variations with increasing rainfall duration. In addition, the water repellency and infiltration dynamics of the developing seals were investigated by measuring water drop penetration time (WDPT) and unsaturated hydraulic conductivity (Kun). The range of seal thicknesses detected varied from 0.6 to 5.4 mm. Soil textural characteristics and OM content played a central role in the development of rainfall-induced seals, with coarser soil particles and lower OM content resulting in thicker seals. Two different trends in soil porosity vs. depth were identified: i) for SL soil porosity was lowest at the immediate soil surface, it then increased constantly with depth till the median porosity of undisturbed soil was equalled; ii) for ZCL and SL the highest reduction in porosity, as compared to the median porosity of undisturbed soil, was observed in a well-defined zone of maximum porosity reduction c. 0.24-0.48 mm below the soil surface. This contrasting behaviour was related to different dynamics and processes of seal formation which depended on the soil properties. The impact of rainfall-induced surface sealing on the hydrological behaviour of soil (as represented by WDTP and Kun) was rapid and substantial: an average 60% reduction in Kun occurred for all soils between 2 and 9 min rainfall, and water repellent surfaces were identified for SZL and ZCL. This highlights that the condition of the immediate surface of agricultural soils involving rainfall-induced structural seals has a strong impact in the overall ability of soil to function as water reservoir.
Effect of the historical land use on the structure of forest soils in European Russia
NASA Astrophysics Data System (ADS)
Bobrovskii, M. V.
2010-12-01
The morphological structure of the soils in the forest areas of European Russia was analyzed. It was shown that most of the soils were formed under the impact of both biotic and anthropogenic factors. Soils with poorly differentiated profiles without podzolization features are typical for the least disturbed forest ecosystems. The presence of an eluvial (EL) horizon is associated with the signs of old plowing and (or) fires. The character and rate of the soil cover transformation under various impacts of the historical land use (felling, plowing, pasturing, burning, etc.) are discussed. The technologies of the main traditional farming systems in the forest zone of European Russia (slash-and-burn, fallow, and shifting farming systems) are considered; their effect on the long-term dynamics of the soil cover is estimated. Farming and the related impacts of historical land use can be a major reason for the formation of degraded soils in the forest zone of European Russia.
Tadini, Amanda Maria; Nicolodelli, Gustavo; Mounier, Stephane; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira
2015-12-15
Soil organic matter (SOM) is a complex mixture of molecules with different physicochemical properties, with humic substances (HS) being the main component as it represents around 20-50% of SOM structure. Soil of the Amazon region is considered one of the larger carbon pools of the world; thus, studies of the humic fractions are important for understanding the dynamics of organic matter (OM) in these soils. The aim of this study was to use laser-induced fluorescence spectroscopy (LIFS) and a combination of excitation-emission matrix (EEM) fluorescence with Parallel Factor Analysis (CP/PARAFAC) to assess the characteristics of humin (HU) extracted from Amazonian soils. The results obtained using LIFS showed that there was an increasing gradient of humification degree with depth, the deeper horizon presenting a higher amount of aromatic groups in the structure of HU. From the EEM, the contribution of two fluorophores with similar behaviour in the structures of HU and whole soil was assessed. Additionally, the results showed that the HU fraction might represent a larger fraction of SOM than previously thought: about 80-93% of some Amazon soils. Therefore, HU is an important humic fraction, thus indicating its role in environmental analysis, mainly in soil analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.; ...
2016-03-02
The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.« less
2012-01-01
Background Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under the common burnt cane management. The green cane soil also presented different profiles compared to the control soil, but to at a lesser degree. PMID:22873209
Bond-Lamberty, Ben; Bolton, Harvey; Fansler, Sarah; Heredia-Langner, Alejandro; Liu, Chongxuan; McCue, Lee Ann; Smith, Jeffrey; Bailey, Vanessa
2016-01-01
The effects of climate change on soil organic matter-its structure, microbial community, carbon storage, and respiration response-remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampled the original 1994 soil transplants and controls, measuring CO2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5°C monthly maximum air temperature, +50 mm yr-1 precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. These results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond-Lamberty, Benjamin; Bolton, Harvey; Fansler, Sarah J.
The effects of climate change on soil organic matter—its structure, microbial community, carbon storage, and respiration response—remain uncertain and widely debated. In addition, the effects of climate changes on ecosystem structure and function are often modulated or delayed, meaning that short-term experiments are not sufficient to characterize ecosystem responses. This study capitalized on a long-term reciprocal soil transplant experiment to examine the response of dryland soils to climate change. The two transplant sites were separated by 500 m of elevation on the same mountain slope in eastern Washington state, USA, and had similar plant species and soil types. We resampledmore » the original 1994 soil transplants and controls, measuring CO 2 production, temperature response, enzyme activity, and bacterial community structure after 17 years. Over a laboratory incubation of 100 days, reciprocally transplanted soils respired roughly equal cumulative amounts of carbon as non-transplanted controls from the same site. Soils transplanted from the hot, dry, lower site to the cooler and wetter (difference of -5 °C monthly maximum air temperature, +50 mm yr -1precipitation) upper site exhibited almost no respiratory response to temperature (Q10 of 1.1), but soils originally from the upper, cooler site had generally higher respiration rates. The bacterial community structure of transplants did not differ significantly from that of untransplanted controls, however. Slight differences in local climate between the upper and lower Rattlesnake locations, simulated with environmental control chambers during the incubation, thus prompted significant differences in microbial activity, with no observed change to bacterial structure. Lastly, these results support the idea that environmental shifts can influence soil C through metabolic changes, and suggest that microbial populations responsible for soil heterotrophic respiration may be constrained in surprising ways, even as shorter- and longer-term soil microbial dynamics may be significantly different under changing climate.« less
NASA Astrophysics Data System (ADS)
Sinclair Yemini, Francis; Chenu, Claire; Monga, Olivier; Vieuble Gonond, Laure; Juarez, Sabrina; Pihneiro, Marc; otten, Wilfred; Garnier, Patricia
2014-05-01
Contaminant degradation by microorganisms is very variable in soils because of the very heterogeneous spatial relationship of contaminant/degraders. Repacked Soil columns were carried out to study the degradation of 2,4D pesticide labelled with C14 for different scenarios of microorganisms and pesticide initial location. Measurements of global C14-CO2 emission and C14 distribution in the soil column showed that the initial location play a crucial rule on the dissipation of the pollutant. Experiments were simulated using a 3D model able to model microbial degradation and substrate diffusion between aggregates by considering explicitly the 3D structure of soil from CT images. The initial version of the model (Monga et al., 2008) was improved in order to simulate diffusion in samples of large size. Partial differential equations were implemented using freefem++ solver. The model simulates properly the dynamics of 2,4D in the column for the different initial situations. CT images of the same soil but using undisturbed structure instead of repacked aggregates were also carried out. Significant differences of the simulated results were observed between the repacked and the undisturbed soil. The conclusion of our work is that the heterogeneity of the soil structure and location of pollutants and decomposers has a very strong influence on the dissipation of pollutants.
Influence of soil structure on nutrient cycling using microfluidic techniques
NASA Astrophysics Data System (ADS)
Arellano Caicedo, Carlos; Aleklett, Kristin; Ohlsson, Pelle; Hammer, Edith
2017-04-01
The rising of atmospheric CO2 levels and its effects on global warming make it necessary to understand the elements that regulate such levels and furthermore try to slow down the CO2 accumulation in the atmosphere. The exchange of carbon between soil and atmosphere plays a significant role in the atmospheric carbon budget. Soil organisms deposit organic compounds on and in soil aggregates, either as exudates or dead remains. Much of this dead organic material is quickly recycled, but a portion, however, will stay in the soil for long term. Evidence suggests that micro-scale biogeochemical interactions could play a highly significant role in degradation or persistence of organic matter in soils, thus, soil physical structure might play a decisive role in preventing accessibility of nutrients to microorganisms. For studying effects of spatial microstructure on soil nutrient cycles, we have constructed artificial habitats for microbes that simulate soil structures. Microfluidic, so called Lab-on-a-chip technologies, are one of the tools used to achieve our purpose. Such micro-habitats consist of pillar structures of difference density and surface area, tunnels with increasing depth, and mazes of increasing complexity to simulate different stages of soil aggregation. Using microscopy and analytical chemistry, we can follow the growth of microorganisms inoculated into the "soil chip" as well as the chemical degradation of organic matter compounds provided as nutrient source. In this way, we want to be able to predict how soil structure influences soil microbial activity leading to different effects on the carbon cycle. Our first results of a chip inoculated with natural soil showed a succession of organisms colonizing channels leading to dead-end arenas, starting with a high presence of bacteria inside the chip during the first days. Fungal hyphae growth gradually inside the channels until it finally occupied the big majority of the spaces isolating bacteria which dramatically decreased in number. The structure inside the soil chip changes dynamically due to the creation of biofilms. Such changes alter the spatial distribution inside the chip gradually, to the point of getting significantly different from the original structures. Fungal hyphae, bacterial biofilms, and microbial necro mass accumulation where the components altering the chip structure. These findings suggest that a considerable part of the soil structure is microbial biomass. Using Lab-on-a-chip techniques leads to the creation of a much more realistic soil and ecosystem model, resembling spatial and chemical complexity in real soil structures at a micrometer scale, the scale relevant for soil organisms. Understanding small-scale processes in the soils is crucial to predict carbon and nutrient cycling, and to enable us to give recommendations for soil management in agriculture, horticulture and nature conservation. If parameterization of soil structure as a central determinant for carbon sequestration is possible, it will allow strong argumentation for management practices that conserve and foster soil structure, such as low-tillage, support of mycorrhizal fungi, and reduction of heavy machinery usage.
NASA Technical Reports Server (NTRS)
Sareen, Ashish K.; Sparks, Chad; Mullins, B. R., Jr.; Fasanella, Edwin; Jackson, Karen
2002-01-01
A comparison of the soft soil and hard surface impact performance of a crashworthy composite fuselage concept has been performed. Specifically, comparisons of the peak acceleration values, pulse duration, and onset rate at specific locations on the fuselage were evaluated. In a prior research program, the composite fuselage section was impacted at 25 feet per second onto concrete at the Impact Dynamics Research Facility (IDRF) at NASA Langley Research Center. A soft soil test was conducted at the same impact velocity as a part of the NRTC/RITA Crashworthy and Energy Absorbing Structures project. In addition to comparisons of soft soil and hard surface test results, an MSC. Dytran dynamic finite element model was developed to evaluate the test analysis correlation. In addition, modeling parameters and techniques affecting test analysis correlation are discussed. Once correlated, the analytical methodology will be used in follow-on work to evaluate the specific energy absorption of various subfloor concepts for improved crash protection during hard surface and soft soil impacts.
Soil Organic Matter Responses to Chronic Nitrogen Additions in a Temperate Forest (Invited)
NASA Astrophysics Data System (ADS)
Frey, S. D.; Nadelhoffer, K.; Bowden, R.; Brzostek, E. R.; Caldwell, B. A.; Crow, S. E.; Finzi, A. C.; Goodale, C. L.; Grandy, S.; Lajtha, K.; Ollinger, S. V.; Plante, A. F.
2010-12-01
The Chronic Nitrogen Addition Experiment at Harvard Forest in central Massacusetts, USA was established in 1988 to investigate the effects of increasing anthropogenic atmospheric N deposition on forests in the eastern United States. Located in an old red pine plantation and a mixed hardwood forest, the treated plots have received 50 and 150 kg N/ha/yr, as ammonium sulfate, in six equal monthly applications during the growing season each year since the start of the experiment. Additionally, the control and low N treatments were given a single pulse label of 15N-nitrate or 15N-ammonium in 1991 and 1992. Regular measurements have been made over the past 20 years to assess woody biomass production and mortality, foliar chemistry, litter fall, and soil N dynamics. Less frequent measurements of soil C pools, soil respiration, fine root dynamics, and microbial biomass and community structure have been made. For the 20th anniversary, an intensive sampling campaign was carried out in fall 2008 with a focus on evaluating how the long-term N additions have impacted ecosystem C storage and N dynamics. Our primary objective was to assess the amount of C and N stored in wood, foliage, litter, roots, and soil (to a depth of ~50 cm). We also wanted to examine the fate of N by comparing patterns of 15N recovery to those observed previously. An additional objective was to further examine how chronic N additions impact microbial biomass, activity and community structure. Results indicate that chronic N additions over the past 20 years have increased forest floor mass and soil organic matter across the soil profile; decreased microbial biomass, especially the fungal component; and altered microbial community composition (i.e., significantly lower fungal:bacterial biomass ratios in the N amended plots). N15 tracer recoveries in soils and forest floors were much higher than in tree biomass, ranging from 49 to 101% of additions across forest types and N addition rates. Stoichiometric analyses of these recoveries suggest that N additions are contributing to soil C accumulation to a greater extent than to biomass accumulation in these forests.
Short-term incubation studies on degradation of biochar in soil
NASA Astrophysics Data System (ADS)
Lanza, Giacomo; Wirth, Stephan; Geßler, Arthur; Kern, Jürgen; Mumme, Jan
2014-05-01
Biochar is considered a stable, recalcitrant substance, which holds potential to store carbon in soils for prolonged time and therefore would provide a long-term carbon sink. Furthermore, biochar is discussed to enhance soil fertility and plant productivity, and may improve water and nutrient holding capacity. However, mineralisation to CO2 may occur, as for any soil organic carbon pool, depending on char composition, soil properties and environmental conditions. Therefore, it is important to gain insight into the stability of its carbon structure and the dynamics of decay processes in soil. The evaluation of biochar stability in soil is complicated by the impact of external factors thus as soil moisture and temperature, soil nutrient status and moreover by extended decay timescales. To overcome these difficulties, we performed dynamic incubation experiments under laboratory conditions, using a multi-channel, automated infra-red gas analysis system at 20°C for up to 10 days to detect CO2 emission over time. Our aim was to compare the decay dynamics of different biochar preparations added to soil, i.e. HTC-char and pyrochar from maize silage with and without biological post-processing (anaerobic digestion), as compared to unmodified maize straw. Digestate from a maize silage-fed anaerobic biogas reactor was also tested. As a result, the addition of charred or digested materials to soil resulted in much lower CO2 emission rates as compared to the unmodified maize straw, proving stability of biochar carbon compounds. Pyrochar showed to be the most stable of all substrates added, as the CO2 emission was hardly distinguishable from that of the control soil. Soil enriched with HTC-char emitted significantly more CO2 compared to soil enriched with pyrochar, but the post-processing was effective in reducing the emissions. Furthermore, HTC-char showed a two-step decay kinetics, which cannot apparently be explained with a simple double-pool model. In conclusion, the short-term incubation approach was effective to highlight differences in decomposition dynamics between the considered substrates in soil, and confirmed the effectiveness of the charring process to increase the stability of organic substrates in soil. More investigations are necessary to reveal the impact of readily available substrates and nutrients on degradation of biochar in soil, and to clarify the mechanisms responsible for the observed kinetics in order to derive a suitable process model.
Static sampling of dynamic processes - a paradox?
NASA Astrophysics Data System (ADS)
Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin
2017-04-01
Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark. Specifically, we expect the covariance structure of the positive temporal changes of soil moisture to be dominated by the spatial structure of rain- and through-fall and saturated hydraulic conductivity. The covariance in temporarily decreasing soil moisture during radiation driven conditions is expect to be dominated by the spatial structure of retention properties and plant transpiration. An analysis of soil moisture changes has furthermore the advantage that those are free from systematic measurement errors.
Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale
NASA Astrophysics Data System (ADS)
Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.
2015-12-01
The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks down, in new and improved Earth system models.
Zhen, Zhen; Liu, Haitao; Wang, Na; Guo, Liyue; Meng, Jie; Ding, Na; Wu, Guanglei; Jiang, Gaoming
2014-01-01
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils. PMID:25302996
He, Yujie; Yang, Jinyan; Zhuang, Qianlai; McGuire, A. David; Zhu, Qing; Liu, Yaling; Teskey, Robert O.
2014-01-01
Conventional Q10 soil organic matter decomposition models and more complex microbial models are available for making projections of future soil carbon dynamics. However, it is unclear (1) how well the conceptually different approaches can simulate observed decomposition and (2) to what extent the trajectories of long-term simulations differ when using the different approaches. In this study, we compared three structurally different soil carbon (C) decomposition models (one Q10 and two microbial models of different complexity), each with a one- and two-horizon version. The models were calibrated and validated using 4 years of measurements of heterotrophic soil CO2 efflux from trenched plots in a Dahurian larch (Larix gmelinii Rupr.) plantation. All models reproduced the observed heterotrophic component of soil CO2 efflux, but the trajectories of soil carbon dynamics differed substantially in 100 year simulations with and without warming and increased litterfall input, with microbial models that produced better agreement with observed changes in soil organic C in long-term warming experiments. Our results also suggest that both constant and varying carbon use efficiency are plausible when modeling future decomposition dynamics and that the use of a short-term (e.g., a few years) period of measurement is insufficient to adequately constrain model parameters that represent long-term responses of microbial thermal adaption. These results highlight the need to reframe the representation of decomposition models and to constrain parameters with long-term observations and multiple data streams. We urge caution in interpreting future soil carbon responses derived from existing decomposition models because both conceptual and parameter uncertainties are substantial.
The microbial perspective of organic matter turnover and nutrient cycling in tropical soils
NASA Astrophysics Data System (ADS)
Rasche, Frank
2017-04-01
A primary goal of low-input small-holder farming systems in the tropics is the appropriate management of organic matter (OM) turnover and nutrient cycling via adapted agricultural practices. These emphasize the promotion of soil organic matter (SOM) turnover and carbon (C) sequestration, nutrient use efficiency and soil microbial activity. Since soil microbial communities are acknowledged as key players in the terrestrial C and nutrient (e.g., nitrogen (N), phosphorus (P)) cycles, they may respond sensitively to agricultural management with shifts in their community structure as well as functional traits (i.e., decomposition, mineralization). This may be in particular evident for tropical, agricultural soils which show an accelerated microbial decomposition activity induced by favourable climatic and unique physico-chemical soil conditions. While modern molecular techniques advanced primarily the understanding about the microbiome and their functional traits interacting closely with SOM dynamics in temperate soils, tropical soils under agricultural use have been still neglected to a great extent. The majority of available studies revealed mainly descriptive data on the structural composition of microbial communities rather than questioning if detected structural alterations of the soil microbiome influenced key processes in N and P cycling which actually maintain ecosystem functioning and soil productivity. This talk highlights latest efforts in deploying molecular techniques to study the compositional status of soil microbial decomposer communities and their functional attributes in response to land use change and OM management in tropical agro-ecosystems.
Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence.
Hall, S A; Burke, I C; Hobbs, N T
2006-12-01
Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.
Dominant forest tree mycorrhizal type mediates understory plant invasions
Insu Jo; Kevin M. Potter; Grant M. Domke; Songlin Fei
2017-01-01
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree mycorrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are...
Fluorescence lifetime evaluation of whole soils from the Amazon rainforest.
Nicolodelli, Gustavo; Tadini, Amanda Maria; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Mounier, Stephane; Huaman, Jose Luis Clabel; Dos Santos, Cléber Hilário; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira
2017-08-20
Time-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region. Analysis was made of pellets of soils from an oxisol-spodosol system, collected in São Gabriel da Cachoeira (Amazonas, Brazil). The fluorescence lifetimes in the oxisol-spodosol system were attributed to two different fluorophores. One was related to complexation of an OM fraction with metals, resulting in a shorter fluorophore lifetime. A short fluorescence lifetime (2-12 ns) could be associated with simpler structures of the OM, while a long lifetime (19-66 ns) was associated with more complex OM structures. This new TRFS technique for analysis of the fluorescence lifetime in whole soil samples complies with the principles of green chemistry.
Frank S. Gilliam; Christopher A. Walter; Mary Beth Adams; William T. Peterjohn
2018-01-01
The structure and function of terrestrial ecosystemsare maintained by processes that vary with temporal and spatial scale. This study examined temporal and spatial patterns of net nitrogen (N) mineralization and nitrification in mineral soil of three watersheds at the Fernow Experimental Forest, WV: 2 untreated watersheds and 1 watershed receiving aerial applications...
NASA Astrophysics Data System (ADS)
Georgiou, K.; Abramoff, R. Z.; Harte, J.; Riley, W. J.; Torn, M. S.
2016-12-01
As global temperatures and atmospheric CO2 concentrations continue to increase, soil microbial activity and decomposition of soil organic matter (SOM) are expected to follow suit, potentially limiting soil carbon storage. Traditional global- and ecosystem-scale models simulate SOM decomposition using linear kinetics, which are inherently unable to reproduce carbon-concentration feedbacks, such as priming of native SOM at elevated CO2 concentrations. Recent studies using nonlinear microbial models of SOM decomposition seek to capture these interactions, and several groups are currently integrating these microbial models into Earth System Models (ESMs). However, despite their widespread ability to exhibit nonlinear responses, these models vary tremendously in complexity and, consequently, dynamics. In this study, we explore, both analytically and numerically, the emergent oscillatory behavior and insensitivity of SOM stocks to carbon inputs that have been deemed `unrealistic' in recent microbial models. We discuss the sources of instability in four models of varying complexity, by sequentially reducing complexity of a detailed model that includes microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We also present an alternative representation of microbial turnover that limits population sizes and, thus, reduces oscillations. We compare these models to several long-term carbon input manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that traditional linear and nonlinear models cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures, and that modifying microbial turnover results in more realistic predictions. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in ESMs.
Chen, Yun; Svenning, Jens-Christian; Wang, Xueying; Cao, Ruofan; Yuan, Zhiliang; Ye, Yongzhong
2018-01-01
The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability. PMID:29410660
NASA Astrophysics Data System (ADS)
Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.
2018-02-01
Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.
Complex Forms of Soil Organic Phosphorus-A Major Component of Soil Phosphorus.
McLaren, Timothy I; Smernik, Ronald J; McLaughlin, Mike J; McBeath, Therese M; Kirby, Jason K; Simpson, Richard J; Guppy, Christopher N; Doolette, Ashlea L; Richardson, Alan E
2015-11-17
Phosphorus (P) is an essential element for life, an innate constituent of soil organic matter, and a major anthropogenic input to terrestrial ecosystems. The supply of P to living organisms is strongly dependent on the dynamics of soil organic P. However, fluxes of P through soil organic matter remain unclear because only a minority (typically <30%) of soil organic P has been identified as recognizable biomolecules of low molecular weight (e.g., inositol hexakisphosphates). Here, we use (31)P nuclear magnetic resonance spectroscopy to determine the speciation of organic P in soil extracts fractionated into two molecular weight ranges. Speciation of organic P in the high molecular weight fraction (>10 kDa) was markedly different to that of the low molecular weight fraction (<10 kDa). The former was dominated by a broad peak, which is consistent with P bound by phosphomonoester linkages of supra-/macro-molecular structures, whereas the latter contained all of the sharp peaks that were present in unfractionated extracts, along with some broad signal. Overall, phosphomonoesters in supra-/macro-molecular structures were found to account for the majority (61% to 73%) of soil organic P across the five diverse soils. These soil phosphomonoesters will need to be integrated within current models of the inorganic-organic P cycle of soil-plant terrestrial ecosystems.
NASA Astrophysics Data System (ADS)
Riley, W. J.; Maggi, F. M.; Kleber, M.; Torn, M. S.; Tang, J. Y.; Dwivedi, D.; Guerry, N.
2014-01-01
Accurate representation of soil organic matter (SOM) dynamics in Earth System Models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed a SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic carbon (DOC) stocks in grassland ecosystems as well as lignin content and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and δ14C vertical profiles are consistent with a representation of SOM dynamics consisting of (1) carbon compounds without designated intrinsic turnover times, (2) vertical aqueous transport, and (3) dynamic protection on mineral surfaces.
NASA Astrophysics Data System (ADS)
Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin
2017-04-01
In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.
Coupled Soil-Plant Water Dynamics During Drought-Rewetting Transitions
NASA Astrophysics Data System (ADS)
Volkmann, T. H.; Haberer, K.; Gessler, A.; Weiler, M.
2013-12-01
The predicted climate and land-use changes could have dramatic effects on the water balance of the soil-vegetation system, particularly under frequent drought and subsequent rewetting conditions. Yet, estimation of these effects and associated consequences for the structure and functioning of ecosystems, groundwater recharge, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the spatiotemporal dynamics of soil water in the rooted soil horizons, the dynamics and driving physiological processes of plant water acquisition, and the transpiration from plant leaves under changing environmental conditions. Combining approaches from the disciplines of plant ecophysiology and soil and isotope hydrology, this work aims to fill this gap by quantitatively characterizing the interaction between plant water use - as affected by rooting patterns and ecophysiology of different plant functional groups - and the water balance of variably complex ecosystems with emphasis on drought and rewetting phases. Results from artificial drought and subsequent rewetting in field experiments using isotopically and dye (Brilliant Blue FCF) labeled water conducted on plots of various surface cover (bare soil, grass, beech, oak, vine) established on luvisol on loess in southwestern Germany are presented. Detailed spatiotemporal insights into the coupled short-term (hours to days) dynamics of soil and plant water during the experiments is facilitated by the application of newly developed techniques for high-frequency in-situ monitoring of stable isotope signatures in both pore water and transpired water using commercial laser-based spectrometers in conjunction with plant ecophysiological, soil physical state, and dye staining observations. On the one hand, the spatiotemporal patterns of plant water uptake are assessed and related to morphological and physiological traits driving plant water uptake, functional adaptations of plants to changes of soil water availability, and intra- and interspecies competition for water resources access. On the other hand, the effects of vegetation cover on infiltration, preferential flow paths characteristics, and soil water storage in the rooted soil horizons are investigated. The results of the experiments and the developed methodology will contribute to an improved understanding of ecosystem response and adaptation to drought and short-term changes in environmental conditions.
Soil porosity correlation and its influence in percolation dynamics
NASA Astrophysics Data System (ADS)
Rodriguez, Alfredo; Capa-Morocho, Mirian; Ruis-Ramos, Margarita; Tarquis, Ana M.
2016-04-01
The prediction of percolation in natural soils is relevant for modeling root growth and optimizing infiltration of water and nutrients. Also, it would improve our understanding on how pollutants as pesticides, and virus and bacteria (Darnault et al., 2003) reach significant depths without being filtered out by the soil matrix (Beven and Germann, 2013). Random walk algorithms have been used successfully to date to characterize the dynamical characteristics of disordered media. This approach has been used here to describe how soil at different bulk densities and with different threshold values applied to the 3D gray images influences the structure of the pore network and their implications on particle flow and distribution (Ruiz-Ramos et al., 2009). In order to do so first we applied several threshold values to each image analyzed and characterized them through Hurst exponents, then we computed random walks algorithms to calculate distances reached by the particles and speed of those particles. At the same time, 3D structures with a Hurst exponent of ca 0.5 and with different porosities were constructed and the same random walks simulations were replicated over these generated structures. We have found a relationship between Hurst exponents and the speed distribution of the particles reaching percolation of the total soil depth. REFERENCES Darnault, C.J. G., P. Garnier, Y.J. Kim, K.L. Oveson, T.S. Steenhuis, J.Y. Parlange, M. Jenkins, W.C. Ghiorse, and P. Baveye (2003), Preferential transport of Cryptosporidium parvum oocysts in variably saturated subsurface environments, Water Environ. Res., 75, 113-120. Beven, Keith and Germann, Peter. 2013. Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. DOI: 10.1002/wrcr.20156. Ruiz-Ramos, M., D. del Valle, D. Grinev, and A.M. Tarquis. 2009. Soil hydraulic behaviour at different bulk densities. Geophysical Research Abstracts, 11, EGU2009-6234.
Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Liu, Hongliang
2017-01-01
Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%–77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3−-N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields. PMID:28419163
Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang
2017-01-01
Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.
WHO WOULD EAT IN A WORLD WITHOUT PHOSPHORUS? A GLOBAL DYNAMIC MODEL
NASA Astrophysics Data System (ADS)
Dumas, M.
2009-12-01
Phosphorus is an indispensable and non-substitutable resource, as agriculture is impossible if soils do not hold adequate amounts of this nutrient. Phosphorus is also considered to be a non-renewable and increasingly scarce resource, as phosphate rock reserves - as one measure of availability amongst others - are estimated to last for 50 to 100 years at current rates of consumption. How would food production decline in different parts of the world in the scenario of a sudden shortage in phosphorus? To answer this question and explore management scenarios, I present a probabilistic model of the structure and dynamics of the global P cycle in the world’s agro-ecosystems. The model proposes an original solution to the challenge of capturing the large-scale aggregate dynamics of multiple micro-scale soil cycling processes. Furthermore, it integrates the essential natural processes with a model of human-managed flows, thereby bringing together several decades of research and measurements from soil science, plant nutrition and long-term agricultural experiments from around the globe. In this paper, I present the model, the first simulation results and the implications for long-term sustainable management of phosphorus and soil fertility.
Nematode grazing promotes bacterial community dynamics in soil at the aggregate level
Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo
2017-01-01
Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial–microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner. PMID:28742069
Nematode grazing promotes bacterial community dynamics in soil at the aggregate level.
Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo
2017-12-01
Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.
Terrain and subsurface influences on runoff generation in a steep, deep, highly weathered system
NASA Astrophysics Data System (ADS)
Mallard, J. M.; McGlynn, B. L.; Richter, D. D., Jr.
2017-12-01
Our understanding of runoff generation in regions characterized by deep, highly weathered soils is incomplete, despite the prevalence occupation of these landscapes worldwide. To address this, we instrumented a first-order watershed in the Piedmont of South Carolina, USA, a region that extends east of the Appalachians from Maryland to Alabama, and home to some of the most rapid population growth in the country. Although regionally the relief is modest, the landscape is often highly dissected and local slopes can be steep and highly varied. The typical soils of the region are kaolinite dominated ultisols, with hydrologic properties controlled by argillic Bt horizons, often with >50% clay-size fraction. The humid subtropical climate creates relatively consistent precipitation intra-annually and seasonally variable energy availability. Consequently, the mixed deciduous and coniferous tree cover creates a strong evapotranspiration-mediated hydrologic dynamic. While moist soils and extended stream networks are typical from late fall through spring, relatively dry soils and contracting stream networks emerge in the summer and early fall. Here, we seek to elucidate the relative influence of the vertical soil and spatial terrain structure of this region on watershed hillslope hydrology and subsequent runoff generation. We installed a network of nested, shallow groundwater wells and soil water content probes within an ephemeral to first-order watershed to continuously measure soil and groundwater dynamics across soil horizons and landscape position. We also recorded local precipitation and discharge from this watershed. Most landscape positions exhibited minimal water table response to precipitation throughout dry summer periods, with infrequently observed responses rarely coincident with streamflow generation. In contrast, during the wetter late fall through early spring period, streamflow was driven by the interaction between transient perched water tables and topographically mediated redistribution of shallow groundwater downslope. Our findings suggest that understanding streamflow generation in regions possessing both complex terrain and complex vertical soil structure requires synchronous characterization of terrain mediated water redistribution and subsurface soil hydrology.
Dunaj, Sara J; Vallino, Joseph J; Hines, Mark E; Gay, Marcus; Kobyljanec, Christine; Rooney-Varga, Juliette N
2012-02-07
Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful renewable resource: soil organic carbon. We analyzed bacterial community structure, MFC performance, and soil characteristics in different microhabitats within MFCs constructed from agricultural or forest soils in order to determine how soil type and bacterial dynamics influence MFC performance. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs. Bacterial community profile data indicate that the bacterial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These results suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic bacterial communities, while the quality of available organic matter may have played a significant role in supporting high performing bacterial communities.
Centrifuge modeling of rocking-isolated inelastic RC bridge piers
Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George
2014-01-01
Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd. PMID:26300573
NASA Astrophysics Data System (ADS)
Said-Pullicino, D.; Bol, R.; Gigliotti, G.
2009-04-01
The application of municipal waste compost (MWC) and other organic materials may serve to enhance soil fertility and increase C stocks of earthen materials and mine spoils used in land reclamation activities, particularly in the recovery of degraded areas left by exhausted quarries, mines, abandoned industrial zones, degraded natural areas and exhausted landfill sites. Such land management options may serve as a precondition for landscaping and reclamation of degraded areas, reforestation or agriculture. In fact, previous results have shown that compost application to the capping layer of a landfill covering soil significantly enhanced the fertility, evidenced by an improvement in soil structure, porosity and water holding capacity, an increase in the relative proportion of recalcitrant C pools and an increase in soil nutrient content, microbial activity and soil microbial biomass. Proper management of MWC requires a capacity to understand and predict their impacts on C dynamics in the field subsequent to application. Although numerous works deal with the effects of compost application in agricultural systems, little is known on how land rehabilitation practices effect C dynamics in such relatively young soil systems. The estimation of SOC pools and their potential turnover rates in land reclamation activities is fundamental to our understanding of terrestrial C dynamics. In the framework of a long-term field experiment, the objective of this work was to evaluate the temporal and spatial dynamics of compost-derived organic matter with respect to the major processes involved in organic matter cycling in an anthropogenic landfill covering soil originally amended with a single dose of MWC. We investigated long-term organic C dynamics in such systems by collecting samples at different depths over a 10 year chronosequence subsequent to compost application to the top layer of the landfill covering soil. Variations in the stable isotope composition (delta 13C) of the soil samples show that even after 10 years, amended topsoils were significantly enriched in compost-derived organic matter, confirming that the utilisation of such organic inputs in land reclamation activities has the potential to enhance the C stocks of degraded areas. The addition of compost to the superficial layer also resulted in a significant input of soluble organic compounds subject to leaching along the soil profile. Sorption isotherms for compost-derived water-extractable organic matter onto mineral materials used for landfill covering suggest that sorptive preservation was primarily responsible for the increase in C content and the shift in the C isotopic signature to values similar to that of the applied compost, in the deeper soil horizons over the 10 year experimental period. This was also confirmed by the accumulation of lignin-derived phenolic compounds. Nevertheless, analysis for non-cellulosic carbohydrates in soils samples and their respective water-extractable fractions suggest that a proportion of compost-derived, labile organic matter fraction is leached through the soil profile and potentially lost from the soil system, particularly in the years immediately after compost application.
Dominant forest tree mycorrhizal type mediates understory plant invasions
Insu Jo; Kevin M. Potter; Grant M. Domke; Songlin Fei
2018-01-01
Forest mycorrhizal type mediates nutrient dynamics, which in turn can influence forest community structure and processes. Using forest inventory data, we explored how dominant forest tree myc- orrhizal type affects understory plant invasions with consideration of forest structure and soil properties. We found that arbuscular mycorrhizal (AM) dominant forests, which are...
Yang, Jianjun; Zhu, Shenhai; Zheng, Cuiqing; Sun, Lijuan; Liu, Jin; Shi, Jiyan
2015-04-09
Impact of S fertilization on Cu mobility and transformation in contaminated paddy soils has been little reported. In this study, we investigated the dynamics and transformation of dissolved and colloidal Cu in the pore water of a contaminated paddy soil after applying ammonium sulphate (AS) and sulfur coated urea (SCU) with various flooding periods (1, 7 and 60 days). Compared to the control soil, the AS-treated soil released more colloidal and dissolved Cu over the entire flooding period, while the SCU-treated soil had lower colloidal Cu after 7-day flooding but higher colloidal and dissolved Cu after 60-day flooding. Microscopic X-ray fluorescence (μ-XRF) analysis found a close relationship between Fe and Cu distribution on soil colloids after 60-day flooding, implying the formation of colloidal Fe/Cu sulphide coprecipitates. Cu K-edge X-ray absorption near-edge structure (XANES) spectroscopy directly revealed the transformation of outer-sphere complexed Cu(II) species to Cu(II) sulphide and reduced Cu2O in the colloids of S-treated soils after 60-day flooding. These results demonstrated the great influence of S fertilization on pore-water Cu mobility by forming Cu sulphide under flooding conditions, which facilitated our understanding and control of Cu loss in contaminated paddy soils under S fertilization. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
Seismic loading due to mining: Wave amplification and vibration of structures
NASA Astrophysics Data System (ADS)
Lokmane, N.; Semblat, J.-F.; Bonnet, G.; Driad, L.; Duval, A.-M.
2003-04-01
A vibration induced by the ground motion, whatever its source is, can in certain cases damage surface structures. The scientific works allowing the analysis of this phenomenon are numerous and well established. However, they generally concern dynamic motion from real earthquakes. The goal of this work is to analyse the impact of shaking induced by mining on the structures located on the surface. The methods allowing to assess the consequences of earthquakes of strong amplitude are well established, when the methodology to estimate the consequences of moderate but frequent dynamic loadings is not well defined. The mining such as the "Houillères de Bassin du Centre et du Midi" (HBCM) involves vibrations which are regularly felt on the surface. An extracting work of coal generates shaking similar to those caused by earthquakes (standard waves and laws of propagation) but of rather low magnitude. On the other hand, their recurrent feature makes the vibrations more harmful. A three-dimensional modeling of standard structure of the site was carried out. The first results show that the fundamental frequencies of this structure are compatible with the amplification measurements carried out on site. The motion amplification in the surface soil layers is then analyzed. The modeling works are performed on the surface soil layers of Gardanne (Provence), where measurements of microtremors were performed. The analysis of H/V spectral ratio (horizontal on vertical component) indeed makes it possible to characterize the fundamental frequencies of the surface soil layers. This experiment also allows to characterize local evolution of amplification induced by the topmost soil layers. The numerical methods we consider to model seismic wave propagation and amplification in the site, is the Boundary Element Methode (BEM) The main advantage of the boundary element method is to get rid of artificial truncations of the mesh (as in Finite Element Method) in the case of infinite medium. For dynamic problems, these truncations lead to spurious wave reflections giving a numerical error in the solution. The experimental and numerical (BEM) results on surface motion amplification are then compared in terms of both amplitude and frequency range.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin; Slaughter, Andrew; Veeraraghavan, Swetha
Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON) is a finite element application that aims at analyzing the response of 3-D soil-structure systems to natural and man-made hazards such as earthquakes, floods and fire. MASTODON currently focuses on the simulation of seismic events and has the capability to perform extensive ‘source-to-site’ simulations including earthquake fault rupture, nonlinear wave propagation and nonlinear soil-structure interaction (NLSSI) analysis. MASTODON is being developed to be a dynamic probabilistic risk assessment framework that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment.
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but onlymore » in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Finally, combining such an approach with broader knowledge of thresholding behavior – here related to active layer depth – would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.« less
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben; ...
2017-09-28
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but onlymore » in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Finally, combining such an approach with broader knowledge of thresholding behavior – here related to active layer depth – would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.« less
Soil respiration across a permafrost transition zone: spatial structure and environmental correlates
NASA Astrophysics Data System (ADS)
Stegen, James C.; Anderson, Carolyn G.; Bond-Lamberty, Ben; Crump, Alex R.; Chen, Xingyuan; Hess, Nancy
2017-09-01
Soil respiration is a key ecosystem function whereby shifts in respiration rates can shift systems from carbon sinks to sources. Soil respiration in permafrost-associated systems is particularly important given climate change driven permafrost thaw that leads to significant uncertainty in resulting ecosystem carbon dynamics. Here we characterize the spatial structure and environmental drivers of soil respiration across a permafrost transition zone. We find that soil respiration is characterized by a non-linear threshold that occurs at active-layer depths greater than 140 cm. We also find that within each season, tree basal area is a dominant driver of soil respiration regardless of spatial scale, but only in spatial domains with significant spatial variability in basal area. Our analyses further show that spatial variation (the coefficient of variation) and mean-variance power-law scaling of soil respiration in our boreal system are consistent with previous work in other ecosystems (e.g., tropical forests) and in population ecology, respectively. Comparing our results to those in other ecosystems suggests that temporally stable features such as tree-stand structure are often primary drivers of spatial variation in soil respiration. If so, this provides an opportunity to better estimate the magnitude and spatial variation in soil respiration through remote sensing. Combining such an approach with broader knowledge of thresholding behavior - here related to active layer depth - would provide empirical constraints on models aimed at predicting ecosystem responses to ongoing permafrost thaw.
NASA Astrophysics Data System (ADS)
Dobrovol'skaya, T. G.; Khusnetdinova, K. A.
2017-11-01
The dynamics of population density and taxonomic structure of epiphytic bacterial communities on the leaves and roots of potatoes, carrots, and beets have been studied. Significant changes take place in the ontogenesis of these vegetables with substitution of hydrolytic bacteria for eccrisotrophic bacteria feeding on products of plant exosmosis. The frequency of domination of representatives of different taxa of epiphytic bacteria on the studied plants has been determined for the entire period of their growth. Bacteria of different genera have been isolated from the aboveground and underground organs of vegetables; their functions are discussed. It is shown that the taxonomic structure of bacterial communities in the soil under studied plants is not subjected to considerable changes and is characterized by the domination of typical soil bacteria— Arthrobacter and bacilli—with the appearance of Rhodococcus as a codominant at the end of the season (before harvesting).
Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.
Lee, Seung-Hoon; Jang, Inyoung; Chae, Namyi; Choi, Taejin; Kang, Hojeong
2013-02-01
Tundra ecosystem is of importance for its high accumulation of organic carbon and vulnerability to future climate change. Microorganisms play a key role in carbon dynamics of the tundra ecosystem by mineralizing organic carbon. We assessed both ecosystem process rates and community structure of Bacteria, Archaea, and Fungi in different soil layers (surface organic layer and subsurface mineral soil) in an Arctic soil ecosystem located at Spitsbergen, Svalbard during the summer of 2008 by using biochemical and molecular analyses, such as enzymatic assay, terminal restriction fragment length polymorphism (T-RFLP), quantitative polymerase chain reaction (qPCR), and pyrosequencing. Activity of hydrolytic enzymes showed difference according to soil type. For all three microbial communities, the average gene copy number did not significantly differ between soil types. However, archaeal diversities appeared to differ according to soil type, whereas bacterial and fungal diversity indices did not show any variation. Correlation analysis between biogeochemical and microbial parameters exhibited a discriminating pattern according to microbial or soil types. Analysis of the microbial community structure showed that bacterial and archaeal communities have different profiles with unique phylotypes in terms of soil types. Water content and hydrolytic enzymes were found to be related with the structure of bacterial and archaeal communities, whereas soil organic matter (SOM) and total organic carbon (TOC) were related with bacterial communities. The overall results of this study indicate that microbial enzyme activity were generally higher in the organic layer than in mineral soils and that bacterial and archaeal communities differed between the organic layer and mineral soils in the Arctic region. Compared to mineral soil, peat-covered organic layer may represent a hotspot for secondary productivity and nutrient cycling in this ecosystem.
Importance of vegetation distribution for future carbon balance
NASA Astrophysics Data System (ADS)
Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.
2015-12-01
Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.
NASA Astrophysics Data System (ADS)
Riley, W. J.; Maggi, F.; Kleber, M.; Torn, M. S.; Tang, J. Y.; Dwivedi, D.; Guerry, N.
2014-07-01
Accurate representation of soil organic matter (SOM) dynamics in Earth system models is critical for future climate prediction, yet large uncertainties exist regarding how, and to what extent, the suite of proposed relevant mechanisms should be included. To investigate how various mechanisms interact to influence SOM storage and dynamics, we developed an SOM reaction network integrated in a one-dimensional, multi-phase, and multi-component reactive transport solver. The model includes representations of bacterial and fungal activity, multiple archetypal polymeric and monomeric carbon substrate groups, aqueous chemistry, aqueous advection and diffusion, gaseous diffusion, and adsorption (and protection) and desorption from the soil mineral phase. The model predictions reasonably matched observed depth-resolved SOM and dissolved organic matter (DOM) stocks and fluxes, lignin content, and fungi to aerobic bacteria ratios. We performed a suite of sensitivity analyses under equilibrium and dynamic conditions to examine the role of dynamic sorption, microbial assimilation rates, and carbon inputs. To our knowledge, observations do not exist to fully test such a complicated model structure or to test the hypotheses used to explain observations of substantial storage of very old SOM below the rooting depth. Nevertheless, we demonstrated that a reasonable combination of sorption parameters, microbial biomass and necromass dynamics, and advective transport can match observations without resorting to an arbitrary depth-dependent decline in SOM turnover rates, as is often done. We conclude that, contrary to assertions derived from existing turnover time based model formulations, observed carbon content and Δ14C vertical profiles are consistent with a representation of SOM consisting of carbon compounds with relatively fast reaction rates, vertical aqueous transport, and dynamic protection on mineral surfaces.
NASA Astrophysics Data System (ADS)
McDowell, W. H.
2015-12-01
Critical Zone science examines the structure and properties of the thin veneer that links surface properties to deep geology, at time scales of seconds to millennia. One of the fundamental premises of the US Critical Zone Observatories program is that CZOs should include some measurements made in common at all sites, as these common measurements will enable us to make stronger inferences about how the structure and function of the critical zone interact to drive key processes such as soil formation, stream flow generation, and nutrient export. Recent advances in real-time sensors provide new opportunities to address some fundamental questions about how hillslope soils and streams are linked. Data from the Luquillo Critical Zone Observatory in Puerto Rico, for example, document a previously undescribed transition, or flipping, of stream and soil biogeochemistry in a tropical rain forest. Under typical conditions, soil moisture is high and soil oxygen content is often low, especially at depth. Streams, in contrast, are typically near oxygen saturation. Under severe drought, however, oxygen increases dramatically in soil air and declines to values that are well below saturation in streams. This flipping in redox conditions suggests that despite the strong hydrologic connection between hillslope and stream, gas dynamics and potentially solute dynamics are decoupled along the flow path. The international CZO community has the opportunity to develop a suite of sensor arrays to document soil air, groundwater chemistry, and stream water chemistry. Progress towards realizing the potential of these international networks to develop coherent sensor programs will be addressed based on the current status of sensor deployments in CZO networks in the US, China, and Europe.
NASA Astrophysics Data System (ADS)
Mau, Yair; Porporato, Amilcare
2017-04-01
We present a model for the dynamics of soil water, salt concentration and exchangeable sodium fraction in the root zone, driven by irrigation water of various qualities and stochastic rainfall. The main nonlinear feedback is the decrease in hydraulic conductivity for low salinity and/or high sodicity levels. The three variables have quite disparate characteristic time scales: soil water can vary two or three orders of magnitude faster than the exchangeable sodium fraction. In certain limiting cases in which the input of water is constant, the system can be simplified by eliminating the equation for soil water, allowing a full description of the dynamics in the two-dimensional salinity-sodicity phase space. We estimate soil structure degradation time scales for high sodium-adsorption-ratio irrigation water, and delineate the regions in the salinity-sodicity phase space where sodium-induced degradation is effectively irreversible. This apparent irreversibility is the result of relatively long evolution time scales with respect to human activity. When we take into account stochastic rainfall—and the accompanying wetting and drying cycles—the system produces a myriad of statistical steady states. This means that equal environmental conditions can produce different outcomes, accessible to each other only by large interventions, such as temporary changes in the quality of irrigation water or one-time amendment use. Our characterization of the dynamics of water and salt in the root zone, and how it depends on environmental parameters, offers us opportunities to control and reclaim degraded states making optimal resource use. We show an example of sodic soil reclamation through calcium-based fertigation, with minimal time (and applied water) expenditure.
NASA Astrophysics Data System (ADS)
Kaplan, D.; Muñoz-Carpena, R.
2011-02-01
SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios in degraded coastal floodplains.
NASA Astrophysics Data System (ADS)
Bulgariu, D.; Buzgar, N.; Bulgariu, L.; Rusu, C.; Munteanu, N.
2009-04-01
In ecological systems of vegetable cultivation (hortic antrosols; soils from greenhouses), exists an ensemble of equilibriums between organic-mineral combinations, very sensitive even to relatively small variations of physical-chemical conditions in soils. As such, these can manifest a strong influence on organic matter, clay minerals and microelements from soil, which in turn impacts on the productivity of these soils and the quality of obtained products (vegetables, fruit). Although many studies consider these organic-mineral combinations are meta-stable combinations, our work has shown that the stability of organic-mineral combinations in hortic antrosols (especially for clay-humic, clay-ironhumic combinations and chelates) is higher. We believe that this is due to the higher flexibility of these combinations' structures with the variation of chemical-mineralogical composition and physical-chemical conditions in soil. This paper highlights the results of our research on the differentiation possibility of organic-mineral complexes, depending on their structure and composition (using Raman and FT-IR spectrometry) and the influences manifested by the organic-mineral complexes on the micro-elements dynamic from ecological systems of fresh vegetable cultivation. The non-destructive separation of organic-mineral compounds from soil samples was carried out through iso-dynamic magnetic separation and extraction in aqueous two-phase systems (PEG-based). The Raman and FT-IR spectrometry analyses on raw soil samples, extracts obtained from soil samples and separated mineral fractions have been supplemented by the results obtained through chemical, microscopic and thermal analyses and by UV-VIS absorption spectrometry. Ours experimental studies have been done on representative samples of hortic antrosol from Copou glasshouse (Iasi, Romania), and was studied five micro-elements: Zn, Ni, Cu, Mn, Cr and P. The total contents of the five microelements and their fractions differential bonded on mineral and organic components of hortic antrosols, have been determined by atomic absorption spectrometry after combined sequential extraction in solid phase extraction - aqueous biphasic (PEG based) systems. The specific mechanisms of the microelements interaction with organic components have been estimated on the basis of studies realized on fractions obtained after each extraction step by Raman and FTIR spectrometry. These data have been correlated with those obtained by chemical analysis and UV-VIS spectrometry. In conditions of hortic antrosol, from total contents of Zn, Ni, Cu, Mn and Cr, more than 65 % are binding on organic components. A specific phenomenon of hortic antrosols is the microelements complexation exclusively with the functional groups of organic macromolecules. This phenomenon has two important consequences: (i) the strong fixation of microelements (these can be extracted only in very extremely conditions, which implied the organic part destroying) and (ii) their presence determined major modifications in the structure, conformation and stability of organic macromolecules. Under these conditions, the type and structure of organic-mineral compounds represent determinant factors for the dynamic of micro-elements and organic compounds in ecological systems of vegetables cultivation. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 an Project PNCDI 2-D5 no. 52141 / 08).
Soil networks become more connected and take up more carbon as nature restoration progresses.
Morriën, Elly; Hannula, S Emilia; Snoek, L Basten; Helmsing, Nico R; Zweers, Hans; de Hollander, Mattias; Soto, Raquel Luján; Bouffaud, Marie-Lara; Buée, Marc; Dimmers, Wim; Duyts, Henk; Geisen, Stefan; Girlanda, Mariangela; Griffiths, Rob I; Jørgensen, Helene-Bracht; Jensen, John; Plassart, Pierre; Redecker, Dirk; Schmelz, Rűdiger M; Schmidt, Olaf; Thomson, Bruce C; Tisserant, Emilie; Uroz, Stephane; Winding, Anne; Bailey, Mark J; Bonkowski, Michael; Faber, Jack H; Martin, Francis; Lemanceau, Philippe; de Boer, Wietse; van Veen, Johannes A; van der Putten, Wim H
2017-02-08
Soil organisms have an important role in aboveground community dynamics and ecosystem functioning in terrestrial ecosystems. However, most studies have considered soil biota as a black box or focussed on specific groups, whereas little is known about entire soil networks. Here we show that during the course of nature restoration on abandoned arable land a compositional shift in soil biota, preceded by tightening of the belowground networks, corresponds with enhanced efficiency of carbon uptake. In mid- and long-term abandoned field soil, carbon uptake by fungi increases without an increase in fungal biomass or shift in bacterial-to-fungal ratio. The implication of our findings is that during nature restoration the efficiency of nutrient cycling and carbon uptake can increase by a shift in fungal composition and/or fungal activity. Therefore, we propose that relationships between soil food web structure and carbon cycling in soils need to be reconsidered.
NASA Astrophysics Data System (ADS)
Frossard, Emmanuel; Buchmann, Nina; Bünemann, Else K.; Kiba, Delwende I.; Lompo, François; Oberson, Astrid; Tamburini, Federica; Traoré, Ouakoltio Y. A.
2016-02-01
Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies have explicitly considered the effects of agricultural management practices on the soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long term. Thus, we analysed the C, N, and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK (bio-Dynamic, bio-Organic, and "Konventionell") cropping system trial (Switzerland). In each of these trials, there was a large range of C, N, and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P, and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure, and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and nutrients, and has a stable structure. Thus, organic matter is protected from mineralization and can therefore accumulate, allowing microorganisms to feed on soil nutrients and to keep a constant C : N : P ratio. The DOK soil represents an intermediate situation, with high nutrient concentrations, but a rather fragile soil structure, where organic matter does not accumulate. We conclude that the study of C, N, and P ratios is important to understand the functioning of cropped soils in the long term, but that it must be coupled with a precise assessment of element inputs and budgets in the system and a good understanding of the ability of soils to stabilize C, N, and P compounds.
Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.
Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S
2016-09-01
We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.
EnKF with closed-eye period - bridging intermittent model structural errors in soil hydrology
NASA Astrophysics Data System (ADS)
Bauser, Hannes H.; Jaumann, Stefan; Berg, Daniel; Roth, Kurt
2017-04-01
The representation of soil water movement exposes uncertainties in all model components, namely dynamics, forcing, subscale physics and the state itself. Especially model structural errors in the description of the dynamics are difficult to represent and can lead to an inconsistent estimation of the other components. We address the challenge of a consistent aggregation of information for a manageable specific hydraulic situation: a 1D soil profile with TDR-measured water contents during a time period of less than 2 months. We assess the uncertainties for this situation and detect initial condition, soil hydraulic parameters, small-scale heterogeneity, upper boundary condition, and (during rain events) the local equilibrium assumption by the Richards equation as the most important ones. We employ an iterative Ensemble Kalman Filter (EnKF) with an augmented state. Based on a single rain event, we are able to reduce all uncertainties directly, except for the intermittent violation of the local equilibrium assumption. We detect these times by analyzing the temporal evolution of estimated parameters. By introducing a closed-eye period - during which we do not estimate parameters, but only guide the state based on measurements - we can bridge these times. The introduced closed-eye period ensured constant parameters, suggesting that they resemble the believed true material properties. The closed-eye period improves predictions during periods when the local equilibrium assumption is met, but consequently worsens predictions when the assumption is violated. Such a prediction requires a description of the dynamics during local non-equilibrium phases, which remains an open challenge.
Developing Soil Models for Dynamic Impact Simulations
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.
2009-01-01
This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.
Dynamic model of open shell structures buried in poroelastic soils
NASA Astrophysics Data System (ADS)
Bordón, J. D. R.; Aznárez, J. J.; Maeso, O.
2017-08-01
This paper is concerned with a three-dimensional time harmonic model of open shell structures buried in poroelastic soils. It combines the dual boundary element method (DBEM) for treating the soil and shell finite elements for modelling the structure, leading to a simple and efficient representation of buried open shell structures. A new fully regularised hypersingular boundary integral equation (HBIE) has been developed to this aim, which is then used to build the pair of dual BIEs necessary to formulate the DBEM for Biot poroelasticity. The new regularised HBIE is validated against a problem with analytical solution. The model is used in a wave diffraction problem in order to show its effectiveness. It offers excellent agreement for length to thickness ratios greater than 10, and relatively coarse meshes. The model is also applied to the calculation of impedances of bucket foundations. It is found that all impedances except the torsional one depend considerably on hydraulic conductivity within the typical frequency range of interest of offshore wind turbines.
NASA Astrophysics Data System (ADS)
Šamonil, Pavel; Daněk, Pavel; Senecká, Anna; Adam, Dušan; Phillips, Jonathan D.
2017-04-01
Biomechanical effects of trees in forest soils represent a potentially significant factor in hillslope processes, pedocomplexity, and forest dynamics. However, these processes have been only rarely studied so far. Within this study we aim (i) to elaborate a detailed and widely applicable methodology of quantification of the main biomechanical effects of trees in soil, (ii) to reveal actual (minimal) frequencies, areas and volumes related to these effects in a mountain temperate old-growth forest. The research took place in the Boubín Primeval Forest in the Czech Republic. The fir-spruce-beech forest reserve belongs among the oldest protected areas in Europe. The reserve occupies NE slopes of an average inclination of about 14˚ on gneiss at an altitude of 930-1110 m a.s.l. We evaluated effects of all standing or lying trees of diameter at breast height (DBH) ≥ 10 cm in an area of 10.2 ha. In total, 4000 trees were studied from viewpoint of following features: treethrow, root mound, bioprotective function of standing as well as lying tree, baumstein, root baumstein, infilling stump, hole after trunk fall, stemwash, trunkwash. Any biomechanical phenomena were recorded in 59% of standing and 51% of lying dead trees (excluding the pervasive soil displacement by thickening trunk and roots and the converse infilling of the space freed during their decay with surrounding soil). Approximately one tenth of the trees expressed simultaneously opposing phenomena such as blocking of slope processes and their intensification. Different tree species and DBH categories exhibited significantly different structure of biomechanical effects in soil. Bioprotective function represented the most frequent process. However, concerning area and volume of affected soil, treethrows were an even more important phenomenon. Total area influenced by the studied biomechanical effects of current generation of trees was 343 m2ha-1. Additional 774 m2ha-1 were occupied by older treethrow pit-mounds with already decayed uprooted trunk. Total volume of soil associated with studied phenomena was 228 m3ha-1, predominated by material affected by treethrows followed by stump infilling. Other processes were not so frequent but still important in forest dynamics, biogeomorphology and soil genesis. We assume significant differences in the structure of biomechanical effects of trees in managed forests.
Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören
2014-01-01
Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.
A New Model for Root Growth in Soil with Macropores
NASA Astrophysics Data System (ADS)
Landl, M.; Huber, K.; Schnepf, A.; Vanderborght, J.; Javaux, M.; Bengough, G.; Vereecken, H.
2016-12-01
In order to study soil-root interaction processes, dynamic root architecture models which are linked to models that simulate water flow and nutrient transport in the soil-root system are needed. Such models can be used to predict the impact of soil structural features, e.g. the presence of macropores in dense subsoil, on water and nutrient uptake by plants. In dynamic root architecture models, root growth is represented by moving root tips whose growth trajectory results in the creation of linear root segments. Typically, the direction of each new root segment is calculated as the vector sum of various direction-affecting components. The use of these established methods to simulate root growth in soil containing macropores, however, failed to reproduce experimentally observed root growth patterns. We therefore developed an alternative modelling approach where we distinguish between, firstly, the driving force for root growth which is determined by the orientation of the previous root segment as well as the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by root conductance which represents the inverse of soil penetration resistance and is treated similarly to hydraulic conductivity in Darcy's law. At the presence of macropores, root conductance is anisotropic which leads to a difference between the direction of the driving force and the direction of the root tip movement. The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. The model simulated root growth trajectories in structured soil at both single root and whole root-system scales, generating root systems that were similar to images from experiments. Its implementation in the three dimensional soil and root water uptake model R-SWMS enables the use of the model in the future to evaluate the effect of macropores on crop access to water and nutrients.
Soil organic carbon dynamics following afforestation in the Loess Plateau of China
NASA Astrophysics Data System (ADS)
Lu, N.; Liski, J.; Chang, R. Y.; Akujärvi, A.; Wu, X.; Jin, T. T.; Wang, Y. F.; Fu, B. J.
2013-07-01
Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics is critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980-2010. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr), although it decreased in the first few years at the wetter sites. The accumulation rates of SOC were 1.58 to 6.22% yr-1 in the upper 20 cm and 1.62 to 5.15% yr-1 in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88-96, 48-86 and 57-74% of the variations in annual SOC changes at the soil depths of 0-20, 0-40, and 0-100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were small at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer time scale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites, which is favorable for further restoration of the vegetation and environment. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site conditions, species adaptability, and successional stage of recovery.
Evolving soils and hydrologic connectivity in semiarid hillslopes
NASA Astrophysics Data System (ADS)
Saco, Patricia M.
2015-04-01
Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.
NASA Astrophysics Data System (ADS)
Allen, M. F.; Taggart, M. C.; Hernandez, R. R.; Harmon, T. C.; Rundel, P.
2017-12-01
Observation is essential for organizing outputs from sensor data to describe dynamic phenomena regulating core processes. The rhizosphere is that region of the soil layer that regulates soil carbon acquisition, turnover, and sequestration and that is most sensitive to rapid changes in soil moisture, temperature, and gases. Virtually every process regulating carbon and nutrient immobilization and mineralization occur here at the maximum rates. However, the observation of root, microbial, and animal growth, movement, and mortality are rarely undertaken at time scales of crucial events. While multiple cores or observations can be taken in space, replications in time are rarely undertaken. We coupled automated (AMR) and manual minirhizotrons (MMR) with soil and aboveground sensors for temperature (T), water content (q), CO2, and O2 to measure short-term dynamics that regulate carbon cycling. AMRs imaged rhizospheres, multiple times daily. From these images, we observed timing of root and hyphal growth and mortality in response to changes in photosynthesis, diurnal temperature fluctuations, and precipitation and drought events. Replicate manual minirhizotron tubes describe the spatial structure of those events, and replicate core samples provide measurements of standing crop at known times. We present four examples showing how observation led to understanding unusual C flux patterns in mixed-conifer forest (belowground photosynthate allocation), hot desert (CaCO3 formation and weathering), grassland (root grazing), and tropical rainforest (soil gas flux patterns).
NASA Astrophysics Data System (ADS)
Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar
2014-08-01
As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.
NASA Astrophysics Data System (ADS)
Woo, Dong K.; Kumar, Praveen
2017-10-01
How does the variability of topography structure the spatial heterogeneity of nutrient dynamics? In particular, what role does micro-topographic depression play in the spatial and temporal dynamics of nitrate, ammonia, and ammonium? We explore these questions using the 3-D simulation of their joint dynamics of concentration and age. To explicitly resolve micro-topographic variability and its control on moisture, vegetation, and carbon-nitrogen dynamics, we use a high-resolution LiDAR data over an agricultural site under a corn-soybean rotation in the Intensively Managed landscapes Critical Zone Observatory in the U.S. Midwest. We utilize a hybrid CPU-GPU parallel computing architecture to reduce the computational cost associated with such high-resolution simulations. Our results show that in areas that present closed topographic depressions, relatively lower nitrate concentration and age are observed compared to elsewhere. The periodic ponding in depressions increases the downward flux of water that carries more dissolved nitrate to the deeper soil layer. However, the variability in the depressions is relatively higher as a result of the episodic ponding pattern. When aggregate efflux from the soil domain at the bottom of the soil is considered, we find a gradual decrease in the age on the rising limb of nitrate efflux and a gradual increase on the falling limb. In addition, the age of the nitrate efflux ranges from 4 to 7 years. These are significantly higher as compared to the ages associated with a nonreactive tracer indicating that they provide an inaccurate estimate of residence time of a reactive constituent through the soil column.
J.A. O' Donnell; J.W. Harden; A.D. McGuire; V.E. Romanovsky
2011-01-01
In the boreal region, soil organic carbon (OC) dynamics are strongly governed by the interaction between wildfire and permafrost. Using a combination of field measurements, numerical modeling of soil thermal dynamics, and mass-balance modeling of OC dynamics, we tested the sensitivity of soil OC storage to a suite of individual climate factors (air temperature, soil...
NASA Astrophysics Data System (ADS)
Badorreck, A.; Gerke, H. H.; Weller, U.; Vontobel, P.
2009-04-01
In the Lusatia mining district (NE-Germany) an artificial catchment was constructed to study initial ecosystem development and runoff generation. As a key process in this early stage, we investigate the surface structure dynamics as it strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. The presented work focuses on observations of soil pore structure formation at the surface at five sites in the catchment and in an adjacent "younger" area composed of comparable sediments. Moreover we've conducted infiltration experiments in the lab and field to relate the soil pore structure to the hydraulic properties. The surface soil was sampled in cylindrical rings (10 cm³) down to 2 cm depth from which bulk density profiles were obtained using X-ray computed tomography (CT) (at UFZ- Halle, Germany) with a resolution of 0.084 mm. The influence of structure on infiltration was investigated using neutron radiography (at the NEUTRA facility of the Paul-Scherrer-Institut, Villigen, Switzerland) to visualise two-dimensional (2D) infiltration patterns. The slab-type samples were equilibrated to different initial water contents and then exposed to drip irrigation (to simulate rainfall) while a series of neutron radiographs were taken. In addition, field measurements with a miniature tension infiltrometer were conduced. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The infiltration rates were severely affected by the surface crusts; however, the rates were independent of the vesicular pore layer.
Wan, Rui; Wang, Zhao; Xie, Shuguang
2014-02-15
Autochthonous microbiota plays a crucial role in natural attenuation of s-triazine herbicides in agricultural soil. Soil microcosm study was carried out to investigate the shift in the structures of soil autochthonous microbial communities and the potential degraders associated with natural simazine attenuation. The relative abundance of soil autochthonous degraders and the structures of microbial communities were assessed using quantitative PCR (q-PCR) and terminal restriction fragment length polymorphism (TRFLP), respectively. Phylogenetic composition of bacterial community was also characterized using clone library analysis. Soil autochthonous microbiota could almost completely clean up simazine (100 mg kg(-1)) in 10 days after herbicide application, indicating a strong self-remediation potential of agricultural soil. A significant increase in the proportion of s-triazine-degrading atzC gene was found in 6 days after simazine amendment. Simazine application could alter the community structures of total bacteria and ammonia-oxidizing archaea (AOA) and bacteria (AOB). AOA were more responsive to simazine application compared to AOB and bacteria. Actinobacteria, Alphaproteobacteria and Gammaproteobacteria were the dominant bacterial groups either at the initial stage after simazine amendment or at the end stage of herbicide biodegradation, but Actinobacteria predominated at the middle stage of biodegradation. Microorganisms from several bacterial genera might be involved in simazine biodegradation. This work could add some new insights on the bioremediation of herbicides contaminated agricultural soils. Copyright © 2013 Elsevier B.V. All rights reserved.
Indicators of ecosystem function identify alternate states in the sagebrush steppe.
Kachergis, Emily; Rocca, Monique E; Fernandez-Gimenez, Maria E
2011-10-01
Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics for rangeland management. Our findings suggest that the IRH approximate ecosystem processes and can distinguish between alternate states and communities and identify transitions when building data-driven STMs. Functional indicators are a simple, efficient way to create data-driven models that are consistent with alternate state theory. Managers can use them to improve current model-building methods and thus apply state-and-transition models more broadly for land management decision-making.
Hydrological Dynamics In High Mountain Catchment Areas of Central Norway
NASA Astrophysics Data System (ADS)
Löffler, J.; Rössler, O.
Large-scaled landscape structure is regarded as a mosaic of ecotopes where pro- cess dynamics of water and energy fluxes are analysed due to its effects on ecosys- tem functioning. The investigations have been carried out in the continental most Vågå/Oppland high mountains in central Norway since 1994 (LÖFFLER WUN- DRAM 1999, 2000, 2001). Additionally, comparable investigations started in 2000 dealing with the oceanic high mountain landscapes on same latitudes (LÖFFLER et al. 2001). The theoretical and methodological framework of the project is given by the Landscape-Ecological Complex Analysis (MOSIMANN 1984, 1985) and its variations due to technical and principle methodical challenges in this high moun- tain landscape (KÖHLER et al. 1994, LÖFFLER 1998). The aim of the project is to characterize high mountain ecosystem structure, functioning and dynamics within small catchment areas, that are chosen in two different altitudinal belts each in the eastern continental and the western oceanic region of central Norway. In the frame of this research project hydrological and meteorological measurements on ground water, percolation and soil moisture dynamics as well as on evaporation, air humidity and air-, surface- and soil-temperatures have been conducted. On the basis of large-scaled landscape-ecological mappings (LÖFFLER 1997) one basic meteorological station and several major data logger run stations have been installed in representative sites of each two catchment areas in the low and mid alpine belts of the investigation re- gions (JUNG et al. 1997, LÖFFLER WUNDRAM 1997). Moreover, spatial differ- entiations of groundwater level, soil moisture and temperature profiles have been in- vestigated by means of hand held measurements at different times of the day, during different climatic situations and different seasons. Daily and annual air-, surface- and soil-temperature dynamics are demonstrated by means of thermoisopleth-diagrams for different types of ecotopes of the different altitudinal belts. The local differences of temperature dynamics are illustrated in a map as an example of the low alpine al- titudinal belt showing a 4-dimensional characterization (in space and time) of high mountain ecosystem functioning. Hydrological aspects derived from those results are presented showing the large-scaled hydrological dynamics of high mountain catch- ment basins in central Norway. The results of the process analysis of hydrological dynamics in the central Norwegian high mountains are discussed within the frame of 1 investigations on altitudinal changes of mountain ecosystem structure and function- ing (LÖFFLER WUNDRAM [in print]). The poster illustrates the theoretical and methodological conception, methods and techniques, examples from complex data material as well as general outcomes of the project (RÖSSLER [in prep.]. 2
NASA Astrophysics Data System (ADS)
Volkmann, Till; Haberer, Kristine; Gessler, Arthur; Weiler, Markus
2014-05-01
The predicted changes of climate and land-use could have drastic effects on the water balance of ecosystems, particularly under frequent drought and subsequent rewetting conditions. Yet, inference of these effects and related consequences for the structure and functioning of ecosystems, groundwater recharge, leaching of nutrients and pollutants, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the manifold interactions between vegetation and soil water dynamics. While plants require water and nutrients, they also exert, for instance, important below-ground controls on the distribution and movement of water and chemicals in the rooted soil horizons via uptake and redistribution of water, modification of soil hydraulic properties, and formation of conduits for rapid preferential water flow. This work aims to contribute to fill existing gaps by assessing the effects of different plant types and their rooting systems on the soil water dynamics. Therefore, we conducted artificial drought and subsequent rewetting experiments using isotopically and dye (Brilliant Blue FCF) labeled water on plots of various surface cover (bare soil, grass, beech, oak, vine) established on relatively homogeneous luvisol on loess in southwestern Germany. Detailed insight into the short-term dynamics of event water infiltration and root uptake during the field experiments was facilitated by the application of novel techniques for high-frequency in-situ monitoring of stable isotope signatures in pore and transpiration water using commercial laser-based spectrometers, augmenting conventional observations of soil physicochemical states (soil water content, matric potential, electrical conductivity). The temporal point information is complemented by dye staining profiles, providing a detailed picture of spatial infiltration patterns, and by root density observations. The results of the experiments allow for a comprehensive spatiotemporal characterization of the effects of differing vegetation cover and rooting systems on infiltration, preferential flow path characteristics, and water storage in the rooted soil horizons. This will contribute to an improved ability to estimate environmental change impacts on the fate of water, nutrients, and pollutants in this critical zone and associated feedbacks within the soil-vegetation-atmosphere system.
Input related microbial carbon dynamic of soil organic matter in particle size fractions
NASA Astrophysics Data System (ADS)
Gude, A.; Kandeler, E.; Gleixner, G.
2012-04-01
This paper investigated the flow of carbon into different groups of soil microorganisms isolated from different particle size fractions. Two agricultural sites of contrasting organic matter input were compared. Both soils had been submitted to vegetation change from C3 (Rye/Wheat) to C4 (Maize) plants, 25 and 45 years ago. Soil carbon was separated into one fast-degrading particulate organic matter fraction (POM) and one slow-degrading organo-mineral fraction (OMF). The structure of the soil microbial community were investigated using phospholipid fatty acids (PLFA), and turnover of single PLFAs was calculated from the changes in their 13C content. Soil enzyme activities involved in the degradation of carbohydrates was determined using fluorogenic MUF (methyl-umbelliferryl phosphate) substrates. We found that fresh organic matter input drives soil organic matter dynamic. Higher annual input of fresh organic matter resulted in a higher amount of fungal biomass in the POM-fraction and shorter mean residence times. Fungal activity therefore seems essential for the decomposition and incorporation of organic matter input into the soil. As a consequence, limited litter input changed especially the fungal community favouring arbuscular mycorrhizal fungi. Altogether, supply and availability of fresh plant carbon changed the distribution of microbial biomass, the microbial community structure and enzyme activities and resulted in different priming of soil organic matter. Most interestingly we found that only at low input the OMF fraction had significantly higher calculated MRT for Gram-positive and Gram-negative bacteria suggesting high recycling of soil carbon or the use of other carbon sources. But on average all microbial groups had nearly similar carbon uptake rates in all fractions and both soils, which contrasted the turnover times of bulk carbon. Hereby the microbial carbon turnover was always faster than the soil organic carbon turnover and higher carbon input reduced the carbon storage efficiency from 51 % in the low input to 20 %. These findings suggest that microbial community preferentially assimilated fresh carbon sources but also used recycled existing soil carbon. However, the priming rate was drastically reduced under carbon limitation. In consequence at high carbon availability more carbon was respired to activate the existing soil carbon (priming) whereas at low carbon availability new soil carbon was formed at higher efficiencies.
The Soil Microbiome Influences Grapevine-Associated Microbiota
Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; West, Kristin; Hampton-Marcell, Jarrad; Lax, Simon; Bokulich, Nicholas A.; Mills, David A.; Martin, Gilles; Taghavi, Safiyh; van der Lelie, Daniel
2015-01-01
ABSTRACT Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterial reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management. PMID:25805735
The soil microbiome influences grapevine-associated microbiota
Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela; ...
2015-03-24
Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less
Narr, Anja; Nawaz, Ali; Wick, Lukas Y.; Harms, Hauke; Chatzinotas, Antonis
2017-01-01
Environmental surveys on soil viruses are still rare and mostly anecdotal, i. e., they mostly report on viruses at one location or for only a few sampling dates. Detailed time-series analysis with multiple samples can reveal the spatio-temporal dynamics of viral communities and provide important input as to how viruses interact with their potential hosts and the environment. Such surveys, however, require fast, easy-to-apply and reliable methods. In the present study we surveyed monthly across 13 months the abundance of virus-like particles (VLP) and the structure of the viral communities in soils along a land use transect (i.e., forest, pasture, and cropland). We evaluated 32 procedures to extract VLP from soil using different buffers and mechanical methods. The most efficient extraction was achieved with 1× saline magnesium buffer in combination with 20 min vortexing. For community structure analysis we developed an optimized fingerprinting approach (fluorescent RAPD-PCR; fRAPD) by combining RAPD-PCR with fluorescently labeled primers in order to size the obtained fragments on a capillary sequencing machine. With the concomitantly collected data of soil specific factors and weather data, we were able to find correlations of viral abundance and community structure with environmental variables and sampling site. More specifically, we found that soil specific factors such as pH and total nitrogen content played a significant role in shaping both soil viral abundance and community structure. The fRAPD analysis revealed high temporal changes and clustered the viral communities according to sampling sites. In particular we observed that temperature and rainfall shaped soil viral communities in non-forest sites. In summary our findings suggest that sampling site was a key factor for shaping the abundance and community structure of soil viruses, and when site vegetation was reduced, temperature and rainfall were also important factors. PMID:29067022
NASA Astrophysics Data System (ADS)
Kemner, K. M.; O'Brien, S.; Whiteside, M. D.; Sholto-Douglas, D.; Antipova, O.; Bailey, V.; Boyanov, M.; Dohnalkova, A.; Gursoy, D.; Kovarik, L.; Lai, B.; Roehrig, C.; Vogt, S.
2017-12-01
Soil is a highly complex network of pore spaces, minerals, and organic matter (e.g., roots, fungi, and bacteria), making it physically heterogeneous over nano- to macro-scales. Such complexity arises from feedbacks between physical processes and biological activity that generate a dynamic, self-organizing 3D complex. Since we first demonstrated the utility of synchrotron-based transmission tomography to image internal soil aggregate structure [Kemner et al., 1998], we and many other researchers have made use of and have advanced the application of this technique. However, our understanding of how microbes and microbial metabolism are distributed throughout soil aggregates is limited, because no technique is available to image the soil pore network and the life that inhabits it. X-ray transmission microtomography can provide highly detailed 3D renderings of soil structure but cannot distinguish cells from other electron-light material such as air or water. However, the use of CdSe quantum dots (QDs) as a reporter of bacterial presence enables us to overcome this constraint, instilling bacterial cells with enough contrast to detect them and their metabolic functions in their opaque soil habitat, with hard x-rays capable of penetrating 3D soil structures at high resolution. Previous transmission tomographic imaging of soil aggregates with high energy synchrotron x-rays has demonstrated 700 nm3 voxel spatial resolution. These and recent results from nanotomographic x-ray transmission imaging of soil aggregates with 30 nm3 voxel resolution will be presented. In addition, results of submicron voxel-sized x-ray fluorescence 3D imaging to determine microbial distributions within soil aggregates and the critical role to be played by the upgrade of the Advanced Photon Source for 100-1000X increases in hard x-ray brilliance will also be presented. *Kemner, et al., SPIE 3449, 45-53, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra
Land models are valuable tools to understand the dynamics of global carbon (C) cycle. Various models have been developed and used for predictions of future C dynamics but uncertainties still exist. Diagnosing the models’ behaviors in terms of structures can help to narrow down the uncertainties in prediction of C dynamics. In this study three widely used land surface models, namely CSIRO’s Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools were driven by themore » observed meteorological forcing. The simulated C storage and residence time were used for analysis. The C storage and residence time were computed globally for all individual soil and plant pools, as well as net primary productivity (NPP) and its allocation to different plant components’ based on these models. Remotely sensed NPP and statistically derived HWSD, and GLC2000 datasets were used as a reference to evaluate the performance of these models. Results showed that CABLE exhibited better agreement with referenced C storage and residence time for plant and soil pools, as compared with CLM-CASA and CLM4. CABLE had longer bulk residence time for soil C pools and stored more C in roots, whereas, CLM-CASA and CLM4 stored more C in woody pools due to differential NPP allocation. Overall, these results indicate that the differences in C storage and residence times in three models are largely due to the differences in their fundamental structures (number of C pools), NPP allocation and C transfer rates. Our results have implications in model development and provide a general framework to explain the bias/uncertainties in simulation of C storage and residence times from the perspectives of model structures.« less
Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid-structure interaction
NASA Astrophysics Data System (ADS)
Zhang, Li-wei; Li, Xin
2017-10-01
Fixed offshore wind turbines usually have large underwater supporting structures. The fluid influences the dynamic characteristics of the structure system. The dynamic model of a 5-MW tripod offshore wind turbine considering the pile-soil system and fluid structure interaction (FSI) is established, and the structural modes in air and in water are obtained by use of ANSYS. By comparing low-order natural frequencies and mode shapes, the influence of sea water on the free vibration characteristics of offshore wind turbine is analyzed. On basis of the above work, seismic responses under excitation by El-Centro waves are calculated by the time-history analysis method. The results reveal that the dynamic responses such as the lateral displacement of the foundation and the section bending moment of the tubular piles increase substantially under the influence of the added-mass and hydrodynamic pressure of sea water. The method and conclusions presented in this paper can provide a theoretical reference for structure design and analysis of offshore wind turbines fixed in deep seawater.
NASA Technical Reports Server (NTRS)
Wessman, Carol A.; Archer, Steven R.; Asner, Gregory P.; Bateson, C. Ann
2004-01-01
Replacement of grasslands and savannas by shrublands and woodlands has been widely reported in tropical, temperate and high-latitude rangelands worldwide (Archer 1994). These changes in vegetation structure may reflect historical shifts in climate and land use; and are likely to influence biodiversity, productivity, above- and below ground carbon and nitrogen sequestration and biophysical aspects of land surface-atmosphere interactions. The goal of our proposed research is to investigate how changes in the relative abundance of herbaceous and woody vegetation affect carbon and nitrogen dynamics across heterogeneous savannas and shrub/woodlands. By linking actual land-cover composition (derived through spectral mixture analysis of AVIRIS, TM, and AVHRR imagery) with a process-based ecosystem model, we will generate explicit predictions of the C and N storage in plants and soils resulting from changes in vegetation structure. Our specific objectives will be to (1) continue development and test applications of spectral mixture analysis across grassland-to-woodland transitions; (2) quantify temporal changes in plant and soil C and N storage and turnover for remote sensing and process model parameterization and verification; and (3) couple landscape fraction maps to an ecosystem simulation model to observe biogeochemical dynamics under changing landscape structure and climatological forcings.
Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems
NASA Astrophysics Data System (ADS)
Zuchowski, Loïc; Brun, Michael; De Martin, Florent
2018-05-01
The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.
Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra.
Bueno, C Guillermo; Williamson, Scott N; Barrio, Isabel C; Helgadóttir, Ágústa; HiK, David S
2016-01-01
In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes.
Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra
Williamson, Scott N.; Barrio, Isabel C.; Helgadóttir, Ágústa; HiK, David S.
2016-01-01
In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes. PMID:27760156
NASA Astrophysics Data System (ADS)
Vanwalleghem, Tom; Giráldez, Juan Vicente
2013-04-01
Many courses on natural resources require hands-on practical knowledge and experience that students traditionally could only acquire by expensive and time-consuming field excursions. New technologies and social media however provide an interesting alternative to train students and help them improve their practical knowledge. AgroGeovid is a virtual excursion, based on Google Earth, Youtube, Facebook and Twitter that is aimed at agricultural engineering students, but equally useful for any student interested in soil management and conservation, e.g. geography, geology and environmental resources. Agrogeovid provides the framework for teachers and students to upload geotagged photos, comments and discussions. After the initial startup phase, where the teacher uploaded material on e.g. soil erosion phenomena, soil conservation structures and different soil management strategies under different agronomic systems, students contributed with their own material gathered throughout the academic year. All students decided to contribute via Facebook, in stead of Twitter, which was not known to most of them. The final result was a visual and dynamic tool which students could use to train and perfect skills adopted in the classroom using case-studies and examples from their immediate environment.
NASA Astrophysics Data System (ADS)
Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.
2015-07-01
Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.
NASA Astrophysics Data System (ADS)
Jian, Y.; Silvestri, S.; Marani, M.; Saltarin, A.; Chillemi, G.
2012-12-01
We applied a hierarchical state space model to predict the abundance of Cx.pipiens (a West Nile Virus vector) in the Po River Delta Region, Northeastern Italy. The study area has large mosquito abundance, due to a favorable environment and climate as well as dense human population. Mosquito data were collected on a weekly basis at more than 20 sites from May to September in 2010 and 2011. Cx.pipiens was the dominant species in our samples, accounting for about 90% of the more than 300,000 total captures. The hydrological component of the model accounted for evapotranspiration, infiltration and deep percolation to infer, in a 0D context, the local dynamics of soil moisture as a direct exogenous forcing of mosquito dynamics. The population model had a Gompertz structure, which included exogenous meteorological forcings and delayed internal dynamics. The models were coupled within a hierarchical statistical structure to overcome the relatively short length of the samples by exploiting the large number of concurrent observations available. The results indicated that Cx.pipiens abundance had significant density dependence at 1 week lag, which approximately matched its development time from larvae to adult. Among the exogenous controls, temperature, daylight hours, and soil moisture explained most of the dynamics. Longer daylight hours and lower soil moisture values resulted in higher abundance. The negative correlation of soil moisture and mosquito population can be explained with the abundance of water in the region (e.g. due to irrigation) and the preference for eutrophic habitats by Cx.pipien. Variations among sites were explained by land use factors as represented by distance to the nearest rice field and NDVI values: the carrying capacity decreased with increased distance to the nearest rice filed, while the maximum growth rate was positively related with NDVI. The model shows a satisfactory performance in predicting (potentially one week in advance) mosquito abundance and particularly its peak timing and magnitude.
Valentín-Vargas, Alexis; Root, Robert A; Neilson, Julia W; Chorover, Jon; Maier, Raina M
2014-12-01
Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost-amended, metalliferous mine tailings. Copyright © 2014 Elsevier B.V. All rights reserved.
Valentín-Vargas, Alexis; Root, Robert A.; Neilson, Julia W; Chorover, Jon; Maier, Raina M.
2014-01-01
Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost-amended, metalliferous mine tailings. PMID:25237788
NASA Astrophysics Data System (ADS)
Green, Timothy R.; Erskine, Robert H.
2011-12-01
Dynamics of profile soil water vary with terrain, soil, and plant characteristics. The objectives addressed here are to quantify dynamic soil water content over a range of slope positions, infer soil profile water fluxes, and identify locations most likely influenced by multidimensional flow. The instrumented 56 ha watershed lies mostly within a dryland (rainfed) wheat field in semiarid eastern Colorado. Dielectric capacitance sensors were used to infer hourly soil water content for approximately 8 years (minus missing data) at 18 hillslope positions and four or more depths. Based on previous research and a new algorithm, sensor measurements (resonant frequency) were rescaled to estimate soil permittivity, then corrected for temperature effects on bulk electrical conductivity before inferring soil water content. Using a mass-conservation method, we analyzed multitemporal changes in soil water content at each sensor to infer the dynamics of water flux at different depths and landscape positions. At summit positions vertical processes appear to control profile soil water dynamics. At downslope positions infrequent overland flow and unsaturated subsurface lateral flow appear to influence soil water dynamics. Crop water use accounts for much of the variability in soil water between transects that are either cropped or fallow in alternating years, while soil hydraulic properties and near-surface hydrology affect soil water variability across landscape positions within each management zone. The observed spatiotemporal patterns exhibit the joint effects of short-term hydrology and long-term soil development. Quantitative methods of analyzing soil water patterns in space and time improve our understanding of dominant soil hydrological processes and provide alternative measures of model performance.
NASA Astrophysics Data System (ADS)
Kaiser, Christina; Evans, Sarah; Dieckmann, Ulf; Widder, Stefanie
2016-04-01
At the μm-scale, soil is a highly structured and complex environment, both in physical as well as in biological terms, characterized by non-linear interactions between microbes, substrates and minerals. As known from mathematics and theoretical ecology, spatial structure significantly affects the system's behaviour by enabling synergistic dynamics, facilitating diversity, and leading to emergent phenomena such as self-organisation and self-regulation. Such phenomena, however, are rarely considered when investigating mechanisms of microbial soil organic matter turnover. Soil organic matter is the largest terrestrial reservoir for organic carbon (C) and nitrogen (N) and plays a pivotal role in global biogeochemical cycles. Still, the underlying mechanisms of microbial soil organic matter buildup and turnover remain elusive. We explored mechanisms of microbial soil organic matter turnover using an individual-based, stoichiometrically and spatially explicit computer model, which simulates the microbial de-composer system at the soil microscale (i.e. on a grid of 100 x 100 soil microsites). Soil organic matter dynamics in our model emerge as the result of interactions among individual microbes with certain functional traits (f.e. enzyme production rates, growth rates, cell stoichiometry) at the microscale. By degrading complex substrates, and releasing labile substances microbes in our model continusly shape their environment, which in turn feeds back to spatiotemporal dynamics of the microbial community. In order to test the effect of microbial functional traits and organic matter input rate on soil organic matter turnover and C and N storage, we ran the model into steady state using continuous inputs of fresh organic material. Surprisingly, certain parameter settings that induce resource limitation of microbes lead to regular spatial pattern formation (f.e. moving spiral waves) of microbes and substrate at the μm-scale at steady-state. The occurrence of these pattern can be explained by the Turing mechanism. These pattern formation had strong consequences for process rates, as well as for C and N storage in the soil at the steady state: Scenarios that exhibited pattern formation were generally associated with higher C storage at steady state compared to those without pattern formation (i.e. at non-limiting conditions for microbes). Moreover, pattern formation lead to a spatial decoupling of C and N turnover processes, and to a spatial decoupling of microbial N mineralization and N immobilization. Taken together, our theoretical analysis shows that self-organisation may be a feature of the soil decomposer system, with consequences for process rates of microbial C and N turnover. Pattern formation through spatial self-organization, which has been observed on larger spatial scales in other resource-limited communities (e.g., vegetation patterns in arid or wetland eco-systems), may also occur at the soil microscale, leaving its mark on the soil's storage capacity for C and N.
Response surface method in geotechnical/structural analysis, phase 1
NASA Astrophysics Data System (ADS)
Wong, F. S.
1981-02-01
In the response surface approach, an approximating function is fit to a long running computer code based on a limited number of code calculations. The approximating function, called the response surface, is then used to replace the code in subsequent repetitive computations required in a statistical analysis. The procedure of the response surface development and feasibility of the method are shown using a sample problem in slop stability which is based on data from centrifuge experiments of model soil slopes and involves five random soil parameters. It is shown that a response surface can be constructed based on as few as four code calculations and that the response surface is computationally extremely efficient compared to the code calculation. Potential applications of this research include probabilistic analysis of dynamic, complex, nonlinear soil/structure systems such as slope stability, liquefaction, and nuclear reactor safety.
Gutiérrez, Alvaro G.; Armesto, Juan J.; Díaz, M. Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests. PMID:25068869
Gutiérrez, Alvaro G; Armesto, Juan J; Díaz, M Francisca; Huth, Andreas
2014-01-01
Increased droughts due to regional shifts in temperature and rainfall regimes are likely to affect forests in temperate regions in the coming decades. To assess their consequences for forest dynamics, we need predictive tools that couple hydrologic processes, soil moisture dynamics and plant productivity. Here, we developed and tested a dynamic forest model that predicts the hydrologic balance of North Patagonian rainforests on Chiloé Island, in temperate South America (42°S). The model incorporates the dynamic linkages between changing rainfall regimes, soil moisture and individual tree growth. Declining rainfall, as predicted for the study area, should mean up to 50% less summer rain by year 2100. We analysed forest responses to increased drought using the model proposed focusing on changes in evapotranspiration, soil moisture and forest structure (above-ground biomass and basal area). We compared the responses of a young stand (YS, ca. 60 years-old) and an old-growth forest (OG, >500 years-old) in the same area. Based on detailed field measurements of water fluxes, the model provides a reliable account of the hydrologic balance of these evergreen, broad-leaved rainforests. We found higher evapotranspiration in OG than YS under current climate. Increasing drought predicted for this century can reduce evapotranspiration by 15% in the OG compared to current values. Drier climate will alter forest structure, leading to decreases in above ground biomass by 27% of the current value in OG. The model presented here can be used to assess the potential impacts of climate change on forest hydrology and other threats of global change on future forests such as fragmentation, introduction of exotic tree species, and changes in fire regimes. Our study expands the applicability of forest dynamics models in remote and hitherto overlooked regions of the world, such as southern temperate rainforests.
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.
2011-12-01
Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial communities, while the quality of available organic matter may have played a significant role in supporting high performing microbial communities.
Dynamics of Active Layer Depth across Alaskan Tundra Ecosystems
NASA Astrophysics Data System (ADS)
Ma, C.; Zhang, X.; Song, X.; Xu, X.
2016-12-01
The thickness of the active layer, near-surface layer of Earth material above permafrost undergoing seasonal freezing and thawing, is of considerable importance in high-latitude environments because most physical, chemical, and biological processes in the permafrost region take place within it. The dynamics of active layer thickness (ALT) result from a combination of various factors including heat transfer, soil water content, soil texture, root density, stem density, moss layer thickness, organic layer thickness, etc. However, the magnitude and controls of ALT in the permafrost region remain uncertain. The purpose of this study is to improve our understanding of the dynamics of ALT across Alaskan tundra ecosystems and their controls at multiple scales, ranging from plots to entire Alaska. This study compiled a comprehensive dataset of ALT at site and regional scales across the Alaskan tundra ecosystems, and further analyzed ALT dynamics and their hierarchical controls. We found that air temperature played a predominant role on the seasonality of ALT, regulated by other physical and chemical factors including soil texture, moisture, and root density. The structural equation modeling (SEM) analysis confirmed the predominant role of physical controls (dominated by heat and soil properties), followed by chemical and biological factors. Then a simple empirical model was developed to reconstruct the ALT across the Alaska. The comparisons against field observational data show that the method used in this study is robust; the reconstructed time-series ALT across Alaska provides a valuable dataset source for understanding ALT and validating large-scale ecosystem models.
NASA Astrophysics Data System (ADS)
Top, S. M.; Filley, T. R.; Zurn-Birkhimer, S.
2009-12-01
Earthworms are frequently referred to as soil ecosystem engineers, reflecting their role as a potential major factor in controlling the dynamics of litter and soil organic matter transformations. Their significance is magnified when considering they are exotic in northern North American forests, humans acting as the main vector with transport of soil and recreational fishing. As a result of earthworm activity, forests can undergo significant changes to forest floor chemistry and soil structure, possibly increasing nutrient loss from both soil and leaf litter. The impact of earthworms on overall soil carbon stabilization/destabilization is largely unknown but likely a function of both species composition and edaphic soil properties. We are investigating the impacts of exotic earthworms on soils within two Great Lakes region forests; the Aspen free air CO2 enrichment (FACE) site, Rhinelander, WI, and forests in Red Lake Indian Reservation, MN. Aspen FACE provides an opportunity to document the changes that occur to forest chemistry and earthworm activity are a result of increased CO2, while the sites on the Red Lake Reservation are significant because of they contain a gradient of earthworm influence. At both sites earthworm populations were amassed from small pits and isolated to collect gut contents for isotopic and plant biopolymer chemistry analysis. Analysis are ongoing and will eventually include alkaline CuO extraction and isotopic analyses on the fecal matter, leaf litter, and soil to determine how plant biopolymers are vertically transported and mixed with soil from deeper horizons.
NASA Astrophysics Data System (ADS)
Glushakova, A. M.; Kachalkin, A. V.; Chernov, I. Yu.
2011-08-01
The annual dynamics of the number and taxonomic composition of yeast communities were studied in the phyllosphere, on the flowers, and on the roots of Indian balsam ( Impatiens glandulifera Royle) and in the mucky gley soil under the thickets of this plant. It was shown that typical phyllosphere yeast communities with a predominance of the red-pigmented species Rhodotorula mucilaginosa and Rhodotorula glutinis and the typical epiphyte Cryptococcus magnus are formed on the leaves of this annual hygrophyte. However, yeast groups with a predominance of the ascosporous species Saccharomyces paradoxus, Kazachstania barnettii, and Torulaspora delbrueckii, which are not typical of soils at all, were found in the mucky gley soil under the thickets of Indian balsam. Thus, the epiphytic and soil yeast complexes under the thickets of Indian balsam are represented by two entirely discrete communities without common species. In other biogeocenoses of the forest zone, the rearrangement of the structure of yeast communities in passing from the aboveground substrates to the soil proceeds gradually, and most of the species can be isolated both from the aboveground parts of plants and from the soil. The strong difference between the yeast communities in the phyllosphere of Indian balsam and in the soil under its thickets is apparently related to the fact that the annual hygrophytes are decomposed very quickly (during several days after the first frosts). Because of this, an intermediate layer between the phyllosphere and the soil (the litter layer), in which epiphytic microorganisms can develop, is not formed under these plants.
In-situ molecular-level elucidation of organofluorine binding sites in a whole peat soil.
Longstaffe, James G; Courtier-Murias, Denis; Soong, Ronald; Simpson, Myrna J; Maas, Werner E; Fey, Michael; Hutchins, Howard; Krishnamurthy, Sridevi; Struppe, Jochem; Alaee, Mehran; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Simpson, André J
2012-10-02
The chemical nature of xenobiotic binding sites in soils is of vital importance to environmental biogeochemistry. Interactions between xenobiotics and the naturally occurring organic constituents of soils are strongly correlated to environmental persistence, bioaccessibility, and ecotoxicity. Nevertheless, because of the complex structural and chemical heterogeneity of soils, studies of these interactions are most commonly performed indirectly, using correlative methods, fractionation, or chemical modification. Here we identify the organic components of an unmodified peat soil where some organofluorine xenobiotic compounds interact using direct molecular-level methods. Using (19)F→(1)H cross-polarization magic angle spinning (CP-MAS) nuclear magnetic resonance (NMR) spectroscopy, the (19)F nuclei of organofluorine compounds are used to induce observable transverse magnetization in the (1)H nuclei of organic components of the soil with which they interact after sorption. The observed (19)F→(1)H CP-MAS spectra and dynamics are compared to those produced using model soil organic compounds, lignin and albumin. It is found that lignin-like components can account for the interactions observed in this soil for heptafluoronaphthol (HFNap) while protein structures can account for the interactions observed for perfluorooctanoic acid (PFOA). This study employs novel comprehensive multi-phase (CMP) NMR technology that permits the application of solution-, gel-, and solid-state NMR experiments on intact soil samples in their swollen state.
NASA Astrophysics Data System (ADS)
Hou, Enqing; Chen, Chengrong; Kuang, Yuanwen; Zhang, Yuguang; Heenan, Marijke; Wen, Dazhi
2016-09-01
Understanding the soil phosphorus (P) cycle is a prerequisite for predicting how environmental changes may influence the dynamics and availability of P in soil. We compiled a database of P fractions sequentially extracted by the Hedley procedure and its modification in 626 unfertilized and uncultivated soils worldwide. With this database, we applied structural equation modeling to test hypothetical soil P transformation models and to quantify the importance of different soil P pools and P transformation pathways in shaping soil P availability at a global scale. Our models revealed that soluble inorganic P (Pi, a readily available P pool) was positively and directly influenced by labile Pi, labile organic P (Po), and primary mineral P and negatively and directly influenced by secondary mineral P; soluble Pi was not directly influenced by moderately labile Po or occluded P. The overall effect on soluble Pi was greatest for labile Pi followed by the organic P pools, occluded P, and then primary mineral P; the overall influence from secondary mineral P was small. Labile Pi was directly linked to all other soil P pools and was more strongly linked than soluble Pi to labile Po and primary mineral P. Our study highlights the important roles of labile Pi in mediating P transformations and in determining overall P availability in soils throughout the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarraonaindia, Iratxe; Owens, Sarah M.; Weisenhorn, Pamela
Grapevine is a well-studied, economically relevant crop, whose associated bacteria could influence its organoleptic properties. In this study, the spatial and temporal dynamics of the bacterial communities associated with grapevine organs (leaves, flowers, grapes, and roots) and soils were characterized over two growing seasons to determine the influence of vine cultivar, edaphic parameters, vine developmental stage (dormancy, flowering, preharvest), and vineyard. Belowground bacterial communities differed significantly from those aboveground, and yet the communities associated with leaves, flowers, and grapes shared a greater proportion of taxa with soil communities than with each other, suggesting that soil may serve as a bacterialmore » reservoir. A subset of soil microorganisms, including root colonizers significantly enriched in plant growth-promoting bacteria and related functional genes, were selected by the grapevine. In addition to plant selective pressure, the structure of soil and root microbiota was significantly influenced by soil pH and C:N ratio, and changes in leaf- and grape-associated microbiota were correlated with soil carbon and showed interannual variation even at small spatial scales. Diazotrophic bacteria, e.g., Rhizobiaceae and Bradyrhizobium spp., were significantly more abundant in soil samples and root samples of specific vineyards. Vine-associated microbial assemblages were influenced by myriad factors that shape their composition and structure, but the majority of organ-associated taxa originated in the soil, and their distribution reflected the influence of highly localized biogeographic factors and vineyard management.« less
NASA Astrophysics Data System (ADS)
Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe
2016-04-01
Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon (SOC), as essential input variable, was predicted by measured soil samples and associated to STD of the upper 30 cm. The comprehensive and high-resolution (4x4 m) soil profile information (up to 2 m soil depth) were then used to initialise a soil process model (Carbon and Nitrogen Dynamics - CANDY) for soil functional modelling (daily steps of matter fluxes, soil temperature and water balances). Our study was conducted on a practical field (~32,000 m²) of an agricultural farm in Central Germany with Chernozem soils under arid conditions (average rainfall < 550 mm). This soil region is known to have differences in soil structure mainly occurring within the subsoil, since topsoil conditions are described as homogenous. The modelled soil functions considered local climate information and practical farming activities. Results show, as expected, distinguished functional variability, both on spatial and temporal resolution for subsoil evident structures, e.g. visible differences for available water capacity within 0-100 cm but homogenous conditions for the topsoil.
Effects of the soil pore network architecture on the soil's physical functionalities
NASA Astrophysics Data System (ADS)
Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore
2017-04-01
The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).
Climate and Edaphic Controls on Humid Tropical Forest Tree Height
NASA Astrophysics Data System (ADS)
Yang, Y.; Saatchi, S. S.; Xu, L.
2014-12-01
Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on regional variations but strongly mediate landscape and small-scale forest structure and dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less
Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan; ...
2017-05-04
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere. X-ray Computed Tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and in-house developed code was used to non-invasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure, and extract quantitative information from the 3D data, respectively. Based on the explicitly-resolved root structure, pore-scale computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soilmore » hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. Furthermore, the coupled imaging-modeling approach demonstrates a realistic platform to investigate rhizosphere flow processes and would be feasible to provide useful information linked to upscaled models.« less
Scholz-Starke, B; Nikolakis, A; Leicher, T; Lechelt-Kunze, C; Heimbach, F; Theissen, B; Toschki, A; Ratte, H T; Schäffer, A; Ross-Nickoll, M
2011-11-01
Terrestrial Model Ecosystems (TME) were developed as one higher-tier option to detect and assess effects of pesticides on soil communities in a 1 year study using lindane (gamma-HCH) as a persistent and toxic reference pesticide. TME contained intact soil cores (diameter 300 mm, height 400 mm) including indigenous soil communities of undisturbed grassland. Forty units were placed outdoors between spring 2005 and 2006. The TME experiment was designed to provide data that fulfill the requirements of the revised European regulation on plant protection products (regulation 1107/2009/EEC replacing guideline 91/414/EC) with a focus on structural endpoints such as soil organisms and their community structure in case higher-tier evaluation is triggered. The key objective was to evaluate the dynamics and stability of species-diverse microarthropod communities of undisturbed grassland over at least 1 year after application. In grassland soils, less selection pressure towards insensitive species compared to arable land was presumed. Sufficient numbers of organisms and numerous TME replicates ensured that a statistical evaluation could be performed to estimate the sensitivity of the organisms upon application of lindane applied at high rates of 7.5 and 75 kg ai/ha. The application rates resulted in nominal concentrations of 10 and 100 mg ai/kg dry soil referred to the top 5 cm soil layer of 10 TME each; 20 untreated TME served as controls and were used to study the natural dynamics and the variability of populations under field conditions. Results showed that the grassland from which the soil cores were sampled contained communities of soil organisms marked by typical diversity of improved grassland. Lindane applied at excessive rates caused clear dose-related and long-lasting effects on the communities of microarthropods. On the contrary, lumbricids, the total feeding activity (bait lamina) and the growth of plant biomass were not affected up to 1 year after application. Based on the results of this study using a toxic reference insecticide, the methodology seems to be suitable for use in the regulatory context of the assessment of pesticides once protection goals, data requirements and the conceptual framework are defined.
NASA Astrophysics Data System (ADS)
Liu, Dongdong; She, Dongli
2018-06-01
Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.
Precipitation pulse dynamics of carbon sequestration and efflux in highly weatherable soils
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R.; Van Haren, J. L.; Dontsova, K.; Troch, P. A.
2013-12-01
Soils are the primary pool for terrestrial carbon on Earth, and loss of that carbon to the atmosphere or hydrosphere represents a significant efflux that can impact a host of other downstream processes. Soil respiration (Rsoil), the efflux of CO2 to the atmosphere, represents the major pathway by which carbon is lost from the soil system in more weathered soils. However, in newly formed soils, chemical weathering can significantly deplete soil CO2 concentrations. As vegetation colonizes these soils, multiple interacting and contradictory pathways evolve such that soil CO2 concentrations increase in response to plant inputs but are decreased through chemical reactions. Furthermore, abiotic drivers of soil temperature and moisture likely differentially affect these processes. Understanding the bio-geo-chemical drivers and feedbacks associated with soil CO2 production and efflux in the critical zone necessitates an integrated science approach, drawing on input from plant physiologists, bio- and geochemists, and hydrologists. Here, we created a series of 1-meter deep mesocosms filled with granular basalt that supported either a woody mesquite shrub, a bunchgrass, or was left as bare soil. Use of multiple plant functional types allowed us to explore the impacts of plant structure (primarily rooting profiles) on critical zone function in terms of water and carbon exchange surrounding precipitation pulse dynamics. Each mesocosm was outfitted with an array of soil moisture, temperature, water potential, and CO2 concentration sensors at the near-surface, 30, 55, and 80cm depths to quantify patterns of soil moisture and respiratory CO2 efflux in response to rainfall events of varying magnitude and intervening periods of drought. Five replicates of each were maintained under current ambient or projected (+4oC) air temperatures. In addition, we used minirhizotrons to quantify the response of roots to episodic rainfall and confirm differences among plant types and collected soils solution samples to quantify dissolved inorganic carbon (DIC), pH, and other solute concentrations. Importantly, we found Rsoil dynamics to be nearly in direct contrast to our classic understanding of patterns of soil CO2 efflux after rain events. Rsoil rates declined immediately upon wetting and gradually increased to pre-rain rates as the soils dried. Investigation into soil CO2 profile data showed that CO2 concentrations just below the surface declined significantly from near-ambient levels to near ~50ppm, which would directly impact rates of Rsoil. We detected differences among plant functional types in terms of rooting depth, water use, photosynthetic uptake, base rates of Rsoil, the time required to return to pre-rain rates of Rsoil, and the rates of soil weathering. Combining aboveground measurements of carbon uptake with these belowground estimates of carbon pools and efflux will allow us to make much more informed projections of carbon dynamics within highly weatherable soils across a range of global climate change projections and plant functional types.
Shading responses of carbon allocation dynamics in mountain grassland
NASA Astrophysics Data System (ADS)
Bahn, M.; Lattanzi, F. A.; Brueggemann, N.; Siegwolf, R. T.; Richter, A.
2012-12-01
Carbon (C) allocation strongly influences plant and soil processes. Global environmental changes can alter source - sink relations of plants with potential implications for C allocation. Short-term C allocation dynamics in ecosystems and their responses to environmental changes are still poorly understood. To analyze effects of assimilate supply (i.e. C source strength) on ecosystem C allocation dynamics and the role of non-structural carbohydrates, canopy sections of a mountain meadow were pulse labeled with 13CO2 and subsequently shaded for a week or left unshaded (control). Tracer dynamics in above- and belowground sucrose and starch pools were analysed and coupled using compartmental modelling. The hypothesis was tested that shading affects tracer dynamics in non-structural carbohydrates and diminishes the transfer of recently assimilated C to roots and their storage pools. In unshaded plots up to 40% of assimilated C was routed through short-term storage in shoot starch and sucrose to buffer day / night cycles in photosynthesis. Shoot- and root sucrose and shoot starch were kinetically closely related pools. The tracer dynamics of the modelled root sucrose pool corresponded well with those in soil CO2 efflux. Root starch played no role in buffering day / night cycles and likely acted as a seasonal store. Shading strongly reduced sucrose and starch concentrations in shoots but not roots and resulted in a massive reduction of leaf respiration, while root respiration was much less diminished. Shading affected tracer dynamics in sucrose and starch of shoots: shoot starch rapidly lost tracer, while sucrose transiently increased its tracer content. Surprisingly, shading did not alter the dynamics of root carbohydrates. Even under severe C limitation after one week of shading, tracer C continued to be incorporated in root starch. Also the amount of 13C incorporated in phospholipid fatty acids of soil microbial communities was not reduced by shading, though its residence time followed a changed pattern, suggesting an influence of C source strength on the utilization and turnover of recent plant-derived C. These findings will be discussed in the broader context of plant and ecosystem carbon allocation, with particular reference to the concepts of 'source versus sink strength' and 'passive versus active C storage'.
Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão
2016-01-01
Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem. PMID:26824176
Dini-Andreote, Francisco; de Cássia Pereira e Silva, Michele; Triadó-Margarit, Xavier; Casamayor, Emilio O; van Elsas, Jan Dirk; Salles, Joana Falcão
2014-10-01
The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time.
Dini-Andreote, Francisco; de Cássia Pereira e Silva, Michele; Triadó-Margarit, Xavier; Casamayor, Emilio O; van Elsas, Jan Dirk; Salles, Joana Falcão
2014-01-01
The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time. PMID:24739625
Dini-Andreote, Francisco; Pylro, Victor Satler; Baldrian, Petr; van Elsas, Jan Dirk; Salles, Joana Falcão
2016-08-01
Marine-to-terrestrial transition represents one of the most fundamental shifts in microbial life. Understanding the distribution and drivers of soil microbial communities across coastal ecosystems is critical given the roles of microbes in soil biogeochemistry and their multifaceted influence on landscape succession. Here, we studied the fungal community dynamics in a well-established salt marsh chronosequence that spans over a century of ecosystem development. We focussed on providing high-resolution assessments of community composition, diversity and ecophysiological shifts that yielded patterns of ecological succession through soil formation. Notably, despite containing 10- to 100-fold lower fungal internal transcribed spacer abundances, early-successional sites revealed fungal richnesses comparable to those of more mature soils. These newly formed sites also exhibited significant temporal variations in β-diversity that may be attributed to the highly dynamic nature of the system imposed by the tidal regime. The fungal community compositions and ecophysiological assignments changed substantially along the successional gradient, revealing a clear signature of ecological replacement and gradually transforming the environment from a marine into a terrestrial system. Moreover, distance-based linear modelling revealed soil physical structure and organic matter to be the best predictors of the shifts in fungal β-diversity along the chronosequence. Taken together, our study lays the basis for a better understanding of the spatiotemporally determined fungal community dynamics in salt marshes and highlights their ecophysiological traits and adaptation in an evolving ecosystem.
NASA Technical Reports Server (NTRS)
Parton, William J.; Ojima, Dennis S.; Schimel, David S.; Kittel, Timothy G. F.
1992-01-01
During the past decade, a growing need to conduct regional assessments of long-term trends of ecosystem behavior and the technology to meet this need have converged. The Century model is the product of research efforts initially intended to develop a general model of plant-soil ecosystem dynamics for the North American central grasslands. This model is now being used to simulate plant production, nutrient cycling, and soil organic matter dynamics for grassland, crop, forest, and shrub ecosystems in various regions of the world, including temperate and tropical ecosystems. This paper will focus on the philosophical approach used to develop the structure of Century. The steps included were model simplification, parameterization, and testing. In addition, the importance of acquiring regional data bases for model testing and the present regional application of Century in the Great Plains, which focus on regional ecosystem dynamics and the effect of altering environmental conditions, are discussed.
Vivant, Anne-Laure; Garmyn, Dominique; Maron, Pierre-Alain; Nowak, Virginie; Piveteau, Pascal
2013-01-01
Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment.
Accounting for microbial habitats in modeling soil organic matter dynamics
NASA Astrophysics Data System (ADS)
Chenu, Claire; Garnier, Patricia; Nunan, Naoise; Pot, Valérie; Raynaud, Xavier; Vieublé, Laure; Otten, Wilfred; Falconer, Ruth; Monga, Olivier
2017-04-01
The extreme heterogeneity of soils constituents, architecture and inhabitants at the microscopic scale is increasingly recognized. Microbial communities exist and are active in a complex 3-D physical framework of mineral and organic particles defining pores of various sizes, more or less inter-connected. This results in a frequent spatial disconnection between soil carbon, energy sources and the decomposer organisms and a variety of microhabitats that are more or less suitable for microbial growth and activity. However, current biogeochemical models account for C dynamics at the macroscale (cm, m) and consider time- and spatially averaged relationships between microbial activity and soil characteristics. Different modelling approaches have intended to account for this microscale heterogeneity, based either on considering aggregates as surrogates for microbial habitats, or pores. Innovative modelling approaches are based on an explicit representation of soil structure at the fine scale, i.e. at µm to mm scales: pore architecture and their saturation with water, localization of organic resources and of microorganisms. Three recent models are presented here, that describe the heterotrophic activity of either bacteria or fungi and are based upon different strategies to represent the complex soil pore system (Mosaic, LBios and µFun). These models allow to hierarchize factors of microbial activity in soil's heterogeneous architecture. Present limits of these approaches and challenges are presented, regarding the extensive information required on soils at the microscale and to up-scale microbial functioning from the pore to the core scale.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad
2016-04-01
Water storage in the unsaturated zone is controlled by capillary forces which increase nonlinearly with decreasing pore size, because water acts as a wetting fluid in soil. The standard approach to represent capillary and gravity controlled soil water dynamics is the Darcy-Richards equation in combination with suitable soil water characteristics. This continuum model essentially assumes capillarity controlled diffusive fluxes to dominate soil water dynamics under local thermodynamic equilibrium conditions. Today we know that the assumptions of local equilibrium conditions e.g. and a mainly diffusive flow are often not appropriate, particularly during rainfall events in structured soils. Rapid or preferential flow imply a strong local disequilibrium and imperfect mixing between a fast fraction of soil water, traveling in interconnected coarse pores or non-capillary macropores, and the slower diffusive flow in finer fractions of the pore space. Although various concepts have been proposed to overcome the inability of the Darcy - Richards concept to cope with not-well mixed preferential flow, we still lack an approach that is commonly accepted. Notwithstanding the listed short comings, one should not mistake the limitations of the Richards equation with non-importance of capillary forces in soil. Without capillarity infiltrating rainfall would drain into groundwater bodies, leaving an empty soil as the local equilibrium state - there would be no soil water dynamics at all, probably even no terrestrial vegetation without capillary forces. Better alternatives for the Darcy-Richards approach are thus highly desirable, as long they preserve the grain of "truth" about capillarity as first order control. Here we propose such an alternative approach to simulate soil moisture dynamics in a stochastic and yet physical way. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. A naive random walk, which assumes all water particles to move at the same drift velocity and diffusivity, overestimated depletion of soil moisture gradients compared to a Richards' solver within three distinctly different soils. This is because soil water and hence the corresponding water particles in smaller pores size fractions, are, due to the non-linear decrease of soil hydraulic conductivity with decreasing soil moisture, much less mobile. After accounting for this subscale variability of particle mobility, the particle model and a Richards' solver performed highly similar during simulated wetting and drying circles in three distinctly different soils. Alternatively, we tested a computational less approach, assuming only the 10 or 20% of the fastest particles as mobile, while treating the remaining particles located in smaller pores sizes as immobile. For instance in a sandy soil a mobile fraction of 20% revealed almost identical results as the full mobility model and performed even closer to the Richards solver. In this context we also compared the cases of perfect mixing and no mixing between mobile and immobile water particles between different time steps. The second option was clearly superior with respect to match simulations with the Richards' solver. The particle model is hence a suitable tool to "unmask" a) inherent implications of the Darcy-Richards concept on the fraction of soil water that actually contributes to soil water dynamics and b) the inherent very limited degrees of freedom for mixing between mobile and immobile water fractions. A main asset of the particle based approach is that the assumption of local equilibrium equation during infiltration may be easily released. We tested this idea in a straight forward manner, by treating infiltrating event water particles as second particle type which travel initially, mainly gravity driven, in the largest pore fraction at maximum drift, and yet experience a slow diffusive mixing with the pre-event water particles within a characteristic mixing time. Simulations with the particle model in the non-equilibrium mode were a) rather sensitive to the coefficient describing mixing of event water particles and b) clearly outperformed the Richards model with respect to match observed soil dynamics in a real world benchmark. The proposed non-linear random walk of water particles is, hence, an easy to implement alternative for simulating soil moisture dynamics in the unsaturated, which preserves the influence of capillarity and makes use of established soil physics. The approach is particularly promising to deal with preferential flow and transport of solutes and to explore transit time distributions.
NASA Astrophysics Data System (ADS)
Filley, T. R.; Top, S. M.; Hopkins, F. M.
2010-12-01
The influence of CO2-driven increase in net primary productivity on soil organic carbon accrual has received considerable emphasis in ecological literature with conclusions varying from positive, to neutral, to negative. What has been understudied is the coupled role of soil fauna, such as earthworms, in controlling the ultimate fate of new above and below ground plant carbon under elevated CO2. Such considerations are particularly relevant considering that in most northern North American forests earthworms are an exotic organism known to cause significant changes to forest floor chemistry and soil structure, possibly increasing nutrient loss from both soil and leaf litter and mixing litter and humus deep into the mineral soil. The impact of these exotic earthworms on overall soil carbon stabilization is largely unknown but likely a function of both species composition and edaphic soil properties. In this paper we present the initial results of a carbon isotope study (13C, 14C) conducted at the Aspen free air CO2 enrichment (FACE) site, Rhinelander, WI, USA to track allocation and redistribution within the soil of plant litter and root carbon (bulk and biopolymer). Along with litter and soil to 25 cm depth, earthworm populations were quantified, and their gut contents collected for isotopic and plant biopolymer chemistry analysis. Contributions of root vs. leaf input to soil and earthworm fecal matter were derived from differences in the chemical and isotope composition of alkaline CuO-derived lignin and substituted fatty acids (SFA) from cutin and suberin. Our investigation demonstrates the presence of invasive European earthworms, of both litter and surface soil dwelling (epigeic) and deep soil dwelling (endogeic) varieties, whose abundance increases under elevated CO2 conditions. Additionally, the different species show selective vertical movement of new and pre-FACE plant biopolymers indicating dynamics in root and leaf decomposition and burial (down to 30 cm) based upon exotic earthworm activity. The isotopic analysis also demonstrates that these invasive ecosystem engineers are bringing up “old” pre-FACE carbon to the surface, diluting the surface soil carbon isotope signature and potentially causing an apparent “slowing” of the rate of accumulation of FACE derived carbon. Our results highlight the complexity of determining soil C dynamics and the important role of invertebrate ecology in this process.
NASA Astrophysics Data System (ADS)
De Graaff, M.; vanderVeen, J.; Germino, M. J.
2011-12-01
Climate change is expected to alter the amount and timing of precipitation in semiarid ecosystems of the intermountain west, which can alter soil carbon dynamics. Specifically, an increase in precipitation in arid ecosystems promotes microbial activity, which can increase soil aggregate formation and enhance sequestration of soil organic carbon within stable aggregates. This study was conducted to assess: (1) how precipitation shifts affect soil aggregate formation and associated soil organic carbon contents in semi arid ecosystems, and (2) how plants mediate precipitation impacts on soil aggregate dynamics. Soil samples were collected from a long-term ecohydrology study located in the cold desert of the Idaho National Lab, USA. Precipitation treatments delivered during the previous 18 years consist of three regimes: (1) a control (ambient precipitation), (2) 200 mm irrigation added during the growing season, and (3) 200 mm irrigation added during the cold dormant season. Experimental plots were planted with a diverse native mix of big sagebrush (Artemisia tridentate) and associated shrubs, grasses, and forbs, but had also become invaded by crested wheatgrass (Agropyron cristatum). Soils were collected in February (2011) with a 4.8 cm diameter soil corer to a depth of 15 cm. Across all precipitation treatments we sampled both directly beneath sagebrush and crested wheatgrass and from relatively bare plant-interspaces. Subsamples (100 g) were sieved (4.75 mm) and air dried. Then, the soils were fractionated into (1) macro aggregates (> 250 μm), (2) free micro aggregates (53-250 μm) and (3) free silt and clay fractions (<53 μm), using a wet sieving protocol. Further, macro aggregates were separated into particulate organic matter (POM), micro aggregates and silt and clay fractions using a micro aggregate isolator. Soil fractions were analyzed for soil organic carbon contents after removal of soil carbonates using sulfurous acid. Our preliminary results indicate that supplemental precipitation enhanced macro aggregate formation by 20% under plants and by 70% in plant interspaces. In contrast, free silt and clay fractions decreased in response to supplemental precipitation. These preliminary findings suggest that increased precipitation in a cold desert ecosystem may significantly enhance soil structure, particularly in the interspaces separating plants where surface crusting, poor infiltration and reduced fertility otherwise prevail.
Quantification of spatial distribution and spread of bacteria in soil at microscale
NASA Astrophysics Data System (ADS)
Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Baveye, Philippe; Otten, Wilfred
2015-04-01
Soil bacteria play an essential role in functioning of ecosystems and maintaining of biogeochemical cycles. Soil is a complex heterogeneous environment comprising of highly variable and dynamic micro-habitats that have significant impacts on the growth and activity of resident microbiota including bacteria and fungi. Bacteria occupy a very small portion of available pore space in soil which demonstrates that their spatial arrangement in soil has a huge impact on the contact to their target and on the way they interact to carry out their functions. Due to limitation of techniques, there is scant information on spatial distribution of indigenous or introduced bacteria at microhabitat scale. There is a need to understand the interaction between soil structure and microorganisms including fungi for ecosystem-level processes such as carbon sequestration and improving the predictive models for soil management. In this work, a combination of techniques was used including X-ray CT to characterize the soil structure and in-situ detection via fluorescence microscopy to visualize and quantify bacteria in soil thin sections. Pseudomonas fluorescens bacteria were introduced in sterilized soil of aggregate size 1-2 mm and packed at bulk-densities 1.3 g cm-3 and 1.5 g cm-3. A subset of samples was fixed with paraformaldehyde and subsequently impregnated with resin. DAPI and fluorescence in situ hybridization (FISH) were used to visualize bacteria in thin sections of soil cores by epifluorescence microscopy to enumerate spatial distribution of bacteria in soil. The pore geometry of soil was quantified after X-ray microtomography scanning. The distribution of bacteria introduced locally reduced significantly (P
NASA Astrophysics Data System (ADS)
Creamer, Courtney A.; Filley, Timothy R.; Boutton, Thomas W.; Rowe, Helen I.
2016-06-01
Woodland encroachment into grasslands is a globally pervasive phenomenon attributed to land use change, fire suppression, and climate change. This vegetation shift impacts ecosystem services such as ground water allocation, carbon (C) and nutrient status of soils, aboveground and belowground biodiversity, and soil structure. We hypothesized that woodland encroachment would alter microbial community structure and function and would be related to patterns in soil C accumulation. To address this hypothesis, we measured the composition and δ13C values of soil microbial phospholipids (PLFAs) along successional chronosequences from C4-dominated grasslands to C3-dominated woodlands (small discrete clusters and larger groves) spanning up to 134 years. Woodland development increased microbial biomass, soil C and nitrogen (N) concentrations, and altered microbial community composition. The relative abundance of gram-negative bacteria (cy19:0) increased linearly with stand age, consistent with decreases in soil pH and/or greater rhizosphere development and corresponding increases in C inputs. δ13C values of all PLFAs decreased with time following woody encroachment, indicating assimilation of woodland C sources. Among the microbial groups, fungi and actinobacteria in woodland soils selectively assimilated grassland C to a greater extent than its contribution to bulk soil. Between the two woodland types, microbes in the groves incorporated relatively more of the relict C4-C than those in the clusters, potentially due to differences in below ground plant C allocation and organo-mineral association. Changes in plant productivity and C accessibility (rather than C chemistry) dictated microbial C utilization in this system in response to shrub encroachment.
Singh, Baneshwar; Minick, Kevan J.; Strickland, Michael S.; Wickings, Kyle G.; Crippen, Tawni L.; Tarone, Aaron M.; Benbow, M. Eric; Sufrin, Ness; Tomberlin, Jeffery K.; Pechal, Jennifer L.
2018-01-01
As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3–732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem function surrounding carrion decomposition islands and can be applicable to environmental bio-monitoring and forensic sciences. PMID:29354106
Singh, Baneshwar; Minick, Kevan J; Strickland, Michael S; Wickings, Kyle G; Crippen, Tawni L; Tarone, Aaron M; Benbow, M Eric; Sufrin, Ness; Tomberlin, Jeffery K; Pechal, Jennifer L
2017-01-01
As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3-732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem function surrounding carrion decomposition islands and can be applicable to environmental bio-monitoring and forensic sciences.
NASA Astrophysics Data System (ADS)
Soulsby, C.; Dick, J.; Tetzlaff, D.; Bradford, J.
2016-12-01
The role of vegetation on the partitioning of precipitation, and the subsequent storage and release of water within the landscape is poorly understood. In particular, the relationship between vegetation and soil moisture is complex and reciprocal. The role of soil moisture as the primary source of water to plants may affect vegetation distribution. In turn, the structure of vegetation canopies may regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in the inputs, together with complex patterns of water uptake from highly distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Here, we present a study combining 3D and 2D ERT surveys with soil moisture measurements in a 3.2km upland catchment in the Scottish Highlands to understand influences of different vegetation types on spatio-temporal dynamics in soil moisture. The study focussed on one year of fortnightly ERT surveys to investigate plant-soil-water interactions within the root zone in podzolic soils. Locations were selected in both forest stands of 15m high Scots pine (Pinus sylvestris) and non-forest locations dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities in the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses, with pronounced wetting cycles of the soil surrounding the bole of trees as a consequence of stem flow. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the heather site, with drying typically being focussed on the areas around the trees, and reflecting the amount of water uptake. Moisture changes in the heather site were fairly heterogeneous are related to micro-topographic affects, lower interception ( 30% compared with 45%) and a smaller microclimatic effect of the canopy which serves to create greater fluctuations in soil moisture. Our results confirm the value in using geophysics to spatially elucidate subsurface plant-soil-water interactions.
NASA Astrophysics Data System (ADS)
Wacha, K.; Papanicolaou, T.; Hatfield, J.; Cambardella, C.; Abban, B. K.; Wilson, C. G.; Filley, T. R.; Hou, T.; Dold, C.
2017-12-01
The abundance and distribution of surface soil size fractions has been shown to be reflective of changes in management practices and landscape position. Soil size fractions exist in both un-aggregated and aggregated forms that differ in textural and biological composition, which can impact soil hydrology and aggregation processes. Soils with higher stocks of soil organic matter (SOM) promote higher biological activity, infiltration, and soil structure due to stronger, more resilient aggregates. Within ag-systems, intensive cultivation and steep gradients can negatively impact the formation/stability of aggregates and amplify erosion processes, which redistributes material along downslope flowpathways to varying degrees, based on the amount of available surface cover during a rainfall event. The innate variability in SOM composition found amongst the size fractions combined with these highly active flowpathways, produces a symphony of interactive biogeochemical and hydrologic processes, which promote spatial landscape heterogeneity. Due to this intricacy, accurately assessing changes in SOM stocks within high energy ag-systems is extremely challenging, and could greatly impact soil carbon budgets at the hillslope and greater spatial scales. To address this, in part, we utilize a systematic approach that isolates the role of management in building aggregate resilience to hydrologic forcing. Soil samples were collected from farm fields with varying slopes (1-20%) and management conditions, and then isolated into seven aggregate size fractions. Each aggregate fraction was tested for resilience to raindrop impact with corresponding SOM composition and biological activity. Rainfall simulations were conducted on plots under representative management and gradient to capture the dynamicity of the size fractions being transported during an applied rainfall event. Results found that small macroaggregate fractions were most indicative of changes in management, and erosion rates from plots were inversely proportional to SOM enrichment. These experiments not only promote our fundamental understanding on the dynamics of surface soil and SOM redistribution but also can provide guidance into best management practices that promote aggregate stability, decrease soil loss, and enhance soil health.
Influence of Precipitation Regime on Microbial Decomposition Patterns in Semi-Arid Ecosystems
NASA Astrophysics Data System (ADS)
Feris, K. P.; Jilek, C.; Huber, D. P.; Reinhardt, K.; deGraaff, M.; Lohse, K.; Germino, M.
2011-12-01
In water-limited semi-arid sagebrush steppe ecosystems predicted changes in climate may manifest as a shift from historically winter/snow-dominated precipitation regimes to one dominated by spring rains. In these ecosystems soil microorganisms play a vital role in linking the effects of water availability and plant productivity to biogeochemical cycling. Patterns of soil microbial catalyzed organic matter decomposition patters (i.e. patterns of extracellular enzyme activity (EEA)) are thought to depend upon the quantity and quality of soil organic matter (SOM), pH, and mean annual precipitation (Sinsabaugh, 2008), and less on the timing and magnitude of precipitation. However, sagebrush-steppe plant communities respond strongly to changes in the timing and magnitude of precipitation, and preliminary findings by our group suggest that corresponding changes in SOM quantity, quality, N-cycle dynamics, and soil structure are occurring. Therefore, we hypothesized: 1) Shifts in the timing and magnitude of precipitation would indirectly affect soil microbial decomposition patterns via responses in the plant community structure; and 2) Changes in precipitation patterns can directly affect soil microbial community structure and function, in effect uncoupling the interaction between plant community structure and soil community structure. We tested our hypotheses by determining the influence of experimentally manipulated timing and magnitude of precipitation on soil microbial EEA using standard flourometric assays in soils sampled under plant canopies and plant interspaces. We assessed this response in a mature (18 + years) ecohydrologic field experiment in eastern Idaho that annually imitates three possible post climatic-shift precipitation regimes (Ambient (AMB): no additional precipitation, ~200mm annually; Summer (SUMM): 200mm provisioned at 50mm bi-weekly starting in June; and Fall/Spring (F/S): 200mm provisioned over 1-2 weeks in October or April) (n=3). Within plant interspaces Beta glucosaminide activity increased by 18% in treatments receiving additional F/S precipitation, whereas alpha glucopyranoside activity was lower in the F/S and SUMM plots. Conversely, underplant canopies alpha glucopyranoside activity increased by 15% in the SUMM and F/S precipitation treatments. Across treatments and sampling types (i.e. plant canopy vs. interspace), cellobioside activity levels are consistently elevated in response to additional precipitation compared to those of the control plots. When coupled with recent preliminary findings by our group regarding changes in plant and microbial community structure and SOM, C-storage, and soil structural responses, these preliminary findings suggest that 1) microbial community structure and function respond both directly and indirectly to changes in climate, and 2) thus provide a mechanism for changes in plant community structure to feed-forward to affect soil carbon decomposition patterns and ultimately soil carbon storage potential.
NASA Astrophysics Data System (ADS)
Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas
2014-05-01
In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.
Hinojosa, M Belén; Parra, Antonio; Laudicina, Vito Armando; Moreno, José M
2016-12-15
Fire may cause significant alterations in soil properties. Post-fire soil dynamics can vary depending, among other factors, on rainfall patterns. However, little is known regarding variations in response to post-fire drought. This is relevant in arid and semiarid areas with poor soils, like much of the western Mediterranean. Furthermore, climate change projections in such areas anticipate reduced precipitation and longer annual drought periods, together with an increase in fire severity and frequency. This research evaluates the effects of experimental drought after fire on soil dynamics of a Cistus-Erica shrubland (Central Spain). A replicated (n=4) field experiment was conducted in which the total rainfall and its patterns were manipulated by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (average rainfall, 2months drought), moderate drought (25% reduction of historical control, 5months drought) and severe drought (45% reduction, 7months drought). After one growing season under these rainfall treatments, the plots were burned. One set of unburned plots under natural rainfall served as an additional control. Soils were collected seasonally. Fire increased soil P and N availability. Post-fire drought treatments reduced available soil P but increased N concentration (mainly nitrate). Fire reduced available K irrespective of drought treatments. Fire reduced enzyme activities and carbon mineralization rate, a reduction that was higher in post-fire drought-treated soils. Fire decreased soil microbial biomass and the proportion of fungi, while that of actinomycetes increased. Post-fire drought decreased soil total microbial biomass and fungi, with bacteria becoming more abundant. Our results support that increasing drought after fire could compromise the resilience of Mediterranean ecosystems to fire. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maksimova, Ekaterina; Abakumov, Evgeny
2016-04-01
Postpyrogenic soil dynamics is an informative tool for studying of soil elementary processes in extreme temperature conditions and for predicting of short time environmental changes in conditions of catastrophic landscape changes. Soil organic matter (SOM) system evolution is the most rapid process of postpyrogenic soil development. In this relation the evaluation of humus accumulation rates and humification trend were conducted with use of the classical chemical and modern spectroscopy methods. Soil restoration after spontaneous forest fires near Togljatty city (Samara region, Russia) was abandoned in 2010, and further monitoring over the next four years was organized to evaluate the speed of biogenic processes and humus accumulation dynamics. Three key soil plots were studied for estimating SOM quality changes under the forest fire effect: surface forest fire, crown forest fire and control. Total carbon and nitrogen content as well as Cha/Cfa ratios (content of humic acids/ content of fulvic acids), were estimated to assess the dynamics of soil restoration. Humic acid powders were extracted and analyzed by elemental composition and 13C-NMR spectroscopy to assess changes in humic substance structure and composition. The data obtained indicate that burning of a forest floor and sod (humic) horizon led to humus losses and decreases in total carbon stocks. As a result of the fires, the content of humic acids in the pyrogenic horizon increased, leading alterations of humus type. Greater increases in the degree of organic matter humification were observed for surface fires than crown fires. It was shown that the humus molecular composition was substantially affected by the wildfires. The data show an increase in aromaticity, a loss of oxygen-containing groups and dehydrogenation of humic acids. Humic acids in the soils of the control plots and after wildfires were significantly different, especially in the ratios of hydrogen, oxygen and carbon. The increase in the degree of humic acid aromatization was confirmed by the hydrogen/carbon ratio. Investigation of the humic acids' molecular structure by 13C-NMR showed a relative increase in aromatic compounds and decrease in aliphatic ones. In general, crown and surface fires plots are not very different in terms of 13C-NMR spectra of humic acids, however humic acids of control plot have essential differences from pyrogenic ones. This study was a contribution to the Russian foundation for basic research, project for young scientists No.14-04-32132 and 15-34-20844.
Derivation of thermokarst distribution based on climate and surface characteristics
NASA Astrophysics Data System (ADS)
Schöngaßner, Thomas; Hagemann, Stefan
2013-04-01
About one quarter of the northern hemisphere is covered by permafrost. Permafrost areas inherit a high amount of deposited soil organic carbon, which represents approximately 50% of the estimated global below-ground organic carbon pool and is more than twice the size of the current atmospheric carbon pool. A destabilization due to the expected amplitude of future Arctic climate warming would lead to a global-scale feedback mechanism. This feedback comprise interactions between snow, permafrost, hydrology, and ecosystems, which include altered energy and water fluxes between atmosphere and land surface. The representation of permafrost related processes in GCMs and ESMs is still rudimentary and needs to be extended to improve the climate model performance in high latitudes. In this sense thermokarst processes should be included into JSBACH, the land-surface component of MPI-ESM. Initially, a 1-D scheme of thermal dynamics will be implemented into JSBACH, which fits into very recent developments with regards to permafrost melting and freezing (T. Blome; Ekici et al., in prep.) and a dynamical wetland scheme (Stacke and Hagemann, 2012). Structural improvements and new parametrization of the model are required with regard to heat and water flow (physical processes) and carbon and nitrogen dynamics (bio-geochemical processes). The implementation of a thermokarst module is one task within the EU project PAGE21 and is a joint activity between MPI-M Hamburg and MPI-BGC Jena. Thermokarst changes are coupled thermal-hydrological processes, which lead to an enhanced thawing of ice-rich permafrost on local-to-regional scales, where the soil structure is characterized by segregated ice and ice-wedges. They result in severe consequences for soil structure, hydrology, and depletion of soil organic carbon. Thermokarst affected areas appear as a very uneven surface of hummocks and marshy hollows. The initial heat balance of the surface is disturbed by different trigger mechanisms, which cause the ground ice to melt and the soil to subside into depressions due to developing cavities in the interior. The depressions fill up with melting and precipitating water. Since deeper water bodies do not freeze up entirely, the annual mean surface temperature increases in the soil beneath. Therefore permafrost thawing is continued and depressions grow further due to soil subsidence and slope wash at the margins until a new soil surface heat balance is reached. Here I'd like to give a short overview and an introduction into the ongoing thermokarst process in the Arctic tundra. The main focus will be on investigating the actual distribution of thermokarst lakes in the high northern latitudes. The development of thermokarst lakes depends on soil parameters like ice content, surface temperature, soil texture as well as on climate states like monthly mean temperature, precipitation, winter snow depth. They contribute to the surface heat balance and may serve as a measure for thermokarst potential. Since thermokarst mechanism is a small-scale process of 10-1000m in spatial extent, it needs to be parametrized for GCM applications on ESM grid scale. Thus, we want to derive the thermokarst distribution as a function of climate and soil parameters.
Seasonal variations in the diversity and abundance of diazotrophic communities across soils.
Pereira e Silva, Michele C; Semenov, Alexander V; van Elsas, Jan Dirk; Salles, Joana Falcão
2011-07-01
The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Microbial control over carbon cycling in soil
Schimel, Joshua P.; Schaeffer, Sean M.
2012-01-01
A major thrust of terrestrial microbial ecology is focused on understanding when and how the composition of the microbial community affects the functioning of biogeochemical processes at the ecosystem scale (meters-to-kilometers and days-to-years). While research has demonstrated these linkages for physiologically and phylogenetically “narrow” processes such as trace gas emissions and nitrification, there is less conclusive evidence that microbial community composition influences the “broad” processes of decomposition and organic matter (OM) turnover in soil. In this paper, we consider how soil microbial community structure influences C cycling. We consider the phylogenetic level at which microbes form meaningful guilds, based on overall life history strategies, and suggest that these are associated with deep evolutionary divergences, while much of the species-level diversity probably reflects functional redundancy. We then consider under what conditions it is possible for differences among microbes to affect process dynamics, and argue that while microbial community structure may be important in the rate of OM breakdown in the rhizosphere and in detritus, it is likely not important in the mineral soil. In mineral soil, physical access to occluded or sorbed substrates is the rate-limiting process. Microbial community influences on OM turnover in mineral soils are based on how organisms allocate the C they take up – not only do the fates of the molecules differ, but they can affect the soil system differently as well. For example, extracellular enzymes and extracellular polysaccharides can be key controls on soil structure and function. How microbes allocate C may also be particularly important for understanding the long-term fate of C in soil – is it sequestered or not? PMID:23055998
Cycling and effects of 36Cl labeled DDT on soil invertebrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dindal, Daniel L.
1978-08-01
DDT, radiolabeled with /sup 36/Cl (total activity of 10.2 mc) and applied in the field at the rate of 1.12 kg/ha, cannot be detected within decomposer microarthropods using liquid scintillation spectrometry. Soil microarthropods exhibit both positive and negative responses to direct and indirect effects of DDT. Faunal simplification (decreased diversity) resulting from pesticide application as reported by many others does not apply to the oribatid and prostigmatid mites of the old field. New colonization is possible by some species of Acari as a result of DDT application. Soil microbial respiration is enhanced by a single DDT application of 1 kg/ha.more » No apparent relationships exist between the increased microbial respiration and soil microarthropod population dynamics in this DDT treated old field. No apparent relationships exist between soil pH, moisture levels, texture and soil microarthropod population dynamics. Microarthropod community structure (species diversity and richness, interspecific relationships and similarity) are definitely affected by a single application of DDT. The Prostigmata are the most numerous mites in the soil of an old field in central Ohio. Vertebrate predators feeding on terrestrial snails may be subjected to magnified concentrations of DDT residues. Coprophagic decomposer organisms feeding on snail feces will be subject to much larger DDT concentrations. Terrestrial snails represented by Cepaea and Otala are not killed by acute oral doses of DDT. Within a three year period after a single application of DDT no effects on the soil faunal populations were seen below 3 cm of soil.« less
Concostrina-Zubiri, L; Huber-Sannwald, E; Martínez, I; Flores Flores, J L; Reyes-Agüero, J A; Escude, A; Belnap, J
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
NASA Astrophysics Data System (ADS)
Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.
2014-12-01
Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.
Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne
2014-01-01
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
Reduced Microbial Resilience after a 17-Year Climate Gradient Transplant Experiment
NASA Astrophysics Data System (ADS)
Bailey, V. L.; Fansler, S.; Bond-Lamberty, B. P.; Liu, C.; Smith, J. L.; Bolton, H.
2012-12-01
In 1994, a reciprocal soil transplant experiment was initiated between two elevations (310 m, warmer and drier, and 844 m, cooler and wetter) on Rattlesnake Mountain in southeastern Washington, USA. The original experiment sought to detect whether the microbial and biochemical dynamics developed under cool, moist conditions would be destabilized under hot, dry conditions. In March 2012 we resampled the original transplanted soils, control cores transplanted in situ, and native soils from each elevation, to study longer-term changes in microbial community composition, soil C and N dynamics, and soil physical structure. These resampled cores were randomly assigned to climate-control chambers simulating the diurnal conditions at either the lower or upper sites. We monitored respiration over 100 days, and couple these data with biogeochemical analyses conducted at time-zero, and at the end of the experiment, to examine the consequences of long-term climate change on microbial C cycling under new environmental stresses. All soil types incubated respired more C while in the simulated hotter, drier climate compared with the cooler, moister condition, except for those that had been transplanted from the lower elevation to the upper elevation in 1994, which actually respired less when returned to this, their original climate. These soils also exhibited almost no temperature sensitivity (Q10=1.07, 13-33 °C). Soils incubated in the cooler, moister chamber had greater N-acetylglucosaminidase and β-glucosidase potentials, suggesting that while loss of C as carbon dioxide respiration is reduced under these conditions, internal cycling of C may be enhanced. Ribosomal intergenic spacer analysis was used to fingerprint the bacterial community of all of these soils to identify possible high-level shifts in community composition in the 0-5, 5-10, and deeper depths in these soils. These results suggest that climate change has significantly altered the C dynamics in these soils, and that even after 17 years of adaptation, the soil microbial communities have not recovered to a condition similar to their new environment. These soils also appear to have lost some of their resilience to subsequent climate perturbations, raising more general questions of how current climate change will affect the capacity of soils to buffer against future, different perturbations.
William H. Romme; Craig D. Allen; John D. Bailey; William L. Baker; Brandon T. Bestelmeyer; Peter M. Brown; Karen S. Eisenhart; M. Lisa Floyd; David W. Huffman; Brian F. Jacobs; Richard F. Miller; Esteban H. Muldavin; Thomas W. Swetnam; Robin J. Tausch; Peter J. Weisberg
2009-01-01
Pinon-juniper is a major vegetation type in western North America. Effective management of these ecosystems has been hindered by inadequate understanding of 1) the variability in ecosystem structure and ecological processes that exists among the diverse combinations of Pinons, junipers, and associated shrubs, herbs, and soil organisms; 2) the prehistoric and historic...
NASA Astrophysics Data System (ADS)
Chamberlain, S.; Gomez-Casanovas, N.; Boughton, E.; Keel, E.; Walter, M. T.; Groffman, P. M.; Sparks, J. P.
2015-12-01
Seasonally flooded subtropical pastures are major sources of methane (CH4), and periodic flooding drives complex emission dynamics from these ecosystems. Understanding the mechanisms of belowground CH4 dynamics driving soil surface fluxes is needed to better understand emissions from these systems and their response to environmental change. We investigated subsurface CH4 dynamics in relation to net surface fluxes using laboratory water table manipulations and compared these results to eddy covariance-measured fluxes to link within-soil CH4 dynamics to observed ecosystem fluxes. Pronounced hysteresis was observed in ecosystem CH4 fluxes during precipitation driven flooding events. This dynamic was replicated in mesocosm experiments, with maximum CH4 fluxes observed during periods of water table recession. Hysteresis dynamics were best explained by oxygen dynamics during precipitation recharge events and the oxidation of CH4 produced in organic soil horizons during water table recession. We observed distinct CH4 dynamics between surface organic and deeper mineral soil horizons. In surface organic soil horizons, high levels of CH4 production were temporally linked to observed surface emissions. In contrast, high concentrations of CH4 observed in deeper mineral soils did not contribute to surface fluxes. Methane production potentials in surface organic soils were orders of magnitude higher than in mineral soils, suggesting that over longer flooding regimes CH4 produced in mineral horizons is unlikely to be a significant component of net surface emissions. Our results demonstrate that distinct CH4 dynamics may be stratified by depth, and flooding of the near-surface organic soils drives the high magnitude CH4 fluxes observed from subtropical pastures. These results suggest that relatively small changes in pasture water table dynamics can drive large changes in net CH4 emissions if surface organic soils remain saturated over longer time scales.
Hydrologic control on redox and nitrogen dynamics in a peatland soil.
Rubol, Simonetta; Silver, Whendee L; Bellin, Alberto
2012-08-15
Soils are a dominant source of nitrous oxide (N(2)O), a potent greenhouse gas. However, the complexity of the drivers of N(2)O production and emissions has hindered our ability to predict the magnitude and spatial dynamics of N(2)O fluxes. Soil moisture can be considered a key driver because it influences oxygen (O(2)) supply, which feeds back on N(2)O sources (nitrification versus denitrification) and sinks (reduction to dinitrogen). Soil water content is directly linked to O(2) and redox potential, which regulate microbial metabolism and chemical transformations in the environment. Despite its importance, only a few laboratory studies have addressed the effects of hydrological transient dynamics on nitrogen (N) cycling in the vadose zone. To further investigate these aspects, we performed a long term experiment in a 1.5 m depth soil column supplemented by chamber experiments. With this experiment, we aimed to investigate how soil moisture dynamics influence redox sensitive N cycling in a peatland soil. As expected, increased soil moisture lowered O(2) concentrations and redox potential in the soil. The decline was more severe for prolonged saturated conditions than for short events and at deep than at the soil surface. Gaseous and dissolved N(2)O, dissolved nitrate (NO(3)(-)) and ammonium (NH(4)(+)) changed considerably along the soil column profile following trends in soil O(2) and redox potential. Hot spots of N(2)O concentrations corresponded to high variability in soil O(2) in the upper and lower parts of the column. Results from chamber experiments confirmed high NO(3)(-) reduction potential in soils, particularly from the bottom of the column. Under our experimental conditions, we identified a close coupling of soil O(2) and N(2)O dynamics, both of which lagged behind soil moisture changes. These results highlight the relationship among soil hydrologic properties, redox potential and N cycling, and suggest that models working at a daily scale need to consider soil O(2) dynamics in addition to soil moisture dynamics to accurately predict patterns in N(2)O fluxes. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hübner, R.; Heller, K.; Günther, T.; Kleber, A.
2015-01-01
Besides floodplains, hillslopes are basic units that mainly control water movement and flow pathways within catchments of subdued mountain ranges. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap in the knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. This study presents a robust multi-method framework of electrical resistivity tomography (ERT) in addition to hydrometric point measurements, transferring hydrometric data into higher spatial scales to obtain additional patterns of distribution and dynamics of soil moisture on a hillslope. A geoelectrical monitoring in a small catchment in the eastern Ore Mountains was carried out at weekly intervals from May to December 2008 to image seasonal moisture dynamics on the hillslope scale. To link water content and electrical resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data. The results from ERT measurements show a strong correlation with the hydrometric data. The response is congruent to the soil tension data. Water content calculated from the ERT profile shows similar variations as that of water content from soil moisture sensors. Consequently, soil moisture dynamics on the hillslope scale may be determined not only by expensive invasive punctual hydrometric measurements, but also by minimally invasive time-lapse ERT, provided that pedo-/petrophysical relationships are known. Since ERT integrates larger spatial scales, a combination with hydrometric point measurements improves the understanding of the ongoing hydrological processes and better suits identification of heterogeneities.
A Layered Past: the Transformation and Development of Legacy Sediments as Alluvial Soils
NASA Astrophysics Data System (ADS)
Wade, A.; Richter, D. D., Jr.
2017-12-01
Legacy sediments are a widespread consequence of post-colonial upland erosion in the United States. Although these deposits are ubiquitous in valley bottoms of the southeastern Piedmont, mature hardwood forests and collapsed stream banks mask their occurrence. While these deposits have been studied for their fluvial dynamics and water quality impacts, they have received less attention in regards to soil structure and formation. In this study, we characterized legacy sediment mineraology, composition and structure to understand how pedogenic processes are overprinting sediment layering in a 40-hectare Piedmont floodplain. To constrain the timing of deposition, we used Pb-210 and C-14 dating on buried charcoal and tree stumps. Our results show that in 100 years of forest regeneration, vegetation and oscillating floodplain conditions have driven these eroded sediment deposits to evolve as soil profiles both in structure and composition. These textural and nutrient gradients have ramifications for the subsurface flow of nutrients through the floodplain. Given the estimated millennia it will take to erode legacy sediment from Piedmont floodplains, it is important to think of these deposits as new stable environments on their own trajectory of soil evolution.
Zhang, Naili; Liu, Weixing; Yang, Haijun; Yu, Xingjun; Gutknecht, Jessica L M; Zhang, Zhe; Wan, Shiqiang; Ma, Keping
2013-11-01
A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle-climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006-2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.
NASA Astrophysics Data System (ADS)
Ngamkhanong, Chayut; Kaewunruen, Sakdirat; Baniotopoulos, Charalampos; Papaelias, Mayorkinos
2017-10-01
Nowadays, the electric train becomes one of the efficient railway systems that are lighter, cleaner, quieter, cheaper and faster than a conventional train. Overhead line equipment (OHLE), which supplies electric power to the trains, is designed on the principle of overhead wires placed over the railway track. The OHLE is supported by mast structure which located at the lineside along the track. Normally, mast structure is a steel column or truss structure which supports the overhead wire carrying the power. Due to the running train and severe periodic force, such as an earthquake, in surrounding area may cause damage to the OHLE structure especially mast structure which leads to the failure of the electrical system. The mast structure needs to be discussed in order to resist the random forces. Due to the vibration effect, the natural frequencies of the structure are necessary. This is because when the external applied force occurs within a range of frequency of the structure, resonance effect can be expected which lead to the large oscillations and deflections. The natural frequency of a system is dependent only on the stiffness of the structure and the mass which participates with the structure, including self-weight. The modal analysis is used in order to calculate the mode shapes and natural frequencies of the mast structure during free vibration. A mast structure with varying rotational soil stiffness is used to observe the influence of soil-structure action. It is common to use finite element analysis to perform a modal analysis. This paper presents the fundamental mode shapes, natural frequencies and crossing phenomena of three-dimensional mast structure considering soil-structure interaction. The sensitivity of mode shapes to the variation of soil-structure interaction is discussed. The outcome of this study will improve the understanding of the fundamental dynamic behaviour of the mast structure which supports the OHLE. Moreover, this study will be a recommendation for the structural engineer to associate with the behaviour of mast structure during vibration.
Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.
2004-01-01
Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.
de Gannes, Vidya; Eudoxie, Gaius; Hickey, William J.
2014-01-01
Nitrification is a key process in soil nitrogen (N) dynamics, but relatively little is known about it in tropical soils. In this study, we examined soils from Trinidad to determine the edaphic drivers affecting nitrification levels and community structure of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in non-managed soils. The soils were naturally vegetated, ranged in texture from sands to clays and spanned pH 4 to 8. The AOA were detected by qPCR in all soils (ca. 105 to 106 copies archaeal amoA g−1 soil), but AOB levels were low and bacterial amoA was infrequently detected. AOA abundance showed a significant negative correlation (p<0.001) with levels of soil organic carbon, clay and ammonium, but was not correlated to pH. Structures of AOA and AOB communities, as determined by amoA terminal restriction fragment (TRF) analysis, differed significantly between soils (p<0.001). Variation in AOA TRF profiles was best explained by ammonium-N and either Kjeldahl N or total N (p<0.001) while variation in AOB TRF profiles was best explained by phosphorus, bulk density and iron (p<0.01). In clone libraries, phylotypes of archaeal amoA (predominantly Nitrososphaera) and bacterial amoA (predominanatly Nitrosospira) differed between soils, but variation was not correlated with pH. Nitrification potential was positively correlated with clay content and pH (p<0.001), but not to AOA or AOB abundance or community structure. Collectively, the study showed that AOA and AOB communities were affected by differing sets of edaphic factors, notably that soil N characteristics were significant for AOA, but not AOB, and that pH was not a major driver for either community. Thus, the effect of pH on nitrification appeared to mainly reflect impacts on AOA or AOB activity, rather than selection for AOA or AOB phylotypes differing in nitrifying capacity. PMID:24586878
NASA Astrophysics Data System (ADS)
Dafflon, B.; Leger, E.; Peterson, J.; Falco, N.; Wainwright, H. M.; Wu, Y.; Tran, A. P.; Brodie, E.; Williams, K. H.; Versteeg, R.; Hubbard, S. S.
2017-12-01
Improving understanding and modelling of terrestrial systems requires advances in measuring and quantifying interactions among subsurface, land surface and vegetation processes over relevant spatiotemporal scales. Such advances are important to quantify natural and managed ecosystem behaviors, as well as to predict how watershed systems respond to increasingly frequent hydrological perturbations, such as droughts, floods and early snowmelt. Our study focuses on the joint use of UAV-based multi-spectral aerial imaging, ground-based geophysical tomographic monitoring (incl., electrical and electromagnetic imaging) and point-scale sensing (soil moisture sensors and soil sampling) to quantify interactions between above and below ground compartments of the East River Watershed in the Upper Colorado River Basin. We evaluate linkages between physical properties (incl. soil composition, soil electrical conductivity, soil water content), metrics extracted from digital surface and terrain elevation models (incl., slope, wetness index) and vegetation properties (incl., greenness, plant type) in a 500 x 500 m hillslope-floodplain subsystem of the watershed. Data integration and analysis is supported by numerical approaches that simulate the control of soil and geomorphic characteristic on hydrological processes. Results provide an unprecedented window into critical zone interactions, revealing significant below- and above-ground co-dynamics. Baseline geophysical datasets provide lithological structure along the hillslope, which includes a surface soil horizon, underlain by a saprolite layer and the fractured Mancos shale. Time-lapse geophysical data show very different moisture dynamics in various compartments and locations during the winter and growing season. Integration with aerial imaging reveals a significant linkage between plant growth and the subsurface wetness, soil characteristics and the topographic gradient. The obtained information about the organization and connectivity of the landscape is being transferred to larger regions using aerial imaging and will be used to constrain multi-scale, multi-physics hydro-biogeochemical simulations of the East River watershed response to hydrological perturbations.
Soil organic carbon dynamics of black locust plantations in the middle Loess Plateau area of China
NASA Astrophysics Data System (ADS)
Lu, N.; Liski, J.; Chang, R. Y.; Akujärvi, A.; Wu, X.; Jin, T. T.; Wang, Y. F.; Fu, B. J.
2013-11-01
Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics are critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation (Robinia pseudoacacia) of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980-2010, where the annual mean precipitation ranging from 450 mm to 600 mm. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr) at all the sites, although it decreased at the wetter sites in the first few years. The accumulation rates of SOC were 1.58 to 6.22% yr-1 in the upper 20 cm and 1.62 to 5.15% yr-1in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88-96, 48-86 and 57-74% of the variations in annual SOC changes at the soil depths of 0-20, 0-40, and 0-100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were smaller at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer timescale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites during 1980-2010. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site conditions, species adaptability, and successional stage of recovery.
The ecohydrology of water limited landscapes
NASA Astrophysics Data System (ADS)
Huxman, T. E.
2011-12-01
Developing a mechanistic understanding of the coupling of ecological and hydrological systems is crucial for understanding the land-surface response of large areas of the globe to changes in climate. The distribution of biodiversity, the quantity and quality of streamflow, the biogeochemistry that constrains vegetation cover and production, and the stability of soil systems in watersheds are all functions of water-life coupling. Many key ecosystem services are governed by the dynamics of near-surface hydrology and biological feedbacks on the landscape occur through plant influence over available soil moisture. Thus, ecohydrology has tremendous potential to contribute to a predictive framework for understanding earth system dynamics. Despite the importance of such couplings and water as a major limiting resource in ecosystems throughout the globe, ecology still struggles with a mechanistic understanding of how changes in rainfall affect the biology of plants and microbes, or how changes in plant communities affect hydrological dynamics in watersheds. Part of the problem comes from our lack of understanding of how plants effectively partition available water among individuals in communities and how that modifies the physical environment, affecting additional resource availability and the passage of water along other hydrological pathways. The partitioning of evapotranspiration between transpiration by plants and evaporation from the soil surface is key to interrelated ecological, hydrological, and atmospheric processes and likely varies with vegetation structure and atmospheric dynamics. In addition, the vertical stratification of autotrophic and heterotrophic components in the soil profile, and the speed at which each respond to increased water, exert strong control over the carbon cycle. The magnitude of biosphere-atmosphere carbon exchange depends on the time-depth-distribution of soil moisture, a fundamental consequence of local precipitation pulse characteristics, soil texture and plant functional type. The transport of metabolic products within plants and their differential activation result in non-intuitive patterns of exchange associated with the major drivers creating problems with the scaling of physiological processes of individual plants to ecosystems. Such dynamics, along with hysteretic behavior creates challenges for measurement, evaluation, modeling and predicting ecosystem behavior. New frameworks and conceptual approaches to modeling ecosystem metabolism and the role of water are helping to describe the consequences of precipitation variability and change.
NASA Astrophysics Data System (ADS)
SATO, H.; Iwahana, G.; Ohta, T.
2013-12-01
Siberian larch forest is the largest coniferous forest region in the world. In this vast region, larch often forms nearly pure stands, regenerated by recurrent fire. This region is characterized by a short and dry growing season; the annual mean precipitation for Yakutsk was only about 240 mm. To maintain forest ecosystem under such small precipitation, underlying permafrost and seasonal soil freezing-thawing-cycle have been supposed to play important roles; (1) frozen ground inhibits percolation of soil water into deep soil layers, and (2) excess soil water at the end of growing season can be carried over until the next growing season as ice, and larch trees can use the melt water. As a proof for this explanation, geographical distribution of Siberian larch region highly coincides with continuous and discontinuous permafrost zone. Recent observations and simulation studies suggests that existences of larch forest and permafrost in subsurface layer are co-dependent; permafrost maintains the larch forest by enhancing water use efficiency of trees, while larch forest maintains permafrost by inhibiting solar radiation and preventing heat exchanges between soil and atmosphere. Owing to such complexity and absence of enough ecosystem data available, current-generation Earth System Models significantly diverse in their prediction of structure and key ecosystem functions in Siberian larch forest under changing climate. Such uncertainty should in turn expand uncertainty over predictions of climate, because Siberian larch forest should have major role in the global carbon balance with its huge area and vast potential carbon pool within the biomass and soil, and changes in boreal forest albedo can have a considerable effect on Northern Hemisphere climate. In this study, we developed an integrated ecosystem model, which treats interactions between plant-dynamics and freeze-thaw cycles. This integrated model contains a dynamic global vegetation model SEIB-DGVM, which simulates plant and carbon dynamics. It also contains a one-dimensional land surface model NOAH 2.7.1, which simulates soil moisture (both liquid and frozen), soil temperature, snowpack depth and density, canopy water content, and the energy and water fluxes. This integrated model quantitatively reconstructs post-fire development of forest structure (i.e. LAI and biomass) and organic soil layer, which dampens heat exchanges between soil and atmosphere. With the post-fire development of LAI and the soil organic layer, the integrated model also quantitatively reconstructs changes in seasonal maximum of active layer depth. The integrated model is then driven by the IPCC A1B scenario of rising atmospheric CO2, and by climate changes during the twenty-first century resulting from the change in CO2. This simulation suggests that forecasted global warming would causes decay of Siberian larch ecosystem, but such responses could be delayed by "memory effect" of the soil organic layer for hundreds of years.
2014-01-01
soil, etc.) (Ref 6); (b) the kinematic and structural response of the target to blast loading including the role of target design and use of blast...both the role of material behavior under transient-dynamic loading conditions as well as the kinematic and structural responses of the target structure... seats , ammunition storage racks, power-train lines, etc.). Tradition- ally, the floor-rupture problem is solved through the use of thicker floor-plates
Akpheokhai, Leonard I; Oribhabor, Blessing J
2016-01-01
The interaction of man with the ecosystem is a major factor causing environmental pollution and its attendant consequences such as climate change in our world today. Patents relating to nematodes' relevance in soil quality management and their significance as biomarkers in aquatic substrates were reviewed. Nematodes are useful in rapid, easy and inexpensive method for testing the toxicity of substance (e.g. aquatic substrates). This review paper sets out to examine and discuss the issue of soil pollution, functions of nematodes in soil and aquatic substrates as well as bio-indicators in soil health management in terrestrial ecology. The information used were on the basis of secondary sources from previous research. It is abundantly clear that the population dynamics of plant parasitic or free-living nematodes have useful potentials as biomonitor for soil health and other forms of environmental contamination through agricultural activities, industrial pollution and oil spillage, and the analysis of nematode community structure could be used as complementary information obtained from conventional soil testing approaches.
Ecological optimality in water-limited natural soil-vegetation systems. I - Theory and hypothesis
NASA Technical Reports Server (NTRS)
Eagleson, P. S.
1982-01-01
The solution space of an approximate statistical-dynamic model of the average annual water balance is explored with respect to the hydrologic parameters of both soil and vegetation. Within the accuracy of this model it is shown that water-limited natural vegetation systems are in stable equilibrium with their climatic and pedologic environments when the canopy density and species act to minimize average water demand stress. Theory shows a climatic limit to this equilibrium above which it is hypothesized that ecological pressure is toward maximization of biomass productivity. It is further hypothesized that natural soil-vegetation systems will develop gradually and synergistically, through vegetation-induced changes in soil structure, toward a set of hydraulic soil properties for which the minimum stress canopy density of a given species is maximum in a given climate. Using these hypotheses, only the soil effective porosity need be known to determine the optimum soil and vegetation parameters in a given climate.
Ji, Li; Yang, Li Xue
2017-12-01
Phenolic acids are one of the most important factors that influence microbial community structure. Investigating the dynamic changes of phenolic acids and their relationship with the microbial community structure in plantation soils with different tree species could contribute to better understanding and revealing the mechanisms of microbial community changes under afforestation restoration in coal-mining subsidence areas. In this study, plantations of three conifer and one deciduous species (Pinus koraiensis, Larix gmelinii, Pinus sylvestris var. mongolica, and Populus ussuriensis) were established on abandoned coal-mining subsidence areas in Baoshan District, Shuangyashan City. The contents of soil phenols, 11 types of phenolic acids, and microbial communities in all plots were determined. The results showed that the contents of soil complex phenol in plantations were significantly higher than that of abandoned land overall. Specifically, soils in larch and poplar plantations had higher contents of complex phenol, while soils in larch and Korean pine plantations had greater contents of total phenol. Moreover, soil in the P. koraiensis plantation had a higher content of water-soluble phenol compared with abandoned lands. The determination of 11 phenolic acids indicated that the contents of ferulic acid, abietic acid, β-sitosterol, oleanolic acid, shikimic acid, linoleic acid, and stearic acid were higher in plantation soils. Although soil phenol contents were not related with soil microbial biomass, the individual phenolic acids showed a significant relationship with soil microbes. Ferulic acid, abietic acid, and β-sitosterol showed significant promoting effects on soil microbial biomass, and they showed positive correlations with fungi and fungi/bacteria ratio. These three phenolic acids had higher contents in the poplar plantation, suggesting that poplar affo-restation had a beneficial effect on soil quality in coal-mining subsidence areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.
The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO 2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils.more » The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO 2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO 2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.« less
Simulation of the evolution of root water foraging strategies in dry and shallow soils.
Renton, Michael; Poot, Pieter
2014-09-01
The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional-structural root growth model. A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally--the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies.
Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil
2015-01-01
Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486
NASA Astrophysics Data System (ADS)
Pilecka, Elżbieta; Zięba, Jakub
2017-11-01
The article presents the results of laboratory tests for determining the dynamic modules of the elasticity M and the shear G, for soil samples from the landfill of the closed Solvay Sodium Plant in Krakow. The tests were performed using a triaxial apparatus equipped with "bender" piezoelements. The samples subjected to these tests were taken from two boreholes, located in the area known as the "white seas", whose formation is the result of Solvay Plant activity throughout the 20th century. The location of the test holes was planned at the place in which a road known as the "Łagiewnicka route" was planned. Studies on soil stiffness were also conducted as part of the one of the dissertation from 2008 to 2010 in the Cracow University of Technology. The results of these tests and the results of the laboratory tests that are presented in the article will be used in the designing of a computer model. This model is intended to help in assessing the dynamic impact of motor vehicle traffic on the planned Łagiewnicka route on the structure of the existing buildings located in the former Solvay Plant.
Microbial Life in Soil - Linking Biophysical Models with Observations
NASA Astrophysics Data System (ADS)
Or, Dani; Tecon, Robin; Ebrahimi, Ali; Kleyer, Hannah; Ilie, Olga; Wang, Gang
2015-04-01
Microbial life in soil occurs within fragmented aquatic habitats formed in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world
Microbial Life in Soil - Linking Biophysical Models with Observations
NASA Astrophysics Data System (ADS)
Or, D.; Tecon, R.; Ebrahimi, A.; Kleyer, H.; Ilie, O.; Wang, G.
2014-12-01
Microbial life in soil occurs within fragmented aquatic habitats in complex pore spaces where motility is restricted to short hydration windows (e.g., following rainfall). The limited range of self-dispersion and physical confinement promote spatial association among trophically interdepended microbial species. Competition and preferences for different nutrient resources and byproducts and their diffusion require high level of spatial organization to sustain the functioning of multispecies communities. We report mechanistic modeling studies of competing multispecies microbial communities grown on hydrated surfaces and within artificial soil aggregates (represented by 3-D pore network). Results show how trophic dependencies and cell-level interactions within patchy diffusion fields promote spatial self-organization of motile microbial cells. The spontaneously forming patterns of segregated, yet coexisting species were robust to spatial heterogeneities and to temporal perturbations (hydration dynamics), and respond primarily to the type of trophic dependencies. Such spatially self-organized consortia may reflect ecological templates that optimize substrate utilization and could form the basic architecture for more permanent surface-attached microbial colonies. Hydration dynamics affect structure and spatial arrangement of aerobic and anaerobic microbial communities and their biogeochemical functions. Experiments with well-characterized artificial soil microbial assemblies grown on porous surfaces provide access to community dynamics during wetting and drying cycles detected through genetic fingerprinting. Experiments for visual observations of spatial associations of tagged bacterial species with known trophic dependencies on model porous surfaces are underway. Biophysical modeling provide a means for predicting hydration-mediated critical separation distances for activation of spatial self-organization. The study provides new modeling and observational tools that enable new mechanistic insights into how differences in substrate affinities among microbial species and soil micro-hydrological conditions may give rise to a remarkable spatial and functional order in an extremely heterogeneous soil microbial world.
Ma, Miaojun; Zhou, Xianhui; Qi, Wei; Liu, Kun; Jia, Peng; Du, Guozhen
2013-01-01
Knowledge about how change the importance of soil seed bank and relationship between seed mass and abundance during vegetation succession is crucial for understanding vegetation dynamics. Many studies have been conducted, but their ecological mechanisms of community assembly are not fully understood. We examined the seasonal dynamics of the vegetation and soil seed bank as well as seed size distribution along a successional gradient. We also explored the potential role of the soil seed bank in plant community regeneration, the relationship between seed mass and species abundance, and the relative importance of deterministic and stochastic processes along a successional gradient. Species richness of seed bank increased (shallow layer and the total) and seed density decreased (each layer and the total) significantly with succession. Species richness and seed density differed significantly between different seasons and among soil depths. Seed mass showed a significant negative relationship with relative abundance in the earliest successional stage, but the relationships were not significant in later stages. Seed mass showed no relationship with relative abundance in the whole successional series in seed bank. Results were similar for both July 2005 and April 2006. The seed mass and abundance relationship was determined by a complex interaction between small and larger seeded species and environmental factors. Both stochastic processes and deterministic processes were important determinants of the structure of the earliest stage. The importance of seed bank decreased with succession. The restoration of abandoned farmed and grazed meadows to the species-rich subalpine meadow in Tibetan Plateau can be successfully achieved from the soil seed bank. However, at least 20 years are required to fully restore an abandoned agricultural meadow to a natural mature subalpine meadow.
NASA Astrophysics Data System (ADS)
Goncharova, Olga; Udovenko, Maria; Matyshak, Georgy
2016-04-01
To analyse and predict recent and future climate change on a global scale exchange processes of greenhouse gases - primarily carbon dioxide - over various ecosystems are of rising interest. In order to upscale land-use dependent sources and sinks of CO2, knowledge of the local variability of carbon fluxes is needed. Among terrestrial ecosystems, urban areas play an important role because most of anthropogenic emissions of carbon dioxide originate from these areas. On the other hand, urban soils have the potential to store large amounts of soil organic carbon and, thus, contribute to mitigating increases in atmospheric CO2 concentrations. Research objectives: 1) estimate the seasonal dynamics of carbon dioxide production (emission - closed chamber technique and profile concentration - soil air sampling tubes method) by soils of Moscow State University Botanical Garden Arboretum planted with Picea obovata and Pinus sylvestris, 1) identification the factors that control CO2 production. The study was conducted with 1-2 weeks intervals between October 2013 and November 2015 at two sites. Carbon dioxide soil surface efflux during the year ranged from 0 to 800 mgCO2/(m2hr). Efflux values above 0 mgCO2/(m2hr) was observed during the all cold period except for only 3 weeks. Soil CO2 concentration ranged from 1600-3000 ppm in upper 10-cm layer to 10000-40000 ppm at a depth of 60 cm. The maximum concentrations of CO2 were recorded in late winter and late summer. We associate it with high biological activity (both heterotrophic and autotrophic) during the summer, and with physical gas jamming in the winter. The high value of annual CO2 production of the studied soils is caused by high organic matter content, slightly alkaline reaction, good structure and texture of urban soils. Differences in soil CO2 production by spruce and pine urban forest soils (in the pine forest 1.5-2.0 times higher) are caused by urban soil profiles construction, but not temperature regimes. Seasonal dynamics of CO2 production are the same for both soils and associated with seasonal changes in climatic parameters (temperature and moisture). CO2 efflux in the annual cycle correlates well with the soil temperature at a depth of 10 cm (r2 = 0.7). In the dry summer months, efflux largely depends on soil moisture. Soil CO2 efflux decreased by 1.5 - 2 times during the dry season.
Out-of-plane (SH) soil-structure interaction: a shear wall with rigid and flexible ring foundation
NASA Astrophysics Data System (ADS)
Le, Thang; Lee, Vincent W.; Luo, Hao
2016-02-01
Soil-structure interaction (SSI) of a building and shear wall above a foundation in an elastic half-space has long been an important research subject for earthquake engineers and strong-motion seismologists. Numerous papers have been published since the early 1970s; however, very few of these papers have analytic closed-form solutions available. The soil-structure interaction problem is one of the most classic problems connecting the two disciplines of earthquake engineering and civil engineering. The interaction effect represents the mechanism of energy transfer and dissipation among the elements of the dynamic system, namely the soil subgrade, foundation, and superstructure. This interaction effect is important across many structure, foundation, and subgrade types but is most pronounced when a rigid superstructure is founded on a relatively soft lower foundation and subgrade. This effect may only be ignored when the subgrade is much harder than a flexible superstructure: for instance a flexible moment frame superstructure founded on a thin compacted soil layer on top of very stiff bedrock below. This paper will study the interaction effect of the subgrade and the superstructure. The analytical solution of the interaction of a shear wall, flexible-rigid foundation, and an elastic half-space is derived for incident SH waves with various angles of incidence. It found that the flexible ring (soft layer) cannot be used as an isolation mechanism to decouple a superstructure from its substructure resting on a shaking half-space.
Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.
Vadas, Peter A; Joern, Brad C; Moore, Philip A
2012-01-01
Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, C.; Riley, W.J.
2009-11-01
Precipitation variability and magnitude are expected to change in many parts of the world over the 21st century. We examined the potential effects of intra-annual rainfall patterns on soil nitrogen (N) transport and transformation in the unsaturated soil zone using a deterministic dynamic modeling approach. The model (TOUGHREACT-N), which has been tested and applied in several experimental and observational systems, mechanistically accounts for microbial activity, soil-moisture dynamics that respond to precipitation variability, and gaseous and aqueous tracer transport in the soil. Here, we further tested and calibrated the model against data from a precipitation variability experiment in a tropical systemmore » in Costa Rica. The model was then used to simulate responses of soil moisture, microbial dynamics, nitrogen (N) aqueous and gaseous species, N leaching, and N trace-gas emissions to changes in rainfall patterns; the effect of soil texture was also examined. The temporal variability of nitrate leaching and NO, N{sub 2}, and N{sub 2}O effluxes were significantly influenced by rainfall dynamics. Soil texture combined with rainfall dynamics altered soil moisture dynamics, and consequently regulated soil N responses to precipitation changes. The clay loam soil more effectively buffered water stress during relatively long intervals between precipitation events, particularly after a large rainfall event. Subsequent soil N aqueous and gaseous losses showed either increases or decreases in response to increasing precipitation variability due to complex soil moisture dynamics. For a high rainfall scenario, high precipitation variability resulted in as high as 2.4-, 2.4-, 1.2-, and 13-fold increases in NH{sub 3}, NO, N{sub 2}O and NO{sub 3}{sup -} fluxes, respectively, in clay loam soil. In sandy loam soil, however, NO and N{sub 2}O fluxes decreased by 15% and 28%, respectively, in response to high precipitation variability. Our results demonstrate that soil N cycling responses to increasing precipitation variability depends on precipitation amount and soil texture, and that accurate prediction of future N cycling and gas effluxes requires models with relatively sophisticated representation of the relevant processes.« less
Vivant, Anne-Laure; Garmyn, Dominique; Maron, Pierre-Alain; Nowak, Virginie; Piveteau, Pascal
2013-01-01
Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment. PMID:24116193
Global simulation of interactions between groundwater and terrestrial ecosystems
NASA Astrophysics Data System (ADS)
Braakhekke, M. C.; Rebel, K.; Dekker, S. C.; Smith, B.; Van Beek, L. P.; Sutanudjaja, E.; van Kampenhout, L.; Wassen, M. J.
2016-12-01
In many places in the world ecosystems are influenced by the presence of a shallow groundwater table. In these regions upward water flux due to capillary rise increases soil moisture availability in the root zone, which has strong positive effect on evapotranspiration. Additionally it has important consequences for vegetation dynamics and fluxes of carbon and nitrogen. Under water limited conditions shallow groundwater stimulates vegetation productivity, and soil organic matter decomposition while under saturated conditions groundwater may have a negative effect on these processes due to lack of oxygen. Furthermore, since plant species differ with respect to their root distribution, preference for moisture conditions, and resistance to oxygen stress, shallow groundwater also influences vegetation type. Finally, processes such as denitrification and methane production occur under strictly anaerobic conditions and are thus strongly influenced by moisture availability. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure and are therefore less suitable to represent effects of groundwater on biogeochemical fluxes. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure and biogeochemical processes. These models are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB. Using this coupled model we aim to study the influence of shallow groundwater on terrestrial ecosystem processes. We will present results of global simulations to demonstrate the effects on C, N, and water fluxes.
Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O
2016-05-01
Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.
2016-01-01
Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P < 0.001) and tree species (P < 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P < 0.04). The availability of soil nutrients (Ca [P = 0.002], Fe [P = 0.003], and P [P = 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P < 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139
NASA Astrophysics Data System (ADS)
Jackisch, Conrad; Angermann, Lisa; Allroggen, Niklas; Sprenger, Matthias; Blume, Theresa; Tronicke, Jens; Zehe, Erwin
2017-07-01
The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR trenches
. We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).
Constraining soil C cycling with strategic, adaptive action for data and model reporting
NASA Astrophysics Data System (ADS)
Harden, J. W.; Swanston, C.; Hugelius, G.
2015-12-01
Regional to global carbon assessments include a variety of models, data sets, and conceptual structures. This includes strategies for representing the role and capacity of soils to sequester, release, and store carbon. Traditionally, many soil carbon data sets emerged from agricultural missions focused on mapping and classifying soils to enhance and protect production of food and fiber. More recently, soil carbon assessments have allowed for more strategic measurement to address the functional and spatially explicit role that soils play in land-atmosphere carbon exchange. While soil data sets are increasingly inter-comparable and increasingly sampled to accommodate global assessments, soils remain poorly constrained or understood with regard to their role in spatio-temporal variations in carbon exchange. A more deliberate approach to rapid improvement in our understanding involves a community-based activity than embraces both a nimble data repository and a dynamic structure for prioritization. Data input and output can be transparent and retrievable as data-derived products, while also being subjected to rigorous queries for merging and harmonization into a searchable, comprehensive, transparent database. Meanwhile, adaptive action groups can prioritize data and modeling needs that emerge through workshops, meta-data analyses or model testing. Our continual renewal of priorities should address soil processes, mechanisms, and feedbacks that significantly influence global C budgets and/or significantly impact the needs and services of regional soil resources that are impacted by C management. In order to refine the International Soil Carbon Network, we welcome suggestions for such groups to be led on topics such as but not limited to manipulation experiments, extreme climate events, post-disaster C management, past climate-soil interactions, or water-soil-carbon linkages. We also welcome ideas for a business model that can foster and promote idea and data sharing.
NASA Astrophysics Data System (ADS)
Palm, Juliane; Klaus, Julian; van Schaik, Loes; Zehe, Erwin; Schröder, Boris
2010-05-01
Soils provide central ecosystem functions in recycling nutrients, detoxifying harmful chemicals as well as regulating microclimate and local hydrological processes. The internal regulation of these functions and therefore the development of healthy and fertile soils mainly depend on the functional diversity of plants and animals. Soil organisms drive essential processes such as litter decomposition, nutrient cycling, water dynamics, and soil structure formation. Disturbances by different soil management practices (e.g., soil tillage, fertilization, pesticide application) affect the distribution and abundance of soil organisms and hence influence regulating processes. The strong relationship between environmental conditions and soil organisms gives us the opportunity to link spatiotemporal distribution patterns of indicator species with the potential provision of essential soil processes on different scales. Earthworms are key organisms for soil function and affect, among other things, water dynamics and solute transport in soils. Through their burrowing activity, earthworms increase the number of macropores by building semi-permanent burrow systems. In the unsaturated zone, earthworm burrows act as preferential flow pathways and affect water infiltration, surface-, subsurface- and matrix flow as well as the transport of water and solutes into deeper soil layers. Thereby different ecological earthworm types have different importance. Deep burrowing anecic earthworm species (e.g., Lumbricus terrestris) affect the vertical flow and thus increase the risk of potential contamination of ground water with agrochemicals. In contrast, horizontal burrowing endogeic (e.g., Aporrectodea caliginosa) and epigeic species (e.g., Lumbricus rubellus) increase water conductivity and the diffuse distribution of water and solutes in the upper soil layers. The question which processes are more relevant is pivotal for soil management and risk assessment. Thus, finding relevant environmental predictors which explain the distribution and dynamics of different ecological earthworm types can help us to understand where or when these processes are relevant in the landscape. Therefore, we develop species distribution models which are a useful tool to predict spatiotemporal distributions of earthworm occurrence and abundance under changing environmental conditions. On field scale, geostatistical distribution maps have shown that the spatial distribution of earthworms depends on soil parameters such as food supply, soil moisture, bulk density but with different patterns for earthworm stages (adult, juvenile) and ecological types (anecic, endogeic, epigeic). On landscape scales, earthworm distribution seems to be strongly controlled by management/disturbance-related factors. Our study shows different modelling approaches for predicting distribution patterns of earthworms in the Weiherbach area, an agricultural site in Kraichtal (Baden-Württemberg, Germany). We carried out field studies on arable fields differing in soil management practices (conventional, conservational), soil properties (organic matter content, texture, soil moisture), and topography (slope, elevation) in order to identify predictors for earthworm occurrence, abundance and biomass. Our earthworm distribution models consider all ecological groups as well as different life stages, accounting for the fact that the activity of juveniles is sometimes different from those of adults. Within our BIOPORE-project it is our final goal to couple our distribution models with population dynamic models and a preferential flow model to an integrated ecohydrological model to analyse feedbacks between earthworm engineering and transport characteristics affecting the functioning of (agro-) ecosystems.
2012-01-01
Background Soils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil. In this study, we used culture dependent and independent methods to assess the community structure and diversity of chemolithoautotrophs in agricultural and coastal barren saline soils (low and high salinity). We studied the composition and distribution of chemolithoautotrophs by means of functional marker gene cbbL encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and a phylogenetic marker 16S rRNA gene. The cbbL form IA and IC genes associated with carbon fixation were analyzed to gain insight into metabolic potential of chemolithoautotrophs in three soil types of coastal ecosystems which had a very different salt load and sulphur content. Results In cbbL libraries, the cbbL form IA was retrieved only from high saline soil whereas form IC was found in all three soil types. The form IC cbbL was also amplified from bacterial isolates obtained from all soil types. A number of novel monophyletic lineages affiliated with form IA and IC phylogenetic trees were found. These were distantly related to the known cbbL sequences from agroecosystem, volcanic ashes and marine environments. In 16S rRNA clone libraries, the agricultural soil was dominated by chemolithoautotrophs (Betaproteobacteria) whereas photoautotrophic Chloroflexi and sulphide oxidizers dominated saline ecosystems. Environmental specificity was apparently visible at both higher taxonomic levels (phylum) and lower taxonomic levels (genus and species). The differentiation in community structure and diversity in three soil ecosystems was supported by LIBSHUFF (P = 0.001) and UniFrac. Conclusion This study may provide fundamentally new insights into the role of chemolithoautotrophic and photoautotrophic bacterial diversity in biochemical carbon cycling in barren saline soils. The bacterial communities varied greatly among the three sites, probably because of differences in salinity, carbon and sulphur contents. The cbbL form IA-containing sulphide-oxidizing chemolithotrophs were found only in high saline soil clone library, thus giving the indication of sulphide availability in this soil ecosystem. This is the first comparative study of the community structure and diversity of chemolithoautotrophic bacteria in coastal agricultural and saline barren soils using functional (cbbL) and phylogenetic (16S rDNA) marker genes. PMID:22834535
Chau, Henry Wai; Goh, Yit Kheng; Vujanovic, Vladimir; Si, Bing Cheng
2012-12-01
Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil-water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic -Fusarium proliferatum, chrono-amphiphilic -Trichoderma harzianum, and hydrophobic -Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil. Copyright © 2012 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.
2013-11-01
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well-reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness-of-fit for broadleaved forests. N limitation associated with low N mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N-limitation associated with low N mineralisation rates of colder soils reduces CO2-enhancement of NPP for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by c. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions not only in studies of global terrestrial C cycling, but to understand underlying mechanisms on local scales and in different regional contexts.
NASA Astrophysics Data System (ADS)
Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.
2014-04-01
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.
Crop rotations and poultry litter impact dynamic soil chemical properties and soil biota long-term
USDA-ARS?s Scientific Manuscript database
Dynamic soil physiochemical interactions with conservation agricultural practices and soil biota are largely unknown. Therefore, this study aims to quantify long-term (12-yr) impacts of cover crops, poultry litter, crop rotations, and conservation tillage and their interactions on soil physiochemica...
Incorporation of Dynamic SSI Effects in the Design Response Spectra
NASA Astrophysics Data System (ADS)
Manjula, N. K.; Pillai, T. M. Madhavan; Nagarajan, Praveen; Reshma, K. K.
2018-05-01
Many studies in the past on dynamic soil-structure interactions have revealed the detrimental and advantageous effects of soil flexibility. Based on such studies, the design response spectra of international seismic codes are being improved worldwide. The improvements required for the short period range of the design response spectra in the Indian seismic code (IS 1893:2002) are presented in this paper. As the recent code revisions has not incorporated the short period amplifications, proposals given in this paper are equally applicable for the latest code also (IS 1893:2016). Analyses of single degree of freedom systems are performed to predict the required improvements. The proposed modifications to the constant acceleration portion of the spectra are evaluated with respect to the current design spectra in Eurocode 8.
Ebrahimi, Ali; Or, Dani
2016-09-01
Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.
Yang, Wenhao; Zhang, Taoxiang; Lin, Sen; Ni, Wuzhong
2017-06-01
The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial community composition and metabolic characteristics in the rhizospheric soil of hyperaccumulator during phytoextraction are poorly understood. A 12-month phytoextraction experiment with Sedum alfredii in a Cd-contaminated soil was conducted. A pre-stratified rhizobox was used for separating sub-layer rhizospheric (0-2, 2-4, 4-6, 6-8, 8-10 mm from the root mat)/bulk soils. Soil microbial structure and function were analyzed by phospholipid fatty acid (PLFA) and MicroResp™ methods. The concentrations of total and specified PLFA biomarkers and the utilization rates for the 14 substrates (organic carbon) in the 0-2-mm sub-layer rhizospheric soil were significantly increased, as well as decreased with the increase in the distance from the root mat. Microbial structure measured by the ratios of different groups of PLFAs such as fungal/bacterial, monounsaturated/saturated, ratios of Gram-positive to Gram-negative (GP/GN) bacterial, and cyclopropyl/monoenoic precursors and 19:0 cyclo/18:1ω7c were significantly changed in the 0-2-mm soil. The PLFA contents and substrate utilization rates were negatively correlated with pH and total, acid-soluble, and reducible fractions of Cd, while positively correlated with labile carbon. The dynamics of microbial community were likely due to root exudates and Cd uptake by S. alfredii. This study revealed the stimulations and gradient changes of rhizosphere microbial community through phytoextraction, as reduced Cd concentration, pH, and increased labile carbons are due to the microbial community responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Varga, Tamas; Liu, Chongxuan
Plant roots play a critical role in plant-soil-microbe interactions that occur in the rhizosphere, as well as processes with important implications to farming, forest management and climate change. X-ray computed tomography (XCT) has been proven to be an effective tool for non-invasive root imaging and analysis. A combination of XCT, open-source software, and our own code was used to noninvasively image a prairie dropseed (Sporobolus heterolepis) specimen, segment the root data to obtain a 3D image of the root structure at 31µm resolution, and extract quantitative information (root volume and surface area) from the 3D data, respectively. Based on themore » mesh generated from the root structure, computational fluid dynamics (CFD) simulations were applied to numerically investigate the root-soil-groundwater system. The plant root conductivity, soil hydraulic conductivity and transpiration rate were shown to control the groundwater distribution. The flow variability and soil water distributions under different scenarios were investigated. Parameterizations were evaluated to show their impacts on the average conductivity. The pore-scale modeling approach provides realistic simulations of rhizosphere flow processes and provides useful information that can be linked to upscaled models.« less
The use of FDEM in hydrogeophysics: A review
NASA Astrophysics Data System (ADS)
Boaga, Jacopo
2017-04-01
Hydrogeophysics is a rapidly evolving discipline emerging from geophysical methods. Geophysical methods are nowadays able to illustrate not only the fabric and the structure of the underground, but also the subsurface processes that occur within it, as fluids dynamic and biogeochemical reactions. This is a growing wide inter-disciplinary field, specifically dedicated to revealing soil properties and monitoring processes of change due to soil/bio/atmosphere interactions. The discipline involves environmental, hydrological, agricultural research and counts application for several engineering purposes. The most frequently used techniques in the hydrogeophysical framework are the electric and electromagnetic methods because they are highly sensitive to soil physical properties such as texture, salinity, mineralogy, porosity and water content. Non-invasive techniques are applied in a number of problems related to characterization of subsurface hydrology and groundwater dynamic processes. Ground based methods, as electrical tomography, proved to obtain considerable resolution but they are difficult to extend to wider exploration purposes due to their logistical limitation. Methods that don't need electrical contact with soil can be, on the contrary, easily applied to broad areas. Among these methods, a rapidly growing role is played by frequency domain electro-magnetic (FDEM) survey. This is due thanks to the improvement of multi-frequency and multi-coils instrumentation, simple time-lapse repeatability, cheap and accurate topographical referencing, and the emerging development of inversion codes. From raw terrain apparent conductivity meter, FDEM survey is becoming a key tool for 3D soil characterization and dynamics observation in near surface hydrological studies. Dozens of papers are here summarized and presented, in order to describe the promising potential of the technique.
On the Need to Establish an International Soil Modeling Consortium
NASA Astrophysics Data System (ADS)
Vereecken, H.; Vanderborght, J.; Schnepf, A.
2014-12-01
Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.
Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)
NASA Astrophysics Data System (ADS)
Lugovoi, P. Z.; Meish, V. F.
2017-09-01
Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.
The impact of fog on soil moisture dynamics in the Namib Desert
NASA Astrophysics Data System (ADS)
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Vogt, Roland; Li, Lin; Seely, Mary K.
2018-03-01
Soil moisture is a crucial component supporting vegetation dynamics in drylands. Despite increasing attention on fog in dryland ecosystems, the statistical characterization of fog distribution and how fog affects soil moisture dynamics have not been seen in literature. To this end, daily fog records over two years (Dec 1, 2014-Nov 1, 2016) from three sites within the Namib Desert were used to characterize fog distribution. Two sites were located within the Gobabeb Research and Training Center vicinity, the gravel plains and the sand dunes. The third site was located at the gravel plains, Kleinberg. A subset of the fog data during rainless period was used to investigate the effect of fog on soil moisture. A stochastic modeling framework was used to simulate the effect of fog on soil moisture dynamics. Our results showed that fog distribution can be characterized by a Poisson process with two parameters (arrival rate λ and average depth α (mm)). Fog and soil moisture observations from eighty (Aug 19, 2015-Nov 6, 2015) rainless days indicated a moderate positive relationship between soil moisture and fog in the Gobabeb gravel plains, a weaker relationship in the Gobabeb sand dunes while no relationship was observed at the Kleinberg site. The modeling results suggested that mean and major peaks of soil moisture dynamics can be captured by the fog modeling. Our field observations demonstrated the effects of fog on soil moisture dynamics during rainless periods at some locations, which has important implications on soil biogeochemical processes. The statistical characterization and modeling of fog distribution are of great value to predict fog distribution and investigate the effects of potential changes in fog distribution on soil moisture dynamics.
Soil Moisture Dynamics under Corn, Soybean, and Perennial Kura Clover
NASA Astrophysics Data System (ADS)
Ochsner, T.; Venterea, R. T.
2009-12-01
Rising global food and energy consumption call for increased agricultural production, whereas rising concerns for environmental quality call for farming systems with more favorable environmental impacts. Improved understanding and management of plant-soil water interactions are central to meeting these twin challenges. The objective of this research was to compare the temporal dynamics of soil moisture under contrasting cropping systems suited for the Midwestern region of the United States. Precipitation, infiltration, drainage, evapotranspiration, soil water storage, and freeze/thaw processes were measured hourly for three years in field plots of continuous corn (Zea mays L.), corn/soybean [Glycine max (L.) Merr.] rotation, and perennial kura clover (Trifolium ambiguum M. Bieb.) in southeastern Minnesota. The evapotranspiration from the perennial clover most closely followed the temporal dynamics of precipitation, resulting in deep drainage which was reduced up to 50% relative to the annual crops. Soil moisture utilization also continued later into the fall under the clover than under the annual crops. In the annual cropping systems, crop sequence influenced the soil moisture dynamics. Soybean following corn and continuous corn exhibited evapotranspiration which was 80 mm less than and deep drainage which was 80 mm greater than that of corn following soybean. These differences occurred primarily during the spring and were associated with differences in early season plant growth between the systems. In the summer, soil moisture depletion was up to 30 mm greater under corn than soybean. Crop residue also played an important role in the soil moisture dynamics. Higher amounts of residue were associated with reduced soil freezing. This presentation will highlight key aspects of the soil moisture dynamics for these contrasting cropping systems across temporal scales ranging from hours to years. The links between soil moisture dynamics, crop yields, and nutrient leaching will also be examined.
Jonathan A. O' Donnell; M.Torre Jorgenson; Jennifer W. Harden; A.David McGuire; Mikhail Z. Kanevskiy; Kimberly P. Wickland
2012-01-01
Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior...
Wilson, Hannah; Johnson, Bart R; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D
2016-01-01
Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.
2016-01-01
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A
2016-09-29
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.
Ogura, Tatsuki; Date, Yasuhiro; Kikuchi, Jun
2013-01-01
Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation. PMID:23840554
NASA Astrophysics Data System (ADS)
Radke, A. G.; Godsey, S.; Lohse, K. A.; Huber, D. P.; Patton, N. R.; Holbrook, S.
2017-12-01
The non-uniform distribution of precipitation in snowmelt-driven systems—the result of blowing and drifting snow—is a primary driver of spatial heterogeneity in vegetative communities and soil development. Snowdrifts may increase bedrock weathering below them, creating deeper soils and the potential for greater fracture flow. These snowdrift areas are also commonly more productive than the snow-starved, scoured areas where wind has removed snow. Warming-induced changes in the fraction of precipitation falling as snow, and therefore subject to drifting, may significantly affect carbon dynamics on multiple timescales. The focus of this study is to understand the coupled hydrological and carbon dynamics in a heterogeneous, drift-dominated watershed. We seek to determine the paths of soil water and groundwater in a small headwater catchment (Reynolds Mountain East, Reynolds Creek Critical Zone Observatory, Idaho, USA). Additionally, we anticipate quantifying the flux of dissolved organic carbon through these paths, and relate this to zones of greater vegetative productivity. We deduce likely flowpaths through a combination of soil water, groundwater, and precipitation characterization. Along a transect running from a snowdrift to the stream, we measure hydrometric and hydrochemical signatures of flow throughout the snowmelt period and summer. We then use end-member-mixing analysis to interpret flowpaths in light of inferred subsurface structure derived from drilling and electrical resistance tomography transects. Preliminary results from soil moisture sensors suggest that increased bedrock weathering creates pathways by which snowmelt bypasses portions of the soil, further increasing landscape heterogeneity. Further analysis will identify seasonal changes in carbon sourcing for this watershed, but initial indications are that spring streamwater is sourced primarily from soil water, with close associations between soil carbon and DOC.
NASA Astrophysics Data System (ADS)
Vasenev, Ivan; Chernikov, Vladimir; Yashin, Ivan; Geraskin, Mikhail; Morev, Dmitriy
2014-05-01
In the Central Region of Russia (CRR) the soil cover patterns usually play the very important role in the soil forming and degradation processes (SFP & SDP) potential and current rates, soil organic carbon (SOC) dynamics and pools, greenhouse gases (GHG) emissions and soluble SOC fluxes that we need take into attention for better assessment of the natural and especially man-changed ecosystems' services and for best land-use practices development. Central Region of Russia is the biggest one in RF according to its population and role in the economy. CRR is characterized by high spatial variability of soil cover due to as original landscape heterogeneity as complicated history of land-use practices during last 700 years. Our long-term researches include the wide zonal-provincial set of representative ecosystems and soil cover patterns with different types and history of land-use (forest, meadow-steppe and agricultural ones) from middle-taiga to steppe zones with different level of continentality. The carried out more than 30-years region- and local-scale researches of representative natural and rural landscapes in Tver', Yaroslavl', Kaluga, Moscow, Vladimir, Saransk (Mordovia), Kursk, Orel, Tambov, Voronezh and Saratov oblasts give us the interregional multi-factorial matrix of elementary soil cover patterns (ESCP) with different soil forming and degradation processes rates and soil organic carbon dynamics due to regionally specific soil-geomorphologic features, environmental and dominated microclimate conditions, land-use current practices and history. The validation and ranging of the limiting factors of SFP and SDP develop¬ment, soil carbon dynamics and sequestration potential, ecosystem (agroecosystem) principal services, land functional qualities and agroecological state have been done for dominating and most dynamical components of ESCP regional-typological forms - with application of SOC structure analysis, regional and local GIS, soil spatial patterns detail mapping, traditional regression kriging, correlation tree models and DSS adapted to concrete region and agrolandscape conditions. The outcomes of statistical process modeling show the essential amplification of erosion, dehumification, CO2, CH4 and N2O emission, soluble SOC fluxes, acidification or alkalization, disaggregation and overcompaction processes due to violation of environmentally sound land-use systems and traditional balances of organic matter, nutrients, Ca and Na in agrolandscapes. Due to long-term intensive and out-of-balance land-use practices the most zonal soils and soil cover pattern essentially lost not only their unique natural features (humus horizons depth till 1 m and more in case of Chernozems, 2-6 % of SOC and favorable agrophysical features), but ecosystem services and ecological functions including terrestrial ecosystem carbon balance and the GHG fluxes control. Key-site monitoring results and regional generalized data showed 1-1.5% SOC lost during last 50 years period and active processes of CO2 emission and humus profile eluvial-illuvial redistribution too. A drop of Corg content below threshold "humus limiting content" values (for different soils they vary from 1 to 3-4% of SOC) considerably reduces effectiveness of used fertilizers and possibility of sustai¬nable agronomy here. Forest-steppe Chernozems are usually characterized by higher stability than steppe ones. The ratio between erosive and biological losses in humus supplies can be ten-tatively estimated as fifty-fifty with strong spatial variability due to slope and land-use parameters. These processes have essentially different sets of environmental consequences and ecosystem services that we need to understand in frame of environmental and agroecological problems development prediction.
Assessing the dynamics of the upper soil layer relative to soil management practices
USDA-ARS?s Scientific Manuscript database
The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregat...
Colla, Tatiana Simonetto; Andreazza, Robson; Bücker, Francielle; de Souza, Marcela Moreira; Tramontini, Letícia; Prado, Gerônimo Rodrigues; Frazzon, Ana Paula Guedes; Camargo, Flávio Anastácio de Oliveira; Bento, Fátima Menezes
2014-02-01
This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.
Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration
NASA Astrophysics Data System (ADS)
Dobre, Daniela; Sorin Dragomir, Claudiu
2017-10-01
The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.
NASA Astrophysics Data System (ADS)
Zangerlé, Anne; Hissler, Christophe; Lavelle, Patrick
2014-05-01
Earthworms and plant roots, as ecosystem engineers, have large effects on biotic and abiotic properties of the soil system. They create biogenic soil macroaggregates (i.e. earthworm casts and root macroaggregates) with specific physical, chemical and microbiological properties. Research to date has mainly considered their impacts in isolation thereby ignoring potential interactions between these organisms. On the other hand, most of the existing studies focused on short to midterm time scale. We propose in this study to consider effect of earthworms and plants on aggregate dynamics at long time scale. A 24 months macrocosm experiment, under semi-controlled conditions, was conducted to assess the impacts of corn and endogeic plus anecic earthworms (Apporectodea caliginosa and Lumbricus terrestris) on soil structure, C stabilization and microbial abundance and biodiversity. Aggregate stability was assessed by wet-sieving. Macroaggregates (>2 mm) were also visually separated according to their biological origin (e.g., earthworms, roots). Total C and N contents were measured in aggregates of all size classes and origins. Natural abundances of 13C of corn, a C4 plant, were used as a supplemental marker of OM incorporation in aggregates. The genetic structure and the abundance of the bacterial and fungal communities were characterized by using respectively the B- and F-ARISA fingerprinting approach and quantitative PCR bacteria (341F/515R) and fungi (FF330/FR1). They significantly impacted the soil physical properties in comparison to the other treatments: lower bulk density in the first 10cm of the soil with 0.95 g/cm3 in absence of corn plants and 0.88 g/cm3 in presence of corn plants compared to control soil (1.21g/cm3). The presence of earthworms increased aggregate stability (mean weight diameter) by 7.6 %, while plants alone had no simple impacts on aggregation. A significant interaction revealed that earthworms increased aggregate stability in the presence of roots by 2.4% when compared to macrocosms without plants. Additionally, the presence of roots increased the total C and N concentration in earthworm casts, while earthworms increased C storage in microaggregates within root-derived aggregates. Analyses of 13C abundances revealed that OM had been incorporated in earthworm casts from the fifth month of the experiment. Earthworms showed an impact on bacterial abundance of 26.7% of increase in single species macroaggregates and 35.5% in mixt species macroaggregates after the first harvest of corn plants. Trends however changed on the long term since bacterial abundances decreased dramatically (67.1% in single species treatments and 59.3% in mixed species treatments) during the second year and fungal abundances, stable during the first 5 months of the experiment, later increased 80% and 73.2% in earthworm and mixed species macroaggregates. This experiment showed how interactions between plants and earthworms can influence the soil structure and the soil aggregates dynamics by cooperating in macroaggregate formation. Both organisms need to be considered simultaneously for proper management of soils.
NASA Astrophysics Data System (ADS)
Gibson, C. D.; Filley, T. R.; Bird, J. A.; Hatton, P. J.; Stark, R. E.; Nadelhoffer, K. J.
2017-12-01
Pyrogenic organic matter (PyOM) produced during forest fires is considered a large sink of stable soil organic matter (SOM) in boreal-temperate forest ecotones, where fire frequency and intensity is growing with changing climate. Understanding how changes in fire regime and predicted shifts in plant taxa will interact to affect PyOM dynamics in soil is imperative to assessing the impact of climate change on SOM maintenance. The stability of PyOM in soil may be co-determined by the physiochemical structure imparted on PyOM during pyrolysis and by its initial taxa-dependent wood chemistry and anatomy. To determine PyOM-C turnover rates in soil, we followed the fate of 13C-enriched wood or PyOM (200, 300, 450, or 600°C) derived from red maple (RM) or jack pine (JP) wood in soil from a recently burned forest in northern Michigan, USA. We found that pyrolysis temperature-controlled physiochemical changes influenced, with threshold dynamics, PyOM stability resulting in mean residence times of 2 (PyOM 200°C) to 450 years for both taxa, confirming that most PyOM (<600°C) turns over on the century, not millennial time scale. Water leachable C, carbohydrate and non-lignin phenol content correlated positively with early PyOM-C mineralization for both JP and RM, but the pyrolysis temperature at which this interaction was strongest differed with taxa reflecting the difference in thermal transition in which carbonization begins (300°C for JP and 450°C for RM). In contrast to previous studies, the addition of sucrose suggests that a co-metabolism mechanism of PyOM decomposition is minor in this soil. Our results show that while the first order control on PyOM stability in this soil is pyrolysis temperature, wood taxa did affect PyOM C MRT, in part due to differences in the amount of water soluble C released by PyOM during the initial decomposition dynamics in soil.
Yamada, Toshihiro; Yamada, Yuko; Okuda, Toshinori; Fletcher, Christine
2013-07-01
Differences in the density of conspecific tree individuals in response to environmental gradients are well documented for many tree species, but how such density differences are generated and maintained is poorly understood. We examined the segregation of six dipterocarp species among three soil types in the Pasoh tropical forest, Malaysia. We examined how individual performance and population dynamics changed across the soil types using 10-year demographic data to compare tree performance across soil types, and constructed population matrix models to analyze the population dynamics. Species showed only minor changes in mortality and juvenile growth across soil types, although recruitment differed greatly. Clear, interspecific demographic trade-offs between growth and mortality were found in all soil types. The relative trade-offs by a species did not differ substantially among the soil types. Population sizes were projected to remain stable in all soil types for all species with one exception. Our life-table response experiment demonstrated that the population dynamics of a species differed only subtly among soil types. Therefore, species with strong density differences across soil types do not necessarily differ greatly in their population dynamics across the soil types. In contrast, interspecific differences in population dynamics were large. The trade-off between mortality and growth led to a negative correlation between the contributions of mortality and growth to variations in the population growth rate (λ) and thus reduced their net contributions. Recruitment had little impact on the variation in λ. The combination of these factors resulted in little variation in λ among species.
Niimura, Nobuo; Kikuchi, Kenji; Tuyen, Ninh Duc; Komatsuzaki, Masakazu; Motohashi, Yoshinobu
2015-01-01
We conducted an elution experiment with contaminated soils using various aqueous reagent solutions and autoradiography measurements of contaminated bamboo shoots and shiitake mushrooms to determine the physical and chemical characteristics of radioactive Cs from the Fukushima Daiichi Nuclear Power Plant accident. Based on our study results and data in the literature, we conclude that the active Cs emitted by the accident fell to the ground as granular non-ionic materials. Therefore, they were not adsorbed or trapped by minerals in the soil, but instead physically adhere to the rough surfaces of the soil mineral particles. Granular Cs* can be transferred among media, such as soils and plants. The physical properties and dynamic behavior of the granular Cs* is expected to be helpful in considering methods for decontamination of soil, litter, and other media. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Parameterization and Modeling of Coupled Heat and Mass Transport in the Vadose Zone
NASA Astrophysics Data System (ADS)
Mohanty, B.; Yang, Z.
2016-12-01
The coupled heat and mass transport in the vadose zone is essentially a multiphysics issue. Addressing this issue appropriately has remarkable impacts on soil physical, chemical and biological processes. To data, most coupled heat and water transport modeling has focused on the interactions between liquid water, water vapor and heat transport in homogeneous and layered soils. Comparatively little work has been done on structured soils where preferential infiltration and evaporation flow occurs. Moreover, the traditional coupled heat and water model usually neglects the nonwetting phase air flow, which was found to be significant in the state-of-the-art modeling framework for coupled heat and water transport investigation. However, the parameterizations for the nonwetting phase air permeability largely remain elusive so far. In order to address the above mentioned limitations, this study aims to develop and validate a predictive multiphysics modeling framework for coupled soil heat and water transport in the heterogeneous shallow subsurface. To this end, the following research work is specifically conducted: (a) propose an improved parameterization to better predict the nonwetting phase relative permeability; (b) determine the dynamics, characteristics and processes of simultaneous soil moisture and heat movement in homogeneous and layered soils; and (c) develop a nonisothermal dual permeability model for heterogeneous structured soils. The results of our studies showed that: (a) the proposed modified nonwetting phase relative permeability models are much more accurate, which can be adopted for better parameterization in the subsequent nonisothermal two phase flow models; (b) the isothermal liquid film flow, nonwetting phase gas flow and liquid-vapor phase change non-equilibrium effects are significant in the arid and semiarid environments (Riverside, California and Audubon, Arizona); and (c) the developed nonisothermal dual permeability model is capable of characterizing the preferential evaporation path in the heterogeneous structured soils due to the fact that the capillary forces divert the pore water from coarse-textured soils (high temperature region) toward the fine-textured soils (low temperature region).
NASA Astrophysics Data System (ADS)
Hinojosa, M. B.; Parra, A.; Laudicina, V. A.; Moreno, J. M.
2014-10-01
Fire is a major ecosystem driver, causing significant changes in soil nutrients and microbial community structure and functionality. Post-fire soil dynamics can vary depending on rainfall patterns, although variations in response to drought are poorly known. This is particularly important in areas with poor soils and limited rainfall, like arid and semiarid ones. Furthermore, climate change projections in many such areas anticipate reduced precipitation and longer drought, together with an increase in fire severity. The effects of experimental drought and fire were studied on soils in a Mediterranean Cistus-Erica shrubland in Central Spain. A replicated (n = 4) field experiment was carried out in which four levels of rainfall pattern were implemented by means of a rain-out shelters and irrigation system. The treatments were: environmental control (natural rainfall), historical control (long-term average rainfall, 2 months drought), moderate drought (25% reduction of historical control, 5 months drought) and severe drought (45% reduction, 7 months drought). After one growing season, the plots were burned with high fire intensity, except a set of unburned plots that served as control. Soils were collected seasonally during one year and variables related to soil nutrient availability and microbial community structure and functionality were studied. Burned soils increased nutrient availability (P, N, K) with respect to unburned ones, but drought reduced such an increase in P, while it further increased N and K. Such changes in available soil nutrients were short-lived. Drought caused a further decrease of enzyme activities, carbon mineralization rate and microbial biomass. Fire decreased the relative abundance of fungi and actinomycetes. However, fire and drought caused a further reduction in fungi, with bacteria becoming relatively more abundant. Arguably, increasing drought and fires due to climate change will likely shift soil recovery after fire.
Ramirez, Kelly S; Knight, Christopher G; de Hollander, Mattias; Brearley, Francis Q; Constantinides, Bede; Cotton, Anne; Creer, Si; Crowther, Thomas W; Davison, John; Delgado-Baquerizo, Manuel; Dorrepaal, Ellen; Elliott, David R; Fox, Graeme; Griffiths, Robert I; Hale, Chris; Hartman, Kyle; Houlden, Ashley; Jones, David L; Krab, Eveline J; Maestre, Fernando T; McGuire, Krista L; Monteux, Sylvain; Orr, Caroline H; van der Putten, Wim H; Roberts, Ian S; Robinson, David A; Rocca, Jennifer D; Rowntree, Jennifer; Schlaeppi, Klaus; Shepherd, Matthew; Singh, Brajesh K; Straathof, Angela L; Bhatnagar, Jennifer M; Thion, Cécile; van der Heijden, Marcel G A; de Vries, Franciska T
2018-02-01
The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abundances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynamics, identify potential 'indicator' taxa with an important role in structuring communities, and propose hypotheses on the factors that shape bacterial biogeography that have been overlooked in the past.
Karis J. McFarlane; Margaret S. Torn; Paul J. Hanson; Rachel C. Porras; Christopher W. Swanston; Mac A. Callaham; Thomas P. Guilderson
2013-01-01
Forest soils represent a significant pool for carbon sequestration and storage, but the factors controlling soil carbon cycling are not well constrained.We compared soil carbon dynamics at five broadleaf forests in the Eastern US that vary in climate, soil type, and soil ecology: two sites at the University of Michigan Biological Station (MI-Coarse, sandy;MI-Fine,...
Priming alters soil carbon dynamics during forest succession
NASA Astrophysics Data System (ADS)
Qiao, Na; Xu, Xingliang; Wang, Juan; Kuzyakov, Yakov
2017-04-01
The mechanisms underlying soil carbon (C) dynamics during forest succession remain challenged. We examined priming of soil organic matter (SOM) decomposition along a vegetation succession: grassland, young and old-growth forests. Soil C was primed much more strongly in young secondary forest than in grassland or old-growth forest. Priming resulted in large C losses (negative net C balance) in young-forest soil, whereas C stocks increased in grassland and old-growth forest. Microbial composition assessed by phospholipid fatty acids (PLFA) and utilization of easily available organics (13C-PLFA) indicate that fungi were responsible for priming in young-forest soils. Consequently, labile C inputs released by litter decomposition and root exudation determine microbial functional groups that decompose SOM during forest succession. These findings provide novel insights into connections between SOM dynamics and stabilization with microbial functioning during forest succession and show that priming is an important mechanism for contrasting soil C dynamics in young and old-growth forests.
NASA Astrophysics Data System (ADS)
Jiang, Y.; Rastetter, E.; Shaver, G. R.; Rocha, A. V.
2012-12-01
In Alaska, fire disturbance is a major component influencing the soil water and energy balance in both tundra and boreal forest ecosystems. Fire-caused changes in soil environment further affect both above- and below-ground carbon cycles depending on different fire severities. Understanding the effects of fire disturbance on soil thermal change requires implicit modeling work on the post-fire soil thawing and freezing processes. In this study, we model the soil temperature profiles in multiple burned and non-burned sites using a well-developed soil thermal model which fully couples soil water and heat transport. The subsequent change in carbon dynamics is analyzed based on site level observations and simulations from the Multiple Element Limitation (MEL) model. With comparison between burned and non-burned sites, we compare and contrast fire effects on soil thermal and carbon dynamics in continuous permafrost (Anaktuvik fire in north slope), discontinuous permafrost (Erickson Creek fire at Hess Creek) and non-permafrost zone (Delta Junction fire in interior Alaska). Then we check the post-fire recovery of soil temperature profiles at sites with different fire severities in both tundra and boreal forest fire areas. We further project the future changes in soil thermal and carbon dynamics using projected climate data from Scenarios Network for Alaska & Arctic Planning (SNAP). This study provides information to improve the understanding of fire disturbance on soil thermal and carbon dynamics and the consequent response under a warming climate.
Redmile-Gordon, M.A.; Evershed, R.P.; Hirsch, P.R.; White, R.P.; Goulding, K.W.T.
2015-01-01
An emerging paradigm in soil science suggests microbes can perform ‘N mining’ from recalcitrant soil organic matter (SOM) in conditions of low N availability. However, this requires the production of extracellular structures rich in N (including enzymes and structural components) and thus defies stoichiometric expectation. We set out to extract newly synthesised peptides from the extracellular matrix in soil and compare the amino acid (AA) profiles, N incorporation and AA dynamics in response to labile inputs of contrasting C/N ratio. Glycerol was added both with and without an inorganic source of N (10% 15N labelled NH4NO3) to a soil already containing a large pool of refractory SOM and incubated for 10 days. The resulting total soil peptide (TSP) and extracellular pools were compared using colorimetric methods, gas chromatography, and isotope ratio mass spectrometry. N isotope compositions showed that the extracellular polymeric substance (EPS) contained a greater proportion of products formed de novo than did TSP, with hydrophobic EPS-AAs (leucine, isoleucine, phenylalanine, hydroxyproline and tyrosine) deriving substantially more N from the inorganic source provided. Quantitative comparison between extracts showed that the EPS contained greater relative proportions of alanine, glycine, proline, phenylalanine and tyrosine. The greatest increases in EPS-peptide and EPS-polysaccharide concentrations occurred at the highest C/N ratios. All EPS-AAs responded similarly to treatment whereas the responses of TSP were more complex. The results suggest that extracellular investment of N (as EPS peptides) is a microbial survival mechanism in conditions of low N/high C which, from an evolutionary perspective, must ultimately lead to the tendency for increased N returns to the microbial biomass. A conceptual model is proposed that describes the dynamics of the extracellular matrix in response to the C/N ratio of labile inputs. PMID:26339106
NASA Astrophysics Data System (ADS)
Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.
2017-12-01
Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.
NASA Technical Reports Server (NTRS)
Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.
1992-01-01
The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.
NASA Astrophysics Data System (ADS)
Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme
2014-05-01
From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by blocking the crystal growth of SRO-AlSi. Conversely, the effect of minerals on the dynamics of organic compounds also deserves to be studied in greater detail. If the "bulk" approaches showed that proto-imogolites involve long-term stabilized OM, other approaches such as densimetric fractionation and C3/C4 chronosequences (Basile-Doelsch et al. 2007; De Junet et al. 2013) led us to consider a new model involving two types of organo-mineral interactions: (1) OM stabilized by strong bonds to proto-imogolite, leading to a slow OM turnover and (2) OM retained within the porosity of the 3D structure formed by the proto-imogolite (similar to a gel structure), leading to a faster OM turnover. Understanding the mechanisms of organo-mineral interactions in andosols will open new research directions for understanding the mechanisms of stabilization of OM in any type of soil (Bonnard et al. 2012). Basile-Doelsch et al., Geoderma, 137, 477-489, 2007. Basile-Doelsch et al., European Journal of Soil Science, 56, 689-703, 2005. Bonnard et al., European Journal of Soil Science, 63, 5, 625-636, 2012. de Junet, et al., Journal of Analytical and Applied Pyrolysis, 99, 92-10, 2013, Levard et al, Geoderma, 183-184, 100-108, 2012. Levard et al. Chemistry Of Materials, 22, 2466-2473, 2010 Torn et al. Nature, London, 389, 170-173, 1997.
Soil moisture dynamics and smoldering combustion limits of pocosin soils in North Carolina, USA
James Reardon; Gary Curcio; Roberta Bartlette
2009-01-01
Smoldering combustion of wetland organic soils in the south-eastern USA is a serious management concern. Previous studies have reported smoldering was sensitive to a wide range of moisture contents, but studies of soil moisture dynamics and changing smoldering combustion potential in wetland communities are limited. Linking soil moisture measurements with estimates of...
Xiaojun, Nie; Jianhui, Zhang; Zhengan, Su
2013-01-01
Dynamics of soil organic carbon (SOC) are associated with soil erosion, yet there is a shortage of research concerning the relationship between soil erosion, SOC, and especially microbial biomass carbon (MBC). In this paper, we selected two typical slope landscapes including gentle and steep slopes from the Sichuan Basin, China, and used the 137Cs technique to determine the effects of water erosion and tillage erosion on the dynamics of SOC and MBC. Soil samples for the determination of 137Cs, SOC, MBC and soil particle-size fractions were collected on two types of contrasting hillslopes. 137Cs data revealed that soil loss occurred at upper slope positions of the two landscapes and soil accumulation at the lower slope positions. Soil erosion rates as well as distribution patterns of the <0.002-mm clay shows that water erosion is the major process of soil redistribution in the gentle slope landscape, while tillage erosion acts as the dominant process of soil redistribution in the steep slope landscape. In gentle slope landscapes, both SOC and MBC contents increased downslope and these distribution patterns were closely linked to soil redistribution rates. In steep slope landscapes, only SOC contents increased downslope, dependent on soil redistribution. It is noticeable that MBC/SOC ratios were significantly lower in gentle slope landscapes than in steep slope landscapes, implying that water erosion has a negative effect on the microbial biomass compared with tillage erosion. It is suggested that MBC dynamics are closely associated with soil redistribution by water erosion but independent of that by tillage erosion, while SOC dynamics are influenced by soil redistribution by both water erosion and tillage erosion. PMID:23717530
Preservation of labile organic matter in soils of drained thaw lakes in Northern Alaska
NASA Astrophysics Data System (ADS)
Mueller, Carsten W.; Rethemeyer, Janet; Kao-Kniffin, Jenny; Löppmann, Sebastian; Hinkel, Kenneth; Bockheim, James
2014-05-01
A large number of studies predict changing organic matter (OM) dynamics in arctic soils due to global warming. In contrast to rather slowly altering bulk soil properties, single soil organic matter (SOM) fractions can provide a more detailed picture of the dynamics of differently preserved SOM pools in climate sensitive arctic regions. By the study of the chemical composition of such distinctive SOM fractions using nuclear magnetic resonance spectroscopy (NMR) together with radiocarbon analyses it is possible to evaluate the stability of the major OM pools. Approximately 50-75% of Alaska's Arctic Coastal Plain is covered with thaw lakes and drained thaw lakes that follow a 5,000 yr cycle of development (between creation and final drainage), thus forming a natural soil chronosequence. The drained thaw lakes offer the possibility to study SOM dynamics affected by permafrost processes over millennial timescales. In April 2010 we sampled 16 soil cores (including the active and permanent layer) reaching from young drained lakes (0-50 years since drainage) to ancient drained lakes (3000-5500 years since drainage). Air dried soil samples from soil horizons of the active and permanent layer were subjected to density fractionation in order to differentiate particulate OM and mineral associated OM. The chemical composition of the SOM fractions was analyzed by 13C CPMAS NMR spectroscopy. For a soil core of a young and an ancient drained thaw lake basin we also analyzed the 14C content. For the studied soils we can show that up to over 25 kg OC per square meter are stored mostly as labile, easily degradable organic matter rich in carbohydrates. In contrast only 10 kg OC per square meter were sequestered as presumably more stable mineral associated OC dominated by aliphatic compounds. Comparable to soils of temperate regions, we found small POM (< 20 µm) occluded in aggregated soil structures which differed in the chemical composition from larger organic particles. This was clearly shown by increased amounts of aliphatic C in these small POM fractions. As revealed by 13C CPMAS NMR, with advancing soil age increasing aliphaticity was also detected in occluded small POM fractions. By 14C dating we could show the stabilization of younger more labile OM at greater depth in buried O horizons. Additionally the study of the microscale elemental distributions, using nano-scale secondary ion mass spectrometry (NanoSIMS) showed the initial formation of aggregates and organo-mineral interfaces in the studied permafrost soils.
2009-06-01
root dynamics in riparian forests. Soil Science Society of America 69(3):729-737. Houser, J. N., P. J. Mulholland, and K. O. Maloney. 2006. Upland...Forested Wetlands, D. M. Amatya and J. Nettles (eds). New Bern, NC. American Society of Agricultural and Biological Engineers, St. Joseph, MI...primary productivity, vegetation composition, structure, and fine root dynamics in riparian forests. Kelly O. Maloney, Ph.D. in Biological Sciences
Modeling soil processes - are we lost in diversity?
NASA Astrophysics Data System (ADS)
Vogel, Hans-Joerg; Schlüter, Steffen
2015-04-01
Soils are among the most complex environmental systems. Soil functions - e.g. production of biomass, habitat for organisms, reactor for and storage of organic matter, filter for ground water - emerge from a multitude of processes interacting at different scales. It still remains a challenge to model and predict these functions including their stability and resilience towards external perturbations. As an inherent property of complex systems it is prohibitive to unravel all the relevant process in all detail to derive soil functions and their dynamics from first principles. Hence, when modeling soil processes and their interactions one is close to be lost in the overwhelming diversity and spatial heterogeneity of soil properties. In this contribution we suggest to look for characteristic similarities within the hyperdimensional state space of soil properties. The underlying hypothesis is that this state space is not evenly and/or randomly populated but that processes of self organization produce attractors of physical, chemical and biological properties which can be identified. (The formation of characteristic soil horizons is an obvious example). To render such a concept operational a suitable and limited set of indicators is required. Ideally, such indicators are i) related to soil functions, ii) are measurable and iii) are integral measures of the relevant physical, chemical and biological soil properties. This would allow for identifying suitable attractors. We will discuss possible indicators and will focus on soil structure as an especially promising candidate. It governs the availability of water and gas, it effects the spatial distribution of organic matter and, moreover, it forms the habitat of soil organisms and it is formed by soil biota. Quantification of soil structural properties became possible only recently with the development of more powerful tools for non-invasive imaging. Future research need to demonstrate in how far these tools can be used to identify functional soil types (i.e. attractors) allowing for modeling soil processes at an integral level. We provide an example from the 100-years fertilization experiment in Bad-Lauchstädt.
Xiao, Enzong; Krumins, Valdis; Xiao, Tangfu; Dong, Yiran; Tang, Song; Ning, Zengping; Huang, Zhengyu; Sun, Weimin
2017-02-01
Investigation of microbial communities of soils contaminated by antimony (Sb) and arsenic (As) is necessary to obtain knowledge for their bioremediation. However, little is known about the depth profiles of microbial community composition and structure in Sb and As contaminated soils. Our previous studies have suggested that historical factors (i.e., soil and sediment) play important roles in governing microbial community structure and composition. Here, we selected two different types of soil (flooded paddy soil versus dry corn field soil) with co-contamination of Sb and As to study interactions between these metalloids, geochemical parameters and the soil microbiota as well as microbial metabolism in response to Sb and As contamination. Comprehensive geochemical analyses and 16S rRNA amplicon sequencing were used to shed light on the interactions of the microbial communities with their environments. A wide diversity of taxonomical groups was present in both soil cores, and many were significantly correlated with geochemical parameters. Canonical correspondence analysis (CCA) and co-occurrence networks further elucidated the impact of geochemical parameters (including Sb and As contamination fractions and sulfate, TOC, Eh, and pH) on vertical distribution of soil microbial communities. Metagenomes predicted from the 16S data using PICRUSt included arsenic metabolism genes such as arsenate reductase (ArsC), arsenite oxidase small subunit (AoxA and AoxB), and arsenite transporter (ArsA and ACR3). In addition, predicted abundances of arsenate reductase (ArsC) and arsenite oxidase (AoxA and AoxB) genes were significantly correlated with Sb contamination fractions, These results suggest potential As biogeochemical cycling in both soil cores and potentially dynamic Sb biogeochemical cycling as well. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pohl, Madlen; Hoffmann, Mathias; Hagemann, Ulrike; Jurisch, Nicole; Remus, Rainer; Sommer, Michael; Augustin, Jürgen
2016-04-01
The hummocky ground moraine landscape of north-east Germany is characterized by distinct small-scale soil heterogeneity on the one hand, and intensive energy crop cultivation on the other. Both factors are assumed to significantly influence gaseous C exchange, and thus driving the dynamics of soil organic carbon stocks in terrestrial, agricultural ecosystems. However, it is not yet clear to which extent fertilization and soil erosional status influence soil C dynamics and whether one of these factors is more relevant than the other. We present seasonal and dynamic soil C balances of biogas maize for the growing season 2011, recorded at different sites located within the CarboZALF experimental area. The sites differ regarding soils (non-eroded Albic Luvisols (Cutanic), extremely eroded Calcaric Regosol and depositional Endogleyic Colluvic Regosol,) and applied fertilizer (100% mineral N fertilizer, 50% mineral and 50% N organic fertilizer, 100% organic N fertilizer). Fertilization treatments were established on the Albic Luvisol (Cutanic). Net-CO2-exchange (NEE) and ecosystem respiration (Reco) were measured every four weeks using a dynamic flow-through non-steady-state closed manual chamber system. Gap filling was performed based on empirical temperature and PAR dependency functions to derive daily NEE values. At the same time, daily above-ground biomass production (NPP) was estimated based on biomass samples and final harvest, using a sigmoidal growth function. In a next step, dynamic soil C balances were generated as the balance of daily NEE and NPP considering the initial C input due to N fertilizers. The resulted seasonal soil C balances varied from strong C losses at the Endogleyic Colluvic Regosol (602 g C m-2) to C gains at the Calcaric Regosol (-132 g C m-2). In general, soils exerted a stronger impact on seasonal and dynamic C balances compared to differences in applied N fertilizer. There are indications that inter-annual variations in climate conditions and interactions between soil and fertilization types also seem to affect C-dynamics. Hence, long-term measurements of different fertilization treatments at characteristic soil landscape elements are needed.
Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model
NASA Astrophysics Data System (ADS)
Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.
2017-12-01
Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.
NASA Astrophysics Data System (ADS)
Trefilova, O. V.; Efimov, D. Yu.
2015-08-01
The results of the integrated analysis of changes in the state of vegetation and soils (Cutanic Albeluvisol) at the different stages of natural forest regeneration (4-, 11- and 24-year-old felled areas) and in a mature fir forest of the short grass-green moss forest types in the northern part of the western slope of the Yenisei Ridge are presented. A dynamic trend of fir forests restoration to the formation of the structure characteristics of the initial forest types is shown to be performed through the stages of forest meadows and secondary short grass (forbs) and birch stands. The changes in vegetation are accompanied by the fast transformation of the soil properties towards the improvement of soil fertilization However, these changes are temporary.
NASA Astrophysics Data System (ADS)
Lu, Haiying; Shao, Hongbo; Xu, Zhaolong; Peng, Cheng
2017-04-01
Marshy reclamation in coastal area is becoming an important strategy for food safety security and economic development in China. After the reclamation of mudflat, the nutrient concentration in soil is one of the dominated factors restricting the development of marshy agriculture. However, little information is available for soil nutrient dynamics and its driving mechanisms under different types of man-made land uses. In this review, we summarized the soil nutrient dynamics under different types of man-made land uses (bare mudflat soil, rice-wheat rotation soil, aquaculture soil, and forest soil), including the change of physical and chemical features of the reclaimed soil; ii) the dynamics of soil organic matters and its driving mechanism in marshy land; iii) the migration of N, P, and K in marshy soil; and iv) the oriented cultivation and improvement for soil nutrient in marshy soil. This study contributes not only to understanding the soil nutrient cycling in marshy land, but also to providing valuable information for the sustainable development of salt-soil agriculture in marshy land along seaside cities of China.
NASA Astrophysics Data System (ADS)
Fischer, Christine; Hohenbrink, Tobias; Leimer, Sophia; Roscher, Christiane; Ravenek, Janneke; de Kroon, Hans; Kreutziger, Yvonne; Wirth, Christian; Eisenhauer, Nico; Gleixner, Gerd; Weigelt, Alexandra; Mommer, Liesje; Beßler, Holger; Schröder, Boris; Hildebrandt, Anke
2015-04-01
Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (belowground- and aboveground biomass). For the characterization and estimation of soil moisture and its variability and the resulting water fluxes and solute transports, the knowledge of the relative importance of these factors is of major challenge for hydrology and bioclimatology. Because of the heterogeneity of these factors, soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment). The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 using Delta T theta probe. Measurements were integrated to three depth intervals: 0.0 - 0.20, 0.20 - 0.40 and 0.40 - 0.70 m. We analyze the spatio-temporal patterns of soil water content on (i) the normalized time series and (ii) the first components obtained from a principal component analysis (PCA). Both were correlated with the design variables of the Jena Experiment (plant species richness and plant functional groups) and other influencing factors such as soil texture, soil structural variables and vegetation parameters. For the time stability of soil water content, the analysis showed that plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008. In 0.40 - 0.70 m soil deep plots presence of small herbs led to higher than average soil moisture in some years (2008, 2012, 2013). Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths. There was no effect of species diversity in the years since 2010, although species diversity generally increases leaf area index and aboveground biomass. The first component from the PCA analysis described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. The first two components explained 76% of the data set total variance. The third component is linked to plant species richness and explained about 4 % of the total variance of soil moisture data. The fourth component, which explained 2.4 %, showed a high correlation to soil texture. Within this study we investigate the dominant factors controlling spatio-temporal patterns of soil moisture at several soil depths. Although climate and soil depths were the most important drivers, other factors like plant species richness and soil texture affected the temporal variation while certain plant functional groups were important for the spatial variability.
Construction of an Yucatec Maya soil classification and comparison with the WRB framework
2010-01-01
Background Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Methods Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. Results On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. Conclusions The Maya soil classification (MSC) is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols. PMID:20152047
Construction of an Yucatec Maya soil classification and comparison with the WRB framework.
Bautista, Francisco; Zinck, J Alfred
2010-02-13
Mayas living in southeast Mexico have used soils for millennia and provide thus a good example for understanding soil-culture relationships and for exploring the ways indigenous people name and classify the soils of their territory. This paper shows an attempt to organize the Maya soil knowledge into a soil classification scheme and compares the latter with the World Reference Base for Soil Resources (WRB). Several participative soil surveys were carried out in the period 2000-2009 with the help of bilingual Maya-Spanish-speaking farmers. A multilingual soil database was built with 315 soil profile descriptions. On the basis of the diagnostic soil properties and the soil nomenclature used by Maya farmers, a soil classification scheme with a hierarchic, dichotomous and open structure was constructed, organized in groups and qualifiers in a fashion similar to that of the WRB system. Maya soil properties were used at the same categorical levels as similar diagnostic properties are used in the WRB system. The Maya soil classification (MSC) is a natural system based on key properties, such as relief position, rock types, size and quantity of stones, color of topsoil and subsoil, depth, water dynamics, and plant-supporting processes. The MSC addresses the soil properties of surficial and subsurficial horizons, and uses plant communities as qualifier in some cases. The MSC is more accurate than the WRB for classifying Leptosols.
Monitoring the soil degradation by Metastatistical Analysis
NASA Astrophysics Data System (ADS)
Oleschko, K.; Gaona, C.; Tarquis, A.
2009-04-01
The effectiveness of fractal toolbox to capture the critical behavior of soil structural patterns during the chemical and physical degradation was documented by our numerous experiments (Oleschko et al., 2008 a; 2008 b). The spatio-temporal dynamics of these patterns was measured and mapped with high precision in terms of fractal descriptors. All tested fractal techniques were able to detect the statistically significant differences in structure between the perfect spongy and massive patterns of uncultivated and sodium-saline agricultural soils, respectively. For instance, the Hurst exponent, extracted from the Chernozeḿ micromorphological images and from the time series of its physical and mechanical properties measured in situ, detected the roughness decrease (and therefore the increase in H - from 0.17 to 0.30 for images) derived from the loss of original structure complexity. The combined use of different fractal descriptors brings statistical precision into the quantification of natural system degradation and provides a means for objective soil structure comparison (Oleschko et al., 2000). The ability of fractal parameters to capture critical behavior and phase transition was documented for different contrasting situations, including from Andosols deforestation and erosion, to Vertisols high fructuring and consolidation. The Hurst exponent is used to measure the type of persistence and degree of complexity of structure dynamics. We conclude that there is an urgent need to select and adopt a standardized toolbox for fractal analysis and complexity measures in Earth Sciences. We propose to use the second-order (meta-) statistics as subtle measures of complexity (Atmanspacher et al., 1997). The high degree of correlation was documented between the fractal and high-order statistical descriptors (four central moments of stochastic variable distribution) used to the system heterogeneity and variability analysis. We proposed to call this combined fractal/statistical toolbox Metastatistical Analysis and recommend it to the projects directed to soil degradation monitoring. References: 1. Oleschko, K., B.S. Figueroa, M.E. Miranda, M.A. Vuelvas and E.R. Solleiro, Soil & Till. Res. 55, 43 (2000). 2. Oleschko, K., Korvin, G., Figueroa S. B., Vuelvas, M.A., Balankin, A., Flores L., Carreño, D. Fractal radar scattering from soil. Physical Review E.67, 041403, 2003. 3. Zamora-Castro S., Oleschko, K. Flores, L., Ventura, E. Jr., Parrot, J.-F., 2008. Fractal mapping of pore and solids attributes. Vadose Zone Journal, v. 7, Issue2: 473-492. 4. Oleschko, K., Korvin, G., Muñoz, A., Velásquez, J., Miranda, M.E., Carreon, D., Flores, L., Martínez, M., Velásquez-Valle, M., Brambilla, F., Parrot, J.-F. Ronquillo, G., 2008. Fractal mapping of soil moisture content from remote sensed multi-scale data. Nonlinear Proceses in Geophysics Journal, 15: 711-725. 5. Atmanspacher, H., Räth, Ch., Wiedenmann, G., 1997. Statistics and meta-statistics in the concept of complexity. Physica A, 234: 819-829.
Bourceret, Amélia; Cébron, Aurélie; Tisserant, Emilie; Poupin, Pascal; Bauda, Pascale; Beguiristain, Thierry; Leyval, Corinne
2016-04-01
Industrial wasteland soils with aged PAH and heavy metal contaminations are environments where pollutant toxicity has been maintained for decades. Although the communities may be well adapted to the presence of stressors, knowledge about microbial diversity in such soils is scarce. Soil microbial community dynamics can be driven by the presence of plants, but the impact of plant development on selection or diversification of microorganisms in these soils has not been established yet. To test these hypotheses, aged-contaminated soil samples from a field trial were collected. Plots planted with alfalfa were compared to bare soil plots, and bacterial and fungal diversity and abundance were assessed after 2 and 6 years. Using pyrosequencing of 16S rRNA gene and ITS amplicons, we showed that the bacterial community was dominated by Proteobacteria, Actinobacteria, and Bacteroidetes and was characterized by low Acidobacteria abundance, while the fungal community was mainly represented by members of the Ascomycota. The short-term toxic impact of pollutants usually reduces the microbial diversity, yet in our samples bacterial and fungal species richness and diversity was high suggesting that the community structure and diversity adapted to the contaminated soil over decades. The presence of plants induced higher bacterial and fungal diversity than in bare soil. It also increased the relative abundance of bacterial members of the Actinomycetales, Rhizobiales, and Xanthomonadales orders and of most fungal orders. Multivariate analysis showed correlations between microbial community structure and heavy metal and PAH concentrations over time, but also with edaphic parameters (C/N, pH, phosphorus, and nitrogen concentrations).
NASA Astrophysics Data System (ADS)
Le Bissonnais, Yves; Chenu, Claire; Darboux, Frédéric; Duval, Odile; Legout, Cédric; Leguédois, Sophie; Gumiere, Silvio
2010-05-01
Aggregate breakdown due to water and rain action may cause surface crusting, slumping, a reduction of infiltration and interrill erosion. Aggregate stability determines the capacity of aggregates to resist the effects of water and rainfall. In this paper, we evaluated and reviewed the relevance of an aggregate stability measurement to characterize soil physical properties as well as to analyse the processes involved in these properties. Stability measurement assesses the sensitivity of soil aggregates to various basic disaggregation mechanisms such as slaking, differential swelling, dispersion and mechanical breakdown. It has been showed that aggregate size distributions of structural stability tests matched the size distributions of eroded aggregates under rainfall simulations and that erosion amount was well predicted using aggregate stability indexes. It means stability tests could be used to estimate both the erodibility and the size fractions that are available for crust formation and erosion processes. Several studies showed that organic matter was one of the main soil properties affecting soil stability. However, it has also been showed that aggregate stability of a given soil could vary within a year or between years. The factors controlling such changes have still to be specified. Aggregate stability appears therefore as a complex property, depending both on permanent soil characteristics and on dynamic factors such as the crusting stage, the climate and the biological activity. Despite, and may be, because of this complexity, aggregate stability seems an integrative and powerful indicator of soil physical quality. Future research efforts should look at the causes of short-term changes of structural stability, in order to fully understand all its aspects.
Chesnokova, M G; Shalai, V V; Kraus, Y A; Mironov, A Y; Blinova, E G
2016-01-01
Underground corrosion is referred to the most difficult types of corrosion in connection with that it is multifactorial and differs in progressive dynamics of the participation of each parameter in the process of destruction of the metal. With the aim of the evaluation of the informativeness of the index of the biocorrosion activity caused by the influence of various factors to determine the character of the soil aggressiveness in the district of pipeline laying there was studied the complex of microbiological and physical-chemical indices). There was determined the amount of sulfur cycle bacteria (autotrophic thiobacteria and sulphate-reducing bacteria), the total concentration of sulfur and iron in the soil samples adjacent to the surface of the underground pipelines in the territory of the Khanty-Mansi Autonomous District of Yugra, and the ratio of these indices with a specific electrical resistance of the soil. There was established the predominance ofsamples with weak aggressiveness of the soil (55.17% of cases), with the criterion ofbiocorrosion soil activity of 2,44 ± 0,19. The results show significant differences in the thiobacteria content and mobile iron in the studied soil-ground samples. There was revealed a direct correlation of the average force of concentrations of identified bacteria and iron content in the soil. There was shown the necessity of the implementation of dynamic control and the development of methods of protection of metal structures to prevent biocorrosion in the design and in the process of the operation of the pipeline.
Perveen, Nazia; Barot, Sébastien; Alvarez, Gaël; Klumpp, Katja; Martin, Raphael; Rapaport, Alain; Herfurth, Damien; Louault, Frédérique; Fontaine, Sébastien
2014-04-01
Integration of the priming effect (PE) in ecosystem models is crucial to better predict the consequences of global change on ecosystem carbon (C) dynamics and its feedbacks on climate. Over the last decade, many attempts have been made to model PE in soil. However, PE has not yet been incorporated into any ecosystem models. Here, we build plant/soil models to explore how PE and microbial diversity influence soil/plant interactions and ecosystem C and nitrogen (N) dynamics in response to global change (elevated CO2 and atmospheric N depositions). Our results show that plant persistence, soil organic matter (SOM) accumulation, and low N leaching in undisturbed ecosystems relies on a fine adjustment of microbial N mineralization to plant N uptake. This adjustment can be modeled in the SYMPHONY model by considering the destruction of SOM through PE, and the interactions between two microbial functional groups: SOM decomposers and SOM builders. After estimation of parameters, SYMPHONY provided realistic predictions on forage production, soil C storage and N leaching for a permanent grassland. Consistent with recent observations, SYMPHONY predicted a CO2 -induced modification of soil microbial communities leading to an intensification of SOM mineralization and a decrease in the soil C stock. SYMPHONY also indicated that atmospheric N deposition may promote SOM accumulation via changes in the structure and metabolic activities of microbial communities. Collectively, these results suggest that the PE and functional role of microbial diversity may be incorporated in ecosystem models with a few additional parameters, improving accuracy of predictions. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Trumbore, Susan; Barbosa de Camargo, Plínio
The amount of organic carbon (C) stored in the upper meter of mineral soils in the Amazon Basin (˜40 Pg C) represents ˜3% of the estimated global store of soil carbon. Adding surface detrital C stocks and soil carbon deeper than 1 m can as much as quadruple this estimate. The potential for Amazon soil carbon to respond to changes in land use, climate, or atmospheric composition depends on the form and dynamics of soil carbon. Much (˜30% in the top ˜10 cm but >85% in soils to 1 m depth) of the carbon in mineral soils of the Oxisols and Ultisols that are the predominant soil types in the Amazon Basin is in forms that are strongly stabilized, with mean ages of centuries to thousands of years. Measurable changes in soil C stocks that accompany land use/land cover change occur in the upper meter of soil, although the presence of deep roots in forests systems drives an active C cycle at depths >1 m. Credible estimates of the potential for changes in Amazon soil C stocks with future land use and climate change are much smaller than predictions of aboveground biomass change. Soil organic matter influences fertility and other key soil properties, and thus is important independent of its role in the global C cycle. Most work on C dynamics is limited to upland soils, and more is needed to investigate C dynamics in poorly drained soils. Work is also needed to relate cycles of C with water, N, P, and other elements.
Does drought legacy alter the recovery of grassland carbon dynamics from drought?
NASA Astrophysics Data System (ADS)
Bahn, M.; Hasibeder, R.; Fuchslueger, L.; Ingrisch, J.; Ladreiter-Knauss, T.; Lair, G.; Reinthaler, D.; Richter, A.; Kaufmann, R.
2016-12-01
Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with increasing drought frequency and involving changes in both plant functional composition and soil structure and processes.
Does drought legacy alter the recovery of grassland carbon dynamics from drought?
NASA Astrophysics Data System (ADS)
Bahn, Michael; Hasibeder, Roland; Fuchslueger, Lucia; Ingrisch, Johannes; Ladreiter-Knauss, Thomas; Lair, Georg; Reinthaler, David; Richter, Andreas; Kaufmann, Rüdiger
2017-04-01
Climate projections suggest an increase in the frequency and the severity of extreme climatic events, such as droughts, with consequences for the carbon cycle and its feedbacks to the climate system. An important implication of increasing drought frequency is that possible legacies of previous droughts may increasingly affect ecosystem responses to new drought events, though this has been rarely tested. Based on a series of severe experimental droughts performed during nine subsequent years on a mountain grassland in the Austrian Alps, we present evidence of effects of drought legacies on the recovery of grassland carbon dynamics from drought and analyse the underlying mechanisms. Both single and recurrent droughts led to increased aboveground productivity during drought recovery relative to control plots, favoring the biomass production and leaf area of grass species more strongly than of forbs. Belowground productivity was significantly increased during recovery. This led to higher total root length, even though specific root length was strongly reduced during recovery, particularly after recurrent drought events. Following rewetting, the temperature dependence of soil respiration was increasingly diminished and the Birch effect declined with progressive recurrence of droughts. This was paralleled by a change in soil aggregate stability and soil porosity in plots repeatedly exposed to drought. Isotopic pulse-labelling experiments revealed effects of drought legacy on plant carbon uptake and belowground allocation and altered microbial turnover of recent plant-derived carbon during and after a subsequent drought. Shifts in tissue nitrogen concentration indicate that drought effects on soil nitrogen turnover and availability could play an important role in the recovery of grassland carbon dynamics following both single and recurrent droughts. In conclusion, drought legacies can alter the recovery of grassland carbon dynamics from drought, the effects increasing with increasing drought frequency and involving changes in both plant functional composition and soil structure and processes.
Impacts of crop growth dynamics on soil quality at the regional scale
NASA Astrophysics Data System (ADS)
Gobin, Anne
2014-05-01
Agricultural land use and in particular crop growth dynamics can greatly affect soil quality. Both the amount of soil lost from erosion by water and soil organic matter are key indicators for soil quality. The aim was to develop a modelling framework for quantifying the impacts of crop growth dynamics on soil quality at the regional scale with test case Flanders. A framework for modelling the impacts of crop growth on soil erosion and soil organic matter was developed by coupling the dynamic crop cover model REGCROP (Gobin, 2010) to the PESERA soil erosion model (Kirkby et al., 2009) and to the RothC carbon model (Coleman and Jenkinson, 1999). All three models are process-based, spatially distributed and intended as a regional diagnostic tool. A geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System). Crop allometric models were developed from variety trials to calculate crop residues for common crops in Flanders and subsequently derive stable organic matter fluxes to the soil. Results indicate that crop growth dynamics and crop rotations influence soil quality for a very large percentage. soil erosion mainly occurs in the southern part of Flanders, where silty to loamy soils and a hilly topography are responsible for soil loss rates of up to 40 t/ha. Parcels under maize, sugar beet and potatoes are most vulnerable to soil erosion. Crop residues of grain maize and winter wheat followed by catch crops contribute most to the total carbon sequestered in agricultural soils. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. This implies that agricultural policies that impact on agricultural land management influence soil quality for a large percentage. The coupled REGCROP-PESERA-ROTHC model allows for quantifying the impact of seasonal and year-to-year crop growth dynamics on soil quality. When coupled to a multi-annual crop rotation database both spatial and temporal analysis becomes possible and allows for decision support at both farm and regional level. The framework is therefore suited for further scenario analysis and impact assessment. The research is funded by the Belgian Science Policy Organisation (Belspo) under contract nr SD/RI/03A.
NASA Astrophysics Data System (ADS)
Arnold, S.; Williams, E. R.
2015-08-01
Recolonisation of soil by macrofauna (especially ants and termites) in rehabilitated open-cut mine sites is inevitable. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration and seepage. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end-goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, soil macrofauna are typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions are required to quantify (i) macrofauna - soil structure interactions, (ii) functional dynamics of macrofauna taxa, and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.
Viscoelastic Properties of Soil with Different Ammonium Nitrate Addition
NASA Astrophysics Data System (ADS)
Kawecka-Radomska, M.; Tomczyńska-Mleko, M.; Muszyńskic, S.; Wesołowska-Trojanowska, M.; Mleko, S.
2017-12-01
Four different soils samples were taken from not cultivated recreational places. Particle-size distribution and pH (in water and in 1 M KCl) of the soil samples were measured. Soil samples were saturated with deionized water and solution of ammonium nitrate with the concentration of 5, 50 or 500 mM for 3 days. The samples were analyzed using dynamic oscillatory rheometer by frequency and strain sweeps. Soil samples were similar to physical gels, as they presented rheological properties between those of a concentrated biopolymer and a true gel. 50 mM concentration of the salt was enough to make changes in the elasticity of the soils. Small concentration of the fertilizer caused weakening of the soil samples structure. Higher concentration of ammonium nitrate caused the increase in the moduli crossover strain value. For the loam sample taken from a playground, with the highest content of the particles <0.002 mm (clay aluminosilicates), the lowest value of strain was observed at the moduli intersection. Lower strain value was necessary for the sliding shear effect of soil A sample effecting transgression to the "flowing" state. Strain sweep moduli crossover point can be used as a determinant of the rheological properties of soil.
Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli
2017-10-01
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1 yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.
Power electromagnetic strike machine for engineering-geological surveys
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Chetverikov, E. A.; Kargin, V. A.; Moiseev, A. P.; Ivanova, Z. I.
2017-10-01
When implementing the processes of dynamic sensing of soils and pulsed nonexplosive seismic exploration, the most common and effective method is the strike one, which is provided by a variety of structure and parameters of pneumatic, hydraulic, electrical machines of strike action. The creation of compact portable strike machines which do not require transportation and use of mechanized means is important. A promising direction in the development of strike machines is the use of pulsed electromagnetic actuator characterized by relatively low energy consumption, relatively high specific performance and efficiency, and providing direct conversion of electrical energy into mechanical work of strike mass with linear movement trajectory. The results of these studies allowed establishing on the basis of linear electromagnetic motors the electromagnetic pulse machines with portable performance for dynamic sensing of soils and land seismic pulse of small depths.
Performance of Koyna dam based on static and dynamic analysis
NASA Astrophysics Data System (ADS)
Azizan, Nik Zainab Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar
2017-10-01
This paper discusses the performance of Koyna dam based on static pushover analysis (SPO) and incremental dynamic analysis (IDA). The SPO in this study considered two type of lateral load which is inertial load and hydrodynamic load. The structure was analyse until the damage appears on the structure body. The IDA curves were develop based on 7 ground motion, where the characteristic of the ground motions: i) the distance from the epicenter is less than 15km, (ii) the magnitude is equal to or greater than 5.5 and (iii) the PGA is equal to or greater than 0.15g. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. Elastic respond spectrum developed based on soil type B by using Eurocode 8. By using SPO and IDA method are able to determine the limit states of the dam. The limit state proposed in this study are yielding and ultimate state which is identified base on crack pattern perform on the structure model. The comparison of maximum crest displacement for both methods is analysed to define the limit state of the dam. The displacement of yielding state for Koyna dam is 23.84mm and 44.91mm for the ultimate state. The results are able to be used as a guideline to monitor Koyna dam under seismic loadings which are considering static and dynamic.
Limits and dynamics of methane oxidation in landfill cover soils
USDA-ARS?s Scientific Manuscript database
In order to understand the limits and dynamics of methane (CH4) oxidation in landfill cover soils, we investigated CH4 oxidation in daily, intermediate, and final cover soils from two California landfills as a function of temperature, soil moisture and CO2 concentration. The results indicate a signi...
Genetic structure of traditional varieties of bitter manioc in three soils in Central Amazonia.
Alves-Pereira, Alessandro; Peroni, Nivaldo; Abreu, Aluana Gonçalves; Gribel, Rogério; Clement, Charles R
2011-10-01
Manioc is the most important food crop that originated in Amazonia. Many studies have increased our understanding of its evolutionary dynamics under cultivation. However, most of them focused on manioc cultivation in environments with low soil fertility, generally Oxisols. Recent ethnobotanical observations showed that bitter manioc also performs well in high fertility soils, such as Amazonian dark earths (ADE) and the floodplain. We used 10 microsatellite loci to investigate the genetic diversity and structure of bitter manioc varieties grown in different soil types in communities of smallholder farmers along the middle Madeira River in Central Amazonia. The genetic diversity of some sweet varieties and seedlings was also evaluated. Adult individuals showed higher levels of genetic diversity and smaller inbreeding coefficients (A ( R ) = 5.52, H ( O ) = 0.576, f = 0.086) than seedlings (A ( R ) = 4.39, H ( O ) = 0.421, f = 0.242). Bitter manioc varieties from the floodplain showed higher levels of genetic diversity (A ( R ) = 5.19, H ( O ) = 0.606) than those from ADE (A ( R ) = 4.45, H ( O ) = 0.538) and from Oxisols (A ( R ) = 4.15, H ( O ) = 0.559). The varieties grown in the floodplain were strongly differentiated from the varieties grown in Oxisols (F ( ST ) = 0.093) and ADE (F ( ST ) = 0.108), suggesting important genetic structuring among varieties grown in the floodplain and upland soils (ADE and Oxisols). This is the first time that genetic divergence of bitter manioc varieties in cultivation in different Amazonian soils in a small geographic area is reported.
Smith, A Peyton; Marín-Spiotta, Erika; Balser, Teri
2015-09-01
Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. Understanding how microbial communities respond to changes in vegetation is critical for improving predictions of how land-cover change affects belowground carbon storage and nutrient availability. We measured intra- and interannual variability in soil and forest litter microbial community composition and activity via phospholipid fatty acid analysis (PLFA) and extracellular enzyme activity across a well-replicated, long-term chronosequence of secondary forests growing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Microbial community PLFA structure differed between young secondary forests and older secondary and primary forests, following successional shifts in tree species composition. These successional patterns held across seasons, but the microbial groups driving these patterns differed over time. Microbial community composition from the forest litter differed greatly from those in the soil, but did not show the same successional trends. Extracellular enzyme activity did not differ with forest succession, but varied by season with greater rates of potential activity in the dry seasons. We found few robust significant relationships among microbial community parameters and soil pH, moisture, carbon, and nitrogen concentrations. Observed inter- and intrannual variability in microbial community structure and activity reveal the importance of a multiple, temporal sampling strategy when investigating microbial community dynamics with land-use change. Successional control over microbial composition with forest recovery suggests strong links between above and belowground communities. © 2015 John Wiley & Sons Ltd.
Dynamic Response of Reinforced Soil Systems. Volume 1. Report
1993-03-01
include Security Clas~sification) DYNAMIC RWSPC!SE OF REIFý1Cý SOIL SYSTEM~, VCTJI4E I OF II: PREPO~r . PERSONAL AUTHOR($) BMW3U, R.C.; FRAWASZY...protected by a burster slab. These protection measures are costly, time consuming to construct, and sensitive to multiple strikes. Soil has been used to...characterize the static load-deflection behavior of the reinforced soil. Dynamic pullout tests were then performed using the same parameters as the static
Drivers of decomposition in forest soils: Insights from a trans-European experiment.
NASA Astrophysics Data System (ADS)
Hood-Nowotny, Rebecca
2017-04-01
Meta-data analyses and the model based hypotheses state that global soil C storage is controlled by microbial scale processes of fungal competition for available nitrogen (N). The details of these microbe-dependent feedback mechanisms on N and C dynamics in European soils are largely unknown and contentious. Global trends of increasing atmospheric N deposition and the continuing use of inorganic N fertilizer in both agriculture and forestry mean that the soils vital function as a carbon sink is potentially under threat. We set out to experimentally investigate these hypotheses across a Trans-European gradient of forest soils and provide reliable information on soil microbial responses to nitrogen inputs for predictive climate change models. Changes in nutrient status could result in a chain reaction of interacting microbial mechanisms which in turn could lead to the shifts in underlying ecosystem biogeochemical process rates. Recent meta-analysis has shown that plant fungal symbiont community structure, exerts a greater fundamental control over soil C storage than temperature, precipitation or net primary production. Based on the hypothesis that plant associated fungi effectively scavenge all available organic and inorganic N leaving little N for the growth of the free-living decomposer microbial community and preventing further breakdown of SOM. To investigate these possible effects we have sampled forest soils across a trans European gradient (ALTER-net-MSII network) which have received additional inputs of inorganic nitrogen fertilizer or carbon in the form of sugar, over a three year period. We have studied both nitrogen and carbon dynamics in these systems using a tool box of stable isotopes, high through-put sequencing for microbial community analysis and be-spoke litter bags to tease out the dominant drivers of decomposition. The results and conclusions from these analyses will be presented.
Stottlemyer, Robert; Binkley, Dan; Steltzer, Heidi; Wilson, Frederic H.; Galloway, John P.
2002-01-01
The extensive boreal biome is little studies relative to its global importance. Its high soil moisture and low temperatures result in large below-ground reservoirs of carbon (C) and nitrogen (N). Presently, such high-latitude ecosystems are undergoing the largest temperature increases in global warming. Change in soil temperature or moisture in the large pools of soil organic matter could fundamentally change ecosystem C and N budgets. Since 1990, we have conducted treeline studies in a small (800 ha) watershed in Noatak National Preserve, northwestern Alaska. Our objectives were to (1) gain an understanding of treeline dynamics, structure, and function; and (2) examine the effects of global climate change, particularly soil temperature, moisture, and N availability, on ecosystem processes. Our intensive site studies show that the treeline has advanced into turdra during the past 150 years. Inplace and laboratory incubations indicate that soil organic-layer mineralization rates increase with a temperature change >5 degrees C. N availability was greatest in soils beneath alder and lowest beneath willow or cottongrass tussocks. Watershed output of inorganic N as NO3 was 70 percent greater than input. The high inorganic-N output likely reflects soil freeze-thaw cycles, shallow flowpaths to the stream, and low seasonal biological retention. Concentrations and flux of dissolved organic carbon (DOC) in streamwater increased during spring melt and in autumn, indicating a seasonal accumulation of soil and forest-floor DOC and a shallower flowpath for meltwater to the stream. In sum, our research suggests that treeling transitionzone processes are quite sensitive to climate change, especially those functions regulating the C and N cycles.
The biogeochemical heterogeneity of tropical forests.
Townsend, Alan R; Asner, Gregory P; Cleveland, Cory C
2008-08-01
Tropical forests are renowned for their biological diversity, but also harbor variable combinations of soil age, chemistry and susceptibility to erosion or tectonic uplift. Here we contend that the combined effects of this biotic and abiotic diversity promote exceptional biogeochemical heterogeneity at multiple scales. At local levels, high plant diversity creates variation in chemical and structural traits that affect plant production, decomposition and nutrient cycling. At regional levels, myriad combinations of soil age, soil chemistry and landscape dynamics create variation and uncertainty in limiting nutrients that do not exist at higher latitudes. The effects of such heterogeneity are not well captured in large-scale estimates of tropical ecosystem function, but we suggest new developments in remote sensing can help bridge the gap.
Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands
Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.
2018-01-01
Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.
York, Larry M; Carminati, Andrea; Mooney, Sacha J; Ritz, Karl; Bennett, Malcolm J
2016-06-01
Despite often being conceptualized as a thin layer of soil around roots, the rhizosphere is actually a dynamic system of interacting processes. Hiltner originally defined the rhizosphere as the soil influenced by plant roots. However, soil physicists, chemists, microbiologists, and plant physiologists have studied the rhizosphere independently, and therefore conceptualized the rhizosphere in different ways and using contrasting terminology. Rather than research-specific conceptions of the rhizosphere, the authors propose a holistic rhizosphere encapsulating the following components: microbial community gradients, macroorganisms, mucigel, volumes of soil structure modification, and depletion or accumulation zones of nutrients, water, root exudates, volatiles, and gases. These rhizosphere components are the result of dynamic processes and understanding the integration of these processes will be necessary for future contributions to rhizosphere science based upon interdisciplinary collaborations. In this review, current knowledge of the rhizosphere is synthesized using this holistic perspective with a focus on integrating traditionally separated rhizosphere studies. The temporal dynamics of rhizosphere activities will also be considered, from annual fine root turnover to diurnal fluctuations of water and nutrient uptake. The latest empirical and computational methods are discussed in the context of rhizosphere integration. Clarification of rhizosphere semantics, a holistic model of the rhizosphere, examples of integration of rhizosphere studies across disciplines, and review of the latest rhizosphere methods will empower rhizosphere scientists from different disciplines to engage in the interdisciplinary collaborations needed to break new ground in truly understanding the rhizosphere and to apply this knowledge for practical guidance. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Windham-Myers, L.; Holmquist, J. R.; Sundquist, E. T.; Drexler, J. Z.; Bliss, N.
2016-12-01
Wetland soils have long been recognized as conditional archives of past environments, including vegetation structure, nutrient status, sediment supply and the variability in those factors. Both sedimentary processes and organic accretion processes form the soil matrix that identifies wetland soils as "hydric" while also providing archival insights. As repositories of information on net biogeochemical processes, their down-core and across-site structure can show both consistency and distinction. Through several related studies, we have been exploring the use of component-level U.S. Natural Resources Conservation Service (NRCS) Soil Survey data (SSURGO) to map carbon density to 1m depth across wetlands of the US, with an emphasis on coastal wetlands. To assess the accuracy of mapped carbon data from SSURGO, several field-generated datasets (public or compiled for the NASA-funded Blue Carbon Monitoring Project) have been extracted for key metrics such as dry bulk density (g/cc), organic carbon content (%C by combustion) and the combination, soil carbon density (g C /cc) with depth. These profiles indicate ecogeomorphic feedbacks of elevation, vegetation structure and biogeochemical processes through millennia, illustrating both resilience and shifts in behavior that constrain wetland extent as well as wetland function. National datasets such as SSURGO and validation datasets such as the EPA's National Wetland Condition Assessment (NWCA) and Louisiana's Coastwide Reference Monitoring System (CRMS) are publically available and have been underutilized for predicting and/or validating changes in wetland carbon dynamics. We have explored their use for interpretating and understanding changing carbon accretion rates, changing wetland extents through elevation gain or loss, and changing methane emissions. This talk will focus on insights for wetland carbon sequestration functions as determined by soil core structure, both for coastal settings and potentially for inland wetlands as well.
Loranty, Michael M; Berner, Logan T; Taber, Eric D; Kropp, Heather; Natali, Susan M; Alexander, Heather D; Davydov, Sergey P; Zimov, Nikita S
2018-01-01
Arctic ecosystems are characterized by a broad range of plant functional types that are highly heterogeneous at small (~1-2 m) spatial scales. Climatic changes can impact vegetation distribution directly, and also indirectly via impacts on disturbance regimes. Consequent changes in vegetation structure and function have implications for surface energy dynamics that may alter permafrost thermal dynamics, and are therefore of interest in the context of permafrost related climate feedbacks. In this study we examine small-scale heterogeneity in soil thermal properties and ecosystem carbon and water fluxes associated with varying understory vegetation in open-canopy larch forests in northeastern Siberia. We found that lichen mats comprise 16% of understory vegetation cover on average in open canopy larch forests, and lichen abundance was inversely related to canopy cover. Relative to adjacent areas dominated by shrubs and moss, lichen mats had 2-3 times deeper permafrost thaw depths and surface soils warmer by 1-2°C in summer and less than 1°C in autumn. Despite deeper thaw depths, ecosystem respiration did not differ across vegetation types, indicating that autotrophic respiration likely dominates areas with shrubs and moss. Summertime net ecosystem exchange of CO2 was negative (i.e. net uptake) in areas with high shrub cover, while positive (i.e. net loss) in lichen mats and areas with less shrub cover. Our results highlight relationships between vegetation and soil thermal dynamics in permafrost ecosystems, and underscore the necessity of considering both vegetation and permafrost dynamics in shaping carbon cycling in permafrost ecosystems.
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Oishi, C.; Shevliakova, E.; Pacala, S. W.
2013-12-01
The soil carbon formulations commonly used in global carbon cycle models and Earth System models (ESMs) are based on first-order decomposition equations, where turnover of carbon is determined only by the size of the carbon pool and empirical functions of responses to temperature and moisture. These models do not include microbial dynamics or protection of carbon in microaggregates and mineral complexes, making them incapable of simulating important soil processes like priming and the influence of soil physical structure on carbon turnover. We present a new soil carbon dynamics model - Carbon, Organisms, Respiration, and Protection in the Soil Environment (CORPSE) - that explicitly represents microbial biomass and protected carbon pools. The model includes multiple types of carbon with different chemically determined turnover rates that interact with a single dynamic microbial biomass pool, allowing the model to simulate priming effects. The model also includes the formation and turnover of protected carbon that is inaccessible to microbial decomposers. The rate of protected carbon formation increases with microbial biomass. CORPSE has been implemented both as a stand-alone model and as a component of the NOAA Geophysical Fluid Dynamics Laboratory (GFDL) ESM. We calibrated the model against measured soil carbon stocks from the Duke FACE experiment. The model successfully simulated the seasonal pattern of heterotrophic CO2 production. We investigated the roles of priming and protection in soil carbon accumulation by running the model using measured inputs of leaf litter, fine roots, and root exudates from the ambient and elevated CO2 plots at the Duke FACE experiment. Measurements from the experiment showed that elevated CO2 caused enhanced root exudation, increasing soil carbon turnover in the rhizosphere due to priming effects. We tested the impact of increased root exudation on soil carbon accumulation by comparing model simulations of carbon accumulation under elevated CO2 with and without increased root exudation. Increased root exudation stimulated microbial activity in the model, resulting in reduced accumulation of chemically recalcitrant carbon, but increasing the formation of protected carbon. This indicates that elevated CO2 could cause decreases in soil carbon storage despite increases in productivity in ecosystems where protection of soil carbon is limited. These effects have important implications for simulations of soil carbon response to elevated CO2 in current terrestrial carbon cycle models. The CORPSE model has been implemented in LM3, the terrestrial component of the GFDL ESM. In addition to the functionality described above, this model adds vertically resolved carbon pools and vertical transfers of carbon, leading to a decrease in carbon turnover rates with depth due to leaching of priming agents from the surface. We present preliminary global simulations using this model, including the variation of microbial activity and protected carbon with latitude and the resulting impacts on the sensitivity of soil carbon to climatic warming.
NASA Astrophysics Data System (ADS)
Kumar, P.; Quijano, J. C.; Drewry, D.
2010-12-01
Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling results using coupled partial differential equations of transport in soils and roots along with that for nutrient dynamics. We study the feedbkack of HR on the dynamics of water and nitrogen cycling in the soil and how these dynamics influence root water and nitrogen uptake and consequently carbon assimilation by the canopy. The forcing data is obtained from the Ameriflux Tower located in Blodgett Forest, Sierra Nevada, California. We consider single-species (Ponderosa Pine) and multi-species (overstory Ponderosa Pine and understory shrubs) interaction. When single species is considered, the near surface soil-moisture available from HR during dry summer season is an important source of evaporation and contributes significantly to the total ET flux. However, when multi-species interactions are taken into account, the soil-water from the HR becomes an important source of transpiration from the understory. The results also show that passive plant nitrogen uptake is higher when HR is present and it is critical for sustaining expected rates of carbon assimilation.
Gutiérrez Del Arroyo, Omar; Silver, Whendee L
2018-04-01
Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as sinks of C and nutrients derived from disturbance-induced pulses of organic matter inputs. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Corona, R.; Montaldo, N.; Albertson, J. D.
2016-12-01
Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Historical human influences (e.g., deforestation, urbanization) further altered these ecosystems. Sardinia island is a representative region of Mediterranean ecosystems. It is low urbanized except some plan areas close to the main cities where main agricultural activities are concentrated. Two contrasting case study sites are within the Flumendosa river basin (1700 km2). The first site is a typical grassland on an alluvial plan valley (soil depth > 2m) while the second is a patchy mixture of Mediterranean vegetation species (mainly wild olive trees and C3 herbaceous) that grow in a soil bounded from below by a rocky layer of basalt, partially fractured (soil depth 15 - 40 cm). In both sites land-surface fluxes and CO2 fluxes are estimated by the eddy correlation technique while soil moisture was continuously estimated with water content reflectometers, and periodically leaf area index (LAI) was estimated. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics; 3) evaluate the impact of past and future climate change scenarios on the two contrasting ecosystems. For reaching the objectives an ecohydrologic model that couples a vegetation dynamic model (VDM), and a 3-component (bare soil, grass and woody vegetation) land surface model (LSM) has been used. Historical meteorological data are available from 1922 and hydro-meteorological scenarios are then generated using a weather generator. The VDM-LSM model predict soil water balance and vegetation dynamics for the generated hydrometeorological scenarios in the two contrasting ecosystems. Results demonstrate that vegetation dynamics are influenced by the inter-annual variability of atmospheric forcing, with vegetation density changing significantly according to seasonal rainfall amount. At the same time the vegetation dynamics affect the soil water balance.
Construction of high-rise building with underground parking in Moscow
NASA Astrophysics Data System (ADS)
Ilyichev, Vyacheslav; Nikiforova, Nadezhda; Konnov, Artem
2018-03-01
Paper presents results of scientific support to construction of unique residential building 108 m high with one storey underground part under high-rise section and 3-storey underground parking connected by underground passage. On-site soils included anthropogenic soil, clayey soils soft-stiff, saturated sands of varied grain coarseness. Design of retaining structure and support system for high-rise part excavation was developed. It suggested installation of steel pipes and struts. Construction of adjacent 3-storey underground parking by "Moscow method" is described in the paper. This method involves implementation of retaining wall consisted of prefabricated panels, truss structures (used as struts) and reinforced concrete slabs. Also design and construction technology is provided for foundations consisted of bored piles 800 MM in diameter joined by slab with base widening diameter of 1500 MM. Experiment results of static and dynamic load testing (ELDY method) are considered. Geotechnical monitoring data of adjacent building and utility systems settlement caused by construction of presented high-rise building were compared to numerical modelling results, predicted and permissible values.
Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.
Weedon, James T; Aerts, Rien; Kowalchuk, George A; van Bodegom, Peter M
2011-01-01
Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding the response of the soil nitrogen cycle to shifts in temperature and other global change factors is crucial for predicting the fate of cold biome carbon stores. Measurements of soil enzyme activities at different positions of the nitrogen cycling network are an important tool for this purpose. We review a selection of studies that provide data on potential enzyme activities across natural, seasonal and experimental gradients in cold biomes. Responses of enzyme activities to increased nitrogen availability and temperature are diverse and seasonal dynamics are often larger than differences due to experimental treatments, suggesting that enzyme expression is regulated by a combination of interacting factors reflecting both nutrient supply and demand. The extrapolation from potential enzyme activities to prediction of elemental nitrogen fluxes under field conditions remains challenging. Progress in molecular '-omics' approaches may eventually facilitate deeper understanding of the links between soil microbial community structure and biogeochemical fluxes. In the meantime, accounting for effects of the soil spatial structure and in situ variations in pH and temperature, better mapping of the network of enzymatic processes and the identification of rate-limiting steps under different conditions should advance our ability to predict nitrogen fluxes.
Gavin McNicol; Whendee L. Silver
2014-01-01
Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...
Seedling and Sapling Dynamics of Treefall Pits in Puerto Rico1
Lawrence R. Walker
2000-01-01
Seedling and sapling dynamics in a Puerto Rican rain forest were compared between forest understory and soil pits created by the uprooting of 27 trees during Hurricane Hugo. Soil N and P, organic matter, and soil moisture were lower and bulk densities were higher in the disturbed mineral soils of the pits than in undisturbed forest soils ten months after the hurricane...
NASA Astrophysics Data System (ADS)
Zhang, W.; Yi, Y.; Yang, K.; Kimball, J. S.
2016-12-01
The Tibetan Plateau (TP) is underlain by the world's largest extent of alpine permafrost ( 2.5×106 km2), dominated by sporadic and discontinuous permafrost with strong sensitivity to climate warming. Detailed permafrost distributions and patterns in most of the TP region are still unknown due to extremely sparse in-situ observations in this region characterized by heterogeneous land cover and large temporal dynamics in surface soil moisture conditions. Therefore, satellite-based temperature and moisture observations are essential for high-resolution mapping of permafrost distribution and soil active layer changes in the TP region. In this study, we quantify the TP regional permafrost distribution at 1-km resolution using a detailed satellite data-driven soil thermal process model (GIPL2). The soil thermal model is calibrated and validated using in-situ soil temperature/moisture observations from the CAMP/Tibet field campaign (9 sites: 0-300 cm soil depth sampling from 1997-2007), a multi-scale soil moisture and temperature monitoring network in the central TP (CTP-SMTMN, 57 sites: 5-40 cm, 2010-2014) and across the whole plateau (China Meteorology Administration, 98 sites: 0-320 cm, 2000-2015). Our preliminary results using the CAMP/Tibet and CTP-SMTMN network observations indicate strong controls of surface thermal and soil moisture conditions on soil freeze/thaw dynamics, which vary greatly with underlying topography, soil texture and vegetation cover. For regional mapping of soil freeze/thaw and permafrost dynamics, we use the most recent soil moisture retrievals from the NASA SMAP (Soil Moisture Active Passive) sensor to account for the effects of temporal soil moisture dynamics on soil thermal heat transfer, with surface thermal conditions defined by MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature records. Our study provides the first 1-km map of spatial patterns and recent changes of permafrost conditions in the TP.
Release dynamics of dissolved organic matter in soil amended with biosolids
NASA Astrophysics Data System (ADS)
Trifonov, Pavel; Ilani, Talli; Arye, Gilboa
2014-05-01
Among the soil organic matter (SOM) components, dissolved organic matter (DOM) is the link between the solid phase and the soil solution. Previous studies emphasize the turnover of dissolved organic carbon (DOC) and nitrogen (DON) in soils as major pathways of element cycling. In addition to DOM contribution to carbon, nitrogen and other nutrient budgets, it also influence soil biological activity, reduces metal-ion toxicity, increase the transport of some compounds and contribute to the mineral weathering. Amending soils with biosolids originated from sludge have become very popular in the recent years. Those additions significantly affect the quantity and the composition of the DOM in agricultural soils. It should be noted that under most irrigation habitants, the soil is subjected to drying and re-wetting cycles, inducing a complex changes of soil structure, aggregation, SOM quality and micro-flora. However, most studies that addressed the above issues (directly or indirectly) are engaged with soils under cover of naturally occurring forests of relatively humid areas rather than agricultural soils in arid areas. In the current study we examined the DOC and DON release dynamic of sand and loess soils sampled from the Negev Desert of Israel. Each one of the soils were mixing with 5% (w/w) of one of the biosolids and packed into a Plexiglass column (I.d. 5.2 cm, L=20 cm). The flow-through experiments were conducted under low (1 ml/min) or high (10 ml/min) flow rates in a continuous or interrupted manner. The leachates were collected in time intervals equivalent to about 0.12 pore volume of a given soil-biosolids mixture. The established leaching curves of DOC, DON, NO3-, NH4+ and Cl- are analyzed by water flow and solute transport model for saturate (continuous runs) or variably saturate water flow conditions (interrupted runs). The chemical equilibrium or non-equilibrium (i.e. equilibrium and/or kinetics adsorption/desorption) versions of the convection dispersion equation are being used to describe the solute transport. In addition the sensitivity of the model for assigning a first order production term will be demonstrated.
USDA-ARS?s Scientific Manuscript database
Increased energy extraction has impacted rangelands throughout the western U.S. Ecological restoration can be enhanced with proper management of affected top soils. Little information exists on effects of stockpiling on soil microbial community composition and functionality and seed bank dynamics. T...
Mathieu, Jordane A; Hatté, Christine; Balesdent, Jérôme; Parent, Éric
2015-11-01
The response of soil carbon dynamics to climate and land-use change will affect both the future climate and the quality of ecosystems. Deep soil carbon (>20 cm) is the primary component of the soil carbon pool, but the dynamics of deep soil carbon remain poorly understood. Therefore, radiocarbon activity (Δ14C), which is a function of the age of carbon, may help to understand the rates of soil carbon biodegradation and stabilization. We analyzed the published 14C contents in 122 profiles of mineral soil that were well distributed in most of the large world biomes, except for the boreal zone. With a multivariate extension of a linear mixed-effects model whose inference was based on the parallel combination of two algorithms, the expectation-maximization (EM) and the Metropolis-Hasting algorithms, we expressed soil Δ14C profiles as a four-parameter function of depth. The four-parameter model produced insightful predictions of soil Δ14C as dependent on depth, soil type, climate, vegetation, land-use and date of sampling (R2=0.68). Further analysis with the model showed that the age of topsoil carbon was primarily affected by climate and cultivation. By contrast, the age of deep soil carbon was affected more by soil taxa than by climate and thus illustrated the strong dependence of soil carbon dynamics on other pedologic traits such as clay content and mineralogy. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad; Blume, Theresa; Haßler, Sibylle; Allroggen, Niklas; Tronicke, Jens
2013-04-01
The CAOS Research Unit recently proposed a hierarchical classification scheme to subdivide a catchment into what we vaguely name classes of functional entities that puts the gradients driving mass and energy flows and their controls on top of the hierarchy and the arrangement of landscape attributes controlling flow resistances along these driving gradients (for instance soil types and apparent preferential pathways) at the second level. We name these functional entities lead topology classes, to highlight that they are characterized by a spatially ordered arrangement of landscape elements along a superordinate driving gradient. Our idea is that these lead topology classes have a distinct way how their structural and textural architecture controls the interplay of storage dynamics and integral response behavior that is typical for all members of a class, but is dissimilar between different classes. This implies that we might gain exemplary understanding of the typical dynamic behavior of the class, when thoroughly studying a few class members. We propose that the main integral catchment functions mass export and drainage, mass redistribution and storage, energy exchange with the atmosphere, as well as energy redistribution and storage - result from spatially organized interactions of processes within lead topologies that operate at different scale levels and partly dominate during different conditions. We distinguish: 1) Lead topologies controlling the land surface energy balance during radiation driven conditions at the plot/pedon scale level. In this case energy fluxes dominate and deplete a vertical temperature gradient that is build up by depleting a gradient in radiation fluxes. Water is a facilitator in this concert due to the high specific heat of vaporization. Slow vertical water fluxes in soil dominate, which are driven by vertical gradients in atmospheric water potential, chemical potential in the plant and in soil hydraulic potentials. 2) Lead topologies controlling fast drainage and generation stream flow during rainfall events at the hillslope scale level: Fast vertical and lateral mass fluxes dominate. They are driven by vertical and lateral gradients in pressure heads which build up by depleting the kinetic energy/velocity gradient of rainfall when it hits the ground or of vertical subsurface flows that "hit" a layer of low permeability. 3) Lead topologies controlling slow drainage and its supply, and thus creating memory at the catchment scale level: These are the groundwater system and the stream including the riparian zone. Permanent lateral water flows dominate that are driven by permanently active lateral gradients in pressure heads. Event scale stream flow generation and energy exchange with the atmospheric boundary layer are organized by the first two types of lead topologies, and their dominance changes with prevailing type of boundary conditions. We furthermore propose that lead topologies at the plot and the hillslope scale levels can be further subdivided into least functional entities we name call classes of elementary functional units. These classes of elementary functional units co-evolved being exposed to similar superordinate vertical gradients in a self-reinforcing manner. Being located either at the hilltop (sediment source area), midslope (sediment transport area) or hillfoot/riparian zone (sediment deposit area) they experienced similar weathering processes (past water, energy and nutrient flows), causing formation of similar soil texture in different horizons. This implies, depending on hillslope position and aspect, formation of distinct niches (with respect to water, nutrient and sun light availability) and thus "similar filters" to select distinct natural communities of animal and vegetation species. This in turn implies similarity with respect to formation of biotic flow networks (ant-, worm-, mole- and whole burrow systems, as well as root systems), which feeds back on vertical and lateral water/mass and thermal energy flows and so on. The idea is that members of EFU classes interact within lead topologies along a hierarchy of driving potential gradients and that these interactions are mediated by a hierarchy of connected flow networks like macropores, root networks or lateral pipe systems. We hypothesize that members of a functional unit class are similar with respect to the time invariant controls of the vertical gradients (soil hydraulic potentials, soil temperature, plant water potential) and the flow resistances in vertical direction (plant and soil albedo, soil hydraulic and thermal conductivity, vertical macropore networks). This implies that members of an EFU class behave functionally similar at least with respect to vertical flows of water and heat: we may gain exemplary understanding of the typical dynamic behavior of the class, by thoroughly studying a few class members. In the following we will thus use the term "elementary functional units, EFUs" and "elementary functional unit class, EFU class" as synonyms. We propose that a thorough understanding of the behavior of a few representatives of the most important EFU classes and of their interactions within a hierarchy of lead topology classes is sufficient for understanding and distributed modeling of event scale stream flow production under rainfall driven conditions and energy exchange with the atmosphere under radiation driven conditions. Good and not surprising news is that lead topologies controlling stream flow contribution, are an interconnected, ordered arrangement of the lead topologies that control energy exchange. We suggests that a combination of the related model approaches which simplified but physical based approaches to simulate dynamics in the saturated zone, riparian zone and the river network results in a structurally more adequate model framework for catchments of organized complexity. The feasibility of this concept is currently tested in the Attert catchment by setting up pseudo replica of field experiments and a distributed monitoring network in several members of first guess EFUs and superordinate lead topology classes. We combine geophysical and soil physical survey, artificial tracer tests and analysis of stable isotopes and ecological survey with distributed sensor clusters that permanently monitor meteorological variables, soil moisture and matric potential, piezometric heads etc. Within the proposed study we will present first results especially from the sensor clusters and geophysical survey. By using geostatistical methods we will work out to which extend members within a candidate EFU class are similar with respect to subsurface structures like depth to bedrock and soil properties as well as with respect to soil moisture/storage dynamics. Secondly, we will work out whether structurally similar hillslopes produce a similar event scale stream flow contribution, which of course is dependent on the degree of similarity of a) the rainfall forcing they receive and b) of their wetness state. To this end we will perform virtual experiments with the physically based model CATFLOW by perturbing behavioral model structures. These have been shown to portray system behavior and its architecture in a sense that they reproduce distributed observations of soil moisture and subsurface storm flow and represent the observed structural and textural signatures of soils, flow networks and vegetation.
P-adic model of transport in porous disordered media
NASA Astrophysics Data System (ADS)
Khrennikov, Adrei Yu.; Oleschko, Klaudia
2014-05-01
The soil porosity and permeability are the most important quantitative indicators of soil dynamics under the land-use change. The main problema in the modeling of this dynamic is still poor correlation between the real measuring data and the mathematical and computer simulation models. In order to overpassed this deep divorce we have designed a new technique, able to compare the data arised from the multiscale image analices and time series of the basic physical properties dynamics in porous media studied in time and space. We present a model of the diffusion reaction type describing transport in disordered porous media, e.g., water or oil flow in a complex network of pores. Our model is based on p-adic representation of such networks. This is a kind of fractal representation. We explore advantages of p- adic representation, namely, the possibility to endow p-adic trees with an algebraic structure and ultrametric topology and, hence, to apply analysis which have (at least some) similarities with ordinary real analysis on the straight line. We present the system of two diffusion reaction equations describing propagation of particles in networks of pores in disordered media. As an application, one can consider water transport through the soil pore Networks, or oil flow through capillaries nets. Under some restrictions on potentials and rate coefficients we found the stationary regime corresponding to water content or concentration of oil in a cluster of capillaries. Usage of p-adic analysis (in particular, p-adic wavelets) gives a possibility to find the stationary solution in the analytic form which makes possible to present a clear pedological or geological picture of the process. The mathematical model elaborated in this paper (Khrennikov, 2013) can be applied to variety of problems from water concentration in aquifers to the problem of formation of oil reservoirs in disordered media with porous structures. Another possible application may have real practical output. In fact, our system of diffusion-reaction equations can be used to model the process of extraction of water or oil from an extended network of capillaries (Khrennikov et al., 2013). The accomplished analyses show that the time series of water content/pressure dynamics in saturated/unsaturated conditions reflect the fractal structure of pores separated by familias base don the seven geometric descriptors which we used for the soils multiscale images (Oleschko et al., 2012). The similar models were applied to the porous media behind the oil flow from wells. These results motivate usage of the fractal and, in particular, p-adic methods of modeling.
System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions
NASA Astrophysics Data System (ADS)
Allen, Benjamin; Sokol, Benjamin; Mukhopadhyay, Shomeek; Maharjan, Rijan; Brown, Eric
2018-05-01
We experimentally characterize the structure of concentrated suspensions of cornstarch and water in response to impact. Using surface imaging and particle tracking at the boundary opposite the impactor, we observed that a visible structure and particle flow at the boundary occur with a delay after impact. We show the delay time is about the same time as the strong stress response, confirming that the strong stress response results from deformation of the dynamically jammed structure once it spans between the impactor and a solid boundary. A characterization of this strong stress response is reported in a companion paper [Maharjan, Mukhopadhyay, Allen, Storz, and Brown, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. We observed particle flow in the outer part of the dynamically jammed region at the bottom boundary, with a net transverse displacement of up to about 5% of the impactor displacement, indicating shear at the boundary. Direct imaging of the surface of the outer part of the dynamically jammed region reveals a change in surface structure that appears the same as the result of dilation in other cornstarch suspensions. Imaging also reveals cracks, like a brittle solid. These observations suggest the dynamically jammed structure can temporarily support stress according to an effective modulus, like a soil or dense granular material, along a network of frictional contacts between the impactor and solid boundary.
Bringing life to soil physical processes
NASA Astrophysics Data System (ADS)
Hallett, P. D.
2013-12-01
When Oklahoma's native prairie grass roots were replaced by corn, the greatest environmental (and social) disaster ever to hit America ensued. The soils lost structure, physical binding by roots was annihilated and when drought came the Great Dust Bowl commenced. This form of environmental disaster has repeated over history and although not always apparent, similar processes drive the degradation of seemingly productive farmland and forests. But just as negative impacts on biology are deleterious to soil physical properties, positive impacts could reverse these trends. In finding solutions to soil sustainability and food security, we should be able to exploit biological processes to improve soil physical properties. This talk will focus on a quantitative understanding of how biology changes soil physical behaviour. Like the Great Dust Bowl, it starts with reinforcement mechanisms by plant roots. We found that binding of soil by cereal (barley) roots within 5 weeks of planting can more than double soil shear strength, with greater plant density causing greater reinforcement. With time, however, the relative impact of root reinforcement diminishes due to root turnover and aging of the seedbed. From mechanical tests of individual roots, reasonable predictions of reinforcement by tree roots are possible with fibre bundle models. With herbaceous plants like cereals, however, the same parameters (root strength, stiffness, size and distribution) result in a poor prediction. We found that root type, root age and abiotic factors such as compaction and waterlogging affect mechanical behaviour, further complicating the understanding and prediction of root reinforcement. For soil physical stability, the interface between root and soil is an extremely important zone in terms of resistance of roots to pull-out and rhizosphere formation. Compounds analogous to root exudates have been found with rheological tests to initially decrease the shear stress where wet soils flow, but after decomposition of these exudates by microbes the shear stress increases. This suggests an initial dispersion, followed by aggregation of the soil, which explains the structural arrangement of soil particles in the rhizosphere observed by microscopy. Dispersion of soil minerals in the root zone is important to release bound nutrients from mineral surfaces. Using fracture mechanics we measured large impacts of biological exudates on the toughness and interparticle bond energy of soils. Now novel tests are being developed to quantify interparticle bonding by biological exudates on single and multiple particle contacts, including mechanical test specimens that can be inoculated with specific bacteria or fungi. This will allow for clay mineralogy, water potential and solution chemistry impacts on interparticle bonding to be quantified directly. Wettability experiments with the same samples measure hydrological properties such as contact angle. Basic information from these tests will help explain biological processes that drive soil structure formation and stabilisation, providing data for models of soil structure dynamics.
Wang, Feng; Letort, Véronique; Lu, Qi; Bai, Xuefeng; Guo, Yan; de Reffye, Philippe; Li, Baoguo
2012-01-01
Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates. PMID:22927982
Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem
NASA Astrophysics Data System (ADS)
Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah
2016-10-01
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.
NASA Astrophysics Data System (ADS)
Fernandez, Maria Jose; Ortiz, Carlos; Kitzler, Barbara; Curiel, Jorge; Rubio, Agustin
2016-04-01
Over recent decades in the Iberian Peninsula, altitudinal shifts from Pinus sylvestris L. to Quercus pyrenaica Willd species has been observed as a consequence of Global Change, meaning changes in temperature, precipitation, land use and forestry. The forest conversion from pine to oak can alter the litter quality and quantity provided to the soil and thereby the soil microbial community composition and functioning. Since soil microbiota plays an important role in organic matter decomposition, and this in turn is key in biogeochemical cycles and forest ecosystems productivity, the rate in which forests produce and consume greenhouse gases can be also affected by changes in forest composition. In other words, changes in litter decomposition will ultimately affect downstream carbon and nitrogen dynamics although this impact is uncertain. In order to predict changes in carbon and nitrogen stocks in Global Change scenarios, it is necessary to deepen the impact of vegetation changes on soil microbial communities, litter decomposition dynamics (priming effect) and the underlying interactions between these factors. To test this, we conducted a full-factorial transplant microcosms experiment mixing both fresh soils and litter from Pyrenean oak, Scots pine and mixed stands collected inside their transitional area in Central Spain. The microcosms consisted in soil cylinders inside Kilner jars used as chambers inside an incubator. In this experiment, we investigated how and to what extent the addition of litter with different quality (needles, oak leaves and mixed needles-leaves) to soil inoculums with contrasting soil microbiota impact on (i) soil CO2, NO, N2O and CH4 efflux rates, (ii) total organic carbon and nitrogen and (iii) dissolved organic carbon and nitrogen. Furthermore, we assessed if these responses were controlled by changes in the microbial community structure using the PLFA analyses prior and after the incubation period of 54 days.
Mechanisms of microbial destabilization of soil C shifts over decades of warming
NASA Astrophysics Data System (ADS)
DeAngelis, K.; Pold, G.; Chowdhury, P. R.; Schnabel, J.; Grandy, S.; Melillo, J. M.
2017-12-01
Microbes are major actors in regulating the earth's biogeochemical cycles, with temperature-sensitive microbial tradeoffs improving ecosystem biogeochemical models. Meanwhile, the Earth's climate is changing, with decades of warming undercutting the ability of soil to store carbon. Our work explores trends of 26 years of experimental warming in temperate deciduous forest soils, which is associated with cycles of soil carbon degradation punctuated by periods of changes in soil microbial dynamics. Using a combination of biogeochemistry and molecular analytical methods, we explore the hypotheses that substrate availability, community structure, altered temperature sensitivity of microbial turnover-growth efficiency tradeoff, and microbial evolution are responsible for observations of accelerated degradation of soil carbon over time. Amplicon sequencing of microbial communities suggests a small role of changing microbial community composition over decades of warming, but a sustained suppression of fungal biomass is accompanied by increased biomass of Actinobacteria, Actinobacteria, Alphaproteobacteria, Verrucomicrobia and Planctomycetes. Substrate availability plays an important role in microbial dynamics, with depleted labile carbon in the first decade and depleted lignin in the second decade. Increased lignin-degrading enzyme activity supports the suggestion that lignin-like organic matter is an important substrate in chronically warmed soils. Metatranscriptomics data support the suggestion that increased turnover is associated with long-term warming, with metagenomic signals of increased carbohydrate-degrading enzymes in the organic horizon but decreased in the mineral soils. Finally, traits analysis of over 200 cultivated isolates of bacterial species from heated and control soils suggests an expanded ability for degradation of cellulose and hemicellulose but not chitin, supporting the hypothesis that long-term warming is exerting evolutionary pressure on microbial species. Together, these data suggest that after decades of warming both direct kinetic effects and indirect effects of altered substrate availability are affecting microbial ecology and evolution in ways that conspire to destabilize soil organic matter.
Impact of Soil Texture on Soil Ciliate Communities
NASA Astrophysics Data System (ADS)
Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.
2014-12-01
Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.
Experimental evidence for drought induced alternative stable states of soil moisture
NASA Astrophysics Data System (ADS)
Robinson, David. A.; Jones, Scott B.; Lebron, Inma; Reinsch, Sabine; Domínguez, María T.; Smith, Andrew R.; Jones, Davey L.; Marshall, Miles R.; Emmett, Bridget A.
2016-01-01
Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable soil moisture states (irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the soil from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. Further independent evidence supports our findings from historical soil moisture monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of soil structure, hydraulics and climate interaction.
Experimental evidence for drought induced alternative stable states of soil moisture
Robinson, David. A.; Jones, Scott B.; Lebron, Inma; Reinsch, Sabine; Domínguez, María T.; Smith, Andrew R.; Jones, Davey L.; Marshall, Miles R.; Emmett, Bridget A.
2016-01-01
Ecosystems may exhibit alternative stable states (ASS) in response to environmental change. Modelling and observational data broadly support the theory of ASS, however evidence from manipulation experiments supporting this theory is limited. Here, we provide long-term manipulation and observation data supporting the existence of drought induced alternative stable soil moisture states (irreversible soil wetting) in upland Atlantic heath, dominated by Calluna vulgaris (L.) Hull. Manipulated repeated moderate summer drought, and intense natural summer drought both lowered resilience resulting in shifts in soil moisture dynamics. The repeated moderate summer drought decreased winter soil moisture retention by ~10%. However, intense summer drought, superimposed on the experiment, that began in 2003 and peaked in 2005 caused an unexpected erosion of resilience and a shift to an ASS; both for the experimental drought manipulation and control plots, impairing the soil from rewetting in winter. Measurements outside plots, with vegetation removal, showed no evidence of moisture shifts. Further independent evidence supports our findings from historical soil moisture monitoring at a long-term upland hydrological observatory. The results herald the need for a new paradigm regarding our understanding of soil structure, hydraulics and climate interaction. PMID:26804897
Tundra fire disturbance homogonizes belowground food web structure, function and dynamics
NASA Astrophysics Data System (ADS)
Moore, J. C.; Pressler, Y.; Koltz, A.; Asmus, A.; Simpson, R.
2016-12-01
Tundra fires on Alaska's North Slope are on the rise due to increased lightning strikes since 2000. On July 16, 2007 lightning ignited the Anaktuvuk River fire, burning a 40-by-10 mile swath of tundra about 24 miles north of Toolik Field Station. The fire burned 401 square miles, was visible from space, and released more than 2.3 million tons of carbon into the atmosphere. A large amount of the organic layer of the soil was burned, changing the over all composition of the site and exposing deeper soil horizons. Due to fundamental transitions in soil characteristics and vegetation we hypothesized that the belowground food web community would be affected both in terms of biomass and location within the soil profile. Microbial biomass was reduced with burn severity. In the lower organic horizon there was a significant reduction in fungal biomass but we did not observe this effect in the upper organic soil. We did not observe a significant effect of burn severity on individual group biomass within higher trophic levels. Canonical Discriminant Analysis using the biomass estimates of the functional groups in the food webs found that the webs are becoming increasingly homogenized in the severely burned site compared to the moderately burned and unburned sites. The unburned soils differed significantly from soil at both burn sites; the greatest effects on food web structure were at the lower organic depth, whereas. We modeled the effects of the fire on soil organic matter processing rates and energy flow through the three food webs. The model estimated a decrease in C and N mineralization with fire severity, due in large part to the loss of organic material. While the organic horizon at the unburned site had 12 times greater C and N mineralization than the mineral soils, we observed little to no difference in C and N mineralization between the organic and mineral soil horizons in the moderately and severely burned sites. Our results show that the fire significantly altered the trophic structure of the soil food web, with loss of trophic complexity with increasing fire severity, which correlated strongly with C and N processing and food web stability.
Differences in Train-induced Vibration between Hard Soil and Soft Soil
NASA Astrophysics Data System (ADS)
Noyori, M.; Yokoyama, H.
2017-12-01
Vibration and noise caused by running trains sometimes raises environmental issues. Train-induced vibration is caused by moving static and dynamic axle loads. To reduce the vibration, it is important to clarify the conditions under which the train-induced vibration increases. In this study, we clarified the differences in train-induced vibration between on hard soil and on soft soil using a numerical simulation method. The numerical simulation method we used is a combination of two analysis. The one is a coupled vibration analysis model of a running train, a track and a supporting structure. In the analysis, the excitation force of the viaduct slabs generated by a running train is computed. The other analysis is a three-dimensional vibration analysis model of a supporting structure and the ground into which the excitation force computed by the former analysis is input. As a result of the numerical simulation, the ground vibration in the area not more than 25m from the center of the viaduct is larger under the soft soil condition than that under the hard soil condition in almost all frequency ranges. On the other hand, the ground vibration of 40 and 50Hz at a point 50m from the center of the viaduct under the hard soil condition is larger than that under the soft soil condition. These are consistent with the result of the two-dimensional FEM based on a ground model alone. Thus, we concluded that these results are obtained from not the effects of the running train but the vibration characteristics of the ground.
Soil Organic Matter (SOM): Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Amity
Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently inmore » use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste
The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more importantmore » than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.« less
NASA Astrophysics Data System (ADS)
Arnold, S.; Williams, E. R.
2016-01-01
Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna-soil structure interactions, (ii) functional dynamics of macrofauna taxa, and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.
NASA Astrophysics Data System (ADS)
Maerker, Michael; Sommer, Christian; Zakerinejad, Reza; Cama, Elena
2017-04-01
Soil erosion by water is a significant problem in arid and semi arid areas of large parts of Iran. Water erosion is one of the most effective phenomena that leads to decreasing soil productivity and pollution of water resources. Especially in semiarid areas like in the Mazayjan watershed in the Southwestern Fars province as well as in the Mkomazi catchment in Kwa Zulu Natal, South Africa, gully erosion contributes to the sediment dynamics in a significant way. Consequently, the intention of this research is to identify the different types of soil erosion processes acting in the area with a stochastic approach and to assess the process dynamics in an integrative way. Therefore, we applied GIS, and satellite image analysis techniques to derive input information for the numeric models. For sheet and rill erosion the Unit Stream Power-based Erosion Deposition Model (USPED) was utilized. The spatial distribution of gully erosion was assessed using a statistical approach which used three variables (stream power index, slope, and flow accumulation) to predict the spatial distribution of gullies in the study area. The eroded gully volumes were estimated for a multiple years period by fieldwork and Google Earth high resolution images as well as with structure for motion algorithm. Finally, the gully retreat rates were integrated into the USPED model. The results show that the integration of the SPI approach to quantify gully erosion with the USPED model is a suitable method to qualitatively and quantitatively assess water erosion processes in data scarce areas. The application of GIS and stochastic model approaches to spatialize the USPED model input yield valuable results for the prediction of soil erosion in the test areas. The results of this research help to develop an appropriate management of soil and water resources in the study areas.
Pereira e Silva, Michele C.; Schloter-Hai, Brigitte; Schloter, Michael; van Elsas, Jan Dirk; Salles, Joana Falcão
2013-01-01
Background Despite the fact that the fixation of nitrogen is one of the most significant nutrient processes in the terrestrial ecosystem, a thorough study of the spatial and temporal patterns in the abundance and distribution of N-fixing communities has been missing so far. Methodology/Principal Findings In order to understand the dynamics of diazotrophic communities and their resilience to external changes, we quantified the abundance and characterized the bacterial community structures based on the nifH gene, using real-time PCR, PCR-DGGE and 454-pyrosequencing, across four representative Dutch soils during one growing season. In general, higher nifH gene copy numbers were observed in soils with higher pH than in those with lower pH, but lower numbers were related to increased nitrate and ammonium levels. Results from nifH gene pyrosequencing confirmed the observed PCR-DGGE patterns, which indicated that the N fixers are highly dynamic across time, shifting around 60%. Forward selection on CCA analysis identified N availability as the main driver of these variations, as well as of the evenness of the communities, leading to very unequal communities. Moreover, deep sequencing of the nifH gene revealed that sandy soils (B and D) had the lowest percentage of shared OTUs across time, compared with clayey soils (G and K), indicating the presence of a community under constant change. Cosmopolitan nifH species (present throughout the season) were affiliated with Bradyrhizobium , Azospirillum and Methylocistis, whereas other species increased their abundances progressively over time, when appropriate conditions were met, as was notably the case for Paenibacilus and Burkholderia. Conclusions Our study provides the first in-depth pyrosequencing analysis of the N-fixing community at both spatial and temporal scales, providing insights into the cosmopolitan and specific portions of the nitrogen fixing bacterial communities in soil. PMID:24058578
Negative plant soil feedback explaining ring formation in clonal plants.
Cartenì, Fabrizio; Marasco, Addolorata; Bonanomi, Giuliano; Mazzoleni, Stefano; Rietkerk, Max; Giannino, Francesco
2012-11-21
Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in ecosystems without limiting water conditions. In this work, a spatially explicit model is presented in order to investigate the role of negative plant-soil feedback as an additional explanation for ring formation. The model describes the dynamics of the plant biomass in the presence of toxicity produced by the decomposition of accumulated litter in the soil. Our model qualitatively reproduces the emergence of ring patterns of a single clonal plant species during colonisation of a bare substrate. The model admits two homogeneous stationary solutions representing bare soil and uniform vegetation cover which depend only on the ratio between the biomass death and growth rates. Moreover, differently from other plant spatial patterns models, but in agreement with real field observations of vegetation dynamics, we demonstrated that the pattern dynamics always lead to spatially homogeneous vegetation covers without creation of stable Turing patterns. Analytical results show that ring formation is a function of two main components, the plant specific susceptibility to toxic compounds released in the soil by the accumulated litter and the decay rate of these same compounds, depending on environmental conditions. These components act at the same time and their respective intensities can give rise to the different ring structures observed in nature, ranging from slight reductions of biomass in patch centres, to the appearance of marked rings with bare inner zones, as well as the occurrence of ephemeral waves of plant cover. Our results highlight the potential role of plant-soil negative feedback depending on decomposition processes for the development of transient vegetation patterns. Copyright © 2012 Elsevier Ltd. All rights reserved.
Comprehensive Understanding for Vegetated Scene Radiance Relationships
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Deering, D. W.
1984-01-01
The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.
NASA Astrophysics Data System (ADS)
He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, Anthony D.; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong
2015-12-01
Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr-1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yujie; Yang, Jinyan; Zhuang, Qianlai
Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here in this study we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbialmore » dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO 2 efflux (R H) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil R H (7.5 ± 2.4 PgCyr -1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil R H with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.« less
He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, A. David; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong
2015-01-01
Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr−1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4–0.6) in the simulated spatial pattern of soil RHwith both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = −0.43 to −0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.
Linking Microbial Community Structure, Activity and Carbon Cycling in Biological Soil Crust
NASA Astrophysics Data System (ADS)
Swenson, T.; Karaoz, U.; Swenson, J.; Bowen, B.; Northen, T.
2016-12-01
Soils play a key role in the global carbon cycle, but the relationships between soil microbial communities and metabolic pathways are poorly understood. In this study, biological soil crusts (biocrusts) from the Colorado Plateau are being used to develop soil metabolomics methods and statistical models to link active microbes to the abundance and turnover of soil metabolites and to examine the detailed substrate and product profiles of individual soil bacteria isolated from biocrust. To simulate a pulsed activity (wetting) event and to analyze the subsequent correlations between soil metabolite dynamics, community structure and activity, biocrusts were wetup with water and samples (porewater and DNA) were taken at various timepoints up to 49.5 hours post-wetup. DNA samples were sequenced using the HiSeq sequencing platform and porewater metabolites were analyzed using untargeted liquid chromatography/ mass spectrometry. Exometabolite analysis revealed the release of a breadth of metabolites including sugars, amino acids, fatty acids, dicarboxylic acids, nucleobases and osmolytes. In general, many metabolites (e.g. amino acids and nucleobases) immediately increased in abundance following wetup and then steadily decreased. However, a few continued to increase over time (e.g. xanthine). Interestingly, in a previous study exploring utilization of soil metabolites by sympatric bacterial isolates from biocrust, we observed xanthine to be released by some Bacilli sp. Furthermore, our current metagenomics data show that members of the Paenibacillaceae family increase in abundance in late wetup samples. Previous 16S amplicon data also show a "Firmicutes bloom" following wetup with the new metagenomic data resolving this at genome-level. Our continued metagenome and exometabolome analyses are allowing us to examine complex pulsed-activity events in biocrust microbial communities specifically by correlating the abundance of microbes to the release of soil metabolites. Ultimately, these approaches will provide an important complement to sequencing efforts linking soil microbes and soil metabolites to enable genomic sciences approaches for understanding and modeling soil carbon cycling.
[Application of spatially explicit landscape model in soil loss study in Huzhong area].
Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang
2004-10-01
Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.
NASA Astrophysics Data System (ADS)
Baisden, W. T.; Parfitt, R. L.; Ross, C.
2009-12-01
In 1959, Athol Rafter began a substantial programme of monitoring the flow of 14C produced by atmospheric thermonuclear tests through New Zealand’s atmosphere, biosphere and soil. The programme produced important publications, but also leaves a legacy of unpublished data critical for understanding soil C dynamics. A database of ~400 soil radiocarbon measurements spanning 50 years has now been compiled. Among the most compelling data is a comparison of soil carbon dynamics in deforested dairy pastures under similar climate in the Tokomaru silt loam (non-Andisol) versus the Egmont black loam (Andisol), originally sampled in 1962-3, 1965 and 1969. After adding soil profiles sampled to similar depths in 2008, we can use a relatively simple 2-box model to calculate that the residence time of soil C (upper ~8 cm) in the Tokomaru soil is ~9 years compared to ~15 years for the Egmont soil. This difference represents nearly a doubling of soil C residence time, and roughly explains the doubling of the soil C stock. With three measurements in the 1960s, the data is of sufficient resolution to estimate the parameters for an “inert” or “passive pool” comprising approximately 15% of soil C, and having a residence time of 600 years in the Tokomaru soil versus 3000 years in the Egmont surface soil. The Tokomaru/Egmont comparison is necessarily illustrative since the 1960s samplings were not replicated extensively, but provides globally unique data illustrating the nature of C movement through soil. Moreover, the Tokomaru/Egmont comparison supports evidence that C dynamics does differ in Andisols versus other soils. Additional lines of evidence include emerging theories of soil organic matter stabilisation processes, rates of soil organic matter change following land-use change, and chemistry data. The contrasting soil C dynamics in these different soils appear to have implications for land-use change and management schemes that could be eligible for “C credits”. More broadly, the large database of radiocarbon measurements also creates opportunities to quantify carbon turnover and transport as a function of soil depth, and in non-steady state soil systems where the C stocks are known to be changing. The Egmont loam (Allophanic) and Tokomaru silt loam (non-Allophanic) showed different rates of "bomb-14C" incorporation under similar climate and land use.
Dynamic characteristics of soil respiration in Yellow River Delta wetlands, China
NASA Astrophysics Data System (ADS)
Wang, Xiao; Luo, Xianxiang; Jia, Hongli; Zheng, Hao
2018-02-01
The stable soil carbon (C) pool in coastal wetlands, referred to as "blue C", which has been extensively damaged by climate change and soil degradation, is of importance to maintain global C cycle. Therefore, to investigate the dynamic characteristics of soil respiration rate and evaluate C budgets in coastal wetlands are urgently. In this study, the diurnal and seasonal variation of soil respiration rate in the reed wetland land (RL) and the bare wetland land (BL) was measured in situ with the dynamic gas-infrared CO2 method in four seasons, and the factors impacted on the dynamic characteristics of soil respiration were investigated. The results showed that the diurnal variation of soil respiration rate consistently presented a "U" curve pattern in April, July, and September, with the maximum values at 12:00 a.m. and the minimum values at 6:00 a.m. In the same season, the diurnal soil respiration rate in RL was significantly greater than those in BL (P < 0.05). In April, July, and September, the mean diurnal soil respiration rate was 0.14, 0.42, and 0.39 μmol m-2 s-1 in RL, 0.05, 0.22, 0.13, and 0.01 μmol m-2 s-1 in BL, respectively. Soil surface temperature was the primary factor that influenced soil respiration, which was confirmed by the exponential positive correlation between the soil respiration rate and soil surface temperature in BL and RL (P < 0.05). In addition, the high salinity of soils suppressed soil respiration, confirming by the significantly negative correlation between soil respiration rate and the content of soluble salt. These results will be useful for understanding the mechanisms underlying soil respiration and elevating C sequestration potential in the coastal wetlands.
Soil-water dynamics and unsaturated storage during snowmelt following wildfire
Ebel, Brian A.; Hinckley, E.S.; Martin, Deborah
2012-01-01
Many forested watersheds with a substantial fraction of precipitation delivered as snow have the potential for landscape disturbance by wildfire. Little is known about the immediate effects of wildfire on snowmelt and near-surface hydrologic responses, including soil-water storage. Montane systems at the rain-snow transition have soil-water dynamics that are further complicated during the snowmelt period by strong aspect controls on snowmelt and soil thawing. Here we present data from field measurements of snow hydrology and subsurface hydrologic and temperature responses during the first winter and spring after the September 2010 Fourmile Canyon Fire in Colorado, USA. Our observations of soil-water content and soil temperature show sharp contrasts in hydrologic and thermal conditions between north- and south-facing slopes. South-facing burned soils were ∼1–2 °C warmer on average than north-facing burned soils and ∼1.5 °C warmer than south-facing unburned soils, which affected soil thawing during the snowmelt period. Soil-water dynamics also differed by aspect: in response to soil thawing, soil-water content increased approximately one month earlier on south-facing burned slopes than on north-facing burned slopes. While aspect and wildfire affect soil-water dynamics during snowmelt, soil-water storage at the end of the snowmelt period reached the value at field capacity for each plot, suggesting that post-snowmelt unsaturated storage was not substantially influenced by aspect in wildfire-affected areas. Our data and analysis indicate that the amount of snowmelt-driven groundwater recharge may be larger in wildfire-impacted areas, especially on south-facing slopes, because of earlier soil thaw and longer durations of soil-water contents above field capacity in those areas.
Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies
NASA Astrophysics Data System (ADS)
Qin, Mingming; Gimenez, Daniel; Cooper, Miguel
2016-04-01
Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges (48 hours and two months). These results will be further discussed in the context of the location of the soil horizons within the toposequence.
Khdhiri, Mondher; Piché-Choquette, Sarah; Tremblay, Julien; Tringe, Susannah G; Constant, Philippe
2017-06-01
The enrichment of H 2 -oxidizing bacteria (HOB) by H 2 generated by nitrogen-fixing nodules has been shown to have a fertilization effect on several different crops. The benefit of HOB is attributed to their production of plant growth-promoting factors, yet their interactions with other members of soil microbial communities have received little attention. Here we report that the energy potential of H 2 , when supplied to soil, alters ecological niche partitioning of bacteria and fungi, with multifaceted consequences for both generalist and specialist microbial functions. We used dynamic microcosms to expose soil to the typical atmospheric H 2 mixing ratio (0.5 ppmv) permeating soils, as well as mixing ratios comparable to those found at the soil-nodule interface (10,000 ppmv). Elevated H 2 exposure exerted direct effects on two HOB subpopulations distinguished by their affinity for H 2 while enhancing community level carbon substrate utilization potential and lowering CH 4 uptake activity in soil. We found that H 2 triggered changes in the abundance of microorganisms that were reproducible yet inconsistent across soils at the taxonomic level and even among HOB. Overall, H 2 exposure altered microbial process rates at an intensity that depends upon soil abiotic and biotic features. We argue that further examination of direct and indirect effects of H 2 on soil microbial communities will lead to a better understanding of the H 2 fertilization effect and soil biogeochemical processes. IMPORTANCE An innovative dynamic microcosm chamber system was used to demonstrate that H 2 diffusing in soil triggers changes in the distribution of HOB and non-HOB. Although the response was uneven at the taxonomic level, an unexpected coordinated response of microbial functions was observed, including abatement of CH 4 oxidation activity and stimulation of carbon turnover. Our work suggests that elevated H 2 rewires soil biogeochemical structure through a combination of direct effects on the growth and persistence of HOB and indirect effects on a variety of microbial processes involving HOB and non-HOB. Copyright © 2017 American Society for Microbiology.
12 years of intensive management increases soil carbon stocks in Loblolly pine and Sweetgum stands
NASA Astrophysics Data System (ADS)
Sanchez, F. G.; Samuelson, L.; Johnsen, K.
2009-12-01
To achieve and maintain productivity goals, forest managers rely on intensive management strategies. These strategies have resulted in considerable gains in forest productivity. However, the impacts of these strategies on belowground carbon dynamics is less clear. Carbon dynamics are influenced by a multitude of factors including soil moisture, nutrient status, net primary productivity and carbon allocation patterns. In this study, we describe the impact of four management strategies on soil carbon and nitrogen stocks in 12-year-old loblolly pine and sweetgum plantations. The management strategies are: (1) complete understory control, (2) complete understory control + drip irrigation, (3) complete understory control + drip irrigation and fertilization and (4) complete understory control + drip irrigation and fertilization and pest control. These management strategies were replicated on 3 blocks in a randomized complete block design. After 12 years, soil carbon stocks increased with increasing management intensity for both tree species. This effect was consistent throughout the depth increments measured (0-10, 10-20, 20-30 cm). Alternatively, no significant effect was detected for soil nitrogen at any depth increment. Sweetgum had higher soil carbon and nitrogen stocks at each depth increment than loblolly pine. There was a greater difference in nitrogen stocks than carbon stocks between the two species resulting in lower soil C:N ratios in the sweetgum stands. These observations may be due to differences in net primary productivity, rooting structure and carbon allocation patterns of sweetgum compared with loblolly pine. To determine the relative stability of the carbon and nitrogen stocks for the different treatments and tree species, we sequentially fractionated the soil samples into six fractions of differing stability. Although soil carbon stocks for both species increased with management intensity, there was no detectable difference in the soil carbon fractions based on management intensity. Additionally, there was no difference between soil carbon fractions based on tree species. These observations suggest that although external inputs (i.e., moisture, carbon and nutrients) increase soil carbon stocks, they do not alter soil carbon stabilization mechanisms at these sites.
Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots
Cusack, Daniela F.; Markesteijn, Lars; Condit, Richard; ...
2018-01-02
We report that tropical forests are the most carbon (C)- rich ecosystems on Earth, containing 25–40% of global terrestrial C stocks. While large-scale quantifi- cation of aboveground biomass in tropical forests has improved recently, soil C dynamics remain one of the largest sources of uncertainty in Earth system models, which inhibits our ability to predict future climate. Globally, soil texture and climate predict B 30% of the variation in soil C stocks, so ecosystem models often predict soil C using measures of aboveground plant growth. However, this approach can underestimate tropical soil C stocks, and has proven inaccurate when comparedmore » with data for soil C in data-rich northern ecosystems. By quantifying soil organic C stocks to 1 m depth for 48 humid tropical forest plots across gradients of rainfall and soil fertility in Panama, we show that soil C does not correlate with common predictors used in models, such as plant biomass or litter production. Instead, a structural equation model including base cations, soil clay content, and rainfall as exogenous factors and root biomass as an endogenous factor predicted nearly 50% of the variation in tropical soil C stocks, indicating a strong indirect effect of base cation availability on tropical soil C storage. Including soil base cations in C cycle models, and thus emphasizing mechanistic links among nutrients, root biomass, and soil C stocks, will improve prediction of climate-soil feedbacks in tropical forests.« less
Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cusack, Daniela F.; Markesteijn, Lars; Condit, Richard
We report that tropical forests are the most carbon (C)- rich ecosystems on Earth, containing 25–40% of global terrestrial C stocks. While large-scale quantifi- cation of aboveground biomass in tropical forests has improved recently, soil C dynamics remain one of the largest sources of uncertainty in Earth system models, which inhibits our ability to predict future climate. Globally, soil texture and climate predict B 30% of the variation in soil C stocks, so ecosystem models often predict soil C using measures of aboveground plant growth. However, this approach can underestimate tropical soil C stocks, and has proven inaccurate when comparedmore » with data for soil C in data-rich northern ecosystems. By quantifying soil organic C stocks to 1 m depth for 48 humid tropical forest plots across gradients of rainfall and soil fertility in Panama, we show that soil C does not correlate with common predictors used in models, such as plant biomass or litter production. Instead, a structural equation model including base cations, soil clay content, and rainfall as exogenous factors and root biomass as an endogenous factor predicted nearly 50% of the variation in tropical soil C stocks, indicating a strong indirect effect of base cation availability on tropical soil C storage. Including soil base cations in C cycle models, and thus emphasizing mechanistic links among nutrients, root biomass, and soil C stocks, will improve prediction of climate-soil feedbacks in tropical forests.« less
Simulation of the evolution of root water foraging strategies in dry and shallow soils
Renton, Michael; Poot, Pieter
2014-01-01
Background and Aims The dynamic structural development of plants can be seen as a strategy for exploiting the limited resources available within their environment, and we would expect that evolution would lead to efficient strategies that reduce costs while maximizing resource acquisition. In particular, perennial species endemic to habitats with shallow soils in seasonally dry environments have been shown to have a specialized root system morphology that may enhance access to water resources in the underlying rock. This study aimed to explore these hypotheses by applying evolutionary algorithms to a functional–structural root growth model. Methods A simulation model of a plant's root system was developed, which represents the dynamics of water uptake and structural growth. The model is simple enough for evolutionary optimization to be computationally feasible, yet flexible enough to allow a range of structural development strategies to be explored. The model was combined with an evolutionary algorithm in order to investigate a case study habitat with a highly heterogeneous distribution of resources, both spatially and temporally – the situation of perennial plants occurring on shallow soils in seasonally dry environments. Evolution was simulated under two contrasting fitness criteria: (1) the ability to find wet cracks in underlying rock, and (2) maximizing above-ground biomass. Key Results The novel approach successfully resulted in the evolution of more efficient structural development strategies for both fitness criteria. Different rooting strategies evolved when different criteria were applied, and each evolved strategy made ecological sense in terms of the corresponding fitness criterion. Evolution selected for root system morphologies which matched those of real species from corresponding habitats. Conclusions Specialized root morphology with deeper rather than shallower lateral branching enhances access to water resources in underlying rock. More generally, the approach provides insights into both evolutionary processes and ecological costs and benefits of different plant growth strategies. PMID:24651371
Ding, Guo-Chun; Heuer, Holger; Smalla, Kornelia
2012-01-01
Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH). Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21, and 63 were analyzed based on PCR-amplified 16S rRNA gene fragments. Denaturing gradient gel electrophoresis (DGGE) fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta-, or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils. PMID:22934091
Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K
2011-03-01
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.
Spatial P heterogeneity in forest soil: Influence on microbial P uptake and community structure
NASA Astrophysics Data System (ADS)
Zilla, Thomas; Angulo-Schipper, Bridith; Méndez, Juan Carlos; Dippold, Michaela A.; Kuzyakov, Yakov; Spielvogel, Sandra
2017-04-01
Other than nitrogen, phosphorus (P) is the most important growth limiting nutrient in soils. Yet, little information is available concerning the spatial heterogeneity of P content in forest soils. More so, the effects of a homogeneous vs. heterogeneous soil P distribution on microbial P acquisition and community structure have yet to be determined. Thus, a rhizotron experiment based on a P-deficient forest soil was conducted to investigate competitive P uptake strategies of microbes. F. sylvatica-bearing rhizotrons were labeled with Fe33PO4, a relatively immobile P source native to the study soil. Homogeneous and heterogeneous P patterns were created to study the effects of spatial P heterogeneity on plant and microbial P acquisition. P mobilization by microorganisms was tracked by an improved 33P-PLFA method, linking 33P incorporation in microbes with changes in microbial community structure in soils in situ. The microbial P uptake was enhanced in rhizotrons with high P availability and in those with a patchy P distribution. Characteristic PLFAs indicate a congregation of beech-associated ectomycorrhizal fungi in P-rich patches. These ectomycorrhizal fungi are likely to strongly increase P mobilization from the used Fe33PO4 in high P habitats. In contrast, habitats with low P availability require a more complex microbial community structure without a dominant group to mobilize this inaccessible P source. Therefore, hotspots of P are likely to promote the efforts of fungal hyphae for P mobilization - an effect which decreases with lower P content. Additionally, gram positive and negative bacteria exhibit a vastly higher P uptake under increasingly patchy P distributions. However, they form a smaller portion of the microbial community than in homogeneously P enriched rhizotrons, suggesting that filamentous organisms benefit from the patchy P distribution. Thus, only a heterogeneous P distribution promotes P acquisition of forest microbial communities from mineral P sources with low bioavailability. These novel insights into the effects of spatial P distributions on forest soil community dynamics will hopefully shed further light on microbial P cycling, thereby helping to tackle the impending global P crisis.|
Rai, Sandhya; Singh, Dileep Kumar; Annapurna, Kannepalli
2015-01-01
The soil sampled at different growth stages along the cropping period of cotton were analyzed using various molecular tools: restriction fragment length polymorphism (RFLP), terminal restriction length polymorphism (T-RFLP), and cloning-sequencing. The cluster analysis of the diazotrophic community structure of early sampled soil (0, 15, and 30 days) was found to be more closely related to each other than the later sampled one. Phylogenetic and diversity analysis of sequences obtained from the first (0 Day; C0) and last soil sample (180 day; C180) confirmed the data. The phylogenetic analysis revealed that C0 was having more unique sequences than C180 (presence of γ-Proteobacteria exclusively in C0). A relatively higher richness of diazotrophic community sequences was observed in C0 (S(ACE) : 30.76; S(Chao1) : 20.94) than C180 (S(ACE) : 18.00; S(Chao1) : 18.00) while the evenness component of Shannon diversity index increased from C0 (0.97) to C180 (1.15). The impact of routine agricultural activities was more evident based on diazotrophic activity (measured by acetylene reduction assay) than its structure and diversity. The nitrogenase activity of C0 (1264.85 ± 35.7 ηmol of ethylene production g(-1) dry soil h(-1) ) was statistically higher when compared to all other values (p < 0.05). There was no correlation found between diazotrophic community structure/diversity and N2 fixation rates. Thus, considerable functional redundancy of nifH was concluded to be existing at the experimental site. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun
2015-04-01
Soil moisture, a critical factor in hydrologic systems, plays a key role in synthesizing interactions among soil, climate, hydrological response, solute transport and ecosystem dynamics. The spatial and temporal distribution of soil moisture at a hillslope scale is essential for understanding hillslope runoff generation processes. In this study, we implement Monte Carlo simulations in the hillslope scale using a three-dimensional surface-subsurface integrated model (3D model). Numerical simulations are compared with multiple soil moistures which had been measured using TDR(Mini_TRASE) for 22 locations in 2 or 3 depths during a whole year at a hillslope (area: 2100 square meters) located in Bongsunsa Watershed, South Korea. In stochastic simulations via Monte Carlo, uncertainty of the soil parameters and input forcing are considered and model ensembles showing good performance are selected separately for several seasonal periods. The presentation will be focused on the characterization of seasonal variations of model parameters based on simulations with field measurements. In addition, structural limitations of the contemporary modeling method will be discussed.
Persistence of soil organic matter in eroding versus depositional landform positions
Berhe, Asmeret Asefaw; Harden, Jennifer W.; Torn, Margaret S.; Kleber, Markus; Burton, Sarah D.; Harte, John
2012-01-01
Soil organic matter (SOM) processes in dynamic landscapes are strongly influenced by soil erosion and sedimentation. We determined the contribution of physical isolation of organic matter (OM) inside aggregates, chemical interaction of OM with soil minerals, and molecular structure of SOM in controlling storage and persistence of SOM in different types of eroding and depositional landform positions. By combining density fractionation with elemental and spectroscopic analyses, we showed that SOM in depositional settings is less transformed and better preserved than SOM in eroding landform positions. However, which environmental factors exert primary control on storage and persistence of SOM depended on the nature of the landform position considered. In an annual grassland watershed, protection of SOM by physical isolation inside aggregates and chemical association of organic matter (complexation) with soil minerals, as assessed by correlation with radiocarbon concentration, were more effective in the poorly drained, lowest-lying depositional landform positions, compared to well-drained landform positions in the upper parts of the watershed. Results of this study demonstrated that processes of soil erosion and deposition are important mechanisms of long-term OM stabilization.
NASA Astrophysics Data System (ADS)
Montaldo, N.; Albertson, J. D.; Corona, R.
2011-12-01
Water limited conditions strongly impacts soil and vegetation dynamics in Mediterranean regions, which are commonly heterogeneous ecosystems, characterized by inter-annual rainfall variability, topography variability and contrasting plant functional types (PFTs) competing for water use. Mediterranean regions are characterized by two main ecosystems, grassland and woodland, which for both natural and anthropogenic causes can grow in soils with different characteristics, highly impacting water resources. Water resources and forestal planning need a deep understanding of the dynamics between PFTs, soil and atmosphere and their impacts on water and CO2 distributions of these two main ecosystems. The first step is the monitoring of land surface fluxes, soil moisture, and vegetation dynamics of the two contrasting ecosystems. Moreover, due to the large percentage of soils with low depth (< 50 cm), and due to the quick hydrologic answer to atmospheric forcing in these soils, there is also the need to understand the impact of the soil depth in the vegetation dynamics, and make measurements in these types of soils. Sardinia island is a very interesting and representative region of Mediterranean ecosystems. It is low urbanized, and is not irrigated, except some plan areas close to the main cities where main agricultural activities are concentrated. The case study sites are within the Flumendosa river basin on Sardinia. Two sites, both in the Flumendosa river and with similar height a.s.l., are investigated. The distance between the sites is around 4 km but the first is a typically grass site located on an alluvial plan valley with a soil depth more than 2m, while the second site is a patchy mixture of Mediterranean vegetation types Oaks, creepers of the wild olive trees and C3 herbaceous species and the soil thickness varies from 15-40 cm, bounded from below by a rocky layer of basalt, partially fractured. In both sites land-surface fluxes and CO2 fluxes are estimated by eddy correlation technique based micrometeorological towers. Soil moisture profiles were also continuously estimated using water content reflectometers and gravimetric method, and periodically leaf area index PFTs are estimated during the Spring-Summer 2005. The following objectives are addressed:1) pointing out the dynamics of land surface fluxes, soil moisture, CO2 and vegetation cover for two contrasting water-limited ecosystems; 2) assess the impact of the soil depth and type on the CO2 and water balance dynamics. For reaching the objectives an ecohydrologic model is also successfully used and applied to the case studies. It couples a vegetation dynamic model, which computes the change in biomass over time for the PFTs, and a 3-component (bare soil, grass and woody vegetation) land surface model.
Population dynamics of hydrocarbon-oxidizing yeasts introduced into oil-contaminated soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulichevskaya, I.S.; Panikov, N.S.; Guzev, V.S.
A pure culture of the yeastlike fungus Candida lipolytica, able to actively degrade crude oil, was isolated. In preliminary trials, an optimal dose for its introduction was adjusted (10{sup 8} cells/g soil) to ensure its predominance in contaminated soil. Laboratory incubation experiments in which the population dynamics of the introduced species and indigenous soil bacteria and the dynamics of soil respiration activity were followed showed that active proliferation of the introduced species in soil is accompanied by its elimination as a result of grazing by microfauna. The most favorable conditions for the development of introduced yeasts were found to bemore » provided in gray and gray forest soil, whereas in soddy-podzolic soil, their growth and oil degradation were retarded. The obtained results indicate that introduction of the tested culture can significantly increase the rate of oil degradation. In uncontaminated soil, the introduced species is rapidly eliminated. 9 refs., 5 figs.« less
Soil phosphorus dynamics under sprinkler and furrow irrigation
USDA-ARS?s Scientific Manuscript database
Furrow irrigation detaches and transports soil particles and subsequently nutrients such as phosphorus. To reduce the risk of erosion and offsite phosphorus movement, producers can convert from furrow to sprinkler irrigation. We completed research on soil phosphorus dynamics in furrow versus sprin...
NASA Astrophysics Data System (ADS)
Frossard, E.; Buchmann, N.; Bünemann, E. K.; Kiba, D. I.; Lompo, F.; Oberson, A.; Tamburini, F.; Traoré, O. Y. A.
2015-09-01
Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies explicitly considered the effects of agricultural management practices on soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long-term. Thus, we analysed the C, N and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK cropping system trial (Switzerland). In each of these trials, there was a large range of C, N and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and nutrients and has a stable structure. Thus, organic matter is protected from mineralization and can therefore accumulate, allowing microorganisms to feed on soil nutrients and to keep a constant C : N : P ratio. The DOK soil represents an intermediate situation, with high nutrient concentrations, but a rather fragile soil structure, where organic matter does not accumulate. We conclude that the study of C, N, and P ratios is important to understand the functioning of cropped soils in the long-term, but that it must be coupled with a precise assessment of element inputs and budgets in the system and a good understanding of the ability of soils to stabilize C, N and P compounds.
Iron cycling under oscillatory redox conditions: from observations to processes
NASA Astrophysics Data System (ADS)
Meile, C. D.; Chen, C.; Barcellos, D.; Wilmoth, J.; Thompson, A.
2017-12-01
Fe oxyhydroxides play a critical role in soils through their role as structural entities, their high sorption capacity, their role as terminal electron acceptors in the respiration of organic matter, as well as their potential to affect the reactivity of that organic matter. In soils that undergo repeated fluctuations in O2 concentrations, soil iron undergoes transformations between reduced and oxidized forms. The rate of Fe(II) oxidation can govern the nature of Fe(III) oxyhydroxides formed, and hence can affect rates of OC mineralization under suboxic conditions. But it remains unclear if this same behavior occurs in soils, where Fe(II) is mainly present as surface complexes. We documented the impact of such redox oscillations on iron cycling through targeted experiments, in which the magnitude and frequency of redox oscillations were varied systematically on soils from the Luquillo Critical Zone Observatory, Puerto Rico. Our observations demonstrated that higher O2 concentrations led to a faster Fe(II) oxidation and resulted in less crystalline Fe(III)-oxyhydroxides than lower O2 concentrations. We further studied the dynamics of iron phases by amending soil slurries with isotopically-labeled 57Fe(II) and developed a numerical model to quantify the individual processes. Our model showed a higher rate of Fe(III) reduction and increased sorption capacity following the oxidation of Fe(II) at high O2 levels than at low O2 levels, and revealed rapid Fe atom exchange between solution and solid phase. Concurrent measurements of CO2 in our oscillation experiments further illustrated the importance O2 fluctuations on coupled Fe-C dynamics.
Wang, Hong-Mei; Wang, Kun; Xie, Ying-Zhong
2009-06-01
Studies of ecological boundaries are important and have become a rapidly evolving part of contemporary ecology. The ecotones are dynamic and play several functional roles in ecosystem dynamics, and the changes in their locations can be used as an indicator of environment changes, and for these reasons, ecotones have recently become a focus of investigation of landscape ecology and global climate change. As the interest in ecotone increases, there is an increased need for formal techniques to detect it. Hence, to better study and understand the functional roles and dynamics of ecotones in ecosystem, we need quantitative methods to characterize them. In the semi-arid region of northern China, there exists a farming-pasturing transition resulting from grassland reclamation and deforestation. With the fragmentation of grassland landscape, the structure and function of the grassland ecosystem are changing. Given this perspective; new-image processing approaches are needed to focus on transition themselves. Hyperspectral remote sensing data, compared with wide-band remote sensing data, has the advantage of high spectral resolution. Hyperspectral remote sensing can be used to visualize transitional zones and to detect ecotone based on surface properties (e. g. vegetation, soil type, and soil moisture etc). In this paper, the methods of hyperspectral remote sensing information processing, spectral analysis and its application in detecting the vegetation classifications, vegetation growth state, estimating the canopy biochemical characteristics, soil moisture, soil organic matter etc are reviewed in detail. Finally the paper involves further application of hyperspectral remote sensing information in research on local climate in ecological boundary in north farming-pasturing transition in China.
[Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.
Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui
2016-07-01
Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (P<0.05) among soil meso- and micro-fauna density in the four urban forest types and the largest density was found in Metasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.
NASA Astrophysics Data System (ADS)
Mary, Benjamin; Peruzzo, Luca; Boaga, Jacopo; Schmutz, Myriam; Wu, Yuxin; Hubbard, Susan S.; Cassiani, Giorgio
2017-04-01
Nowadays, best viticulture practices require the joint interpretation of climate and soils data. However, information about the soil structure and subsoil processes is often lacking, as point measurements, albeit precise, cannot ensure sufficient spatial coverage and resolution. Non-invasive methods can provide spatially extensive, high resolution information that, supported by traditional point-like data, help complete the complex picture of subsoil static and dynamic reality. So far very little emphasis has been given to investigating the role of soil properties and even less of roots activity on winegrapes. Vine plant's root systems play an important role in providing the minerals to the plants, but also control the water uptake and thus the water state of the vines, which is a key factor determining the grape quality potential. In this contribution we report about the measurements conducted since June 2016 in a vineyard near Bordeaux (France, Pessac Leognan Chateau). Two neighbor plants of different sizes have been selected. In order to spot small scale soil variations and root zone physical structure at the vicinity of the vine plants, we applied a methodology using longitudinal 2D tomography, 3D borehole-based electrical resistivity tomography and a variation of the mise-à-la-masse method (MALM) to assess the effect of plant roots on the current injection in the ground. Time-lapse measurements are particularly informative about the plant dynamics, and the focus is particularly applied on this approach. The time-lapse 3D ERT and MALM results are presented, and the potential to assimilate these data into a hydrological model that can account for the root water uptake as a function of atmospheric conditions is discussed.
NASA Astrophysics Data System (ADS)
Georgiou, Katerina; Abramoff, Rose; Harte, John; Riley, William; Torn, Margaret
2017-04-01
Climatic, atmospheric, and land-use changes all have the potential to alter soil microbial activity via abiotic effects on soil or mediated by changes in plant inputs. Recently, many promising microbial models of soil organic carbon (SOC) decomposition have been proposed to advance understanding and prediction of climate and carbon (C) feedbacks. Most of these models, however, exhibit unrealistic oscillatory behavior and SOC insensitivity to long-term changes in C inputs. Here we diagnose the sources of instability in four models that span the range of complexity of these recent microbial models, by sequentially adding complexity to a simple model to include microbial physiology, a mineral sorption isotherm, and enzyme dynamics. We propose a formulation that introduces density-dependence of microbial turnover, which acts to limit population sizes and reduce oscillations. We compare these models to results from 24 long-term C-input field manipulations, including the Detritus Input and Removal Treatment (DIRT) experiments, to show that there are clear metrics that can be used to distinguish and validate the inherent dynamics of each model structure. We find that widely used first-order models and microbial models without density-dependence cannot readily capture the range of long-term responses observed across the DIRT experiments as a direct consequence of their model structures. The proposed formulation improves predictions of long-term C-input changes, and implies greater SOC storage associated with CO2-fertilization-driven increases in C inputs over the coming century compared to common microbial models. Finally, we discuss our findings in the context of improving microbial model behavior for inclusion in Earth System Models.
Soil nitrogen dynamics in switchgrass seeded to a marginally yielding cropland of South Dakota
USDA-ARS?s Scientific Manuscript database
Soil nitrate (NO3-), nitrate leaching, and nitrous oxide (N2O) emissions for 2009 through 2015 were monitored to explore N dynamics in switchgrass (Panicum virgatum L.) seeded to a marginally yielding cropland. Our findings indicated that N rate impacted soil NO3- (0-5 cm depth) and soil surface N2O...
Becky K. Kerns; Margeret M. Moore; Stephen C. Hart
2001-01-01
Our objectives were to examine the relationship between contemporary vegetation and surface soil phytolith assemblages, and use phytoliths and δ13C of soil organic matter (SOM) to explore forest-grassland vegetation dynamics. We established plots within three canopy types (open, old-growth, and dense young pine) with different grass species compositions in a...
Burrowing herbivores alter soil carbon and nitrogen dynamics in a semi-arid ecosystem, Argentina
Kenneth L. Clark; Lyn C. Branch; Jose L. Hierro; Diego Villarreal
2016-01-01
Activities of burrowing herbivores, including movement of soil and litter and deposition of waste material, can alter the distribution of labile carbon (C) and nitrogen (N) in soil, affecting spatial patterning of nutrient dynamics in ecosystems where they are abundant. Their role in ecosystem processes in surface soil has been studied extensively, but effects of...
The number comb for a soil physical properties dynamic measurement
NASA Astrophysics Data System (ADS)
Olechko, K.; Patiño, P.; Tarquis, A. M.
2012-04-01
We propose the prime numbers distribution extracted from the soil digital multiscale images and some physical properties time series as the precise indicator of the spatial and temporal dynamics under soil management changes. With this new indicator the soil dynamics can be studied as a critical phenomenon where each phase transition is estimated and modeled by the graph partitioning induced phase transition. The critical point of prime numbers distribution was correlated with the beginning of Andosols, Vertisols and saline soils physical degradation under the unsustainable soil management in Michoacan, Guanajuato and Veracruz States of Mexico. The data banks corresponding to the long time periods (between 10 and 28 years) were statistically compared by RISK 5.0 software and our own algorithms. Our approach makes us able to distill free-form natural laws of soils physical properties dynamics directly from the experimental data. The Richter (1987) and Schmidt and Lipson (2009) original approaches were very useful to design the algorithms to identify Hamiltonians, Lagrangians and other laws of geometric and momentum conservation especially for erosion case.
NASA Astrophysics Data System (ADS)
Valdes-Abellan, Javier; Candela, Lucila; Medero, Gabriela; Buckman, Jim; Hasnayn, Mohammad M.
2015-04-01
Impacts on soil and aquifer media from the use of non-conventional water (treated wastewater-TWW, desalted) for irrigation have been widely studied in the last years . A number of contributions have focused on the impacts derived from the use of TWW (Assouline and Narkis, 2013; Lahav et al., 2010; Xu et al., 2010). Changes in soil hydraulic conductivity and clogging processes have been studied in laboratory experiments from soil columns (Lado and Ben-Hur, 2010) and at field scale (Costa, 1999; Minhas et al., 1994). Irrigation with non-conventional water may also lead to the occurrence of contaminants, a major current environmental concern (Valdes-Abellan et al., 2013). Previous studies have considered impacts in a uniform soil media pore structure; less attention has been paid at a microscopic scale and the influence that high-salinity water may have on wettability of soil. Environmental scanning electron microscopy (ESEM) is a useful technique to be applied in soil science to analyse microscopic changes in soil structure or soil wetting patterns. Research applying this technology for wet systems (Donald, 1998) or porous media (Ali et al., 1995) is available, however as far as we know research on soil impacts due to long term irrigation with saline or non-conventional water are much less common. The dynamic mode of the ESEM allows changes of samples from wet to dry by modifying the water vapour pressure and to observe the wetting and drying patterns and interactions between the solid and liquid phase in the soil (Lourenço et al., 2008). Preliminary results of the study at a microscopic scale of soil samples collected before and after three year irrigation with slightly salted water in an experimental plot setup in semi-arid climatic conditions (Alicante, SE Spain) are presented. We will show the micro-structure of soil and undertake a preliminary investigation of wetting and drying of samples using ESEM techniques Differences in the water vapour pressure value at which complete saturation is achieved was detected, being lower in the 3-years irrigated samples compared with the initial ones. Besides, velocity in which saturation took place was different: initial samples saturation process were developed very quickly, as triggered by a critical shift in the water vapour pressure value and much gradual process were develop in the 3-years irrigated sample when saturation started earlier.
Watershed-Scale Heterogeneity of the Biophysical Controls on Soil Respiration
NASA Astrophysics Data System (ADS)
Riveros, D. A.; Pacific, V. J.; McGlynn, B. L.; Welsch, D. L.; Epstein, H. E.; Muth, D. J.; Marshall, L.; Wraith, J.
2006-12-01
Large gaps exist in our understanding of the variability of soil respiration response to changing hydrologic conditions across spatial and temporal scales. Determining the linkages between the hydrologic cycle and the biophysical controls of soil respiration from the local point, to the plot, to the watershed scale is critical to understanding the dynamics of net ecosystem CO2 exchange (NEE). To study the biophysical controls of soil respiration, we measured soil CO2 concentration, soil CO2 flux, dissolved CO2 in stream water, soil moisture, soil temperature, groundwater dynamics, and precipitation at 20-minute intervals throughout the growing season at 4 sites and at weekly intervals at 62 sites covering the range of topographic position, slope, aspect, land cover, and upslope accumulated area conditions in a 555-ha subalpine watershed in central Montana. Our goal was to quantify watershed-scale heterogeneity in soil CO2 concentrations and surface efflux and gain understanding of the biophysical controls on soil respiration. We seek to improve our ability to evaluate and predict soil respiration responses to a dynamic hydrologic cycle across multiple temporal and spatial scales. We found that time lags between biophysical controls and soil respiration can occur from hourly to daily scales. The sensitivity of soil respiration to changes in environmental conditions is controlled by the antecedent soil moisture and by topographic position. At the watershed scale, significant differences in soil respiration exist between upland (dry) and lowland (wet) sites. However, differences in the magnitude and timing of soil respiration also exist within upland settings due to heterogeneity in soil temperature, soil moisture, and soil organic matter. Finally, we used a process-based model to simulate respiration at different times of the year across spatial locations. Our simulations highlight the importance of autotrophic and heterotrophic respiration (production) over diffusivity and soil physical properties (transport). Our work begins to address the disconnect between point, footprint, watershed scale estimates of ecosystem respiration and the role of a dynamic hydrologic cycle.
Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan
2015-01-01
Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition.
Pei, Jiubo; Li, Hui; Li, Shuangyi; An, Tingting; Farmer, John; Fu, Shifeng; Wang, Jingkuan
2015-01-01
Soil type and fertility level influence straw carbon dynamics in the agroecosystems. However, there is a limited understanding of the dynamic processes of straw-derived and soil-derived carbon and the influence of the addition of straw carbon on soil-derived organic carbon in different soils associated with different fertility levels. In this study, we applied the in-situ carborundum tube method and 13C-labeled maize straw (with and without maize straw) at two cropland (Phaeozem and Luvisol soils) experimental sites in northeast China to quantify the dynamics of maize-derived and soil-derived carbon in soils associated with high and low fertility, and to examine how the addition of maize carbon influences soil-derived organic carbon and the interactions of soil type and fertility level with maize-derived and soil-derived carbon. We found that, on average, the contributions of maize-derived carbon to total organic carbon in maize-soil systems during the experimental period were differentiated among low fertility Luvisol (from 62.82% to 42.90), high fertility Luvisol (from 53.15% to 30.00%), low fertility Phaeozem (from 58.69% to 36.29%) and high fertility Phaeozem (from 41.06% to 16.60%). Furthermore, the addition of maize carbon significantly decreased the remaining soil-derived organic carbon in low and high fertility Luvisols and low fertility Phaeozem before two months. However, the increasing differences in soil-derived organic carbon between both soils with and without maize straw after two months suggested that maize-derived carbon was incorporated into soil-derived organic carbon, thereby potentially offsetting the loss of soil-derived organic carbon. These results suggested that Phaeozem and high fertility level soils would fix more maize carbon over time and thus were more beneficial for protecting soil-derived organic carbon from maize carbon decomposition. PMID:25774529
Prioritization of catchments based on soil erosion using remote sensing and GIS.
Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K
2015-06-01
Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.
Soil biota in an ungrazed grassland: Response to annual grass (Bromus tectorum) invasion
Belnap, Jayne; Phillips, Susan L.
2001-01-01
Bromus tectorum is an exotic annual grass that currently dominates many western U.S. semi-arid ecosystems, and the effects of this grass on ecosystems in general, and soil biota specifically, are unknown. Bromus recently invaded two ungrazed and unburned perennial bunchgrass communities in southeastern Utah. This study compared the soil food-web structure of the two native grassland associations (Stipa [S] and Hilaria [H]), with and without the presence of Bromus. Perennial grass and total vascular-plant cover were higher in S than in H plots, while quantities of ground litter were similar. Distribution of live and dead plant material was highly clumped in S and fairly homogenous in H. Soil food-web structure was different between H and S, with lower trophic levels more abundant in H and higher trophic levels more abundant in S. In Bromus-invaded plots, the quantity of ground litter was 2.2 times higher in Hilaria–Bromus (HB) than in H plots, and 2.8 times higher in Stipa–Bromus (SB) than in S plots. Soil biota in HB generally responded to the Bromus invasion in an opposite manner than in SB, e.g., if a given component of the food web increased in one community, it generally decreased in the other. Active bacteria decreased in H vs. HB, while increasing in S vs. SB. Soil and live plant-infecting fungi were the exception, as they increased in both types of invaded plots relative to uninvaded plots. Dead-plant-infecting fungi decreased in H vs. HB and increased in S vs. SB. Most higher-trophic-level organisms increased in HB relative to H, while decreasing in SB relative to S. Given the mixed response to invasion, the structure of these soil food webs appears to be controlled by both plant inputs and internal dynamics between trophic levels. When compared to non-invaded sites, soil and soil food-web characterisitics of the newly invaded sites included: (1) lower species richness and lower absolute numbers of fungi and invertebrates; (2) greater abundance of active bacteria; (3) similar species of bacteria and fungi as those found in soils invaded over 50 yr ago; (4) higher levels of silt (thus greater fertility and soil water-holding capacity); and (5) a more continuous cover of living and dead plant material (thus facilitating germination of the large-seeded Bromus). These results illustrate that (1) soil food-web structure can vary widely within what would generally be considered one vegetation type (semi-arid grassland), depending on plant species composition within that type, and (2) addition of a common resource can evoke disparate responses from individual food-web compartments, depending on their original structure.
Chiri, Eleonora; Nauer, Philipp A.; Rainer, Edda-Marie; Zeyer, Josef
2017-01-01
ABSTRACT Glacier forefield soils can provide a substantial sink for atmospheric CH4, facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, MOB location in different forefield landforms, and temporal fluctuations in soil physical parameters. We assessed the spatial and temporal variability of atmospheric-CH4 oxidation in an Alpine glacier forefield during the snow-free season of 2013. We quantified CH4 flux in soils of increasing age and in different landforms (sandhill, terrace, and floodplain forms) by using soil gas profile and static flux chamber methods. To determine MOB abundance and community structure, we employed pmoA gene-based quantitative PCR and targeted amplicon sequencing. Uptake of CH4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH4 uptake rates ranging from −3.7 to −0.03 mg CH4 m−2 day−1. Floodplain and terrace soils exhibited lower uptake rates and even intermittent CH4 emissions. Linear mixed-effects models indicated that soil age and landform were the dominating factors shaping CH4 flux, followed by cumulative rainfall (weighted sum ≤4 days prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with upland soil clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical but differed significantly from the highly variable sandhill soil communities. We concluded that soil age and landform modulate the soil CH4 sink strength in glacier forefields and that recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH4 inventories. IMPORTANCE Oxidation of methane (CH4) in well-drained, “upland” soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric-CH4 oxidation in mature upland soils, little is known about this important function in young, developing soils, such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat. In this field-based study, we investigated the spatial and temporal variability of atmospheric-CH4 oxidation and associated MOB communities in Alpine glacier forefield soils, aiming at better understanding the factors that shape the sink for atmospheric CH4 in this young soil ecosystem. This study contributes to the knowledge on the dynamics of atmospheric-CH4 oxidation in developing upland soils and represents a further step toward the inclusion of Alpine glacier forefield soils in global CH4 inventories. PMID:28687652
Chiri, Eleonora; Nauer, Philipp A; Rainer, Edda-Marie; Zeyer, Josef; Schroth, Martin H
2017-07-07
Glacier-forefield soils can provide a substantial sink for atmospheric CH 4 , facilitated by aerobic methane-oxidizing bacteria (MOB). However, MOB activity, abundance, and community structure may be affected by soil age, location in different forefield landforms, and temporal fluctuations in soil-physical parameters. We assessed spatial and temporal variability of atmospheric CH 4 oxidation in an Alpine glacier forefield during the snow-free season 2013. We quantified CH 4 flux in soils of increasing age and in different landforms (sandhill, terrace, floodplain) using soil-gas-profile and static flux-chamber methods. To determine MOB abundance and community structure, we employed pmoA -gene-based quantitative PCR and targeted-amplicon sequencing. Uptake of CH 4 increased in magnitude and decreased in variability with increasing soil age. Sandhill soils exhibited CH 4 uptake ranging from -0.03- -3.7 mg CH 4 m -2 d -1 Floodplain and terrace soils exhibited smaller uptake and even intermittent CH 4 emissions. Linear mixed-effect models indicated that soil age and landform were dominating factors shaping CH 4 flux, followed by cumulative rainfall (weighted sum ≤ 4 d prior to sampling). Of 31 MOB operational taxonomic units retrieved, ∼30% were potentially novel, and ∼50% were affiliated with Upland Soil Clusters gamma and alpha. The MOB community structures in floodplain and terrace soils were nearly identical, but differed significantly from highly variable sandhill-soil communities. We conclude that soil age and landform modulate the soil CH 4 sink strength in glacier forefields, and recent rainfall affects its short-term variability. This should be taken into account when including this environment in future CH 4 inventories. Importance Oxidation of methane (CH 4 ) in well-drained, "upland" soils is an important mechanism for the removal of this potent greenhouse gas from the atmosphere. It is largely mediated by aerobic, methane-oxidizing bacteria (MOB). Whereas there is abundant information on atmospheric CH 4 oxidation in mature upland soils, little is known about this important function in young, developing soils such as those found in glacier forefields, where new sediments are continuously exposed to the atmosphere as a result of glacial retreat.In this field-based study we investigated spatial and temporal variability of atmospheric CH 4 oxidation and associated MOB communities in Alpine glacier-forefield soils, aiming at better understanding factors that shape the sink for atmospheric CH 4 in this young soil ecosystem. The study contributes to the knowledge on the dynamics of atmospheric CH 4 oxidation in developing upland soils, and represents a further step towards the inclusion of Alpine glacier-forefield soils in global CH 4 inventories. Copyright © 2017 American Society for Microbiology.
Modeling the impact of soil aggregate size on selenium immobilization
NASA Astrophysics Data System (ADS)
Kausch, M. F.; Pallud, C. E.
2013-03-01
Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well-aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se species. The spatial and temporal dynamics of the model were validated with data from experiments, and predictive simulations were performed covering aggregate sizes 1-2.5 cm in diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5 cm aggregates compared to 1 cm aggregates. Under oxic conditions, aggregate size and pyruvate concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.
Modeling the impact of soil aggregate size on selenium immobilization
NASA Astrophysics Data System (ADS)
Kausch, M. F.; Pallud, C. E.
2012-09-01
Soil aggregates are mm- to cm-sized microporous structures separated by macropores. Whereas fast advective transport prevails in macropores, advection is inhibited by the low permeability of intra-aggregate micropores. This can lead to mass transfer limitations and the formation of aggregate-scale concentration gradients affecting the distribution and transport of redox sensitive elements. Selenium (Se) mobilized through irrigation of seleniferous soils has emerged as a major aquatic contaminant. In the absence of oxygen, the bioavailable oxyanions selenate, Se(VI), and selenite, Se(IV), can be microbially reduced to solid, elemental Se, Se(0), and anoxic microzones within soil aggregates are thought to promote this process in otherwise well aerated soils. To evaluate the impact of soil aggregate size on selenium retention, we developed a dynamic 2-D reactive transport model of selenium cycling in a single idealized aggregate surrounded by a macropore. The model was developed based on flow-through-reactor experiments involving artificial soil aggregates (diameter: 2.5 cm) made of sand and containing Enterobacter cloacae SLD1a-1 that reduces Se(VI) via Se(IV) to Se(0). Aggregates were surrounded by a constant flow providing Se(VI) and pyruvate under oxic or anoxic conditions. In the model, reactions were implemented with double-Monod rate equations coupled to the transport of pyruvate, O2, and Se-species. The spatial and temporal dynamics of the model were validated with data from experiments and predictive simulations were performed covering aggregate sizes between 1 and 2.5 cm diameter. Simulations predict that selenium retention scales with aggregate size. Depending on O2, Se(VI), and pyruvate concentrations, selenium retention was 4-23 times higher in 2.5-cm-aggregates compared to 1-cm-aggregates. Under oxic conditions, aggregate size and pyruvate-concentrations were found to have a positive synergistic effect on selenium retention. Promoting soil aggregation on seleniferous agricultural soils, through organic matter amendments and conservation tillage, may thus help decrease the impacts of selenium contaminated drainage water on downstream aquatic ecosystems.
Crumsey, Jasmine M; Le Moine, James M; Capowiez, Yvan; Goodsitt, Mitchell M; Larson, Sandra C; Kling, George W; Nadelhoffer, Knute J
2013-12-01
Exotic earthworm introductions can alter above- and belowground properties of temperate forests, but the net impacts on forest soil carbon (C) dynamics are poorly understood. We used a mesocosm experiment to examine the impacts of earthworm species belonging to three different ecological groups (Lumbricus terrestris [anecic], Aporrectodea trapezoides [endogeic], and Eisenia fetida [epigeic]) on C distributions and storage in reconstructed soil profiles from a sandy temperate forest soil by measuring CO2 and dissolved organic carbon (DOC) losses, litter C incorporation into soil, and soil C storage with monospecific and species combinations as treatments. Soil CO2 loss was 30% greater from the Endogeic x Epigeic treatment than from controls (no earthworms) over the first 45 days; CO2 losses from monospecific treatments did not differ from controls. DOC losses were three orders of magnitude lower than CO2 losses, and were similar across earthworm community treatments. Communities with the anecic species accelerated litter C mass loss by 31-39% with differential mass loss of litter types (Acer rubrum > Populus grandidentata > Fagus grandifolia > Quercus rubra > or = Pinus strobus) indicative of leaf litter preference. Burrow system volume, continuity, and size distribution differed across earthworm treatments but did not affect cumulative CO2 or DOC losses. However, burrow system structure controlled vertical C redistribution by mediating the contributions of leaf litter to A-horizon C and N pools, as indicated by strong correlations between (1) subsurface vertical burrows made by anecic species, and accelerated leaf litter mass losses (with the exception of P. strobus); and (2) dense burrow networks in the A-horizon and the C and N properties of these pools. Final soil C storage was slightly lower in earthworm treatments, indicating that increased leaf litter C inputs into soil were more than offset by losses as CO2 and DOC across earthworm community treatments.
STABLE ISOTOPES AS INDICATORS OF SOIL WATER DYNAMICS IN WATERSHEDS
Stream water quality and quantity depend on discharge rates of water and nutrients from soils. However, soil-water storage is very dynamic and strongly influenced by plants. We analyzed stable isotopes of oxygen and hydrogen to quantify spatial and temporal changes in evaporati...
Construction on dolomite in south Africa
NASA Astrophysics Data System (ADS)
Wagener, Fritz Von M.; Day, Peter W.
1986-03-01
Damage to structures and loss of life have been more severe on dolomite than on any other geological formation in southern Africa. The subsidence that occurs on dolomitic terrain following development or during dewatering has given dolomite a notorious reputation and engineers and geologists became reluctant to recommend development on the material. This has led to the pioneering of founding methods for a wide variety of structures aimed at reducing the risk of severity of damage due to subsidence settlement Structures successfully founded on dolomitic terrane include residential and industrial buildings, gold mine reduction works and shaft structures, tailings dams, water retaining structures, and road and rail links. In this article, various methods of construction, some ot which were developed by the authors, are presented. It commences with a classification of a dolomite site in terms of overburden thickness followed by a discussion of the relevant construction methods The methods include mattresses of compacted soil supported by pinnacles or “floating” in residuum, deep foundations such as caissons, the use of specialized piling techniques, and soil improvement by dynamic consolidation
NASA Astrophysics Data System (ADS)
Gigliotti, Giovanni; Massaccesi, Luisa; Federici, Ermanno; Fidati, Laura; Nasini, Luigi; Proietti, Primo
2013-04-01
The disposal of olive mill wastes represents a problem of environmental relevance particularly in the Mediterranean countries where olive oil is mostly produced. Among the several valorisation and recycling methods proposed, interesting for its operational simplicity and convenience is land spreading, either directly or after composting. However, the agriculture use of the water-saturated husk produced by the new two-phase oil extraction systems may be hampered by its consistency and its high content of phenolic compounds, which may finally lead to phytotoxicity. Humid husk may indeed modify the dynamic of soil organic matter (SOM) and the structure and function of microbial communities. On the other hand, organic amendments are known to positively affect SOM fractions, particularly by increasing the concentration and quality of dissolved organic matter (DOM), which may eventually lead to an increase in microbial activity. The aim of this work was to investigate, during a 90-day field trial, the modifications in soil DOM composition and the effects on the soil microbiota induced by a humid husk, obtained from a new generation two-phase oil extraction plant, spread in an olive orchard either as a fresh amendment or after a composting process. With respect to the control, the soil amended with either fresh or composted husk showed an increase in water extractable organic carbon (WEOC). Interestingly, while during the first 30 days the soil amended with the composted husk showed a WEOC content higher than the one amended with the fresh husk, after that time only in the latter the WEOC remained significantly higher than in the control. The total content of phenolic compounds showed a similar trend, with the only difference that their concentration in the soil amended with both treatments remained higher than the control for the entire trial. Similarly, both treatments induced an increase in soil reducing sugars, with an higher effect observed in the soil amended with the composted husk. FT-IR spectra and SUVA254 data confirmed the changes in DOM composition caused by the amendments. Denaturing gradient gel electrophoresis (DGGE) analyses of 16S and 18S rRNA genes was used to characterize the microbiota in both amendments and soils. Interestingly, the DGGE profiles changed after composting the humid husk, indicating how the organic matter transformations occurring during this process profoundly altered the microbial communities of the OMW. Soil bacterial communities were very complex and presented a high species richness throughout the entire trial. In particular, the fresh and the composted husk appeared to have only a slight effect on the bacterial community structure. This effect was observed only during the first 60 days, while after 90 days no differences with the control plot were present. On the contrary, the fungal communities presented a lower biodiversity and more variable DGGE profiles than the bacterial communities. Both treatments clearly altered the structure of the soil fungal community throughout the entire trial. Interestingly, the fungal communities profiles were different when the fresh or the composted husk was used, with the former showing more profound and stable effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garten Jr, Charles T; Classen, Aimee T; Norby, Richard J
2009-01-01
Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 x temperature x soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatmentsmore » with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr-1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.« less
Yi, Shuhua; McGuire, A. David; Harden, Jennifer; Kasischke, Eric; Manies, Kristen L.; Hinzman, Larry; Liljedahl, Anna K.; Randerson, J.; Liu, Heping; Romanovsky, Vladimir E.; Marchenko, Sergey S.; Kim, Yongwon
2009-01-01
Soil temperature and moisture are important factors that control many ecosystem processes. However, interactions between soil thermal and hydrological processes are not adequately understood in cold regions, where the frozen soil, fire disturbance, and soil drainage play important roles in controlling interactions among these processes. These interactions were investigated with a new ecosystem model framework, the dynamic organic soil version of the Terrestrial Ecosystem Model, that incorporates an efficient and stable numerical scheme for simulating soil thermal and hydrological dynamics within soil profiles that contain a live moss horizon, fibrous and amorphous organic horizons, and mineral soil horizons. The performance of the model was evaluated for a tundra burn site that had both preburn and postburn measurements, two black spruce fire chronosequences (representing space-for-time substitutions in well and intermediately drained conditions), and a poorly drained black spruce site. Although space-for-time substitutions present challenges in model-data comparison, the model demonstrates substantial ability in simulating the dynamics of evapotranspiration, soil temperature, active layer depth, soil moisture, and water table depth in response to both climate variability and fire disturbance. Several differences between model simulations and field measurements identified key challenges for evaluating/improving model performance that include (1) proper representation of discrepancies between air temperature and ground surface temperature; (2) minimization of precipitation biases in the driving data sets; (3) improvement of the measurement accuracy of soil moisture in surface organic horizons; and (4) proper specification of organic horizon depth/properties, and soil thermal conductivity.
Katseanes, Chelsea K; Chappell, Mark A; Hopkins, Bryan G; Durham, Brian D; Price, Cynthia L; Porter, Beth E; Miller, Lesley F
2017-12-01
After nearly a century of use in numerous munition platforms, TNT and RDX contamination has turned up largely in the environment due to ammunition manufacturing or as part of releases from low-order detonations during training activities. Although the basic knowledge governing the environmental fate of TNT and RDX are known, accurate predictions of TNT and RDX persistence in soil remain elusive, particularly given the universal heterogeneity of pedomorphic soil types. In this work, we proposed overcoming this problem by considering the environmental persistence of these munition constituents (MC) as multivariate mathematical functions over a variety of taxonomically distinct soil types, instead of a single constant or parameter of a specific absolute value. To test this idea, we conducted experiments where the disappearance kinetics of TNT and RDX were measured over a >300 h period in taxonomically distinct soils. Classical fertility-based soil measurements were log-transformed, statistically decomposed, and correlated to TNT and RDX disappearance rates (k -TNT and k -RDX ) using multivariate dimension-reduction and correlation techniques. From these efforts, we generated multivariate linear functions for k parameters across different soil types based on a statistically reduced set of their chemical and physical properties: Calculations showed that the soil properties exhibited strong covariance, with a prominent latent structure emerging as the basis for relative comparisons of the samples in reduced space. Loadings describing TNT degradation were largely driven by properties associated with alkaline/calcareous soil characteristics, while the degradation of RDX was attributed to the soil organic matter content - reflective of an important soil fertility characteristic. In spite of the differing responses to the munitions, batch data suggested that the overall nutrient dynamics were consistent for each soil type, as well as readily distinguishable from the other soil types used in this study. Thus, we hypothesized that the latent structure arising from the strong covariance of full multivariate geochemical matrix describing taxonomically distinguished "soil types" may provide the means for potentially predicting complex phenomena in soils. Published by Elsevier Ltd.
The role of local soil-induced amplification in the 27 July 1980 northeastern Kentucky earthquake
Woolery, E.W.; Lin, T.-L.; Wang, Z.; Shi, B.
2008-01-01
Amplification of earthquake ground motions by near-surface soil deposits was believed to have occurred in Maysville, Kentucky, U.S.A. during the northeast Kentucky (Sharpsburg) earthquake (mb,Lg 5.3) of July 27, 1980. The city of Maysville, founded on approximately 30 m of Late Quaternary Ohio River flood plain alluvium, was 52 km from the epicenter, but experienced equivalent or higher Modified Mercalli Intensity (MMI) VII, compared with the epicentral area of the earthquake (i.e., MMI VI-VII). In this study, dynamic soil properties were obtained at 10 sites in Maysville using seismic P-wave and S-wave (SH-mode) refraction and reflection methods. Synthetically generated composite time histories and limited geotechnical information, along with the measured dynamic properties, were used to perform one-dimensional linear-equivalent amplification analyses. The results indicated the soils generated ground-motion amplification factors between 3.0 and 6.0 and at a frequency range between 2.0 and 5.0 Hz (0.2 to 0.5 s). The building damage in Maysville from the Sharpsburg earthquake was predominantly found in one- to three-story masonry structures. The estimated fundamental period for one- to three-story masonry buildings is approximately 0.11 to 0.26 s (3.8 to 9 Hz). These correlations suggest the elevated ground motion intensity in Maysville can be accounted for by near-surface soil-amplification effects and resonance of the ground motion by the buildings (i.e., double resonance).
Soil management: The key to soil quality and sustainable agriculture
NASA Astrophysics Data System (ADS)
Basch, Gottlieb; Barão, Lúcia; Soares, Miguel
2017-04-01
Today, after the International Year of Soils in 2015 and the proclamation by the International Union of Soil Sciences of the International Decade of Soils 2015-2020, much attention is paid to soil quality. Often used interchangeably, both terms, soil quality and soil health, refer to dynamic soil properties such as soil organic matter or pH, while soil quality also includes inherent soil properties such as texture or mineral composition. However, it is the dynamic or manageable properties that adequate soil management can influence and thus contribute to a well-functioning soil environment capable to deliver the soil-mediated provisioning, regulating and supporting ecosystem services and soil functions. This contribution intends to highlight the key principles of sustainable soil management and provide evidence that they are compliant with a productive, resource efficient and ecologically friendly agriculture. Paradoxically, and despite benefitting from good soil quality, agriculture itself when based on conventional, especially intensive tillage-based soil management practices contributes decisively to soil degradation and to several of the soil threats as identified by the Soil Thematic Strategy, being soil erosion and soil organic matter decline the most notorious ones. To mitigate soil degradation, the European Union's Common Agricultural Policy has introduced conservation measures, mainly through cross-compliance measures supposed to guarantee minimum soil cover, to limit soil erosion and to maintain the levels of soil organic matter. However, it remains unclear to what extent EU member states apply these 'Good Agricultural and Environmental Condition' (GAEC) measures to their utilized agricultural areas. Effective and cost-efficient soil management systems able to conserve or to restore favourable soil conditions, to minimize soil erosion and to invert soil organic matter and soil biodiversity decline and improve soil structure are those capable to mimic as close as possible natural soil conditions while producing food, feed, fibre and fuel. This means to establish and manage crops while disturbing the soil as least as possible, to maintain the soil permanently covered with plants or their residues and to allow for a diversity of plants either in rotation or in association. These principles also known as Conservation Agriculture have shown to be the most promising approach for a sustainable production intensification and proven to work in a wide range of agro-ecological conditions. Although adopted already on more than 150 Mha worldwide, in Europe it still can be considered a novel soil management practice as it is applied on only around 2% of the annual cropland. A paradigm shift and innovative approaches are needed both to recognise the principles of Conservation Agriculture as the only cost-effective, and thus overall sustainable soil management practices capable to deliver the soil-mediated ecosystem services and to make Conservation Agriculture systems work and accepted as the best compromise to attain better soil quality. Keywords: Soil threats, Soil conservation, GAEC, Conservation Agriculture, Resource efficiency
A Mechanistic Study of Plant and Microbial Controls over R* for Nitrogen in an Annual Grassland
Levine, Jonathan M.; HilleRisLambers, Janneke
2014-01-01
Differences in species' abilities to capture resources can drive competitive hierarchies, successional dynamics, community diversity, and invasions. To investigate mechanisms of resource competition within a nitrogen (N) limited California grassland community, we established a manipulative experiment using an R* framework. R* theory holds that better competitors within a N limited community should better depress available N in monoculture plots and obtain higher abundance in mixture plots. We asked whether (1) plant uptake or (2) plant species influences on microbial dynamics were the primary drivers of available soil N levels in this system where N structures plant communities. To disentangle the relative roles of plant uptake and microbially-mediated processes in resource competition, we quantified soil N dynamics as well as N pools in plant and microbial biomass in monoculture plots of 11 native or exotic annual grassland plants over one growing season. We found a negative correlation between plant N content and soil dissolved inorganic nitrogen (DIN, our measure of R*), suggesting that plant uptake drives R*. In contrast, we found no relationship between microbial biomass N or potential net N mineralization and DIN. We conclude that while plant-microbial interactions may have altered the overall quantity of N that plants take up, the relationship between species' abundance and available N in monoculture was largely driven by plant N uptake in this first year of growth. PMID:25170943
Nitrogen dynamics in flooded soil systems: an overview on concepts and performance of models
Nurulhuda, Khairudin; Gaydon, Donald S; Jing, Qi; Zakaria, Mohamad P; Struik, Paul C
2017-01-01
Abstract Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. Consequently, many N dynamics models are available for users to select from. With the current research trend, inclined towards multidisciplinary research, and with substantial progress in understanding of N dynamics in flooded soil systems, the objective of this paper is to provide an overview of the modelling concepts and performance of 14 models developed to simulate N dynamics in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is valuable as a first step in the selection of an appropriate model for a specific application. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:28940491
NASA Astrophysics Data System (ADS)
Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja
2014-05-01
Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size of POM pieces. That was followed by discriminant analysis conducted using statistical and geostatistical characteristics of POM pieces. POM identified in the intact individual soil aggregates using the proposed procedure was in good agreement with POM measured in the studied aggregates using conventional lab method (R2=0.75). Of particular importance for accurate identification of POM in the images was the information on spatial characteristics of POM's GVs. Since this is the first attempt of POM determination, future work will be needed to explore how the proposed procedure performs under a variety of potentially influential factors, such as POM's origin and decomposition stage, X-ray scanning settings, image filtering and segmentation methods.
NASA Astrophysics Data System (ADS)
Longbottom, T. L.; Hockaday, W. C.
2016-12-01
Kerogen represents the largest terrestrial organic carbon (OC) reservoir on earth and is vulnerable to remineralization upon exposure to earth's atmosphere. Oxidative weathering of ancient sedimentary organic matter is an immensely transformative process with poorly-constrained mechanisms and flux values in contemporary carbon cycle models. The weathered residuum of organic-rich mudrocks serves as parent material for many modern soils, and it is likely that the structure and dynamics of the resulting soil organic matter pool is inherited directly from kerogen-rich bedrock. We used a combination of solid-state 13-C nuclear magnetic resonance (NMR) spectroscopy, and carbon isotope techniques to describe molecular and isotopic changes that occur throughout oxidative weathering of marine kerogens, and the subsequent formation of modern soils, in two outcropping Cretaceous mudstones of the Eagle Ford and Pepper Formations in central, TX. Gradational production of O-containing functionalities was observed, coupled with reductions in characteristically abundant polymethylenic components of type II kerogens. Organic matter structural parameters, derived from C-H dephasing NMR experiments, also provide the basis for a novel weathering index that accounts for the degree of post-sedimentary diagenetic alteration of samples along the kerogen-soil continuum. Molecular and isotopic mixing models were employed in estimating the proportions of modern and ancient C in soils, as increased incorporation and vulnerability of ancient OC under climatic shifts in temperature and/or precipitation is likely.
Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
2015-08-01
Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soilmore » model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.« less
Peng, Jingjing; Lü, Zhe; Rui, Junpeng; Lu, Yahai
2008-01-01
Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH4 production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15°C, 30°C, and 45°C). More CH4 was produced in the straw treatment than root treatment. Increasing the temperature from 15°C to 45°C enhanced CH4 production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15°C and 30°C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45°C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H2) seems to be the key factor that regulates the shift of methanogenic community. PMID:18344350
Gibbs, James F.; Fumal, Thomas E.; Borcherdt, Roger D.; Warrick, Richard E.; Liu, Hsi-Ping; Westerlund, Robert E.
1994-01-01
The Loma Prieta earthquake of October 17, 1989 (1704 PST), has reinforced observations made by Wood and others (1908) after the 1906 San Francisco earthquake, that poor ground conditions (soft soil) increase the likelihood of shaking damage to structures. Since 1908 many studies (for example Borcherdt, 1970, Borcherdt and Gibbs, 1976, Borcherdt and Glassmoyer, 1992) have shown that soft soils amplify seismic waves at frequencies that can be damaging to structures. Damage in the City of San Francisco from the Loma Prieta earthquake was concentrated in the Marina District, the Embarcadero, and the China Basin areas. Each of these areas, to some degree, is underlain by soft soil deposits. These concentrations of damage raise important questions regarding the amplification effects of such deposits at damaging levels of motion. Unfortunately, no strong-motion recordings were obtained in these areas during the Loma Prieta earthquake and only a limited number (< 10) have been obtained on other soft soil sites in the United States. Consequently, important questions exist regarding the response of such deposits during damaging earthquakes, especially questions regarding the nonlinear soil response. Towards developing a data set to address these important questions, borehole strong-motion arrays have been installed at three locations. These arrays consist of groups of wide-dynamic-range pore-pressure transducers and three-component accelerometers, the outputs of which are recorded digitally. The arrays are designed to provide an integrated set of data on ground shaking, liquifaction-induced ground failure, and structural response. This report describes the detailed geologic, seismic, and material-property determinations derived at each of these sites.
Time-domain representation of frequency-dependent foundation impedance functions
Safak, E.
2006-01-01
Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.
NASA Astrophysics Data System (ADS)
Cabolova, Anastasija
Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane ( CH4) and carbon dioxide (CO 2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH 4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change.
Paula Durkin; Esteban Muldavin; Mike Bradley; Stacey E. Carr
1996-01-01
The riparian wetland vegetation communities of the upper and middle Rio Grande watersheds in New Mexico were surveyed in 1992 through 1994. The communities are hierarchically classified in terms of species composition and vegetation structure. The resulting Community Types are related to soil conditions, hydrological regime, and temporal dynamics. The classification is...
L. Heneghan; D.C. Coleman; X. Zou; D.A. Crossley; B.L. Hines
1998-01-01
The influence of climate, substrate quality and microarthropods on decomposition was studied by comparing the mass loss of litter at three forested sites: two tropical and one temperate. At each site,litter bags containing a dominant local litter were placed in the field in replicated plots. Half the bags were treated with naphthalene to reduce microarthropod...
[Dynamics of soil water reservoir of wheat field in rain-fed area of the Loess Tableland, China].
Li, Peng Zhan; Wang, Li; Wang, Di
2017-11-01
Soil reservoir is the basis of stable grain production and sustainable development in dry farming area. Based on the long-term field experiment, this paper investigated the changes of soil moisture in wheat field located in the rain-fed Changwu Tableland, and analyzed the interannual and annual variation characteristics and dynamics trends of soil reservoir from 2012 to 2015. The results showed that the vertical distribution curves of average soil water content were double peaks and double valleys: first peak and valley occurred in the 10-20 and 50 cm soil layer, respectively, while for the second peak and valley, the corresponding soil layer was the 100 and 280 cm soil layer. Soil reservoir did not coincide with precipitation for all yearly precipitation patterns but lagged behind. Yearly precipitation patterns had a great influence on the interannual and annual dynamic changes of soil reservoir. Compared with rainy year, the depth of soil moisture consumption decreased and supplementary effect of precipitation on soil moisture became obvious under effects of drought year and normal year. In rainy year, soil reservoir had a large surplus (84.2 mm), water balance was compensated; in normal year, it had a slight surplus (9.5 mm), water balance was compensated; while in drought year, it was slightly deficient (1.5 mm), water balance was negatively compensated. The dynamics of soil water in winter wheat field in the rain-fed Changwu Tableland could be divided into four periods: seedling period, slow consumption period, large consumption period, and harvest period, the order of evapotranspiration was large consumption period> seedling period> harvest period> slow consumption period.
Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; ...
2017-08-18
We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less